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2.1 Top: We show the SpIES coverage area (yellow and purple rectangles) atop the 100µm
IRAS dust map (Schlegel et al., 1998) of the full SDSS Stripe 82 region (white box). Many
different surveys have covered this region of the sky and overlap with SpIES. Displayed
are the HeLMS (green box) and HeRS (light blue) survey footprints (Oliver et al., 2012;
Viero et al., 2014), the regions observed by XMM-Newton (yellow and orange circles)
and Chandra (red circles were observed with the ACIS-S arrays and blue circles with
the ACIS-I arrays; LaMassa et al. 2013a,b), the VLA (green scallop) from Hodge et al.
(2011), and the SHELA observations (orange boxes) by Papovich et al. (2016), as a few
examples of many surveys that cover the S82 region. More details about other surveys
on S82 can be found in Table 2.2. Bottom: Detailed SpIES 3.6µm (yellow) and 4.5µm
(purple) coverage of Stripe 82 along with SHELA coverage (orange). Both panels are
centered on δ=0 and α values are given in J2000 degrees. . . . . . . . . . . . . . . . . . 14

2.2 Left: One SpIES 3.6µm, double-epoch, stacked AOR from which we extract sources. This is one of 77

stacked AORs (154 single epoch AORs divided by two epochs) that are strung together (see Figure 2.1)

to cover the entire SpIES field. The red circular region illustrates the angular size of the Moon, and

the black region shows the coverage of the same AOR at 4.5µm. Center: An example of the coverage

map of the AOR, showing where the individual pointings of IRAC overlap when they are combined to

form the AOR. These maps are unique to each AOR and are used as weighted images during source

extraction. Pixels with lighter colors have more coverages. The AOR footprint has been padded with a

band corresponding to zero coverage. Right: The flux density uncertainty map of each AOR, where the

values only take into account details in pipeline processing error propagation, not source extraction. In

this map, darker colors correspond to lower uncertainties in flux density. The lower uncertainties align

with the higher coverage values shown in the central panel. . . . . . . . . . . . . . . . . . . . . . 19

2.3 Comparison of the calculated 4.5 µm 5σ depth to area of the major Spitzer surveys. Depths are calculated

using the Spitzer Sensitivity Performance Estimation Tool (SENS-PET) assuming a low background.

At ∼115 deg2 in area SpIES is the largest Spitzer survey and probes SWIRE depths (Lonsdale et al.,

2003). Open circles show the measured depth (left; see Table 2.9) and calculated depth from SENS-PET

with a medium background (right) for SpIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Left: Typical SpIES Level 1 BCD image from the SSC before corrections. The bright pixel (red circle)

causes its whole column to drop to a low background value (causing the white line across the full array).

Right: A cBCD image, which is the BCD image after it has been corrected for known signatures, such

as the column pulldown in the left panel. The cBCD images are the size of an IRAC FOV (5.′2×5.′2)

and are mosaicked together to form the larger AORs seen in Figure 2.2. Both images are centered at

(α, δ)=(32.611, -0.887) degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Shown on the left is an example of two bright stars in a ∼3′×4.′5 cutout of a 3.6µm cBCD (centered

at (α, δ)=(34.464, -0.169) degrees). The image in the right panel is the next observation (centered

at (α, δ)=(34.482, -0.247) degrees) showing the latent images from the bright stars in the previous

observation (left panel). The green circles highlight the pixel location of the latent objects in IRAC from

subsequent observations at different sky locations. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Here, the left panel shows a portion of the final stacked AOR image after sky matching to the right panel

in Figure 2.5 (also the right panel of this figure) with the latent object locations outlined in green. The

latent objects in the cBCD (right panel) are masked in the final stacked image (left panel) because the

latent image bits were turned off in the MOPEX processing pipeline (see Table 2.4), therefore, they do

not appear in the final catalogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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2.7 Comparison of a ∼100 arcmin2 box of a SpIES 4.5µm image and a 4.6µm image which
cover approximately the same central wavelength. ‘Warm’ IRAC 4.5µm has a PSF
of 2.′′02 compared to 6.′′4 for WISE 4.6µm, allowing SpIES to resolve objects that are
blended in WISE. Additionally, the superior depth of SpIES (AB magnitude of ∼22 in
[4.5] compared to ∼18.8 in W2) yields more sources above the background (∼1400 in the
dual-band catalog) in the field shown compared to WISE (∼350 in AllWISE). The blue
boxes represent a single FOV of IRAC (5.′2× 5.′2). . . . . . . . . . . . . . . . . . . . . . 27

2.8 Comparisons of the CLASS STAR parameter at 3.6µm for objects matched to SDSS
sources. We show the distribution for all optically extended sources (red) and all optical
point sources (dark blue). Optically extended sources peak at CLASS STAR∼0, while
optical point sources peak at ∼1; however there is a small peak at 0.5 implying that
SExtractor could not differentiate between point or extended. For bright objects ([3.6] ≤
20.5), however, the extended (orange dashed) and point (light blue dashed) sources still
peak at 0 and 1, respectively, but there are far fewer confused classifications. A similar
trend occurs for the objects detected at 4.5µm. . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 The 335 stacked 6 ≤ Ks-magnitude≤ 7 stars matched to SpIES within 300′′. The black
dashed circle shows the radius out to which we flag objects as potentially contaminated. 40

2.10 Radial profiles of the number density of objects within 300′′ of 2MASS stars in magnitude
ranges given in Table 2.8, showing how the number density of detected objects around
bright stars changes as a function of distance from the center of the star. The peak in
these curves is the over-dense region where there are spurious detections due to artifacts
such as diffraction spikes. We cut at the radius where the curves approach a constant
value of number density for each magnitude. . . . . . . . . . . . . . . . . . . . . . . . . 41

2.11 Comparison of the SpIES and SDSS astrometry for matched point sources with good flags
in both surveys. Darker regions and histograms show the approximate point density. We
use the mean offsets of the ∆RA and ∆DEC distributions shown here to correct the
SpIES astrometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.12 Completeness as a function of 3.6µm flux density (and [3.6]; top) and 4.5µm flux den-
sity (and [4.5]; bottom ) of our simulated sources. The orange dot-dashed line marks
the faintest detection of (5σ) objects at 6.13 µJy and 5.75 µJy at 3.6µm and 4.5µm,
respectively; the red dashed line shows (2σ) objects at 2.58µJy and 2.47µJy at 3.6µm
and 4.5µm, respectively, as measured from the curves in Figure 2.14. The completeness
curves are less affected by artifacts at faint magnitudes since the analysis is done with
simulated sources, and thus are better estimates of depth than the number counts. . . . 44

2.13 Differential number counts per magnitude over the full SpIES field for all objects with a
HIGH REL > 0. In both panels, we divide the counts by an area of 101 deg2 which is
the area covered for this footprint in each detector. Top: SpIES 5σ catalog (black dash)
histogram of number of objects per square degree vs flux density (µJy) for all objects
detected at 3.6µm. Also shown are the number counts from the SERVS XMM field
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Abstract
Clustering of High-Redshift Quasars

John D. Timlin III
Dr. Gordon Richards

In this work, we investigate the clustering of faint quasars in the early Universe and use the

clustering strength to gain a better understanding of quasar feedback mechanisms and the growth

of central super-massive black holes at early times in the history of the Universe. It has long been

understood (e.g., Hopkins et al. 2007a) that the clustering of distant quasars can be used as a probe

of different feedback models; however, until now, there was no sample of faint, high-redshift quasars

with sufficient density to accurately measure the clustering strength. Therefore we conducted a

new survey to increase the number density of these objects. Here, we describe the Spitzer -IRAC

Equatorial Survey (SpIES) which is a moderately deep, large-area Spitzer survey which was designed

to discover faint, high-redshift (2.9 ≤ z ≤ 5.1) quasars. SpIES spans ∼115 deg2 in the equatorial

“Stripe 82” region of the Sloan Digital Sky Survey (SDSS) and probes to 5σ depths of 6.13 µJy

(21.93 AB magnitude) and 5.75 µJy (22.0 AB magnitude) at 3.6 and 4.5 microns. At these depths,

SpIES is able to observe faint quasars, and we show that SpIES recovers ∼ 94% of the high-redshift

(z ≥ 3.5), spectroscopically-confirmed quasars that lie within its footprint. SpIES is also ideally

located on Stripe 82 for two reasons: It surrounds existing infrared data from the Spitzer -HETDEX

Exploratory Large-area (SHELA) survey which increases the area of infrared coverage, and there

is a wide range of multi-wavelength, multi-epoch ancillary data on Stripe 82 which we can use

together to select high-redshift quasar candidates. To photometrically identify quasar candidates,

we combined the optical data from the Sloan Digital Sky Survey and the infrared data from SpIES

and SHELA and employed three machine learning algorithms. These algorithms were trained on the

optical/infrared colors of known, high-redshift quasars. Using this method, we generate a sample

of 1378 objects that are both faint (i ≥ 20.2) and high-redshift (2.9 ≤ z ≤ 5.1) which we use to

compute the angular two-point correlation function. We fit a single power-law model with an index
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of δ = 1.39± 0.618 and amplitude of θ0 = 0.71± 0.546 arcmin to the correlation function, as well as

a dark matter model with a bias of b = 6.78± 1.79. The bias in our investigation suggests a model

of quasar feedback that considers quasar activity as an intermittent phase in galaxy evolution. If

this model is correct, quasar feedback is strong enough to periodically halt the accretion of gas onto

the central super-massive black hole of the quasar, which shuts down quasar activity and causes the

black hole to stop growing, however it is not strong enough to completely shut down the quasar in

the early Universe.

Abstract
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Chapter 1: Introduction

The cosmological principle assumes that the density distribution in the universe at large scales is

both homogeneous and isotropic. Homogeneity is the idea that the average density of the universe is

the same at any location, and isotropy means that there is no preferred direction to observe. In other

words, the large scale distribution of matter is the same at any location in the universe, and will

be the same no matter which direction one looks. While this is true on very large scales (hundreds

of mega-parsecs), observations have shown that the density of matter on smaller scales is, in fact,

quite clustered. For example, Figure 1.11 shows that the observed galaxy distribution in the Sloan

Digital Sky Survey (SDSS; York et al. 2000), as represented as green and red points, tend to lie in

large groups and along filaments that connect the groups. So, while at large scales the universe may

be uniform, at smaller scales it certainly is not.

Figure 1.1 Observed distribution of galaxies in the local universe from SDSS. Each point depicts the location of a
spectroscopically-confirmed galaxy. This image shows that the distribution of galaxies is not homoegenous on small
scales, and matter tends to cluster together. Images from surveys like this fueled new theories about the large scale
evolution of the universe. Image Credit: M. Blanton and SDSS

Observations of large scale structure, like the one from SDSS, provide a benchmark for theories

1http://www.sdss.org/science/orangepie/
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and simulations in the pursuit to understand how the universe evolved from early times to the

current epoch. The prevailing theory of universal evolution suggests that, instead of having a uniform

density everywhere, the dark matter distribution instead harbored regions of slight over-densities

in the early universe. Over time, and under the influence of gravity, these over-dense regions grew

hierarchically, meaning as the small over-densities grew, they became more massive which, in turn,

attracted more matter. Over time, the small perturbations grew into the over-dense regions observed

today. The Millennium Simulation (Springel et al., 2005), which is a large simulation designed to

track the evolution of dark matter and galaxies over cosmic time, has shown that this is a plausible

solution. Figure 1.22 depicts the simulated dark-matter distribution at various epochs. As the age

of the universe increases (looking from left to right), the relatively smooth universe becomes clumpy.

Moreover, the results of this simulation at the current epoch show that the distribution of visible

matter traces the distribution of the underlying dark matter, as depicted in Figure 1.3. Visually,

the two distributions look identical, but to properly compare the observed galaxy distribution and

the underlying dark matter distribution over cosmic time, we must first quantify the ‘clumpiness’ of

these two distributions.

Figure 1.2 Evolution of the dark matter density field over time from the Millennium Simulation, where the age
of the universe increases from the left panel to the right panel. Over this period of time, the universe goes from
relatively smooth (left) to more noticably more clustered (right). Image Credit: The Millennium Simulation Team
(https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/)

One of the most fundamental measurements used to measure the degree of ‘clumpiness’ of both

the dark matter and visible matter distribution is the two-point correlation function. This statistic

measures the excess probability, above random, of finding a pair of objects separated by a particular

distance (Totsuji & Kihara 1969; Peebles 1980). Mathematically, the correlation function is defined

2https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
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Figure 1.3 Distribution of visible matter (left) and dark matter (right) in the Millennium Simulation. This simulation
shows that the distribtion of the visible matter traces the density of the underlying dark matter in the current universe.
Measurements of the distribtuion of visible matter must be made over cosmic time to track the evolution of large
scale structure. Image Credit: The Millennium Simulation Team (https://wwwmpa.mpa-garching.mpg.de/galform/
virgo/millennium/)

as the inner product of the density perturbations in an underlying density field. For a homogeneous

field (i.e. there is no perturbation in the density), the correlation function is equal to zero. With

the results from simulations such as the aforementioned Millenium Simulation, which assumes a flat

universe with cold dark matter and a cosmological constant, the correlation function of the dark

matter can be computed at any epoch using the mathematical definition directly. Computing the

correlation function of matter, namely galaxies, however is slightly different. The process by which

galaxies form and evolve is still uncertain, but we know that gravity is not the only force acting on

the system. The baryonic matter in the galaxy interacts electromagnetically with its surroundings

which, in turn, effects the dynamics of the galaxy throughout its evolution. Due to these other forces,

there is no particular reason why the galaxy distribution should trace the underlying dark matter

(Liddle & Lyth, 2000). To rectify this problem, Kaiser (1984) introduced the idea that massive

galaxies are rare objects that lie only at the peaks of the dark matter distribution, and thus can

be considered biased tracers of the underlying dark matter. Therefore, despite the complex physics

that happens during galaxy formation and evolution, the clustering of these galaxies differs from the

clustering of dark matter by only a scale factor called the clustering bias. This bias parameter can

be estimated, then, by comparing the theoretical prediction of the dark matter correlation function

with an accurate measurement of the galaxy correlation function at the same epoch.

Chapter 1: Introduction
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Figure 1.4 Left: Mock data representing a random sample of objects in the sky (red) and a highly clustered set of
data (black). To estimate the correlation function, pairs of points are counted inside of circles of increasing radii (as
represented by the blue circles). Right: Example clustering signal from Myers et al. (2007) which we use to represent
the clustering of the black points in the left hand panel. We show that as the size of the circle increases, the strength
of the clustering signal decreases. This implies that, at larger scales, the distribution becomes more homoegeneous.
Image credit: Adam Myers

Estimating the correlation function of a population of objects is different than measuring that

of dark matter because we cannot directly measure density perturbations from the visible matter.

We can, however, measure the position of galaxies in space and use different estimators to compute

the correlation function. These estimators require that we compare the positions of the galaxy with

a distribution of random points. A toy example of this scenario is depicted in the left panel of

Figure 1.4, where we show a distribution of random data (red points), which exhibit no clustering

signal, and a distribution of clustered data (black points). To estimate the correlation function

of the clustered data, one counts the number of pairs of data and random points inside annuli of

increasing radius, as represented by the blue circles. The correlation function is, then, a linear

combination of these different pair counts. An example correlation function from Myers et al. (2007)

is presented in the right hand panel of Figure 1.4. From this Figure we see that as the radius of

the circle increases, the clustering amplitude decreases. This measurement implies that, as the scale

grows, the observed distribution of visible matter becomes more homogeneous. Since the estimators

only require the positional information, the correlation function can be computed for a variety of

astronomical objects such as stars, galaxies, quasars, and even the cosmic microwave background.

