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Abstract 

Inference of gene regulation from expression datasets 

Yiqian Zhou 

 

The development of high throughput techniques and the accumulation of large scale gene expression data 

provide researchers great opportunities to more efficiently solve important but complex biological 

problems, such as reconstruction of gene regulatory networks and identification of miRNA-target 

interactions. In the past decade, many algorithms have been developed to address these problems. 

However, prediction and simulation of gene expression data have not yet received as much attention. In 

this study, we present a model based on stepwise multiple linear regression (SMLR) that can be applied 

for prediction and simulation of gene expression, as well as reconstruction of gene regulatory networks by 

analysis of time-series gene expression data, and we present its application in analysis of paired miRNA-

mRNA expression data. 

 



 

 



1 

 

 

Text 

Chapter 1. Introduction 

1.1. Gene regulatory network 

1.1.1. The Importance of Biochemical Interaction Networks 

Life can be regarded as a complex system in which genes, gene products, and other metabolites interact 

with each other. Uncovering and understanding these biochemical interactions are essential in system 

biology. With the accumulation of known interactions, one can organize them into a biochemical 

regulatory network. By reconstruction of regulatory network, which may contain a large number of 

components, scientists obtain a wider view of the biological system and a better understanding of its 

dynamic nature. The availability of regulatory networks helps scientists obtain answers for questions like: 

how does a specific biological system respond to external stimulus or treatment; what is the stable state of 

a cellular process under certain conditions; and how a biological process will behave if some portion of 

the system were abnormal? With the insights gained from biochemical regulatory network, scientists have 

the ability to understand, control and optimize biological systems, which leads to many practical 

applications in biotechnology and medicine. 

1.1.2. Gene regulatory network (GRN) 

In a typical biochemical gene regulatory network (Figure 1.1a), different kinds of biochemical 

interactions may take place at different levels, such as DNA level, transcript level and protein level. 

Reconstruction of a real regulatory network describing these biochemical interactions requires different 

kinds of knowledge and experimental data. The integration of different information is a complex process. 

Feist et al. [1] described a detailed framework in which various experimental data are integrated to 

reconstruct biochemical networks in microorganisms. 
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A gene regulatory network (GRN) is an abstract representation of the complex biochemical gene 

regulatory system (Figure 1.1b). Instead of describing the different types of real biochemical interactions 

across different levels, GRN is a simplified model describing gene-to-gene interactions [2],  which are 

indirect relationships skipping intermediate proteins, non-coding RNAs, and other metabolites. GRN can 

be represented as a graph, in which nodes represent genes and edges represent relationship between genes 

(Figure 1.1b).  

 

Figure 1.1. A simple regulatory gene network. Gene regulatory network (GRN) can be regarded as an 

abstract representation of a real biochemical regulatory network. (a) The regulation of gene expression 

may happen at different levels, and there are different types of interactions. (b) A gene regulatory network 

is an abstract representation describing how genes influence each other. 

1.1.3. Reconstruction of GRN 

By using the expression data of thousands of genes obtained from high throughput technologies, such as 

microarrays and RNA-Seq [3], it is possible to study how expression of a gene relates to expressions of 

other genes, even in the absence of direct data on the concentrations of protein products or other 
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metabolites. The expression of genes can indirectly affect the expression of other genes: a gene can 

inhibit or stimulate expression of another gene.  These activation and inhibition relationships can be 

represented as a directed graph with nodes representing genes and edges representing the effect of one 

gene on another. There are several methods of reverse-engineering for modeling gene regulatory networks 

from gene expression experiments. These methods include Boolean networks [2, 4-6], correlation 

networks [7-10], differential equation models  [11-16], Bayesian network models [2, 7, 17]. We will give 

a brief introduction of each method in chapter 2.1. 

1.2. Microarray 

1.2.1. Introduction of Microarray 

The advent of microarray technologies has enabled a high throughput evaluation of gene expression, 

providing a large scale snapshot of the cellular activity at the molecular level. In microarray experiments, 

gene expression is quantified by determining the relative amounts of mRNA transcripts. Firstly mRNA is 

harvested from a sample and then reverse-transcribed into cDNA. This cDNA is labeled with a 

fluorescent molecule and then allowed to bind to DNA probes that are attached to the surface of a 

microarray chips. cDNA is captured specifically by its complementary probe by hydrogen bonds formed 

between them. After washing-off non-specific cDNA sequence, the chips are scanned and the 

fluorescence values are measured to quantify relative amounts of specific cDNA present, thus determines 

the relative gene expression. Microarray has allowed researchers to explore the behavior of entire 

transcriptome under different experimental conditions, in a search for mechanistic basis of various 

cellular behaviors.  Analysis of these microarray experimental results has led to new breakthroughs in the 

understanding, diagnosis, prognosis, and treatment of disease, as well as insights into the functioning of 

the basic biology of various organisms.  
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1.2.2. Time series gene expression data 

Time series microarray experiments involve harvesting mRNA from samples at regular time-intervals. 

This experimental design evaluates gene expression over time in a high-throughput manner. Time-series 

expression data has the potential to provide more comprehensive information about the underlying 

behavior and inter-relationships of genes than the traditional time-invariant experiments.  Furthermore, it 

allows interpretations of dynamic behaviors of complex biological systems [18]. Time-series microarray 

data has many applications, including the analysis of circadian rhythms, disease progression, drug 

response, and the study of the cell cycle [18-20]. In chapter 2.1, we review methods for reconstruction of 

GRN using time series data. 

In addition to the inference of GRN structure, time series data can also be used for learning how 

regulation takes place at different time points of the experiment. Ernst et al. developed a method called 

Dynamic Regulatory Events Miner (DREM) to study how cells respond to stimuli, by combining times 

series gene expression data and TF‐DNA binding data [21] (http://www.sb.cs.cmu.edu/drem/). In their 

study, a hidden Markov model is used with each hidden state associated with one time point. During 

training, a tree structure where each state is allowed to have two children is enforced to model bifurcation 

events in the time course. After training, genes are assigned to their most likely paths in the tree structure 

based on their expression profiles. Then TFs are associated to different paths of the splits by enrichment 

score of the genes that they target. This approach is used to infer the activation times of TFs and examine 

how they regulate the response to stimuli.  

Unlike DREM, which groups genes based on expression profiles over the entire time course, Zaslavsky et 

al. developed an approach named Time-Dependent Activity Linker (TIDAL) [22] 

(http://tsb.mssm.edu/primeportal/?q=tidal_prog) that identifies genes with common patterns based on the 

initial up-regulation time and ignores down-regulation based on the observation that timing of changes for 

down-regulated genes is not correlated across experimental replicates. TIDAL associates TFs to different 

http://www.sb.cs.cmu.edu/drem/
http://tsb.mssm.edu/primeportal/?q=tidal_prog
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phases of the time series, in a similar way as DREM, by statistical enrichment of TF target genes. 

Because of the scarcity of identified TF targets, TF targets were identified computationally from the 

presence of TF-target binding sites. TFs are then connected into a transcriptional cascade in a temporal 

manner, such that a TF is placed in the time slice in which its mRNA is first up-regulated in the time 

series. 

1.2.3. Data-driven modeling 

The development of microarray technologies has enabled a high throughput evaluation of gene 

expression, providing large scale quantitative data of cellular activity at the molecular level. The 

availability of large scale gene expression data has changed the starting point of the knowledge generation 

cycle of individual biological regulatory networks and spawned the development of data-driven modeling 

of biological systems [23]. Traditionally, a hypothesis was constructed from background knowledge and 

tested by experiments, and then the hypothesis was either verified or modified for further experimental 

testing. This cycle was repeated until the solution of the problem was satisfactory (Figure 1.2). However, 

when there are many possible testable hypotheses and their detailed experimental validation is not 

feasible, it is more practical and resource effective to generate and prioritize candidate hypotheses from 

the prior data using computer based inductive reasoning. Inference of biological regulatory networks is a 

complex task and the search space of possible interactions is far too large. There is, however, a great 

amount of gene expression data accumulated from microarray studies, thus how to utilize those data to 

generate sound hypotheses is of great interest.  Data-driven inference of a network, which generates a 

reasonable hypothesis, is a key step in understanding the biological systems. 
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Figure 1.2. Cycle of knowledge. The availability of large scale gene expression data changed the start 

point of the cycle of knowledge generation. (a) Traditionally, a hypothesis is generated based on 

background knowledge and then tested by experiments. (b) With the large amount of available gene 

expression data and little suitable background knowledge, the hypothesis is generated based on the 

analysis of data. 

1.3. Micro RNA 

1.3.1. microRNA as fine tuner 

MicroRNAs (miRNAs) are small (~22 nucleotide) non-coding endogenous RNA that play important roles 

in gene-regulatory events in both animals and plants, by pairing the messenger RNA (mRNA) of protein-

coding genes [24]. miRNAs participate in a wide range of biological process [25] and it is predicted that 

miRNAs affect the expression of over 60% of mammalian gene [26], and they are regarded as fine-tuners 

that adjust the expression of protein-coding genes to optimize their expression patterns [27, 28]. Over the 

past decade, it has become clear that miRNAs contribute to almost all known physiological and 

pathological processes, in which cancer is of particular interests. Since the dysregulation of miRNA gene 

expression controls/ are controlled by the dysregulation of multiple oncogenes or tumour suppressors, 
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studying the biological process of miRNA provide important opportunities for the development of 

miRNA-based diagnosis and treatment of cancer [29, 30]. 

1.3.2. Experimental identification of miRNA targets 

To understand the functions of miRNAs, a central goal and major challenge is to determine their target 

mRNAs. There are many experimental techniques being used for target identification of miRNAs. These 

techniques apply different strategies that focusing on different components in the miRNA-directed 

regulation, as shown in Figure 1.3. These techniques can be categorized them as (1) transcriptome 

analysis, (2) proteome analysis, (3) RLM-RACE, (4) translation profiling, (5) miRNA manipulation, and 

(6) immunoprecipitation, which manipulate protein, mRNA, cleaved mRNA, ribosome, miRNA and 

RNA-induced silencing complex (RISC) respectively. 

 

Figure 1.3. Categories of experimental techniques for miRNA target identification. These techniques are 

categorized based on which component in miRNA-directed regulation they focus on. Modified from [31] 
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1.3.2.1. Transcriptome analysis 

To screen for miRNA targets, the most common strategy is to differentially express a single miRNA. On 

one hand, over-expression of miRNA can be performed by transfection with in vitro synthesized ds-RNA 

precursor, which mimic the endogenous miRNAs. After that, transcriptome analysis (or proteome 

analysis, discussed below in 1.3.2.2) is used to identify the mRNAs (or proteins, discussed below in 

1.3.2.2), whose expression levels are affected as a consequence of miRNA over-expression. To measure 

the expression of mRNA, there are essentially three techniques, real-time quantitative PCR (qPCR), 

microarrays and next generation sequencing (NGS) (RNA-seq for example). Take cost and scale into 

consideration, currently microarray is mostly widely used for routine studies. For example, Lim et al. 

transfected miRNAs into human cells and examined changes in mRNAs using microarray, and found that 

miRNA reduce the level of large number of target mRNA transcripts [32]. Alternatively to microarray, 

Xu et al. used NGS to analyze transcriptome changes induced by the human miR-155 [33]. 

On the other hand, silencing of miRNA functions can be performed by gene knockout or expression of 

antisense that bind mature miRNA. For example, Sekine et al. disrupted Dicer, an enzyme essential for 

miRNA processing, to study the consequences of loss of miRNAs in conditional knockout mouse livers 

[34]. Krutzfeldt et al. designed chemically modified, cholesterol-conjugated single-stranded RNA 

analogues termed „antagomirs‟ that are complementary to miRNAs for in vivo silencing, and showed that 

intravenous administration of antagomirs resulted in a marked decrease of corresponding miRNA levels 

[35]. Elmén et al. reported antagonism of miR-122 using unconjugated LNA (locked nucleic acid)-

antimiR oligonucleotide based on the stable heteroduplexes between the LNA-antimiR and miR-122 [36]. 

Ebert et al. developed miRNA inhibitors termed „microRNA sponges‟ that can be expressed in cells [37]. 

When expressed, these competitive inhibitors containing multiple, tandem binding sites to a miRNA of 

interests, and those binding sites are designed such that they can block an entire miRNA seed family. 

They showed microRNA sponges repress miRNA targets no less strongly compared to chemically 
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modified antisense oligonucleotides. Haraguchi et al. developed RNA decoys, TuD RNAs (tough decoy 

RNAs), to achieve long-term suppression of miRNA [38]. The inhibitory RNAs are designed to be 

expressed in lentiviral vectors and to be transported into cytoplasm. They demonstrated that TuD RNA 

induce efficient suppression of specific miRNAs for more than one month in mammalian cells. 

1.3.2.2. Proteome analysis 

Besides measuring mRNA expression, there are also proteomic approaches for studying miRNA target 

regulation. Proteomic approaches can be employed to measure the „final effect‟ of miRNAs since 

miRNAs regulate gene expression by both mRNA cleavage and translational repression. 

Stable isotope labeling with amino acids in cell culture (SILAC) is a technique based on mass 

spectrometry that measure relative protein abundance among samples labeled with stable isotopes. 

Proteins are labeled by growing cells in medium containing amino acids labeled with heavy isotopes. 

Difference in protein abundance can be determined by the ratio of peak intensities in the mass spectrum. 

Vinther et al. applied SILAC to investigate the effect of miRNA-1 on HeLa cell proteome and found 12 

out of 504 detected proteins were repressed by miRNA-1 transfection [39]. Yang et al. employed SILAC 

to identify targets of miR-143 and found 93 out of over 1200 identified proteins down-regulated more 

than 2-fold in miR-143 mimic transfected MiaPaCa2 pancreatic cancer cells as compared to controls [40]. 

Baek et al. [28] and Selbach et al. [41] both measured the response of thousands of proteins after miRNA 

transfection or endogeneous miRNA knockdown, by applying SILAC and pSILAC (cells in two samples 

are pulse-labeled with two different heavy versions of amino acids so that newly synthesized proteins will 

be „heavy‟ or „medium-heavy‟) respectively. Based on those large-scale study, they both found that single 

miRNAs can repress the production of hundreds of proteins and that most repressions are modest, which 

suggest that miRNAs act as fine-tuner for protein synthesis. 
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Two-dimensional differentiation in-gel electrophoresis (2D-DIGE) technique was also applied to identify 

miRNA targets. Proteins from two samples are labeled with different fluorescent dyes and then separated 

in two dimensions on gel by isoelectric focusing and SDS-PAGE. After that, proteins are identified by 

mass spectrometry. Zhu et al. applied 2D-DIGE to analysis total proteins extracted from cells treated with 

and without inhibitor of miR-21 (antisense miR-21) and identified tumor suppressor tropomyosin 1 

(TPM1) as a potential miR-21 target [42]. 

1.3.2.3. RLM-RACE 

RNA ligase mediated-5′ rapid identification of cDNA ends (5‟ RLM-RACE) is a technique that can be 

used to identify miRNA targeting where target mRNA is directly cleaved. In 5‟ RLM-RACE procedure, 

by using T4 RNA ligase, RNA adaptor can covalently attach to uncapped 5‟ end of mRNA produced from 

Ago2-directed cleavage. After this ligation, with a forward primer complementary to the adaptor and a 

gene specific reverse primer, the RNA can be reverse transcript, subsequently PCR amplified and 

identified. Applying RLM-RACE, Yekta et al. validated the miR-196 directed cleavage of HOXB8 in 

mouse embryos [43]. Franco-Zorrilla et al. used RLM-RACE combining microarray to identify small 

RNA targets [44]. In their study, miRNA/siRNA-mediated-cleaved transcripts were isolated by RLM-

RACE and then subjected amplifications and microarray hybridizations. An approach named Parallel 

analysis of RNA ends (PARE) is developed to identify products from 5‟ RLM-RACE in large scale by 

high-throughput sequencing. Bracken et al. performed PARE to detect potential miRNA-directed mRNA 

cleavages in mouse embryo and adult tissues and found that numerous mRNA are potentially cleaved at 

low level by endogenous miRNAs [45]. 

1.3.2.4. Translation profiling 

The analysis of mRNA associate with polysome profiling provides researchers information about the 

targets of miRNA and mechanism of miRNA-mediated translational repression. Nakamoto et al. proposed 
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a method for identification of target mRNA by detecting the shifts in mRNA abundance in polysome 

profiles after miRNA knockdown [46]. They assumed that the position of mRNA in polysome profiles 

partially reflects the degree of its translation. Combining miRNA knockdown and microarray analysis, 

mRNA moving toward heavier polysome reflects the relief of miRNA-mediated translational repression. 

Guo et al. used ribosome profiling to measure the effect of miRNA on translational efficiency [47]. 

Together with the measure of change of mRNA level from microarray analysis, they found mRNA found 

that lowered mRNA level account for most of the decreased protein output. 

1.3.2.5. miRNA manipulation 

There are several approaches focusing on direct manipulation of miRNA. 

Biotin-tagged 

Ørom et al. presented an approach for experiential identification of miRNA targets based on affinity 

purification of tagged miRNAs [48]. In this method, they transfected cells with biotinylated miRNA 

duplexes and captured miRNA-RISC-mRNA complexes using streptavidin-sepharose beads. After that, 

RNAs were isolated and ready for downstream analysis by qRT-PCR or microarray. By employing this 

direct affinity-based procedure, Ørom et al. showed miR-10a interacts with the 5‟-UTR region of 

ribosomal proteins encoding mRNAs to enhance their translation [49]. This method can be applied to 

examine the direct interaction of miRNA with its targets [50, 51] .With this technique, researchers may 

pull down targets of a particular miRNA of interest. But the potential limitations include that it is 

unknown how biotin tag affect the miRNA binding and whether it capture miRNA targets 

comprehensively. 

Digoxigenin-labeled 
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Hsu et al. developed a simple approach to find potential targets of specific miRNA in vitro, which they 

termed as Labeled miRNA pull-down (LAMP) assay [52]. In their procedure, precursor miRNA (pre-

miRNA) are synthesized and labeled with digoxigenin (DIG) and mixed with cell extracts, in which 

endogenous Dicer process pre-miRNAs and generates mature miRNAs in vitro. After DIG-labeled 

miRNA attaching to its target mRNA by the endogenous RISC, DIG-labeled miRNA-mRNA complex are 

pulled down by anti-DIG antiserum. The isolated RNA is then ready for further process such as RT-PCR, 

microarray. The LAMP assay is relatively simple and cost-effective, but the DIG label may influence 

Dicer processing and there are potentially non-specific binding between target mRNA and RISC. 

As primer for RT 

Since miRNA is (partially) complementary to the 3‟-end of target mRNA, it can act as primer for target 

cDNA by reverse transcription (RT). Based on this principle, Vatolin et al. proposed a novel two-step 

reverse transcription method to detect miRNA-mRNA interaction in eukaryotic cells [53]. They firstly 

synthesize cDNA on an mRNA template using mRNA as endogenous cytoplasmic primer. This step 

extends miRNA and overcome the problem of low complementary miRNA-mRNA binding. In the second 

of RT, the purified hybrid 3‟-cDNA-miRNA-5‟ molecules are used to anneal target mRNA specifically. 

