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ALTERNATING BARS IN TRANSCRITICAL FLOWS 
 
 

Andrés Tejada-Martínez1 and Cesar Mendoza2

 
 
ABSTRACT 
 
A theoretical analysis is conducted to study qualitatively the development of alternate bars as the 
flow transitions from low- to high-Froude numbers. The model formulation adopted is that of  
Schielen et al. (1993), excluding their rigid-lid approximation for the flow free-surface and re-
expressed in terms of local water depth, leading to the appearance of the Froude number in the 
dimensionless flow and sediment transport equations. For width-to-depth ratios above a minimum 
value, the alternate bars are influenced by the width of the channel; below this value, solutions to the 
model do not exist as such values of width-to-depth ratios correspond to the small-scale bed–wave 
regime. However, once the width-to-depth ratio is in the large-scale bed-wave regime, the Froude 
number plays an important role in separating stable and unstable regions. The quasi-steady nature of 
the flow model does not support the formation of neither stationary nor migrating alternate antibars 
(alternate bars that migrate upstream). It was found that the model can yield alternate bars under 
trans-critical and supercritical flow conditions, such as those in the laboratory observations of Ikeda 
(1984). When the width-to-depth ratio is greater, but still close to the minimum value required for 
the alternate bars to exist, low-Froude number instability does not occur as the bars only appear at 
sufficiently high Froude numbers. Low-Froude number instability takes place when the width-to-
depth ratio increases past a certain amount above the minimum value required for the existence of 
the bars. In addition, the region of instability grows in size with higher width-to-depth ratios. 
 
 
1.   INTRODUCTION 
 
Alternate bars occur in approximately straight reaches of natural or field-size shallow streams. They 
are distributed periodically along the stream reach, with consecutive bars on opposite sides of the 
channel. The study of this rhythmic bed pattern has been motivated by the plain beauty and 
regularity of the phenomenon, the destabilization of the channels in which they emerge and the 
associated side bank erosion, obstruction in navigation channels, and their possible connection to the 
initiation of stream meandering. 

The emergence of alternate bars from an erodible bed has been treated as a problem of 
instability of the flow-bed boundary. Following this line of inquiry, linear theories were proposed by 
Fredsøe (1978), Blondeaux and Seminara (1985), Colombini et al. (1987), Nelson (1990), Schielen 
et al. (1993), Lanzoni and Tubino (1999) and most recently by Hall (2004). The weakly-nonlinear  
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evolution of alternate bars has been studied by Fukuoka et al. (1985), Colombini et al. (1987), and 
Schielen et al. (1993). 

Although an examination of laboratory experimental data on formed alternate bars (e.g. 
Ikeda 1984) reveals their existence at near-critical and supercritical flow conditions, existing 
theories on alternate bar formation have paid little attention to their their development as the flow 
transitions from low to high Froude numbers. Freeboard requirements for natural and man-made 
channel reaches with beds covered with alternate bars subjected to transcritical/supercritical regime 
flow conditions during floods makes it necessary to investigate the interaction of the stream and the 
bed formations under these flow conditions.   

In this investigation, the alternate bars model proposed by Schielen et al. (1993) (hereafter 
SDdS), excluding their rigid-lid approximation for the flow free-surface, is used as the base for 
performing a linear stability analysis to explore qualitatively the behaviour of alternate bars under 
trans-critical and supercritical flow conditions. 