Chapter 1: Introduction
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Despite being a simple statistic that reports whether or not a distribution is random, the correlation

function can can have many different physical implications depending on which population is being

analyzed.

In this work, we are particularly interested in studying the clustering of quasars, which are ac-

tively accreting super-massive black holes at the center of massive galaxies (Salpeter 1964; Lynden-

Bell 1969; Rees 1984). The widely accepted toy model of quasars, as set forth by Antonucci (1993),

depicts the average quasar having the following properties: a central super-massive black hole sur-

rounded by an accretion disk which shines from X-ray to optical wavelengths, both broad and narrow

line regions responsible for spectral emission lines that can be used to estimate systemic redshift (or

distance from the observer), and a dusty region which absorbs light from the disk and reprocesses

it into the infrared wavelengths. Radiation from the accretion disk is the result of frictional heating

of the gas, spiraling at speeds fractional to the speed of light around the black hole. This friction

heats the disk to temperatures hot enough to produce X-ray radiation near the center of the disk,

where the gas travels the fastest, as well as ultraviolet and optical light further out. The radiation

from the disk also interacts with the surrounding dust, which absorbs and reprocesses the light into

infrared wavelengths. Quasars are unique in they they brightly shine at nearly every wavelength in

the electromagnetic spectrum. As a result, quasars are some of the most luminous objects in the

universe, and thus can be seen out to great distances. Since light travels at a finite speed, observing

distant objects is equivalent to looking at the universe earlier in its history. Also, since quasars live

at the centers of massive galaxies, they reside in the peaks in the dark matter distribution, and are

thus biased tracers of the underlying dark matter (Sheth & Tormen, 1999). Therefore, quasars are

excellent probes of the structure in the early universe.

In the early universe, the majority of luminous quasars (such as cataloged by SDSS) are born

due to the major merger of two massive, gas-rich galaxies. Figure 1.5 depicts a series of snapshots

of a simulation designed to track this type of merger (image courtesy Phil Hopkins). The simulation

begins in the top left panel, which depicts two galaxies of approximately the same mass that are

gravitationally bound. As the galaxies pass through each other, the gas begins to heat (signified

Chapter 1: Introduction
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Figure 1.5 Simulation of a pair of galaxies undergoing a major merger. The simulation begins in the top left panel
with two gas-rich galaxies falling towards each other due to gravity. As time evolves, the galaxies undergo a major
merger, which heats the gas (indicated by the red color) and causes the gas to become perturbed in the system. As
the central black holes of the galaxies merge, the gas begins to fall into the central region. This gas is then accreted
by the new black hole at the center of the merged galaxy which triggers a luminous quasar (shown in the panel in the
fourth row, third column). The radiation from the central quasar interacts with the surrounding gas, pushing it out
of the gravitational potential well, which stops accretion and ends the quasar activity. Image credit: Phil Hopkins.

by a change in color from blue to red) and becomes perturbed. Over time, the supermassive black

holes of these two galaxies merge forming a single black hole, and the perturbed gas begins to fall in

toward the center of the newly formed galaxy. The center of the galaxy begins to shine brightly, due

to the gas being accreted onto the supermassive black hole, forming a quasar (shown in the fourth

row of Figure 1.5). It is in this quasar phase where the supermassive black hole grows significantly

because of the gas that is falling into the center. If the quasar shines bright enough, the radiation

from the central source will interact with the surrounding gas in a process called quasar feedback.

Chapter 1: Introduction



7

When the radiation pressure on the gas is large enough to push the gas out of the potential well

of the black hole, accretion ceases and the quasar shuts down (shown in the bottom row of Figure

1.5). Quasar feedback, therefore, is a way for the quasar to self-regulate: the brighter it shines, the

larger the pressure will be on the surrounding gas blowing it out of the central region. If there is no

more gas in the central region for the black hole to accrete, the black hole no longer grows: therefore

quasar feedback can also regulate black hole growth over time.

While quasar feedback is a well accepted idea, there are still questions about how big of a role

this plays in the evolution of the quasar and of the host galaxy, particularly in the early universe.

To address this question, Hopkins et al. (2007a) sought to test different feedback models in large

simulations, and used the clustering strength (bias) as the metric to compare to observations. Their

models, shown in Figure 1.6, were designed to align with the known quasar clustering results from

observational studies of low-redshift quasars, and predict the clustering strength of different models

at high-redshift. The left panel of Figure 1.6 depicts the strongest feedback model where the radiation

from the quasar is powerful enough to completely blow the gas from the central region, implying that

the quasar is a singular phase in the evolution of the galaxy. The middle panel presents the standard

feedback model, which suggests that feedback is powerful enough to push gas away from the black

hole, but not completely, and thus the gas will eventually fall back in to the center. This model

predicts that the quasar phase in a galaxy is intermittent, turning off only when the quasar shines

brightly. Finally, the right panel of Figure 1.6 shows the model where feedback lags, or feedback

is inefficient at blowing gas away from the central source until the observed epoch of downsizing

begins. While the solid lines in Figure 1.6 predict three divergent clustering results, the dotted and

dot-dashed lines predict degenerate results for observations that do not sample the faint end of the

quasar distribution. If, for example, the observed quasars are brighter than magnitude i = 20.2,

all of the clustering results at high-redshift will follow the dotted line. However, if one creates a

sample of quasars that breaks this degeneracy between 3 ≤ z ≤ 4, then a measurement of the quasar

correlation function can constrain these three divergent models.

In this work we present the first measurement of the two-point autocorrelation function of faint

Chapter 1: Introduction
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Figure 1.6 Prediction of the clustering strength as a function of redshift for three different feedback models from
Hopkins et al. (2007a). The solid line in the left panel shows the predicted bias for quasars that exhibit ‘strong
feedback’ which is capable of blowing the gas from the central region and shutting off the quasar. The same line in the
center panel depicts the bias for quasars with ‘standard feedback’, where the radiation is strong enough to push the
gas from the center, but not strong enough to completely remove the gas from the potential well of the black hole. In
this model the quasar intermittently turns on and off at high-redshift. The solid line in the right panel shows a model
in which ‘feedback lags’, which means that the radiation is not strong enough to blow the gas away from the central
region. These models were designed to fit observations at low-redshift (depicted by the points), however diverge at
higher-redshift. Additionally, the dotted and dot-dashed lines depict the predicted bias from the feedback models if
the quasar sample used to compute the bias only contains bright quasars. To break this degeneracy, the clustering of
faint, high-redshift quasars must be computed.

quasars (i ≤ 20.2) at high-redshift (2.9 ≤ z ≤ 5.1) to test these quasar feedback models from

Hopkins et al. (2007a). Until now, there has not been a comprehensive quasar sample with a

sufficient amount of objects that satisfied all of the required magnitude and redshift constraints

to break the degeneracy. In Chapter 2 we describe the technical details of a survey we conducted

using the Spitzer Space Telescope, that was specially designed to help discover faint quasars over

a wide area on the sky. Included in this section is an overview of the Stripe 82 field, our image

stacking method, and we compare to our study to other infrared surveys in this field. We also

describe our source extraction method, give estimates of the depth of the survey, and discuss our

reported astrometry and photometry, including a discussion of the reported photometric errors.

Finally, we present our full photometric catalog and test how robust the catalog is at detecting high-

redshift quasars. The infrared data and optical data are combined in Chapter 3 where we discuss

photometric selection algorithms which we use to classify quasars in these catalogs. We present the

machine learning algorithms used in this study to select faint, high-redshift quasars, as well as the

catalog of quasars we used to compute the correlation function. In Chapter 3 we also provide a

more rigorous definition of the correlation function and how we compute the clustering strengths of

Chapter 1: Introduction
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our quasar set. Finally, we compare our clustering result to other recent results, we describe the

feedback models from Hopkins et al. (2007a), and present our final clustering result. We conclude

in Chapter 4 with a summary of results and a discussion of future work that can be done with this

data set.

Chapter 1: Introduction
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Chapter 2: The Spitzer IRAC Equatorial Survey

Abstract

We describe the first data release from the Spitzer -IRAC Equatorial Survey (SpIES); a large-area

survey of ∼115 deg2 in the Equatorial SDSS Stripe 82 field using Spitzer during its ‘warm’ mission

phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering

and the luminosity function at z ≥ 3 to test various models for “feedback” from active galactic

nuclei (AGN). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data

enables SpIES to identify both high-redshift (z ≥ 5) quasars as well as obscured quasars missed by

optical surveys. SpIES achieves 5σ depths of 6.13 µJy (21.93 AB magnitude) and 5.75 µJy (22.0 AB

magnitude) at 3.6 and 4.5 microns, respectively—depths significantly fainter than WISE. We show

that the SpIES survey recovers a much larger fraction of spectroscopically-confirmed quasars (∼98%)

in Stripe 82 than are recovered by WISE (∼55%). This depth is especially powerful at high-redshift

(z ≥ 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here

we define the SpIES survey parameters and describe the image processing, source extraction, and

catalog production methods used to analyze the SpIES data. In addition to this survey paper, we

release 234 images created by the SpIES team and three detection catalogs: a 3.6µm-only detection

catalog containing ∼6.1 million sources, a 4.5µm-only detection catalog containing ∼6.5 million

sources, and a dual-band detection catalog containing ∼5.4 million sources.

2.1 Introduction

The Spitzer Space Telescope (Werner et al., 2004) has been paramount in understanding the Universe

at mid-infrared wavelengths. During its primary mission, Spitzer observed at 3.6, 4.5, 5.8, and 8.0

µm using the Infrared Array Camera (IRAC; Fazio et al. 2004), at 24, 70, and 160 µm using the

Multiband Imaging Photometer for Spitzer (MIPS; Rieke et al. 2004) camera, and had a dedicated

infrared spectrograph (IRS; Houck et al. 2004) covering wavelengths from 5.3 to 38 µm. Since the
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exhaustion of its cryogen in 2009, Spitzer has run its ‘warm’ mission phase, taking images with the

two shortest IRAC passbands (3.6 and 4.5 µm).

Spitzer IRAC has been a valuable tool in the creation of deep, relatively small area surveys

through campaigns like the ∼2 deg2 Spitzer-COSMOS survey (S-COSMOS; Sanders et al. 2007)

and the ∼10 deg2 Spitzer Deep, Wide-field Survey (SDWFS; Ashby et al. 2009) utilizing all four of

the IRAC bands. Spitzer continues to delve deeper in its ‘warm’ phase with the IRAC ultradeep

filed (IUDF; Labbe et al. 2015), the ∼1.2 deg2 Spitzer Large Area Survey with Hyper-Suprime-Cam

(SPLASH; Steinhardt et al. 2014), and the ∼18 deg2 Spitzer Extragalactic Representative Volume

Survey (SERVS; Mauduit et al. 2012).

Despite having a relatively small 5.′2×5.′2 field of view (FOV), IRAC has also effectively and

efficiently run larger-area programs throughout its lifetime such as the ∼65 deg2 SIRTF Wide-Area

Infrared Extragalactic Survey (SWIRE; Lonsdale et al. 2003). Recently, Spitzer has made an effort

to run larger-area surveys in the ‘warm’ phase with the ∼26 deg2 Spitzer -HETDEX Exploratory

Large Area (SHELA; Papovich et al. 2016) and the ∼94 deg2 Spitzer South Pole Telescope Deep

Field (SSDF; Ashby et al. 2013) mission which, until now, had the largest area of any Spitzer survey.

These large-area campaigns are made possible by the IRAC mapping mode strategy, which aligns

the arrays on a positional grid, allowing observations to overlap through successive motions in the

grid. This approach differs from other observing strategies, many of which forced the telescope to

slew to a single position multiple times to observe the same location on the sky in a different channel

(see Section 3.2 of the IRAC Instrument Handbook1). Mapping mode decreases slew time, allowing

for larger area surveys to be performed while still reaching interesting flux limits.

Spitzer is not the only telescope performing large area, mid-infrared observations of the Universe.

The Wide-field Infrared Survey Explorer (WISE ; Wright et al. 2010) telescope has been mapping

the entire sky in four channels, two of which have nearly the same wavelength as ‘warm’ Spitzer (3.4

and 4.6 µm). While WISE covers essentially the entire sky, it lacks both the depth and the spatial

resolution that Spitzer IRAC surveys can achieve.

1http://irsa.ipac.caltech.edu/data/SPITZER
/docs/irac/iracinstrumenthandbook/

Chapter 2: SpIES 2.1 Introduction
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Table 2.1. The Spitzer IRAC Equatorial Survey (SpIES) key parameters

Parameter Value

Imaging IRAC Ch1 and Ch2
Wavelength 3.6 and 4.5 µm
Areaa ∼115 deg2

No. of IRAC pointings ∼70,000
Exposure Time at each pointing 60s
Total Observation Time 820hr
Typical Zodiacal Background 0.09− 0.23 MJy sr−1

IRAC PSF FWHMb 1.′′95, 2.′′02
Total number of objectsc ∼5,400,000
Limiting AB Magnituded (5σ) 21.93, 22.0
Data URL:

http://www.physics.drexel.edu/~gtr/spies/

Note. — a Total survey area covered by both detectors.
The area covered by a single detector decreases due to their
separation on IRAC (details in Section 2.3). b5σ dual-band
detection catalog (see Section 2.5). cTotal number of ob-
jects in the dual-band catalog. dValues are for the 3.6µm,
4.5µm detectors.

In this paper, we describe the Spitzer IRAC Equatorial Survey (SpIES) parameters and catalogs.

SpIES mapped a large portion of the Sloan Digital Sky Survey (SDSS; York et al. 2000) equatorial

S82 field (Stoughton et al. 2002; Annis et al. 2014; Jiang et al. 2014), utilizing the Spitzer 3.6 and

4.5 µm bands (often referred to as Ch1 and Ch2 respectively). Collecting ∼115 deg2 over ∼820

hours, SpIES is the largest area Spitzer survey, probing to depths comparable to SWIRE. Table 2.1

contains the key parameters of SpIES such as the wavelengths and point spread function of IRAC,

along with the observation times, area, and depth of the SpIES survey. With this release, we present

three SpIES source catalogs consisting of ∼6.1 million objects detected only at 3.6µm, ∼6.6 million

objects detected only at 4.5µm, and a dual-band detection catalog which contains ∼5.4 million

detections in both bands. We also release the images generated by the SpIES team used to build

the catalogs described herein.

The combined depth and area of the SpIES, along with the wealth of multi-wavelength, multi-

epoch ancillary imaging and spectroscopic data on Stripe 82 (S82; Stoughton et al. 2002; Annis

Chapter 2: SpIES 2.1 Introduction
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et al. 2014; Jiang et al. 2014), make it a powerful tool for addressing a wide range of topics in

contemporary astrophysics. In particular, we seek to use the data to: probe the population of

obscured quasars at high redshift (e.g., Alexandroff et al. 2013; Glikman et al. 2013; Assef et al.

2015); use high-redshift unobscured quasars to investigate how quasar feedback contributes to galaxy

evolution (e.g., Hopkins et al. 2007b; White et al. 2012); improve the removal of foreground objects

from maps of the cosmic microwave background (Wang et al., 2006); better constrain the stellar

masses of Lyman Break Galaxies (e.g., Daddi et al. 2007); improve stellar population modeling for

hosts of supernovae (e.g., Sullivan et al. 2010; Fox et al. 2015); and enable discovery of cool stars

(e.g., Lucas et al. 2010).

