
Session Armor:

Protection Against Session Hijacking using Per-Request Authentication

A_esis

Submitted to the Faculty

of

Drexel University

by

Andrew J. Sauber

in partial fulûllment of the

requirements for the degree

of

Master of Science in Computer Engineering

September 2017

© Copyright 2017
Andrew J. Sauber. All Rights Reserved.

ii

Dedications

_is work is dedicated to

Amy
Michael
Andrew
James
Sijia
Daniel
Kyla

iii

Acknowledgements

_is work would not be possible without the support, insight, and
patience of my advisor, Dr. Harish Sethu. I’m repeatedly inspired by his
depth of knowledge and the work that he does for his students and for
the world.

I would like to also thank Dr. Baris Taskin, Dr. Mark Hempstead,
and all of my educators throughout the years.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

Abstract . x

1. Introduction . 1

1.1 Overview . 2

1.2 Cookie-backed Sessions . 4

1.3 Motivation –_e Session Hijacking Attack 5

1.3.1 Session Sidejacking . 6

1.3.2 Cross-site scripting (XSS) . 7

1.3.3 Session Fixation . 8

1.3.4 Physical Access . 8

1.3.5 Cross-Site Request Forgery (CSRF) 9

1.4 _e Session Extension Attack . 10

1.5 Rogue Browser Extensions . 11

2. Observing Session Hijacking of Existing Web Applications 13

2.1 SessionJack . 13

2.1.1 Analysis of Bearer Token Vulnerabilities 14

2.1.2 Analysis of Bearer Token Lifetime . 20

2.2 JackHammer . 21

3. Existing Session Hijacking Mitigation Techniques 26

3.1 Standards for Session Token Protection . 26

3.1.1 HTTPOnly . 26

3.1.2 Secure . 26

3.1.3 Expiration Time . 27

v

3.1.4 HSTS . 27

3.1.5 HTTP Digest Authentication . 28

3.2 Proposed Methods for Session Protection . 30

3.2.1 Secure Cookie Protocol . 30

3.2.2 SessionLock . 31

3.2.3 Web Key . 32

3.2.4 HTTPI . 33

3.2.5 One Time Cookies . 34

3.2.6 SecSess . 36

3.3 SessionArmor Compared to Existing Methods 38

4. _e Session Armor Protocol . 40

4.1 Goals of the Protocol . 40

4.2 Features and Mitigation Techniques . 41

4.2.1 Fully Speciûed and Conûgurable HMAC 41

4.2.2 Secure Storage of HMAC key . 42

4.2.3 Careful Choice of Cryptographic Primitives 42

4.2.4 Time-based Replay Prevention . 43

4.2.5 Nonce-based Replay Prevention . 44

5. Formal Speciûcation of the Session Armor Protocol 45

5.1 Syntax of Parameter Speciûcations . 45

5.2 Formatting Conventions for HTTP Headers 46

5.3 Setup Phase . 47

5.3.1 Client Setup Phase . 47

5.3.2 Server Setup Phase . 49

5.4 Session Phase . 60

5.4.1 Client Session Phase . 60

vi

5.4.2 Server Session Phase . 63

5.5 Session Invalidation Phase . 69

5.6 On the Use of HMAC-SHA3 . 71

6. Formal Veriûcation of the Session Armor Protocol 72

6.1 Proof of Secrecy Using ProVerif . 75

6.2 Proof of Authentication Using ProVerif . 75

7. Reference Implementation of Session Armor . 78

7.1 Server Implementation as a Django Middleware 78

7.1.1 Exceptions . 79

7.2 Client Implementation as Google Chrome Extension 82

7.3 Performance Evaluation . 83

8. Conclusions . 93

Appendix A. Session Armor . 97

A.1 Server Reference Implementation, Django Middleware Source Code 97

A.2 Client Reference Implementation, Chrome Extension Source Code 115

Appendix B. SessionJack Data . 125

Appendix C. Formal Veriûcation . 128

C.1 Proverif Model . 128

C.2 Proverif Veriûcation Output . 131

Bibliography . 135

vii

List of Tables

2.1 Domain Susceptibility to Session Hijacking 15

2.2 Mitigation of Session Sidejacking by Alexa Rank 15

2.3 Mitigation of Cross-Site Scripting by Alexa Rank 18

5.1 Hashing Algorithm choices in Client Support Bitmask 48

7.1 Session Creation Time Performance (ms) . 85

7.2 HTTP Server – Application Request Performance (ms) 87

7.3 SessionArmor Server – Application Request Performance (ms) 87

7.4 SessionArmor Client – Application Request Performance (ms) 87

B.1 Domain Susceptibility to Session Hijacking 125

viii

List of Figures

1.1 Bearer Tokens in the form of HTTP Cookies. _e current practice for
authentication of web requests . 5

1.2 Warning dialog for installing a browser extension with unlimited cookie
permissions . 12

1.3 Warning dialog for visiting a domain with an expired TLS certiûcate 12

2.1 Number of sites that are vulnerable to a SessionHijacking attack via Cross-
Site Scripting, Sidejacking, and Bearer Token Extraction 14

2.2 Alexa rank for websites which mitigate Session Sidejacking and those that
don’t . 16

2.3 Alexa rank for websites which mitigate Cross-Site Scripting and those that
don’t . 17

2.4 Token lifetimes vs site popularity for each type of hijacking protection . . . 21

2.5 Chrome (le�) with logged-in session. Firefox (right), with no logged-in
session . 23

2.6 _e JackHammer user interface, a test for Cross-Site Scripting vulnerabil-
ities has been initiated . 24

2.7 _e JackHammer test yields a positive result, Firefox now has a logged-in
session using an exûltrated token . 25

3.1 Username and password dialog box for HTTP Digest Authentication . . . 29

5.1 Client ready header in un-encoded and base64 notation 49

5.2 Proxies may modify or append to the headers of a client request 56

5.3 Server header for the establishment of a new session in un-encoded and
base64 notation . 57

5.4 Example HMAC input and output, with key and output encoded in hex-
adecimal notation. SHA-512 is in use . 62

5.5 Client header for one request in un-encoded and base64 notation 64

5.6 HMAC of last-request-time enables a stateless inactivity timeout 66

5.7 All possible cases of evaluating a request nonce for replay prevention pur-
poses . 68

ix

5.8 Invalidation header ûrst showing parameters and then HMAC result. . . . 69

5.9 Example run of the SessionArmor protocol 70

7.1 To-Do application using SessionArmor live on the Internet 84

7.2 Session creation times for SessionArmor server 85

7.3 Session creation times for SessionArmor client 85

7.4 Session creation times for HTTP-server . 86

7.5 Application performance for HTTP Server 88

7.6 Application performance for SessionArmor server, full protocol 88

7.7 Application performance for SessionArmor server, no NBRP 89

7.8 Application performance for SessionArmor server, no Header Auth. 89

7.9 Application performance for SessionArmor server, no TBRP 90

7.10 Application performance for SessionArmor client, full protocol 90

7.11 Application performance for SessionArmor client, no NBRP 91

7.12 Application performance for SessionArmor client, no Header Auth. 91

7.13 Application performance for SessionArmor client, no TBRP 92

x

Abstract

Session Armor:
Protection Against Session Hijacking using Per-Request Authentication

Andrew J. Sauber
Dr. Harish Sethu

Modern life increasingly relies upon web applications to provide critical services and

infrastructure. Activities of banking, shopping, socializing, entertainment, and evenmed-

ical record keeping are nowprimarily conducted using the Internet as amediumandHTTP

as a protocol. A critical requirement of these tools is the mechanism by which they au-

thenticate users and prevent transaction replay. Despite more than 20 years of widespread

deployment, the de-facto technique for accomplishing these goals is the use of a static ses-

sion bearer token to authenticate all requests for the lifetime of a user session. In addition,

the use of any method to prevent request replay is not in common practice. _is the-

sis presents Session Armor, a protocol which builds upon existing techniques to provide

cryptographically-strong per-request authentication with both time-based and optional ab-

solute replay prevention. Session Armor is designed to perform well and to be easily de-

ployed by web application developers. It acts as a layer on top of existing session tokens,

so as not to require modiûcation of application logic. In addition to Session Armor, two

additional tools are presented, JackHammer, a cross-browser extension that allows devel-

opers to quickly discover session hijacking vulnerabilities in their web applications, and

SessionJack, a tool for analyzing the security properties of session tokens found on the web.

A formal speciûcation of the Session Armor protocol is provided. An implementation of

the protocol is included as a PythonDjangomiddleware and a Chrome browser extension.

Performance data is provided with a comparison to previousmethods. A formal validation

of secrecy and correspondence properties is presented in the Dolev-Yao model.

1

1. Introduction

Fundamental activities in society are now inextricably linked to the world wide web.

In fact, for many people they are synonymous with its use: shopping, banking, catching up

with friends and family, dating, grocery shopping, and evenmedical service now o�en be-

gin online. However, HTTP, conceived as a networked document retrieval system, was not

designed to be used in some of these sensitive contexts. _e protocol developed at CERN

for simplifying dissemination of scientiûc data is now used as the means for interacting

with applications responsible for authenticating and authorizing these critical activities.

In the original HTTP standard as implemented, there was no explicit capability or expec-

tation for arbitrary data to be sent to the server by the user. [8] In fact, HTTP requests are

deûned as idempotent in this historic speciûcation.

One feature that applications using HTTP wish to provide is the notion of a user ses-

sion, whereby a user ûrst provides some credentials as a means of authentication (usually a

username and password), and is subsequently authorized to access and/ormodify the state

of the application for some period of time (the session length), or until the user logs oò, to

explicitly terminate the session. Unfortunately, there are a number of means by which an

attacker can take control of user sessions, even when current state-of-the-art practices of

session protection are in-use.

_is thesis presents Session Armor, a protocol used to prevent session hijacking of

web applications. It provides a mechanism for per-request authentication of a protocol-

required set of data, in addition to application-speciûc data. Most importantly, it also pro-

vides for robust replay prevention using both a time-based and nonce-based method. _e

nonce-based method provides absolute replay prevention. Built into Session Armor is the

enforcement of a session expiry deadline and inactivity-based expiry, to prevent a session

2

extension attack. A block cipher on the server-side and HMAC on both ends are used as

cryptographic primitives to achieve these goals.

1.1 Overview

In chapter 1, we present the current state-of-the-art inHTTP sessionprotection, Cookie-

backed sessions and the related concept of bearer tokens. A description of techniques for

Session Hijacking, malicious control of user sessions, are also presented. _ese techniques

include Session Sidejacking, Cross-Site Scripting, Session Fixation, physical access, Cross-

Site Request Forgery, and Rouge Browser Extensions. _e Session Extension attack is also

presented a means for a malicious party to increase the likelihood of a bearer token being

obtained.

In chapter 2, two tools are presented that were built to observe Session Hijacking in the

wild, SessionJack, and JackHammer. _e ûrst can be used to analyze browser-extracted

cookie data for known vulnerabilities, and record session lifetimes. _e second uses a web-

socket server and two browser extensions to shuøe speciûed sets of unprotected cookie

data between two web browsers. _is tool can be used to instantly test for session token

extraction vulnerabilities of live web applications. Over 100 sites were tested, with a wide

range of popularity according to web rankings. It was found that over 31% le� themselves

open toCross-Site Scripting, over 56% to Session Sidejacking, and 100% to bearer token ex-

traction. _e vulnerable sites included major ûnancial institutions, e-commerce websites,

business services, and social media web applications. For both vulnerability and session

lifetime, there was no correlation with website popularity, indicating widespread under-

utilization of the existing protections.

In chapter 3, we present existing techniques for mitigating the risk of Session Hijack-

ing. First, ûve techniques which have been standardized in speciûcations ratiûed by the

3

IETF are presented. Next, six proposed HTTP authentication protocols which have ap-

peared throughout the literature are presented. A number of weaknesses in these protocols

are discussed, including vulnerability to Cross-Site Scripting (because of use of the use of

the URL location to store secrets), weakened implementation due to incomplete speciûca-

tion of HMAC input data, the use of block cipher modes with known attack vectors, and

undeployability due to the use of replay prevention techniques that rely on out-of-band

parameters.

In chapter 4, an overview of the SessionArmor protocol is presented including the goals

which motivate its design. _ese include goals of security, performance, deployability, and

ease-of-use. _e features and techniques which SessionArmor uses to distinguish itself

from prior methods are also presented in this chapter. _ese are: fully speciûed conûg-

urable input data to the HMAC, secure storage of the the HMAC key, careful choice of

cryptographic primitives, time-based replay prevention, and absolute replay prevention.

In chapter 5, a formal speciûcation of the SessionArmor protocol is presented. An exact

and detailed description of all data transferred between the client and server in each phase

of the protocol is given. A syntax is used which clearly speciûes required data, optional

data, lists of data, and functional operations of the protocol. Examples of each message

type are given in both encoded and unencoded form, and timeline diagrams are used to

clarify the operation of the protocol over the course of a user session.

In chapter 6, we describe a formal veriûcation of the protocol that was performed using

a proof assistant called ProVerif. _is allowed for the description of SessionArmor in an

algebraic model of computation known as process calculus. By compiling the concurrent

processes of the protocol into Boolean expressions, ProVerif was able to use established

satisûability techniques to make claims about the security properties of the protocol. Two

properties were considered, the secrecy of the HMAC key in the presence of an adver-

sary, and one-to-one correspondence of client requests and server responses, the second

4

of which is equivalent to strong authentication. Both of these properties were proven by

the ProVerif model.

In chapter 7, a reference implementation of SessionArmor is presented, with docu-

mented source code. _e server implementation is a web application middleware, imple-

menting the entire SessionArmor speciûcationwith additional developer-oriented features

such as descriptive exceptions for all error conditions, full conûguration options, and iso-

lated debug logging. _e client implementation is a Google Chrome extension with zero-

conûguration needed from the user. Both implementations were performance-tested for

application requests and session creation time, and both performed well within the spec-

iûed goals. With analysis of the histograms presented in this chapter it can be seen that

most of client and server processing time for session creation happens in less than 370µs

and most of client and server processing time for application requests happens in less than

1.7ms. Finally, in chapter 8 we include some concluding remarks.

1.2 Cookie-backed Sessions

As a stateless protocol, HTTP treats each request and response as an independent trans-

action. _us, there is a fundamental challenge in associating some speciûc client, and some

permissions, with each request and response. One solution to stateless request authenti-

cation is for the client to include some data with each request that the server may be able

to use to identify and associate that request with an active application session. _e most

common method of implementing this technique is to use a bearer token embedded in an

HTTP Cookie, which is sent with each request. _is is depicted in ûg. 1.1.

Bearer tokens have been given that name because they “bear the burden” of authenti-

cating all requests for the entire duration of the session. Critical security issues associated

with this practice are the vulnerabilities that facilitate session hijacking; the ability for an

5

Figure 1.1: Bearer Tokens in the form of HTTP Cookies. _e current practice for authen-
tication of web requests

attacker to perform unlimited actions and/or repeated actions on a user’s behalf if they can

obtain this token.

1.3 Motivation –_e Session Hijacking Attack

Session hijacking is a widespread vulnerability that fundamentally undermines the se-

curity of web applications. We will show that this is the case in section section 2.1 using

measurements from SessionJack. With a variety of attack vectors, it allows a malicious

party to gain control of an authenticated session, make requests on behalf of the authen-

ticated party, and perform privileged actions, o�en without limitation in both scope and

6

time. _e authenticated session may be that of an individual user, or an automated con-

nection used for industrial, government, or other purposes.

_is token is almost always stored as anHTTPCookie, and the data it contains is called

the Session ID. _is token is pre-authenticated by user credentials and is used by the ap-

plication to authenticate all requests until it expires. _e period of time between token

creation and expiration is the “session”. _e weakness of this approach is that this token

is static for the lifetime of the session, which is o�en days or even months, and that it is

used to authenticate all requests regardless of the resource requested by the client. Session

hijacking is performed by exûltrating a bearer token from the victim’s browser, user agent,

or communication medium with the web application. If exposed by one of the following

vulnerabilities, it is always in a form that will be accepted as the session identiûer by the

server.

_e following exûltration vectors are common:

1.3.1 Session Sidejacking

_e attacker uses packet sniõng, oøine traõc decryption, or obtains requests logs

(such as those stored behind an HTTPS gateway) in order to acquire a victim’s authenti-

cated Session token. As long as the bearer token is valid, the attacker can use it to make

unlimited privileged requests. With man-in-the-middle (MITM) capabilities, the attacker

can use the bearer token to modify requests in real-time and make unrestricted additional

requests. Techniques for obtaining MITM include: local packet sniõng via open Wi-Fi,

decrypted Wi-Fi, ARP poisoning of switched networks, and source routing at the WAN

level. Oøine traõc decryption is even possible on the latestWPA2-securedWiFi networks

if the attacker observers derivation of a Group Temporal Key (GTK), and has knowledge

of the Pre-Shared Key (PSK). [41] [31]

One mitigation for Session Sidejacking is to use HTTPS (TLS) for every client request.

7

If used for all resources during a session, the secure tunnel of TLS cannot be breached

even when packet-sniõng or oøine link-layer traõc decryption is used, and thus a session

token cannot be recovered by an attacker. However, it is interesting to note that Sidejacking

is not always prevented by the use of TLS. If the session cookie does not have the secure

�ag set, all that is needed is for the attacker to coerce a victim to visit any page under their

control, for example, the landing page for a cafe WiFi access point, or the contents of an

HTML email. It is trivial, e.g. for an attacker to coerce sensitive cookies to be sent over the

network by causing the user to request an for the target domain using the

insecure scheme for an HTTP connection. _is will cause the victim’s browser to make

an insecure request destined for the target domain, including the desired session cookie: a

protocol-level downgrade attack. _e recently introduced HTTP Strict Transport Security

(HSTS) standard [26], is a mitigation to this attack. However, it is not widely deployed, as

we will show using the results from Session Jack.

1.3.2 Cross-site scripting (XSS)

If an attacker can execute JavaScript code in the context of the target web application,

and the HTTPOnly �ag has not been set on the Session Cookie, then the Session ID can

be stolen easily by making an cross-domain request containing the (programmatically ac-

cessible) Session ID to a server under the attacker’s control. Cross-Site Scripting (XSS)

vulnerabilities of this type are quite common [46], and are o�en introduced when user-

generated content is not properly escaped as text. For example, an improperly sanitized

comment on a blog post might contain JavaScript, executed unwittingly by any user who

views the comment.

If the malicious payload size is not large enough to allow for an XMLHttpRequest or

fetch request, an image node can be added to theDOM,with asrc attribute cra�ed to the

contain the Session ID, inciting the browser to make a GET request with this target payload

8

to the attacker’s domain. Most browsers will aggressively prefetch even those image nodes

which will not be visible to the user. Conveniently, the response from the attacker’s server

need not be valid image data as the request alone satisûes the desired outcome of divulging

the session token. Also, image requests are not subject to the same origin policy, which

makes then even easier to implement than the traditional asynchronous request, which

requires the attacker to conûgure a CORS policy for their domain.

1.3.3 Session Fixation

With Session Fixation the attacker chooses a Session ID for the victim, which the victim

subsequently authenticates while under attacker control.

_e Session ID can be set, for example, using a modiûed HTTP response from the

server if a MITM is in eòect, or in an email message containing a Session ID in the URL.

_e latter requires that the web application implements a (hopefully legacy) mode of op-

eration in which the Session ID can be initialized with a GET parameter. _e former can

be achieved with a Set-Cookie header or with injection of the lesser used <META http-

equiv> tag, which allows for arbitrary headers to be set. _e META tag allows for the

attack to be performed even by a proxy that can only modify the HTTP document body.

[30] Session ûxation can be universally prevented by issuing a new Session token on the

server-side each time there is a new authentication event on the part of the client, for ex-

ample, the time at which a username and password is provided.

1.3.4 Physical Access

If the attacker has physical access to a machine, it is trivial to obtain session credentials

from ûles stored by the victim’s user agent. Once an attacker has obtained the bearer token,

he or she can perform unlimited actions on behalf of the user for the duration of session,

which can o�en be extended by the attacker indeûnitely.

9

1.3.5 Cross-Site Request Forgery (CSRF)

Although not a direct SessionHijacking vulnerability, Cross-Site Request Forgerymust

be mentioned here, as it is one of the more severe web vulnerabilities that allow actions

to be taken on a user’s behalf. For the most part, unwanted cross-domain requests are

prevented by the browser’s Same Origin Policy (SOP). _is is the policy that prevents one

website frommaking a JavaScript-based request for data that resides on a diòerent domain.

However, there is a case where the SOP does not aid in protecting from unwanted external

requests: GET requests that mutate state on the server-side. A sign of poor understanding

of HTTP, having such GET endpoints opens an application to denial-of-service and allows

actions to be performed on behalf of users without their knowledge.

In the ideal attack scenario for CSRF, there is a GET endpoint served by the target ap-

plication that performs some desirable action, e.g. creating a ûnancial transaction (which

should be done with a POST). _e attacker places a reference to this URI in a <script>,

 or <link> tag on a page that they control. _ey then coerce the victim to visit

the page (or perhaps view their payload on an advertisement on a popular website). Upon

attempting to load the specially cra�ed resource URI, the victim’s browser will make the

sensitive request to the target domain, andmake a request to perform the privileged action,

including the victim’s session token. _is means CSRF is an invisible attack for the victim

that can be performed oò-domain and leverage an active session.

_ere are two primarymitigations for CSRF. One is to not mutate any state behind GET

endpoints, keeping those endpoints read-only and cacheable. However, it should be noted

that HTTP POST endpoints that expect multipart/form-data can receive cross-site

requests from a hidden form placed on a malicious domain and submitted via JavaScript.

_erefore, the only true mitigation is to place a pseudorandom value on each page of the

origin domain that must be included with any subsequent HTTP request. _is is called an

10

anti-CSRF token.

1.4 _e Session Extension Attack

In the abstract, the purpose of issuing an expiry time for an authenticated session is to

enforce a known maximum elapsed time between acquisitions of credentials from a user.

_is is a contract that the user should expect from a secure web application; if the user

provides their secrets to begin a session, the session should only be valid for a speciûc

amount of time deûned by the moment at which those secrets were divulged. _erefore,

it would be counterproductive to upholding this contract if any user request was able to

extend the length of a session without requiring re-authentication. However, in some web

application frameworks, the session expiry time is extended every time that session data is

modiûed. [20]

An attacker could take advantage of this vulnerability by periodically sending requests

to the server known tomodify session data in some innocuous way, for example toggling a

�ag used to show or hide help information on the page. In this way the attacker could keep

a stolen session “alive” for much longer than the intended expiry time, even indeûnitely.

For those frameworks which are vulnerable, this nulliûes any potential beneût of regular

session tokens having a speciûed expiry time. Of course, a pre-requisite for this exploit is

the acquisition of an active session token, which Session Armor prevents entirely.

In some cases, the expiration time of a session cannot be veriûed by the server, so any

mitigation would seem fruitless. An example is a session ID implemented with a regular

cookie that does not embed a cryptographically signed session expiration time.

In all cases, it is important to protect against session extension, because it limits the

duration that the client’s user agent will keep the bearer token in memory or on disk, mak-

ing it available to an attacker. Most importantly, it limits the time period for which a given

11

bearer token is valid. Prevention of this exploit is fairly simple, the expiration time of a

session token must never be modiûed without re-authentication from the user.

1.5 Rogue Browser Extensions

Another method for cookie exûltration is the use of a malicious browser extension.

_ese add-ons, which add functionality to browsers such as screenshot-taking, bookmark-

management, and custom styling, can surprisingly be given permission to access all cook-

ies stored by the browser without limitation.