 
 
2.    GOVERNING EQUATIONS 
 
The stream bed-flow interaction is modeled with equations governing the depth-averaged shallow 
water flow coupled with a bed evolution equation. The stream channel is taken to be straight, the 
banks vertical and non-erodible, and the stream bed made of non-cohesive material. The use of the 
depth-averaged shallow water flow is justified when considering the typical large width-to-depth 
ratio, R=B/H, for this phenomenon (see Figure 1); B and H are the width (i.e. the distance between 
the banks) and the unperturbed depth of the channel, respectively. A right-handed coordinate system 
is arranged so that x is the streamwise direction (aligned with the flow), y is the horizontal direction 
perpendicular to the flow and the banks, and z is the vertical direction. The dimensional model 
equations are 
 

( ) ( )∂
∂
u

u uh
h ht

g h zb+ ⋅∇ + ∇ + = G                                     (1) 

     
  ( )∂ h

∂ t
h+ ∇ ⋅ =uh 0

                                                                      ∂
 ∂ t

b + ∇ ⋅ =q 0
z

 

 
 

Figure 1 Sketch of coordinate system and variables. 
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where is the depth-averaged velocity vector in the x-y horizontal plane, u is the 
velocity in the x-direction, ν is the velocity in the y-direction, z

uh = ( , , )u v 0
b  is the elevation of the perturbed bed 

relative to the original bed level, and  is the local water depth. The reader is directed to Figure 1 
for a sketch of the coordinate system and variables. 

h

The vector G representing forcing due to the channel slope and friction is taken as   
 

G
u uh= − −

⎛
⎝⎜

⎞
⎠⎟i g Cu

h
C v

ho

| |
,

| |h                                                      (2)                      

 
where C g  is a drag coefficient, g is gravity, i  is the channel uniform slope, and is the 
Chézy coefficient. Hence, the bottom stress is modelled in the direction of the depth-averaged 
velocity. The volumetric sediment flux, q, is given by the empirical formula: 

C f= / 2
o C f

 

q u
u
uh

h

h
= − ∇

⎛
⎝
⎜

⎞
⎠
⎟ =σ γ| |

| |
( , )b

b xz q qy                                                       (3) 

 
where b and σ are positive constants that depend on the bed porosity and sediment properties. As in 
SDdS, the constantγ  is O(1), therefore taken as γ =1 from the onset. It is assumed that the 
functional form of eq. 3 remains valid to model the volumetric bed load transport under trans-critical 
and supercritical flow conditions. 

The system formed by eqs. 1, 2 and 3 can be closed by applying the following boundary 
conditions at the walls of the channel:  
 

v t x v t x L q t x L q t x Lx y( , , ) ( , , ) ( , , ) ( , , ) .0 0= = = =                                           (4) 
 
The variables are made non-dimensional by making the following substitutions into the model: 

 
x = = ′ ′ = ′ = ′( , ) ( , ), ( / ) , ( / ) ,x y Lx Ly z U g z h U g hb b

2 2                                    (5) 
uh = = ′ ′ = ′ = ′−( , , ) ( , , ), ( / ) ,u v Uu Uv t Tt LU g tb0 0 2 σ  

 
where L is the channel width, and U is the magnitude of the characteristic flow velocity in its 
unperturbed state. Note that the previous assumption of a constant velocity profile introduces a 
fictitious slip velocity at the walls of the channel; however, this slip velocity does not play a role in 
the analysis because the banks are taken as non-erodible. The scaling for  and was chosen such 
that there is a balance between advection terms and the pressure gradient. Because the focus of the 
analysis is on the instability of the bed, the time scale 

zb h

T  is determined by the evolution of the bed. 
Assuming  (implying that the flow is quasi-steady and instantaneously adapts to the 
evolution of the bed) and dropping primes for ease of notation, the system becomes: 

L UT/ << 1

 
( ) ( )u uh h⋅∇ + ∇ + =g h zb G                                                      (6) 

 ( )∇ ⋅ =uh h 0 
 ∂

∂
z
t
b + ∇ ⋅ =q 0 
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where 

G
u uh= − −

⎛
⎝⎜

⎞
⎠⎟CR u

F h
C v

F h
1 2
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,

| |h
2                                                    (7) 

 
and 

q u
u
uh

h

h
= − ∇

⎛
⎝
⎜

⎞
⎠
⎟| |

| |
b

b

F
R

z
2

                                                         (8) 