We begin our discussion by describing the existing data covering the S82 footprint in Section

2.2, followed by the Spitzer observation strategy used for SpIES in Section 2.3. We discuss the

data products from Spitzer and our image stacking process in Section 2.4. The SpIES catalogs

are described Section 2.5, which includes source extraction techniques, photometric errors, and

astrometric reliability. This section also discusses the completeness, number counts, and depth of

the SpIES detection catalog. Finally, in Section 2.6, we match SpIES objects to various quasar

catalogs to test the SpIES recovery fraction of high-redshift quasars. We also provide a summary of

the SpIES survey and links to the data products in Appendix 2.7.

We calculate magnitudes on the AB scale, which has a flux density zeropoint of 3631Jy (Oke &

Gunn, 1983a). These are denoted as [3.6] and [4.5], respectively. Conversion to Vega magnitudes is

given by [3.6]−2.779 and [4.5]−3.264, respectively (calculated using the Vega zeropoint flux density

values of 280.9 Jy at 3.6µm and 179.7 Jy at 4.5µm from Table 4.1 in the IRAC Handbook1).

2.2 The Stripe 82 Region

The observational goal of the SpIES project was to map S82 in order to provide a suitably large

“laboratory” in which to conduct the types of experiments that involve rare objects, as noted above.

S82 is located on the Celestial Equator spanning a range of −60◦ ≤ α ≤ 60◦ and −1.25◦ ≤ δ ≤ 1.25◦.

The SpIES observations cover approximately one third of this region centered on δ = 0◦ and spanning

the range from −30◦ ≤ α ≤ 35◦, with a break in coverage between 13.9◦ ≤ α ≤ 27.2◦ where deeper

Chapter 2: SpIES 2.2 The Stripe 82 Region
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Figure 2.1 Top: We show the SpIES coverage area (yellow and purple rectangles) atop the 100µm
IRAS dust map (Schlegel et al., 1998) of the full SDSS Stripe 82 region (white box). Many different
surveys have covered this region of the sky and overlap with SpIES. Displayed are the HeLMS (green
box) and HeRS (light blue) survey footprints (Oliver et al., 2012; Viero et al., 2014), the regions
observed by XMM-Newton (yellow and orange circles) and Chandra (red circles were observed with
the ACIS-S arrays and blue circles with the ACIS-I arrays; LaMassa et al. 2013a,b), the VLA (green
scallop) from Hodge et al. (2011), and the SHELA observations (orange boxes) by Papovich et al.
(2016), as a few examples of many surveys that cover the S82 region. More details about other
surveys on S82 can be found in Table 2.2. Bottom: Detailed SpIES 3.6µm (yellow) and 4.5µm
(purple) coverage of Stripe 82 along with SHELA coverage (orange). Both panels are centered on
δ=0 and α values are given in J2000 degrees.

Chapter 2: SpIES 2.2 The Stripe 82 Region
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IRAC data exists from the SHELA (Papovich et al., 2016) survey. Within those RA limits, SpIES

completely covers S82 from −0.85◦ ≤ δ ≤ 0.85◦ with irregular coverage outside of that declination

range due to the orientation of observations (see Figure 2.1). The SpIES footprint was chosen to take

advantage of the SHELA footprint and for its relatively low background at mid-infrared wavelengths.

As described in more detail in Section 2.5.5, background noise can drastically decrease the depth of

the survey, which makes observing the faintest sources prohibitively difficult.

SDSS observed S82 in five optical filters (ugriz ; Fukugita et al. 1996) to find variable objects

and to obtain deeper imaging than the wider-area SDSS observations in the Northern Galactic Cap

(York et al. 2000; Frieman et al. 2008; Annis et al. 2014). SDSS-I/II observed the full S82 field ∼80

times over 8 years resulting in photometry which reaches nearly two magnitudes fainter than the

other fields in the survey (Annis et al. 2014, Jiang et al. 2014). S82 has also been observed multiple

times with the SDSS spectrographs (Smee et al., 2013) as part of the SDSS-I/II (York et al., 2000)

and SDSS-III/BOSS (Eisenstein et al., 2011) campaigns, along with spectra from other facilities such

as 2dF, 6dF, and AUS (Croom et al. 2004, 2009), WiggleZ (Drinkwater et al., 2010), the Virmos-

VLT Deep Survey (VVDS; Le Fèvre et al. 2005), the VIMOS Public Extragalactic Redshift Survey

(VIPERS1; de la Torre et al. 2013), DEEP2 (Davis et al., 2007), and the Prism Multi-Object Survey

(PRIMUS; Coil et al. 2011). In total these facilities have collected ∼125,000 high quality spectra

across its entire area.

In addition to the collection of deep SDSS optical imaging (reaching a 5σ AB magnitude of 24.6

in the r-band) and spectra, S82 contains a vast amount of multi-wavelength imaging taken over

many epochs. The two panels of Figure 2.1 show several multi-wavelength surveys that overlap with

the SpIES region. At radio wavelengths, in addition to full coverage by the Faint Images of the

Radio Sky at Twenty-centimeters (FIRST; Becker et al. 1995, Helfand et al. 2015) survey, Hodge

et al. (2011) provided 1.′′8 resolution data down to 52µJy at 1.4GHz (L-band) over ∼90 deg2 of

Stripe 82 (twice the resolution and three times the depth of FIRST). Additional radio data will be

forthcoming at lower resolution (e.g., Jarvis et al. 2014) and at higher frequency (Mooley et al.,

2014).

Chapter 2: SpIES 2.2 The Stripe 82 Region
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Table 2.2. Deep imaging data available on Stripe 82

Waveband Origin Depth Coverage Reference
λeff (µm) (deg2)

2-10 keV XMM-Newton 4.7×−15 erg s−1 cm−2 31.3a LaMassa et al. (2015)
0.5-2 keV XMM-Newton 8.7×−16 erg s−1 cm−2 31.3a LaMassa et al. (2015)
FUV, 1350–1750 Å GALEX mAB ' 23 ∼200 Martin et al. (2005)
NUV, 1750–2750 Å GALEX mAB ' 23 ∼200 Martin et al. (2005)
0.355 (u) SDSS mAB = 23.90 ∼300 Jiang et al. (2014)

0.5 (g) SDSS mAB = 25.10 ∼300 Jiang et al. (2014)

HSCb mAB = 26.50 ∼300 Miyazaki et al.
DES mAB = 26.50 ∼300 Diehl et al. (2014)

0.6 (r) SDSS mAB = 24, 60 ∼300 Jiang et al. (2014)

HSCb mAB = 26.10 ∼300 Miyazaki et al.
DES mAB = 26.00 ∼300 Diehl et al. (2014)

0.7 (i) SDSS mAB = 24.10 ∼300 Jiang et al. (2014)

HSCb mAB = 25.90 ∼300 Miyazaki et al.
CS82 mAB = 24.00 ∼170 Kneib et al. in prep.
DES mAB = 25.30 ∼300 Diehl et al. (2014)

0.9 (z) SDSS mAB = 22.80 ∼300 Jiang et al. (2014)

HSCb mAB = 25.10 ∼300 Miyazaki et al.
DES mAB = 24.70 ∼300 Diehl et al. (2014)

1.00 (Y ) ULASc mAB = 20.93 277.5 Lawrence et al. (2007)

HSCb mAB = 24.40 ∼300 Miyazaki et al.
DES mAB = 23.00 ∼300 Diehl et al. (2014)
VHS mAB = 21.20 ∼300 McMahon et al. (2013)

Chapter 2: SpIES 2.2 The Stripe 82 Region
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Table 2.2 (cont’d)

Waveband Origin Depth Coverage Reference
λeff (µm) (deg2)

1.35 (J) ULASc mAB = 20.44, 24 µJy 277.5 Lawrence et al. (2007)
VICS82, mAB = 22.70 150 Geach et al. in prep.

VHS mAB = 22.20 ∼300 McMahon et al. (2013)

1.65 (H) ULASc mAB = 19.98, 37 µJy 277.5 Lawrence et al. (2007)
VHS mAB = 20.60 ∼300 McMahon et al. (2013)

2.20 (Ks) ULASc mAB = 20.10, 33 µJy 277.5 Lawrence et al. (2007)
VICS82 mAB = 21.60 150 Geach et al. in prep.

VHS mAB = 21.50 ∼300 McMahon et al. (2013)

3.6 (Ch1) SpIES mAB = 21.90 ∼115 this paper
SHELA mAB = 22.05 ∼26 Papovich et al. (2016)

4.5 (Ch2) SpIES mAB = 22.00 ∼115 this paper
SHELA mAB = 22.05 ∼26 Papovich et al. (2016)

250 Hershel/SPIRE 64.0, 64.0 mJy 270, 79 Oliver et al. (2012); Viero et al. (2014)
350 Hershel/SPIRE 64.5, 64.5 mJy 270, 79 Oliver et al. (2012); Viero et al. (2014)
500 Hershel/SPIRE 74.0, 74.0 mJy 270, 79 Oliver et al. (2012); Viero et al. (2014)

1100 (277 GHz) ACTd ∼6.4 mJy 300 analysis under way

1400 (218 GHz) ACTd ∼3.3 mJy 300 Gralla et al. (2014); Das et al. (2014)

2000 (148 GHz) ACTd ∼2.2 mJy 300 Gralla et al. (2014); Das et al. (2014)
21,000 (L-band) VLAe 260 µJy 92 Hodge et al. (2011)
30,000 (S-band) VLAe 400 µJy ∼300 Mooley et al. (2014)

Note. — aIncludes 7.4 deg2 of archival Chandra data, bHyper Suprime-Cam (see http://www.naoj.

org/Projects/HSC/surveyplan.html for more details), cUKIDSS Large Area Survey, dAtacama Cosmology
Telescope, eVery Large Array

In the far-infrared, the Herschel Space Observatory performed the HerMES Large Mode Survey

(HeLMS; Oliver et al. 2012) and the Herschel Stripe 82 Survey (HerS; Viero et al. 2014) to study

galaxy formation and correlations between galaxies and dark matter haloes. Existing mid-infrared

observations of S82 include SHELA (Papovich et al., 2016), which contains deep imaging data

for dark energy measurements, and the AllWISE observations from WISE (Wright et al., 2010).

Near-infrared measurements of S82 have been performed by the UKIRT Infrared Deep Sky Survey

(UKIDSS; Lawrence et al. 2007), the VISTA Hemisphere Survey (VHS; McMahon et al. 2013)—

which is matched to the SDSS coadd photometry in the catalog presented in Bundy et al. (2015)—and

the deeper J- and K-band coverage from the VISTA-CFHT Stripe 82 Survey over 130 deg2 of S82

(VICS82; Geach et al. in prep.). In addition to SDSS, Stripe 82 has high-resolution imaging (median

Chapter 2: SpIES 2.2 The Stripe 82 Region
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seeing of 0.′′6) from the CFHT Stripe 82 Survey (CS82; Kneib et al. in prep.) and is part of the Dark

Energy Survey2 (DES) footprint.

S82 was also mapped in the ultraviolet as part of the GALEX All-sky Imaging Survey and

Medium Imaging Survey, and a few locations were imaged with the Deep Imaging Survey as outlined

in Martin et al. (2005). Chandra and XMM-Newton have been used to observe partly contiguous

regions over a wide area at X-ray wavelengths, searching for high luminosity quasars (LaMassa et al.

2013a,b), with the most recent large-area X-ray catalog release covering ∼31deg2 with XMM-Newton

(LaMassa et al., 2015). More observations are cited in Table 2.2 which lists some properties of the

deepest imaging data of S82 at various wavelengths. The combination of all of the multi-epoch,

multi-wavelength spectroscopic and photometric data on S82 provides a powerful tool to aid in our

understanding of the Universe by painting a multi-wavelength and multi-epoch picture of matched

objects between these surveys.

2.3 Data Acquisition

SpIES data were obtained as part of Cycle 9 (2012-2014) of the Spitzer ‘warm’ post-cryogenic

mission utilizing the first two channels of IRAC. IRAC is a wide-field camera with four channels,

each 256×256 pixels with a 5.′2×5.′2 field of view (Fazio et al., 2004). The first two arrays (3.6 and

4.5 microns) are designed to observe the sky simultaneously, which decreases observation time and

ensures that the epochs of measurement are roughly the same for both channels. Spitzer has been

operating in ‘warm’ mode long enough to measure and report the differences in IRAC performance

between the cryogenic and ‘warm’ observations3. The changes in performance, including changes

in PSF, sensitivity levels, and constant values such as gain and flux conversion, are minor and the

overall performance of IRAC has not degraded substantially with time (see Mauduit et al. 2012).

The SpIES observation strategy was motivated by the strategies of previous Spitzer campaigns

such as SDWFS (Ashby et al., 2009), SWIRE (Lonsdale et al., 2003), SERVS (Mauduit et al., 2012),

and SSDF (Ashby et al., 2013). Similar to these surveys, SpIES observations were separated into

2http://www.darkenergysurvey.org/
3http://irsa.ipac.caltech.edu/data/SPITZER/
docs/irac/warmimgcharacteristics/
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Figure 2.2 Left: One SpIES 3.6µm, double-epoch, stacked AOR from which we extract sources. This is one of
77 stacked AORs (154 single epoch AORs divided by two epochs) that are strung together (see Figure 2.1) to cover
the entire SpIES field. The red circular region illustrates the angular size of the Moon, and the black region shows
the coverage of the same AOR at 4.5µm. Center: An example of the coverage map of the AOR, showing where the
individual pointings of IRAC overlap when they are combined to form the AOR. These maps are unique to each AOR
and are used as weighted images during source extraction. Pixels with lighter colors have more coverages. The AOR
footprint has been padded with a band corresponding to zero coverage. Right: The flux density uncertainty map
of each AOR, where the values only take into account details in pipeline processing error propagation, not source
extraction. In this map, darker colors correspond to lower uncertainties in flux density. The lower uncertainties align
with the higher coverage values shown in the central panel.

Chapter 2: SpIES 2.3 Data Acquisition
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Table 2.3. Astronomical Observation Request (AOR) Time Table

Operation Time (s)

Exposure time at each pointing 30
×2 dithering 60
× ∼224 pointings 13440
+ Slew Time ∼2400
+ Settle Time ∼2400
+ Overhead(Slew and Download) ∼600
×2 epochs ∼37700
×77 AORs ∼2.9×106

Total Observation Time ∼820hr

Note. — Approximate exposure time break-
down for SpIES for each detector (the larger
AORs required more time than estimated). The
two dithers and the two epochs combined with
30s exposures each lead to a total AOR exposure
time of 2×2×30 = 120s for both channels. SpIES
spent ∼70% of the time in observation and ∼30%
in motion to other fields.

individual Astronomical Observation Requests (AORs), which are self-contained exposure sequences

executed independently of each other. AORs are comprised of sequential pointings of IRAC which are

stacked to form a single image. AORs overlap slightly, to form the entire field (see the SpIES regions

in Figure 2.1). Most of the SpIES AORs consist of a map of 8×28 IRAC FOVs, corresponding to a

total area of ∼1.63 deg2 per AOR (see Figure 2.2). There were, however, a few AORs which needed

to be adjusted in width due to changes in position angle between AOR observations (observations

separated by ∼6 months have a field rotation of ∼180◦), to connect with their neighboring AORs

and form a continuous strip. Four of our AORs were increased to 9×28 pointings, two were increased

to 10×28 pointings, and one was decreased to 5×28 pointings. The size differences can be identified

by an increase or decrease of the given AOR integration time in Appendix 2.8. In total, SpIES

is comprised of 154 AORs observed over two epochs (77 AORs per epoch) which corresponds to

∼70,000 IRAC FOVs spanning the full survey area.