_e permissive environment available to browser extensions periodically receives crit-

ical attention [25], but little has been done to address the issue. Major browsers require

extensions to request a speciûc permission for unfettered cookie access, and have an auto-

mated approval process that scans extensions for malicious behavior. Despite these eòorts,

the dialog presented to the user indicating the extent of the add-on’s capabilities is much

too tame. Installing one of these add-ons for any length of time gives it permission to send

authenticated bearer tokens for all logged-in web applications to a remote party. Although

browser vendors may claim that they check for this activity, any function which operates

on cookies and is loaded via a third-party script can be modiûed at runtime to exhibit this

behavior. _e loading of third-party code into browser extensions is not only possible but

encouraged by the developer documentation [19]. Compare the warning for this capabil-

ity, 1.2, to the one presented for a potential compromise of an encrypted tunnel to a single

domain, ûg. 1.3.

Not only is the extensionwarning less imposing, but there is alsomuch less user friction

in allowing it. _e TLS warning requires the user to ûrst click “Advanced” and then click a

small grey link if they wish to ignore the vulnerability. Ideally, the browser would present

the extension warning with the same level of severity. _is is a classic trade-oò between

12

Figure 1.2: Warning dialog for installing a browser extension with unlimited cookie per-
missions

Figure 1.3: Warning dialog for visiting a domain with an expired TLS certiûcate

convenience and security. _is research used a browser extension to analyze cookie usage

across the web, and it would not have been possible without this capability.

13

2. Observing Session Hijacking of ExistingWeb Applications

2.1 SessionJack

A tool called sessionjack was written to gather data on cookie protection, and sup-

port the claims of: the widespread use of bearer tokens, common vulnerabilities, and ex-

cessive session lifetimes. _is tool can be used for analysis of Session Hijacking vulnera-

bilities in any web application. SessionJack was used to analyze the authentication mecha-

nism of 108 web applications, spanning a range of popularity from rank 1 to rank 3,489,038

as reported by the traõc analytics company Alexa Internet, Inc. _e following data was

recorded:

• Whether or not the site was vulnerable to Bearer Token Exûltration

• Whether or not the site was vulnerable to Cross-Site Scripting (XSS)

• Whether or not the site was vulnerable to Packet Sniõng (Sidejacking)

• Average of all token lifetimes if vulnerable to both XSS and Sidejacking

• Average of protected token lifetimes if protected from XSS

• Average of protected token lifetimes if protected from Sidejacking

To verify that these websites were indeed vulnerable if SessionJack marked them as

such, a web browser add-on was used to load the vulnerable cookies and observe that the

session was still active. _e most noteworthy ûnding from this data was that all 108 sites

were vulnerable to bearer token extraction. _e meaning of this in practical terms is that

nearly all web applications today, from the highest to lowest proûle, are storing a persistent

token in a cookie or GET parameter, which can be re-used to make authenticated requests

14

Figure 2.1: Number of sites that are vulnerable to a Session Hijacking attack via Cross-Site
Scripting, Sidejacking, and Bearer Token Extraction

of the application. Cookies are protected by the browser via the same-origin policy, which

enforces that script running on one domain cannot read cookies stored for another do-

main. However, there are multiple ways that cookies can be exûltrated silently by a remote

adversary as discussed in the prior section.

In ûg. 2.1 the number of sites potentially vulnerable to XSS, Sidejacking and Bearer

Token Extraction are plotted. _e ratios are 31.48%, 56.48%, and 100% respectively. Table

table 2.1 includes a selection of the vulnerability data. A complete listing can be found in

Appendix B.

2.1.1 Analysis of Bearer Token Vulnerabilities

In ûg. 2.2 the popularity rank is plotted for sites that are vulnerable and sites are not

vulnerable to Session Sidejacking. More popular sites have a lower rank, for example,

google.com has rank #1. A summary is provided in table 2.2. We can say that, on av-

erage, websites that protect against Session Sidejacking are higher-proûle, more popular

15

Table 2.1: Domain Susceptibility to Session Hijacking

Domain Bearer Tokens XSS Packet Sniõng
mail.google.com Vulnerable Protected Protected
amazon.com Vulnerable Vulnerable Vulnerable
instagram.com Vulnerable Vulnerable Protected
alibaba.com Vulnerable Vulnerable Vulnerable
venmo.com Vulnerable Protected Protected
tdbank.com Vulnerable Vulnerable Vulnerable
wordpress.com Vulnerable Vulnerable Protected
paypal.com Vulnerable Protected Protected

Table 2.2: Mitigation of Session Sidejacking by Alexa Rank

Count Mean Alexa Rank Median Alexa Rank
Total 108 63109 4296
Does Mitigate 47 6040 1198
Does Not Mitigate 61 103248 11012

sites. However, the diòerence in the mean between those that are protected and those that

are vulnerable is less than one standard deviation of the distribution of those sites tested.

We can therefore draw the conclusion that a signiûcant number of high-proûle websites

are vulnerable to Session Sidejacking. _ese sites span a variety of industries and classes of

risk for the user. _ey include: (entertainment) twitch.tv, steampowered.com, net�ix.com,

(shopping) alibaba.com, amazon.com, ebay.com, and (ûnance) tdbank.com, chase.com.

_e relationship between popularity rank and vulnerability to Cross-Site Scripting is

plotted in a similar fashion in ûg. 2.3 and summarized in table 2.3. Comparing the tabular

data for both, we can see that a larger proportion of sites use the HTTPOnly �ag than those

that use the Secure �ag. _is makes sense from a project management standpoint. In

the development of most web applications, it is easier to enforce that JavaScript is not used

to access the session token, than it is to deploy always-on HTTPS. In the same manner

as for Session Sidejacking, we can draw two major conclusions: on average, higher pro-

ûle sites protect against Cross-Site Scripting, and yet a signiûcant number of high-proûle

16

Figure 2.2: Alexa rank for websites whichmitigate Session Sidejacking and those that don’t

17

Figure 2.3: Alexa rank for websites whichmitigate Cross-Site Scripting and those that don’t

websites are vulnerable. _ese vulnerable sites span a variety of industries and classes of

risk. _ey include: (business services) ibm.com, oracle.com, myminifactory.com, (enter-

tainment) hitbox.tv, kongregate.com, soundcloud, and (ûnance) tdbank.com.

_e vulnerabilities observed for major American banks and top-100 websites is dis-

heartening, when enabling these slight protections represents little development cost. Some

of the vulnerabilities are particularly noteworthy. Airdroid.com is a service which allows

unrestricted access to an Android phone via a web application. Airdroid has made the

following claim, “Your data security is among the top priorities of AirDroid and industry

standards are strictly implemented.” However, it is vulnerable to both Session Sidejacking

18

Table 2.3: Mitigation of Cross-Site Scripting by Alexa Rank

Count Mean Alexa Rank Median Alexa Rank
Total 108 63109 4296
Does Mitigate 74 24102 3534
Does Not Mitigate 34 148004 5445

and Cross-Site Scripting. Hitbox.tv, a popular streaming video service, persists sessions in

away distinct fromall of the other 107 sites analyzed. It stores the session bearer tokenusing

the localStorageAPI, and restores a session cookie using this information even if cook-

ies are cleared. _is means that even if the session cookie were protected with httpOnly,

any JavaScript, domain-wide, can access the token via the localStorageAPI, which has

no protection from access. _is is an interesting way to “resist” cookie-clearing behavior of

users, but makes the site more vulnerable to attack. Regardless, hitbox.tv does not protect

its session cookies from either of the two attacks under consideration.

_e developer access website of Oculus.com also has an uncommon way of obtain-

ing its bearer token. It uses JSONP to make a cross-domain request to graph.oculus.com

to retrieve an authenticated OAuth2 session token. _is token is protected from both at-

tacks, but it reveals a weakness of OAuth: although the authentication protocol is slightly

more complicated than the usual POST request and Set-Cookie: response, when im-

plemented in a web browser, it results in the same weakness of the traditional scheme: a

static bearer token is persisted with the client for a possibly indeûnite period of time.

One potential argument against enabling Sidejacking protection, is that it also requires

that all requests are transmitted via HTTPS, which can be expensive to deploy. However,

some of the sites which are vulnerable are clearly making an attempt to be “HTTPS only”,

but have not fully protected their users. _ese sites redirect any insecure request to an

HTTPS URL using by using responses HTTP 302, “Found”, or better HTTP 301, “Moved

Permanently”, which instructs the browser to cache the secure origin indeûnitely. _ere

19

is an ever better protection deûned in RFC 6797 [26], “HTTP Strict Transport Security”

(HSTS), which instructs the browser to enforce that all future requests to this domain use

HTTPS.

Sites that implement this redirection technique should be using HSTS, but many are

not. _is results in the exposure of an HTTP downgrade attack. _is is a simple attack

to carry out on an unprotected network, or when DNS poisoning is possible. _e attacker

entices the victim to make a non-HTTPS request to the target domain via any number of

means. Most simply, the attacker can present a link to the domain in an email or other com-

municationmedium. Another options is to replace an image src attribute on an unrelated

domain with an insecure location on the target domain. [44] In this way, the victim will

not recall interacting with the target domain at the time of the attack. In all cases, as soon

as the victim’s browser visits an HTTP location for the domain, their session cookie will

be sent in the clear on the network. Domains that attempt to mitigate but are vulnerable to

this downgrade include: ibm.com, tdbank.com, bitcoin.cz, chase.com, and codechef.com.

Two out of the 108 sites analyzed were using a particularly insecure technique for ses-

sion persistence which was common before cookies were introduced to the web by Mon-

tulli in 1996 [35]. _is being the inclusion of a session token as a GET parameter on every

URL rendered on the page. Doing this has an important security implication. _e path

of a GET request is much more likely to be logged, cached, or stored in other ways than

the body of a POST request. For example, it will be saved in a bookmark, pasted into an

email, logged by a proxy, and appear on a network monitoring tool. _e two websites that

do this are usaco.org and fourmilab.ch. _is is somewhat understandable, as both of these

websites have been online since before 1998.

_ere are also some impressive standouts in terms of Session Hijacking mitigation.

Intuit.com, the tax preparation service, protects against both sidejacking and XSS using

the standard �ags. In addition, it uses a heuristic to determine if the application is being

20

accessed from an unknown device. If it is, a one-time code is emailed to the user before lo-

gin can proceed. _is is close to implementing second factor of authentication, “something

you have”, however it is really an additional “something you know” factor. So, this could be

considered a method for implementing 1.5 factor authentication. Venmo.com, the person-

to-person payments system, mitigates against both common vulnerabilities, and also the

HTTP downgrade attack by using HSTS with an expiry of 1 year, meaning that they do

not expect to serve an insecure HTTP request for a period of one year following any re-

cent request. Intuit one-ups this by using a max-age parameter of 0. _ey expect to never

serve an insecureHTTP request again. _e combination of these techniques is an excellent

example of current best practices.

2.1.2 Analysis of Bearer Token Lifetime

_ere are few parameters of web session security currently under the control of the

application developer, one of them is session lifetime. _is is the duration for which a

generated bearer token is valid. _e longer this period of time, the more opportunity there

is for an attacker to obtain and use the token without the victim’s knowledge. For high

risk applications, such as government, ûnance, or health, a value of 30 minutes would be

reasonable. For low-risk applications, such as entertainment or an enthusiast community,

30 days is the recommended upper limit.

_e plot in ûg. 2.4 compares cookie lifetime in days against the popularity of websites

as measured by their Alexa rank. Points in blue are all cookies from web applications that

are vulnerable to both Sidejacking and XSS. Points in red are the all Secure cookies from

those sites whichmitigate Sidejacking. Points in yellow are all httpOnly cookies for those

sites which mitigate XSS.

_ere are no apparent trends in this data. Even some of the most popular sites have

extremely long-lived tokens, and some of least popular sites have short-lived ones. Only

21

Figure 2.4: Token lifetimes vs site popularity for each type of hijacking protection

a few sites have cookies which are limited to 30 days of validity, and even less limit this to

less than 1 day. _ere is no clustering among cookies that mitigate a certain vulnerability.

_erefore, the primary conclusion that we can draw is that there is no relationship in prac-

tice between the choice of session lifetime and the use of these protections. _is informed

the enforcement of a maximum session lifetime of 30 days for the SessionArmor protocol.

2.2 JackHammer

Another tool was written called JackHammer which demonstrates Session Hijacking

vulnerabilities live, using two web browsers to observe the attack. JackHammer includes

a Google Chrome extension, a Mozilla Firefox extension, and a websocket server written

in Python. Websocket is a JavaScript API that allows on-page web scripts to maintain

persistent connections with a server.

JackHammer operates as follows. When each browser is initialized, its respective ex-

tension connects to the local websocket server if it is available. _en, the user visits a

webpage on Chrome for which they would like to simulate a hijacking attack. _ey log in

22

to the application in order to obtain an active session token. _ey can then right click on

the page and choose “JackHammer” to open a new tab with the user interface. A list of peer

Firefox browsers which have connected to the local websocket server is displayed. A but-

ton can be clicked which clears all cookies for the selected domain in the Firefox browser.

At this point the user should observe that they are logged in to the application on Chrome

but not on Firefox, this can be seen in ûg. 2.5. _e Chrome browser is on the le�, which

simulates the victim. _e Firefox browser is on right, which simulates the attacker. _e

user can then click one of three buttons to simulate a Session Hijacking attack.

• Bearer Tokens tests if the site’s session is vulnerable if all of its cookies can be exûl-

trated

• Cross-Site Scripting tests if the site’s session is vulnerable if its cookies without the

HTTPOnly �ag can be exûltrated

• Packet Sniõng tests if the site’s session is vulnerable if its cookies without the Se-

cure �ag can be exûltrated.

Upon pressing one of these buttons, the websocket server is used to transfer the vul-

nerable cookies from Chrome to Firefox. A Firefox notiûcation appears indicating how

many cookies were transferred. _is can be seen in ûg. 2.6, in which the user has chosen to

test for Cross-Site Scripting vulnerability. _e user can then refresh the page in the Firefox

browser and note if they remain logged in to the application. _is can be seen in ûg. 2.7.

Note that this website is potentially vulnerable to an XSS attack, as personal information

is immediately visible upon refreshing the browser on the right.

23

Fi
gu

re
2.
5:
C
hr

om
e
(le

�)
w
ith

lo
gg
ed

-in
se

ss
io
n.
Fi

re
fo
x
(r
ig
ht

),
w
ith

no
lo
gg
ed

-in
se

ss
io
n

24

Fi
gu

re
2.
6:

_
e
Ja
ck

H
am

m
er

us
er

in
te
rf
ac
e,
a
te
st
fo

rC
ro

ss
-S

ite
Sc

ri
pt

in
g
vu

ln
er
ab

ili
tie

sh
as
be
en

in
iti
at
ed

25

Fi
gu

re
2.
7:

_
e
Ja
ck

H
am

m
er

te
st
yi
el
ds
a
po

sit
iv
e
re

su
lt,
Fi

re
fo
x
no

w
ha

sa
lo
gg
ed

-in
se

ss
io
n

us
in

g
an
ex
ûl

tr
at
ed

to
ke

n

26

3. Existing Session Hijacking Mitigation Techniques

3.1 Standards for Session Token Protection

Session tokens are most commonly cookies, stored in the browser and automatically

included in each request from the client. _e cookie may be set client-side, via JavaScript,

or server-side, via any HTTP response from the web application domain. At the time that

the cookie is set, there are options that can be used to enhance security. Sometimes these

options are misunderstood or ignored by application developers.

3.1.1 HTTPOnly

HTTPOnly is a �ag that can be set when storing a Cookie. _is �ag indicates to the

browser that the Cookie should not be readable by JavaScript, and thusmitigates the eòects

of a Cross-Site Scripting attack. However, there have been browser bugs in the past that

allowed JavaScript to readHTTPOnly cookies. [23] Session IDs are a highly valuable target

for a malicious actor because they allow unlimited forged requests. Clearly, it would be

beneûcial if there were a mechanism for secure storage of session information that was

inaccessible to any client-side scripts, including browser extensions. _e Session Armor

protocol proposes an encrypted storage location in browsers, inaccessible from all types of

client-side scripts, to be used speciûcally for the storage of session secrets.

3.1.2 Secure

Secure is a similar �ag for HTTP cookies. It indicates that a cookie should never

be sent over a non-SSL or non-TLS secured connection. _is does eòectively mitigate

most network-based attack vectors for Session Hijacking. However, if this �ag is set, and

27

HTTPOnly is not, the cookie remains vulnerable to XSS. Also the cookiemay be logged un-

encrypted or exûltrated on either side of the the TLS termination (for example by a reverse

proxy or rouge browser extension). SessionArmor enables authentication for which the

data being transmitted over the network is not a valuable payload by using a mechanism

for absolute replay prevention. _is obviates the need for a secure tunnel in maintaining

the integrity of user authentication.

3.1.3 Expiration Time

When a cookie is set, it is possible to specify an expiration time. If no expiration time

is set, then the cookie is deleted when the user’s browser is closed. If session tokens are

used, it is advisable to set the expiry time to as early as is reasonable given the sensitivity

of the application. However, in practice, web applications o�en set session tokens that last

for months or even years as discussed in section 2.1.2. _is gives an attacker ample time to

exploit a session hijack without being noticed.

3.1.4 HSTS

Of course, integrity, secrecy, and authentication are accomplished by “always-on” TLS.

However, as noted earlier, TLS can be expensive to deploy for multiple subdomains and

when using geographically distributed reverse-proxies. HTTP Strict Transport Security is

a an IETF standards track speciûcation now in use by some websites. It speciûes an HTTP

header that instructs the browser to never request a resource from a particular domain

using an insecure connection. _is a means for Sidejacking vectors of cookie leakage to

“fail closed”, a desirable security property in many situations.

28

3.1.5 HTTP Digest Authentication

Interestingly, HTTP has had since 1997 [24] a speciûcation for request authentication

that does not use cookies at all. It deûnes a session as the period of time during which the

solution to a cryptographic challenge is valid for a given user, and does not store a ses-

sion secret in a JavaScript accessible location. _is is HTTP Digest Authentication, which

operates in the following way.

When a user makes a request for a protected resource, the server responds with sta-

tus code 401, Unauthorized, and also includes a WWW-Authenticate: header ûeld. _is

header ûeld includes data that is used by the browser to instruct users that they must pro-

vide a speciûc set of authentication credentials in order to continue, and also informs the

browser of parameters that the authentication mechanism will use. _ese parameters in-

clude a nonce from the server, an opaque token, and an indication if request body integrity

should be computed for each request.

_e server then only responds with data to subsequent requests if the following con-

ditions are met. _e browser must respond with a “digest”, which is a hash-based mes-

sage authentication code (HMAC). HMAC is mechanism by which an entity can prove

knowledge of a secret without revealing the secret itself. Also, in the process, HMAC

authenticates the origin of some data as being an entity with knowledge of the secret.

_e general construction of an HMAC is a function with two parameters: the key, and the

data to be authenticated.

HMAC(key, data) ∶= H(key⊕ ipad,H(key⊕ opad, data)) (3.1)

WithHMAC,H is any cryptographically-strong hash function, i.e. a lossy compression

function that is collision resistant. _e value of an HMAC result, the “MAC”, is something

which can be recomputed by an entity which challenges the authenticity of the data, and

29

Figure 3.1: Username and password dialog box for HTTP Digest Authentication

must have access to the key. _e ipad and opad are used to prevent length-extension attacks

on the data. [7] Digest authentication actually uses only a single iteration of the hash-

function and so it is potentially susceptible to these attacks.

In the case of Digest Authentication, the key is itself is a hash of the user’s username

and password. _e authenticated data is a nonce from the server, a nonce from the client,

a counter from the client, the requested path, and optionally the requested body data. _e

ûrst two allow the client and server to mutually authenticate, although this is optional. _e

counter allows the server to provide absolute replay prevention, although this is optional.

_ese optional components weaken its security properties. _ere is also no mechanism

for the client to authenticate header data, or enforce that time-based replay prevention be

used by the server.

Despite these shortcomings digest authentication ismuchmore secure than cookies be-

cause each request is authenticated individually. Unfortunately, one of the primary reasons

that it is not used by most web applications is that there is no control over the appearance

of the username and password dialog, which looks like the one seen in ûg. 3.1.

30

3.2 Proposed Methods for Session Protection

3.2.1 Secure Cookie Protocol

In 2005, Liu et al. [32] proposed a cookie protocol with the goals of authentication,

conûdentiality, integrity, and anti-replay. _ey ûrst present a related cookie protocol from

Fu et al. [21] that relied on the following two ûelds to be to be set in a cookie by the server:

• Username ∣ Expiration Time ∣ Data

• HMAC(sk, Username ∣ Expiration Time ∣ Data)

Where sk is a global server secret, and Data is any data that the server wishes to re-

member about the client. _ey note that this protocol has three weaknesses: lack of conû-

dentiality, no resistance to replay, and lack of resistance to volume attacks. An alternative

protocol is then presented that aims to correct these �aws. It has the server set a cookie

with the following two ûelds.

• Username ∣ Expiration Time ∣ E(k, Data)

• HMAC(k, Username ∣ Expiration Time ∣ Data ∣ Session Key)

– Where k = HMAC(sk, Username ∣ Expiration Time)

_e server key, sk, is known only by the server and used for all sessions. _e derived

key, k, can be computed only by the server. _e claim of conûdentiality comes from the

fact that only the server can decrypt “Data”, using a key that is derived per-session. _is

claim appears to be sound, althoughweb applications o�en retrieve session data from some

persistent medium once they can validate an authenticated request, obviating the need for

this token.

31

_e proposed method for anti-replay comes in the form of Session Key, which is pre-

sented as the SSL session key for the connection between the server and client. _e concept

being that even if recorded SSL traõc is cracked via some means, the attacker would not

know the SSL session key. _ere are two �aws with this scheme. First, the SSL session key

in all hardened implementations is not accessible via any application programming inter-

face, and so this HTTP sessionmechanismwould have to be deployed in conjunction with

a modiûed SSL stack. Also, by deûnition, if SSL traõc has been decrypted to the point that

an entire cookie is recovered then the attacker is likely in possession of the session key.

_ey present “volume attacks” in the ûrst protocol as being attacks on the underlying

hash algorithm if the same key is used for all cookies. _is is a legitimate concern and their

solution is reasonable because the derived key includes a time component. SessionArmor

also does not re-use HMAC keys. A major drawback of both of there protocols is the lack

of per-request authentication, they do not authenticate user intent.

3.2.2 SessionLock

In 2008 Aida et al. conceived of SessionLock. [1]_e primary concept is that it revives

the notion of a session key stored within each URI on the client webpage. However, rather

than use GET parameters, which are preceded by a “?” in the path, it uses the fragment

identiûer, which is preceded by a “#”. _e diòerence between a fragment identiûer and a

GET parameter from a security standpoint is that a fragment identiûer never leaves the

browser when requests are made. _us, their protocol is not subject to eavesdropping. _e

session key is transferred to the client via a Secure cookie, at which point the session may

be downgraded to standard HTTP.

Message integrity is provided by anHMACwith each request computedusing a JavaScript

implementation of SHA-1. JavaScript automatically adds event handlers for all link-clicks,

form-submits, and XHR requests, to intercept and add the HMAC. _e session key is

32

“transferred” from page to page by executing a JavaScript function which appends the key

as a fragment to every URI on the page upon page load. Essentially, the fragment identiûer

is used as a “safer” storage location for the HMAC key than a cookie, because it is never

sent over the network.

One nice feature is that a mechanism is provided to restore the session key if a user

clicks a link “too quickly” for it to have been placed in the fragment by JavaScript. _is same

mechanism highlights that SessionLock is clearly vulnerable to an XSS attack. If malicious

JavaScript were to execute in the context of the application, the HMAC secret would be

strewn throughout the page and easily accessible. Interestingly enough, it is highly resistant

to CSRF, because the HMAC key can only be obtained by JavaScript running on the ûrst-

party domain. Session Lock does not specify the exact ûelds which should be included in

the HMAC.