 
The previous expression was obtained by using i C , thereby imposing a balance between 
forcing and dissipatio. The dimensionless model equations are closed by the boundary conditions in 
eq. 4, except that now the channel walls are located at 

Fo / = 2

y=0 and y=1. 
 From eqs. 6-8, the basic state of the dimensionless model is expressed as 
  

so o= = −( , , , ) ( , , , ).u v h z Fo o o b 1 0 02                                                   (9) 
 

In the next section, a perturbation of this basic state will be considered in order to study the 
stability of the state. Note that if the Froude number is retained in the model studied by SDdS, it 
becomes equivalent to the model studied here in eqs 6-8. However, the SDdS model is expressed in 
terms of variables u , and h zb η  (the deviation of the free surface away from its unperturbed level in 
Figure 1), which together with the scaling used, yields a sediment flux vector that does not include 
the Froude number, F. The model here has been expressed with the variable h instead of η  to 
capture the influence of the Froude number on the dimensionless sediment flux vector. It can be 
seen in eq. 8 that the proportionality of the sediment of flux on the sand bed gradient is in terms of 
F; this is consistent with setting  (i.e. the bed slope and F are proportional to each other in 
the unperturbed state). It is expected the Froude number to play an important role in the stability of 
the bed as it appears in both, the flow equations and the sediment transport equation. 

i C Fo / = 2

 
 
3.   LINEAR STABILITY ANALYSIS 
 
The basic state in eq. 9 is perturbed in such a way that the new state is s s so= + ′  or 
 

( , , , ) ( , , , ) ( , , , )u v h z u v h z u v h zb o o o b b= + ′ ′ ′ ′o                                                (10) 
  
where the primed variables are small perturbations. Inserting this solution into the system formed by 
eqs. 6-8 and neglecting nonlinear terms, four partial differential equations governing the 
perturbations can be found. After dropping primes for ease of notation, these four equations can be 
represented in matrix form as  
 

Ks 0t =                                                                               (11) 
 
where s is the transpose of the solution vector and matrix t s K is 
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K =

+ −
+

− ∇
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∂ ∂ ∂
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2 0
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2

2

2 2( / )

x

R

+ω

                                       (12)                     

 
The channel geometry allows for the decomposition of the perturbation vector as a traveling 

wave multiplied by an unknown lateral structure. Thus, an appropriate solution is of the form  
 

 s f                                  (13) f= + =− − −( ) . . ( ) . .( ) ( )y e c c y e e c ci kx t t i kx trω ω

 
where k is a real-valued, dimensionless wave number, ω  is the complex, dimensionless frequency, 
and c c  denotes the complex conjugate of the preceding term. Homogeneous boundary conditions at 
the banks allow for an oscillating solution in the y-direction. Thus, by inspecting the structure of the 
matrix

. .

K , the vector function f ( )y  is written as  
 

f ( ) ( sin( ), sin( ), sin( ), sin( )y p y p y p y pu v h zb= )yα π α π α π α π    for    p=1,2…                  (14) 
 
thereby enabling s to satisfy the boundary conditions. Alternate bars correspond to the p=1 mode, 
however, other modes will be addressed in our discussion as well. Inserting the solution in eqs. 13 
and 14 into eq. 11 results in a linear system with constants αu , αv , αh , α zb . Non-trivial solutions 
for these constants exist only if the determinant of the system is set to zero. Consequently, this 
solvability condition results in the following dispersion relation between ω and k for the case p=1, 
corresponding to alternate bars: 
    