Each AOR was built by successively pointing and dithering IRAC until the 8×28 map was
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complete, using a small-cycle dither pattern. This pattern offsets the observations by up to 11 pixels

(∼13′′) to obtain overlapping coverage while eliminating some instrumental problems such as bad

pixel detections and bright star saturation (Mauduit et al., 2012). Built into the cycle dither pattern

is a sub-pixel dither pattern of half a pixel, which improves the 1.′′2 per pixel sampling to 0.′′6 per

pixel after the images are stacked. This oversampling reduces effects that bad pixels and bright star

saturation have on the image. This issue must be accounted for when calculating source flux error

in Section 2.5.2.

Images are taken simultaneously at 3.6µm and 4.5µm with a∼6.′7 offset between the two channels

due to the physical placement of the arrays. This offset leads to a section around the perimeter where

objects are detected in one band and not the other (as shown in Figure 2.2). The catalogs described

in Section 2.5.3 indicate which objects lack a counterpart in the other band due to these regions

without overlapping dual-band coverage. Additionally, the survey area changes slightly due to this

offset. The quoted area of ∼115 deg2 is the coverage where SpIES detects sources at either 3.6µm

or 4.5µm. The coverage of each individual detector is ∼107 deg2 where the coverage of the overlap

of the two detectors (detections at both 3.6µm and 4.5µm) is ∼100 deg2. This is important when

computing number densities in Section 2.5.5.

Observations were performed over two distinct epochs separated by no less than five hours in

time (see Appendix 2.8) and shifted by half a FOV in both right ascension and declination. Mul-

tiple epoch observations allow for detection of transient objects, and the spatial offset ensures that

detected objects are observed on different regions of the array, allowing for more accurate pho-

tometry. In most cases, the second epoch of observation was taken directly after the first, where

the observation time for the first epoch of a full AOR (∼5 hours including slew and settle time)

was sufficient to significantly separate the two epochs. For a typical asteroid, which moves at

∼25′′ hr−1 (Ashby et al., 2009), a five-hour temporal separation leads to ∼2′ spatial separation,

which is easily detected in separate epochs. The SpIES field is covered with at least four exposures

at each pixel, providing both deep and reliable photometry across the large area of observation—with

an exception around the perimeter where the second epoch has been shifted by half a FOV.
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Figure 2.3 Comparison of the calculated 4.5 µm 5σ depth to area of the major Spitzer surveys. Depths are calculated
using the Spitzer Sensitivity Performance Estimation Tool (SENS-PET) assuming a low background. At ∼115 deg2

in area SpIES is the largest Spitzer survey and probes SWIRE depths (Lonsdale et al., 2003). Open circles show the
measured depth (left; see Table 2.9) and calculated depth from SENS-PET with a medium background (right) for
SpIES.

The SpIES AORs were constructed to maximize area while maintaining a depth comparable to

that of SWIRE (Lonsdale et al., 2003). To achieve this goal, each AOR was observed for a total

of 60 seconds, split evenly among the two dithered pointings of 30 seconds each. The limiting flux

does not reach the IRAC confusion limit, and therefore confusion noise, which does not decrease as

the square root of exposure time (Surace et al., 2005), is small (see Section 2.5.7 for more detail).

The total observation time for the SpIES survey was ∼820 hours (Table 2.3) split among the 154

AORs. Figure 2.3 demonstrates that the SpIES survey is both the largest Spitzer survey to date

and reaches approximately to SWIRE depths, fulfilling two of the projects primary goals.

2.4 Image Reprocessing

Observations from Spitzer are downlinked to the Spitzer Science Center (SSC) where the raw images

are sent through the “Level 1” processing pipeline. This pipeline corrects for known instrumental

signatures in the images (dark subtraction, ghosting, and flatfielding) and flags possible cosmic ray
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hits. Additionally, the observed counts units (ADU) are converted into flux density units (MJy

sr−1), creating the Basic Calibrated Data (BCD) images (see Section 5 of the IRAC Handbook1).

These BCD images are processed one 5.′2×5.′2 field at a time through a secondary pipeline to correct

for other artifacts seen in IRAC images such as stray light (masking of scattered light from stars

outside the array location) and column pulldown (a bright pixel causing a low background in the

CCD array column; Figure 2.4). The resulting Corrected-BCD (cBCD) images (Section 6 of the

IRAC Handbook) were used to create stacked AORs in SpIES (see Figure 2.2). A single cBCD

image only covers one IRAC FOV; however, after accounting for the dithers and the two epochs, we

have a total of four cBCD images which cover roughly the same region of the sky. The cBCD images

are stacked to create the larger AOR mosaics using the SSC Mosaicing and Point-source Extraction

(MOPEX4) software.

Figure 2.4 Left: Typical SpIES Level 1 BCD image from the SSC before corrections. The bright pixel (red circle)
causes its whole column to drop to a low background value (causing the white line across the full array). Right: A
cBCD image, which is the BCD image after it has been corrected for known signatures, such as the column pulldown
in the left panel. The cBCD images are the size of an IRAC FOV (5.′2×5.′2) and are mosaicked together to form the
larger AORs seen in Figure 2.2. Both images are centered at (α, δ)=(32.611, -0.887) degrees.

The MOPEX software was developed by the SSC specifically to process Spitzer BCD and cBCD

images. This package contains several pipelines which can be used to process, stack, and extract

sources from Spitzer images; however, we only relied on the mosaic pipeline to combine cBCD images

onto a common frame. There are five stages of combination in the mosaic pipeline which transform

4http://irsa.ipac.caltech.edu/data/SPITZER/docs/
dataanalysistools/tools/mopex/mopexusersguide/
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Table 2.4. Parameter values for Mopex and SExtractor

Program Parameter Value

MOPEX Fatal Bitpattern 27392a

SExtractor DETECT THRESH 1.25
SExtractor DETECT MINAREA 4
SExtractor DEBLEND NTHRESH 64
SExtractor DEBLEND MINCONT 0.005
SExtractor PHOT APERTURESb 4.8, 6.4, 9.63,

13.6, 19.2, 40
SExtractor PIXEL SCALE 0.6
SExtractor BACK SIZE 64
SExtractor BACK FILTERSIZE 5
SExtractor GAIN 4429.37, 3788.29c

SExtractor WEIGHT TYPE MAP WEIGHT
SExtractor WEIGHT IMAGE mosaic cov.fits
SExtractor WEIGHT GAIN Y
SExtractor FILTER Y
SExtractor FILTER NAME default.conv

Note. — Parameters that were changed from the default
MOPEX or SExtractor configuration files. These parameters
were used in the stacking and source extraction of the SpIES
images.
aDCE Status Mask Fatal BitPattern with bits 8,9,11,13,14
are turned on.
b The diameter of the aperture in pixels.
cGain values for the 3.6µm, 4.5µm detector. See Section
2.5.2 for more details
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a list of cBCD images to a full mosaic. First, an interpolation technique is run on the input images,

determining the location of each pixel and forming a fiducial frame for the output image. Next,

an outlier rejection script is run which flags or masks bad pixels from the final image. These flags

are applied to the fiducial frame with a re-interpolation technique. Co-addition of pixel values is

performed on tiles of pixels that make up the full image using a method defined by the user (for

SpIES, pixels were co-added using a straight average). Finally, a script combines the tiles from the

co-addition stage together to form a single image. Along with a combined image, MOPEX provides

an option to output other datasets such as a coverage map and uncertainty map similar to those

shown in Figure 2.2. The SSC also provides these images as “Level 2” post-BCD (pBCD) images

which have been processed by MOPEX and thus can be used for source extraction and photometry;

however, they are only single epoch images, thus do not achieve the full depth of our survey.

To achieve our full depth, we created images by submitting the cBCD images of the two

overlapping epochs as well as their corresponding bit mask (bimsk) images and the uncertainty

(cbunc) into MOPEX. The pipeline was run using the default parameters with the exception of

the DCE Status Mask Fatal BitPattern (see Table 2.4) which tells MOPEX which pixels to mask

in the final mosaic based on the bit value of those pixels in the input bit mask. For example, the

3.6µm ‘warm’ IRAC images suffer from latent images5 (typically after exposure to bright stars)

which remain at the same pixel location on the detector for the next set of observations (see Figure

2.5). If left unchecked, these objects appear in a different sky location in the final image, and will be

detected as individual sources. To prevent contamination in the final AOR, the SSC pipeline locates

latent objects in each BCD, and flags the corresponding pixels in the bit mask6 for that BCD. We

then set the DCE Status Mask Fatal BitPattern (which reads the bit masks) to mask any objects

that have that particular flag set in the final combined image (see Figure 2.6). Since latent objects

do not appear in our final stacked images they are not present in our final catalogs.

The SSC-produced BCD, cBCD, and pBCD images, as well as all ancillary data images (uncer-

5http://irsa.ipac.caltech.edu/data/SPITZER/
docs/irac/iracinstrumenthandbook/63/

6http://irsa.ipac.caltech.edu/data/SPITZER/
docs/irac/iracinstrumenthandbook/44/# Toc410728355
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Figure 2.5 Shown on the left is an example of two bright stars in a ∼3′×4.′5 cutout of a 3.6µm cBCD (cen-
tered at (α, δ)=(34.464, -0.169) degrees). The image in the right panel is the next observation (centered at
(α, δ)=(34.482, -0.247) degrees) showing the latent images from the bright stars in the previous observation (left
panel). The green circles highlight the pixel location of the latent objects in IRAC from subsequent observations at
different sky locations.

Figure 2.6 Here, the left panel shows a portion of the final stacked AOR image after sky matching to the right panel
in Figure 2.5 (also the right panel of this figure) with the latent object locations outlined in green. The latent objects
in the cBCD (right panel) are masked in the final stacked image (left panel) because the latent image bits were turned
off in the MOPEX processing pipeline (see Table 2.4), therefore, they do not appear in the final catalogs.
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Figure 2.7 Comparison of a ∼100 arcmin2 box of a SpIES 4.5µm image and a 4.6µm image which
cover approximately the same central wavelength. ‘Warm’ IRAC 4.5µm has a PSF of 2.′′02 compared
to 6.′′4 for WISE 4.6µm, allowing SpIES to resolve objects that are blended in WISE. Additionally,
the superior depth of SpIES (AB magnitude of ∼22 in [4.5] compared to ∼18.8 in W2) yields more
sources above the background (∼1400 in the dual-band catalog) in the field shown compared to
WISE (∼350 in AllWISE). The blue boxes represent a single FOV of IRAC (5.′2× 5.′2).

tainty maps, coverage maps, etc.), are publicly available on the Spitzer Heritage Archive7 (SHA)

website. The images created by the SpIES team are publicly available (see Appendix 2.7). There are

a total of 231 images created by the SpIES team consisting of 154 individual epoch AOR mosaics

and 77 combined epoch mosaics (stacking the two overlapping individual epoch images). Source

extraction and photometry were performed on each of these 231 images. The final catalogs were

constructed by running our source extraction techniques on the 77 combined epoch AORs to take

advantage of the full depth of SpIES. To illustrate the depth of SpIES, Figure 2.7 compares a region

from a full-depth 4.5 micron AOR and the same region from WISE 4.6 micron (W2).

2.5 Catalog Production

2.5.1 Source Extraction

The SpIES catalogs were constructed by running Source Extractor (SExtractor; Bertin & Arnouts

1996) on each combined-epoch AOR mosaic, creating 77 AOR source catalogs for the 3.6µm detec-

tions and 77 for the 4.5µm detections. SExtractor uses a six-step source extraction routine which

7http://sha.ipac.caltech.edu/applications/Spitzer/SHA/
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efficiently generates catalogs from large images. First, a robust 3σ clipped background estimation

is performed on the entire image, which has been inspected through an output background map.

This step is followed by a thresholding algorithm which extracts objects at a certain, user-specified

standard deviation above the background. SExtractor then runs a deblending routine to separate

potentially blended sources, filters the image using an input filtering routine, and performs photom-

etry on detected sources within user specified apertures. Finally, SExtractor attempts to classify

objects as point-like (stars) or extended (galaxies) based on the input pixel scale and stellar FWHM

of the survey.

Each step is controlled through an input configuration file and an output parameter file. There are

a variety of parameters that can be changed in the configuration file, some of which can significantly

change the source extraction results. The final configuration file was a mix of parameters extensively

tested on the SpIES images and parameters adopted from previous programs such as the SERVS

(Mauduit et al., 2012) and SWIRE (Lonsdale et al., 2003) surveys. Table 2.4 lists the configuration

parameters used in our processing.

Previous Spitzer surveys also used the coverage map created in MOPEX as a weighted image

during source extraction. These images hold information about the number of times a particular

pixel in the AOR was observed, which is related to the effective exposure time at each pixel. Since the

signal-to-noise ratio of an object increases with the square root of exposure time in these data, the

coverage maps assign pixels with more coverages (i.e., longer exposures) a higher weight. Following

this convention, the coverage maps were input as weight maps, converted into a variance map by

SExtractor through the inverse relationship between weight and variance, and scaled to an absolute

variance map created internally by SExtactor. This processing is also controlled through the input

configuration file during source extraction.

SExtractor can be run in either single-detection mode, which performs source detection, aperture

definition, and photometry on the same image, or dual-detection mode, which finds sources and

defines apertures on a first input image (for example, a 3.6µm AOR) and performs photometry on

a second input image (the same AOR observed using the 4.5µm detector). All of the SpIES AOR
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Table 2.5. Aperture correction for SpIES

Band 1.′′4 1.′′9 2.′′9 4.′′1 5.′′8

3.6µm 0.584 0.732 0.864 0.911 0.950
4.5µm 0.570 0.713 0.865 0.906 0.946

Note. — Measured aperture corrections for
SpIES objects with good flags matched to the
2MASS point source catalog. These corrections
are nearly identical to those used in SERVS
(Mauduit et al., 2012) for identical aperture radii.

mosaics were run in single-detection mode, creating 77 double-epoch catalogs for each channel. Full-

area, single-channel catalogs were made by concatenating the 77 individual AOR catalogs using

the Starlink Tables Infrastructure Library Tool Set (STILTS)8. These single-channel catalogs are

designed to contain a single row for each object in the SpIES survey, so when two objects match

within 1′′ between two AORs (which is possible since the AORs overlap) we report the average

position, the weighted average of the flux density values (using the errors as weights), and the errors

added in quadrature in a single row in the catalog (the overlapping regions between AORs account

for ∼10% of the total survey area). Though we report objects that are detected 5σ above the

calculated background, many objects have a signal-to-noise (S/N) less than 5 due to Poisson noise.

Photometry on SpIES sources was performed in six circular apertures of radii 1.′′4, 1.′′9, 2.′′9, 4.′′1,

5.′′8, and 12′′, reported as diameter in pixels in the SExtractor configuration file in Table 2.4. The

first five apertures (which are the same size as the SERVS apertures) contain only a fraction of the

light from each source, while the sixth contains “all” the light from the source (see Section 4.11 of

the IRAC Handbook1). The aperture correction factors in Table 2.5 are measured for the SpIES

survey for objects with good flags (discussed in more detail in Section 2.5.3) matched to the 2MASS

Point Source Catalog (PSC) to ensure that measurements were performed on point sources only.

We then took the ratio of the light in the smaller apertures to the light in the largest aperture,

8http://www.star.bris.ac.uk/∼mbt/stilts/
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made a histogram of the resulting factors for each aperture, and fit a Gaussian to that histogram

to measure the peak and spread of the distribution. The location of the peak of the Gaussian was

used as the correction factor. The corrections measured for SpIES differ by less than 1% of those

used in SERVS (Mauduit et al., 2012) for the exact same aperture radii. Aperture corrections are

useful for finding faint objects with a radius much less than the large 12′′ radius aperture, because

in these cases the background noise in the aperture would dominate the object. We primarily use

the 1.′′9 radius aperture for analysis in the following sections as it corresponds to a ∼70% curve of

growth correction (the curve showing how the flux density ratio changes with aperture size) in both

channels.