3.2.3 Web Key

In 2008 Close conceived ofWeb-Key [13], which is similar to SessionLock in that it uses

URL fragments sent by the server for authentication, which are assumed to be sent over

TLS. Rather than reject the notion that “fragment-added” URLs might be bookmarked or

inadvertently shared by the user as in [2], Web-Key embraces this, each URL fragment is

unique and represents a diòerent “capability based” permission. For example, a user might

share a URL that gives a friend permanent access to view a ûle but does not allow access to

any other resource. Close rejects the notion of “ambient credentials”, i.e. cookies, and goes

so far as to propose that if Web-Key was in place then the same origin policy would not be

necessary.

Web-Key at ûrst appears to be a solid concept, but there is a strange omission in the

presentation: an explanation of how the user obtains the URI-based credentials in the ûrst

place. Each resource is supposedly protected by a unique URL fragment key. Web-Key

33

presents the scenario inwhich the link for a sensitive resourcemight be indexed by a search

engine, meaning that web-key protected URIs are sent as part of the body of HTTP re-

sponses. If this is the case, then providing access to a single root type resource viaWeb-Key

is equivalent to providing access to all resources reachable from it in the web graph. _e

authors write, “Aweb application using web-keys in eòect generates passwords on behalf of

the user.” _is might seem like a welcome paradigm shi�, but in practice, as soon as a user

mistakenly links to a URI with a sensitive Web-Key, all of that user’s private information

would be available for public access.

3.2.4 HTTPI

HTTPI is a transport protocol proposed by Choi and Gouda in 2011 [12]. Its primary

goal is to provide a middle of the road option between HTTP and HTTPS. _e authors

note that HTTP is inexpensive to use and is easily accommodated by middle boxes on

the internet, such as caching proxies and distributed content delivery networks, whereas

HTTPS is the opposite in both respects. HTTPI promises to create message integrity with

limited cryptographic overhead but does not seek to provide secrecy. _e protocol operates

as follows:

1. _e web client and server negotiate a session key using a “TLS-like” protocol.

2. _e server assigns the web client a Session ID, and allocates resources for the session

3. Each subsequent message contains the session id and an HMAC keyed using the

session key. _is uses SHA-1 for all immutable ûelds in the header, including cookies

4. _e Content-MD5 header from HTTP is required rather than optional. _ey note

that SHA-1 could be used here, but feel that MD5 is suõcient and is already imple-

mented on most middle box so�ware.

34

Interestingly, to avoid the attack that will be demonstrated in section 3.2.6, the entire

certiûcate signing infrastructure of TLS would be necessary for the “TLS-like” protocol to

be secure. _is is an unrealistic burden that is largely ignored in the presentation. _ey

propose that theHMACheader ûelds be treated as end-to-end immutable headers as some

have been speciûed. _is ensures that the server can verify the integrity of each request by

performing a hash using the predetermined session key. Also, because the Content-MD5

header is not a MAC and is separate from the SHA-1, it can be used to cache the same

content for multiple clients, and also avoid caching of duplicate content. Another positive

aspect of HTTPI is its performance, which is within 2% of HTTP.

HTTPI has some weaknesses when it comes to session protection. An attacker can

eavesdrop on the connection and use the plaintext Session ID to replay requests. _ere is

neither time-based nor nonce-based replay prevention. However, an attacker cannot re-

quest additional resources or inject newGETor POSTparameters due to theHMAC._ere

is some protection against XSS because the session key is not accessible via JavaScript.

However, there is no protection against CSRF, because the browserwill perform theHMAC

on the user’s behalf. Another insecure aspect of HTTPI is that it promotes long-lived ses-

sions as a feature, which increases the chance of replay attacks. _ere are known collision

attacks against MD5, so using it for request body integrity is not secure. Most notably, they

demonstrate that a web-cache would need access to a session’s HMAC key in order to val-

idate a request before sending a response. _is undermines their claim of cacheability as a

primary contribution of the protocol.

3.2.5 One Time Cookies

In 2012, Dacosta et al. [14] createdOne TimeCookies, an unencrypted session protocol

with the goal of message integrity and the prevention of replay attacks. A second goal was

limiting the state required by the application, to ease deployment in a highly distributed

35

environment. _e protocol operates as follows.

1. _e user makes a request via TLS to the server including an HTTP header, X-OTC:,

username, and password

2. _e server responds via TLS with a non-cookieHTTP Header that includes in plain-

text a nonce, expiration time for the session, session key, and domain/path for which

the session key is valid. It also includes an opaque value computed via symmetric

encryption for which the key is an XOR of a server-only key and the nonce. _e

values encrypted are the user id, session key, and expiration time for the session.

3. When a usermakes any request, in the clear they include: the nonce, a single-request

expiration time, and an HMAC. _e data authenticated is the url, the single-request

expiration time, and the data of the request, keyed by the session key. _ey also

include the opaque value sent by the server.

4. _e server receives the request, and proceeds to decrypt the opaque via symmetric

encryption using its secret XORed with the nonce. _e server now has access to

the session key, user id, and session expiration time with no database access. _ese

values are used to verify the HMAC. _e request is dropped if the HMAC is invalid

or if its individual expiration time has expired.

_is method, dubbed OTC, has some advantages. It prevents XSS because the session

key is not accessible via JavaScript, rather theHMACwas implemented as a browser exten-

sion. It provides message integrity via the HMAC, and prevents replay via the per-request

expiration time, recommended to be 30 seconds. Perhaps the greatest advantage is that it

requires no database access, even for the user id. _e only attack of those described above

to which it is vulnerable is CSRF, again because the browser performs theHMACon behalf

of any request to a given domain.

36

Some disadvantages of OTC were observed in the reference implementation source

code provided by the author. It did not authenticate HTTP headers, presumably because

some headers are modiûed in-transit by web servers and reverse proxies. It did not au-

thenticate the request body of POST or PUT requests. It also does not oòer absolute replay

prevention.

3.2.6 SecSess

Published in 2015 by De Ryck et al., SecSess [15] is another HMAC-based protocol for

maintaining authenticated user sessions. Its primary contribution is the way in which the

HMAC secret key is determined by the client and server. _eir claim is that by using

the Hughes variant of the Diõe-Hellman key exchange protocol [27], the client is able to

choose the HMAC key in advance of sending the ûrst request, and thus authenticate to the

server their intent to begin a session. Upon receiving the ûrst request, the server allocates

some persistent storage for both a Session ID (with associated state) and an HMAC key,

which it will know eventually. It responds to the ûrst request with its public component

of the DHE, Y . _e client then continues to HMAC subsequent requests and provide its

public component of the DHE, X.

_eir claim is that this prevents the scenario which “allows an eavesdropper to respond

to the ûrst response, injecting his key material into the session”. _ey are referring to the

following scenario with a non-Hughes Diõe-Hellman exchange.

1. A legitimate end-user makes a request to begin a new session with no HMAC

2. _e server, using traditional D–H, sends the parameters:

(a) p, the prime modulus

(b) g, the primitive root modulo p

37

(c) A = gamodp

(d) _e Session ID

3. A attackingman-in-the-middle responds with B = gbmodp, to the server, and stores

the Session ID

4. _e attacker responds to the legitimate end-user with its own choice for the D–H

parameters and Session ID.

5. _e attacker ignores the HMAC of the requests from the client, modiûes the client’s

requests, and signs them using the secret upon which the attacker and server agreed.

By using theHughes variant ofDiõe-Hellman, it would appear that the attacker cannot

interpose with its own secret in this way, because the client chooses the secret in advance.

However, this is not the case. _e attacker can still perform the following sequence of

operations.

1. A legitimate end-user requests to begin a new session with an HMAC, and provides

the D–H parameters p and g

2. _e attacker, with man-in-the-middle capability, thenmakes a similar request to the

legitimate server.

3. _e server responds to the attacker with the public component of its newly and ran-

domly generated Hughes parameters, Y , and a Session ID.

4. _e attacker makes another request to the server with its public component of the

Hughes parameters, X, corresponding to the attacker’s own request in step 2.

5. _e attacker responds to the legitimate user with the server’s response, including the

Session ID, butwith the public component of newly and randomly generatedHughes

parameters, Y .

38

6. _e legitimate user responds to the attacker with its public component, X, and be-

lieves it has shared its secret with the legitimate server.

7. _e attacker now ignores the HMAC of requests from the client, modiûes the client’s

requests, and produces its own HMAC for requests using the obtained Session ID

and the attacker’s chosen secret.

_e reason that this is possible is that neither version ofDiõe-Hellman support authen-

tication. _e “public key” used by the server is randomly generated for each exchange, and

is not signed by some well-known authority. _is was a critical oversight in the develop-

ment of SecSess. _e notion that there is some advantage to being able to send an HMAC

with the ûrst request also holds no weight. _e purpose of the HMAC is to validate that a

request is genuine, and drop any response if it is not. _e fact that the server will respond

to the initial request without being able to validate the HMACmeans that the ûrst HMAC

has no purpose. SecSess goes even further in permitting responses without ûrst validat-

ing the HMAC, “SecSess addresses [droppedmessages] by continuing to send the [client’s]

public component as long as the server has not conûrmed the session establishment.”

An additional disadvantage of SecSess is that it does not specify the input to theHMAC.

It uses this property to demonstrate that it operates in the presence of caching proxies,

claimed to be a beneût. However, if an attacker can replay a request and receive a response

froma cache, then there is no replay preventionmechanismenabled by theHMAC.Despite

this, SecSess has at least one good design property. It explicitly speciûes that session secrets

must be persisted in a secure location, inaccessible from on-page JavaScript.

3.3 SessionArmor Compared to Existing Methods

Like many of the methods just discussed, SessionArmor uses an HMAC to authenti-

cate user requests in the context of an HTTP application. However, the way in which it

39

uses the HMAC diòerentiates it from all previous methods. SessionArmor is completely

speciûed in terms of its HMAC inputs, which gives it ideal request integrity. Robust replay

prevention is implemented using two techniques. Time-based replay prevention is enabled

by including a per-request expiration timestamp in the HMAC. Absolute replay preven-

tion is optionally enabled by including a nonce in the HMAC, which is stored server-side

using a bit-vector compression scheme for minimal deployment overhead.

SessionArmor has conûguration options which allow it to be deployed in the presence

of caching proxies, without any loss of request integrity. Web servers and reverse proxies

have the opportunity to modify some request headers, which makes it impossible to au-

thenticate them as originating from the client. _erefore, SessionArmor has the option to

specify request headers that should be authenticated by the client, and any additional non-

standard headers. For maximum eõciency, this conûguration is transmitted with each

request as a bit vector. By using lightweight conûguration transmitted with each request,

SessionArmor is completely stateless; meaning it can operate behind load balancers and

reverse proxies without any auxiliary database.

SessionArmor does not use cookies or URI fragments to store HMAC keys, instead

choosing a secure location inaccessible from JavaScript, preventing Cross-Site Scripting

vulnerabilities. Unlike all other protocols presented in this section, the use and negotiation

of cryptographic algorithms in SessionArmor is fully speciûed, making it future-proof and

hardened against cryptanalysis. SessionArmor also deûnes a limit on the length of time for

which a session is valid, eliminating the Session Extension attack and reducing the attack

surface in time for Session Hijacking opportunities. _is is further strengthened by spec-

ifying the notion of an inactivity timeout, and implementing it with a stateless technique.

In addition SessionArmor makes preventing Session Fixation a top priority, and will only

begin to secure a session if it can prove that a new session credential has been generated

for a recent authentication event.

40

4. _e Session Armor Protocol

Having discussed existing mitigation techniques for the Session Hijacking attack, we

nowpresent the overall design and features of SessionArmor. Asmotivating design criteria,

seven goals were laid out before beginning formal speciûcation or implementation of the

protocol. _ey included goals of security, performance, and ease of deployment. _ese are

listed in section 4.1.

In the following section are the major features and attack mitigation techniques of the

protocol. _ese are a high-level description of what makes SessionArmor novel and valu-

able in the landscape of HTTP authentication mechanisms. For undesirable features that

are speciûcally avoided one can refer to section 3.3.

4.1 Goals of the Protocol

Session Armor aims to meet the following design criteria:

1. Individual Request Authentication

Aman-in-the-middle cannot tamperwith request data to perform actions on a user’s

behalf.

2. Replay Prevention

An attacker cannot replay requests to perform actions on a user’s behalf.

3. Minimal Overhead

Less than 100ms overhead for session setup and 10ms overhead per request round

trip.

41

4. Easy Deployment

No server-side storage should be required, except for that required by nonce-based

replay prevention, if enabled.

5. No Application Modiûcation

Web application code o�en relies on the existing Session ID as a bearer token for a

variety of purposes. Session Armor leverages this key rather than replaces it, so that

no changes are needed in the application code.

6. TLS Required During Setup Phase Only

Even on an unencrypted channel, request integrity and replay prevention are guar-

anteed once a session has been established.

7. TLS Protected Applications Beneût

Secrecy and whole-payload integrity are not provided, or the protocol would be a

wholesale re-implementation of TLS. Session Armor can, and should, be used in

conjunction with TLS to mitigate Cross-Site Scripting attacks, and exûltration of

session tokens behind the TLS endpoints.

4.2 Features and Mitigation Techniques

4.2.1 Fully Speciûed and Conûgurable HMAC

Session Armor supplants bearer tokens by generating and including a hash-basedmes-

sage authentication code with each client request. With this property alone, an attacker

cannot perform unlimited actions by capturing requests, as the data of each request is au-

thenticated individually by the server. _eHMAC algorithm used for a given client is cho-

sen by the server from a set presented by the client. _is gives the server an opportunity

42

to choose an algorithm that it trusts for security and performance reasons.

In addition to allowing for a choice ofHMACalgorithm, SessionArmor also provides a

robust mechanism for the server to choose portions of the request that will be protected by

the HMAC. _ese inputs are speciûed in their entirety, unlike prior protocols as discussed

in the previous section. _e server can indicate arbitrary header ûelds and non-standard

header ûelds that it would like the client to authenticate. _is conûguration data is trans-

mitted per-client with no server-side state needed in a compact bit-vector format.

4.2.2 Secure Storage of HMAC key

As discussed in chapter 3 some existing proposals to protect against Session Hijacking

remain vulnerable to XSS. _ey store the session secret in the DOM, in Cookies, or in

the document location. Given how o�en XSS vulnerabilities are discovered in even high-

proûle web application, Session Armor takes the stance that the risk of this attack surface

is too high to be allowed. _erefore, HMAC keys must be stored in a location inaccessible

to client-side scripts, including browser extensions. Some browsers do not oòer this type

of protected storage location. _us, a browser standard for secure storage of session data

would be a pre-requisite to a true implementation of SessionArmor as intended. Luckily,

Google Chrome, whichwas used as a platform for the reference implementation, does oòer

isolation of browser extension data.

4.2.3 Careful Choice of Cryptographic Primitives

SessionArmor makes use of two cryptographic primitives which are essential to its op-

eration, a hash function and a block cipher. Any time that these powerful tools are used,

caremust be taken to use them correctly. In the case of HMAC, there is only one way to use

the underlying hash function, and so the strength of the HMAC relies entirely upon the

cryptographic strength of the hash function; its tendency to avoid collisions, and produce

43

apparently random bit �ips for any modiûcation to an input bit. To allow for an upgrade

path to stronger cryptographic hash functions as they are designed, SessionArmor includes

a bit-vector with every message indicating the hash algorithm in use, which is itself pro-

tected by the HMAC.

_e use of a block cipher is somewhat more complex. Block ciphers can operate in

various modes of encryption, which use as input previous output data, counters, and ex-

ternal functions to varying degrees. SessionArmor uses a block cipher only on the server-

side, so the application implementor is in complete control of its operation. _ere are

some modes of operation which have known vulnerabilities, e.g. Electronic Code Book

mode is quite susceptible to frequency analysis, and Cipher Block Chaining mode has a

chosen-ciphertext vulnerability known as the Padding Oracle attack which is described

in section 5.3.2. To prevent this class of attack, SessionArmor speciûes that a strong sym-

metric cipher is used in conjunction with a known-robust Authenticated Encryption with

Associated Data (AEAD) mode of encryption.

4.2.4 Time-based Replay Prevention

Even with request integrity, individual request replay cannot be prevented without ad-

ditional measures in place. Replay can be devastating: the most straightforward example

being a malicious request for a repeated ûnancial transaction. To combat this, Session

Armor uses either time-based or nonce-based replay prevention. With time-based replay

prevention, a timestamp is included in-the-clear and authenticated using the HMAC. _e

server is able to verify that the timestamp has not been tampered with and that some ex-

piration time, e.g. 4 seconds, has not elapsed.

In addition to enforcing individual request expiry. SessionArmor treats session expiry

as a top priority. Sessions cannot last longer than 30 days, and sessions are expired if in-

active for a conûgurable inactivity period. Inactivity timeout leverages the HMAC and is

44

implemented using a stateless technique discussed in section section 5.4.2.

4.2.5 Nonce-based Replay Prevention

If the application developer wishes to conûgure Session Armor with a persistent back-

end, such as a relational database or key-value store, then robust, nonce-based replay pre-

vention can be used. In this scheme, a monotonically increasing counter is included with

each request and authenticated using the HMAC. Session Armor stores a bit-vector in-

dicating nonce values that have already been seen, and denies any repeated requests. A

bit-vector lookback scheme is required because web requests are o�en made concurrently

and arrive at a server out-of-order.

45

5. Formal Speciûcation of the Session Armor Protocol

For any cryptographic protocol to be useful, a formal speciûcation is in order. _is

speciûcation should include an exact and detailed description of all data transferred to

and from any entity in each stage of the protocol, and the purpose of each data ûeld. A

syntax should be employed which allows the speciûcation of required data, optional data,

lists of data, ûeld names, and other operations of the protocol. _e speciûcation should in-

clude example messages for eachmessage type, in an encoded and unencoded form. _ere

should also be a description of the protocol in prose that clariûes any potential confusion

or misunderstanding that may arise during implementation. Diagrams should be used to

introduce concepts that have eòective visual metaphors. _e reader of such a speciûcation

should take care to adhere to the use of the terms, “must”, “should”, and “may”, in addition

to their negations. _is chapter presents such a formal speciûcation for SessionArmor.

5.1 Syntax of Parameter Speciûcations

_is document uses the standard parameter speciûcation format employed by Unix

manual pages.

• Required parameters are enclosed in angle brackets:

<required>

• Optional parameters are enclosed in brackets:

[optional]

• Choices are a comma separated list enclosed in braces:

{choice1, choice2, choice3}

46

• Variable length parameters end with a comma then three dots:

[param1, param2, ...]

Extensions to these conventions are the following:

• A value may be the result of a function invocation, indicated by a name immediately

followed by parameters enclosed in parenthesis:

base64(param1 ∣ param2)

• Concatenation is denoted with the pipe operator. Whitespace surrounding the pipe

operator should not be included in the value:

(part1 ∣ part2)

5.2 Formatting Conventions for HTTP Headers

_e standard for formatting HTTP headers can be found in section 3.2 of RFC 7230.

[18] Standard HTTP headers are o�en formatted as as hyphen-separated title case names,

followed by a colon, followed by a single space character, followed by a bare value. HTTP

headers themselves are separated by the sequencex0Dx0A or \r\n. If a web application de-

veloper wishes to introduce a non-standard header, the convention is to preûx that header

with the sequence “X-”, for example the “X-Forwarded-For:” header, which is used to

indicate the originating IP address when an HTTP request is forwarded through a proxy

or load balancer. Based upon the standard and these conventions, the headers that Session

Armor will use will be preûxed with “X-S-Armor:”.

47

5.3 Setup Phase

5.3.1 Client Setup Phase

Both the web client and web server must run an implementation of the Session Armor

protocol in order for it to function. Ideally, Session Armor is built into web browsers on

the client-side and web servers on the server side. For a client to indicate that it supports

Session Armor, it sends a header with every request to all web servers indicating that it

is ready to begin a Session Armor session. _is header also includes the set of HMAC

algorithms that the client supports. Because this header is sent with every client request, it

must be small in size to present minimal overhead in bandwidth consumption.

_e client provides to the server with the header X-S-Armor: with every request. _e

initial value used by the client is:

X-S-Armor: r:base64(<byte0><byte1> [byte2,...])

_e value of the header, which is used for all phases of the protocol, is always semi-

colon separated key-value pairs. Each pair is of the format <key>:<value> with the :

being surrounded by no whitespace. _is is similar to the format used by the Set-Cookie

header [6]; however, : is used instead of = because the values in this protocol are o�en

base64 encoded, which uses = as a padding character. _e only key in this initial header is

r, which means ‘ready’.

_e value of ‘r’ is a variable-length bitmask. _e ûrst <byte0> is the number of bytes

to follow and <byte1>[byte2,...] are those bytes. _e payload of this header value,

<byte1>[byte2,...], is a bitmask indicating the HMAC algorithms supported by the

client. A given bit in the bitmask with a value of 1 indicates that the client supports one of

the following algorithms. A client must support one or more of these algorithms. _is list

may be expanded over time as part of the protocol standard. Note the absence of SHA-1,

as recent attacks have been developed that undermine its cryptographic strength. [45] For

48

Table 5.1: Hashing Algorithm choices in Client Support Bitmask

bit algorithm
0 SHA-256
1 SHA-384
2 SHA-512
3 RIPEMD-160

an explanation of why HMAC-SHA3 is not currently an option for the HMAC algorithm

see section section 5.6.

Note that this algorithm negotiation is “one-sided”. _at is, the server must support

all of the speciûed algorithms, as there may exist clients which each only support one of

the algorithms. Contrast this with the TLS handshake, in which the server may refuse

service to a client not supporting any of the cipher suites that it does. Future versions

of SessionArmor might support such refusal as attacks are found on these algorithms; but,

there is an evenmore severe issuewithweakened negotiation in general. _is characteristic

can lead to a so-called downgrade attack. _at is, if a man-in-the-middle were able to

control even this one byte of this client ready message that indicates HMAC support, the

MITM could force the use of the weakest option. Such a downgrade attack is what enabled

the POODLE attack on SSL 3.0 to be useful in practice. Browsers choose to diverge from

theTLS speciûcation and retry failedTLS connectionswith SSL 3.0. [36]_e reason thatwe

do not consider this a weakness in SessionArmor is the requirement that the ûrst request-

response pair be conducted over TLS, which thwarts all MITM attacks if used correctly.

Shown in ûg. 5.1 is an example of the client ready header for a client which supports

SHA-256 and SHA-512 only. First, the un-encoded header is shown, with binary notation,

then, the actual encoded header is shown, with base64 notation.

RIPEMD-160 is a 160-bit cryptographic hash function, designed by Hans Dobbertin,

Antoon Bosselaers, and Bart Preneel in 1996 with support from the German Information

Security Agency and the Katholieke Universiteit Leuven. It was intended as a stronger

49

X-S-Armor: r:0b0000000100000101
X-S-Armor: r:AQU=

Figure 5.1: Client ready header in un-encoded and base64 notation

replacement for the popular 128-bit hash functions at the time: MD4,MD5 andRIPEMD. It

has a 160-bit output, similar to SHA-1, although unlike SHA-1, no weaknesses in RIPEMD-

160 have been publicly disclosed. _erefore, RIPEMD is currently considered a strong

alternative to SHA-1 and in some cases SHA-256, when the use of those algorithms is not

desirable.

5.3.2 Server Setup Phase

A server that supports SessionArmormust take no further action in the SessionArmor

protocol until the following conditions have been met. At the time of response:

1. An HTTPS connection is currently established with the client and will be used to

send the current response.

2. _e server has prepared a Set-Cookie: header, containing a Session ID, to send

with the current response.