ω ω=
+
+

= +
a ia
a ia

ir
1 2

3 4
ωi

π

π

2

                                                                            (15) 

where  
 

a bF k CF k CF F k CF k CF1
2 4 2 4 4 2 2 2 2 2 2 2 44 3 2= − + + − −π π                                 (16) 

 
a R F k F k F k F k F k

bCF k R C F k R CF k R

bCF k R C F k R

2
1 4 5 2 5 2 3 2 4 3 2 2 4

2 3 2 4 3 2 2

2 2 2 4 2

2

3 3

3

= − − + −

− − −

+ −

− ( )π π

π

π π

                                      (17) 

 
a CF k R Ck R C R3

2 2 2 24= − − π                                                               (18) 
 

a F k k k C F kR4
2 3 3 2 2 2 23= − − −π                                                             (19) 

 
Using the dispersion relation in eq. 15 αu , αv , αh , and α zb  can be determined up to a 

constant. The stability of the basic state is determined by ωr , the real part of ω , as can be seen from 
eq. 13. If ωr >0, perturbations will decay exponentially in time returning back to the basic state; in 
other words, the basic state is stable. However, if ωr <0, then the basic state is unstable giving way 
to growing alternate bars in the case of p=1. The neutral curve in the (k, F)-plane which separates 
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the stable and unstable states can be obtained by settingωr =0 . The curve ωi =0  helps to distinguish 
between bed perturbations which migrate downstream, namely alternate bars, from those which 
migrate upstream, namely alternate antibars. If ωi >0 , alternate bars occur, and if ωi <0 , alternate 
antibars occur. The term antibars is analogous to the term antidunes commonly found in the 
literature. However, because this model considers a quasi-steady flow, it is unable to yield stationary 
or upstream migrating antibars; these two bed forms result from the interaction of surface gravity 
waves with the bottom. By imposing the quasi-steadiness, gravity waves are excluded from the 
depth-averaged shallow water equations and the only possibility for flow perturbations is to 
propagate with the same velocity as the bed perturbations. Thus, the present model yields only an 
instability region of the alternate bar type and not of the alternate antibar type. Typical values of b, 
C, F, and k were inserted into the expression for ωi  obtained from eq. 15 confirming that the present 
model only yields alternate bars. For a more detailed discussion of this the interested reader is 
directed to the article of Gradowczyk (1968).  
 
 
4.  RESULTS 
 
Despite being written in different variables, the full model in  eq.1 is equivalent to the model of 
SDdS. Consequently, the linear stability analysis of SDS is equivalent to the linear stability analysis 
presented here in the limit . This is evinced in Figure 2 where the neutral stability curves 
associated with the linear stability analysis of eq. 1  in this limit together with the neutral curves 
obtained in the analysis of SDdS are depicted. The latter curve is defined as 

F→ 0

 

λ
δ

δ
=

− +
+ + − +

X X
X X X X

( )
( )( ) (

1
1 2 2 1

3

2 )
                                                          (20) 

  
where  
 

λ
π

=
C R
p

2 2

2 2 ,                X
k

p
=

2

2 2π
,            δ

γ
β

=
C

,              β = −b 1.                              (21) 

 
Both curves are identical and thus the analysis of SDdS is a particular case of the more 

general linear stability analysis, valid for any F, presented here. An interesting note is that neutral 
curves only exist on the  (k, R)-plane in the limit . This suggests that the analysis of SDdS is 
only valid for the cases when F<<1, as they noted. 

F→ 0

 Neutral curves for finite values of F are shown in Figures 3 - 5. The range of parameters used 
to evaluate the neutral curves in Figures 3a - 5a was based on values suggested in SDdS, generally  
corresponding to the subcritical regime. The range of parameters used to evaluate the neutral curves 
in Figures 3b - 5b was based on experimental data reported by Ikeda (1984) for alternate bars  
existing in near-critical and supercritical flow conditions. Based on Ikeda’s data, the range of values 
considered were 0.9<F<2.0, 10<R<50, 5<b<7, 0.004<C<0.008. For these parameters, typical 
 alternate bar wavelengths were in the range 0.7<k<1.0; this is consistent with the regions of 
instability resulting from the current linear stability analysis.  
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Figure 2 Neutral curves on (k, R)-plane obtained from current linear stability analysis in the limit 
 and from eqs 20 and 21 of the model of SDdS (diamonds) for b=3 (blue), b=5 (green) and 

b=7 (red). In all curves, C=0.007,  p=1 and
F→ 0

γ =1. 
 