Andachi described a method based on the same idea focus on identification of targets of miRNA of 

interest [54]. They applied this method to C. elegans miRNA lin-4 and successfully detected interactions 

between miRNA lin-4 and lin-14. 

1.3.2.6. Immunoprecipitation 

Unlike transcriptome and proteome approaches, which cannot distinguish direct and indirect miRNA 

effects, biochemical approaches are generally more reliable, since it reveals the direct miRNA-mRNA 

interactions. miRNA-mRNA pairs can be purified by the immunoprecipitation of the RNA-induced 

silencing complex (RISC) components. The direct target mRNAs that are co-immunoprecipitated with 
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RISC can be identified by microarray or deep sequencing. Karginov et al. combined RISC 

immunopurification with microarray analysis of associated mRNAs for miRNA target discovery [55]. 

Similarly, Hendrickson et al. transfected HEK293T cells with epitope-tagged Ago2, immunopurified 

Ago2 associated with miRNAs and mRNAs, and determined the RNAs by microarray [56]. Easow et al. 

found enrichment of mRNAs containing miRNA seed complementary sites in 3‟  by using  

immunoprecipitation of hemagglutinin (HA)-tagged Ago1 protein in Drosophila Melanogaster Schneider 

SL2 (S2) cells [57]. Beitzinger et al. used highly specific monoclonal antibodies against members of the 

Ago protein family to co-immunoprecipitate Ago-bound mRNAs in HEK 293 cells [58]. Tan et al. 

applied approach called Ribonucleoprotein ImmunoPrecipitation-gene Chip (RIP-Chip) [59]. In their 

study, wild-type human Ago2 protein is directly immunoprecipitated from untreated cells using 

antibodies and Ago2-associated mRNA transcripts are analyzed by microarray to identify miRNA-

targetome. 

There are limitations of these immunoprecipitation approaches. It is possible that the associations of 

RNA-binding protein and its target mRNA may result from reassociation of molecules subsequence to 

cell lysis, thus the immunoprecipitattion approaches does not always reflect the in vivo interactions [60]. 

In addition, while these approaches require interactions stable enough to survive immunoprecipitation 

process, potential targets may be missed during the process. There are several novel approaches 

developed that handle these limitations. 

Crosslinking Immunoprecipitation 

Cross-linking and immunoprecipitation assays (CLIP) is a technique that combines UV cross-linking with 

immunoprecipitation to study the protein-RNA binding sites. Upon exposure to UV light, covalent bonds 

are formed between proximal proteins and RNA. The cells are then lysed and the proteins of interest are 

isolated by immunoprecipitation. Based on CLIP, high-throughput sequencing of RNA isolated by 

crosslinking immunoprecipitation (HITS-CLIP), also known CLIP-seq, employ high-throughput 
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sequencing techniques to identify RNA segments. By using HITS-CLIP approach, Chi et al. isolated 

argonaute protein-RNA complexes in mouse brain [61]. They identify interaction sites between miRNAs 

and target mRNA by analyzing data of Ago-miRNA binding sites and Ago-mRNA binding sites. Zisoulis 

et al. isolated endogenous mRNA target sequences bound by Argonaute protein ALG-1 in C. elegans and 

identified ALG-1 interactions with both 3′-UTR and coding exon sequences [62]. 

HITS-CLIP method is limited by the low efficiency of UV 254 nm RNA–protein cross-linking and the 

difficulty in precisely locating binding sites in sequenced fragments. To address the problem, a variant 

CLIP method, named photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation 

(PAR-CLIP) is developed [63]. PAR-CLIP enhances the UV cross-linking efficiency by incubating cells 

with a photoactivatable nucleoside. And more importantly, PAR-CLIP is capable of identifying cross-link 

site because of higher frequency of UV-induced mutations in cross-linked than non-cross-linked sites. By 

using PAR-CLIP, Hafner et al. determined the binding sites for several intensely studied RNA-binding 

proteins (RBPs) and miRNA-containing ribonucleoprotein complexes (miRNPs) [64]. 

As for HITS-CLIP, recent advances in data analysis refine the resolution of RNA-binding map [65]. In 

the HITS-CLIP procedure, the remaining cross-linked amino acids attached RNA impose an obstacle for 

reverse transcription, thus mutations may induced. By analyzing these cross-link-induced mutation sites 

(CIMS), RNA-protein interactions at single-nucleotide resolution can be obtained. 

1.3.3. Validation of miRNA-mRNA interaction 

miRNA-mRNA interactions identified by large scale screening methods described above should be 

further examined for their authenticity. For individual miRNA-mRNA interaction, researchers may turn to 

more reliable but also more labor intensive methods such as luciferase reporter assays. In this assay, 3‟-

UTR of the potential target gene is cloned immediately downstream of the luciferase open reading frame 

in the reporter plasmid. Altered luciferase activity is measured as a result of manipulation of a targeting 
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miRNA, which demonstrate a direct miRNA effect. To ensure authenticity of a functional miRNA-

mRNA pair, Kuhn et al. reviewed several miRNA targets validation methods and proposed multiple 

criteria for confirmation of miRNA validated targeting [66]. Those criteria include validated miRNA-

mRNA interaction, co-expression of both miRNAs and mRNAs, effects of miRNA on amount of target 

protein, effects of miRNA on biological functions. 

There are several databases house collection of experimentally identified miRNA-mRNA interactions, 

such as TarBase [67], miRTarBase [68], miRecords [69]. Since interactions identified by 

immunoprecipitation methods generally are more reliable than these identified by transcriptome and 

proteome analysis, it‟s reasonable to mention experimental evidence strong or not.  In miRTarBase, 

miRNA-mRNA interactions are deemed as having strong support when they are validated by western 

blot, qPCR, or reporter assays, and having weak support with pSILAC and microarray experiments [70]. 

1.3.4. Sequence-based computational methods 

So far thousands of miRNAs have been identified in animals and plants. There are 1872 homo sapiens 

miRNA sequence annotated in mirBase (v20, June 2013) [71]. However, only a small fraction of miRNA 

targets have been validated experimentally with confidence because of the relatively low efficiency and 

high cost of experimental procedures. Sequence-based computational methods have been developed to fill 

the gap by generating putative lists of miRNA-mRNA pairs, which have greatly reduce the number of 

interactions researchers need to validate. 

Most sequence-based methods are based on experimentally determined rules of miRNA-mRNA 

interactions, including sequence complementarity between the nucleotides 2-7 of miRNA (called „seed 

region‟) and 3‟-UTR of the mRNAs [72], energetically favorable hybridization [73], evolutionary 

conservation of the binding sites among different species [74], RNA secondary structure accessibility [75] 

and multiple target sites [76]. Based on these rules, many approaches have been developed. Widely used 
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methods includes TargetScan [72], miRanda [77], PicTar [78], TargetScanS [79], PITA [75], DIANA-

microT [80]. Comprehensive review and discussion of these methods are available [81, 82]. 

 

Table 1-1. Sequence-based methods for miRNA target indentification 

1.3.5. Paired miRNA-mRNA expression data 

As technology advances and it becomes clear that miRNAs are key regulator in regulatory network,  

miRNA expression profiling become popular and a multitude of miRNA profiling platform have become 

available [83]. Currently, there are three major well-established approaches: quantitative reverse 

transcription PCR(qRT-PCR), hybridization-based methods (for example, DNA microarrays) and high-

throughput sequencing (RNA-seq) [83]. Each approach has its own limitations and advantages [84-86]. 

They together provide plenty of miRNA profiling data, which enable researchers to pinpoint important 

miRNAs and their roles in a particular biological process. Moreover, more and more paired miRNA-

mRNA expression profiles have been achieved to investigate miRNA‟s role, especially in cancer (Table 

1-2). 

Database Reference Link 

TargetScan [72] http://www.targetscan.org/ 

miRanda [77] http://www.microrna.org 

PicTar [78] http://pictar.mdc-berlin.de/ 

TargetScanS [79] http://genes.mit.edu/tscan/targetscanS.html 

PITA [75] http://genie.weizmann.ac.il/pubs/mir07/ 

DIANA-microT [80] http://diana.cslab.ece.ntua.gr/microT/ 

http://www.targetscan.org/
http://www.microrna.org/
http://pictar.mdc-berlin.de/
http://genes.mit.edu/tscan/targetscanS.html
http://genie.weizmann.ac.il/pubs/mir07/
http://diana.cslab.ece.ntua.gr/microT/
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Table 1-2. Paired miRNA-mRNA expression data for cancer study. 

GEO ID miRNA 

platform 

mRNA 

platform 

sample 

number 

sample type reference 

GSE35602 GPL8227 GPL6480 59 colorectal 

cancer 

[87] 

GSE32688 GPL7723 GPL570, 

GPL6801 

96 pancreatic 

Cancer 

[88] 

GSE40355 GPL8227 GPL13497 48 Bladder cancer [89] 

GSE22220 GPL8178 GPL6098 426 breast cancer [90] 

GSE19536 GPL8227 GPL6480 215 breast cancer [91] 

GSE19783 GPL8227 GPL6480 216 breast cancer [92] 

GSE28544 GPL10850 GPL6244 56 breast cancer  

GSE19350 GPL8227 GPL570, 

GPL8887 

41 central nervous 

system germ 

cell tumors 

[93] 

GSE35982 GPL14767 GPL4133 32 colorectal 

cancer 

[94] 

GSE21687 GPL8227 GPL570, 

GPL1261 

339 Ependymoma [95, 96] 

GSE37372 GPL8178 GPL96, 

GPL570 

78 Chordomas [97] 

GSE17227 GPL8178 GPL6370 20 Glioblastoma [98] 

GSE25632 GPL8179 GPL6884 108 Glioblastoma [99] 

GSE21849 GPL9081 GPL1708 65 Lymphoma [100] 
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1.3.6. Integrative approaches 

Currently reliable prediction of miRNA-mRNA interactions remains to be a challenge. Prediction solely 

based on sequence information has high false positive rates [107]. To improve the performance, novel 

integrative approaches that combine sequence based predictions and experimental data are needed. With 

the accumulation of high throughput expression data, especially paired miRNA-mRNA experiments, 

several methods that incorporate these high throughput data have been developed. These methods can be 

roughly categorized as correlation based, multiple linear regression based and Bayesian based. We will 

give a brief introduction of each method in chapter 2.2. 

1.3.7. Functional annotation of miRNAs 

One central goal of miRNA study is to infer its biological functions. The common strategy for the 

functional annotation of miRNAs is to perform gene sets enrichment analysis with their targets mRNAs. 

This strategy is based on the accumulation of large amount of knowledge of genes and the assumption 

that miRNAs have similar functions to their targets. It starts with a list of miRNAs of interest, usually 

GSE17498 GPL8227 GPL2005, 

GPL9021 

102 Myeloma [101] 

GSE17306 GPL9081 GPL570 106 myeloma [102] 

GSE28425 GPL8227 GPL13376 46 osteosarcoma [103] 

GSE20161 GPL8178 GPL6102 215 prostate cancer [104] 

GSE21032 GPL8227 GPL4091, 

GPL5188, 

GPL10264 

743 prostate cancer [105] 

GSE25692 GPL9081 GPL7363 43 prostate cancer [106] 
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differentially expressed ones between different subgroups of samples. The target genes of these miRNAs 

are identified by sequence-based target prediction algorithms, and/or searching in validated target 

databases or literatures. When a set of targets is available, by using bioinformatics enrichment tools [108, 

109], relevant biological functions can be assigned. Using this strategy, several tools have been developed 

for functional annotation, such as miRGator [110], miRDB [111], and FAME [112]. 
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Chapter 2. Model 

In this chapter, we will introduce methods that use gene expression data for reconstruction of gene 

regulatory network and methods that use paired miRNA-mRNA expression profiles for inference of 

miRNA-target interactions.  

2.1. Reconstruction of gene regulatory network (GRN) 

There are many models and approaches that have been proposed to infer the GRN based on gene 

expression data from microarrays. They can be categorized as Boolean networks, Bayesian networks, co-

expression networks and differential equation models (Figure 2.1). We describe each of these categories 

in more detail below. 

 

Figure 2.1. Gene regulatory network reconstruction methods described in this chapter. 

2.1.1. Boolean networks 

Boolean Network model was first proposed by Kauffman in 1969 [4]. The model represents gene at 

discrete time steps as a binary (on or off) variable. Boolean function is used to determine the gene state at 

the next discrete time step. Let there be   genes in the network, a Boolean network        is a set of 

genes                and a list of Boolean functions               , where a Boolean function 
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                ) is assigned for each node   , with a maximum of   inputs. In order to reduce the 

computational complexity and generate stable results,   is usually kept small. Networks are defined by 

the   and   values used to construct them, for example, a            network. 

There are different ways for visualizing a Boolean network. Directed graphs and wiring diagrams are the 

most common ones. In a directed graph, nodes represent genes and edges indicate Boolean functions.  In a 

wiring diagram, there are two levels of nodes; each level represents a discrete time step and the 

connections between two levels indicate Boolean functions. It can also be helpful to show trajectory 

tables for Boolean networks. A trajectory is a sequence of states of the whole network following an initial 

state. Trajectory tables provide the output of the network given various inputs. Figure 2.2 illustrates a 

simple         Boolean network. Figure 2.2a shows the network as a directed graph. Figure 2.2b 

displays the network as a wiring diagram showing state transitions from a discrete time step to another. 

Figure 2.2c is a table of gene states at discrete time steps. 

 

Figure 2.2. A simple         Boolean network. The Boolean network has 4 nodes. Node   is on 

unless node   was on in the previous time. Nodes   and   are only on if node   was on in the previous 

step. (a) Directed graph representation. Edges with arrows imply stimulation. Edges with diamonds imply 

suppression. (b) Wiring diagram. The expression at time   determines the expression at time    . (c) 
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State Table. When nodes   and   are expressed and nodes   and   are repressed, the network engages in 

a 6 state dynamic attractor. The values for times 7 through 13 will be the same as times 1 through 7. 

Most Boolean network models are synchronous, that is, all states are updated simultaneously. Future 

states of the network are determined from previous states. For a network containing   genes, there are at 

most    different states, thus a trajectory must reach a previously visited state within    time steps and 

cycle eventually emerges. These cycles are called attractors, which represent steady states of a model. 

Point attractors contain 1 state for steady state conditions, and dynamic attractors contain multiple states. 

For example, the phase changing of the cell-division cycle is a dynamic cycle. Attractors represent stable 

phenotypic structures [113], and provide information about the system being modeled. 

To create Boolean network for gene regulation, the expression data must be discretized (on or off). With 

discretized data, a network that explains the data can be generated. The REVerse Engineering ALgorithm 

(REVEAL) is an early algorithm that accomplishes this task [114]. REVEAL calculate mutual 

information between sets of genes via Shannon entropy, and extract the wiring relationships that 

accurately explain the state of an output gene. Based on REVEAL, Akutsu et al. provided a proof that 

        state transition pairs are enough to identify Boolean network with high probability when the 

number of input   for Boolean function is bounded by a constant [115]. They later presented a Monte-

Carlo algorithm with improved time-complexity [116]. Since real gene expression data may be quite 

noisy, a learning paradigm called Best-Fit extension was developed with goal to learn a network with as 

few misclassifications as possible [117]. Lähdesmäki et al. introduced a  method that learn GRN under 

Best-Fit extension with better efficiency [118]. Several studies constructed Boolean networks from time 

series expression data, including cell cycle in S. pombe [119], and IL-2 stimulated T cell responses in M. 

musculus [120]. 

One limitation of simple Boolean networks is that they do not represent the gene regulatory mechanisms 

exactly as they appear in living cells. In reality, gene expression is often varied on a continuous scale, not 
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switched on or off as a Boolean toggle. Szallasi and Liang introduced „realistic Boolean genetic networks‟ 

that address the issue of biological relevance of Boolean networks [121]. The model incorporate 

regulatory biochemical and physiological parameters but require additional computational time and space 

requirements. Another limitation of simple Boolean networks is its synchronous nature, that all genes in 

the system are subjected to changes simultaneously, which is not necessarily true in cells. Updating the 

network asynchronously may be a way to solve this problem. Some work with asynchronous Boolean 

networks under stochastic update has been performed [122, 123]. 

Another limitation of simple Boolean networks for modeling GRN based on gene expression data is their 

inability to compensate for noise and a lack of prior knowledge, which are exacerbated by noise inherent 

in high throughput gene expression data and the incomplete knowledge of genetic interactions. A model 

that account for noise associated with gene expression named Probabilistic Boolean Network (PBN) was 

proposed [124]. The basic idea of PBN is that it has more than one possible Boolean function for each 

node: each node is assigned a set of Boolean functions, which are called predictors. A PBN        is 

defined as a set of nodes                and a list of sets of predictors               , where 

inside each set of predictors       
    

     
    

  ,   
 
 is a Boolean function and      is the number of 

predictors for node   . Notice that   ∏      
    is the total number of possible PBN realizations (if 

         are independent). When only one function is used for each node, that is,        for all  , then 

   , then the model reduce to a standard simple Boolean network. Each predictor in a predictor set is 

associated with a probability given the current state of the network. In accordance to the probabilities, a 

predictor is randomly selected for each node at each time step. To determine the probability of a 

predictor, it involves a complicated procedure when PBNs utilize dependent predictors [124]. To reduce 

the computational complexity, most models avoid dependent predictors.  
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2.1.2. Bayesian networks 

Bayesian networks (BN) models treat each gene as a random variable governed by a probability 

distribution, whose function is determined by a product of conditional probabilities. BNs are ideal for 

describing processes where value of each component is dependent upon values of a small number of other 

components [125]. The networks produced by BNs are directed acyclic graphs (DAG). Each gene in the 

network is dependent on a set of other genes, which are called its parents. In a BN, the probability 

distribution function for each gene is a product of the conditional probabilities of all of the „ancestor‟ 

genes in the network. One of the major issues for BN models is the large number of possible networks 

that can be constructed from a particular set of genes. A particular directed acyclic graph that best fits the 

data must be determined. 

Consider a finite set of random variables,                  . Two components make up a Bayesian 

network: the directed acyclic graph  , in which each vertex corresponds to a variable in the set   and the 

conditional probability distribution of each variable based on its parents in  . The Markov assumption, 

which is visualized by the directed acyclic graph, states that given a set of parent vertices, each vertex in 

  is conditionally independent of vertices that are not its descendants. Using this conditional 

independence, the joint probability distribution for the entire network can be expressed as 

 
                  ∏            

 

   

 (2.1) 

where        represents the set of parents of   . The conditional probability distributions can arise from 

discrete or continuous variables. Suppose the parents of a variable are expressed as follows 

           
    

     
    

  (2.2) 
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where      is the number of  parents of   . If each parent possesses a discrete value from a set of finite 

size, then the probability of    given its parents can be represented as a table that specifies the value of    

for each value set of its parents. If there are   possible values for each discrete variable then the table will 

specify       possible conditions. When continuous real valued variables, such as those present in gene 

expression datasets, are used then there are infinite possible distributions. In such cases, linear Gaussian 

conditional probability densities can be used. Each variable    is assumed to follow a normal distribution 

with a mean that is dependent on values of its parents.  However, the variance of this distribution will be 

independent of the parents.  The resulting joint distribution for the network will be a multivariate 

Gaussian distribution [125]. 