Condition 1 must be met because the server will send an HMAC key, which must be

kept secret, to the client with this response. It is assumed that if these two conditions

are met, then the client has just authenticated with the server by sending credentials over a

secure tunnel. _erefore, rather than using a cryptographic key exchangemechanism, Ses-

sion Armor takes advantage of the existing secure channel to send the HMAC key. In the

case of a web application framework, which may operate on requests that have TLS termi-

nated upstream by a reverse-proxy or load balancer, the HTTP-X-Forwarded-Proto:,

50

or HTTP-X-Forwarded-Protocol: headers may be used to determine the protocol in-

use. Ensure in this case that the proxy is properly conûgured to overwrite the value of

this header with ‘http’ in the case that a malicious party has sent this header to the server

themselves.

_ese requirements do pose a weakness: the server chooses an HMAC key with no

input from the client. _ismeans that if the secure tunnel has been compromised, then the

Session Armor session has been compromised as well. However, if this is the case, then the

user’s long-term authentication credentials have also been compromised, and protecting

any session that begins with these credentials is no longer possible. _is choice was made

in support of goal 3 and 7: minimal overhead, and supplementing TLS rather than re-

implementing it.

Condition 2must also bemet for the current response. Initially, a cookie-based session

may or may not be active with the sever, i.e. the client may have a session cookie that

the server is using as a key to persist state related to that client’s current activities on the

site; a so-called “anonymous” session. In this case, historically, many web frameworks

would authenticate a user by bringing up a short-lived HTTPS connection, performing

username and password authentication, and continuing to use the existing Session ID. _is

was a logical �aw that enabled a vulnerability called Session Fixation, in which an attacker

obtains a Session ID from the server and uses XSS or network techniques to plant this

Session ID in a target client. _e next time that the client authenticated, the attacker would

have access to an authenticated session token for that user.

_e propermitigation for this attack is to generate a new Session ID on the same request

in which username and password authentication is taking place, transfer existing session

data for the user to the new token, and issue this new “transferred” Session ID to the au-

thenticated user. An initial Session ID "Set-Cookie:" from the server o�en takes place

in the clear, because this tokenwill be sent in the clear in all future requests for the duration

51

of the anonymous session. _erefore, by using the two conditions above, Session Armor

can assume that the user has just authenticated, if and only if the web framework has prop-

erly mitigated against Session Fixation. If it has not, then the SessionArmor protocol will

not continue, and the user will be authenticated via HTTP Cookie with a stale Session ID.

If possible, SessionArmor detects this case and logs an error for the developer indicating

that there is no mitigation for Session Fixation in use.

Protecting the existing Session ID distinguishes Session Armor from other bearer-

token-avoiding techniques for HTTP authentication. _is is because it leverages rather

than replaces the existing authentication mode of web frameworks. SessionArmor can au-

thenticate anonymous session data that has been “upgraded” to authenticated session data,

a common pattern that is not explicitly speciûed by other protocols in this domain.

In general, the name of the Session ID cookie must be accessible to the server-side

Session Armor middleware. Luckily, in many frameworks, e.g. Django, Ruby on Rails,

PHP, and J2EE, the name of this Cookie is a globally accessible and thus does not need to

be conûgured speciûcally for SessionArmor by the developer.

Once the two conditions above are met, then the following actions are performed by

the server to begin a session. _ey should be performed in this order for the sake of per-

formance, i.e. “fail fast”.

1. Server veriûes that the only key-value pair in the X-S-Armor header is r:<value>

2. Server removes the Session ID cookie from the Set-Cookie: header, but leaves

other Cookies intact within the header. _e Session ID is stored in-memory for use

in the next step.

3. Server generates a nonce n that will be used as the initial value for counter-based

replay prevention. Counter-based replay prevention is optional. It is the only feature

52

of Session Armor that requires persistent state for the protocol itself on the server-

side, besides Session data itself. nmust be 32 bits.

4. Server encrypts the Session ID using a secret shared among all servers, k

5. Server chooses a key Kh, that will be sent to the client for HMAC use

6. Server sends an X-S-Armor: header with the protocol initialization data to the

client.

_e protocol initialization data are the following keys and values.

s: AESGCM(Server Secret, IV, Session ID ∣ Kh ∣ Session Expiration Time)

iv: Initialization Vector

tag: AEAD tag

kh: HMAC key for the client to keep secret

h: Chosen HMAC algorithm bitmask <byte0><byte1>[byte2,...]

ah: Bitmask of headers to authenticate <byte0><byte1>[byte2,...]

eahs (optional) : Extra headers to authenticate <string0>,[string1,string2,...]

n (optional): Nonce value for replay prevention

Each of the values are base64 encoded to allow transfer of binary data over HTTP,

which is a plaintext protocol. _e value of s is the “opaque” token containing the sensitive

Session ID which is never known to the client. s is decrypted by the server on subsequent

requests.

_e function E is a keyed symmetric cipher. _is cipher operates entirely server-side,

so it can be chosen by the implementer. _is ciphermust be AES-256 or another of equal or

greater strength. AES-256 is recommended due to the fact that many CPUs feature Intel’s

53

instruction set extension AES-NI, which improves performance for this algorithm.

_e mode of encryption for E must be Galois Counter Mode (GCM) For a detailed

description of why this mode was chosen, see section section 5.3.2. _e inputs for an Au-

thenticated Encryption with Associated Data (AEAD) block cipher mode, such as GCM

are the following, with their names as used in SessionArmor:

k = Server Secret (the key)

iv = Cryptographically random nonce generated for each session

m = Session ID ∣ Kh ∣ Session Expiration Time (the plaintext)

a = h ∣ ah ∣ eah (authenticated data)

_e iv should be 96-bits as recommended by the GCM spec [34]. A long-standing

criticism of GCM is that the authentication mechanism is broken entirely if an attacker

can observe any ciphertext for which the same nonce and IV have been used twice. [28]

_erefore it is critical that the nonce be unique for every SessionArmor session and in-

clude epoch time as a component. _e “authenticated data” for AESGCM are the protocol

parameters, concatenated in their raw binary form, which are available to the server with

each request. _is ensures that an attacker has not tampered with the set of headers that

will be authenticated, or the HMAC bitmask. _is is an anti denial-of-service mechanism

of the protocol, as modifying these parameters would simply cause the server’s HMAC

validation to fail.

_e value of tag is an auxiliary block of data produced by GCM, it authenticates that

the plaintext, m, and authenticated data, a, were encrypted with knowledge of the secret,

k, which prevents a chosen ciphertext attack. It is 128 bits, and must be sent to the client

so that the server can decrypt s on subsequent requests with authentication.

_e key used for E is “Server Secret” a shared secret among all servers, which must

54

be rotated so that it is always less than 30 days old. Transitions are handled by trying the

second-most-recent key if initial decryption fails.

_e value of Kh is the HMAC key to be used by the client. It is chosen in a crypto-

graphically random fashion by the server for each client session.

_e value of ‘Session Expiration Time’ is the ûnal second for which the session is valid

in Unix epoch time. Sessions must not last longer than 30 days.

_e value of h is the HMAC algorithm chosen by the server, it uses the same bit vector

format and length sent by the client, but with only one of the bits set to 1, to indicate the

chosen HMAC algorithm.

_e key ah stands for “Authenticated Headers”. _is is a bit vector using the same

dynamic length format that’s used for the HMAC algorithm selection. A bit being high

in this bit vector indicates that a certain header should be authenticated. _e list of au-

thenticatable headers are part of this standard and can be read in order, with descriptions,

as part of the reference implementation in Appendix Appendix A.1. _e masks are gen-

erated dynamically from this order via bit-shi�ing with the declaration of the variable

AUTH HEADER MASKS seen there. _e ûrst bit of this mask indicates whether or not the

server is choosing to use nonce-based replay prevention, note that this ûeld must be in-

cluded in this bitmask to prevent denial of service: an attacker could attach a nonce to a

request not using nonce-based-replay prevention. If so, there would be no other means to

determine whether or not the nonce should be included in the HMAC computation.

_e key eah stands for “Extra AuthenticatedHeaders”; it is a list of customheaders that

should be authenticated, as required by the web application. For example, the header X-

Content-Type-Options is popular for protecting againstMIME typemodiûcation. [43]

_e strings are the full, hyphenated, names of the headers to be authenticated, delimited

by commas with no surrounding whitespace.

_e ah and eah values can be thought of as the “expectation” feature of Session Armor.

55

_is feature allows the server to indicate which ûelds in the request should be authenti-

cated. Ideally, the entire request, headers and body, would be authenticated by the client.

However, this is not always practical, or possible. For example, in previous session pro-

tection protocols, it was recognized that certain header ûelds were not accessible to client

implementation frameworks such as browser Add-On APIs. _is led to a reduction in in-

tegrity checking. For example, in the reference implementation of OTC [14], the only ûeld

authenticated was the path string. Because SessionArmor authenticates the set of chosen

headers using AEAD encryption, it strengthens the authentication of client requests.

_e primary reason that both standard and non-standard HTTP headers must be con-

ûgurable for an ideal HTTP HMAC are middle-boxes. We wish the client to authenticate

all request data towhich it has access at the time of request. However, some request headers

will be modiûed or appended by proxies and load-balancers, thus rendering them unable

to be authenticated. _ese headers include Accept Encoding:, X-Forwarded-For,

and Via:. [40] Once the headers are altered, we need a mechanism by which we can de-

termine what headers the client was actually able to authenticate at the time of the request.

We therefore assume that the web application is aware of a minimal set of headers that

will not be touched by middle-boxes. A demonstration of this issue can be seen in ûgure

ûg. 5.2.

_e value of n is the nonce for counter-based replay prevention. It is optional and

should be chosen in a cryptographically random fashion by the server. Note that either eah

or n or both can be omitted without aòecting client parsing of this initialization response.

Note that the global protocol options can be changed on the �y for new sessions, be-

cause the protocol is stateless. Sessions established using old settings will continue to

present those options to the server until the session expires. _is implies that if nonce-

based replay prevention is used, and it is subsequently disabled, the nonce-cache must

remain accessible for one period of the maximum session lifetime.

56

Figure 5.2: Proxies may modify or append to the headers of a client request

Shown in ûg. 5.3 is an example of the server header for the establishment of a new

session. First, the un-encoded header is shown with hexadecimal and binary notation as

appropriate, then, the actual encoded header is shown, with base64 notation.

Mode of Encryption for the Block Cipher

_emode of operation for the cipher Emust not be Electronic Code Book, ECBmode,

as was suggested by Session Lock [2]. _e reason for this is the nature of of the data be-

ing encrypted, namely the Session ID concatenated with the HMAC key. Session IDs are

sometimes insecurely chosen by web frameworks to be sequential and monotonically in-

creasing. SessionArmor prevents against this weakness by encrypting the SessionID with

the use of an IV. If such an incrementing Session ID were to exceed the block size of AES,

16 bytes, which is likely, then the ûrst block of every opaque token would be identical for all

clients for a given period (during which the more-signiûcant bits of the Session ID remain

static). ECB would create a situation in which many encrypted blocks are identical, and

reveal to an attacker where entropy lies in the generation of Session IDs.

57

X-S-Armor: s:0x387A9CB5E8D8817B3261EC9CB8185DE9DF0435C859726
9C1D708D4DB07984239AE6C0D922A4E150F230D485948A70C2CED7C05E4B9
62898B33BB8;iv:0x59BFFC5E538F5DDF43107792;tag:0xF0852356E9B2F
6463961639B349824F2;kh:0x66E4DDBF507582A61DFA9A077A3AE9FA;h:0
b0000000100000100;ah:0b00000011000011010111001111101111;eah:X
-Client-App-Version,X-Legacy-App;n:2901798076

X-S-Armor: s:jxu9utnbbD8d34INnPSWnqB6jZCDkluZydlWoe6Ran6hFZS
gvAU0hyzRpLPPdSJtbdpG1Vgg78fM9/Jf;iv:Wb3TrH92Eec5BV6O;tag:q7V
04PfTaDkx+Ro41yhz8Q==;kh:uvSBPp/Zh+E7B4dzp8g4hg==;h:AQQ=;ah:A
w1z7w==;eah:WC1DbGllbnQtQXBwLVZlcnNpb24sWC1MZWdhY3ktQXBw;n:3a
kgLw==

Figure 5.3: Server header for the establishment of a new session in un-encoded and base64
notation

A popular alternative mode of operation is Cipher Block Chaining, CBC mode. _is

mode uses an initialization vector, and results in all identical plaintext blocks being en-

crypted to diòerent ciphertext blocks, as long as a truly random IV is chosen for each use

of the cipher. CBC mode has a number of drawbacks, one of which is performance. Ci-

phertext blocks are fed-back into each use of the block cipher, so encryption cannot be

parallelized.

_e most critical drawback of CBC mode is that it requires the message plaintext to

be padded to the block size. Padding can’t be avoided because the plaintext is used as

direct input to the block cipher. _is padding means that CBC mode is susceptible to

a type of chosen ciphertext attack called a padding oracle attack [39], the most famous

of which is POODLE against SSLv3 [37]. It is carried out by iterating over byte-by-byte

modiûcation of the ciphertext, in reverse, to determine the plaintext. It uses the server as an

“oracle” which signals to the attacker when the padding of the mutated plaintext is correct.

Once the mutated plaintext has correct padding, the original intermediate ciphertext can

be determined by XORing the mutated plaintext with the mutated ciphertext. With the

58

original intermediate ciphertext, the original plaintext can be determined by XORing the

original ciphertext with the original intermediate ciphertext.

_ere are two factors at play which make this possible. One, is that single-byte modi-

ûcations of the ciphertext result in single-byte modiûcations of the plaintext in a speciûc

block. _e second is that the oracle can detect this and may send back diòerent error

messages in each case. _is attack is mitigated by the server sending back a generic error

message, rather than distinct “Error” and “Padding Incorrect” messages. However, the fast

failure of an “incorrect padding” case may still reveal this information, such that a timing

attack is still possible. Another mitigation is the inclusion of a ciphertext MAC, to prevent

any chosen ciphertext attack. However, even the veriûcation of theMAC for the un-padded

ciphertext can reveal the padding via timing analysis, this is the Lucky _irteen attack on

TLS. [3]

_is rules out CBC mode for Session Armor because it is especially susceptible to a

timing-based oracle attack. _e diòerence between a successful decryption and an un-

successful decryption in Session Armor is the diòerence between a valid Session ID that

results in a database or cache query, and an invalid Session ID that results in an unauthen-

ticated HTTP response which can be immediately sent to the client. With a successful but

invalid decryption, which is the “probe” of the padding oracle attack, the timing diòerence

would be ampliûed by this database or cache query, which cannot be made in a constant

time consistent with the HTTP error response.

A mode that is not susceptible to padding oracle attacks and does not suòer from per-

formance drawbacks is counter, CTR, mode. Padding of the input message is not needed

because in CTR mode the only input to the block cipher is a monotonically increasing

counter. _is essentially turns the block cipher into a stream cipher, which is XORed with

the plaintext to produce the ciphertext.

CTRmode performs well, and is secure against diòerential and statistical cryptanalysis

59

as long as a unique counter is chosen for each use. However, CTR mode is still not ideal, as

discussed in [22]. A major drawback is that it does not provide cryptographic integrity, i.e.

veriûcation to the server that the encrypted message was one originally encrypted using

the secret key. _is means that in order to prevent an attacker from performing chosen

ciphertext attacks, CTR mode must be used with a MAC of the ciphertext itself. In Ses-

sion Armor’s case, where the data being encrypted is itself an HMAC key, the overhead of

supplying this “ciphertext MAC” in both directions approaches 50%, so it is not the best

choice.

Modes of encryption that additionally provide integrity veriûcation are called “Authen-

ticated Encryption” modes. Six such modes have been standardized by ISO. For a number

of reasons, one of them reigns supreme in current practice. Galois Counter Mode, GCM is

the standard AE mode in IEEE 802.1AE, next generation Ethernet security, IEEE 802.11ad,

next generationWiFi security, FC-SP, the Fibre Channel Security Protocol, IPSec, SSH, and

TLS 1.2 [42]. GCM performs well, as both encryption and decryption can be performed in

parallel, it does not require padding of the plaintext message, it provides message integrity,

and Intel has dedicated an instruction to one of its most costly operations, PCLMULQDQ,

which has been implemented since 2010 in x86 designs from all major vendors. Also, ac-

cording to the authors of [34], GCM is not patent-encumbered.

In addition to these excellent properties, GCM, allows for the authentication of “ex-

tra” data sent in the clear, which makes it an AEADmode, Authenticated Encryption with

Associated Data. _is is especially useful to Session Armor, because there is parametric

data included with each request from the client that can and should be authenticated by

the server, namely, the HMAC algorithm that has been chosen for the session, h, the au-

thenticated HMAC header ûeld bitmask, ah, and the extra authenticated headers, eah.

Authenticating these values as associated data using the block cipher mode of encryption

is a boon to the integrity of Session Armor against protocol downgrade attacks. _ese

60

would otherwise be protected only by the HMAC computed by the client. Without server-

side integrity, an attacker would be able to forge an HMAC for a downgraded set of header

ûelds if the HMAC key was obtained.

5.4 Session Phase

5.4.1 Client Session Phase

When a client receives the TLS protected X-S-Armor header from the server, it de-

codes and stores the parameters for the session.

When any data is stored by the client for the purposes of a Session Armor session, it

is keyed by the fully qualiûed domain name of the server that sent the response. _us,

unlike cookies, a subdomain may not store a Session Armor token for a parent domain.

_is prevents the “Cookie Stuõng” vulnerability, in which a rouge subdomain overwrites

cookies for a parent domain in a malicious fashion. In doing so this enables a variant of

the Session Fixation attack, and other more benign issues related to cookie overwriting, all

of which are mitigated by Session Armor.

It is recommended that built-in language support is used for storing and decoding bit-

vectors, as many CPU architectures feature an instruction that can be used for quickly

ûnding the most-signiûcant set bit in a word.

_e values of s, IV, and tag are each components of the opaque token containing the

encrypted Session ID. _ey are stored by the client without modiûcation. Kh is also stored

without modiûcation.

_e value of h, the bitmask indicating which HMAC algorithm will be used for the

session, is stored without modiûcation, and may also be stored in another form such as a

string or function reference. _e requirement is that this value can be used by the client

to quickly determine which HMAC algorithm to use for authenticating requests to a given

61

domain.

_e values of ah, and eah are the bitmasks indicating which request ûelds are to be

authenticated, and are stored without modiûcation. _ey may also be stored in an un-

packed fashion. _e strings contained in eah are stored unmodiûed as the unpacked form

of eah. _e requirement here is that the client can quickly determine which ûelds must be

authenticated by the HMAC.

If the ûrst bit of ah is 1 and n c is not present, or if n c is present and the ûrst bit of ah

is 0, then an error is thrown and the session data for this domain is discarded. _is should

be silent to the user, who is prompted by the server to authenticate again upon subsequent

requests. Recall that these setup actions should only be performed on a secure response

with a new Session ID from the server, to prevent denial of service attacks against the client.

If n c is present, then the ûrst bit of ah is checked. If it is 1, indicating that nonce-

based replay preventions is to be used, then n c is stored in a way that allows it to be easily

retrieved and incremented on subsequent requests.

Client authentication of requests

For each request, the client computes the followingHMAC.Example input to theHMAC,

with output, can be seen in ûg. 5.4.

c : HMAC(Kh, [n] | "+" |

t | lt |

ah_val0 | [ah_val1 | ah_val2 ...] |

eah_val0[, eah_val1, eah_val2 ...] |

path |

request body OR "")

_e value of n is the current value of the nonce counter, included if the ûrst bit of ah

for this session is 1.

62

HMAC(0x3283416f2060c83f154ea762b20559ef,2736056|+|15057731
23|1505773123|127.0.0.1|Mozilla/5.0 (Macintosh; Intel Mac
OS X 10 12 5) AppleWebKit/537.36 (KHTML, like Gecko) Chr
ome/52.0.2743.116 Safari/537.36|text/html,application/xhtm
l+xml,application/xml;q=0.9,image/webp,*/*;q=0.8|gzip, def
late, sdch, br|en-US,en;q=0.8|https://127.0.0.1:8000/login
?next=/|/|)

0x1edd6cbd9c2b76b7db7ca2f16d722d079aa3ed5bea46f3de68bef92c
f5e7618ed235e728ffb972d7b0c625f7302778b98e447341a85a2caf65
4ce9918ef09b29

Figure 5.4: ExampleHMAC input and output, with key and output encoded in hexadecimal
notation. SHA-512 is in use

_e “+” between n and the rest of the parameters is the single character ‘+’. It is always

included. _is is used to distinguish the nonce from the request expiration timestamp in

the server-side implementation. _at is, when absolute replay prevention is not being used,

the string being authenticated begins with ‘+’.

_e value of t is the request expiration timestamp in Unix epoch time. It is the ûnal

second for which the request is valid. _e recommended value is 4 minutes a�er the re-

quest time given the expected time-to-live of TCP traõc. _e value of lt is theUnix epoch

timestamp of the time at which the last request was sent. It is used by the server to deter-

mine if the session should be invalidated due to inactivity. It is included in the HMAC so

that a man-in-the-middle cannot invalidate the session by setting lt to a value far in the

past.

_e value of h is the HMAC algorithm bitmask, with the chosen bit set. _e value of

ah val0 ∣ [ah val1 ∣ ah val2 ...] are the values of the headers to be authenticated

in the order of the ah bitmask.

_e value of eah val0[, eah val1, eah val2 ...] are the extra headers to be

authenticated, as comma separated strings, in the order of the strings included in eah.

63

_e value of path is the value of the HTTP path being requested, e.g. / or /user-

s/list?sort=lastname. It is always included. _e value of request body is the full

body of the request. For example, if the request was a POST request and included post data,

this would be the full post data beginning at the ûrst byte a�er the <CR><LF><CR><LF>

sequence following the last HTTP header.

A�er computing the HMAC, n c is incremented by 1. _e client then sends the follow-

ing data to the server in an X-S-Armor header. An example of this header can be seen in

encoded and un-encoded form in ûg. 5.5, with ûelds encoded in hexadecimal and binary

as appropriate.

c: Client HMAC result

t: The time of the request

lt: Last request time

iv: Initialization vector

tag: AEAD tag

h: Chosen HMAC algo bitmask

ah: Authenticated headers bitmask

eah: List of extra headers to authenticate

(optional) [n]: Nonce value for replay prevention

5.4.2 Server Session Phase

When the server receives a client request that includes the c key in the Session Armor

header, the server knows that the request is for an already established session rather than

a new session. At this point, the server must validate the request.

First s is decrypted using the server secret, k, along with the IV and tag provided

in the client header. During GCM mode decryption, the tag is used to authenticate s

automatically. _is provides the server with three things: an HMAC key, a Session ID, and

a Session Expiration Time.

64

X-S-Armor: c:0x1edd6cbd9c2b76b7db7ca2f16d722d079aa3ed5bea46
f3de68bef92cf5e7618ed235e728ffb972d7b0c625f7302778b98e447341
a85a2caf654ce9918ef09b29;t:1505773113;lt:1505773123,iv:0x59B
FFC5E538F5DDF43107792;tag:0xF0852356E9B2F6463961639B349824F2
;kh:0x3283416f2060c83f154ea762b20559ef;h:0b0000000100000100;
ah:0b00000011000011010111001111101111;eah:X-Client-App-Versi
on,X-Legacy-App;n:2736056

X-S-Armor: c:Ht1svZwrdrfbfKLxbXItB5qj7VvqRvPeaL75LPXnYY7SNe
co/7ly17DGJfcwJ3i5jkRzQahaLK9lTOmRjvCbKQ==;t:WcBGOQ==;lt:WcB
GQw==,iv:Wb/8XlOPXd9DEHeS;tag:8IUjVumy9kY5YWObNJgk8g==;kh:Mo
NBbyBgyD8VTqdisgVZ7w==;h:AQQ=;ah:Aw1z7w==;eah:WC1DbGllbnQtQX
BwLVZlcnNpb24sWC1MZWdhY3ktQXBw;n:Kb+4

Figure 5.5: Client header for one request in un-encoded and base64 notation

_e value of t, the Session Expiration Time, is immediately compared against the cur-

rent time to determine if the session has expired. If it has, the request should continue

to be processed by the application with no Session ID attached. _is treats the request as

unauthenticated for the given endpoint. _e response must include the Session Armor

invalidation token as described in section section 5.5.