The neutral stability curves indicate that travelling wave solutions of the model linearized 

about its basic state exist for sufficiently large values of R. In addition, F also plays an important 
role in determining the stability of the basic state, as is evident in Figures 3 - 5. In the present 
analysis, for (k, F)-pairs lying inside the stability curves in Figures 3 - 5, the perturbation of the 
basic state is unstable and grows leading to alternate bars. For (k, F)-pairs lying outside of these 
curves, the perturbation decays leading to a flat bed. As can be observed from the examples in 
Figure 3, alternate bars can occur for both subcritical (F<1) and supercritical (F>1) regimes, 
depending on the value of R. For sufficiently small values of R (e.g. R=24.87), yet large enough for 
solutions of the model to exist, the bars occur only in the subcritical regime. In the examples of 
Figure 3a, when F<<1, instability and thus the formation of bars can occur if R>24.9257, 
suggesting that the analysis of SDdS would be valid only for such values of R.  

Figure 3b shows additional neutral curves on the (k, R)-plane for values of R ranging from 30 
to 90. These curves suggest a minimum value of the wave number (i.e. k~0.3) and a maximum value 
of the Froude number (i.e. F~5.8) at which bars can occur as R increases.  

Figures 4 and 5 demonstrate the dependence of the instability region on parameters b and C, 
respectively. Similar to its dependence on R, the region of instability increases as b and C increase. 
Slight changes to R, b and C can result in great changes to the region of instability. For example, a 
slight perturbation of any these parameters can be the deciding factor in determining the stability of 
the basic state under low-Froude number conditions. 

Finally, neutral curves such as those in Figures 3 - 5 (i.e. cases with ) only exist for the 
p=1 mode (i.e. the alternate bar mode). Thus, the alternate bar mode is the only mode that can 
become unstable. This is in contrast to the case in the limit  for which higher modes can 
become unstable as well (see SDdS for further discussion). 

F≠0

F → 0
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(a) (b)

 
 
Figure 3 Neutral curves on the (k, F)-plane for various values of R. For the curves (a), R=24.929, 
R=24.9257, R=24.92, R=24.88 and R=24.87 with C=0.007 and b=3.8. For the curves on (b), R=20, 
R=30, R=40 and R=50 with C=0.006 and b=6. The instability region (inside the curves) grows as R 
increases.  
 
 
 
 
 

(b)(a)

 
 
Figure 4 Neutral curves on the (k, F)-plane for various values of b. For the curves on (a), b=3.79, 
b=3.795, b=3.8, and b=3.801 with R=24.929 and C=0.007. For the curves on (b), b=4, b=5, b=6 
and b=7 with R=30 and C=0.006. 
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(b)(a)  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 Neutral curves on the (k, F)-plane for various values of C. For the curves on (a), 
C=0.00698, C=0.00699, C=0.007 and C=0.00701 with R=24.929 and b=3.8. For the curves on (b), 
C=0.004, C=0.005, C=0.006, C=0.007 and C=0.008 with R=30 and b=6. 

 
 
5. CONCLUSIONS 
 
The results of the linear stability analysis based on the modified SDdS model indicate that both, the 
width-to-depth ratio R and the flow Froude number F, play important roles in determining the 
stability of the flow-bed boundary. Furthermore, results indicate that downstream-migrating 
alternate bars can occur in the transcritical and supercritical flow regimes. The model is unable to 
yield stationary and upstream-migrating alternate antibars. These results motivate future work 
toward the generalization of the weakly nonlinear analysis of SDdS for all valid R and for 
transcritical and supercritical values of F.  
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