The large search space of possible directed acyclic graphs for a given set of nodes makes it difficult to 

identify a network that is ideal for a particular dataset. The most common solution to this problem is the 

usage of a scoring function to evaluate potential graphs. The two most common scoring functions are the 

Bayesian Information Criteria (BIC) and the Bayesian Dirichlet equivalence (BDe). These scoring 

methods incorporate penalties to prevent over-fitting the dataset [126]. However, finding the graph with 

the maximum score out of all possible graphs is known to be an NP-hard problem [127]. A priori 

biological information can also be utilized in order to restrict the number of possible graphs, for example, 

Ong et al. utilized the fact, that certain E. coli genes are co-transcribed and thus co-regulated, to identify 

edges between these genes in their networks [128]. Due to the exponential size of the search space for 

possible networks, heuristic search methods, such as greedy-hill climbing, Markov Chain Monte Carlo, 

and simulated annealing, are employed. Furthermore, model averaging, or bootstrapping techniques can 

be utilized to select the ideal network from several highly scoring networks identified by the selected 

search heuristics, and can also be employed to determine confidence intervals for the interactions [126]. 

Information theory-based scoring functions such as mutual information can also be employed.  
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Bayesian networks can handle incomplete or noisy data, combine heterogeneous data types, and can avoid 

over-fitting. However, BNs are unable to model feedback loops, since they don‟t allow graphs with 

cycles. Dynamic Bayesian networks (DBNs) were created to overcome this limitation. Unlike the regular 

Bayesian networks, dynamic Bayesian networks require time-series gene expression data instead of static 

gene expression data. Dynamic Bayesian networks model the gene regulatory network as a graph with 

two layers of nodes. The first layer of nodes represents the expression of the genes at time    , and the 

second layer represents the gene expression at time  .  The expression of each gene is dependent on the 

expression of its parents at previous time point. This arrangement of nodes allows for the representation 

of a network containing cycles with an acyclic graph. See Figure 2.3 for an illustration of how a gene 

regulatory network can be represented by a dynamic Bayesian network. 

 

Figure 2.3. Representation of a network as Dynamic Bayesian Network. On the left is an example 

network. On the right is how the network would be represented by a dynamic Bayesian network. The 

dynamic Bayesian framework is able to overcome the limitation of Bayesian networks and can model the 

cyclic behavior of the gene regulatory network using two layers of nodes.  Each row of nodes in the 

dynamic Bayesian network represents a time point. 

A time-series microarray dataset with   samples, each corresponding to a unique time point, and   genes, 

can be expressed as a     matrix, where each row represents the gene expression at a discrete time 

point, and each column corresponds to a particular gene. We can express the joint probability as 
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  (                        )                             (2.3) 

where      on the left hand side represents the expression of gene   at time  , and    on the right hand side 

represents the column vector of the expression of all genes at time  . It is assumed that the structure of the 

network does not change between time points. (There are DBN studies about time-varying network 

structure that we will introduce later.) The conditional probability of one time point based on the previous 

time point can be expressed as the product of the conditional probabilities of each gene given its set of 

parent genes 

                                                                        (2.4) 

where             is the vector of parents of the gene   at time     [129, 130]. This equation is 

analogous to the joint probability distribution of the standard Bayesian network. However it differs that 

the expression of a gene is dependent on its parents‟ expressions at the previous time point. Like standard 

Bayesian networks a scoring function is needed to evaluate the possible network topologies. Similar 

scoring functions and search algorithms and techniques can be applied to dynamic Bayesian networks. 

Bayesian and dynamic Bayesian networks have been widely applied to the gene regulatory network 

reconstruction problem [131-134]. 

Recently there are studies of DBN on time-varying GRN structure. In those studies, the topology of GRN 

were no longer assumed to be static, but is varying during the time course. Song et al. proposed a 

formalism in which            is time dependent [135]. They decompose the problem by finding the 

neighbor of each gene separately. To learn the neighborhood, they assume the network is sparse and vary 

smoothly, and transform the problem to   -regularized square linear regression problem. Lèbre et al. 

proposed a method called Auto Regressive TIme VArying models (ARTIVA) to learn time varying GRN 

from time series expression data [136]. For each gene, regression models are learned for district phases 

separated by change point. 
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2.1.3. Co-expression networks 

Like clustering analysis [137], the construction of a co-expression network is based on the measure of 

similarity between gene expression profiles. The rationale behind co-expression networks is 

straightforward: if two genes have similar gene expression profiles, they are likely to interact with each 

other. Thus, if a metric can be established to evaluate the similarity, a GRN can be constructed by 

connecting genes that have similarity over certain cut-off threshold. 

Pearson correlation is one of the simplest metrics for similarity, and it is suitable for large scale networks 

because of its computational cost efficiency. In 2003, Stuart et al. [10] utilized the Pearson correlation in 

their network reconstruction study of 3182 DNA microarrays from 4 different organisms (humans, flies, 

worms, yeasts). They first constructed a set of „metagenes‟ across multiple organisms and then utilized 

the Pearson correlation to identify pairs of genes that had significantly correlated expression values.  They 

obtained a correlation rank of all pairs of genes and calculated the probability of observing a particular 

configuration of ranks by chance.  Finally, they obtained a co-expression network that contained 3416 

genes and 22,163 interactions. 

Despite its low data requirement and simplicity, Pearson correlation cannot handle non-linear similarity. 

As the number of available microarray datasets has steadily been increasing, researchers began to use 

other metrics that utilize larger sample sizes.  Mutual information, based on information theory, is a 

popular alternative which is capable of capturing the general similarity between two variables.  The 

definition of mutual information is based on Shannon entropy [138]. For a discrete random 

variable   with   outcomes {          }, the entropy     , is defined as [138] 

 
      ∑             

 

   

 (2.5) 

where       is the corresponding probability of outcome   . 
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Entropy      measures the uncertainty of variable  .  The conditional entropy of two 

variables   and   taking values      and {    is defined as 

 
        ∑            

        

     

 

     

 (2.6) 

where          is the probability that      and      . 

Conditional entropy        can be regarded as the uncertainty in the random variable   given  . Thus, 

mutual information can be expressed as 

                    (2.7) 

which measures the average amount of information   conveys for  , or the reduction of uncertainty about 

  if   is given.  For gene expressions, which are continuous random variables, mutual information can be 

estimated by approaches based on discretization or approaches based on kernel density estimation [139]. 

Mutual information provides a metric for the general similarity between variables. 

Butte et al. first proposed a methodology, termed Relevance Networks (RelNet), that computes pairwise 

mutual information for all genes [140]. In the study, they used 79 microarrays containing 2,467 genes in 

yeast, and calculated pairwise mutual information 3,041,811 times in total. Pairs with mutual information 

higher than the threshold were kept. 

Later Margolin et al. developed the model called ARACNE (Algorithm for the Reconstruction of 

Accurate Cellular Networks) [7], which is also based on pairwise mutual information. ARACNE aimed to 

improve the inference performance by eliminating the majority of indirect interactions. The property 

called data processing inequality in information theory is applied. The idea is that if gene    and    

interact through a third gene,   , then the data processing inequality (DPI) 
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                                   (2.8) 

must be satisfied. That is, if three genes are connected, the edge with the smallest mutual information 

would be removed. The ARACNE model was successfully applied to study of microarray expression 

profiles of human B cells [8]. While ARACNE infer GRN from steady-state data, Zoppoli et al. [141] 

proposed a method called TimeDelay-ARACNE that works with time-series data. TimeDelay-ARACNE 

tries to extract dependencies between genes at different time delay with a stationary Markov Random 

Field. 

Because of its relatively low computational cost and low data requirement, co-expression networks are 

usually used to infer global properties of large-scale of regulatory networks. However, the drawback of 

using a co-expression network is that since the similarity metric only accounts for a pairwise relationship, 

the models do not consider interactions including multiple genes. 

2.1.4. Differential equation models 

Differential equations are widely used for modeling dynamic systems in engineering. As for gene 

regulatory networks, a system of ordinary differential equations (ODE) can be used. The change rate of 

gene expression is described as a function of expressions of other genes and external perturbation 

    

  
   ( ⃑  ⃗    )                   (2.9) 

Variable    represents the expression level of gene  , vector  ⃑               represents the expressions 

of all genes in the system and  ⃗  represents the external perturbations, like gene knockouts or chemical 

treatments. And vector    is the set of parameters. By estimation of the function               , the 

structure of a GRN can be established. 
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Unlike co-expression models, differential equation models are capable of describing the dynamic 

behavior of GRN quantitatively, thus they can be used not only to study the topology of GRN but also to 

simulate GRN dynamics. Depending on the type of function  , the differential equation models for GRN 

can be non-linear or linear. Generally non-linear models are more complex and require more data to 

estimate the parameters. In addition, non-linear models usually require prior knowledge about the system 

to choose proper form of function. On the other hand, linear models require less data and usually no prior 

knowledge for parameters learning. Given the fact that microarray data are noisy and under-sampled, 

linear models are more suitable for GRN modeling. As described in the following section, there are 

several well developed methods based on linear differential equation models. 

2.1.4.1. Nonlinear differential equation models 

In general, the actual biochemical regulatory systems are complex and nonlinear [142] and numerous 

nonlinear ODE models have been proposed to describe the regulatory networks.  However, due to the 

complexity of the models, the estimation of the parameters requires a large amount of data. Thus 

nonlinear ODE models are often only suitable for small-scale networks. For example, Sakamoto et al. 

used genetic programming to infer the right hand side of Equation (2.9) [16], which can be of arbitrary 

form. They limited the number of genes to around three. For larger networks, further assumptions and 

preprocessing are needed. 

One of the most well-studied nonlinear ODE models is S system, which can be regarded as the canonical 

form of general non-linear differential equations [143]. The model for a network containing   genes is a 

system of nonlinear differential equations 

    

  
   ∏ 

 

    
  

 

   

  ∏ 
 

    
                   

 

   

 (2.10) 
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where    is expression level of gene  . Parameters    and    are called rate constants, and      and      are 

called kinetic orders. Since the number of parameters in the model is proportional to the square of number 

of genes, it is a challenge to reconstruct large-scale differential equation networks. Kimura et al. proposed 

a method for inferring the large-scale network with the S system model [144]. The method is based on a 

problem decomposition strategy of dividing a problem into sub-problems. 

Another strategy for implementing a nonlinear model is to restrict the nonlinear function   to specific 

types. However, picking a suitable function require prior knowledge and experience. As a result, many 

data-driven methods based on linear model have been proposed. For more information on nonlinear 

genetic regulatory system modeling, please refer to section 6 of the review by de Jong [145] . 

2.1.4.2. Linear models 

Linear models generally do not require extensive prior knowledge about the regulatory network, and they 

are suitable for larger scale networks because of their relative simplicity. As mentioned above, the 

behavior of gene expression can be modeled by nonlinear differential equations. Within the small 

neighborhood of a particular point of interest, this nonlinear system can approximated to the first order by 

a system of linear equations. Consider a system containing   genes and   perturbations, then for each 

gene  , the rate of change of gene expression is described as a function of expression of other genes and 

external perturbation 

    

  
 ∑       ∑    

 

   

                     

 

   

 (2.11) 

where    is the mRNA concentration of gene   and      can be regarded as the influence of gene   on gene 

  and     is the  th external perturbation and      can be regarded as the influence of perturbation   on gene 

  in this experiment. 
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For compactness, (2.11) can be expressed in matrix form 

    

  
       ⃗  (2.12) 

where  ⃑               ,  ⃗⃑                and   is a     matrix containing coefficients     ,   

is a     matrix containing coefficients     . 

If there are   experiments, then there are   equations like (2.12), combining them together in matrix 

form results in the matrix form of the linear equation system 

   

  
       (2.13) 

where                  , in which     is column vector containing gene expression level of   genes in 

the  th experiment. Thus   is a     matrix representing the expression level of all   genes in   

experiments, and similarly     ⃗    ⃗      ⃗    is a     matrix representing the external perturbation 

in   experiments. 

Notice that matrix   describes how genes interact with each other, thus by estimating matrix   we can 

infer the GRN. However, in most cases,     so that matrix   cannot be calculated directly. 

Furthermore, due to limitation of measuring techniques, the expression data are noisy which makes it 

more challenging. In recent years, several methods have been proposed to solve this problem. 

2.1.4.2.1. GRN Inference using Singular Value Decomposition 

Yeung et al. proposed an approach to reconstruct GRN based on Singular Value Decomposition (SVD) 

and robust regression [146]. The goal is to deduce matrix   in equation (2.13) by using the measured data 

of  ,   , and 
  

  
 . The approach is a two-step procedure. First they use singular value decomposition to 
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solve the system of ODE, equation (2.13), and get a family of matrix  . The family of solutions 

represents networks that are consistent with the measured data. Next the best candidate can be chosen 

according to the prior knowledge of the biological network. If no prior knowledge is available, inspired 

by the observation that GRNs are sparse, they pick the network among candidates by maximizing the 

number of zero entries in matrix   using robust regression based on    norm. More specifically, by using 

SVD to decompose    

         (2.14) 

Where   and   are orthogonal,       and      . Then plugging this into equation (2.13) and 

rearranging results in the following 

 
      

  

  
    (2.15) 

and one particular solution 

 
   (

  

  
   )       (2.16) 

Thus, the family of solutions consistent with the measurement is 

          (2.17) 

where   is an arbitrary scalar coefficient matrix. 

The next step is to choose   such that   has maximum number of zero entries. Their idea was to set 

    in equation (2.17) and obtain an over-determined equation        , and then find the exact fit 

plane passing through as many points as possible. In order to do this, they use    norm regression that 
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minimizes the sum of absolute values of errors to calculate  . This SVD based approach was tested and 

validated in numerous experiments on model gene networks in their study [146]. 

2.1.4.2.2. Network identification by multiple regression 

One potential drawback of the approach above is that it requires data to estimate the time derivative 
  

  
. 

Gardner et al. proposed a method called network identification by multiple regression (NIR) [12], which 

used only steady-state expression  measurements such that 
  

  
  . 

If only one gene is perturbed in each experiment, equations (2.11) and (2.12) become 

    

  
 ∑                            

 

   

 (2.18) 

    

  
      ⃗  (2.19) 

If there are   such perturbation experiments, similar to equation (2.13), we have 

   

  
      (2.20) 

Since the concentration of    genes are at steady state,  
   

  
  , equation (2.20) becomes 

       (2.21) 

By retrieving the connectivity matrix  , we can describe the network. Thus the remaining problem is to 

solve the linear system. Since sample size is usually limited,    , plus that measurement of gene 

expression is noisy, it is preferred to have an over-determined system (more equations than unknowns) 

and use statistic regression. NIR solves this problem by assuming that for each gene, there is a maximum 
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number of regulators,  . Then the solutions of all possible combinations are calculated by least-square 

regression. Then the best solution is chosen based on the significance of the regression based on the F-

test. 

NIR was applied to reconstruct regulatory networks containing nine genes in the SOS pathway in E. coli. 

Each perturbation was accomplished by overexpressing one of the nine genes with arabinose-controlled 

episomal expression plasmid. 

2.1.4.2.3. Mode-of-action by network identification 

Since NIR required a well-designed perturbation experiment, it is not applicable to many datasets. 

Bernard et al. proposed a method called mode-of-action by network identification (MNI) to find the 

solution of the system without information about permutation   [13]. Thus, MNI is suitable for the 

analysis of a wider range of microarray data. The idea of MNI is based on the assumption that any 

external stimuli acts on only a small number of genes, thus most coefficients,     , in equation (2.18) will 

be zero. 

For each gene  , there are   steady-state experiments, 

 
∑                                 

 

   

 (2.22) 

Extract the experiments in which         , and obtain 

 
∑                                

 

   

 (2.23) 

When implementing MNI, only experiments in which the perturbation,      , is zero are considered. 

Determining these experiments is not trivial. Di Bernardo et al. proposed a recursive method starting with 
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an initial estimate of  ̂   [13]. The external influence,  ̂   , is calculated using equation (2.22). Any 

experiment with an external influence greater than a pre-determined threshold is removed for further 

calculations. Equation (2.23) is used to obtain a new estimate of  ̂   . The method is repeated using the 

new estimate and continues until  ̂    and  ̂    converge. 

As in NRI, equation (2.23) is underdetermined. Thus additional constraints are needed to find a reliable 

solution. Unlike NRI, which uses subset regression to identify a small set of non-zero coefficients, MNI 

uses the fact that expression profiles of many genes are similar. Thus genes expression can be represented 

by a reduced set of „characteristic‟ or „meta‟ genes by using SVD. The original space of gene expression 

with dimension   is first mapped into the space of metagenes with reduced dimension. The recursive 

procedure described above is then used to identify network for the metagenes. After all the work, the 

estimated perturbation is mapped back into   gene space. 

MNI was proposed for the application of finding target genes of a particular treatment. Di Bernardo et al. 

applied MNI to the analysis 515 whole-genome yeast gene expression datasets resulting from different 

perturbation experiments and correctly enriched the target gene and pathway for most compounds. 

2.1.4.2.4. Time Series Network Identification 

Bansal et al. proposed a method based on time series expression experiments, called Time Series Network 

Identification (TSNI) [14]. Similar to NIR, at a particular time point, the rate of synthesis of a transcript is 

represented as a function of the expression of the other genes and the external perturbation, and the 

differential equation in (2.13) is converted to its corresponding discrete form, a difference equation 

                (2.24) 
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where      is the gene expression at time point     and    at time point  . This equation states that the 

gene expression level at one time point depends on  expression profile at previous time point and external 

perturbation. 

Rewriting this in a more compact form yields 

       (2.25) 

where       ,          and   [
  

  
]. 

Similar to MNI, TSNI applies SVD to decompose matrix  , and solve the equation (2.25) with reduced 

dimensions and then maps the obtained solution back into the original space to obtain   and   . TSNI is 

suitable for the reconstruction of GRN containing genes of interest by analysis of time series gene 

expression data resulting from a particular perturbation. Bansal et al. applied TSNI to recover a nine gene 

subnetwork,part of the DNA-damage response pathway in E. coli using experimental data obtained by 

treatment of Norfloxacin [14]. 

2.2. Inference of miRNA-mRNA interaction 

Regulatory relationships between miRNA and mRNA can be inferred from the expression data of paired 

miRNA-mRNA samples. And expression-based results can be combined with results from sequence-

based prediction and experimental results. The general idea of integrative methods is represented in 

Figure 2.4. For analysis of miRNA-mRNA expression data, methods can roughly be categorized as 1) 

correlation based, 2) multiple linear regression based and 3) Bayesian based. 
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Figure 2.4. Integrative analysis of miRNA-mRNA interaction. Regulatory relationships between miRNA 

and mRNA can be inferred by analysis of paired miRNA-mRNA expression data or analysis of 

complementary sequences. The inferred interactions can also be combined to experimental validated 

interactions.  