When performing session invalidation in this way, it may seem necessary to recompute

session expiry (and necessarily recompute the HMAC in order to validate the values of t

and th) as part of a hook at response time in addition to when it was computed at request

time. _is would be the case if requests are not mutable or some other request-speciûc

auxiliary storage mechanism is not available, and a hit to performance would result. How-

ever, a good solution is to mark the request as expired by adding the header X-S-Armor-

Invalidate. _e response hook can check for this header and invalidate the session.

Note well that this X-S-Armor-Invalidate header is meaningless to the client! Sec-

tion section 5.5 describes an HMAC procedure for invalidation of the session that prevents

denial of service.

65

Next, it is important that the server authenticate the remaining header values before

proceeding to use them. By using h, ah, eah, and the request headers and body the server

reconstructs the input to the HMAC. _e server has decrypted Kh, the HMAC key, and

uses the algorithm indicated by h. _e request is only accepted as valid if the client’s value

cmatches exactly the result of the HMAC computation. _is simultaneously validates the

request data, the request’s expiration time, and the value of the nonce counter. If the value

of c does not match, the request is rejected.

Rejecting the request means that the server returns a 403 response or redirects the

request to the login page, whichever behavior the web application would have employed

with an invalid Cookie-based session. _e servermust not invalidate the session. A request

may be rejected for a number of reasons, not all of which require that the server discard the

investment in the setup phase. For example, in especially congested network conditions, a

request might be received more than four minutes a�er it was sent, resulting in an expired

request being received by the server for innocuous reasons.

Once t and lt have known good values, they are used by the server to determine if the

session should be expired due to inactivity. _is is a way to perform an inactivity timeout

with no server-side state, made possible by the fact that the client can authenticate any data

for use by the server, including its last request time. _is feature is depicted in ûg. 5.6

Next, the session expiration time, t, is compared against the current time to determine

if the request has expired. _is is “time-based replay prevention”. If n is present, then

the server performs the following operations for “nonce-based replay prevention”. _is

is absolute replay prevention. First, we describe some prerequisites. _e server uses a

persistent storage medium to retrieve the most recently seen nonce. _is medium should

be keyed by the Session ID and shared by all servers. A good place to store these values

might be a shared cache with a cache timeout conûgurable to inûnity. A bitmask indicating

all recently seen nonces should also be stored per Session ID._ese are nr and nb, the recent

66

Figure 5.6: HMAC of last-request-time enables a stateless inactivity timeout

67

nonce and the nonce bitmask. It is recommended that the bit-length of nb be the word size

of the server’s CPU for optimal performance, and it must be at least 32 bits. _is allows for

up to 32 in-�ight requests from the same session, and 64 or more if a larger bit-vector is

used. _e following procedure is used to determine if a nonce should be accepted. Each of

these cases is illustrated in ûg. 5.7.

1. nr and nb are retrieved from the storage medium.

2. _e client’s nonce is now evaluated, which we now call nc. First, nr −nc is computed.

If it is greater than length(nb) then the nonce is too old. It has “fallen oò the end”

of the bitmask, and the request is immediately rejected.

3. If it is greater than or equal to 0, then the bitmask is checked to determine if the

nonce has been seen before, by shi�ing an LSB to the le� by nr − nc and performing

a bitwise-and. If the target bit is set to 0, then the request proceeds with a response

and that bit is set to 1 in nb. If the bit is set to 1, then the request is rejected as a

repeated request.

4. If it is less than 0, this means that nc is the most recently seen nonce. nr is set to

nc and nb is shi�ed by this oòset so that the ûrst bit would correspond to nr. _e

request proceeds with a response.

_e _e bitmask nb is being used here as a compact storage mechanism the most re-

cently seen nonces. If a request is ever rejected by nonce replay, it is important to delete

the stored values of nr and nb so that they are not incorrectly used to reject requests when

a new session is established.

A valid request means that the server attaches the Session ID in the request’s Cookie:

header, using the Session ID cookie name expected by the web application. _is cookie is

set only on the server backend for the purposes of identifying the client using the existing

68

Figure 5.7: All possible cases of evaluating a request nonce for replay prevention purposes

69

X-S-Armor: i:HMAC(0x3283416f2060c83f154ea762b20559ef, Ses-
sion Expired)

X-S-Armor: i:ZRTDgPPvu/DBtdE/47IA0r4yhJfzix8vsIHXzXcP2896Fq
1KwwbhBHuuQWCqrnLiJ/OezAeGWs+BcJz/B+GKIQ==

Figure 5.8: Invalidation header ûrst showing parameters and then HMAC result.

session management and permissions system. A corresponding Set Cookie: header

must not be sent to the client.

5.5 Session Invalidation Phase

Only the server knows the expiration time of the session. It’s contained in the opaque

token. _is is to prevent the “Session Extension” attack mentioned in section section 1.4.

When a session has expired, the server sends the following X-S-Armor header data to the

client to invalidate the session. It uses the HMAC algorithm chosen for that session. An

example header, ûrst shown with the parameters and then with the resulting HMAC can

be seen in ûgure ûg. 5.8. SHA-512 is in use.

i:base64(HMAC(Kh, "Session Expired"))

When the client receives these values it performs the HMAC using the secret HMAC

key which it has stored for this domain. If it validates, then the client deletes all Session

Armor data that it has stored for this domain. If it has no Kh for this domain, then the

message is ignored. _is “invalidation validation” is to prevent denial of service on the

client by a man-in-the-middle sending this invalidation header ûeld.

With this invalidation phase, all possible message types in SessionArmor have been

presented. A diagram which summarizes the protocol can be seen in ûgure ûg. 5.9.

70

Figure 5.9: Example run of the SessionArmor protocol

71

5.6 On the Use of HMAC-SHA3

_e authors of the SHA-3 algorithm, Keccak, believe that HMAC-SHA3 would not re-

quire the “ipad-and-opad” scheme of the generalized HMAC, because unlike SHA-1 and

SHA-2, Keccak does not have a length-extension weakness. Instead, MAC computation

can be performed by simply prepending the message with a key. [9] NIST has recently

presented a standard for using Keccak in an authentication context, a “KMAC”, [29] which

has not been widely adopted. _e predominant Python implementation of SHA3 warns

against using it for the purposes of constructing an HMAC.

In addition, whenever an HMAC algorithm is widely deployed and in use, test vectors

for the algorithm will be readily available from trusted sources. _ese test vectors are well-

known input and output pairs than can be used to test an implementation of the algorithm.

For example, test vectors for HMAC SHA-256 can be found in RFC 4231 [38]. _ere are no

such widely distributed test vectors for HMAC-SHA3. HMAC-SHA256 is also considered

secure at this time, and there is no pressing need for another cryptographic hash-based

authentication system with similar characteristics.

72

6. Formal Veriûcation of the Session Armor Protocol

Formal veriûcation creates a link from the mathematics that have been developed for

notions of secrecy and authentication— to the daily use of cryptography and cryptographic

protocols. Perhaps the most widely used cryptographic protocol, SSL (now TLS), which

underlies https:// connections has undergone much scrutiny over the years, as �aws

are found and new versions are released. Formal veriûcation of TLS [10] and its under-

lying cryptographic primitives [5] is an area of research that has received much attention

in recent years. Newly developed cryptographic protocols, such as Session Armor, can be

veriûed using formal methods to provide the credential of being provably secure under the

abstractions of a given model.

In the literature, there are two abstract models of cryptography that have been used to

develop proof-checking systems. One, called the computational model treats messages as

bitstrings. _ese messages represent what might be plaintext, ciphertext, or control mes-

sages. In this model, functions are deûned with precise operations on bitstrings that pro-

duce bitstrings as output. One notable example of a veriûcation system using the compu-

tation model is the Veriûed So�ware Toolchain [4] which combines a static analyzer for a

subset of the C language called Veriûable C with a veriûed C compiler from INRIA called

CompCert. _is was the toolchain used to create a veriûed implementation of SHA-256 in

[5].

_e alternative basis for cryptographic veriûcation is known as the symbolic model,

which has a more abstract perspective on functions and data. Cryptographic functions

are modeled as perfect black-boxes, and messages are terms that exist in an algebra with

these functions, including equations. An adversary can compute only with these primi-

tives. _is model was ûrst presented by Dolev and Yao [16], and so is commonly referred

73

to as the Dolev-Yao model. _is model was used by Lowe [33] to present a man-in-the-

middle attack on the Needham and Schroeder public key protocol, 17 years a�er it was

introduced.

ProVerif is a protocol veriûcation system that operates in the Dolev-Yao model, and is

the system that we use to verify Session Armor. It deûnes a functional modeling language

whose equations can be characterized as operating in the applied pi-calculus. _is is an ex-

tension to pi-calculus, or “process” calculus, speciûcally designed formodeling the domain

of cryptographic protocols. Process calculus deûnes a grammar that speciûes notions of

inûnite repetition and simultaneous execution. For example, here is an excerpt from the

proof of Session Armor:

process

new server_secret: key;

new user_id: bitstring;

new password: bitstring;

(!(browser(user_id, password)) | !(webapp(server_secret)))

_e ! speciûes inûnite repetition and the ∣ speciûes simultaneous execution. So, any

properties proven by this veriûcation will be for inûnite simultaneous executions of any

possible user credentials and server secret. _e extended grammar provided by Proverif

include free variables, channels, functions, and events. Both free variables and channels

can be deûned as being public, available to an attacker, or private, unavailable to an at-

tacker. _us, the way we model HTTPS is simply as a private channel, a sequence point in

a process at which messages might be observed. Two examples of functions are symmetric

encryption and HMAC, which are deûned as symbolic equations as follows:

(* Symmetric Encryption *)

fun encrypt(bitstring, key): bitstring.

reduc forall plaintext: bitstring, k: key;

74

decrypt(encrypt(plaintext, k), k) = plaintext.

(* Message Authentication *)

fun hmac(bitstring, key): bitstring.

ProVerif translates processes into algebraic expressions onmessages using queries spec-

iûed by the user. _ese queries are requests by the user to evaluate one of four security

properties. [11]

• Secrecy, expressed as “Reachability”

• Authentication, expressed as “Correspondence”

• Strong Secrecy, expressed as “Observational Equivalence”

_e properties tested for SessionArmor were secrecy of both session secrets and

server secrets and injective correspondence of client requests with server responses.

_ese expressions are translated by ProVerif into Horn-clauses, Boolean expressions of

the form:

p ∧ q ∧⋯ ∧ t → u (6.1)

_ese Boolean expressions, ûrst-order implications, are then checked using satisûabil-

ity techniques. [11]When the number of executions of the protocol is unbounded, as is the

case with ProVerif, the problem lies beyond the computational domain of NP-complete,

and is undecidable, as was shown by [17]. _is means that ProVerif will sometimes termi-

nate with a inconclusive result. As a user of the system, one such situation is when ProVerif

can negate the Horn-clauses, but cannot terminate at the stage in which this negation is

translated back to an actual process for performing the attack (called a “derivation”).

75

Timewas spent with this type of no-derivation output for SessionArmor, with attempts

to model sequential nonces using ProVerif ’s persistence features. Because these results re-

sulted in non-termination of the derivation phase, SessionArmor was eventually modeled

as a single iteration with an arbitrary nonce. Under this model, both secrecy and authen-

tication were veriûed. _e full model and ProVerif output can be found in Appendix C.

6.1 Proof of Secrecy Using ProVerif

Secrecy queries in ProVerif operate on free variables. _e usage pattern is to declare a

private free variable, use the variable in a processmacro, and include a reachability query to

determine if the attacker can observe the private variable in a process replication. Notated,

this looks like the following:

(* Secrecy queries *)

query attacker(server_secret_test).

query attacker(session_secret_test).

...

out(HTTP, encrypt(server_secret_test, server_secret));

out(HTTP, encrypt(session_secret_test, session_secret));

Onemight see that the free variables are not the target data being tested for reachability,

but rather a proxy for testing the reachability of server secret and session secret.

Because the target secrets are declared as newly generated within each replication of the

process, they cannot be declared as free variables. So, we test instead if an attacker could

discover them as keys for encrypting server secret test and session secret test

with an ideal symmetric cipher. Both server secrets and session secrets were found to be

unreachable by an attacker.

76

6.2 Proof of Authentication Using ProVerif

Authentication in ProVerif is tested using so-called correspondence queries. A corre-

spondence query veriûes that a given event, with speciûc associated data is executed only

after another event with the same associated data. _is property represents authentica-

tion if the second event occurs in a simultaneously executing process; in this case repre-

senting a server actor in a client-server relationship. _is stems from the concept of the

event occurring just before some privileged action. _is type of veriûcation ensures that

the action could not take place without ûrst having been authorized by a client holding

secret data. Notated in ProVerif, this looks like the following:

(* Correspondence Query *)

query

inj-event(serverResponse(session_secret, request_time, request_nonce,

request_url, request_data)) ==>

inj-event(clientRequest(session_secret, request_time, request_nonce,

request_url, request_data)).

...

event clientRequest(session_secret, request_time, request_nonce,

request_url, request_data);

out(HTTP, (request_time, request_nonce,

hmac((request_time, request_nonce, request_url, request_data),

session_secret),

session_token, request_url, request_data)).

...

let (server_hmac: bitstring) =

hmac((request_time, request_nonce, request_url,request_data), session_secret) in

if request_hmac = server_hmac then

event serverResponse(session_secret, request_time, request_nonce,

request_url, request_data).

77

_e type of correspondence query used here provides an additional guarantee known as

injective correspondence. _is constructs Horn clauses that resolve to a test of the ûrst event

occurring exactly once before the second event. Meaning that in addition to authentica-

tion, this veriûcation ensures that a man-in-the-middle would not be able to manufacture

an authentication request and subsequently expect the server to authenticate it. _us, this

validates the property of replay prevention.

78

7. Reference Implementation of Session Armor

7.1 Server Implementation as a Django Middleware

SessionArmorwas implemented as amiddleware for theDjangoweb framework. Django

middleware are Python modules that hook into the request and response processing of

HTTP requests in the context of the Django web application. By observing the state of

the X-S-Armor: header, and being able to modify it upon response, SessionArmor was

implemented with all speciûed requirements. _e full source code for this implementation

can be found in Appendix A.1.

In support of goal 4, EasyDeployment, a number of conûguration options are provided

with sane defaults. _ese are:

• _e number of seconds for which a SessionArmor session should be valid, defaults

to 14 days.

• _e amount of time for which a request is valid, defaults to 5 minutes.

• _e amount of time between requests before a session is expired to due inactivity,

defaults to 30 minutes.

• _e set of standard headers to authenticate. _e defaults are headers which are

known to be available to browser add-in mechanisms. _ese are speciûed in text

rather than in bitmask form, and translated on-the-�y to a packed bitmask, only

once upon application startup.

• A �ag to indicate if nonce-based replay prevention should be used

• A list of “extra authenticated headers”, two are provided as examples

79

For additional convenience, the Python loggingmodule is used to set up a logger specif-

ically for Session Armor. When Django is in debugging mode, log messages indicating

any request failure modes are logged with a Session Armor preûx. For example, if a client

HMAC fails to validate, the following log message appears.

[DEBUG] sessionarmor_django.middleware: The client’s HMAC did not validate

Nonce-based replay prevention is implemented using Django’s own caching mecha-

nism. As long as there is a cache deûned in Django’s CACHES setting with the name “ses-

sionarmor”, both the nonce values and nonce storage bitmasks for each client will be per-

sisted automatically. For the purposes of performance testing, this cache was conûgured

to use Redis as a backend, with Redis conûgured to communicate over a Unix socket and

never time-out values in its store.

One feature of the source code which may be useful to an application developer is a

commented description of all standard HTTP headers that can be used as authenticated

headers, in the order that they would appear in the packed bitmask. Lastly, the Python

cryptographymodule was used to implement AES-GCM.

7.1.1 Exceptions

A number of exceptional conditions can take place during execution of the protocol

that can cause the server to recognize that a request is invalid and respond in a certain

manner. _e following is a list of those conditions and how the server should respond.

_ese are handled using custom exception classes in the Djangomiddleware for easy refer-

ence. _e exceptions are allowed to rise to the entrypoint of the middleware to be handled

in a centralized area of the code. Messages are provided with each exception type to indi-

cate the reason for the exception, which are logged to the SessionArmor logger when the

application is at debug level. In all of these cases except for Session Expiration the server

80

responds with 403, Permission Denied, and does not allow the request to be processed as

usual.

Invalid HMAC algo mask

If a ready-state client request contains an HMAC algorithm bitmask that does not have

any bits set that match the set of supported HMAC algorithms, then it would appear that

the client supports SessionArmor, but the protocol cannot proceed.

Invalid selected HMAC algo mask

If a client signed request contains a selected HMAC algorithm bitmask that does not

have a valid bit set for the purpose of selecting a hash module, then the bitmask has been

tampered with or is otherwise invalid for the purposes of authenticating requests with the

server.

HMAC does not validate

If the client’s HMAC does notmatch the server’s HMAC, then it means that the request

has been tampered-with in transit, or was otherwise truncated or modiûed in some way

not intended by the client.

Opaque token failed authenticated encryption

In addition to the per-request HMAC of Session Armor, AEAD mode encryption is

used to authenticate the ciphertext of the opaque token. _e GCM tag is provided to the

server with each request from the client. If the tag does not match the authentication code

produced at the end of decryption, then then the server assumes that some form of chosen

plaintext attack is taking place, and no attempt will be made to validate the authenticity of

the request.

81

Opaque token does not contain the required ûelds

If, a�er decrypting the opaque token using the server secret, the server ûnds that it

does not contain all of the required ûelds for request authentication, then processing of the

request cannot proceed. _ese required ûelds are: Session ID, HMAC Key, and Expiration

Time.

Request expiration

If, a�er validating the authenticity of the request’s HMAC, it is found that the request

is too stale, given the setting for request valid duration (5 minutes by default), then the

requestmust be rejected by the server. _is is themechanism for time-based request replay

prevention.

Nonce invalid

If nonce-based replay prevention is being used, and a client provides a nonce that has

been seen before, then the request is rejected. _e request is also rejected if the nonce is

too stale, given the storage limitation of the nonce cache. _e nonce cache for the Django

middleware implementation uses a bit vector per session of one machine-word size. On

the test machine, this is 64 bits. So, if the client provides a nonce with a value that is more

than 63 values behind the latest value seen, the request is rejected. If the nonce is recent

enough, the bit vector is tested.

Session Expiration

_ere are two conditions for session expiration: absolute expiration and inactivity time-

out. As soon as the server decrypts the opaque token, which is one of the ûrst steps of re-

quest validation, it checks the absolute expiration time for the session hidden within. If the

82

expiration time has passed, validation of the request is immediately aborted. On the other

hand, the inactivity timeout is checked a�er the request HMAC has been validated, this is

because the request time and prior request time are values contained within the HMAC.

_e inactivity duration is computed, and if it exceeds the conûgured threshold, then the

session expired.

In both cases, the request is allowed to proceed as usual, but a Session ID is not in-

jected. _is means that the client will be presented with the response from normal appli-

cation logic (most likely a 200), but as if the request were made anonymously. In some

applications, this may immediately present the login form, which is what the user would

expect.

7.2 Client Implementation as Google Chrome Extension

_e SessionArmor client was implemented as a Google Chrome browser extension.

Extensions are so�ware components that operate around API hooks into the life-cycle of

of browser events, such as theHTTP request-responsemechanism. _e hooks used by Ses-

sionArmor in particular were: onBeforeRequest to store request body data for HMAC

input, onHeadersReceived to watch for opaque tokens that begin a session, and onBe-

foreSendHeaders as the primary code path to gather data about each request, perform

the HMAC, and build the components of the X-S-Armor header.

In order to obtain raw POST data, which is required by the SessionArmor protocol,

Chrome had to be modiûed. By default, the extension API provides request body data

in the form of a hash-table. _is removes the order information needed for the HMAC to

hash the request body exactly as the server will see it. Chrome has the ability to provide the

body as a byte buòer, but only does so if the body cannot be otherwise parsed. A modiûed

Chromium browser was compiled making the byte buòer the default behavior.

83

_e extension is seamless in operation for the user. A�er installation, an icon appears in

the user’s browser window that indicates the current SessionArmor state for the active tab.

If there is an active SessionArmor session, the icon is badgedwith a green circle; otherwise,

it’s badged with a red circle. _at’s it! _ere’s no set-up or user interaction required for a

SessionArmor user. Full source code for the Chrome extension can be found in Appendix

A.2.

7.3 Performance Evaluation

For a complete picture of the reference implementation, both the server and client were

tested for overall performance characteristics. A test application was written, a To-Do List,

using Django as a backend with the SessionArmor middleware installed, and accessed via

Google Chrome with the SessionArmor extension installed. A screenshot of the applica-

tion can be seen in ûgure ûg. 7.1. Two tests were conducted to address each of the targets

of goal number 3, and baseline performance of the entire HTTP processing time on the

server-side was also established.

_e ûrst test was of session setup time. Recall from goal number 3 that the target Ses-

sionArmor overhead for session setup time was set at 100ms. _is fairly lenient goal was

set as such because a credential-providing (log-in) event is rare. Users are accustomed

to this type of request taking longer than other types and perhaps including OAuth-style

redirects. (Note that SessionArmor is compatible with OAuth’s “bearer token”, which acts

as a Session ID)

_e test was carried out by executing an XMLHttpRequest against the login endpoint

of the application in a loop in the console of the web browser. Concurrent requests were

made 32 at a time. _is number was chosen because at around 64 concurrent requests

SessionArmor’s nonce vector was observed to be overloaded; which as discussed in sec-

84

Figure 7.1: To-Do application using SessionArmor live on the Internet

tion 5.4.2 is a tunable parameter, and a trade-oò between performance and storage cost.

On the server side, during this test, performance data was collected by instrumenting

the return paths of process request and process responsewhich are executed dur-

ing session creation, to each log to a ûle their total execution time. _ese times were then

summed to ûnd the server-side execution time. _e same was done on the client-side, but

for session creation this only involved the return path of a single callback function, and

instead of logging, results were appended to a value in localStorage. To evaluate per-

formance of the overall HTTP processing time, the request handler of the WSGI server

itself was instrumented. To eliminate jitter due to network interfaces, this was preferable

to measuring response times at the client. _e results can be found in table 7.1 and seen in

ûg. 7.2 through ûg. 7.4.

A few interesting conclusions can be drawn from this data. First, even the sum of the

slowest client and server processing times, 1.48 ms, is well below the target of 100 ms. On

85

Table 7.1: Session Creation Time Performance (ms)

Context Samples Min Median 99% Max Mean
SessionArmor Server 128 0.223 0.253 0.521 0.710 0.275
SessionArmor Client 128 0.140 0.175 0.585 0.770 0.195
HTTP Server 128 9.121 39.615 70.705 89.462 33.346

Figure 7.2: Session creation times for SessionArmor server

Figure 7.3: Session creation times for SessionArmor client

86

Figure 7.4: Session creation times for HTTP-server

average, the client processing time is 80 µs faster than the server processing time. From

the histograms, we can see that most of the server and client processing happens in less

than 300 µs, while the HTTP processing time is more bi-modal, with a mean of around 33

ms. _is gives us an average overhead of 1.41% for SessionArmor during session creation.