After objects are extracted from the images, the surface brightness values are converted from the

Spitzer image unit of MJy sr−1 to flux densities (µJy) per pixel using the following conversion:

MJy

sr

(
1012 µJy

MJy

)(
πrad

180◦

)2(
1◦

3600′′

)2(
0.′′6

pixel

)2

such that,

1MJy steradian−1 = 8.46µJy pixel−2 (2.1)

where we multiply by the SpIES pixel size of 0.′′6, which is half of the IRAC pixel size due to the

image dithering.

This correction factor in Equation 2.1 was applied to each pixel in the image which, when summed

in an aperture, yields the total flux density of the source. This value was divided by the appropriate

aperture correction from Table 2.5 to produce the final flux density value for the objects in the

catalogs.

2.5.2 Photometric Errors

Photometric errors were computed using SExtractor and are reported in the catalog (see Table 2.4).

According to Section 10.4 of the SExtractor manual, the 1σ photometric errors are computed via

σsource =

√
Aσ2

rms +
F

g
, (2.2)
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where A is the measurement area in pixels, σrms is the background root-mean-square (rms) value

of each pixel, F is the background-subtracted source count value in the measurement aperture, and

g is the detector gain. This expression is simply the rms background added in quadrature with the

Poisson noise. SExtractor assumes that the signal in the input images is in units of counts, typically

a Digital Number (DN) which is the number of photons counted scaled by the detector gain value.

Spitzer images, however, are converted to physical units during “Level 1” processing. Many previous

surveys which have used SExtractor to compute photometric errors exclude the Poisson noise and

only report the rms background error, which is also the SExtractor default if no gain is supplied.

For bright objects, Poisson noise dominates, and thus using the background error alone dramatically

underestimates the true error in the reported flux density. Here we compute and report the full

photometric errors from SExtractor for the SpIES survey, correcting for the Spitzer image flux units

such that both background and Poisson noise are included in the error estimate. Indeed the majority

of the sources in our “5σ catalog” will have true soure S/N < 5 (and more typically ∼2-3).

To properly incorporate Spitzer data into Equation 2.2, we first examine its fundamental com-

ponents: the noise due to the background and Poisson counting noise. In order to compute the

background noise, SExtractor first creates a background map and a background rms map. The

background rms map is constructed by calculating the squared rms deviation of each pixel in the

background map from the local mean background (whose size is defined by the BACK SIZE pa-

rameter in Table 2.4). The background noise is simply the sum of the background rms pixels inside

a given aperture (where Aσ2
rms in Equation 2.2 is synonymous with the sum over the background

rms).

Poisson noise is the discrete counting error which occurs when performing photometry on a

source. SExtractor performs photometry on an object inside of an aperture by counting the total

pixel value and subtracting the background as follows:

F = C −B (2.3)

where F is the background-corrected count value of an object, B is the sum of the local background
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value in the aperture, and C is the total number of counts in an aperture. Assuming the pixel values

in the measurement aperture are uncorrelated (which presents a separate problem that is discussed

later in this section), then the error in F can be calculated using the propagation of error equation:

σ2
F =

(
δF

δC

)2

σ2
C +

(
δF

δB

)2

σ2
B (2.4)

where σC and σB are the Poisson errors of the total number of counts and background respectively.

Taking the derivatives of Equation 2.3 and inserting them into Equation 2.4, we obtain:

σ2
F = σ2

C + σ2
B . (2.5)

The number of electrons measured, the number of counts reported, and the gain are related by:

#e− = g × F (2.6)

which has an uncertainty,

σ2
#e− = g2 × σ2

F . (2.7)

Poisson statistics dictate that the variance of a discrete value (in this case electron number, σ2
#e−) is

equal to that value (the number of electrons counted). We therefore relate the number of electrons

to the digital count in Equation 2.6 and obtain that the Poisson error for a digital count is:

σ2
F =

#e−

g2
=
g × F
g2

=
F

g
. (2.8)

This Poisson error (which must have the digital count unit) is the second term in Equation 2.2, and

is added in quadrature with the rms background error to generate the total source error found in

Equation 2.2.

Spitzer images and SExtractor use two different definitions of the gain. SExtractor is pro-

grammed to interpret this parameter as purely the detector gain (which has units of electrons per
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digital count) whereas Spitzer images have a definition of gain that includes the conversion factor

between counts units and physical units. Even though SExtractor expects an image in counts units,

we can input Spitzer images by incorporating this conversion factor in the gain parameter according

to the equation:

G =
N × g × T

K
(2.9)

where N is average number of coverages estimated from each AOR coverage map, g is the detector

gain of 3.7 e−(DN)−1 for the 3.6µm detector and 3.71 e−(DN)−1 for the 4.5µm detector, T

is exposure time for one coverage, and K is the conversion factor from digital to physical units

found in either the cBCD header or the Warm IRAC Characteristics webpage9. For the SpIES

images, we calculated the weighted gain, G, to be 4429.37 e−(MJy sr−1)−1 at 3.6µm and 3788.29

e−(MJy sr−1)−1 at 4.5µm; these values were used in the SExtractor configuration file for source

extraction and error estimation. In short, replacing the detector gain, g, with the weighted gain,

G, in Equation 2.2 allows a proper determination of both the background and Poisson noise when

applying SExtractor to images that have been converted to physical units.

After the gain parameter is replaced, applying simple unit analysis to Equation 2.2 shows that

the errors have the same unit as the input image (in this case MJy sr−1). We therefore need to

convert the errors from image units of MJy sr−1 to µJy using Equation 2.1 in the same way as we

did for the flux density values. The error analysis was also done inside apertures of varying radii

and therefore also must be aperture corrected by dividing by the values in Table 2.5.

Finally, Equation 2.2 is based on the assumption that the pixels in the images are uncorrelated,

which simplifies the SExtractor error calculation. In reality, the SpIES images will have cross

correlation terms due to processes such as dithering, reprojection, and stacking, which correlate the

count value in overlapping pixels. Since SExtractor does not take correlated noise into account,

we corrected the values by multiplying the errors by a factor of two (the ratio of the pre-processed

image pixel scale of 1.′′2 to the post-processed pixel scale of 0.′′6), which accounts for the pixels being

sampled twice due to the two dithers in the survey. Although the errors are slightly adjusted to

9http://irsa.ipac.caltech.edu/data/SPITZER/docs/
irac/warmimgcharacteristics/
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Table 2.6. SpIES catalog columns

Column Name Description

RA ch1 J2000 RA position at 3.6µm
DEC ch1 J2000 DEC position at 3.6µm
FLUX APER 1 ch1 3.6µm flux density, 1.′′44 radius
FLUX APER 2 ch1 3.6µm flux density, 1.′′92 radius
FLUX APER 3 ch1 3.6µm flux density, 2.′′89 radius
FLUX APER 4 ch1 3.6µm flux density, 4.′′08 radius
FLUX APER 5 ch1 3.6µm flux density, 5.′′76 radius
FLUX APER 6 ch1 3.6µm flux density, 12′′ radius
FLUXERR APER 1 ch1 3.6µm flux density error, 1.′′44 radius
FLUXERR APER 2 ch1 3.6µm flux density error, 1.′′92 radius
FLUXERR APER 3 ch1 3.6µm flux density error, 2.′′89 radius
FLUXERR APER 4 ch1 3.6µm flux density error, 4.′′08 radius
FLUXERR APER 5 ch1 3.6µm flux density error, 5.′′76 radius
FLUXERR APER 6 ch1 3.6µm flux density error, 12′′ radius
FLUX AUTO ch1 Total 3.6µm flux density
FLUXERR AUTO ch1 Total 3.6µm flux density error
FLAGS ch1 3.6µm SExtractor Flags
CLASS STAR ch1 3.6µm morphology classification
FLAG 2MASS ch1 3.6µm object near a bright star
COV ch1 Number of cBCD coverages
HIGH REL ch1 Most reliable objects with good flags

account for oversampling, they should still be considered as lower limits on the true error in each

aperture since there are other contributions to the correlated noise in each pixel for which we do not

correct (i.e., noise pixels). These photometric error estimates will be used in Section 2.5.6 as one of

the ways we measure the depth of the survey.
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Table 2.6 (cont’d)

Column Name Description

RA ch2 J2000 RA position at 4.5µm
DEC ch2 J2000 DEC position at 4.5µm
FLUX APER 1 ch2 4.5µm flux density, 1.′′44 radius
FLUX APER 2 ch2 4.5µm flux density, 1.′′92 radius
FLUX APER 3 ch2 4.5µm flux density, 2.′′89 radius
FLUX APER 4 ch2 4.5µm flux density, 4.′′08 radius
FLUX APER 5 ch2 4.5µm flux density, 5.′′76 radius
FLUX APER 6 ch2 4.5µm flux density, 12′′ radius
FLUXERR APER 1 ch2 4.5µm flux density error, 1.′′44 radius
FLUXERR APER 2 ch2 4.5µm flux density error, 1.′′92 radius
FLUXERR APER 3 ch2 4.5µm flux density error, 2.′′89 radius
FLUXERR APER 4 ch2 4.5µm flux density error, 4.′′08 radius
FLUXERR APER 5 ch2 4.5µm flux density error, 5.′′76 radius
FLUXERR APER 6 ch2 4.5µm flux density error, 12′′ radius
FLUX AUTO ch2 Total 4.5µm flux density
FLUXERR AUTO ch2 Total 4.5µm flux density error
FLAGS ch2 4.5µm SExtractor Flags
CLASS STAR ch2 4.5µm morphology classification
FLAG 2MASS ch2 4.5µm object near a bright star
COV ch2 Number of cBCD coverages at 3.6µm
HIGH REL ch2 Most reliable objects with good flags

Note. — Column descriptions for the three SpIES catalogs. The
3.6µm-only and 4.5µm-only catalogs are built in exactly the same
manner without the columns from the other channel. All flux density
and flux density error columns in this catalog have been converted
from MJy sr−1 to µJy pixel−1 using Equation 2.1, and the first five
apertures in each channel have been aperture corrected using the
values in Table 2.5.

2.5.3 SpIES Source Catalogs

Using the parameters in Table 2.4 and employing the techniques discussed in previous sections, we

generated the SpIES 5σ detection catalogs. Here 5σ refers not to objects with a ratio of flux density

to flux density error of greater than five, but rather to objects whose flux density is greater than

five times the background. This limit is found by taking the product of the DETECT MINAREA

(minimum number of adjacent pixels to make a source) and DETECT THRESH (number of standard

deviations above the background per pixel) parameters (see Table 2.4 for reference). In fact, the

majority of these objects have a S/N of ∼2-3, due in large part to the addition of the Poisson noise
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as shown in Section 2.5.2.

With this release, we provide three separate detection catalogs: a 3.6µm-only detection catalog

which contains ∼6.1 million objects that are only detected at 3.6µm, a 4.5µm-only detection catalog

containing ∼6.6 million objects only detected at 4.5µm, and a dual-detection catalog containing

∼5.4 million sources, comprised of the sources detected at the same positions in both bands. These

catalogs were constructed by extracting sources from the 3.6µm and 4.5µm AORs separately to

generate full object catalogs for each channel. We then matched these two single-band catalogs

using a matching radius of 1.′′3 (as determined by the Rayleigh criterion), which maximized the

number of true matches and minimized the false detections (∼6.5% for the high reliability objects

described below) between the two channels to create our combined dual-band catalog. The objects

that did not match remained in the single band catalogs. Due to the offset between the detectors in

IRAC, there were ∼600,000 objects in 3.6µm without coverage in 4.5µm and ∼600,000 objects in

4.5µm without coverage in 3.6µm. These objects, however, are retained in their respective single

band catalogs. As the majority of the objects in the single-band catalogs have S/N∼2-3, it is

perhaps not surprising that they are detected in only one band. However, included among these will

be transient objects and mid-infrared/optical dropouts, which are clearly of interest, in addition to

spurious sources, which are not. Thus, we recommend using the high reliability flags for the most

reliable objects in each catalog (described below).

These catalogs were constructed from the combined epoch AORs, and thus reach the full depth

achievable by the SpIES survey. As also noted in the previous section, each row in the catalogs

contains a unique source. The columns hold information about the astrometric and photometric

values for each source, the flags that were generated during source extraction, and several binary

columns which have various meanings (see Table 2.6). The three catalogs are structured in exactly

the same way, the only difference being whether or not the object in the catalog is matched between

the two channels. A user desiring all the 3.6µm detections can concatenate the 3.6µm-only and the

dual-band catalogs without any changes to the files.

Each row in the catalog contains information about a unique source at a particular J2000 RA
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Table 2.7. Sextractor flags

Bit Description
Value

1 The object has neighbors, that significantly bias
the photometry, or bad pixels.

2 The object was originally blended.
4 At least one pixel is (nearly) saturated.
8 The object is truncated (close to image boundary).

16 Aperture data are incomplete or corrupted.
32 Isophotal data are incomplete or corrupted.
64 A memory overflow occurred during deblending.

128 A memory overflow occurred during extraction.

Note. — All of the extraction flags from SExtractor. The
first five flags are the most common for SpIES as these pertain
to issues in source extraction. The last three do not appear
in the SpIES data since there are no isophotal aperture mea-
surements and a sufficient amount of memory was allocated for
extraction.

and DEC position, which was determined by SExtractor, as reported in the first two columns (both

channel positions are reported for matched objects). These positions have been corrected for a slight

offset when compared to SDSS point sources (see Section 2.5.4 for more details). The subsequent

twelve columns report the flux density values from the six different measurement apertures used

in source extraction along with their respective errors. Aperture-corrected flux density values are

reported in these columns (except for aperture 6 which is not corrected) and surface brightness units

(MJy sr−1) are converted to flux densities (µJy) using Equation 2.1. Additionally, the errors have

been adjusted in the manner described in the previous section. The next two columns (FLUX AUTO

and FLUXERR AUTO) report the flux density and flux density error in apertures whose size and

shape are determined by SExtractor to contain the total flux density from a source. These last

two values have been converted to flux densities using Equation 2.1; however, they are not aperture

corrected.

The extraction flags are reported in the next column as a 2-dimensional array (see Table 2.7 for

more information). Since source extraction was performed on an individual AOR basis, the sources
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Figure 2.8 Comparisons of the CLASS STAR parameter at 3.6µm for objects matched to SDSS
sources. We show the distribution for all optically extended sources (red) and all optical point sources
(dark blue). Optically extended sources peak at CLASS STAR∼0, while optical point sources peak
at ∼1; however there is a small peak at 0.5 implying that SExtractor could not differentiate between
point or extended. For bright objects ([3.6] ≤ 20.5), however, the extended (orange dashed) and
point (light blue dashed) sources still peak at 0 and 1, respectively, but there are far fewer confused
classifications. A similar trend occurs for the objects detected at 4.5µm.

on the edges of AORs have the potential to be detected twice, due to the overlap between AORs,

and thus both flags were retained (however there is only one row entry in the catalog for overlapping

objects). Sources that do not overlap have a flag value in the first array element and were given a

value of −999.0 in the second element in this column to make it clear that this source was detected

in only one AOR.

The SExtractor stellar class is reported in the CLASS STAR column which is a probability that

ranges from 0 to 1 and indicates whether an object is resolved (values closer to 1) or extended (values

near 0). If the object was detected twice due to the overlap of the AORs, the average value is given

in the catalog. We find this measurement to be most reliable for objects with magnitudes brighter

than 20.5 (∼1.7 million at 3.6µm and ∼1.5 million at 4.5µm in the dual-band catalog), with ∼40%

classified as resolved (CLASS STAR ≥ 0.5) and ∼60% as extended (CLASS STAR ≤ 0.5) in both
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bands (see Figure 2.8).