2.2.1. Correlation based/ mutual information 

There are several web tools available for integrative analysis of miRNA-mRNA expression data and 

sequence-based miRNA target predictions. The most straightforward way to identify miRNA-mRNA 

regulatory pair using expression data is calculating their pairwise correlations or mutual information. 

Nam et al. developed a database miRGator (http://genome.ewha.ac.kr/miRGator/) [147] that integrates 

target prediction, function analysis and genome annotation. In this database, functions of miRNA are 

http://genome.ewha.ac.kr/miRGator/
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inferred from the list of target genes that are predicted by miRanda, PicTar and TargetScans programs. 

Statistical enrichment test of target genes in gene ontology, pathway and disease annotations is also 

available. The database integrates public expression data and the correlation between miRNA and mRNA 

can be calculated and compared. In their most recent update version, miRGator v3.0 [148] 

(http://mirgator.kobic.re.kr/), public available deep sequencing miRNA data are compiled and several 

utilities for study of iso-miRs, miRNA editing and modifications are included. For miRNA target 

analysis, 3 databases of validated targets, 6 databases of predicted targets as well as the results of inverse 

correlation analysis of matched miRNA-mRNA gene expression (based on miRNA-seq and RNA-seq 

data from the same sample) are integrated.  

Nam et al. later developed a web tool called MMIA (http://epigenomics.snu.ac.kr/MMIA/) [149], which 

incorporate commonly used miRNA target prediction algorithms and miRNA-mRNA expression data. 

For a miRNA of interest, on one hand, its predicted target mRNAs are selected from TargetScan, PictTar 

and PITA, on the other hand, its significantly inversely correlated mRNAs are identified from miRNA-

mRNA expression data. Intersection of these two set of mRNAs is then used for gene set analysis (GSA) 

to discover miRNA-associated phenotypes and biological functions.  

Peng et al. proposed an integrative approach to identify the miRNA-mRNA regulatory modules in 

Hepatitis C virus (HCV) infection [150]. They calculate the miRNA-mRNA correlation matrix based on 

standard Pearson correlation of paired microarray expression data. The correlation matrix is converted 

into a binary miRNA-mRNA correlation network by estimating false positive rate and choosing a proper 

cut-off value. In parallel, a binary miRNA-target matrix is created by computational target prediction 

based on seed match. At last, the miRNA-mRNA regulatory network and regulatory modules are 

extracted from the combination of miRNA-mRNA correlation matrix and the corresponding miRNA-

target matrix.  

http://mirgator.kobic.re.kr/
http://epigenomics.snu.ac.kr/MMIA/
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Ritchie et al. developed an online resource named mimiRNA (http://mimirna.centenary.org.au) [151], 

which integrates expression data from samples across different tissues and cell types. A sample 

classification algorithm named ExParser is used to group together identical miRNA or mRNA 

experiments from different sources. Based on these expression data, mimiRNA provide visualization of 

relationship between miRNA and mRNA expression by calculating Pearson correlation coefficient of 

miRNA-mRNA pairs. Results from target prediction algorithm (TargetScan, miRBase, RNA22, PicTar) 

are included to assist assessments of potential targets. 

Sales et al. developed a web tool named MAGIA (http://gencomp.bio.unipd.it/magia) [152] that 

integrates sequence-based target prediction and analysis of expression data. MAGIA extract target 

prediction from Pita, miRanda, TargetScan and user can take the intersection or union of those 

predictions. MAGIA then refines target predictions using miRNA-mRNA gene expression data. User can 

choose different metrics, Spearman‟s correlation, Pearson correlation, mutual information, GenMir++ 

(see below) and meta-analysis (only for non-matched biological samples) to compute the interaction 

measures.  

Huang, G.T. developed web interface called mirConnX (http://www.benoslab.pitt.edu/mirconnx) [110] 

for inferring miRNA-mRNA regulatory network by integrating sequence information and gene expression 

data. At first a prior network is built based on computationally predicted transcription factor (TF)-gene 

associations, miRNA target prediction and literature. In parallel, an association network is inferred from 

expression data. The two networks are then combined using user-specified weight functions. mirConnX 

provide choice of different correlation measure (Spearman ρ correlation, Kendall τ rank correlation) 

besides Pearson correlation, and a simple weight function for integration of network. 

The approaches mentioned above only consider pairwise miRNA-mRNA correlations. However, one 

mRNA may be targeted by several miRNAs and its expression profile may be affected by multiple 

miRNAs the same time.  

http://mimirna.centenary.org.au/
http://gencomp.bio.unipd.it/magia
http://www.benoslab.pitt.edu/mirconnx
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2.2.2. Multiple linear regressions 

Regards to the many-to-many miRNA-mRNA relationships, that is, one miRNA may targets multiple 

mRNAs and one mRNA may be affected by multiple miRNAs, an ordinary multiple linear model is quite 

natural for modeling miRNA-mRNA regulation. Suppose there are   potential miRNA regulators and   

target mRNAs, a multiple linear equation is as below 

 

        ∑     

 

   

        (2.26) 

where    and    are variables representing the expression of mRNA   and miRNA   respectively with 

          and          ;    is the constant term, and     characterize the regulatory effect of 

miRNA   on mRNA  . Suppose there are   samples, if we denote the expression data across samples as 

column vector,                      
       [               ]

 
and                       

 , then 

put column vectors into a matrix,                 , equation (2.26) for all   and   can be written in 

matrix form 

             (2.27) 

Given the expression data, the goal is to calculate optimal coefficients  ̂ to that satisfying some criteria, 

in most cases, minimizing the sum of square of error terms. This least square solution is given by normal 

equation 

  ̂             (2.28) 

Wang et al. modified the multiple linear regression model to find high-confidence targets among potential 

targets from sequence-based algorithm [153]. Follow the notation in equation (2.27) and (2.28), the 

estimated mRNA expression can be calculated by   ̂    ̂. With total sum of square is defined as 
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             ̅      ̅ , explained sum of square is defined as           ̂   ̅     ̂   ̅ , the 

coefficient of determination                   is a statistic that measure the goodness of fitting. Based 

on the concept of   , they define relative    as   
    

 , where   
  is the    for a partial model contain   

regulators and   
  is the    for a full model contain all   potential regulators. If   

    
  is larger than 

some cut-off value, the   miRNAs in the partial model are regarded to high-confidence. In their approach, 

the coefficient  ̂ is calculated by normal equation given in equation (2.28). 

A problem rise when the data is collinear or the number of samples is less than the number of regulators 

(   ), the matrix     becomes singular and there is no stable solution. In this case, the system is 

called underdetermined, which is the problem for most microarray expression data. For an 

underdetermined system, alternative methods or extra constrains are needed.  

Regularized least square 

To solve underdetermined linear systems, an alternative is regulation, which adds extra penalties besides 

the least-square requirement. That is, in addition to minimize the sum of square, or equivalently, the    

norm ‖     ‖ 
 , extra penalty term      is added and then the model can be formulated as an 

optimization problem 

    
 

 ‖     ‖ 
          (2.29) 

Where is   is the tuning factor. The most common penalty terms are    norm, i.e.,       ‖ ‖  and    

norm, i.e.,       ‖ ‖ . It is called LASSO regression when    norm is used, and Ridge regression 

when    norm is used. A combination of these two, i.e.,         ‖ ‖    ‖ ‖  is called elastic-net 

penalized regression. By adding a penalty term, the coefficients,  , of the solution can be forced to be 

„small‟. For highly correlated predictors, Ridge regression shrink the coefficients to each other [154], 

which is proper for many predictors with non-zero coefficients. On the other hand, LASSO tends to pick 
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one predictor and ignore the its highly correlated counterparts. LASSO is ideal when we expect many 

coefficients to be zero, thus LASSO is more suitable for modeling miRNA-mRNA regulatory 

interactions.  

Kim et al. [155] implemented the multiple linear regression model to study miRNA-mRNA targeting in 

the regulation of colorectal cancer by analyzing expression data. To find the optimal solution with 

   norm objective function, they employ an iterative algorithm called Broyden–Fletcher–Goldfarb–

Shanno (BFGS), in which Hessian matrix is approximated and updated to obtain the direction of iteration.  

Lu et al. proposed a LASSO regression model for miRNA-mRNA relationship inferences [156]. Since 

binding to RNA-induced silencing complex (RISC) is essential for miRNA functioning, they include the 

concentration of Argonaute (Ago) proteins into the model. Based on the ordinary model in equation 

(2.26), they added variable that characterize the concentration of Ago1-4 protein 

         ∑             

 

 ∑                 

 

    (2.30) 

In the above equation, mRNA expression levels of Ago genes are used to represent the Ago protein level. 

Ago1, 3, 4 proteins are merged into one term since they are all regarded as the competitor of Ago2 in 

binding with RISC. For regression model in equation (2.30), the penalty term being used is ∑  |       |   

|     |  corresponding to    norm. In this way, LASSO enforces the sparseness requirement on solutions. 

Based on LASSO model, Muniategui et al. propose a method named TaLasso (miRNA-Target LASSO) 

that add non-positivity constraints,     , to ensure that the solution includes only negative miRNA-

mRNA relationship [157], since miRNA usually repress the target mRNA. The web-tool for human 

miRNA is available at http://talasso.cnb.csic.es/. Beck et al. used elastic-net penalty, which combined    

http://talasso.cnb.csic.es/
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norm and    norm of the coefficients to handle correlated and sparse problems [158]. The weights of 

penalty can be determined by cross validations. 

2.2.3. Bayesian inference 

In addition approaches based on regression, there are several approaches been developed using Bayesian 

techniques.  

Huang et al. developed a widely used approach called GenmiR++ (Generative model for miRNA 

regulation) [159]. Like the multiple linear regression methods, GenmiR++ model mRNA expression as a 

multiple liner function of regulator miRNAs. Specifically, for the expression of mRNA   in tissue  ,    , 

can be formulated as 

            ∑        

 

     
(2.31) 

where   is the index of miRNA,     is the expression of miRNA   in tissue  ,     is a background 

expression parameter of tissue  ,   is a positive scaling factor in tissue   accounting for differences in 

hybridization conditions and normalization between miRNA and mRNA ,    represents the down 

regulatory effects of miRNA  , and     is an unobserved random variable for each candidate miRNA-

mRNA pair such that       if miRNA   indeed targets mRNA  . A set of candidate miRNA-mRNA 

pairs can be extracted from sequence-based algorithm and represented in form of binary matrix  , in 

which       if miRNA   is predicted to target mRNA   and       otherwise.  

Now, the problem of finding real miRNA-mRNA is formulated as calculating the posterior probabilities 

of       given       for all       pairs. Based on the relationship in equation (2.31), a probabilistic 

graphical model and Bayesian modeling framework are built. Since exact inference of posterior 

probability distribution of     is difficult, GenmiR++ implements a variational Bayesian algorithm which 
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assumes a factorized distribution (   ,   ,    are independent of each other) and searches for optimal result 

iteratively via expectation-maximization (EM) algorithm. Later, Huang et al. developed this model to 

GenmiR3 [160], with a new prior distribution that integrates sequence feature of miRNA-mRNA binding, 

such as energy of hybridization and conservation of target sites. 

Based on GenMir++, Su et al. developed an algorithm called HCTarget (High Confident targets) [161] 

that also formulate a linear model. Unlike GenMir++ where miRNA regulatory effects are regarded as 

constant among all tissues, HCTarget re-defines the parameters of miRNA effect, equation (2.31) then 

becomes 

          ∑         

 

     (2.32) 

Where     represents the regulatory effect of miRNA   in tissue  , and this term can be regarded a 

combined factor of as   and   in equation (2.31). Next, unlike GenMir++ using variational Bayesian 

algorithm, HCTarget use Markov Chain Monto Carlo algorithm to infer posterior distribution by iterative 

sampling directly.  

Stingo et al. proposed a Bayesian graphical modeling approach to infer miRNA-mRNA regulatory 

relationship [162]. Similar to GenMir++, they represent the regulation in a linear model. But unlike 

GenMir++ and HCTarget assuming constant regulatory effect of miRNA on all of its targets, they 

consider distinct regulatory effect of miRNA on different mRNAs, which is reasonable since miRNA has 

different sequence complementarity with its different targets. Equation (2.32) become 

      ∑        

 

    (2.33) 
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where the variables and subscripts have meanings as those in equation (2.31) and (2.32). Since difference 

of tissue is not considered in this model, the subscript   is dropped. The parameter     represents the 

distinct regulatory effect of miRNA   on mRNA  . Like GenMiR3, this model also considers the 

reliability of sequence-based prediction and combines them all into prior distribution. Next they use 

Metropolis–Hastings algorithm for posterior inference of    . Since there are many repressors, they 

assume that most of mRNA are regulated by a small number of miRNAs and use Stochastic Search 

Variable Selection (SSVS) method to explore the huge posterior space.  

Liu et al. presented a method to capture miRNA-mRNA relationship using Bayesian network structure 

learning [163]. Given a set of miRNA,  , and a set of mRNA,  , their regulatory relationship can be 

represented in a graph         , in which directed edges in   indicate dependencies between nodes   

and  . The aim of Bayesian learning is to identify a graph that is best supported by the expression data. 

Since searching space of possible graphs is hyper-exponentially with the number of nodes, they reduce 

the searching space with information from sequence-based prediction algorithm and then search for the 

optimal solution exhaustively. To avoid over-fitting, they adopt an averaging procedure on several 

candidate graph with highest scores.  

The Bayesian based approaches have potential limitation that they are not suitable for large scale 

regulatory networks and require prior knowledge to refine the searching space, such as searching 

interactions in the set of sequence-based prediction.  

2.2.4. Other 

In addition to the databases and approaches described above, there are some approaches developed with 

different prospective of view. 
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Gennarino et al. proposed an approach called HOCTAR (host gene oppositely correlated targets) to 

predict miRNA targets by expression of miRNA host gene [164]. Based on the observation that 

expression of intragenic miRNAs and expression of their host genes are similar and thus it may be 

possible to use expression data of host genes to infer the expression of corresponding embedded miRNA, 

they hypothesized that expression of miRNA host gene is inversely correlated to the targets of the 

embedded miRNA. Thus, candidate miRNA targets can be ranked based on their inverse correlation to 

their prospective miRNA host genes. The main advantage of HOCTAR is that it can provide a way to 

predict miRNA target by analyzing the huge amount of microarray experiments that monitor the 

expression of both miRNAs (through their host genes) and candidate targets. Results of HOCTAR that 

contain ranked list of predicted targets of annotated human intragenic miRNAs are available at 

http://hoctar.tigem.it/.   

Bandyopadhyay et al. proposed a method called TargetMinner (http://www.isical.ac.in/~bioinfo_miu/) 

[165] to incorporate miRNA-mRNA expression data to improve the performance of miRNA targets 

prediction. Their focus is to find a better training miRNA-mRNA pairs for target-predicting machine 

learning. Besides the experimentally verified positive miRNA-mRNA targeting pairs, negative ones are 

also included. To identify negative miRNA-mRNA pairs, they first select miRNA-mRNA pairs from 

sequence-based predictions (miRanda, TargetScanS, PicTar, DIANA-mircoT). Among those potential 

pairs, they proposed a four stage filtering procedure, in which they identified tissue specific miRNA and 

mRNAs using miRNA-mRNA expression data and then regard miRNA-mRNA pairs as negative if they 

both overexpressed in the same tissue. These candidates negative pairs are then filtered by testing with 

independent expression datasets, considering thermodynamic stability and seed-site conservation. After 

gathering training datasets containing positive and negative, they used a support vector machine (SVM) 

based classifier for miRNA target prediction and shown improved performance. The SVM model use 

miRNA-targeting site context-specific features, which do not include expression pattern. 

http://hoctar.tigem.it/
http://www.isical.ac.in/~bioinfo_miu/
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Li et al. proposed a Bayesian inference model for miRNA target prediction with miRNA, mRNA and 

protein expression data [166]. In their study, two Bayesian models are built. First model combines 

miRNA expression and protein abundance to identify a set of confident miRNA-protein pairs. For those 

top miRNA-protein pairs, a second model includes mRNA expression data for calculation of miRNA-

mRNA expression correlation. Thus two regulatory mechanisms (mRNA degradation and translational 

repression) can be distinguished. For protein expression data, they use negative binomial model to 

characterize the peptide count. For the mRNA expression data, they discrete them to binary value 1 or 0 

representing high or low expression. The Bayesian modeling frameworks are similar to GenMir++ and 

the Gibbs sampling is implemented for inference of posterior distribution.  

Pihur et al. introduced an approach based on partial least square (PLS) regression for reconstruction of 

genetic association networks from microarray data [167]. In PLS, unlike ordinary multiple regression in 

equation (2.26), a number     of orthogonal latent factors           , are sequentially constructed 

as linear combinations of             firstly. Next a linear model  

 

    ∑      

 

   

    (2.34) 

is constructed using the latent factors. By combining            , and the coefficients used for latent 

factors construction, the association by the regulator    and response variable    can be computed. The 

latent factors are constructed trying to explain variability in both regulators and response variable as much 

as possible. Li et al. applied PLS regression approach to analysis the association between miRNAs and 

mRNAs [168]. Firstly differentially expressed miRNAs and mRNAs are identified by t-test. Then the 

PLS model and statistical tests based on bootstrapping were performed to find significant miRNA-mRNA 

pairs.  
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2.3. Stepwise Multiple Linear Regression (SMLR) 

Correlation or mutual information based methods are fast and straightforward for discovering gene 

regulatory interactions. However, unlike multiple linear models, they only capture pairwise interactions 

and ignore that one gene may be regulated by several regulators.  

Bayesian models model gene expression by treating each gene as a random variable governed by a 

probability function determined by the product of conditional probabilities. Bayesian model can handle 

incomplete or noisy data, combine heterogeneous data types, and avoid over-fitting. Prior knowledge can 

be included in the model naturally. Due to the exponential size of the search space for possible networks, 

heuristic search methods are utilized to identify the network. Bayesian network are more suitable for 

inference of smaller network.  

Multiple linear models are natural choice for modeling of many-to-one regulatory relationships. The 

learnt models can be used for expression prediction. In addition, unlike the Bayesian models, which 

introduce latent variable     and use posterior          to access the confidence of prediction, 

regression based model can use hypothesis test to evaluate the confidence of miRNA   regulate mRNA  . 

However, due to small sample size, a linear system is usually underdetermined and optimal solution is 

unattainable. To address the problem, researchers use dimension reduction techniques, such as SVD, or 

introduce extra penalty term in the model.  