_e next test was that of SessionArmor overhead during application usage. _e server,

client, and HTTP server were instrumented as described earlier to measure their perfor-

mance. _is time, however, the processing time of two callbacks on the client-side, body

storage and header processing, needed to bemeasured and summed in a similar fashion to

the server implementation. _e test was a POST request, inserting a new To-Do list item

with a modest length of 48 characters. _e requests were made using the web browser

console in concurrent batches of 32.

To test the overhead of each security feature of SessionArmor, each was disabled suc-

cessively and the test was re-run. First, nonce-based replay prevention, “NBRP”was turned

oò using the middleware setting. _en, header authentication was turned oò by modify-

ing the server and client code to not include it in the HMAC input. _e same was then

87

Table 7.2: HTTP Server – Application Request Performance (ms)

Test Samples Min Median 99% Max Mean
Full Protocol 1024 5.597 37.04 187.052 316.021 57.908

Table 7.3: SessionArmor Server – Application Request Performance (ms)

Test Samples Min Median 99% Max Mean
Full Protocol 1024 0.605 0.93 2.992 3.97 1.055
No NBRP 1024 0.322 0.528 1.379 2.206 0.552
No Header Auth. 1024 0.253 0.398 1.211 3.153 0.436
No TBRP 1024 0.237 0.370 1.008 1.952 0.393

done for time-based replay prevention, “TBRP”. Each feature was disabled in addition to

all prior disabled features. _e results can be seen in table 7.2 through table 7.4 and ûg. 7.5

through ûg. 7.13.

Some important conclusions can be drawn from this data. First, the full protocol, in

the worst case, adds 7.04 ms overhead, below the target of 10 ms. _is is a sum of the

worst case client processing time and the worst case server processing time. On average,

SessionArmor adds 1.843 ms to each request, an overhead of 3.18%. When nonce-based

replay prevention is disabled, a suggested mode of operation for stateless operation, this

overhead drops to 1.265 ms or 2.18%. _ese tests also allow us to see the average overhead

of each feature: 578 µs for absolute replay prevention, 279 µs for header authentication,

and 155 µs for time-based replay prevention.

Table 7.4: SessionArmor Client – Application Request Performance (ms)

Test Samples Min Median 99% Max Mean
Full Protocol 1024 0.455 0.74 1.832 3.07 0.788
No NBRP 1024 0.400 0.685 1.51 2.205 0.713
No Header Auth. 1024 0.335 0.545 1.334 2.400 0.550
No TBRP 1024 0.260 0.420 0.947 1.300 0.438

88

Figure 7.5: Application performance for HTTP Server

Figure 7.6: Application performance for SessionArmor server, full protocol

89

Figure 7.7: Application performance for SessionArmor server, no NBRP

Figure 7.8: Application performance for SessionArmor server, no Header Auth.

90

Figure 7.9: Application performance for SessionArmor server, no TBRP

Figure 7.10: Application performance for SessionArmor client, full protocol

91

Figure 7.11: Application performance for SessionArmor client, no NBRP

Figure 7.12: Application performance for SessionArmor client, no Header Auth.

92

Figure 7.13: Application performance for SessionArmor client, no TBRP

93

8. Conclusions

_ere is a mounting trend for nearly all so�ware to use the web as a platform. Even

“heavy-li�ing” tasks such as document creation, video editing, and 3D-modeling now ûnd

their home in a web browser. Government functions, such a tax return acceptance and

health care distribution now famously use the web. It would seem paramount that we de-

velop means to protect all users of these systems from leakage of sensitive information.

Unfortunately, the predominant means of authenticating users requests is with bearer to-

kens stored in HTTP Cookies.

_ese tokens can be obtained through a number of means, and then used to perform

unlimited privileged actions on behalf of the user. _is is known as the Session Hijacking

attack. We presented ûve means of performing Session Hijacking: Session Sidejacking,

Cross-Site Scripting, Session Fixation, Rouge Browser Extensions, and physical access. _e

Session Extension attack was also presented a means to increase the likelihood of a bearer

token being obtained by a malicious party.

_ere are two common means to protect session tokens from exûltration, a �ag which

prevents access to the token via JavaScript, and a �agwhich prevents sending the token over

unencrypted HTTP. Any web application which takes security matters seriously should

have these two �ags enabled. To observe the use of these protections in the wild, two tools

were written. One called SessionJack, analyzed extracted cookie data for potential vul-

nerability and also session lifetime. Vulnerable cookies were manually loaded into a web

browser to verify that they enabled session access. _e second tool JackHammer, was cre-

ated for more quickly performing this test by shuøing tokens between two web browsers

using two newly created browser extensions and a websocket server.

Of 108 sites tested, over 30% le� themselves open to Cross-Site Scripting, over 50% to

94

Session Sidejacking, and 100% to Bearer Token Extraction. _e sites vulnerable to XSS

included some very popular websites according to Alexa rankings, including major banks,

business services, and e-commerce websites. _e same trend was seen for Session Side-

jacking. As far as session lifetime, there was no correlation with the protections enabled

or popularity rank, which led to the conclusion that this important parameter does not

receive enough consideration.

Existing standards for session token protection were also presented, these included the

HTTPOnly �ag, the Secure �ag, Expiration Time, HSTS, and HTTP Digest Authentica-

tion, the last of which is surprisingly an HTTP standard HMAC protocol, alternative to

Cookies, which is unfortunately o�en overlooked simply for user-interface reasons. Seven

existing proposals for the protection of web sessions were presented: Fu et al.’s protocol,

Liu et al.’s protocol, SessionLock,Web Key, HTTPI, One Time Cookies, and SecSess. Some

of the concepts in these protocols would not ûnd their way into the new protocol presented

in this work, e.g. using the URI fragment identiûer to “pass along” a sensitive token from

page to page was simply too susceptible to Cross-Site Scripting attacks. Also, some of these

protocols do not include per-request authentication, whichmakes them entirely vulnerable

to request replay. However, a few ideas were borrowed, such as individual request HMAC

and its ability to enable time-based replay prevention.

_e primary contribution of this work is SessionArmor, a new protocol for protecting

user sessions in web applications from being hijacked by malicious parties. SessionArmor

accomplishes this using a per-request HMAC, with a secret key transmitted via TLS during

a setup phase. SessionArmor provides both time-based and nonce-based replay preven-

tion, making absolute replay prevention possible. It authenticates requests individually, so

that no request data can be modiûed by an attacker, even on an unencrypted channel. To

accomplish this goal, it oòers conûguration of standard and non-standard header data to

be authenticated by the server in a stateless manner.

95

SessionArmor has a number of additional practical features that set it apart from pre-

vious work. It allows the the HMAC algorithm to be conûgured at the start of each session,

to future proof the protocol against cryptographic weakness. All conûguration is sent with

each request in the form of a bit vector to save bandwidth. SessionArmor speciûes a max-

imum session lifetime and a means for stateless inactivity timeout, to prevent long-lived

secrets and eliminate the risk of Session Extension. To entirely prevent Session Fixation,

a requirement of the protocol is that new session credentials are created upon secret gen-

eration. To limit the overhead of implementing nonce-based replay prevention, nonce

storage is speciûed as being compressed in a bit-vector, with a shi�ing algorithm used to

validate to uniqueness of a nonce that appears with a new request. SessionArmor has also

been careful to prevent the use of less-modern modes of symmetric encryption, including

ECB, CTR, and CBC. It requires the Authenticated Encryption with AssociatedDatamode

GCM, which allows the origin of the server-originated secret and conûguration data to be

authenticated during decryption.

An implementation of the server was included as a Python Django middleware, and

and implementation of the client was included as a Google Chrome extension, both with

documented source code. Google Chrome had to be modiûed to fully support the proto-

col, in order to process unmodiûed request body data at at request time. Both are complete

implementations of the protocol, including developer-oriented features such as: conûgu-

ration options with sane defaults, logging with preûxing, and self-documenting exception

handling. _e client includes a minimal user interface and zero-conûguration setup.

Both implementations were performance-tested for session creation time and applica-

tion request performance. In both cases, the performance vastly exceeded expectations.

For session creation time, most of the server and client processing happens in less than

300 µs, with an average overhead of 1.41%. For application requests, most of the server

and client processing happens in less than 1 ms, with an average overhead of 3.18%. When

96

nonce-based replay prevention is disabled this overhead drops to 1.265 ms or 2.18%. _e

tests also allowed us to see the average overhead of each feature: 578 µs for absolute replay

prevention, 279 µs for header authentication, and 155 µs for time-based replay prevention.

Session Armor was formally veriûed using the ProVerif protocol veriûcation system.

ProVerif implements the symbolic model of cryptographic veriûcation using the Dolev-

Yao abstractions of a hostile communication environment. Cryptographic primitives such

as HMAC and symmetric encryption were implemented in a functional style. Additional

primitives provided by themodel checker include free and private channels, and the notion

of simultaneous execution and inûnite repetition. Queries for formal notions of secrecy and

injective correspondence were used to prove that SessionArmor is resistant to man-in-the-

middle attacks and request replay.

97

Appendix A. Session Armor

A.1 Server Reference Implementation, Django Middleware Source Code

’’’
Session Armor Protocol, Django Middleware Implementation

Copyright (C) 2015 - 2016 Andrew Sauber

This software is licensed under the AGPLv3 open source license. See
LICENSE.txt. The license can also be found at the following URL, please note
the above copyright notice. https://www.gnu.org/licenses/agpl-3.0.en.html

Example configuration (place in your app’s settings.py}:
S_ARMOR_STRICT = True
14 days
S_ARMOR_SESSION_VALID_SECONDS = 1209600
5 minutes
S_ARMOR_REQUEST_VALID_SECONDS = 300
30 minutes
S_ARMOR_INACTIVITY_TIMEOUT_SECONDS = 1800
S_ARMOR_AUTH_HEADERS = [

’Host’,
’User-Agent’,
’Accept’,
’Accept-Encoding’,
’Accept-Language’,
’Referer’,
’Cookie’,
’Accept-Charset’,
’Range’,
’Date’,
’Authorization’,
’Origin’,
’DNT’,
’X-Csrf-Token’,

]
Must have a persistent Django cache named "sessionarmor" configured for the
nonce-based replay feature to work.
"Persistent" means that the cache is configured as follows:
* TIMEOUT is set to None
* MAX_ENTRIES is set larger than your max active sessions (maybe millions)
* CULL_FREQUENCY is set to float(’inf’) or culling is disabled
* The cache supports no-expiry, by passing None as the timeout

98

S_ARMOR_NONCE_REPLAY_PREVENTION = True
S_ARMOR_EXTRA_AUTHENTICATED_HEADERS = [

’X-Client-App-Version’,
’X-Legacy-App’,

]
’’’

import base64
from cryptography.hazmat.primitives.ciphers.aead import AESGCM
from cryptography.exceptions import InvalidTag
from datetime import datetime, timedelta
import hashlib
import hmac
import json
import logging
import os
import struct
import time

from django.conf import settings
from django.contrib.sessions.exceptions import InvalidSessionKey
from django.core.cache import caches
from django.core.exceptions import PermissionDenied

COUNTER_BITS = 128
RECIEPT_VECTOR_BITS = 64
All 1s followed by one 0
Meaning: The first nonce hasn’t been seen yet, but don’t allow any
lower-numbered invalid nonces.
INITIAL_RECIEPT_VECTOR = ((2 ** RECIEPT_VECTOR_BITS) - 2)
RECIEPT_VECTOR_MASK = (2 ** RECIEPT_VECTOR_BITS) - 1

CLIENT_READY = ’ready’
CLIENT_SIGNED_REQUEST = ’request’

HASH_ALGO_MASKS = (
these hashing algorithms are in order of preference
(1 << 2, hashlib.sha512),
(1 << 1, hashlib.sha384),
(1 << 0, hashlib.sha256),
(1 << 3, lambda: hashlib.new(’ripemd160’)),

)

SECONDS_14_DAYS = 1209600
SECONDS_5_MINUTES = 300
SECONDS_30_MINUTES = 1800

LOGGER = logging.getLogger(__name__)

assert len(settings.SECRET_KEY) >= 32, \

99

"Django settings.SECRET_KEY must be at least {} bytes".format(32)
use the first 256 bits of the Django SECRET_KEY as the AES key
SECRET_KEY = bytes(settings.SECRET_KEY[:32])

DEFAULT_AUTH_HEADERS = [
’Host’,
’User-Agent’,
’Accept’,
’Accept-Encoding’,
’Accept-Language’,
’Referer’,
’Cookie’

]

ALL_AUTH_HEADERS = [
Hostname to which the client is sending the request
’Host’,

String indicating the software and/or hardware platform used to generate
the request
’User-Agent’,

Types of media that the client would accept in a response
’Accept’,

Desired behavior of the connection with the first remote machine
’Connection’,

Character encodings that the client would accept in a response
’Accept-Encoding’,

Human languages that the client would accept in a response
’Accept-Language’,

URI that caused or enabled the client to make the request
’Referer’,

Persistent general-purpose tokens that the client provides to the server
’Cookie’,

Character sets that the client would accept in a response
’Accept-Charset’,

The last modified time known by the client, response requested if
modified
’If-Modified-Since’,

An entity tag. A response is requested if the entity does not match.
’If-None-Match’,

Specifies a portion of the resource being requested

100

’Range’,

Time at which a request was sent that includes body data
’Date’,

Authentication credentials provided by the client for Basic or Digest
HTTP Authentication
’Authorization’,

An indication of how the request should be treated by caching proxies
’Cache-Control’,

A list of origins that caused the request, e.g. used by a client script
that has established allowable cross-origin methods via CORS
’Origin’,

General-purpose header field, most often used with "no-cache" to request
a non-cached version of a resource
’Pragma’,

Boolean indicating that the user wishes not to be tracked by the server
’DNT’,

Nonce sent by the server to be used for Cross Site Request Forgery
protection
’X-Csrf-Token’,

Version of the WebSocket protocol being used
’Sec-WebSocket-Version’,

Used with websocket handshake to indicate what application level
protocols the client wishes to use
’Sec-WebSocket-Protocol’,

Randomly generated nonce used during the Websocket handshake
’Sec-WebSocket-Key’,

A list of registered websocket extended features that the client wishes
to use with a websocket connection
’Sec-WebSocket-Extensions’,

Transfer Encodings that the user agent will accept, e.g. "deflate". Can
also specify that "trailers" should be used for chunked transfers
’TE’,

Mechanism used to make the request, e.g. XMLHttpRequest
’X-Requested-With’,

IP addres or hostname that originated the request (after travelling
through a proxy)
’X-Forwarded-For’,

101

The original protocol used when the request was made, e.g. "https" (after
travelling through a proxy
’X-Forwarded-Proto’,

Used by a proxy server to include information that would otherwise be
lost at lower levels in the protocol stack
’Forwarded’,

The email address of the user making the request, most often used by
robots as contact information for the robot administrator
’From’,

Settings for protocol-upgrade with an HTTP/2 capable host
’HTTP2-Settings’,

Another protocol, to which the agent wishes to switch, e.g. HTTP/2.0
’Upgrade’,

Credentials request by a proxy in the request chain. Consumed by the
first proxy requesting authentication.
’Proxy-Authorization’,

List of conditions for a resource to meet for a response to be requested
’If’,

An entity tag that must match the resource for a response to be requested
’If-Match’,

Combination of If-Match and If-Unmodified-Since for a range request
’If-Range’,

A timestamp. A response is requested if the entity has not been modified
since this time.
’If-Unmodified-Since’,

An integer. Used with TRACE or OPTIONS requests to limit forwarding by
proxies
’Max-Forwards’,

Preferences requested of the server, examples include: asynchronous
response, relative priority, response verbosity
’Prefer’,

A list of proxies through which the request was sent
’Via’,

Protocol stack that that the client would like to tunnel via HTTP
’ALPN’,

Expected response from the server, usually HTTP 100 (Continue). In this

102

case the client wishes to know if a request body is acceptable before
sending it to the server.
’Expect’,

Alternative host that the client selected for a request
’Alt-Used’,

Client indicating whether or not it would like timezones on calendars
’CalDAV-Timezones’,

A boolean, indicates if a client will attend a CalDAV calendar event
’Schedule-Reply’,

A CalDAV opaque token for a calendar schedule. A response is requested
if the resource matches the schedule
’If-Schedule-Tag-Match’,

COPY or MOVE request destination for a WebDAV request
’Destination’,

A URL to a lock. Used with the UNLOCK method to remove the lock.
’Lock-Token’,

Number of seconds for which a WebDAV LOCK should be active
’Timeout’,

A WebDAV URI, indicates the request order of the requested collection.
’Ordering-Type’,

A boolean indicating if a WebDAV resource should be overwritten due to
the request
’Overwrite’,

A string indicating the desired position at which to insert a resource in
a WebDAV request
’Position’,

Tree or graph depth of the resource on which the request should act.
(used by WebDAV)
’Depth’,

Arbitrary text, when present with a POST request, indicates to the server
a desired description for the content to be used in URIs
’SLUG’,

Set of header fields that will be included with the trailer of a
message sent using a chunked transfer encoding
’Trailer’,

The Multipurpose Internet Mail Extensions version used when constructing
the components of the message. Optional.

103

’MIME-Version’
]

Create a dictionary of masks for the headers which can be authenticated.
Shift them by thier (index + 1) to leave room for the nonce-based-replay
prevention indicator.
AUTH_HEADER_MASKS = {name: (1 << (i + 1)) for (i, name)

in enumerate(ALL_AUTH_HEADERS)}

NONCECACHE = caches[’sessionarmor’]

class HmacInvalid(Exception):
def __init__(self, message="The client’s HMAC did not validate"):

super(HmacInvalid, self).__init__()
self.message = message

def __str__(self):
return self.message

class OpaqueInvalid(Exception):
def __init__(self, message=

"The opaque token from the client was not valid"):
super(OpaqueInvalid, self).__init__()
self.message = message

def __str__(self):
return self.message

class RequestExpired(Exception):
def __init__(self, message="The request has expired"):

super(RequestExpired, self).__init__()
self.message = message

def __str__(self):
return self.message

class NonceInvalid(Exception):
def __init__(self, message="The replay-prevention nonce was invalid"):

super(NonceInvalid, self).__init__()
self.message = message

def __str__(self):
return self.message

class SessionExpired(Exception):
def __init__(self, message="The session has expired"):

104

super(SessionExpired, self).__init__()
self.message = message

def __str__(self):
return self.message

def gen_header_mask(auth_headers, absolute_replay_prevention):
mask = 0

for header in auth_headers:
mask |= AUTH_HEADER_MASKS[header]

if absolute_replay_prevention:
mask |= 0x01

return pack_mask(mask)

def parse_header_mask(header_mask):
mask = bytes_to_int(header_mask[1:])
headers = []
bit_n = 0
while mask:

if mask & 0x01:
headers.append(ALL_AUTH_HEADERS[bit_n - 1])

mask >>= 1
bit_n += 1

return headers

def header_to_dict(header, outer_sep=’;’, inner_sep=’:’):
’’’
Takes a header value string of the form:
c:<base64data0>;T_re:<base64data0>;h:<base64data1>;ignored0;
Returns a dictionary:
{

’T_re’: 1367448031,
’h’: <binarydata1>,
’c’: <binarydata0>,

}
’’’
kvs = header.split(outer_sep)
remove empty tokens
kvs = (kv for kv in kvs if kv != ’’)
split key/value tokens
kvs = (kv.split(inner_sep) for kv in kvs)
parse key/value tokens
d = {kv[0]: base64.b64decode(kv[1]) for kv in kvs if len(kv) == 2}
return d

105

def tuples_to_header(tuples, outer_sep=’;’, inner_sep=’:’):
"""
Takes a list of (k, v) string tuples and returns a string
for the Session Armor header value
"""
encoded_tuples = [(tup[0], base64.b64encode(tup[1])) for tup in tuples]
return outer_sep.join([inner_sep.join(tup) for tup in encoded_tuples])

def validate_ready_header(header):
’’’
validate that there is only one header key and it is ’r’
’’’
return len(header) == 1 and header.keys()[0] == ’r’

def validate_signed_request(header):
minimal set of values needed for a signed request
valid = (header.get(’s’)

and header.get(’c’)
and header.get(’t’)
and header.get(’h’)
and header.get(’ah’))

return valid

def get_client_state(header):
’’’
Given a header dictionary, return the name of the client state.
’’’
if validate_ready_header(header):

return CLIENT_READY
if validate_signed_request(header):

return CLIENT_SIGNED_REQUEST

def pack_mask(mask):
’’’
pack an integer as a byte string with this format
bit length of mask cannot exceed 256

<num_bytes> <little-endian bytestring>
byte0 byte1, byte2 ...
’’’
data = int_to_bytes(mask)
data = chr(len(data)) + data
return data

def unpack_mask(data):

106

’’’
unpack a byte string as an integer with this format

<num_bytes> <little-endian bytestring>
byte0 byte1, byte2 ...
’’’
mask = bytes_to_int(data[1:])
return mask

def using_nonce_replay_prevention(data):
mask = bytes_to_int(data[-1])
return mask & 0x01

def int_to_bytes(i):
’’’
convert an integer to a litte-endian byte string
’’’
if i == 0:

return ’\x00’
res = []
while i:

res.append(chr(i & 0xFF))
i >>= 8

res.reverse()
return ’’.join(res)

def bytes_to_int(bstr):
’’’
convert a byte string into an integer
Input: ’\x9e\x2c’
Output: 40492
bin(Output): ’0b1001111000101100’
’’’
vector = 0
for i, _ in enumerate(bstr):

vector += ord(bstr[-(i + 1)]) * (256 ** i)
return vector

def select_hash_module(packed_hash_mask):
’’’
Given a bit vector indicating supported hash algorithms, return a Python
hash module for the strongest digest algorithm
’’’
hash_mask = unpack_mask(packed_hash_mask)
for bitmask in HASH_ALGO_MASKS:

if bitmask[0] & hash_mask:
return bitmask[1]

107

raise HmacInvalid(
’HMAC algorithm bitmask did not match any hash implementations.’)

def select_hash_mask(packed_hash_mask):
’’’
Given a header dictionary, select a hash function supported by the client.

Return a bitmask denoting the selected module.