Following the SExtractor output columns are a series of flags created after source extraction. The

FLAG 2MASS column indicates whether a source is detected within a particular radius (defined by

Table 2.8) around a bright star in the 2MASS point source catalog (PSC). Inside this radius there

is an excess of artificial sources due to artifacts from the bright star (e.g., diffraction spikes). Flags

are assigned to objects near 2MASS stars with Ks-magnitude brighter than 12 (Vega magnitude),

where the radii range from 40′′ at the faint end to 180′′ at the bright end. For comparison, the radii

used for the SWIRE survey range from 10′′ at the faint end to 120′′ at the bright end using similar

(but not the same) Ks-magnitude cuts (see Surace et al. 2005).

The SpIES bright-star flagging radii were empirically determined by cutting the 2MASS PSC

into a series of Ks-band magnitude ranges and matching their positions to all SpIES objects within

300′′. We then overlay the positions of all of the stars in a Ks-magnitude bin along with their SpIES

matches onto a common coordinate frame and determine the radius which encapsulates the over-

dense region around the star. Figure 2.9 shows the result of stacking 6 ≤ Ks ≤ 7 Vega magnitude

stars and their matches on a coordinate frame. The radial profile plot is presented in Figure 2.10

which clearly shows an excess of detections near bright stars. Objects that fall within the radii in

Table 2.8 are given a value of 1 in the catalog to indicate that the source is potentially spurious,

and the central star itself is given a value of 2. Using the radii in Table 2.8, we compute the area

lost when rejecting such sources is ∼5 deg2 for both bands (which is ∼5% of the dual-band catalog

area).

We report the number of cBCD coverages (from the coverage maps shown in Figure 2.2) at the

centroid position of each source in the COV column. Since AORs overlap, we give an array of two

values where, if the object does not overlap, we report −999.0 in the second element (similar to the

extraction flags). For the most reliable detection, we recommend using objects which have greater

than two coverages in either entry of the reported array.

Finally, we have created a high reliability column which we recommend for users whose science

requires that the objects be robust sources and/or have robust photometry. There are three values
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Table 2.8. Bright star flagging radius

2MASS Radius
(Ks-Magnitude) (′′)

≥ 12 0
12− 10 40
10− 9.0 60
9.0− 8.0 90
8.0− 7.0 120
7.0− 6.0 150
≤ 6.0 180

Note. — Objects that fall
within the radii given are
flagged as bright star con-
taminants. These values are
empirically determined by
making Ks-magnitude cuts
on 2MASS stars and study-
ing figures like Figure 2.9
and Figure 2.10. The Ks-
magnitudes are computed in
Vega magnitudes.
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Figure 2.9 The 335 stacked 6 ≤ Ks-magnitude≤ 7 stars matched to SpIES within 300′′. The black
dashed circle shows the radius out to which we flag objects as potentially contaminated.
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Figure 2.10 Radial profiles of the number density of objects within 300′′ of 2MASS stars in magnitude
ranges given in Table 2.8, showing how the number density of detected objects around bright stars
changes as a function of distance from the center of the star. The peak in these curves is the over-
dense region where there are spurious detections due to artifacts such as diffraction spikes. We cut
at the radius where the curves approach a constant value of number density for each magnitude.
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in this column indicating whether a source is a real object (flagged with a value of 1 or 2), has

good photometry (flagged with a value of 2), or does not satisfy the following good flag conditions

(flagged with a 0). To be regarded as a real source, the SExtractor flags must be less than or equal

to 4, the objects must have flag 0 or 2 in the FLAG 2MASS column, and there has to be greater

than or equal to two coverages for each source. For an object to have good photometry, we further

require that the SExtractor flags be less than or equal to 0 or equal to 2 (i.e., −999.0, 0, and 2),

FLAG 2MASS must be 0, and it must satisfy the same coverage conditions as before. These flags

cause holes in the coverage across the survey, thus changing the total coverage area. In total, SpIES

has ∼115 deg2 of coverage in both wavelengths, of which, each band covers ∼107 deg2 (since there

is an offset in the arrays discussed in Section 2.3) and there is ∼100 deg2 of dual-band coverage.

For HIGH REL>0, the areas are ∼106 deg2, ∼101 deg2, and ∼94 deg2, while for HIGH REL=2,

the areas drop to 105 deg2, ∼100 deg2, and ∼89 deg2. While our catalog only includes sources

more than 5σ above the background, full error analysis means that individual objects can have S/N

(as computed by FLUX/FLUXERR) less than 5. Some users may want to apply a cut on S/N in

addition to using the HIGH REL flag. For a cut at S/N>3 and HIGH REL>0, we retain ∼1.4,

∼3.9, and ∼1.4 million objects in the 3.6µm-only, dual-band, and 4.5µm-only, respectively.

2.5.4 Astrometric Reliability

The astrometric reliability of SpIES was tested by comparing the centroid positions of point sources

in SDSS with matched objects in the SpIES dual-band catalog (within 2′′). We found the difference

in position for objects which have good flags in SDSS (BITMASK=0 and PHOTOMETRIC=1), are

bright in the r-band (r ≤ 21), and have good flags in SpIES (HIGH REL=2). Fitting a Gaussian

to the histograms in Figure 2.11, we find that the mean difference in RA is −0.′′112± 0.′′0008 and in

DEC is 0.′′0372± 0.′′0006 for these objects. These values were then used to correct the astrometry in

all three SpIES catalogs. We also matched the SpIES data with the 2MASS PSC and found that the

mean astrometric offsets (∆RA= −0.′′086±0.′′0006 and ∆DEC= 0.′′011±0.′′0005) are slightly smaller

than the calculations from SDSS, however confirm the direction of the SpIES positional shifts.

To see if the astrometric offset changes with brightness, we performed the same measurement
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Figure 2.11 Comparison of the SpIES and SDSS astrometry for matched point sources with good
flags in both surveys. Darker regions and histograms show the approximate point density. We use
the mean offsets of the ∆RA and ∆DEC distributions shown here to correct the SpIES astrometry.

using the SDSS matched point sources for bright and faint sources in [4.5]. We find that the

astrometric offsets to be rather consistent both for faint ([4.5] ≥ 20 mag) objects with ∆RA=

−0.′′112 ± 0.′′0009 and ∆DEC= −0.′′0370 ± 0.′′0007 and for bright objects ([4.5] ≤ 20 mag) with

∆RA= −0.′′112 ± 0.′′0014 and ∆DEC= −0.′′0376 ± 0.′′0012. Regardless of magnitude, with the 0.′′6

pixel scale of the SpIES images, the astrometric offset is approximately one sixth of a pixel, which is

similar to the values calculated in Ashby et al. (2009) where the SDWFS astrometry was compared

to 2MASS.

2.5.5 Completeness and Number Counts

To estimate the completeness of our detection strategy, we employed a Monte Carlo approach where

we simulated 15,000 sources (between 4% and 6% of the total number of sources) with random

magnitudes between 14.5 and 28 at random positions on each AOR. The simulated sources were

allowed to fall anywhere on the image, including on top of other sources, thus our completeness

estimates are robust against confusion noise (see Ashby et al. 2013). Each source was modeled as

Chapter 2: SpIES 2.5 Catalog Production



44

10-2 10-1 100 101 102 103 104

3.6µm Flux Density (µJy)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
co

v
e
ry

 F
ra

ct
io

n

1416182022242628
[3.6]

5σ limit

2σ limit

3.6µm Fraction

10-2 10-1 100 101 102 103 104

4.5µm Flux Density (µJy)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
co

v
e
ry

 F
ra

ct
io

n

1416182022242628
[4.5]

5σ limit

2σ limit

4.5µm Fraction

Figure 2.12 Completeness as a function of 3.6µm flux density (and [3.6]; top) and 4.5µm flux
density (and [4.5]; bottom ) of our simulated sources. The orange dot-dashed line marks the faintest
detection of (5σ) objects at 6.13 µJy and 5.75 µJy at 3.6µm and 4.5µm, respectively; the red dashed
line shows (2σ) objects at 2.58µJy and 2.47µJy at 3.6µm and 4.5µm, respectively, as measured from
the curves in Figure 2.14. The completeness curves are less affected by artifacts at faint magnitudes
since the analysis is done with simulated sources, and thus are better estimates of depth than the
number counts.
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a point source, having a Gaussian profile with the same FWHM as IRAC. We ran SExtractor on

these simulations in the exact manner described in Section 2.5.1 and matched to a file containing

the position and magnitude for each source. The tables of recovered sources for each AOR were

then concatenated as before to cover the full footprint of SpIES. Number counts as a function of

magnitude were plotted for both the recovered object catalog and the full simulated source catalog

and the ratio of counts in each bin was calculated to estimate the completeness of the survey. Figure

2.12 presents the SpIES completeness curve for each passband, and the 90, 80, and 50 percent

completeness values are quoted in Table 2.9. These measurements are performed for the entire

survey field, however SpIES spans a wide range in right ascension. We therefore evaluated the

completeness at different ranges in right ascension to evaluate how it changes with position. We

found that the differences between the completeness curves that were computed for the full survey in

Figure 2.12 and the curves computed at different locations in the SpIES survey were not significantly

different, and that the differences in the 90, 80, and 50 percent complete values do not exceed ∼0.15

magnitudes for both the 3.6µm and 4.5µm measurements.

Differential number count histograms provide a visual representation of the distribution of objects

of different magnitudes in a survey. They can be used to approximate the number of particular

objects (stars, quasars, galaxies, etc.) that should be detected in the survey and can provide a

rough estimate of the depth of the survey. The number of objects per square degree per magnitude

is plotted as a function of flux density and AB magnitude in Figure 2.13 for SpIES objects detected

in each band that satisfy the condition HIGH REL>0. Shown for comparison are the differential

number counts from SSDF (Ashby et al., 2013), which has a similar depth as SpIES, along with

counts from the SERVS XMM field (Mauduit et al., 2012) and the S-COSMOS survey (Sanders

et al., 2007), both of which are deeper than SpIES. Additionally, we show the contribution of Milky

Way stars to these number counts estimated using the DIRBE Faint Source Model (FSM; Arendt

et al. 1998; Wainscoat et al. 1992). At the bright end, the four surveys and the FSM all tend to

align and follow a similar linear trend, indicating that the bright objects in the SpIES catalog are

well represented and are mostly attributed to light in the Milky Way. The “turn over” in these
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Figure 2.13 Differential number counts per magnitude over the full SpIES field for all objects with
a HIGH REL > 0. In both panels, we divide the counts by an area of 101 deg2 which is the area
covered for this footprint in each detector. Top: SpIES 5σ catalog (black dash) histogram of number
of objects per square degree vs flux density (µJy) for all objects detected at 3.6µm. Also shown
are the number counts from the SERVS XMM field (Mauduit et al. 2012; red squares), S-COSMOS
(Sanders et al. 2007; orange circles), and SSDF (Ashby et al. 2013; purple triangles) as comparisons.
The vertical dot-dashed lines represent the SENS-PET predicted depth for each survey. As we
include objects that are more than 5σ above the background, but have S/N < 5, the excess relative
to other surveys near the 90% completeness limit is likely an indication of contamination by low
probability sources. Bottom: The 4.5µm number counts similar to the left panel. The grey shaded
region shows the contribution of Milky Way stars using the DIRBE Faint Source Model (Arendt
et al., 1998; Wainscoat et al., 1992).

Chapter 2: SpIES 2.5 Catalog Production



47

histograms indicates the location of the approximate value of the depth of the survey. This is,

however, an imperfect measure of the depth since artifacts tend to increase at the faint limits of a

survey, resulting in more counts at fainter magnitudes.

The SpIES differential number counts in Figure 2.13 are computed for the full footprint of the

survey. The spatial extent of SpIES is large enough, however, that it intersects the Galactic plane

at different angles which has a small effect on the number counts, particularly for faint objects (20

≤ AB ≤ 22). For this reason the FSM, which is calculated for only a small area on the sky, is

represented by a grey shaded region. To test the effect of Galactic latitude on the number counts,

we split SpIES into different regions at different Galactic latitudes (0≤ b ≤ 15, 15≤ b ≤ 30, and b ≥

30) and recompute the number counts as a function of magnitude. We find fewer faint objects are

recovered for low Galactic latitudes, however as we look further off of the Galactic plane the SpIES

number counts become consistent with those for surveys of similar depth (i.e., SSDF).

2.5.6 Depth

There are multiple ways of determining the depth of a survey, and the optimal value to use depends

on the intended application. We computed the depth in four different ways for our analysis. First,

we find the magnitude where the completeness curves turn over (see Figure 2.12). Object detection

declines rapidly at this magnitude, making it a useful indicator of survey depth. An estimate of the

limiting magnitude using the 90th percentile of completeness for simulated sources is [3.6]=21.75

and [4.5]=21.90. We report the 90, 80, and 50 percent complete values in Table 2.9.

Secondly, we can estimate the 5σ and 2σ depths by plotting the magnitude error as a function of

magnitude (see Figure 2.14). From Figure 2.14 we determine the magnitude value where the outer

edge of the curve reaches a magnitude error of ∼0.2 to obtain the 5σ magnitude limit. For SpIES,

this limit occurs at [3.6]=21.93 and [4.5]=22.00, which corresponds to flux density values of 6.13

µJy and 5.75 µJy, respectively.

Another method to estimate depth is to perform empty aperture photometry where we placed

random apertures on the images and performed source extraction in each aperture. We then made a

histogram of the measurements with negative flux density values in the 1.′′9 aperture in an attempt
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Figure 2.14 Estimation of the SpIES detection limit at 3.6µm (top) and 4.5µm (bottom). The grey
points indicate the error in magnitude vs. magnitude. The 5σ limit occurs at a magnitude error
of 0.2 (black dashed line), and the 2σ limit occurs at a magnitude error of 0.5 (red dashed line).
These values are determined by propagating the error in the expression for magnitude, resulting in
the ratio of noise to signal as the error in magnitude. The intersection of the right edge of the grey
points with the respective magnitude error is the approximate detection threshold. Differences in
shading indicates the density of points.

to eliminate contamination from sources to the background measurements. We then fit a Gaussian

curve to the data to find the standard deviation in the background, σbg, across the SpIES field. We

find that the 5σbg measurements are 8.14 µJy at 3.6µm and 7.55 µJy at 4.5µm. While this does

not directly measure the depth to which we observe, it is a robust measurement of the noise in the

data, including confusion noise since the apertures were randomly placed on our images.

Finally, we use the predicted limits produced by the SENS-PET10 tool. This estimate calculates

the 5σ point source depth given the background level of the survey (depending on the survey loca-

tion), the exposure time, and number of repeat exposures over a single area. The SpIES depth is

estimated at 6.15 µJy at 3.6µm and 7.2 µJy at 4.5µm using a medium background, an exposure

time of 30 seconds, and four overlaps in the ‘Warm IRAC Parameters’ section. This tool appears

10http://ssc.spitzer.caltech.edu/warmmission/propkit/pet/senspet/
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Table 2.9. Completeness levels

Level 3.6µm 4.5µm

90% complete 21.75 7.2µJy 21.90 6.3µJy
80% complete 22.20 4.8µJy 22.37 4.1µJy
50% complete 22.82 2.7µJy 22.91 2.5µJy

5σ 21.93 6.13µJy 22.00 5.75µJy
2σ 22.87 2.58µJy 22.92 2.47µJy

5σbg 21.62 8.14µJy 21.70 7.55µJy
2σbg 22.62 3.26µJy 22.70 3.02µJy

SENS-PET 5σ 21.93 6.15µJy 21.76 7.20µJy

Note. — We give the 90, 80 and 50 percent com-
pleteness levels in AB Magnitudes and flux density of
the SpIES survey from Figure 2.12 as well as the 5σ
and 2σ values from Figure 2.14, the empty aperture
measurements at 5σbg and 2σbg, and the SENS-PET
estimates.

to calculate depths that are shallower than the measured depths; however, it is useful for making

robust comparisons to other survey fields (for example, see Figure 2.13).