In our study, we use stepwise regression to solve the underdetermined system. The expression level of 

each gene is modeled as a linear function of expression levels of its regulator genes 

 

     ∑    

 

   

 (2.35) 
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The coefficients    are identified using stepwise multiple linear regression (SMLR) with a forward 

selection strategy [169, 170]. The predictors for a given gene are identified starting with the inclusion of 

the constant term   . In each forward selection step, individual predictor variables are considered for 

addition based on their statistical significance in the regression fitting. The p-value of an F-statistic for 

each variable is calculated to test the model including and excluding that variable using the null 

hypothesis that its weight coefficient is zero, using the following equation: 

 
  

        

          ⁄
 (2.36) 

where     is the sum of squared error according to the expanded model using     predictor variables, 

and      is the sum of squared error according to the reduced model using only   predictor variables as 

follows 

     ∑     ̂  
  

     ∑     ̂ 
    

(2.37) 

where  ̂  and  ̂ 
  are the values predicted by the expanded and reduced models, respectively. 

If the F-statistic is significant, the null hypothesis is rejected, and that particular predictor variable is 

included in the model. Our forward selection procedure considers the full set of predictor variables, 

returning a p-value for each one. If any predictor variable had a p-value less than an entrance tolerance, it 

was added to the model. This ensures that variables with marginal contributions (with a coefficient close 

to zero) are omitted from the model. 
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Chapter 3. Regulatory network reconstruction and simulation 

3.1. Introduction 

The advent of microarray technologies has enabled a high throughput evaluation of gene expression, 

providing a large scale snapshot of the cellular activity at the molecular level.  The availability of these 

tools has allowed researchers to explore the behavior of entire genomes under different experimental 

conditions, in a search for mechanistic basis to various cellular behaviors.  The analysis of these 

microarray experimental results has led to new breakthroughs in the understanding, diagnosis, prognosis, 

and treatment of disease, as well as insights into the functioning of the basic biology of various organisms 

[171-174]. 

Gene expression can often be quantified by determining the relative amounts of mRNA transcripts. In 

microarray experiment, mRNA is harvested from a sample and then reverse-transcribed into cDNA.  The 

cDNA is labeled with fluorescent molecule and then allowed to bind to DNA probes attached to the 

surface of the microarray chip.  The process of complementary binding between the cDNA and the DNA 

probes on the chip is known as hybridization.  The fluorescence values that are measured from the chip 

enable the quantification of the relative amounts of cDNA present in each sample, which determines the 

relative gene expression [175]. 

The techniques for analyzing steady state microarray data are well-characterized [176-179].  However, 

these techniques are ill-suited to the analysis of time-series microarray data. Time series microarray 

experiments involve harvesting mRNA from samples at regular time-intervals. This experimental design 

leads to multiple data points for each gene that can be used to evaluate gene expression over time in a 

high-throughput manner. Time-series expression data has the potential to provide more comprehensive 

information about the underlying behavior and inter-relationships of genes than the traditional time-

invariant experiments. Furthermore, it can allow for the interpretation of dynamic behaviors in complex 
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biological systems [18]. Time-series microarray data has many applications including the analysis of 

circadian rhythms, disease progression, drug response, and the study of the cell cycle [18-20]. 

Each gene‟s expression can be modified or controlled by various biochemical processes. Transcription 

factors can directly regulate the synthesis of mRNA, but the expression of genes can indirectly affect the 

expression of other genes. A gene can inhibit the expression of another gene or it can stimulate the 

expression of another gene.  These activation and inhibition relationships can be represented as a directed 

graph with nodes representing genes and edges representing the effect of one gene on another. There are 

several methods of reverse-engineering or modeling gene regulatory networks from two-condition 

differential expression experiments and time series experiments.  These methods include Boolean 

networks [2, 4-6], correlation networks [7-10], differential equation models  [11-16], Bayesian network 

models [2, 7], and dynamic Bayesian network models [17]. For more detail, please refer to chapter 2.1. 

While a great deal of focus has been placed on the network reconstruction problem, the prediction and 

simulation of gene expression values have not received as much attention. We note that methods 

developed to infer the presence or absence of regulatory interactions are not directly applicable to the 

prediction problem. On the other hand, the methods that focus on the prediction problem may not lend 

themselves to the interpretation of their model for inference of interactions. In this study, we use a linear 

model to represent gene interaction networks and simultaneously solve the network reconstruction and 

gene expression prediction problems. The neural network approach of Maraziotis et al [180]. (referred 

here as FuzzyNet) is closest in its goals to the problems being investigated in this study. In FuzzyNet, a 

recurrent neural fuzzy network is trained for time series data. While neural networks are generally not 

amenable to interpretation, the rules generated by FuzzyNet allow identification of regulatory 

interactions. However, unlike the approach described herein, Fuzzynet does not predict the strength of the 

predicted interactions and also does not provide a confidence measure for its predictions. 
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In this study, we present a linear model for time series data and use stepwise multiple linear regression 

(SMLR) to learn the model parameters from the training dataset(s). To the best of our knowledge, this is 

the first time a linear model of interaction has been reported to solve the prediction, simulation, and 

reconstruction problems. The rest of this report is organized as follows. In Section 3.2, we formally define 

the computational problems and describe our linear model and the process of fitting it to data by using 

stepwise multiple linear regression. In Section 3.3, we describe the datasets used in the experiments, and 

present empirical justification for the choice of parameters, including the number of interactions, the 

statistical significance threshold for interactions, and the number of time points considered in the input. 

We then present results for the next time step prediction of expression values, the simulation of the entire 

time course data, and finally, the inference of the regulatory network. Results are compared with similar 

studies where applicable. We conclude with a summary of our contributions, contrasting with existing 

solutions. 

3.2. Methods 

Time series microarray data can be described as a     data matrix, representing the mRNA levels of   

genes over   consecutive time points. In this study, we focus on three related computational problems, as 

illustrated in Figure 3.1. In the single time point prediction problem (Figure 3.1b), one attempts to learn a 

function that can generate the expression levels in time   from the expression levels at the preceding time 

point(s). Each pair of time points in Figure 3.1a provides a training instance for learning such a function. 

In the time series data simulation problem (Figure 3.1c), the entire time series data is generated from only 

the initial conditions given at the first time point. In this study, we model the simulation problem simply 

as iterations of the single time point prediction problem, leaving more complex approaches accounting 

deficiencies of this straightforward extension, such as error accumulation, as future work. In the network 

reconstruction problem (Figure 3.1d), one attempts to discover the underlying gene regulatory network 
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from the microarray data. While network reconstruction problem is often solved independently [9, 181], 

we perform network reconstruction via post-processing of the single time step prediction function. 

 

Figure 3.1. Demonstration of microarray time series data and the computational prediction problems 

investigated in this study. (a) Sample time series microarray data with 4 genes and 3 time points. Red, 

green, and black colors denote high, low, and medium expression levels, respectively. (b) Single time 

point prediction problem showing prediction of expression levels at time   from time    . (c) 

Simulation of entire time series data from the initial expression levels at time    . (d) An example 

reconstructed network involving the four genes, where arrows indicate transcriptional regulation. 

We model the expression level of each gene as a linear function of the expression levels of the genes in 

the preceding time step (this model is generalized to consider multiple previous time points as shown 

later)  

   
 
    ∑       

 

      

 (3.1) 

where   
 
            is the expression level of a response gene    at time  ,     

  is the expression 

level of the candidate predictor gene at the preceding time step,   is the number of genes being studied, 

and    is a constant bias term. F-statistic is calculated as in equation (2.36) in chapter 2.3. If the F-

statistic is significant, the null hypothesis is rejected, and that particular predictor variable is included in 

the model. The forward selection procedure considers the full set of predictor variables, returning a p-
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value for each one. If any predictor variable had a p-value less than an entrance tolerance, it was added to 

the model. This ensures that variables with marginal contributions (with a coefficient close to zero) are 

omitted from the model. 

Since the data were already normalized the constant term    can be set to zero, and without loss of 

generality, the expression levels of all the genes at time   can be written as 

           (3.2) 

where   is an     vector of gene expression values and   is an     matrix of weight coefficients. 

The coefficient matrix   can be converted into a sparse matrix, replacing insignificant interactions with 

zeros. 

The model described above utilizes only the most preceding time point as input. This single time point 

provides only a static snapshot of the changing gene expression levels. It is not, for instance, directly 

possible to infer whether the expression level of a gene was going up or down during the preceding time 

point. We therefore consider the more general case of utilizing prior   time points, where the expression 

level of a gene    is now modeled as a linear function of all the genes from the preceding   time points 

   
 
    ∑  ∑   

   
 

               

 (3.3) 

Correspondingly, the expression levels of all the genes at time   can now be written as: 

                                (3.4) 

where    is again an     vector of predicted gene expression values at time  ; the expression levels of 

the genes at all previous   time points are concatenated into a single    vector, and    is a coefficient 

matrix of size     , containing the coefficients from all genes at the previous   points. The value of   
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can be determined empirically from the mean squared error on the training data, as described in the 

experiments below. Starting from the first   time points of a given experiment, the learned coefficient 

matrix is used to incrementally simulate the rest of the time points. 

The weight matrix   (and     describes the influence of each predictor gene on the response genes. The 

magnitude of these weights indicates the strength of the interaction and their sign indicates whether the 

interactions are activating or inhibitory. Each weight is also associated with a p-value, indicating the 

statistical significance of the corresponding interaction. We rank the interactions by their p-values and use 

the top   most significant interactions in the network reconstruction, where   can be pre-defined from the 

average number of interactions observed in real networks or discovered empirically, as presented below 

to minimize the training error. The accuracy of the reconstructed network is evaluated with respect to a 

reference network, such as the pathways available in the KEGG compendium [182], using the following 

measures 

 
           

                              

                    
 

        
                              

                               
 

             
                

                
 

(3.5) 

Precision, recall, and F-measure each take values in the range between 0 and 1, with 1 being the best 

score. The ability to rank the interactions by their significance allows us to control the precision-recall 

trade-off, which is presented as precision-recall plots below. Note that existing approaches produce or 

report a single precision and recall result; we use the same number of predicted edges in the network for 

comparison with earlier studies. In comparisons, we denote our approach as SMLR (stepwise multiple 

linear regression). 
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3.3. Experiments and Results 

3.3.1. Datasets 

The time-series datasets modeled in this study are from Spellman et al. [19].  These datasets were 

generated using four different methods to synchronize Saccharomyces Cerevisiae cell cultures to the same 

phase of the cell-cycle [19, 20]. The experiments utilized multiple strains of yeast and mRNA was 

harvested from cells extracted from the cultures at predetermined time intervals.  The usage of different 

methods of synchronizing the cultures resulted in four unique datasets, each named after the 

synchronization method. Each of the datasets consisted of yeast cells whose cell-cycles had been arrested 

at a different phase.  This results in the different datasets beginning at different phases of the cell cycle. 

One dataset (ALPHA) utilized the alpha factor to arrest the cell-cycle and consisted of 18 time points 

separated by intervals of 7 minutes. A second dataset separated cells by elutriation (ELU dataset). By 

separating cells of different sizes the investigators were able to extract cells of similar size that were 

likely to be in the same phase of the cell cycle. They collected daughter cells that were not budding into 

new cells. This dataset consisted of 14 time points separated by intervals of 30 minutes. These first two 

datasets were collected by Spellman et al. [19, 175]. Spellman et al. included two further datasets from 

Cho et al. [20] in their analysis. The third dataset used CDC15 strain of yeast cells, where the cell cycle 

was arrested by raising the temperature of the culture.  This dataset had 24 time points separated by 10 or 

20 minute time intervals. We excluded the time points that were separated by 20 minute intervals from 

our analysis. The fourth dataset consisted of the strain of yeast possessing CDC28 and also was 

synchronized by temperature change. This dataset had 17 time points separated by 10 minute intervals.  

All the expression data was normalized so that the mean log2 ratio of the data was 0 [20]. 
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3.3.2. Identification of parameter values 

The performance of the linear model was first investigated for the next time step prediction problem. To 

do so, all „predictor-responder‟ pairs (i.e., all input-output pairs in Figure 3.1b) were extracted from the 

four datasets and combined into a single set. In a four-fold cross-validation scheme, three fourths of these 

pairs were randomly selected for training and the remaining pairs were used for testing. The performance 

was evaluated in terms of the mean squared error (MSE) of the predicted testing data compared with the 

real data. 

Since we used the p-values calculated from the multiple linear regression to determine which genes would 

be used as predictors of the response gene under consideration, finding a proper cut-off p-value was 

important and prevented us from over-fitting our model to the training data by excluding many 

insignificant predictors. As demonstrated in Figure 3.2a, the average number of predictors per response 

gene was directly related to the cut-off p-value, but there was no clear plateau for the number of 

predictors with respect to the p-value cut-off. By examining the MSE versus the average number of 

predictors (Figure 3.2b), we were able to identify an average number of predictors giving a minimum 

MSE value. Optimum MSE values on the test dataset are obtained for the average number of predictors 

ranging from 2 to 3, which is in line with the number of interactions observed or estimated by others [23, 

121, 183-185]. Using fewer than 2 predictors was insufficient to capture the expression pattern, while 

using more than 3 predictors resulted in over-fitting. Our experiments using multiple preceding time 

points also showed similar behavior. Thus, in subsequent experiments, we chose a p-value cut-off of 

0.025, which provided 3 predictors for each gene on average. 
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Figure 3.2. (a) The average number of predictors versus the cut-off p-value calculated including only the 

most preceding time step. (b) The mean square error versus the average number of predictors. Similar 

results were obtained when multiple preceding time steps were considered. 

We followed a similar approach for determining the optimal number of preceding time points,  , to 

consider in the model. Figure 3.3 shows the MSE for various number of time points used in prediction. 

The 4-fold cross-validation experiment was repeated 1000 times and the error bars indicate the standard 

error of the mean for the average MSE in these 1000 runs.  The MSE obtained when 2 preceding time 

points were used was significantly better than the MSE for other values of   (p-value of two sample t-test 

between the MSE for     and             are 0.0008, 0.0003, 0.0002, 0.0002, respectively). When 2 

time points were used, 53% and 47% of the predictors were from the first and second preceding time 

points, respectively. 
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Figure 3.3. The mean squared error versus the number of preceding time points used for prediction. Bars 

show the average MSE from of 1000 4-fold cross-validation experiments. Error bars show the standard 

error of the mean. 

In order to compare our results with those reported in FuzzyNet [180], we also used CDC15 for training 

and CDC28 and ALPHA datasets for testing. The result of this comparison is shown in Table 3-1. We 

note that the training error obtained by our approach is significantly better than those from FuzzyNet for 

all but two genes. Overall, SMLR is able to provide lower error rates for 50% of the predictions. SMLR 

incurs very high error rates in the testing datasets for two of the genes, namely the transcription factor 

MBP1 and the S-phase entry cyclin-6 gene CLB6. We attribute the high error rate in the testing datasets 

for MBP1 to the fact that the gene expression pattern for MBP1 in the training dataset does not show a 

clear cyclic expression pattern like the other genes do (Figure 3.5), whereas in the testing datasets, such 

an expression pattern is observed (Figure 3.6 and Figure 3.7). This may be due to MBP1 being under 

different regulatory pressures for different cell cycle synchronization methods. 

CLB6 has three regulators in the KEGG pathway for the genes used in this study, and we suspect that the 

nonlinear interaction between these regulators is not sufficiently captured by our linear model. Although 

we anticipated such cases, we leave inclusion of higher order terms into our model under limited data 
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availability conditions as future work. Despite the high MSE values, SMLR is able to detect the gene 

expression pattern for CLB6 (Figure 3.6 and Figure 3.7). 

Table 3-1. Mean squared error comparison with FuzzyNet for the next time step prediction problem. For 

both FuzzyNet and SMLR, CDC15 dataset was used for training and CDC28 and ALPHA were used for 

testing.  The average MSE calculated for each gene were compared. Superior MSE values for each dataset 

and gene are shown in bold. 

Dataset: CDC15 CDC28 ALPHA Average 

Gene FuzzyNet SMLR FuzzyNet SMLR FuzzyNet SMLR FuzzyNet SMLR 

CLB5 0.17 0.06 0.18 0.08 0.45 0.05 0.27 0.06 

SWI4 0.36 0.09 0.49 0.08 0.12 0.05 0.32 0.07 

SIC1 0.45 0.08 0.41 0.31 0.74 0.24 0.53 0.21 

CDC20 0.55 0.48 0.37 0.07 0.62 0.09 0.51 0.21 

SW16 0.28 0.07 0.33 0.36 0.50 0.13 0.37 0.19 

CLN2 0.56 0.08 0.58 0.26 0.73 0.23 0.62 0.19 

CLN3 0.25 0.06 0.25 0.27 0.15 0.46 0.22 0.26 

CDC28 0.13 0.40 0.07 0.41 0.06 0.47 0.09 0.43 

CLN1 0.19 0.30 0.36 0.61 0.67 0.89 0.41 0.60 

CDC6 0.37 0.05 0.34 0.97 0.42 0.98 0.38 0.67 

MBP1 0.27 0.10 0.43 1.91 0.70 2.13 0.47 1.38 

CLB6 0.40 0.07 0.36 2.86 0.25 1.71 0.34 1.55 
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Figure 3.4. Including ELU dataset in training causes error in predicted periodicity. The models were 

tested on the CDC15 dataset. Upper: training with the ELU, CDC28, and ALPHA datasets. Lower: 

training with the CDC28 and ALPHA datasets. Real CDC15 data is shown in black, simulated expression 

levels are shown in red. Expression patterns for only 5 of the genes that best illustrate the error in the 

periodicity are shown. 

3.3.3. Time series data simulation 

Taking the next time step prediction function, we iterated the prediction over the entire time course. Only 

the first   time points were given as input and the predicted expression levels are fed into the next 

iteration of the simulation. In each simulation experiment, one of the datasets was left out for testing and 

the model parameters were trained on the remaining datasets. 

We have observed that the simulated expression patterns match that of the real data (Figure 3.4, top row), 

but with an increase or decrease in the frequency of the expression patterns. We attribute this change in 

the periodicity to the fact that the datasets were generated with different time intervals, causing the trained 

function to output an expression level that is not in-sync with the testing dataset. Specifically, the ELU 

dataset had a time interval of 30 minutes, which is larger than the others (7 or 10 minutes). Testing a 
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model trained for the other three datasets on the ELU dataset would give predictions with an increased 

period compared to the real data. Conversely, including ELU in training data would give predictions that 

are beyond the time interval of other datasets, effectively giving accelerated cell cycle for the predicted 

test dataset. We confirm this by repeating the training with the exclusion of the ELU dataset. As expected, 

this exclusion corrects the phase-shift in the predictions (Figure 3.4, bottom row). 

Excluding the ELU dataset, we performed three additional experiments, taking each of the remaining 

datasets for testing (Figure 3.5: CDC15, Figure 3.6: ALPHA, and Figure 3.7: CDC28). The simulations 

covered the gene expressions of 83 genes, which were known to be participating in the yeast cell cycle. 