1. Decode base64 value of ready header
2. Parse into bit vector
3. Select a hash algorithm supported by the client using the bit vector
4. Return the bitmask for the selected hash module
’’’
base64 decode the value of the ready key into a byte string
hash_mask = unpack_mask(packed_hash_mask)
store the bit vector as an integer
for bitmask in HASH_ALGO_MASKS:

if bitmask[0] & hash_mask:
return pack_mask(bitmask[0])

raise HmacInvalid(
’Client ready header bitmask did not match any hash algorithms.’)

def is_modifying_session(response):
"""
Is this response creating a new session?
"""
sessionid = response.cookies.get(settings.SESSION_COOKIE_NAME, None)
sessionid = getattr(sessionid, ’value’, None)
return bool(sessionid is not None)

def extract_session_id(response):
"""
Remove a sessionid from a response and return it as a string
"""
sessionid = response.cookies[settings.SESSION_COOKIE_NAME]
del response.cookies[settings.SESSION_COOKIE_NAME]
return sessionid.value

def get_expiration_second():
"""
Get expiration time for a new Session Armor session as seconds since epoch
"""
session_duration_seconds = get_setting(

’S_ARMOR_SESSION_VALID_SECONDS’, SECONDS_14_DAYS)
return str(int(time.time() + session_duration_seconds))

108

def generate_hmac_key():
"""
Generate a new key for use by the client and server to sign requests
"""
return os.urandom(16)

def encrypt_opaque(sessionid, hmac_key, expiration_time,
hash_mask, auth_headers, extra_auth_headers):

aesgcm = AESGCM(SECRET_KEY)
start the nonce off with the current epoch time
nonce = struct.pack(’>I’, int(time.time()))
add 8 random bytes for a total of 128 bits
nonce += os.urandom(8)

plaintext = ’|’.join((sessionid, hmac_key, expiration_time))
auth_data = ’|’.join((hash_mask, auth_headers, extra_auth_headers))

ciphertext = aesgcm.encrypt(nonce, plaintext, auth_data)
ciphertext, tag = ciphertext[:-16], ciphertext[-16:]
return ciphertext, nonce, tag

def decrypt_opaque(opaque, nonce, tag,
hash_mask, auth_headers, extra_auth_headers):

aesgcm = AESGCM(SECRET_KEY)

auth_data = ’|’.join((hash_mask, auth_headers, extra_auth_headers))

try:
plaintext = aesgcm.decrypt(nonce, opaque + tag, auth_data)

except InvalidTag:
raise OpaqueInvalid(

"Opaque token from the client failed to authenticate")

try:
sessionid, remainder = plaintext.split(’|’, 1)
hmac_key, expiration_time = (remainder[:16], remainder[17:])

except ValueError:
raise OpaqueInvalid(

"Plaintext from opaque token didn’t have required fields")

return sessionid, hmac_key, int(expiration_time)

def begin_session(header, sessionid, packed_header_mask):
’’’
Input: client Session Armor headers when in a valid ready state
Output: server Session Armor headers for a new session
Side Effects: A nonce-based replay vector persisted externally

109

’’’
Create opaque token
Components: Session ID, HMAC Key, Expiration Time
hmac_key = generate_hmac_key()
expiration_time = get_expiration_second()
packed_hash_mask = select_hash_mask(header[’r’])

eah = get_setting(’S_ARMOR_EXTRA_AUTHENTICATED_HEADERS’, [])
if eah:

eah = ’,’.join(eah)

opaque, iv, tag = encrypt_opaque(sessionid, hmac_key, expiration_time,
packed_hash_mask, packed_header_mask, eah)

kvs = [
(’s’, opaque),
(’iv’, iv),
(’tag’, tag),
(’kh’, hmac_key),
(’h’, packed_hash_mask),
(’ah’, packed_header_mask)

]

if eah:
kvs.append((’eah’, eah))

if using_nonce_replay_prevention(packed_header_mask):
n = os.urandom(4)
kvs.append((’n’, n))

return tuples_to_header(kvs)

def get_setting(attribute, default):
"""
Returns the value of a Django setting named by the string, attribute, or
a default value
"""
try:

return settings.__getattr__(attribute)
except AttributeError:

return default

def auth_header_values(request, header_mask, extra_headers):
’’’
Returns array of header values in order based on request bitmask

If headers are not present in the request they are not included in the list
’’’
headers = parse_header_mask(header_mask)

110

headers = headers + extra_headers
values = []
for header in headers:

if header == ’Host’:
values.append(request.get_host())
continue

value = (request.META.get(’HTTP_’ + header.upper().replace(’-’, ’_’),
None))

if value:
values.append(value)

return values

def server_hmac(algo_mask, key, string):
digestmod = select_hash_module(algo_mask)
mac = hmac.new(key, string, digestmod)
return mac.digest()

def validate_nonce(request_nonce, sessionid):
request_nonce = bytes_to_int(request_nonce)
nonce_tup = NONCECACHE.get(sessionid)
if nonce_tup:

latest_nonce, reciept_vector = nonce_tup
else:

latest_nonce, reciept_vector = (request_nonce,
INITIAL_RECIEPT_VECTOR)

delta = latest_nonce - request_nonce

if delta < 0:
This a "future" nonce
latest_nonce = request_nonce
Shift our current vector to the left
reciept_vector <<= -delta
And set that this new nonce has been seen
reciept_vector |= 0x01

elif delta >= 0 and delta < RECIEPT_VECTOR_BITS:
This is a "past" nonce that we have the ability to check
if reciept_vector & (1 << delta):

message = "Request nonce has been seen before"
raise NonceInvalid(message)

else:
Set the bit in the bit vector
reciept_vector |= 1 << delta

elif delta > 0 and delta >= RECIEPT_VECTOR_BITS:
This is "past" nonce that we don’t have the ability to check
message = "Nonce is too old to validate"
raise NonceInvalid(message)

111

Clamp to RECIEPT_VECTOR_BITS because otherwise Python will gladly shift
our vector into a bigint
reciept_vector &= RECIEPT_VECTOR_MASK
NONCECACHE.set(sessionid, (latest_nonce, reciept_vector), None)

def validate_request(request, request_header):
hash_mask = request_header[’h’]
auth_headers = request_header[’ah’]
extra_headers = request_header.get(’eah’, None)

sessionid, hmac_key, expiration_time = decrypt_opaque(
request_header[’s’], request_header[’iv’], request_header[’tag’],
hash_mask, auth_headers, extra_headers)

Session expiration check
if expiration_time <= int(time.time()):

raise SessionExpired(’Session expired due to absolute expiration time’)

HMAC validation
Performs time-based and nonce-based replay prevention if present

Rebuild HMAC input
using_nonce = using_nonce_replay_prevention(request_header[’ah’])
hmac_input = [request_header[’n’], ’+’] if using_nonce else [’+’]
hmac_input.append(request_header[’t’])
hmac_input.append(request_header[’lt’])
extra_headers = extra_headers.split(’,’) if extra_headers else []
hmac_input += auth_header_values(request, request_header[’ah’],

extra_headers)
hmac_input.append(request.get_full_path())
hmac_input.append(request.body or ’’)
unicode objects to bytestring for ordinals greater than 128
hmac_input = [x.decode(’latin1’).encode(’latin1’) for x in hmac_input]
hmac_input = ’|’.join(hmac_input)

Perform HMAC validation
our_mac = server_hmac(request_header[’h’], hmac_key, hmac_input)
hmac_valid = hmac.compare_digest(our_mac, request_header[’c’])

if not hmac_valid:
raise HmacInvalid()

If the request is valid, but too much time has elapsed since the prior
request, expire the session. Note that it’s fine to do this before replay
prevetion, because even if an attacker were trying to maliciously replay
the request, the authenticated request embeds information that will
always expire the session, namely, the request time and the prior request
time. Both of these are included in the HMAC.
inactivity_timeout_seconds = get_setting(

112

’S_ARMOR_INACTIVITY_TIMEOUT_SECONDS’, SECONDS_30_MINUTES)
if (int(request_header[’t’]) - int(request_header[’lt’]) >=

inactivity_timeout_seconds):
raise SessionExpired(’Session expired due to inactivity’)

Validate that the request has not expired (time-based replay prevention)
NB: This is done after HMAC validation
request_duration_seconds = get_setting(

’S_ARMOR_REQUEST_VALID_SECONDS’, SECONDS_5_MINUTES)
if time.time() - int(request_header[’t’]) >= request_duration_seconds:

raise RequestExpired()

Validate that nonce has not been used before (absolute replay prevention)
if using_nonce:

validate_nonce(request_header[’n’], sessionid)

return sessionid

def invalidate_session(request_header):
hash_mask = request_header[’h’]
auth_headers = request_header[’ah’]
extra_headers = request_header.get(’eah’, None)
_, hmac_key, _ = decrypt_opaque(

request_header[’s’], request_header[’iv’], request_header[’tag’],
hash_mask, auth_headers, extra_headers)

mac = server_hmac(request_header[’h’], hmac_key, ’Session Expired’)
return tuples_to_header(((’i’, mac),))

class SessionArmorMiddleware(object):
’’’
Implementation of the Session Armor protocol.

Session Armor is an HTTP session authentication protocol hardened against
request replay and request forgery.
’’’

def __init__(self):
self.strict = get_setting(’S_ARMOR_STRICT’, False)

auth_headers = get_setting(
’S_ARMOR_AUTH_HEADERS’, DEFAULT_AUTH_HEADERS)

nonce_replay_prevention = get_setting(
’S_ARMOR_NONCE_REPLAY_PREVENTION’, None)

self.packed_header_mask = gen_header_mask(
auth_headers, nonce_replay_prevention)

def process_request(self, request):
’’’
Process states of the Session Armor protocol for incoming requests

113

’’’
header_str = request.META.get(’HTTP_X_S_ARMOR’, None)

if not self.strict and not header_str:
return

elif self.strict and not header_str:
Disallow requests from clients that do not support SessionArmor

If another middleware’s process_request raises an Exception
before this one, then the following PermissionDenied exception
will not be raised. This would be a breach of the authentication
system if this pre-empting exception is handled, and a cookie or
other authentication credential is used to allow a privileged
action. Any of the exception handlers called in the lifecycle of
Django’s BaseHandler could allow this to happen, including the
handle_exception of another middleware.
#
NB: This applies to all PermissionDenied exceptions called from
the context of this middleware.
raise PermissionDenied(’Client does not support Session Armor’)

request_header = header_to_dict(header_str)
state = get_client_state(request_header)

sa_sessionid = None

if state == CLIENT_READY and request.is_secure():
try:

select_hash_mask(request_header[’r’])
except HmacInvalid as e:

Client provided an invalid HMAC algo mask
LOGGER.debug(str(e))
Need to raise PermissionDenied here rather than in
process_response, otherwise the client will get a 500 rather
than a 403.
raise PermissionDenied(str(e))

elif state == CLIENT_SIGNED_REQUEST:
try:

sa_sessionid = validate_request(request, request_header)
except SessionExpired as e:

LOGGER.debug(str(e))
Return before injeting the session cookie. The request will
be processed without a user object. This allows session
invalidation to proceed in process_response. We add a header
to the request that process_response can pick up to invalidate
the session
request.META[’HTTP_X_S_ARMOR_INVALIDATE’] = ’True’
return

except OpaqueInvalid as e:
Client provided an invalid symmetrically encrypted token
LOGGER.debug(str(e))

114

raise PermissionDenied(str(e))
except HmacInvalid as e:

Client’s HMAC did not validate
LOGGER.debug(str(e))
raise PermissionDenied(str(e))

except RequestExpired as e:
Time-based replay prevention
LOGGER.debug(str(e))
raise PermissionDenied(str(e))

except NonceInvalid as e:
Counter-based replay prevention
LOGGER.debug(str(e))
raise PermissionDenied(str(e))

if sa_sessionid:
request.COOKIES[settings.SESSION_COOKIE_NAME] = sa_sessionid

def process_response(self, request, response):
’’’
Process states of the Session Armor protocol for outgoing requests
’’’
header_str = request.META.get(’HTTP_X_S_ARMOR’, None)

if not header_str:
return response

sessionid = None
if request.is_secure() and is_modifying_session(response):

sessionid = extract_session_id(response)

request_header = header_to_dict(header_str)
state = get_client_state(request_header)

if state == CLIENT_READY and request.is_secure() and sessionid:
try:

response[’X-S-Armor’] = begin_session(
request_header, sessionid, self.packed_header_mask)

except HmacInvalid:
If the algo mask was invalid then PermissionDenied was raised
in ProcessRequest
return response

elif state == CLIENT_SIGNED_REQUEST:
Session invalidation
Check if the session has expired
if request.META.get(’HTTP_X_S_ARMOR_INVALIDATE’, None):

response[’X-S-Armor’] = invalidate_session(request_header)
Check if the server is deleting the session, e.g. a logout
view has executed.
elif sessionid == ’’:

response[’X-S-Armor’] = invalidate_session(request_header)

115

return response

A.2 Client Reference Implementation, Chrome Extension Source Code

"use strict";
/*
Session Armor Protocol, Google Chrome Extension

Copyright (C) 2016 Andrew Sauber

This software is licensed under the AGPLv3 open source license. See
LICENSE.txt. The license can also be found at the following URL, please note
the above copyright notice. https://www.gnu.org/licenses/agpl-3.0.en.html
*/

var _ = require("underscore");
var Hashes = require("jshashes");
var compare = require("secure-compare");

require("./status-icon");

/* request related */

var hashAlgoMask = "\x01\x05";

var hashModules = [
[1 << 0, new Hashes.SHA256({’utf8’: false})],

// [1 << 1, Hashes.SHA384],
[1 << 2, new Hashes.SHA512({’utf8’: false})],
[1 << 3, new Hashes.RMD160({’utf8’: false})]

]
hashModules = _.object(hashModules);

var bodyCache = {}

var headerChoices = [
’’, /* least-significant bit used for nonce flag */
’Host’,
’User-Agent’,
’Accept’,
’Connection’,
’Accept-Encoding’,
’Accept-Language’,
’Referer’,
’Cookie’,

116

’Accept-Charset’,
’If-Modified-Since’,
’If-None-Match’,
’Range’,
’Date’,
’Authorization’,
’Cache-Control’,
’Origin’,
’Pragma’,
’DNT’,
’X-Csrf-Token’,
’Sec-WebSocket-Version’,
’Sec-WebSocket-Protocol’,
’Sec-WebSocket-Key’,
’Sec-WebSocket-Extensions’,
’TE’,
’X-Requested-With’,
’X-Forwarded-For’,
’X-Forwarded-Proto’,
’Forwarded’,
’From’,
’HTTP2-Settings’,
’Upgrade’,
’Proxy-Authorization’,
’If’,
’If-Match’,
’If-Range’,
’If-Unmodified-Since’,
’Max-Forwards’,
’Prefer’,
’Via’,
’ALPN’,
’Expect’,
’Alt-Used’,
’CalDAV-Timezones’,
’Schedule-Reply’,
’If-Schedule-Tag-Match’,
’Destination’,
’Lock-Token’,
’Timeout’,
’Ordering-Type’,
’Overwrite’,
’Position’,
’Depth’,
’SLUG’,
’Trailer’,
’MIME-Version’

];

function getHost(url) {
// capture everything up to the first lone slash

117

// excluding the scheme and port
return url.match(/(.+:\/\/)([ˆ/:]+)(.*)?\/([ˆ/]|$)/)[2];

}

function getOrigin(url) {
// capture everything up to the first lone slash
// including the scheme, host, and port
return url.match(/(.+:\/\/[ˆ/]+)\/([ˆ/]|$)/)[1];

}

function getPath(url) {
// capture everything after the first lone slash
var path = url.match(/(.+:\/\/[ˆ/]+)\/(.*|$)/)[2];
return ’/’ + path;

}

function domainHasSession(url) {
return localStorage[getOrigin(url)] !== undefined;

}

function unpackMask(mask) {
return stringToBytes(mask.slice(1));

}

function stringToBytes(str) {
var bytes = [], charCode;
for (var i = 0, len = str.length; i < len; ++i) {

charCode = str.charCodeAt(i);
if ((charCode & 0xFF00) >> 8) {

bytes.push((charCode & 0xFF00) >> 8);
}
bytes.push(charCode & 0xFF);

}
return bytes;

}

function bytesToInt(bytes) {
var n = 0;
for (var i = bytes.length - 1, len = bytes.length; i >= 0; --i) {

n |= bytes[i] << (8 * (len - 1 - i));
}
return n;

}

function intToBytes(i) {
// Not using an arbitrary precision implementation of this for two reasons:
// 1. Bitwise operators in JavaScript convert operands to 32-bit signed
// integers, unlike Python, which maintains arbitrary precision.
// 2. If the input has its MSB as 1, it’s treated as negative number, and
// gets 1-filled on the right when shifted, resulting in "negative" byte
// values which are not amenable to string encoding.

118

// Thus, this 0x00ff mask, which is used to kill the 1-filled bits of
// parameters which happen to be negative when coerced.
return [

(i >> 24 & 0x00ff),
(i >> 16 & 0x00ff),
(i >> 8 & 0x00ff),
(i >> 0 & 0x00ff)

];
}

function bytesToString(bytes) {
return String.fromCharCode.apply(this, bytes);

}

function objToHeaderString(obj) {
return _.map(_.keys(obj), function (key) {

return key + ’:’ + btoa(obj[key]);
}).join(’;’);

}

function unpackMasks(headerValues) {
if (headerValues.h) {

headerValues.hashMask = unpackMask(headerValues.h)[0];
}
if (headerValues.ah) {

headerValues.headerMask = unpackMask(headerValues.ah);
}
return headerValues;

}

function headerStringToObj(str) {
if (!str) return {};
var pairs = str.split(’;’);
var headerValues = {};
_.each(pairs, function(pair) {

pair = pair.split(’:’);
headerValues[pair[0]] = atob(pair[1]);

});
headerValues = unpackMasks(headerValues);
return headerValues;

}

function hmac(key, hashMask, string) {
var macObj = hashModules[hashMask];
return macObj.b64_hmac(key, string);

}

function headerValuesToAuth(headerMask, extraHeaders, requestHeaders) {
var selectedHeaders = [];
for (var i = 0, len = headerMask.length; i < len; ++i) {

var currentByte = headerMask[len - 1 - i];

119

for (var j = 0; j < 8; ++j) {
if (currentByte & (1 << j)) {

selectedHeaders.push(headerChoices[i * 8 + j]);
}

}
}

// Append the extra authenticated headers in their order
selectedHeaders = selectedHeaders.concat(extraHeaders);

// These need to be appended in the bitmask order
var authHeaderValues = [];
for (var header of selectedHeaders) {

for (var reqHeader of requestHeaders) {
if (header.toLowerCase() === reqHeader.name.toLowerCase()) {

authHeaderValues.push(reqHeader.value);
}

}
}

return authHeaderValues;
}

function stringForAuth(nonce, requestTime, lastRequestTime, authHeaderValues,
path, body) {

var macTokens = [’+’, requestTime, lastRequestTime];
if (nonce !== null) {

macTokens.unshift(nonce);
}
macTokens = macTokens.concat(authHeaderValues);
macTokens = macTokens.concat(path);
macTokens.push(body || ’’);
return macTokens.join(’|’);

}

function genHeaderString(originValues, ourMac, requestTime, lastRequestTime,
nonce) {

var requestValues = {}
requestValues.c = ourMac;
requestValues.t = requestTime;
requestValues.lt = lastRequestTime;
requestValues.s = originValues.s;
requestValues.iv = originValues.iv;
requestValues.tag = originValues.tag;
requestValues.h = originValues.h;
requestValues.ah = originValues.ah;
if (originValues.eah) {

requestValues.eah = originValues.eah;
}
if (nonce !== null) {

requestValues.n = nonce;

120

}

return objToHeaderString(requestValues);
}

function genSignedHeader(details) {
var originValues = JSON.parse(localStorage[getOrigin(details.url)]);
var hmacKey = originValues[’kh’];

if (usingNonceReplayPrevention(originValues.ah)) {
var nonce = getNonce(details.url);

}
nonce = nonce ? setAndIncrementNonce(details.url, nonce) : null;

var requestTime = Math.floor(Date.now() / 1000);
var lastRequestTime = localStorage[getOrigin(details.url) + ’|lrt’];
var path = getPath(details.url);
var body = bodyCache[details.requestId];

/* we use two seperate callbacks, so don’t leak memory*/
delete bodyCache[details.requestId];

var authHeaderValues = headerValuesToAuth(originValues.headerMask,
originValues.eah.split(’,’),
details.requestHeaders);

var authString = stringForAuth(nonce, requestTime, lastRequestTime,
authHeaderValues, path, body);

var ourMac = hmac(hmacKey, originValues.hashMask, authString);
ourMac = atob(ourMac);

return genHeaderString(originValues, ourMac, requestTime, lastRequestTime,
nonce);

}

function genReadyHeader() {
var headerValue = objToHeaderString({

’r’: hashAlgoMask
});
return headerValue;

}

function usingNonceReplayPrevention(headerMask) {
var charCode = headerMask.charCodeAt(headerMask.length - 1);
return !!(charCode & 0x01);

}

function getNonce(url) {
var origin = getOrigin(url);
var nonce = localStorage[origin + ’|nonce’];
return nonce ?

bytesToInt(stringToBytes(nonce)) :

121

null;
}

function setNonce(url, nonce) {
var origin = getOrigin(url);
nonce = bytesToString(intToBytes(nonce));
localStorage[origin + ’|nonce’] = nonce;
return nonce;

}

function setAndIncrementNonce(url, nonce) {
nonce++;
return setNonce(url, nonce);

}

function storeNewSession(url, headerValues) {
var origin = getOrigin(url);

if (!origin.startsWith("https")) {
console.log("Won’t store SessionArmor session delivered insecurely.");
return;

}

if (usingNonceReplayPrevention(headerValues.ah)) {
setNonce(url, bytesToInt(stringToBytes(headerValues[’n’])));

}

localStorage[origin] = JSON.stringify(headerValues);
}

function invalidateSession(url, serverMac) {
var origin = getOrigin(url);
var originValues = JSON.parse(localStorage[origin]);
var hmacKey = originValues[’kh’];
var ourMac = hmac(hmacKey, originValues.hashMask, "Session Expired");
serverMac = btoa(serverMac);
if (!compare(serverMac, ourMac)) return;
localStorage.removeItem(origin);
localStorage.removeItem(origin + ’|nonce’);
localStorage.removeItem(origin + ’|lrt’);

}

function onHeaderReceived(details) {
var headerValues = {};
_.each(details.responseHeaders, function(header) {

if (header.name !== "X-S-Armor") return;
headerValues = headerStringToObj(header.value);

});

if (headerValues.hasOwnProperty(’s’)) {
storeNewSession(details.url, headerValues);

122

} else if (headerValues.hasOwnProperty(’i’)) {
invalidateSession(details.url, headerValues[’i’]);

}
}

function beforeSendHeader(details) {
details.requestHeaders.push({

"name": "Host",
"value": getHost(details.url)

});
var headerValue =

domainHasSession(details.url)
? genSignedHeader(details)
: genReadyHeader();

details.requestHeaders.push({
"name": "X-S-Armor",
"value": headerValue

});

// Set "last request time" for this domain to now
var lastRequestTimeKey = getOrigin(details.url) + ’|lrt’;
localStorage[lastRequestTimeKey] = Math.floor(Date.now() / 1000);
return {requestHeaders: details.requestHeaders};

}

/* body-related */

function extendedEncodeURIComponent(s) {
return encodeURIComponent(s).replace(/[()’!]/g, function(c) {

return ’%’ + c.charCodeAt(0).toString(16);
});

}

function formDataToString(formData) {
return _.map(Object.keys(formData), function(key) {

// each key has an array of values
return _.map(formData[key], function(value) {

return key + ’=’ +
extendedEncodeURIComponent(value).replace(/%20/g, ’+’);

}).join(’&’);
// forms are encoded with key=value pairs joined with ’&’
// keys can be repeated

}).join(’&’);
}

function beforeRequest(details) {
/* Skip this step if this request does not have a related, active,
* SessionArmor session, or does not have body data */

if (!domainHasSession(details.url) || !details.requestBody) return;

if (details.requestBody.error) {

123

/* If Chrome has a problem parsing the request body,
* log and continue. The request will fail on the server side. */

console.log("request body error: " + details.requestBody.error);
} else if (details.requestBody.raw) {

/*
Raw body authentication requires patching Chromium as follows. This
forces Chrome to use the "raw" presenter for both the MIME type of
multipart/form-data _and_ the MIME type of
application/x-www-form-urlencoded
(as of 2016-08-24)

diff --git
a/extensions/browser/api/web_request/web_request_event_details.cc
b/extensions/browser/api/web_request/web_request_event_details.cc

index a9f2f83..835b0eb5 100644
--- a/extensions/browser/api/web_request/web_request_event_details.cc
+++ b/extensions/browser/api/web_request/web_request_event_details.cc
@@ -84,7 +84,6
@@ void WebRequestEventDetails::SetRequestBody(

const net::URLRequest* request) {
if (presenters[i]->Succeeded()) {

request_body->Set(kKeys[i], presenters[i]->Result());
some_succeeded = true;

- break;
}

}
*/
bodyCache[details.requestId] = String.fromCharCode.apply(null,

new Uint8Array(details.requestBody.raw[0].bytes));
}

}

/* handle body data and store it for HMAC */
chrome.webRequest.onBeforeRequest.addListener(

beforeRequest,
{"urls": ["https://*/*", "http://*/*"]},
["blocking", "requestBody"]

);