There are multiple reasons for the slight differences between the prediction from SENS-PET

and our measurements. First, the noise estimates previously discussed in Section 2.5.2 should be

considered a lower limit on the error and therefore the signal-to-noise ratios may be overestimated.

Second, an overlap value of 4.0 was inserted into the SENS-PET calculator, whereas in reality

the overlap of the SpIES BCD images averages to a value of ∼4.5 per pixel. The more coverage,

the deeper the observations, so the theoretical value will be slightly brighter than reality. Finally,

there could be a disparity between the background model used in SENS-PET and the measured

background from the SpIES AORs, which could lead to a difference in the depth.

2.5.7 Confusion

We estimate the threshold for source confusion (the noise attributed to faint or unresolved back-

ground sources) by calculating the average number of SpIES beams per source, similar to the tech-

nique used in Ashby et al. (2009), and compare with the classical threshold limits determined in
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Condon (1974) and Hogg (2001). The SpIES beam size (solid angle) is calculated using Ω = πσ2,

where σ is the standard deviation of the Gaussian point spread function. Using the relation

FWHM = 2
√

2ln(2)σ and the ‘warm’ IRAC FWHM values of 1.′′95 in the 3.6µm detector and

2.′′02 in the 4.5µm detector, we obtain a beam size of 2.155 arcsec2 for the 3.6µm detector and 2.312

arcsec2 for the 4.5µm detector. The total number of beams over the full SpIES area is 6.92× 108 in

the 3.6µm images and 6.45 × 108 in the 4.5µm images. Finally, taking the ratio of the number of

beams to the number of objects at different detection thresholds yields an estimate for the confusion.

There are a total of∼11.6×106 objects detected at 3.6µm (combining the 3.6µm-only catalog and

the dual-band catalog) and∼12.1×106 objects detected at 4.5µm (combining the 4.5µm-only catalog

and the dual-band catalog) before applying flags for known contaminants, thus there are ∼60 beams

per source and ∼53 beams per source for the full 3.6µm and 4.5µm detection catalogs, respectively.

Taking the inverse of these two results suggest that approximately 1.6% of the detections at 3.6µm

and 1.9% of the detections at 4.5µm are confused. Condon (1974) and Hogg (2001) found the

threshold for confusion to be significant when there are fewer than 30 to 50 beams per source for

number counts histograms which have power law slopes of 0.75 to 1.5. The SpIES number counts

histograms have slopes of ∼0.85 for both bands, therefore, with 60 and 53 beams per source at 3.6µm

and 4.5µm, respectively, we conclude that SpIES is not significantly affected by source confusion.

2.6 Diagnostics and Summary

2.6.1 Color Distributions

To test the accuracy of our data processing, we examine the distribution of magnitudes and colors

of SpIES sources and compare them to known objects and infrared photometry from WISE. Mid-

infrared color-color diagrams have proven to be effective in classifying objects, for example quasars,

as shown in Lacy et al. (2004), Stern et al. (2005), and Donley et al. (2012). Unlike these previous

IRAC analyses, which had access to all four channels, SpIES only observes in the first two, thus

instead of a color-color diagram, we investigate the color-magnitude space shown in Figure 2.15. All

SpIES sources with HIGH REL=2 (in both bands) from the dual-band catalog are shown, along

with stars and spectroscopically-confirmed quasars (drawn from the Richards et al. (2015) “master”
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Figure 2.15 Color-magnitude diagram for SpIES objects with good photometry (i.e., HIGH REL=2;
purple). Also indicated are contours of where different objects fall in this color space. The blue
contours are stars, light orange contours are known low-redshift quasars (z ≤ 2.2), and red contours
are high-redshift quasars (3.5 ≤ z ≤ 5). These additional contours are not objects matched to SpIES
data, rather are SDSS detections which have Spitzer color information. We show the superior depth
of the SpIES survey (the blue dashed line is the [4.5]=22.00 5σ line) compared to the star and quasar
data from the optical. The black dashed lines represent the Assef et al. (2013) criteria for AGN
selection in this color space (W1-W2 ≥ 0.8), which, although very complete for low-redshift quasars
(obscured and unobscured), misses most high-redshift quasars (e.g., Richards et al. 2015). We draw
contours which encapsulate 10 to 90 percent of the data (in 20 percent increments) and 95 percent of
the data. We additionally draw 99 percent contours for the SpIES objects (purple) and stars (blue).
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quasar catalog) which are detected in both the optical and by Spitzer.

The “master” catalog is a combination of spectroscopically-confirmed quasars from SDSS-I/II/III

(York et al., 2000; Eisenstein et al., 2011) matched with photometric sources from the AllWISE

survey. To the “master” catalog, we have added new z>5 quasars from McGreer et al. (2013) and

the SDSS DR12 quasar catalog (Pâris et al. 2016, in preparation). The WISE Vega magnitudes

in the “master” catalog have been converted to AB magnitudes by adding 2.699 to W1 and 3.339

to W2 which is the difference in the respective zero points for the WISE detectors. The WISE

AB magnitudes were then converted to the Spitzer AB system using the method in Section 2.3

of Richards et al. (2015) and Table 1 of Wright et al. (2010). The Spitzer and WISE detectors

take images at slightly different wavelengths, and therefore observe emission from an object at

slightly different locations in its spectral energy distribution. The conversion factor between the two

detectors is, therefore, dependent on the color of the observed object. For our analysis, we adopt the

look-up table from Richards et al. (2015) which provides the proper correction for an object with

a given color and spectral index (assuming a power-law spectral energy distribution). Figure 2.15

demonstrates that SpIES can be used to distinguish various types of objects in the mid-infrared.

Stars, for example, appear bluer ([3.6]-[4.5]<0) than low-redshift (z ≤ 2.2) quasars, which tend

to lie in a redder ([3.6]-[4.5]>0) region of this diagram, despite covering approximately the same

magnitude range at 4.5µm. It is also apparent that SpIES is achieving a depth that exceeds that of

the spectroscopic quasar sample shown.

2.6.2 SDSS quasars

Figure 2.16 displays [3.6]−W1 vs [4.5]−W2 for the confirmed quasars in the Richards et al. (2015)

“master” quasar catalog. In theory, we might expect the quasar colors to converge at the origin,

however there is a deviation of the colors from the origin which can be attributed to a few factors.

First, SpIES and the AllWISE surveys were conducted at different times, and thus variable quasars

would shift diagonally in this color space. Additionally, there is a well-known flux underestimation

bias for fainter objects in the AllWISE data attributed to an overestimation of the background caused

by contamination of nearby objects, forcing the WISE colors to appear fainter (see the AllWISE
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Explanatory Supplement11 for more detail).

One of the goals of SpIES is to uncover new, faint quasars at high-redshift to use for clustering

investigations. From Figure 2.15, it is apparent that cuts in infrared color-magnitude space alone

will not cleanly select high-z quasars. However, quasar candidates can be selected using the mul-

tidimensional selection algorithm described in Richards et al. (2015) which analyzed the colors of

quasars in the optical with SDSS and infrared with AllWISE. They constructed a training set of

quasars comprised of objects in the AllWISE catalog that have spectroscopically confirmed quasar

counterparts in SDSS (i.e., known quasars), and a test set comprised of AllWISE objects that have

SDSS photometry. Using the colors of the known quasars in the training set as a Bayesian prior,

probabilities were assigned to the objects in the test set based off of where they lie in the optical-

infrared, multidimensional color space. We will follow this technique using, the SpIES data instead

of AllWISE since it probes much deeper and has superior resolution, allowing us to better select

high-redshift quasar candidates on S82.

Discovery of such objects is beyond the scope of this paper, but we show here that the SpIES data

are capable of recovering such objects and have a greater ability to do so than can be achieved with

the shallower WISE data. Figure 2.17 shows redshift and i-band magnitude histograms of sources

using the “master” quasar catalog from Richards et al. (2015) as before. WISE only recovers 55%

of the quasars in this sample, while SpIES has superior resolution and is sufficiently deep to recover

98%, including objects as faint as 22nd magnitude (i-band) and redshifts as high as 6. As one of the

key science goals of the SpIES program is the discovery of faint, high-redshift quasars, we note that

SpIES recovers 94% of these quasars with z ≥ 3.5 as opposed to the 25% recovered by the WISE

data, and 3.5% recovered after applying the Assef et al. (2013) color cuts.

2.6.3 Summary

The Spitzer IRAC Equatorial Survey is supplying large-area, mid-infrared imaging of the Sloan

Digital Sky Survey field Stripe 82. Utilizing mapping mode with ‘warm’ IRAC, SpIES covers a

total of ∼115 deg2 of S82 (where there is ∼100 deg2 of coverage in both bands) over two epochs,

11http://wise2.ipac.caltech.edu/docs/release/allsky
/expsup/sec6 3c.html#flux under

Chapter 2: SpIES 2.6 Diagnostics and Summary



54

1.0 0.5 0.0 0.5 1.0
[3.6]-W1

1.0

0.5

0.0

0.5

1.0

[4
.5

]-
W

2

All

Bright

Figure 2.16 Comparison of the SpIES and WISE colors for quasars from the Richards et al. (2015)
“master” catalog. WISE Magnitudes have been corrected to the IRAC AB Magnitude system in both
channels. The orange points show the color of the brightest quarter of the WISE data (W1≤15.5 &
W2≤15.5 WISE Vega magnitudes). In principle, we expect the points to be near the origin, however
phenomena such as variability and systematics such as contamination in WISE W1 and W2 cause
the points to deviate.

and overlaps with a wealth of ancillary data at almost every wavelength. We present the initial

source catalogs for SpIES. First, a dual-band catalog containing detections in both 3.6µm and

4.5µm. Second, a 3.6µm-only detected catalog and, third, a 4.5µm-only detected catalog. In these

catalogs, we report positional and photometric information, photometric errors (see Section 2.5.2),

and a number of flags which are used to distinguish the high-reliability sources. The structure and

analysis of these catalogs are as follows:

• We detect ∼11.6 million sources at 3.6µm and ∼12.1 million sources at 4.5µm, ∼5.4 million

of which are matched between the two bands and are presented in the dual-band catalog. The

remaining ∼6.1 million sources at 3.6µm and ∼6.6 million sources at 4.5µm that do not match

are retained in the respective single-band only catalogs. ∼1.4, ∼3.9, and ∼1.4 million of these

sources (3.6µm-only, dual-band, 4.5µm-only) are considered reliable (i.e, HIGH REL>0 and
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Figure 2.17 Top: Number counts of confirmed quasar redshifts from the optical samples (blue line)
in the Richards et al. (2015) “master” catalog, the high-redshift quasars catalog of McGreer et al.
(2013), and the SDSS DR12 quasar catalog (Pâris et al. 2016, in preparation). We overplot the
redshift distribution of the matched SpIES objects (dark red) and the WISE objects (red) along
with the WISE data after applying the Assef et al. (2013) constraints (orange). The number counts
have been enhanced by a factor of 5 at z ≥ 3.5 to emphasize the detections at high redshift. Bottom:
The same sample of quasars, using the i-band magnitude as a depth comparison. The inset on both
panels is the fraction of objects recovered for SpIES (dark red), WISE (red), and the Assef et al.
(2013) objects (orange) with respect to the optical sample.
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S/N>3). Much of our data analysis was performed on the dual-band catalog since it contains

the most reliable sources in the survey.

• Using the objects in the dual-band catalog, we measured the positional accuracy (Figure 2.11)

of the SpIES detections against point sources from SDSS, and have corrected the positions

in the three catalogs for the measured offset. The standard deviation of this distribution is

0.′′0008 in RA and 0.′′0006 in DEC.

• A Monte Carlo estimate of the completeness is given in Figure 2.12, which shows that SpIES is

90% complete at AB magnitudes of 21.75 (7.2 µJy) and 21.90 (6.3 µJy) at 3.6µm and 4.5µm,

respectively. Additionally, the SpIES number counts are compared with those from previous

Spitzer surveys (Figure 2.13) which, along with completeness, can be used as a measure of the

survey depth.

• An extensive discussion of the depth is given in Section 2.5.6 where we compare some of the

different methods typically used to measure depth. We show that SpIES has a calculated 5σ

depth of ∼6.15 µJy and ∼7.2 µJy and an empirical 5σ depth from Figure 2.14 of ∼6.13 µJy

and ∼5.75 µJy at 3.6µm and 4.5µm respectively. We report the completeness and depth

measurements in Table 2.9.

• One of the mission goals of SpIES was to be deep enough to detect high-redshift quasars. To

test how well SpIES detects these objects, we first examined the colors of different objects

in the mid-infrared in Figure 2.15, and show that SpIES has the capability to detect these

high-redshift quasars from the overlap of their mid-infrared colors. From this plot we also see

that SpIES detects objects much fainter than the majority of spectroscopically confirmed high-

redshift quasars. Finally, the SpIES data were matched to the known quasars in the Richards

et al. (2015) “master” quasar catalog and we show that SpIES detects a high percentage of

quasars compared to WISE, particularly at z ≥ 3.5 (Figure 2.17).

The raw imaging data is available on the SHA website, and we now release the mosaics created

by the SpIES team and our three detection catalogs for public use (see Appendix 2.7).

Chapter 2: SpIES 2.6 Diagnostics and Summary



57

2.7 Appendix A

2.7.1 How to Access the Raw Data, Image and Catalogs

Raw Data

The raw data for SpIES can be found on the Spitzer Heritage Archive website http://sha.ipac.

caltech.edu/, where the user can input the SpIES program number (90045) and select the data

type (BCD image, pBCD image, AOR).

2.7.2 Catalogs and Images

The three detection catalogs and all of the images created by the SpIES team can be found at

http://www.physics.drexel.edu/~gtr/spies/. These files have been compressed for convenience.

2.8 Appendix B

2.8.1 The SpIES Astronomical Observation Requests
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Chapter 3: The Clustering of High-Redshift (2.9 ≤ z ≤ 5.1) Quasars in
SDSS Stripe 82

Abstract

We present a measurement of the two-point autocorrelation function of photometrically-selected,

high-z quasars over ∼ 100 deg2 on the Sloan Digitial Sky Survey Stripe 82 field. Selection is

performed using three machine-learning algorithms in a six-dimensional, optical/mid-infrared color

space. Optical data from the Sloan Digitial Sky Survey is combined with overlapping deep mid-

infrared data from the Spitzer IRAC Equatorial Survey and the Spitzer -HETDEX Exploratory

Large-area survey. Our selection algorithms are trained on the colors of known high-z quasars.

The selected quasar sample consists of 1378 objects and contains both spectroscopically-confirmed

quasars and photometrically-selected quasar candidates. These objects span a redshift range of

2.9 ≤ z ≤ 5.1 and are generally fainter than i = 20.2; a regime which has lacked sufficient number

density to perform autocorrelation function measurements of photometrically-classified quasars. We

compute the angular correlation function of these data, marginally detecting quasar clustering. We

fit a single power-law with an index of δ = 1.39± 0.618 and amplitude of θ0 = 0.71± 0.546 arcmin.

A dark-matter model is fit to the angular correlation function to estimate the linear bias. At the

average redshift of our survey (〈z〉 = 3.38) the bias is b = 6.78± 1.79. Using this bias, we calculate

a characteristic dark-matter halo mass of 1.70–9.83×1012h−1M�. Our bias estimate suggests that

quasar feedback intermittently shuts down the accretion of gas onto the central super-massive black

hole at early times. If confirmed, these results hint at a level of luminosity dependence in the

clustering of quasars at high-z.