We present the simulated results of only 14 genes that are later used for the regulatory network 

reconstruction. For each simulation, we show the predictions for models with     (red) and     

(green). We observe that the overall expression patterns of the predictions are very well matched with the 

real data. However, the predictions tend to be conservative in their amplitude compared to the real data 

(especially see CDC6 and CLB5 in CDC15 dataset; SWI4, FAR1, CDC6, SIC1, and CLN2 in ALPHA 

dataset; SWI4, CDC20, and CLB6 in CDC28 dataset). 

In general, the simulated expression levels follow a smoother trend compared to the real data. This is 

expected, considering that the real microarray measurements contain fluctuations due to biological 

variations or noise from the data collection technology. The predictions for     and     have a high 

degree of overlap. Using two preceding time points as input results in slightly better predictions (see for 

instance FAR1, CDC6, SIC1, and CLN2 in Figure 3.6). 



65 

 

 

 

Figure 3.5. Simulated data of CDC15 from models trained from ALPHA and CDC28 datasets using one 

previous time point (red) or two previous time points (green). The real data is shown in blue. 

 

Figure 3.6. Simulated data of ALPHA from models trained from CDC15 and CDC28 datasets using one 

previous time point (red) or two previous time points (green). The real data is shown in blue. 
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In order to examine the large scale behavior of the gene expressions, we generated heat-maps for the real 

and simulated data (Figure 3.8). Two clusters of expression patterns have emerged from the heat-map for 

the real data. The simulated data using both 1 and 2 time preceding time points are able to preserve these 

expression clusters. A cluster of genes show up-regulation from 2nd to 7th time points and begin to be up-

regulated in the next cycle starting from 14th time point. A second cluster of genes show up-regulation 

between the 5th and 10th time points. The genes CDC20, MBP1, SWI6 show expression patterns different 

from the other genes. The highly fluctuating behavior of MBP1 explains the high mean squared error 

reported for MBP1 in Table 3-1. 

 

Figure 3.7. Simulated data of CDC28 from models trained from CDC15 and ALPHA datasets using one 

previous time point (red) or two previous time points (green). The real data is shown in blue. 
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Figure 3.8. The heat-maps show the periodic behavior of the genes over time steps. Left: real data. 

Middle: simulated data using one time points. Right: simulated data using two time points. 

3.3.4. Network reconstruction 

Having created a model of the expression of each gene as a linear function of the expression levels of the 

genes at preceding time points, we were able to directly apply this model to the gene regulatory network 

reconstruction problem. A central intuitive assumption in this application is that the coefficients of the 

predictor genes directly reflect the strength of their influence on the respective target response genes in 

the gene interaction network. The predictors of all genes were compiled into a single list of predicted 

regulatory interactions, ranked by their p-values. These p-values were corrected for false discovery rate 

using the Benjamini-Hochberg method [186]. For a given p-value cut-off, the interactions with greater 

statistical significance were used to reconstruct the regulatory network. 
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Figure 3.9. Regulatory network reconstruction. (a) Sub-network extracted from Yeast cell-cycle pathway 

obtained from KEGG. The KEGG pathway contains 51 edges in total; multiple edges between covarying 

modules are not displayed here. (b) Regulatory interactions predicted by the DBN model [129, 187]. (c) 

Interactions predicted by a model trained on the CDC28 dataset. (d) Integration of predictions from the 

four data sets. 

The regulatory network was reconstructed by connecting the selected predictors with their response gene 

using a directed edge. The magnitude of the weights in the model represents the strength of the regulatory 

interaction, and their sign determines whether it is an activating or inhibitory regulation. For comparison 

with existing methods that only determine the presence or absence of the interactions, we constructed the 

regulatory network as an unweighted, directed graph. We compared the gene regulatory networks 

reconstructed from our model to the networks reconstructed using DBN [187] and FuzzyNet [180] 
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methods. The target network contained 14 genes, as shown in Figure 9a. Using all of the datasets for 

training, the DBN model predicted 15 edges consisting of 4 correct, 8 half-correct, and 3 incorrect edges 

(Figure 3.9b), where the correct and incorrect edges are the edges present or absent, respectively, in the 

KEGG pathway and half-correct edges are those that either capture indirect effects or the reverse 

direction of interaction. For the same number of edges predicted from the CDC28 dataset alone, our 

model is able to predict 7 correct, 5 half-correct, and 3 incorrect edges (Figure 3.9c). 

Since each edge in our model is associated with a p-value, a straightforward method of integrating the 

results from all of the datasets is to pool the predicted edges from different datasets and re-rank them by 

their p-values. Integrating the interactions predicted from each of the datasets in this fashion increases the 

number of correctly predicted edges to 8 and decreases the number of half-correct predictions to 4 (Figure 

3.9d). Each dataset provided support for a different but overlapping set of interactions, where three of the 

interactions (         ,          , and          ) were determined highly significant 

across all datasets. The performance of our method when trained on individual datasets and when trained 

on all four datasets is summarized in Table 3-2. Excluding ELU and training on the remaining three 

datasets did not affect the network reconstruction performance. 

Table 3-2. Prediction performance of our method for each of the four different datasets separately and for 

integrating the results from all of the training datasets. Evaluations in this table are based on the top 15 

most significant edges predicted from each dataset. 

Dataset(s) Precision % Recall % F-measure % 

CDC28 46.7 13.7 21.2 

CDC15 33.3 9.8 15.1 

ALPHA 33.3 9.8 15.1 

ELU 26.7 7.8 12.1 
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Integrated 53.3 15.6 29.9 

Next we compare the performance of our method (SMLR) to those of other methods. DN, DBN, and 

FuzzyNet have reported 14, 15, and 36 predicted interactions, respectively. For direct comparison, we 

generated three networks by varying the cut-off p-value in SMLR, such that the same numbers of edges 

are obtained. SMLR achieves better precision, recall, and F-measure values when compared with these 

methods (Figure 3.10). Particularly, the predictions made by SMLR are at least twice more precise and 

complete when compared with the same number of predictions made by BN and DBN. FuzzyNet makes a 

larger number of predictions than BN and DBN and performs slightly worse than SMLR for the same 

number of predictions. 

 

Figure 3.10. Comparison of network reconstruction performance for SMLR and other methods. The 

number of estimated interactions reported by each method is indicated in the parentheses. The p-value 

threshold of SMLR was adjusted to generate three networks, such that the same number of edges is 

reported with the method it is being compared to. 
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Note that our method is additionally able to rank the predicted interactions using their associated 

statistical significance values, such that any desired number of interactions can be generated. The 

precision-recall curves of the predictions made by our method for varying p-values are shown in Figure 

3.11. Integrated predictions outperform predictions from individual datasets in precision, up to a recall of 

20%. We attribute this partially to our integration strategy, which focuses on collecting predictions with 

high statistical significance from individual datasets, biasing the improvement to the top predictions. The 

performance of our method is slightly better than that of FuzzyNet for comparable precision and recall 

values. 

 

Figure 3.11. Comparing the precision-recall curves for our method with that of others. Results from our 

method on integrating all datasets, excluding ELU, and using only CDC28 are shown; other individual 

datasets are omitted for clarity. 

In addition to the comparison of SMLR to the methods that are suitable for time-series data, we also 

compared SMLR to the methods that use steady state microarray data, including ARACNE [7, 17], which 

is a state-of-art method based on mutual information (MI) calculation. Here ARACNE was used to 

reconstruct the regulatory network using the same four datasets, where the microarray samples at each 

time point in the time series were regarded as different steady state samples. The edges predicted by 
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ARACNE were sorted by their associated MI scores. Besides ARACNE, we also attempted to reconstruct 

the network by calculating the gene expression correlation between each pair of genes. The edges 

representing the gene pairs were sorted by the p-value of the correlation. Since the results of ARACNE 

and correlation calculation lack the edge directionality, for the purpose of comparison we consider the 

presence of an edge as correct if the edge is observed in the known network, without regarding its 

direction. Figure 3.12 demonstrates that the performance of SMLR using time series data is superior to 

that of both ARACNE and correlation-based reconstruction. This indicates that utilizing the time series 

data as a dynamic and dependent set of measurements instead of static independent samples results in a 

more reliable reconstructed network. 

 

Figure 3.12. Comparison of our method (SMLR) to ARACNE and the correlation-based reconstruction 

(CORR). Note that unlike the results reported in Figure 3.11, the direction of the edges is disregarded and 

the interactions predicted by SMLR in either direction were considered as correct. ARACNE and CORR 

only report un-directed interactions. 

In order to further evaluate how well the predicted network is statistically supported from the data, we 

performed random permutations of the time points and analyzed the resulting predicted interactions 

(Figure 3.13). The integrated predictions perform consistently better than randomly permuted data sets, at 

two standard deviations better precision than randomized data sets. This shows that the predictions made 
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by our method are not simply due to spurious expression patterns in the data set due to noise or systematic 

errors. On the other hand, predictions from individual data sets degrade quickly, and one can be confident 

in their accuracy only for the top few best predictions. Figure 3.13 also demonstrates the effectiveness of 

using the p-value for ranking the predictions, as concluded from the general trend of the overall 

monotonicity in the reduction of the precision as more edges are predicted. Surprisingly, the performance 

of the DBN model is close to the results obtainable by our method for randomized data indicating that the 

results of DBN may not be statistically supported from the datasets. 

 

Figure 3.13. Comparison of predictions of our method to its predictions from randomized data. Error bars 

for the recall of the randomly permuted datasets show its standard deviation in the 100 random trials. 

Table 3-3. Coefficients and p-values of the predicted interactions from integrated 4 datasets. The sign of 

the coefficients is compared against the interactions available in the KEGG Yeast cell cycle pathway. 

Incorrect predictions naturally do not have corresponding information in KEGG. For co-regulated genes, 

we considered an activating relationship to be correct. 

Source Gene Target Gene Accuracy p-value (log10) Coefficient Sign correct 

SWI4 CLN2 Correct -7.20 1.36 yes 

SIC1 CLB6 Correct -5.79 0.92 no 



74 

 

 

Another important advantage of our approach over existing methods is the interpretability of the inferred 

coefficients as the strength of the interactions. We have listed the coefficients for the top 15 predicted 

interactions in Table 3-3. There are currently no quantitatively annotated datasets for regulatory networks, 

so we are not able to validate the magnitude of these coefficients directly. On the other hand, the KEGG 

pathway contains information regarding whether an interaction activates or inhibits the target gene. We 

observe that the signs of the correctly predicted coefficients match for some of the top predictions. The 

positive sign of the half-correct interaction           maps to two consecutive inhibitory interactions 

in the KEGG pathway (                      ), which effectively makes it an activating 

interaction. 

SWI4 CLN1 Correct -5.73 1.02 yes 

SWI6 SWI4 Correct -5.12 -1.83 no, co-regulated 

FAR1 SIC1 Half-correct -5.04 0.77 yes (indirect) 

SWI4 CLB6 Incorrect -4.95 2.24 --- 

SWI6 MBP1 Correct -4.70 0.94 yes, co-regulated 

CDC6 CDC28 Half-correct -4.29 0.40 yes 

CLN2 FAR1 Half-correct -4.24 -0.65 yes 

SIC1 FAR1 Incorrect -4.20 0.69 --- 

CDC20 FAR1 Incorrect -4.06 0.58 --- 

SIC1 CLB5 Correct -4.03 0.46 no 

CLN2 CLN1 Correct -4.03 0.64 yes, co-regulated 

SWI6 CLB5 Correct -3.99 -2.29 no 

CLN1 CLB6 Half-correct -3.94 -1.55 no 
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3.4. Discussion 

In this paper, we have employed a multiple linear regression model to predict and simulate time-series 

microarray data and also to reconstruct gene regulatory networks from this model. Linear models provide 

a compelling alternative to other existing approaches due to their simplicity, robustness against noise, and 

low computational requirements. Our approach introduces two additional parameters, in addition to the 

coefficients estimated in the linear model. Specifically, we have shown that the number of prior time 

points used to train the model and the p-value cut-off of genes to include in the gene expression prediction 

function can be determined empirically from the training data. We have demonstrated that the proposed 

model is able to make correct predictions for the yeast cell cycle pathway, and simulate the expressions of 

the genes involved. The predicted gene expressions showed similar cyclic behavior and similar clustering, 

when compared with the real data. The linear model presented here is able to model the presence, 

directionality, and the strength and sign of the interactions in a reconstructed regulatory network. This is 

an important advantage over most of the existing methods that at best predict the directionality of the 

interactions. 

The statistical significance associated with each predicted interaction provides a convenient way of 

assessing the reliability of the prediction. Given that most computational prediction approaches to 

biological problems aim to produce new hypotheses that can be validated with further biological 

experiments, the prioritization of the predictions becomes an invaluable feature for these time and labor 

intensive and low-throughput downstream experiments. The statistical significance also provides a 

straightforward means of integrating multiple time-series data sets, collected under different experimental 

conditions and time scales. Whereas very short time intervals mean that consecutive time points may not 

reveal regulatory interactions, longer time points risk missing the regulatory window of action. While 

each regulatory interaction is likely to operate at different time scales, the integration of the datasets with 

varying time intervals would be able to collect such interactions into a single predicted network. 
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Although the network reconstruction was robust to the heterogeneity of the training datasets, the 

simulation of the time course data was sensitive to the time intervals of these datasets.  Of the four 

datasets used in this study, the elutriation dataset (ELU) was collected at a thirty minute time interval, 

which was three times longer than any of the other datasets.  Inclusion of this data did not prevent the 

model from capturing the cyclic behavior of genes; however our simulation contained a phase shift 

compared to the real data.  When the elutriation dataset was included in the training (or testing) set, our 

model predicted changes in the gene expression to occur at earlier (or later) times than they actually 

occurred in the real data.  We conclude that the model should be trained with data collected at similar 

time intervals to the testing data in order to achieve better performance. Approaches to interpolate the 

expression levels and thus artificially generate new datasets with the same time interval may be pursued 

as a potential solution when dataset exclusion is not desirable. In particular, the datasets can be re-

sampled from a continuous representation using linear interpolation[18] or spline interpolation [188, 189]. 

These continuous representations additionally allow re-alignment of datasets to minimize the effects of 

varying phase and periodicity of the datasets. Such dataset integration methods will be especially useful 

pre-processing steps when the method introduced in this paper is applied to large scale, heterogeneous 

datasets. 

In this study, the gene regulatory network is reconstructed solely based on time-series expression datasets. 

By incorporating other types of data and additional a priori knowledge, the performance of GRN 

reconstruction is expected to be improved. For instance, candidate predictors for a particular response 

gene can be filtered by focusing on only subset of genes that share common Gene Ontology annotations 

to the response gene, or by analysis of similarity of protein domains and binding sites of TF targets. 

Previous known regulatory interactions and transcription factor (TF)-gene relationship identified from 

ChIP-chip and ChIP-seq data can be included in the structure of network and their effects can be 

considered during model learning.  
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In order to identify the predictor genes and fit the model parameters to the data, we have used a stepwise 

multiple linear regression with a forward selection strategy. This greedy stepwise optimization strategy 

may not discover a globally optimal solution. Using more comprehensive sampling approaches such as 

Monte Carlo methods [190], or utilizing related model fitting methods, such as ridge regression [191, 

192] and partial least squares regression [193] may improve the model fitting and consequently increase 

the accuracy of the reconstructed regulatory network, at the cost of increased training time. Known 

regulatory interactions can also be incorporated as constraints in the search and sampling of predictors 

during the model fitting stage. Incorporation of known transcription factors improves network 

reconstruction [194]; consequently, the predictors in our model fitting can be limited to the set of known 

transcription factors to improve the reconstruction accuracy. 

It may be argued that using a linear model for representing regulatory interactions is incorrect or limited. 

While in this study we do not claim that a linear model should represent the kinetics of regulatory 

interactions, we have shown that in the context of expression prediction, time-course simulation, and 

network reconstruction problems, the linear model provides a sufficient approximation to the otherwise 

complex regulatory interactions. Furthermore, using more complex functional forms would incur a larger 

number of parameters that need to be estimated from the data, bringing the sufficiency of the available 

data into question. 

In evaluating the accuracy of different methods, we used the interactions available in the KEGG pathways 

as the ground truth. We acknowledge that future discoveries may change the known interactions in the 

cell cycle pathway investigated in this study, and alter the evaluations presented in this paper. We also 

expect that the discrepancies between our predictions and currently known interactions may guide such 

new discoveries. Furthermore, the view that interactions between pairs of genes should be an either 

always or never phenomena is limiting, since gene regulation is dynamic and certain interactions may be 

present only under certain temporal and experimental conditions. The investigation of interactions as 
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emerging or disappearing relationships and the predictions of these dynamic behaviors have attracted 

recent attention [181]. 

To conclude, we demonstrated our approach on a relatively small dataset and compared its results to those 

from Bayesian Network, dynamic Bayesian Network [187] and Fuzzy Neural Network [180] models.  

Our method generally produced a lower mean squared error for the simulated data than the neural fuzzy 

network method. We also achieved better accuracy than these methods in reconstructing the Yeast cell 

cycle pathway. These early comparisons are promising; however a large scale evaluation using a more 

comprehensive set of synthetic and real datasets and different types of reconstruction methods as well as 

handling differences in sampling rates is left for future work. Finally, we note that it may be possible to 

develop a meta-method that combines the predictions of various methods into a single improved 

regulatory network. 
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Chapter 4. Inference of miRNA-mRNA interaction 

4.1. Introduction 

As introduced in the chapter 1.3, so far only a small fraction of miRNA targets have been experimentally 

validated with confidence. To reduce the number of interactions researchers need to validate, sequence-

based computational methods have being used to generate putative lists of miRNA-mRNA pairs. 

However, predictions solely based on sequence information have high false positive rates [107]. To 

improve the performance, novel integrative approaches that combine sequence based predictions and 

experimental data are needed. With the accumulation of high throughput expression data, especially 

paired miRNA-mRNA datasets, several methods that incorporate these high throughput data have been 

developed. As introduced in chapter 2.2, there are correlation based model, multiple linear regression 

model and Bayesian model for analysis of miRNA-mRNA expression. 

Correlation-based methods are suitable for fast identification of miRNA-target pairs of interest in large 

datasets while multiple linear models have advantages that they consider the many-to-one biological 

interactions between miRNAs and mRNA. In this chapter, we propose an algorithm that combines 

correlation-based method and multiple stepwise regression models for identification of miRNA-mRNA 

interaction. By analysis of paired miRNA-mRNA expression data, the algorithm generates a putative list 

of miRNA-target pairs, which are sorted by confidence. The performances of proposed method are 

evaluated using miRNA-target pairs found in MirTarBase [195] as true positive.  

The proposed method was then used for a case study of hsa-miR-939. Previous study has shown that the 

expression of miR-939 was significantly altered in samples from patients with complex regional pain 

syndrome (CRPS) versus control samples [196]. CRPS is a chronic disorder that often triggered by 

trauma or injury. Inflammation is known to play an important role in CRPS. Inference of hsa-miR-939 
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targets using paired miRNA-mRNA expression data help the investigation of its role in mediating 

inflammation and pain.  