/* prepare HMAC before requests */
chrome.webRequest.onBeforeSendHeaders.addListener(

beforeSendHeader,
{"urls": ["https://*/*", "http://*/*"]},
["blocking", "requestHeaders"]

);

/* handle Session initialization */
chrome.webRequest.onHeadersReceived.addListener(

onHeaderReceived,
{"urls": ["https://*/*", "http://*/*"]},
["blocking", "responseHeaders"]

124

);

125

Appendix B. SessionJack Data

Table B.1: Domain Susceptibility to Session Hijacking

Domain Bearer Tokens Packet Sniõng Cross-Site Scripting Alexa Rank
drive.google.com Vulnerable Protected Protected 1
mail.google.com Vulnerable Protected Protected 1
facebook.com Vulnerable Protected Protected 2
youtube.com Vulnerable Protected Protected 3
yahoo.com Vulnerable Protected Protected 5
amazon.com Vulnerable Vulnerable Vulnerable 6
console.aws.amazon.com Vulnerable Protected Protected 6
en.wikipedia.org Vulnerable Protected Protected 7
twitter.com Vulnerable Protected Protected 9
linkedin.com Vulnerable Protected Protected 14
ebay.com Vulnerable Vulnerable Vulnerable 17
yandex.ru Vulnerable Protected Protected 19
instagram.com Vulnerable Vulnerable Protected 28
reddit.com Vulnerable Vulnerable Protected 31
wordpress.com Vulnerable Vulnerable Protected 40
paypal.com Vulnerable Protected Protected 42
account.microso�.com Vulnerable Protected Protected 43
apple.com Vulnerable Protected Protected 49
net�ix.com Vulnerable Vulnerable Vulnerable 53
stackover�ow.com Vulnerable Vulnerable Protected 56
alibaba.com Vulnerable Vulnerable Vulnerable 63
github.com Vulnerable Protected Protected 91
dropbox.com Vulnerable Protected Protected 98
chase.com Vulnerable Vulnerable Protected 119
twitch.tv Vulnerable Vulnerable Protected 139
soundcloud.com Vulnerable Vulnerable Vulnerable 166
snapdeal.com Vulnerable Vulnerable Protected 171
steampowered.com Vulnerable Vulnerable Protected 231
sourceforge.net Vulnerable Protected Protected 267
accounts.spotify.com Vulnerable Protected Protected 346
kickstarter.com Vulnerable Protected Protected 368
newegg.com Vulnerable Vulnerable Vulnerable 374
evernote.com Vulnerable Protected Protected 386
oracle.com Vulnerable Vulnerable Vulnerable 425
meetup.com Vulnerable Vulnerable Vulnerable 433
slack.com Vulnerable Protected Protected 540
intuit.com Vulnerable Protected Protected 547
ibm.com Vulnerable Vulnerable Vulnerable 774
atlassian.net Vulnerable Protected Protected 821
macrumors.com Vulnerable Vulnerable Protected 1091
bitbucket.org Vulnerable Protected Protected 1106
mint.com Vulnerable Protected Protected 1198
kongregate.com Vulnerable Vulnerable Vulnerable 1434

126

bandcamp.com Vulnerable Protected Vulnerable 1444
humblebundle.com Vulnerable Protected Protected 1630
cloud.digitalocean.com Vulnerable Protected Protected 1713
membership.square-enix.com Vulnerable Vulnerable Vulnerable 2004
news.ycombinator.com Vulnerable Protected Protected 2057
tdbank.com Vulnerable Vulnerable Vulnerable 2141
minecra�.net Vulnerable Vulnerable Vulnerable 2449
teespring.com Vulnerable Vulnerable Vulnerable 2478
amtrak.com Vulnerable Vulnerable Vulnerable 3070
dramafever.com Vulnerable Vulnerable Protected 3324
pcpartpicker.com Vulnerable Vulnerable Protected 3743
airdroid.com Vulnerable Vulnerable Vulnerable 4849
linuxquestions.org Vulnerable Vulnerable Protected 4979
express.com Vulnerable Vulnerable Protected 5289
microcenter.com Vulnerable Vulnerable Protected 5749
bitcointalk.org Vulnerable Vulnerable Vulnerable 6040
coinbase.com Vulnerable Protected Protected 6167
archlinux.org Vulnerable Protected Protected 6572
gumroad.com Vulnerable Protected Protected 7417
hackerrank.com Vulnerable Protected Protected 8264
zennioptical.com Vulnerable Vulnerable Protected 8643
xmarks.com Vulnerable Protected Protected 8900
hitbox.tv Vulnerable Vulnerable Vulnerable 9090
unrealengine.com Vulnerable Protected Protected 9718
oculus.com Vulnerable Protected Protected 10462
wallhaven.cc Vulnerable Vulnerable Protected 12278
codechef.com Vulnerable Vulnerable Protected 13112
caremark.com Vulnerable Protected Vulnerable 13202
venmo.com Vulnerable Protected Protected 14225
expensify.com Vulnerable Protected Protected 14249
freesound.org Vulnerable Vulnerable Protected 14353
login.aessuccess.org Vulnerable Protected Protected 14877
wellsfargodealerservices.com Vulnerable Protected Protected 15948
loseit.com Vulnerable Vulnerable Protected 16215
bluejeans.com Vulnerable Protected Vulnerable 18845
coastal.com Vulnerable Vulnerable Protected 21508
topcoder.com Vulnerable Vulnerable Vulnerable 21551
codeforces.com Vulnerable Vulnerable Protected 22019
thebodyshop-usa.com Vulnerable Vulnerable Protected 24844
bayan.ir Vulnerable Vulnerable Protected 27057
kanban�ow.com Vulnerable Vulnerable Protected 30466
teavana.com Vulnerable Vulnerable Protected 33993
projecteuler.net Vulnerable Protected Protected 35078
bighugelabs.com Vulnerable Vulnerable Vulnerable 38333
afraid.org Vulnerable Vulnerable Vulnerable 39307
myminifactory.com Vulnerable Vulnerable Vulnerable 39358
dcollege.net Vulnerable Protected Protected 42970
kraken.com Vulnerable Protected Protected 43088
bitcoin.cz Vulnerable Vulnerable Protected 48778
typeracer.com Vulnerable Vulnerable Vulnerable 50197
tdcardservices.com Vulnerable Protected Protected 56458

127

audiotool.com Vulnerable Vulnerable Vulnerable 72253
hashicorp.com Vulnerable Protected Protected 72667
fourmilab.ch Vulnerable Vulnerable Vulnerable 75080
ocremix.org Vulnerable Vulnerable Protected 82602
unrealtournament.com Vulnerable Protected Protected 105627
quakelive.com Vulnerable Vulnerable Vulnerable 150405
qhimm.com Vulnerable Vulnerable Vulnerable 218679
lexaloøe.com Vulnerable Vulnerable Vulnerable 226464
contactlensking.com Vulnerable Vulnerable Protected 236765
usaco.org Vulnerable Vulnerable Vulnerable 256864
zergid.com Vulnerable Vulnerable Vulnerable 285250
wvshare.com Vulnerable Vulnerable Protected 294061
catzilla.com Vulnerable Vulnerable Protected 387793
amarriner.com Vulnerable Vulnerable Vulnerable 3489038

128

Appendix C. Formal Veriûcation

C.1 Proverif Model

(* Copyright 2016 - present Andrew Sauber. All rights reserved. *)
(* Formal verification of the Session Armor protocol using pi-calculus *)

(**)

(* Q: If the server completes the protocol, and the the client began the
protocol exactly once, what does that prove? *)

(* A: It proves that an attacker acting as a server could not have fulfilled
the request from the client and then acted as a man-in-the-middle to
impersonate the client and replay the request with the legitimate server.
In other words, a legitimate request can only be completed once. *)

(* Q: What do we want to prove? *)
(* A: We want to prove that if the client makes a request using an hmac with a
certain key, then only the client that originally received the key during the
setup phase of the SA the protocol could have made this request. We also want to
prove that an attacker cannot access the server_secret or any client_secret *)

(* Q: Can we prove that the request was made within a specified time period? *)
(* A: ProVerif does not have a notion of time, so we cannot prove that the
request was made within a specified time period. However, there was a paper
published by one of the ProVerif authors indicating that a nonce can be used to
simulate a timestamp. So we include a nonce here with the correspondence
queries. *)

(**)

(* Types *)
type key.
type nonce.
type timestamp.

(* Channels *)
free HTTPS: channel [private].
free HTTP: channel.

(* Free Variables *)
free server_secret_test, session_secret_test: bitstring
[private].

(* Functions *)

129

fun encrypt(bitstring, key): bitstring.
reduc forall plaintext: bitstring, k: key;

decrypt(encrypt(plaintext, k), k) = plaintext.
fun hmac(bitstring, key): bitstring.

(* Correspondence events *)
event clientRequest(key, timestamp, nonce, bitstring, bitstring).
event serverResponse(key, timestamp, nonce, bitstring, bitstring).

(* Correspondence Query *)
query session_secret: key,

request_time: timestamp,
request_nonce: nonce,
request_url: bitstring,
request_data: bitstring;

inj-event(serverResponse(session_secret,
request_time,
request_nonce,
request_url,
request_data)) ==>

inj-event(clientRequest(session_secret,
request_time,
request_nonce,
request_url,
request_data)).

(* Secrecy queries *)
query attacker(server_secret_test).
query attacker(session_secret_test).

(* Client Macros *)
let browser() =

new user_id: bitstring;
new password: bitstring;

out(HTTPS, (user_id, password));
in(HTTPS, (session_id: bitstring,

session_secret: key,
session_expiry: timestamp,
session_token: bitstring));

new request_time: timestamp;
new request_nonce: nonce;
new request_url: bitstring;
new request_data: bitstring;

event clientRequest(session_secret,
request_time,
request_nonce,
request_url,
request_data);

130

out(HTTP, (request_time,
request_nonce,
hmac((request_time, request_nonce, request_url, request_data),

session_secret),
session_token,
request_url,
request_data)).

(* Server Macros *)
let webapp() =

in(HTTPS, (user_id: bitstring, password: bitstring));

new server_secret: key;
new session_secret: key;
new session_id: bitstring;
new session_expiry: timestamp;

out(HTTP, encrypt(server_secret_test, server_secret));
out(HTTP, encrypt(session_secret_test, session_secret));

let session_token = encrypt((session_id,
user_id,
session_secret,
session_expiry), server_secret) in

out(HTTPS, (session_id, session_secret, session_expiry, session_token));

in(HTTP, (request_time: timestamp,
request_nonce: nonce,
request_hmac: bitstring,
client_token: bitstring,
request_url: bitstring,
request_data: bitstring));

let (=session_id, =user_id, =session_secret, =session_expiry) =
decrypt(client_token, server_secret) in

let (server_hmac: bitstring) =
hmac((request_time, request_nonce, request_url, request_data),

session_secret) in
if request_hmac = server_hmac then

event serverResponse(session_secret,
request_time,
request_nonce,
request_url,
request_data).

(* Main *)
process
(!(browser()) | !(webapp()))

131

C.2 Proverif Veriûcation Output

Process:
{1}new server_secret: key;
{2}new user_id: bitstring;
{3}new password: bitstring;
(

{4}!
{5}out(HTTPS, (user_id,password));
{6}in(HTTPS, (session_id: bitstring,session_secret: key,

session_expiry: timestamp,session_token: bitstring));
{7}new request_time: timestamp;
{8}new request_nonce: nonce;
{9}new request_url: bitstring;
{10}new request_data: bitstring;
{11}event clientRequest(session_secret,request_time,request_nonce,

request_url,request_data);
{12}out(HTTP, (request_time,request_nonce,hmac((request_time,

request_nonce,request_url,request_data),session_secret),
session_token,request_url,request_data))

) | (
{13}!
{14}in(HTTPS, (user_id_31: bitstring,password_32: bitstring));
{15}new session_secret_33: key;
{16}new session_id_34: bitstring;
{17}new session_expiry_35: timestamp;
{18}out(HTTP, encrypt(server_secret_test,server_secret));
{19}out(HTTP, encrypt(session_secret_test,session_secret_33));
{20}let session_token_36: bitstring = encrypt((session_id_34,user_id_31,

session_secret_33,session_expiry_35),server_secret) in
{21}out(HTTPS, (session_id_34,session_secret_33,session_expiry_35,

session_token_36));
{22}in(HTTP, (request_time_37: timestamp,request_nonce_38: nonce,

request_hmac: bitstring,client_token: bitstring,
request_url_39: bitstring,request_data_40: bitstring));

{23}let (=session_id_34, =user_id_31, =session_secret_33,
=session_expiry_35) =

decrypt(client_token,server_secret) in
{24}let server_hmac: bitstring = hmac((request_time_37,request_nonce_38,

request_url_39,request_data_40),session_secret_33) in
{25}if (request_hmac = server_hmac) then
{26}event serverResponse(session_secret_33,request_time_37,

request_nonce_38,request_url_39,request_data_40)
)

-- Query not attacker(session_secret_test[])
Completing...
Starting query not attacker(session_secret_test[])
RESULT not attacker(session_secret_test[]) is true.

132

-- Query not attacker(server_secret_test[])
Completing...
Starting query not attacker(server_secret_test[])
RESULT not attacker(server_secret_test[]) is true.

-- Query
inj-event(serverResponse(session_secret_1504,request_time_1505,request_nonce_150
6,

request_url_1507,request_data_1508))
==>
inj-event(clientRequest(session_secret_1504,request_time_1505,request_nonce_1506
,

request_url_1507,request_data_1508))
Completing... Starting query
inj-event(serverResponse(session_secret_1504,request_time_1505,request_nonce_150
6,

request_url_1507,request_data_1508))
==>
inj-event(clientRequest(session_secret_1504,request_time_1505,request_nonce_1506
,

request_url_1507,request_data_1508))
goal reachable: begin(clientRequest(session_secret_33[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],request_time[session_token
= encrypt((session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],user_id[],session_secret_33[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 =
endsid_2426]),server_secret[]),session_expiry = session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],session_secret =
session_secret_33[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],session_id = session_id_34[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],!1 = @sid_2427],request_nonce[session_token =
encrypt((session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],user_id[],session_secret_33[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 =
endsid_2426]),server_secret[]),session_expiry = session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],session_secret =
session_secret_33[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],session_id = session_id_34[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],!1 = @sid_2427],request_url[session_token =
encrypt((session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],user_id[],session_secret_33[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 =
endsid_2426]),server_secret[]),session_expiry = session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],session_secret =
session_secret_33[password_32 = password[],user_id_31 = user_id[],!1 =

133

endsid_2426],session_id = session_id_34[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],!1 = @sid_2427],request_data[session_token =
encrypt((session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],user_id[],session_secret_33[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 =
endsid_2426]),server_secret[]),session_expiry = session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],session_secret =
session_secret_33[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],session_id = session_id_34[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],!1 = @sid_2427]), session_token =
encrypt((session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],user_id[],session_secret_33[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426]),server_secret[]),
session_expiry = session_expiry_35[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426], session_secret = session_secret_33[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426], session_id =
session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426], @sid = @sid_2427, @occ11 = @occ_cst) ->
end(endsid_2426,serverResponse(session_secret_33[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],request_time[session_token
= encrypt((session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],user_id[],session_secret_33[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 =
endsid_2426]),server_secret[]),session_expiry = session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],session_secret =
session_secret_33[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],session_id = session_id_34[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],!1 = @sid_2427],request_nonce[session_token =
encrypt((session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],user_id[],session_secret_33[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 =
endsid_2426]),server_secret[]),session_expiry = session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],session_secret =
session_secret_33[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],session_id = session_id_34[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],!1 = @sid_2427],request_url[session_token =
encrypt((session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],user_id[],session_secret_33[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 =
endsid_2426]),server_secret[]),session_expiry = session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],session_secret =
session_secret_33[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],session_id = session_id_34[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],!1 = @sid_2427],request_data[session_token =
encrypt((session_id_34[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],user_id[],session_secret_33[password_32 = password[],user_id_31 =

134

user_id[],!1 = endsid_2426],session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 =
endsid_2426]),server_secret[]),session_expiry = session_expiry_35[password_32 =
password[],user_id_31 = user_id[],!1 = endsid_2426],session_secret =
session_secret_33[password_32 = password[],user_id_31 = user_id[],!1 =
endsid_2426],session_id = session_id_34[password_32 = password[],user_id_31 =
user_id[],!1 = endsid_2426],!1 = @sid_2427]))

RESULT inj-event(serverResponse(session_secret_1504,request_time_1505,
request_nonce_1506,request_url_1507,request_data_1508))

==> inj-event(clientRequest(session_secret_1504,request_time_1505,
request_nonce_1506,request_url_1507,request_data_1508)) is true.

135

Bibliography

[1] Ben Adida. Sessionlock: securing web sessions against eavesdropping. In Proceedings
of the 17th international conference on World Wide Web, pages 517–524. ACM, 2008.

[2] Ben Adida. Sessionlock: securing web sessions against eavesdropping. In Proceedings
of the 17th international conference on World Wide Web, pages 517–524. ACM, 2008.

[3] Nadhem J Al Fardan and Kenneth G Paterson. Lucky thirteen: Breaking the tls and
dtls record protocols. In Security and Privacy (SP), 2013 IEEE Symposium on, pages
526–540. IEEE, 2013.

[4] Andrew W Appel. Veriûed so�ware toolchain. In ESOP, volume 11, pages 1–17.
Springer, 2011.

[5] AndrewWAppel. Veriûcation of a cryptographic primitive: Sha-256. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 37(2):7, 2015.

[6] Adam Barth. HTTP State Management Mechanism. RFC 6265, April 2011.

[7] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. pages 1–15. Springer-Verlag, 1996.

[8] Tim Berners-Lee. _e original http as deûned in 1991. https://www.w3.org/
Protocols/HTTP/AsImplemented.html.

[9] Guido Bertoni, JoanDaemen,Michaël Peeters, andGilles VanAssche. Keccak sponge
function family main document. Submission to NIST (Round 2), 3:30, 2009.

[10] Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, and Eugen Zălinescu. Ver-
iûed cryptographic implementations for tls. ACM Transactions on Information and
System Security (TISSEC), 15(1):3, 2012.

[11] Bruno Blanchet. Modeling and verifying security protocols with the applied pi cal-
culus and ProVerif. Foundations and Trends in Privacy and Security, 1(1–2):1–135,
October 2016.

[12] Taehwan Choi and Mohamed G Gouda. Httpi: An http with integrity. In Computer
Communications and Networks (ICCCN), 2011 Proceedings of 20th International Con-
ference on, pages 1–6. IEEE, 2011.

[13] Tyler Close. Web-key: Mashing with permission. In Proceedings of Web, volume 2,
2008.

136

[14] Italo Dacosta, Saurabh Chakradeo, Mustaque Ahamad, and Patrick Traynor. One-
time cookies: Preventing session hijacking attacks with stateless authentication to-
kens. ACM Transactions on Internet Technology (TOIT), 12(1):1, 2012.

[15] Philippe De Ryck, LievenDesmet, Frank Piessens, andWouter Joosen. Secsess: keep-
ing your session tucked away in your browser. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, pages 2171–2176. ACM, 2015.

[16] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Trans-
actions on information theory, 29(2):198–208, 1983.

[17] Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewrit-
ing and the complexity of bounded security protocols. Journal of Computer Security,
12(2):247–311, 2004.

[18] RoyT. Fielding and JulianReschke. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC 7230, June 2014.

[19] Mark A. Finlayson. Mit java wordnet interface (jwi) userús guide.

[20] Django So�ware Foundation. Django session extention. https://github.com/
django/django/blob/9baf692a58de78dba13aa582098781675367c329/
django/contrib/sessions/middleware.py#L48.

[21] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. _e dos and don’ts of client
authentication on the web. In USENIX Security Symposium, pages 251–268, 2001.

[22] Matthew Green. How to choose an authenticated encryption mode.
https://blog.cryptographyengineering.com/2012/05/19/
how-to-choose-authenticated-encryption/.

[23] Jeremiah Grossman. Xst sorta lives! (bypassing httponly). http://blog.
jeremiahgrossman.com/2007/04/xst-lives-bypassing-httponly.
html.

[24] Phillip Hallam-Baker, Professor John Franks, Lawrence C. Stewart, Eric W. Sink, Jef-
fery L. Hostetler, Paul J. Leach, and Ari Luotonen. An Extension to HTTP : Digest
Access Authentication. RFC 2069, January 1997.

[25] Stefan Heule, Devon Ri�in, Alejandro Russo, and Deian Stefan. _e most danger-
ous code in the browser. In Workshop on Hot Topics in Operating Systems, (HotOS).
USENIX, May 2015.

[26] Jeò Hodges, Collin Jackson, and Adam Barth. HTTP Strict Transport Security
(HSTS). RFC 6797, November 2012.

[27] Trent Jaeger. Hughes diõe-hellman variant. 2008.

137

[28] Antoine Joux. Authentication failures in nist version of gcm. NIST Comment, page 3,
2006.

[29] John Kelsey. Sha-3 derived functions: cshake, kmac, tuplehash, and parallelhash.
NIST Special Publication, 800:185, 2016.

[30] Mitja Kolšek. Session ûxation vulnerability in web-based applications. Acros Security,
page 7, 2002.

[31] Guillaume Lehembre. Wi-û security – wep, wpa y wpa2. Recuperado el, 9(10), 2006.

[32] Alex X Liu, Jason M Kovacs, C-T Huang, and Mohamed G Gouda. A secure cookie
protocol. In Computer Communications and Networks, 2005. ICCCN 2005. Proceed-
ings. 14th International Conference on, pages 333–338. IEEE, 2005.

[33] Gavin Lowe. An attack on the needham-schroeder public-key authentication proto-
col. Information processing letters, 56(3):131–133, 1995.

[34] David McGrew and John Viega. _e galois/counter mode of operation (gcm). Sub-
mission to NIST Modes of Operation Process, 20, 2004.

[35] Stephen J Minutillo. Cookieless http session persistence using the base tag.

[36] Bodo Möller, _ai Duong, and Krzysztof Kotowicz. _is poodle bites: exploiting the
ssl 3.0 fallback. PDF online, pages 1–4, 2014.

[37] Bodo Möller, _ai Duong, and Krzysztof Kotowicz. _is poodle bites: exploiting the
ssl 3.0 fallback. PDF online, pages 1–4, 2014.

[38] Magnus Nystrom. Identiûers and Test Vectors for HMAC-SHA-224, HMAC-SHA-
256, HMAC-SHA-384, and HMAC-SHA-512. RFC 4231, December 2005.

[39] Kenneth G Paterson and Arnold Yau. Padding oracle attacks on the iso cbc mode
encryption standard. In CT-RSA, volume 2964, pages 305–323. Springer, 2004.

[40] Andreas Petersson andMartinNilsson. ForwardedHTTPExtension. RFC 7239, June
2014.

[41] Lisa Phifer. Wpa psk crackers: Loose lips sink ships. http:
//www.wi-fiplanet.com/tutorials/article.php/3667586/
WPA-PSK-Crackers-Loose-Lips-Sink-Ships.htm.

[42] Joseph Salowey, Abhijit Choudhury, and David McGrew. Aes galois counter mode
(gcm) cipher suites for tls. Technical report, 2008.

[43] Aditya Sood and Richard Enbody. _e state of http declarative security in online
banking websites. Computer Fraud & Security, 2011(7):11–16, 2011.

138

[44] Kevin Spett. Cross-site scripting. SPI Labs, 1:1–20, 2005.

[45] Marc Stevens, Pierre Karpman, and _omas Peyrin. Freestart collision for full sha-
1. Cryptology ePrint Archive, Report 2015/967, 2015. http://eprint.iacr.org/
2015/967.

[46] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting vulner-
abilities. In Proceedings of the 30th international conference on So�ware engineering,
pages 171–180. ACM, 2008.