4.2. Methods 

For identification of miRNA-mRNA interaction using paired expression data, we propose an algorithm 

that hybridizes correlation method and stepwise regression, named as forward stepwise correlation 

(forwardCorr). As stepwise regression using forward selection, described in section 2.3, the algorithm 

starts with no predictors included in the multiple linear model. The correlation and the p-values are 

calculated, and the most correlated predictor (the one with smallest p-value) will be selected first. Next 

the effect of the selected predictor on remaining predictors and response variable will be removed, and the 

correlation and p-values are calculated again for the remaining potential predictors.  

To remove the effect of selected predictors, suppose that there are   predictor genes selected in the model, 

then the training matrix   will be     with   samples and   predictors. Instead of using normal 

equation (2.28) directly, QR matrix factorization is used to solve the least square problem because of its 

better numerical property. In linear algebra, the QR factorization of the matrix   is written as 

      (4.1) 

where   is a     orthogonal matrix and   is a     upper triangular matrix. There are several methods 

for computing QR factorization, such as Householder transformations and Gram-Schmidt 

orthogonalization process. Notice that   has zeros below the main diagonal and     (the number of 

selected predictors,  , is small in the beginning of forward selection process), then equation (4.1) can be 

rewritten as 

            [
  

 
]       (4.2) 
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where    contains the first   columns of matrix   and     contains the remaining     columns;    is a 

    upper triangular matrix. After substitute equation (4.2) into the normal equation (2.28), we get 

  ̂                
    

    
   

     
     

      
   

     
    

   (4.3) 

Thus the fitted value   ̂    ̂        
    

       
   and the residue become 

         ̂        
    (4.4) 

which can be regarded as response variable with the effect of those   predictors removed. Similarly, the 

effect on the remaining predictors can also be removed. Let      be the training matrix of remaining 

potential predictors, it has size         where   is the number of total predictors and   is the number 

of predictors already selected.   
    below will be the new training matrix for selecting next predictor 

   
             

      (4.5) 

Now with    and   
    available, one more predictor is selected based on newly calculated correlation 

and p-values. Then   will have one more column and become        ;      have one less column 

and become          . The procedures are repeated such that each step one predictor is selected 

into the model. Across each step, the p-values are recalculated and recorded. In the end, the predictors are 

ranked according to their „best‟ coefficient and p-value across all steps.  

As an example for demonstration, p-values for six predictor miRNAs across first five steps are shown in 

Table 4-1. The final p-value for predictor hsa-miR-138 is 0.44, which is obtained in step 3 while its p-

value in first step is 0.45. It means that even though the p-value for simple correlation between hsa-miR-

138 and the response gene is 0.45, hsa-miR-138 can still be considered as a better predictor at step 3, 

when the multiple linear model contains two predictors already.  
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Table 4-1. Example of forwardCorr algorithm. p-values are calculated at each step and the best p-value is 

used for ranking. 

Predictor Step 1 Step 2 Step 3 Step 4 Step 5 … 

hsa-miR-137 0.02 0.03 0.16 0.21 0.35  

hsa-miR-376c-3p 0.39 0.73 0.89 0.88 0.66  

hsa-miR-585-3p 0.45 0.58 0.44 0.68 0.8  

hsa-miR-302c-3p 0.59 0.99 0.83 0.9 0.76  

hsa-miR-487a-3p 0.59 0.39 0.51 0.67 0.89  

hsa-miR-202-3p 0.77 0.92 0.8 0.95 0.58  

One advantage of forwardCorr when compare it to simple correlation methods is that it considers the 

effect from multiple predictors. Consider an example in Figure 4.1, response gene A is regulated by 

predictor B, C and D, and there is another potential predictor E that is indirectly correlated to A. By using 

simple correlation methods, the pair A-E may have smaller p-value than the real regulatory pair A-D do, 

because the effect of D on A is shadowed by the stronger effects from regulator B and C. By removing 

the effects from B and C, and recalculate the correlation and p-value, there is a „second chance‟ for 

predictor D to obtain a proper p-value that smaller than the indirect predictor E.  

 

Figure 4.1. ForwardCorr is suitable for many-to-one regulation. Response gene A is regulated by 

multiple regulators, B, C and D. The simple correlation methods may fail to capture D as predictor of 
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gene A, since its regulatory effect to A may be mixed with and shadowed by those from its stronger co-

regulators B and C. 

We can control the number of steps by setting a cut-off p-value, pEnter or setting the number of max 

steps, maxStep. The algorithm stops when there is no significant predictor with p-value smaller than 

pEnter, or the step number exceeds maxStep, whichever comes first.  

4.3. Result 

4.3.1. Forward stepwise correlation 

Forward stepwise correlation (fowardCorr) algorithm is a hybrid of simple correlation and stepwise 

regression. The difference between simple correlation method and fowardCorr can be seen in Figure 4.2. 

It shows the results of forwardCorr using two breast cancer datasets, with pEnter = 0.01 and maxStep = 

infinite. The horizontal axis is the step number and the vertical axis indicates the percentage of final p-

values come from each step. In the left, for dataset GSE19536, there are about 39%, 22% and14% 

predictors obtained their best p-value at step 1, step 2 and step 3 respectively. Notice that 39% final p-

value coming from step one means that the 39% p-value will be the same when using simple correlation.  

 

Figure 4.2. Percentage of final p-values found at each step. 
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When the step number becomes large, the residues became so small that we should ignore, otherwise it 

cause over-fitting and reduce the importance of calculations from beginning steps. In the following 

experiments, we were using p-value cut-off pEnter = 0.01 and limiting maximum step number maxStep = 

5.  

4.3.2. Comparison to correlation method 

ForwardCorr algorithm was run with two breast cancer datasets (GSE22220 and GSE19536) and two 

prostate cancer datasets (GSE20161 and GSE21032) as we listed in Table 1-2. Using miRNA-mRNA 

pairs found in MirTarBase [195] as true positive, the precision-recall plot of predicted ranking for each 

dataset is shown in Figure 4.3. It shows that ForwardCorr have similar area under curve with simple 

correlation methods in dataset GSE22220, and outperform simple correlation in three other datasets 

regarding the area under curve, especially in dataset GSE19536. The value of precision is low, in the 

magnitude of 10-3. One reason is that the validated miRNA-mRNA pairs is only a very small portion of 

all miRNA-mRNA pairs (MirTarBase/all: 23110/9367820, 32752/16770255, 12781/13802635, 

32338/16195287 for four datasets respectively). 
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Figure 4.3. Precision-recall. Comparison between ForwardCorr and simple correlation. 

4.3.3. Integration results from different cancer 

Given that the miRNA-mRNA regulatory pattern depends on cell type and context, a model built from 

breast cancer datasets may not be suitable for other type of cancer, prostate cancer for instance. The 

accumulation of paired miRNA-mRNA datasets for various types of cancer (see Table 1-2, as well as The 

Cancer Genome Atlas (TCGA) project [197, 198]) together provide us the opportunities to infer cancer-

specific miRNA-mRNA interaction and integrate the results from each dataset.  

In total 16 datasets were used for this experiment. After learning, each dataset generates a list of miRNA-

mRNA pairs, ranked by the p-value from small to large. Each potential miRNA-mRNA pair has different 

rank in different dataset. To combine the results, interaction pairs are sorted by the product of their ranks 

across all datasets.  
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The precision-recall plot for the combined list of miRNA-mRNA pairs are shown in Figure 4.4. It shows 

three different subset of all miRNA-mRNA pairs: those predicted by TargetScan (left), those not 

predicted by TargetScan (middle) and all of them. For each subset of miRNA-mRNA pairs, forwardCorr 

(red curve) is better than simple correlation method (blue curve). Notice that the subset of TargetScan 

predicted miRNA-mRNA pairs have higher precision, which may be due to the fact that researchers 

usually rely on sequence-based methods to filter potential pairs and design validation experiments, thus 

the density of validated targets is higher within TargetScan. 

 

Figure 4.4. Precision-recall curve of combined results from different datasets with forwardCorr and 

simple correlation. 

The area-under-curves (AUCs) in Figure 4.4 are shown in Table 4-2. ForwardCorr have 3%-4% 

improvement than simple correlation. For this experiment, more than 60% (189/313) well validated pairs 

(by western blot, qPCR, or reporter assays) in MirTarBase are not predicted by TargetScan. Expression-

based methods thus serves as a complementary to sequence-based methods to discover true miRNA-target 

interactions. For those potential pairs not predicted by TargetScan, forwardCorr have 3.5% better AUC 

than simple correlation method.  

Table 4-2. Area under curve for forwardCorr and simple correlation. 
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4.3.4. Integration result from sequence-based methods 

In addition to discovering miRNA-target interaction that not identified by sequence-based methods, 

expression-based results by forwardCorr can be used to improve the performance of sequence-based 

prediction. The miRNA-mRNA pairs covered by TargetScan are ranked by context+ score [199] and its 

precision-recall plot is shown in black in Figure 4.5. For the same set of miRNA-mRNA pairs, the result 

of forwardCorr algorithm is shown in green. By calculating the rank product of results from TargetScan 

and forwardCorr, the list of miRNA-mRNA is re-ranked and have better AUC than either TargetScan or 

forward by itself. The numerical values for AUC are listed in Table 4-3.  

Precision-recall Within TargetScan Outside TargetScan All pairs 

Negative correlation 0.0610 0.0102 0.0117 

Forward selection 0.0628 0.0105 0.0121 

Delta +2.9% +3.5% +3.5% 
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Figure 4.5. Precision-recall curve of combined results of sequence-based and expression-based methods. 

Integrated results from expression-based methods and sequence-based methods have better area under 

curve. Green, results from ForwardCorr using gene expression data. Algorithm; Black, results from 

sequence-based algorithm TargetScan. Red, rank product of both results.  

Table 4-3. Area under curve for integrative analysis of miRNA-target interaction 
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forwardCorrNeg

targetScan

Area under curve MTB strong evidence MTB 

targetScan 0.0253 0.0641 

forwardCorrNeg 0.0206 0.0628 

forwardCorrNeg × targetScan 0.0291 0.0738 

corrNeg 0.0201 0.0610 

corrNeg × targetScan 0.0283 0.0724 
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4.3.5. Case study 

To investigate how hsa-miR-939 participate in inflammatory gene regulatory network and its role in 

mediating inflammation and pain, we first generate gene regulatory network using a seed list of gene, 

which include known hsa-miR-939 targets from previous study, literature [196] and MirTarBase database 

(TNF, IL6, TNFAIP1, NOS2, VEGFA, NFKB1, IL1RN, CCL2, SH3BP2 and AMPD2) . In addition, 

regulatory neighbors of NFKB [200] were also included (PPP2CA, TRAF6, IRAK1, NKRF, HDAC9 , 

AKT1 , PDCD4, CYLD, PTEN, CHUK and IKBKB). This gene list was uploaded to geneMANIA web 

server [201], and a network contains 41 genes were generated, as in Figure 4.6.  

For target prediction based on expression, 5 paired miRNA-mRNA expression datasets that measures hsa-

miR-939 are included. After learning, p-values were adjusted [202] and false discovery rate (FDR) 0.05 

was used as cut-off, which generate 1002 mRNAs as targets of hsa-miR-939. Seven out of 1002 predicted 

targets were found in the network, whose interactions with miR-939 are shown as red edges in Figure 4.6. 

Also there were 178 targets for hsa-miR-939 predicted by TargetScan, and 3 of them are also found in the 

network, shown as blue edges.  
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Figure 4.6. Network for hsa-miR-939. Nodes: known hsa-miR-939 targets from previous study (red), 

from MirTarBase (blue), known neighbors of NF-κB (yellow) and nodes returned from geneMANIA 

(black). Edges: expression-based prediction using forwardCorr (red), found MarTarBase (green), 

predicted by sequence-based method targetScan (blue) and retrieved by from geneMANIA (black) 
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Chapter 5. Functional annotation of miRNA 

5.1. Introduction 

MicroRNAs (miRNAs) are small (~22 nucleotides) non-coding endogenous RNAs that play important 

roles in gene regulation by targeting the messenger RNA (mRNA) of protein-coding genes [24]. In most 

cases, though not always [203], miRNAs act to repress the expression of their target gene [204, 205]. 

miRNAs guide the repression by either degrading the mRNA molecules,  decreasing the translational 

efficiency, or both. When a miRNA and its target mRNA are highly complementary, the pairing is 

extensive and the miRNA directs the cleavage of the mRNA, which is the predominant mode of miRNA-

guided repression in plants. In animals, extensive miRNA-mRNA complementary pairing and the 

consequent cleavage of mRNA is less prevalent. Nevertheless, recent studies indicate that target mRNA 

degradation provides a major contribution to translational repression in animals [47, 206]. 

miRNAs participate in a wide range of biological processes, affecting the expression of over 60% of 

mammalian genes [26]. Over the past decade, it has become clear that miRNAs contribute to almost all 

known physiological and pathological processes, cancer being of particular interest. Since dysregulation 

of miRNAs is closely linked with dysregulation of oncogenes and tumor suppressors, studying the 

biological processes of miRNAs provides unique opportunities for the development of miRNA-based 

diagnostics and treatment of cancer [29, 30]. 

To understand the functions of miRNAs, a central goal and major challenge is to determine their target 

mRNAs. There are many experimental techniques for target identification of miRNAs of interest (see 

chapter 1.3.2). These experimentally identified miRNA-mRNA interactions are collected in several 

repositories, such as TarBase [67] and miRTarBase [195]. So far thousands of miRNAs have been 

identified in animals and plants, but only a small fraction of targets for these miRNAs have been validated 

experimentally, because of the low efficiency and high cost of experimental validation. Sequence-based 
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computational methods have been developed to fill this gap by generating putative lists of miRNA-

mRNA pairs, which have greatly reduced the number of interactions researchers need to validate 

experimentally. Widely used miRNA target prediction methods include TargetScan [26], miRanda [207], 

PicTar [208], TargetScanS [79], and DIANA-microT [209]. 

Currently, reliable prediction of miRNA-mRNA interactions remains a challenge. Predictions based 

solely on sequence information have high false positive rates [107]. In order to improve the performance, 

novel integrative approaches that combine sequence based predictions and miRNA experimental data are 

needed. Genome-wide mRNA expression measurement has become an indispensable tool in molecular 

biology. Similarly, technological advances have spawned a multitude of miRNA profiling platforms [83]. 

They together provide paired miRNA-mRNA expression profiles that enable researchers to pinpoint 

important miRNAs and their roles in particular biological processes. 

Several methods that incorporate these high throughput data have been developed to find miRNA-mRNA 

regulatory pairs (see chapter 2.2), including those based on correlation [110, 147, 150, 151] or mutual 

information [152]. The findings from gene-expression analysis can be integrated with those from 

sequence-based methods by intersection [149]  or weighted sum [110]. These simple approaches are 

efficient in extracting potential interactions from big datasets but they only consider independent pairwise 

miRNA-mRNA associations. Since a mRNA can be targeted by several miRNAs and its expression 

profile is affected by multiple miRNAs at the same time, multiple linear regression models have been 

proposed [153, 155]. When the data is co-linear or the number of samples is less than the number of 

regulators, the linear model is underdetermined and optimal solution is unattainable. This can be 

circumvented by introducing penalty terms to the system, such as    norm,    norm , or combination of 

both, of the coefficients of regulators [158]. In addition to regression-based approaches, several Bayesian 

models have been developed, inferring the posterior probability of real miRNA-mRNA interactions based 

on the expression data, such as implemented in GenmiR++ [159] and its variations [160-162]. Bayesian 
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network structure learning has also been proposed [163], in which regulatory relationships are represented 

as a graph and the graph that is best supported by the expression data is sought after. 

The approaches proposed so far have focused on inference and validation of the “structure” of the 

miRNA-mRNA regulatory networks from the paired miRNA-mRNA expression data. Although knowing 

which genes are targeted by which miRNAs is of great value, it is not sufficient for determining whether a 

gene would be differentially expressed in a particular cellular context. 

We have previously shown that a simple linear model is able to quantitatively predict and simulate gene 

expression levels in time-series data [210]. In this study, we investigate the application of a similar linear 

model for quantitative estimation of mRNA expression levels from miRNA data. The present study is 

unique in its focus on explicit quantitative modeling of gene expression levels, rather than just identifying 

miRNA targets. 

5.2. Methods 

We infer miRNA-mRNA regulatory interactions by analyzing paired miRNA-mRNA expression data 

using stepwise multiple linear regression (SMLR) [210]. Suppose there are   mRNAs and   miRNAs of 

interest, the expression level of each mRNA is modeled as a linear function of the expression levels of the 

miRNAs 

 

         ∑     

 

   

    (5.1) 

where    and    are variables representing the expression of mRNA   and miRNA   respectively, with 

          and          ;    is the error term and      is a constant term representing the baseline 

mRNA expression. The     term characterizes the regulatory effect of miRNA   on mRNA  . We identify 

the coefficient weights     using stepwise multiple linear regression with a forward selection strategy, as 
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described in chapter 2.3. Briefly, the predictors for a given gene    are identified starting with the 

inclusion of the constant term. In each forward selection step, individual predictor variables are 

considered for addition based on their statistical significance in the regression fitting. The p-value of an 

F-statistic for each variable is calculated to determine whether to include or exclude that variable in the 

model, using the null hypothesis that its weight coefficient is zero. 

Suppose there are   samples, we can denote the expression of mRNA   and miRNA   across samples as 

row vectors:                        and    [               ].  More compactly, let 

                 and               , with semicolon separating row vector and each row 

representing a mRNA or miRNA and each column representing a sample. If the data is already 

normalized, the constant term   in   can be dropped, leaving   and   with dimensions of     and 

   , respectively, and representing the experimental data of   miRNAs and   mRNAs across   

samples. Let                         and                   . Then the SMLR model can be 

written in a simple matrix form 

       (5.2) 

The coefficient matrix   is    , which represents miRNA-mRNA regulatory interactions from   

miRNAs and   mRNAs. Note that the coefficient matrix   is sparse, since the coefficients of 

insignificant interactions are set to zero. 

Before estimating the interaction coefficients from training data and predicting gene expression levels, we 

need to perform necessary data pre-processing. Since we want to have a general model that works for 

expression datasets from different platforms and given the fact that most expression data available on 

Gene Expression Omnibus (GEO) database have already been normalized based on different assumptions 

regarding the specific platform, we avoid extra normalization across each sample unless necessary. First, 

we remove probes (genes) that have more than 3 missing data points and impute the missing value using 
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the k-nearest-neighbor method with    . Next, we center and scale the expression of each probe (gene) 

to have a mean value of zero and a standard deviation of one. This transformation does not alter the 

correlation between genes or the results of t-test for samples from different subgroups. Data preprocessing 

ensures that expression levels from different samples are on the same scale and that our predicted values 

can be directly compared with those from the real data. After preprocessing, we estimate the interaction 

coefficients   using stepwise multiple linear regression [210]. 

We evaluate the accuracy of the model predictions on both the training and independent testing datasets. 

In particular, we focus on how well the predictions preserve the differential expression profiles, as the list 

of differentially expressed genes is one of the most important outcomes from microarray studies. For both 

the real and predicted data, we perform Student‟s t-test to identify the genes that are significantly 

differentially expressed between experimental groups and analyze the overlap between the lists of genes 

generated from the real and predicted data. 

Another type of downstream analysis from miRNA and mRNA profiling experiments is to identify 

functionally enriched biological annotations and pathways. Enrichment from miRNA profiles relies on 

first determining the target genes of a list of miRNAs of interest (usually those differentially expressed in 

a particular experimental subgroup) using sequence-based target prediction algorithms or using 

experimentally validated targets. The gene list thus obtained is then analyzed for common biological 

annotations using gene set enrichment methods [108, 109]. Using this strategy, several tools have been 

developed for functional annotation of miRNAs, including miRGator [110] and FAME [112]. However, 

these approaches suffer from the limitations of the available miRNA-mRNA interaction data: 

experimentally validated datasets are far from complete and computational methods produce many false 

positives. Furthermore, miRNA-mRNA interactions are highly tissue and development-specific [147]. 

Dependency of individual miRNA-mRNA interactions on a particular cellular context is highlighted by 
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the recent discovery of a network of competing genes and pseudogenes that act as miRNA „sponges‟ 

[211]. 

 

Figure 5.1. Flowchart of miRNA functional annotation for a specific biological process. The 

conventional strategy is to find a set of miRNAs of interest and perform gene set enrichment analysis with 

their target mRNAs. Here we propose a different strategy that, instead of starting with selected miRNAs, 

considers all miRNAs in the experiment for prediction of mRNA expressions based on SMLR model and 

then identifies differentially expressed mRNAs from estimated expression levels, which are then used in 

gene set enrichment analysis. Modified from [212]. 

Here, we propose to use the mRNA levels estimated from our SMLR model for downstream functional 

annotation tasks (See Figure 5.1). Considering any negative coefficient in the matrix   to indicate a 



97 

 

 

targeting interaction, we evaluate the ability of our approach to discover mRNA targets and compare its 

performance to the TargetScan target prediction method [79] and to a negative correlation method where 

negatively correlated miRNA-mRNA are assumed to be targeting interactions (Pearson       ). Note 

that our method does not distinguish direct interactions from transitive ones or from those arising from 

co-regulation.  Regardless of the source of the coefficients, our approach generates estimates of mRNA 

expression values, just as if they were obtained from a microarray gene expression experiment study. 

Once we obtain these estimated gene expression levels, we calculate a predicted list of differentially 

expressed genes and then perform gene set enrichment analysis using the DAVID web service [213]. 

Functional annotation is performed against OMIM, GO terms, BBID pathway, and KEGG pathway 

databases. We evaluate the performance on the functional enrichment task by comparing the resulting 

functional categories with those obtained from the real mRNA data and those obtained using target 

prediction methods. 

In the following section, we first illustrate the application of SMLR to predict gene expression levels and 

functional categories, using a breast cancer expression profiling dataset. We then evaluate the ability of 

the model coefficients estimated from one dataset to generalize to another dataset generated from 

different experimental platforms. We compare the gene lists and functional categories predicted from 

miRNA data to those obtained from the real data and from TargetScan. 

5.3. Results 

5.3.1. Leave-one-out-cross-validation 

In order to evaluate the ability of the SMLR model to predict gene expression levels from miRNA data, 

we first used public available dataset from a paired miRNA-mRNA study [91], in which miRNA and 

mRNA profiles were obtained from the same primary breast cancer carcinomas (see Table 5-1), where the 
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TP53 mutational status and estrogen receptor (ER) status of each sample are also available. These 

samples are part of a larger cohort from the Oslo region [214]. 

Table 5-1. Breast cancer datasets used in this study. 

After data preprocessing, we obtained normalized expression profiles for 489 miRNAs and 40996 genes. 

We then performed leave-one-out-cross-validation (LOOCV) to evaluate the model, where we set aside 

one of the samples as the test sample and calculated the interaction coefficients from the remaining 100 

training samples. The resulting model is then applied to the miRNA profiles from the test sample 

separately. This procedure is repeated with each sample in the dataset used as a test sample. 

Hierarchical clustering of the 1000 most differentially expressed mRNAs in the real data is shown in 

Figure 5.2 left. For comparison, a heatmap of the predicted expression levels is shown side-by-side in 

GEO ID: GSE19536 GSE22220  

Reference: [91] [90]  

# samples: 101 207  

miRNA 

platform: 

Agilent-019118 Human miRNA Microarray 2.0 

G4470B (miRNA ID version) 

(GPL8227) 

Illumina Human v1 MicroRNA 

expression beadchip 

(GPL8178) 

 

mRNA 

platform: 

Agilent-014850 Whole Human Genome 

Microarray 4x44K G4112F (Probe Name version) 

(GPL6480) 

Illumina humanRef-8 v1.0 

expression beadchip 

(GPL6098) 

 

# miRNAs: 489 735  

# mRNAs: 40,989 24,332  
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Figure 5.2 right with the same row and column arrangements. The predicted data displays surprisingly 

similar expression patterns, supporting the idea that the miRNA expression alone provides a good 

summary of the gene expression state of the cell. 

 

Figure 5.2. Hierarchical clustering of mRNA expression. Left: Hierarchical clustering of the 1000 most 

differentially expressed mRNAs from the GSE19536 dataset. Right: expression levels of the same 

mRNAs predicted from the paired miRNA expression data, using SMLR with leave-one-out-cross-

validation strategy. Rows are mRNA probes and columns are samples. Predicted data is shown with the 

same row and column arrangement as the real data. Root mean squared error (RMSE) of all predicted 

values was 1.11. 

In order to further evaluate the reliability and usefulness of the gene expressions predicted from miRNA 

data, we examined whether the predicted values can identify a similar set of differentially expressed 

mRNAs. A two-sampled t-test on predicted gene expression data was performed between the ER-positive 

and ER-negative subgroups of samples. The p-values of the t-test are compared to those obtained from the 

original gene expression data (See Figure 5.3). These two set of p-values are highly correlated (r = 0.77). 

The mRNAs that are differentially expressed in the real data were likely to be found differentially 

expressed in the predicted data as well. 
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Figure 5.3. Comparison of differentially expressed mRNAs identified from the real and predicted 

expression data. Each point represents a mRNA, where the x and y axes show the -log10 transformed p-

values obtained from an unpaired t-test in real and predicted data, respectively, comparing ER-positive 

and ER-negative breast cancer samples. The least-square fitted line is shown in red. 

Genome-wide microarray analysis is often used to prioritize a set of genes for follow-up wet-lab 

experimentation, such as reporter assays to confirm transcription, measurement of protein levels by 

northern blots, or knock-out experiments to evaluate phenotypic outcomes resulting from the absence of a 

gene. As such, it is important that our predictions preserve the ranking of the differentially expressed 

genes. Figure 5.4 shows the overlap between the top-k most differentially expressed gene sets obtained 

from the real and predicted data. The figure also shows the amount of overlap for gene sets obtained with 

the commonly used p-value thresholds of 0.01 and 0.05. At different top-k or p-value cut-offs, about half 

of the genes from the predicted gene set are in common with the result from real gene set. 
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Considering the noisy nature of gene expression data and the biological complexity of the rules governing 

translation of mRNAs to different protein isoforms, differential expression detected in microarray 

experiments is not conclusive for similar expression of the encoded proteins or for regulation of a 

particular phenotype the genes are involved in. Gene set enrichment is commonly utilized to find 

biological functions affected by the concerted changes in a set of genes. 

Based on the prediction of mRNA expression, we propose a strategy for functional annotation in miRNA 

studies, as illustrated in Figure 5.1. For a miRNA study, the functional annotations of miRNAs of interest 

can be obtained by enrichment analysis with a set of their target mRNAs. Traditionally, the set of 

miRNAs of interest are selected according to their differential expression patterns and their targets are 

selected from sequence-based target prediction algorithms or from experimentally validated targets. All 

targets of differentially expressed miRNAs are then (falsely) assumed to also be differentially regulated, 

even though these target genes are also targeted by other non-differentially expressed miRNAs. This is an 

unrealistic assumption that results in thousands of genes, limiting the statistical power of the enrichment 

analysis. This is demonstrated in Figure 5.4, where we compare the accuracy of the genes assumed to be 

differentially regulated from negative correlation and TargetScan predictions (17% and 22%, 

respectively) with those obtained from our method (63% and 67% for the same number of genes). 

Compared to context-agnostic target-prediction methods, we more effectively utilize the cellular context 

available from the state of all miRNAs in determining whether a gene is differentially expressed. 
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Figure 5.4. Amount of overlap between the lists of differentially expressed genes in real and predicted 

data. Percentage overlap between the most differentially expressed gene sets obtained from real and 

predicted data is shown. Each bar shows gene sets obtained with either a top-k or p-value criteria. After 

false discovery rate (FDR) correction, there were 1923 and 3942 mRNAs with p-value < 0.01 and 0.05, 

respectively. 
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Figure 5.5. Functional enrichment from different methods. Percent overlap of functional annotations 

obtained from different methods with those obtained from real data are shown. At each p-value modified 

Fisher Exact P-Value from DAVID, the same number of top-k annotations from each method are 

compared. 

In order to compare the functional annotations obtained from different methods, we used the DAVID web 

service to perform gene set enrichment [213]. The annotation obtained from real expression data was used 

as the ground truth. To generate differentially expressed gene lists, cut-off p-value 0.01 was used for t-test 

with real and predicted expression. For TargetScan and negative correlation methods, the gene lists were 

formed by combining all of the targets of differentially expressed miRNAs (p<0.01). Overlap of the 

functional annotation terms obtained from different methods with those generated from the real data is 

shown in Figure 5.5. Top-3 functional categories enriched from the real data were: Phosphoprotein, 

Alternative Splicing, and Splice Variant. SMLR was able to generate the same three terms in its top-3, 

whereas TargetScan and negative correlation only ranked only one of them in their top-3 lists.  For the 
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top-10 functional annotations obtained from each method, 70% were in common between results from 

real data and SMLR prediction, sharing similar rankings in statistical significance; while 40% and 10% 

were in common for negative correlation and TargetScan methods. These results support the claim that 

gene expression values predicted from miRNAs alone can capture the affected biological processes and 

that the functional annotations from estimated mRNA values are more accurate than those from collection 

of predicted targets. 

5.3.2. Cross-dataset prediction 

The results in the previous section were obtained by leave-one-out cross-validation within a single 

experimental study, where each miRNA to mRNA mapping in a test sample was done using a model 

trained on the rest of the samples. In this section, we evaluate the cross-database performance of SMLR 

by applying the model trained from one study to another dataset from an independent experimental study. 

Specifically, we train a model on GSE22220 dataset of human primary breast cancer samples from Oslo 

region [91] and test its prediction performance on GSE19536 dataset from early breast cancer patients in 

Oxford [90]. Since miRNA-mRNA interactions are highly tissue-specific and development-specific, we 

focus on datasets from the same cancer type here. Although both datasets were from breast cancer 

samples, they used different microarray platforms for mRNA and miRNA profiling (See Table 5-1). 
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Figure 5.6. Hierarchical clustering of true (left) and cross-database predicted (right) mRNA expression. 

Top: SMLR is trained with GSE22220 dataset and tested on GSE19536 (RMSE=1.02). Bottom: SMLR is 

trained with GSE19536 dataset and tested on GSE22220 (RMSE=1.26). Top 1000 most differentially 

expressed mRNAs with respect to ER-status are shown. Hierarchical clustering is only done on the real 

data (left); and the same row-column ordering is used to display the predicted data (right). 

In order to perform a cross-database application of the model, we first find the mRNAs and miRNAs that 

are in common between the two studies. Since the studies use different microarray platforms with 

different probe IDs, we convert the mRNA probe IDs to their GeneBank accession numbers and the 

miRNA probe IDs to their miRBase IDs. This results in 14873 mRNAs and 232 miRNAs that are in 

common between the two studies. 

The comparison of the heat maps generated from real and predicted data illustrates that SMLR is able to 

predict the overall expression profiles that reflect the ER status of the samples (See Figure 5.6, top row). 

We observe the same behavior when the training and test datasets were switched (Figure 5.6, bottom 

row). Taking the differentially expressed mRNAs from the predicted GSE22220 data (p-value<0.01) and 

performing gene set enrichment, again finds functional annotations that are in better agreement with those 

obtained from the real data, when compared to the agreement of the annotations resulting from the 

TargetScan or negative correlation methods (Figure 5.7). 
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Figure 5.7. Comparison of functional enrichment in GSE19536 dataset. SMLR is trained using 

GSE22220 dataset and differentially expressed genes from the predicted GSE19536 data are used for 

gene set enrichment. Negative correlation and TargetScan methods use all the predicted targets of 

differentially expressed miRNAs in GSE19536. 

5.3.3. miRNA-mRNA target prediction 

Although our main focus in this study is quantitative prediction of mRNA expression levels, some of the 

underlying predictors discovered by SMLR model may be from direct miRNA-mRNA target interactions. 

Specifically, some of the coefficients     in equation (5.1) (which make up the matrix   equation (5.2)) 

may represent direct miRNA-mRNA targeting interactions. We assess the extent in which SMLR can 

discover such targeting interactions by comparing these interactions with known miRNA targets in 

miRTarBase and predicted targets in TargetScan. 
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The SMLR model was trained on both GSE22220 and GSE19536 datasets combined and the miRNA-

mRNA pairs in the model with negative coefficients, representing a potential targeting effect, were 

collected. Here, we consider only the 248 miRNAs for which there was at least one such targeting 

interaction. There were on the average 8 experimentally validated targets for each of these miRNAs, 

listed in miRTarBase. TargetScan had an average of 341 predicted targets per miRNA. Considering 

miRTarBase as the ground truth, the accuracy of miRNA-mRNA target pairs predicted by SMLR was 

0.10% (41 correct out of 40,633 predictions), whereas TargetScan had an accuracy of 1.12% (944 out of 

84,489 predictions) and the negative correlation method had an accuracy of 0.05% (222 out of 428,048 

predictions). 

Although SMLR had a lower accuracy than TargetScan, we must note that the coverage of miRTarBase is 

currently very limited. Consequently, these accuracy measures are sensitive to availability of further 

experimentally validated target data. Furthermore, whereas SMLR finds interactions specific to the 

datasets it is trained with, namely the breast cancer samples, miRTarBase dataset and TargetScan 

predictions do not provide any context-specific information for their target interactions. Regardless of 

these drawbacks in the analysis, combining the predictions from SMLR and TargetScan, by intersecting 

their miRNA-mRNA target pair lists, achieves an accuracy of 2.17% (23 correct out of 1,060 common 

predictions), which is better than application of either method alone. 

5.4. Discussion 

In this study, we took a radically different approach to miRNA-mRNA interactions and used a multiple 

linear regression model to directly estimate the mRNA expression levels from miRNA data. Whereas 

traditional methods try to determine targets of individual miRNAs and rely on these target lists for 

downstream functional analysis, we estimate mRNA levels from the cellular context captured by the 

collection of miRNAs. The benefits and opportunities provided by our approach are tremendous. For 

instance, our approach makes it possible to computationally predict mRNA levels for media, such as 
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serum, where miRNAs are relatively stable and easy to extract and measure with current experimental 

techniques but mRNAs are less stable and more challenging to measure. 

Traditionally, after identifying differentially regulated miRNAs, researchers would sift through hundreds 

or thousands of targets of these miRNAs and subjectively pick several targets of interest for further 

experimental validation, e.g., to test for binding of miRNA to mRNA or for differential regulation of the 

mRNA. Not only are these target lists non-specific to the tissue type, developmental stage, or 

environmental factors involved in an experimental study; they also ignore the fact that these genes are 

targeted by multiple miRNAs, some of which may not be differentially regulated or may be regulated in 

different directions. In our approach on the other hand, we build a model in a cell-type specific manner, 

connecting multiple miRNAs to each mRNA. We believe that a prioritization of the target genes based on 

estimated expression levels will result in a higher positive rate in validation experiments. 

Our choice of the SMLR model for prediction of mRNA expression levels was based on its simplicity and 

interpretability. We believe that the linearity assumption used in SMLR provides an appropriate trade-off 

between the power and generality of the model and the number of parameters that can be correctly 

estimated from the currently available datasets. Furthermore, the interactions obtained from linear models 

were previously found to be better than those generated from Bayesian models and Neural Networks 

[210]. 

In this study, we mainly focused on breast cancer datasets and demonstrated that a model trained in one 

experimental platform can be successfully applied to miRNA data from an independent laboratory using 

different experimental platforms. Although it is possible to apply a model trained on one tissue type to 

miRNA data from another tissue type; the predicted gene expression values would not be as accurate as 

restricted the predictions to the same tissue and comparable experimental conditions. For example, 

applying the model trained on the breast cancer dataset GSE22220 to predict gene expression values from 

miRNA data in a prostate cancer study GSE20161 resulted in a mean squared error of 1.35, about 33% 
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higher than the error when it was applied to another breast cancer dataset GSE19536. In our future work, 

we will build a repository of models for different tissue types and experimental conditions of interest. The 

limiting factor for building such a repository will be the availability of high quality paired miRNA and 

mRNA data collected from the same samples. 

Although our main focus was not identification of the direct miRNA-mRNA targeting interactions, we 

show that the interactions with negative coefficients in our model can be indicative of direct regulation. 

Note that the targets from our model were generated only from the two breast cancer studies. We expect 

that a large scale modeling from all publicly available paired miRNA-mRNA datasets will provide target 

predictions that are in better agreement with experimentally validated targets. Motivated by the 

observation that targeting interactions obtained from two breast cancer datasets can improve the accuracy 

of TargetScan predictions, we expect that our approach will provide a means of improving sequence-

based target predictions in a context-specific manner. 
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Chapter 6. Summary 

In our study, a stepwise multiple linear regression (SMLR) model is proposed to learn the gene-gene 

regulation and miRNA-mRNA interactions. With this model, we used time-series data for reconstruction 

of gene regulatory network (GRN) and paired miRNA-mRNA expression data for inference of miRNA-

mRNA interactions.  

SMLR model is suitable for prediction of gene expression. After learning from time-series data, the 

model is capable of predicting future gene expression and even simulating the whole time series. For 

miRNA-mRNA study, the expression profiles of mRNA can be predicted from miRNA expression using 

the learnt SMLR model.  

With the predicted expression profile, one can perform further analysis that relies on expression while the 

real expression is not available. In this study, we performed the miRNA functional annotation by using 

the predicted mRNA expression.  

Compared to other multiple linear models, SMLR is computationally cost-effective for solving the 

underdetermined system and its forward selection procedure is naturally suitable for sparse network such 

as GRN.  

For future work, reliability of gene expression prediction via SMLR model should be further tested and 

improved by analysis of more expression profiles, especially from next generation sequencing. With the 

accumulation of expression profiles in cancer studies, specific SMLR model may be learnt for different 

tissue type and cancer type. 
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