3.1 Introduction

In the present day Universe, super-massive black holes (SMBHs) reside at the center of most, if

not all, galaxies with M? & 1010M�, in which star-formation has almost completely ceased (e.g.,



72

Bell, 2008; Bower et al., 2017). It is commonly accepted that every massive galaxy has undergone

at least one quasar phase within its lifetime (Soltan 1982; Richstone et al. 1998). In this quasar

phase, baryons in an accretion disk lose angular momentum through mechanisms such as viscous

transfer, and eventually are accreted by the SMBH (Salpeter 1964, Lynden-Bell 1969, Rees 1984).

The friction in the disk heats the baryons causing the disk to shine in the optical, ultraviolet (UV),

and X-rays.

Quasars, defined here as a luminous active galactic nuclei with bolometric luminosity Lbol above

∼ 1045 erg s−1, are among the most luminous objects in the Universe, and therefore, can trace

the large scale structure out to high redshift. Galaxies are thought to reside in the peaks in the

dark-matter (DM) distribution, and are generally biased tracers of the underlying DM (e.g., Dekel

& Lahav, 1999; Sheth & Tormen, 1999; Peacock, 1999). This relationship can be quantified by

measuring the linear bias parameter, b. As an initial guide, we define b as:

δQ = b δDM (3.1)

where δQ is the quasar density contrast and δDM is the mass density contrast. Defining the two-point

auto-correlation function (2PCF) as ξ(r) = 〈δ(x)δ(x+ r)〉, where r is the separation between two

local over-densities, leads to

ξQ(r) = b2Q ξDM(r) (3.2)

where ξQ is the quasar two-point correlation function and ξDM is the DM correlation function. The

2PCF is defined as the joint probability of finding a pair of objects having a particular separation in

two volume elements (Totsuji & Kihara 1969; Peebles 1980) and is a statistic commonly employed

to measure the spatial distribution of galaxies (e.g., Zehavi et al., 2011), hydrogen gas in absorption

(e.g., Bautista et al., 2017) and, in this case, quasars. In practice, the 2PCF is calculated as the

excess probability, above a random Poisson distribution, of finding a pair of objects within an annulus

between r and r + δr (Peebles, 1980; Martinez & Saar, 2002; Feigelson & Babu, 2012).

Chapter 3: High-z Clustering 3.1 Introduction
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Â
n

g
el

a
et

a
l.

(2
0
0
8
)

H
S

C
17

2
90

1
2
1.

0
<
i
<

2
3
.5

o
p

t+
N

IR
3
.4
<
z
<

4
.6

C
/
b

H
e

et
a
l.

(2
0
1
8
)

A
C

T
x
S

D
S

S
32

4
∼

24
00

0
1
7
.7

5
<
i
<

2
2.

4
5

b
X

D
Q

S
O

z
≈

1.
4

C
/
p

S
h

er
w

in
et

a
l.

(2
0
1
2
)

2Q
Z

≈
44

5
13

98
9

1
8
.2

5
<
b J
<

2
0.

8
5

cb
/
U

V
X

0.
8
<
z
<

2
.1

A
/
s

P
o
rc

ia
n

i
et

a
l.

(2
0
0
4
)

2Q
Z

72
1

22
65

5
1
8.

2
5
<
b J
<

2
0.

8
5

cb
/
U

V
X

0.
3
<
z
<

2
.2

A
/
s

C
ro

o
m

et
a
l.

(2
0
0
5
)

eB
O

S
S

Y
1Q

11
68

∼
70

00
0

g
≤

2
2.

0
o
r
r
≤

2
2
.0

X
D

Q
S

O
0.

9
<
z
<

2.
1

A
/
s

R
o
d

ŕı
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The 2PCF, and the corresponding bias, have been measured for quasars as a function of different

observable properties, including redshift, luminosity and color; Table 3.1 presents a summary of

recent results. Studies of quasar clustering as a function of luminosity (da Ângela et al., 2008; Shen

et al., 2009; Eftekharzadeh et al., 2015; Chehade et al., 2016) have shown that the bias is very weakly,

if at all, dependent on absolute quasar UV/optical luminosity. In fact, both Shen et al. (2013) and

Krolewski & Eisenstein (2015) found no luminosity dependence of quasar clustering at low-z by

studying the cross-correlation between galaxies and quasars. This result implies that quasars all live

in the most massive dark-matter halos, regardless of how bright the quasar shines. Aird et al. (2018),

however, suggested that the observed lack of luminosity dependence on quasar clustering may be

due to a selection effect depending on the type of galaxy in which the AGN resides (star-forming or

quiescent).

Croom et al. (2005), Myers et al. (2007), and Ross et al. (2009) have demonstrated that the

bias evolves with redshift, increasing at higher redshift until the peak of quasar activity at z ∼ 2.5.

These studies were performed with large number densities of either spectroscopically-confirmed or

photometrically-selected quasars, driving down Poisson noise in the clustering measurement (see

Table 3.1). Interestingly, however, due to the evolution of the underlying DM density field, the

masses of the halos quasars inhabit remains approximately constant at Mhalo ∼ 2− 3× 1012h−1M�

from redshifts z ∼ 2.5 to the present day. Shen et al. (2007) performed a similar analysis of the

luminous, high-z (2.9 ≤ z ≤ 5.4) confirmed quasars from the Sloan Digital Sky Survey (SDSS; York

et al. 2000) Data Release 5. Despite having low number densities (∼ 1 quasar deg−2), their study

detected a large clustering signal, which implied that the bias increases rapidly beyond z ∼ 2.5,

yielding a large increase in the DM halo mass estimate with redshift.

Clustering has also been studied as function of quasar color, which is a proxy for quasar type.

Here the results are not so definitive. Hickox et al. (2011) measured the clustering of both obscured

and unobscured quasars, as defined by an optical-to-IR flux ratio (specifically RAB − [4.5]Vega=6.0;

Hickox et al. 2007), with bluer objects being classed as unobscured quasars. Hickox et al. (2011)

reported “marginally stronger clustering” for the obscured quasars compared to the unobscured

Chapter 3: High-z Clustering 3.1 Introduction



76

population, with the consequence that dust-obscured quasars tend to reside in more massive DM

halos than ‘dust-free’ quasars. Donoso et al. (2014), using a similar selection to Hickox et al. (2011),

similarly found that obscured AGNs inhabit denser environments than unobscured AGNs. DiPompeo

et al. (2014, 2015, 2016), in finding a less significant difference between the clustering of obscured

and unobscured quasars, noted that Donoso et al. (2014) discounted several critical systematics that

affect the amplitude of quasar clustering measurements.

Linking the measurements of the 2PCF and of the corresponding bias to quasar and host galaxy

physical parameters is paramount in understanding the relationship between the observable Universe

and the underlying DM distribution. These observables can then be used to direct theories and mod-

els of galaxy and quasar formation and evolution. One model that links the DM distribution, quasar

activity and the associated environment was presented in Hopkins et al. (2007a). The simulations in

that investigation predicted the clustering of the quasar population through the implementation of

three different quasar feedback models. Quasar feedback works against gravity by forcing material

away from the SMBH through radiation pressure, thus limiting the material that can accrete onto,

and increase the mass of, the SMBH. This process can ultimately shut down the quasar phase and

cause the SMBH to cease growing. Measuring the spatial distribution of quasars, particularly in the

early Universe, can test the predictions made by Hopkins et al. (2007a).

Testing these models requires surveys to push beyond the redshift peak in the quasar epoch

(2 ≤ z ≤ 3; Schmidt et al. 1995; Boyle et al. 2000), and delve further down the quasar luminosity

function (QLF). Current surveys are underway to address this question, for example the extended

Baryon Oscillation Spectroscopic Survey (eBOSS; Dawson et al. 2016), which will be able to select

quasars out to z ∼ 3.5 (Myers et al., 2015); however, the majority of existing quasar surveys are

either designed to observe rest-frame UV bright quasars and/or are focused on z < 2, thus new data

and analysis is needed.

In this paper we present the first measurements of the autocorrelation function of optical+infrared-

selected quasars at z > 2.9 with the 2PCF. This approach is made possible by the combination of

deep optical data from the SDSS Stripe 82 coadded catalog (Annis et al. 2014; Jiang et al. 2014) as
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well as new deep, overlapping Spitzer coverage from the Spitzer IRAC Equatorial Survey (SpIES;

Timlin et al. 2016) and the Spitzer -HETDEX Exploratory Large-area (SHELA; Papovich et al.

2016) survey. Following the work of Richards et al. (2015), we combine the color information from

the optical and mid-infrared (MIR) and employ machine-learning algorithms to classify faint, high-z

quasar candidates using their photometric colors.

Traditionally, large numbers of quasars have been detected from Spitzer surveys alone. Quasars

tend to lie in a specific location in MIR color space so selection can be performed through various

color cuts (Lacy et al. 2004; Stern et al. 2005). These constraints, while effective, lead to an

increasing amount of contamination, particularly at high-z where quasar colors overlap with the

stellar locus, resulting in a higher level of incompleteness in the selection (Assef et al. 2010; Donley

et al. 2012). Donley et al. (2012) added a power law selection requirement for classification, which

significantly reduced contamination; however, quasar spectra are not necessarily power laws in the

MIR (Richards et al., 2015). Similarly, optical-only selections have found a large number of new

quasars in SDSS alone; however, these techniques suffer from incompleteness at z ∼ 3.5 (Richards

et al., 2006; Worseck & Prochaska, 2011), where quasars have colors near that of the stellar locus.

The combination of optical and infrared colors allows for more robust classifications, particularly at

high-z, which is essential for this study (see Section 3.2.2).

In this paper, we measure the clustering strength of photometrically-selected quasar candidates.

We compare these measurements to the theoretical predictions for DM clustering to draw inferences

on various physical parameters such as DM halo mass and AGN feedback mechanisms in the early

Universe. In Section 3.2 we discuss the data used in this study, as well as the techniques to select

quasar candidates. Section 3.3 provides further details about the two-point autocorrelation function

definition and uses. We present our results in Section 3.4 and discuss the implications of our

results, comparing to several quasar feedback models in Section 3.5. We summarize and conclude

in Section 3.6. The Appendices give further relevant and supplemental information. Throughout

this paper, we assume a spatially flat ΛCDM model, consistent with the latest Cosmic Microwave

Background (CMB; Planck Collaboration et al., 2016) and Baryon Acoustic Oscillations (BOSS;
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Alam et al., 2016) datasets: Ωm = 0.275, H0 = 70 km s−1 Mpc−1 and σ8 = 0.77, unless otherwise

stated. All colors and magnitudes in this data set were corrected for Galactic extinction using the

parameters (for RV = 3.1) given in Table 6 of Schlafly & Finkbeiner (2011). We calculate magnitudes

on the AB scale, which has a flux density zeropoint of 3631 Jy (Oke & Gunn, 1983b).

3.2 Data and Selection

In this section we describe our datasets including the SpIES and SHELA surveys and the optical

data on SDSS Stripe 82. Following that, we describe our ‘test’ and ‘training’ sets required to classify

our data. Finally, we present the classification algorithms. The final sample of quasar (candidates)

we generate is given in Section 3.2.5.

3.2.1 SpIES, SHELA and SDSS Stripe 82

�� �� �� �� ���� ���

� ��� ���������

� ��� ��� ��� ��� ���

Figure 3.1 Superimposed on the 100µm IRAS dust map (Schlegel et al., 1998), we show the mid-infrared coverage
mask on S82 from the SHELA (orange squares) and SpIES (yellow/purple rectangles) survey. These surveys cover
∼ 120 square degrees on S82 (approximately on third of the full area) and are deep enough to detect quasars out to
z = 6. Each SpIES observation (individual yellow/purple rectangle) spans a range of 0.82◦ in RA (horizontal axis)
and 2◦ in DEC (vertical axis), covering an area of ∼ 1.63 deg2 each.

Covering approximately a third of S82 (−60◦ ≤ α ≤ 60◦; −1.25◦ ≤ δ ≤ 1.25◦), the SpIES survey

was designed to span a large area (∼100 deg2, centered at δ = 0; see Figure 3.1) and to probe

sufficiently deep to select faint, high-z quasars; quasars which were undetected by the Wide-field

Infrared Survey Explorer (WISE ; Wright et al. 2010). The SpIES catalogs reported the photometry

and photometric errors for ∼5.4 million objects at 3.6 µm and 4.5 µm. Using SpIES, we are able to

detect quasars as faint as i ∼ 22 with high reliability (Timlin et al., 2016). SpIES is also optimally

located to surround existing Spitzer data from SHELA (Papovich et al., 2016), forming a long stripe

of deep MIR coverage on S82 (see Figure 3.1).

The SHELA survey was designed to be used alongside the Hobby-Eberly Dark Energy Experiment

(HETDEX; Hill et al. 2008) to perform dark-energy measurements, requiring deep infrared data.

With depths greater than that of SpIES, SHELA provided an additional ∼24 deg2 of deep infrared
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coverage on S82 (see Figure 3.1). In total, SHELA detected ∼2 million objects down to Spitzer

magnitude depths of [3.6]=22.0 and [4.5]=22.6 (compared to 21.9 and 22.0, respectively, for SpIES).

In tandem, SpIES and SHELA provide ∼120 deg2 (accounting for overlapping coverage: Figure 3.1)

of deep, MIR data on S82; data necessary to, along with optical colors, select faint, high-z quasars.

Optical photometric data come from the full SDSS-I/II (York et al., 2000) data release as well as

the SDSS-III/Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein et al. 2011, Dawson et al.

2013). Of particular interest for this study is the S82 coadded catalog (Annis et al. 2014; Jiang et al.

2014). Imaged with the five optical SDSS filters (ugriz; Fukugita et al. 1996), S82 was the target

for recurring observations to detect variable objects and to obtain deep optical photometry. When

the images are stacked, S82 has an optical i-band magnitude limit of i ∼ 24.1 (Jiang et al., 2014),

which is significantly deeper than the rest of the SDSS survey.

Spectroscopically-confirmed quasar data come from the composite quasar catalog of Richards

et al. (2015). This catalog is a compilation of spectroscopic quasars from large surveys such as

SDSS (York et al. 2000, Eisenstein et al. 2011) and the 2QZ project (Croom et al., 2004) as well as

from smaller surveys such as Hectospec (Fabricant et al., 2005). In total, they compiled ∼2 million

quasars and quasar candidates (including ∼437,000 spectroscopically confirmed quasars) which span

a large range in both redshift and i-magnitude. The catalog encompasses faint, high-z quasars from

BOSS (Pâris et al., 2014), which are key to defining the quasar color space used to classify the

photometric objects.

Richards et al. (2015) also matched their catalog to infrared catalogs such as AllWISE1 and

various overlapping Spitzer surveys to investigate the mid-infrared colors of these known quasars

in the full SDSS field. Mid-infrared color-color diagrams have been particularly useful in quasar

classification as shown in Lacy et al. (2004), Stern et al. (2005), and Donley et al. (2012), among

others. The addition of this mid-infrared data in classification allows for higher number densities of

detected quasars, particularly at high-z (z ≥ 2.9).

The new infrared SpIES and SHELA surveys provide a much larger area where deeper infrared

1http://wise2.ipac.caltech.edu/docs/release/allwise/
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data overlaps the optical, providing the necessary information to classify objects as type-1 quasars;

the challenge becomes selecting a clean sample of quasar candidates. However, using the machine-

learning techniques demonstrated in Richards et al. (2015), selection of high-z quasar candidates has

become much more complete. To generate a final catalog of high-z quasars, we must first assemble

a complete sample of all detected objects (i.e., photometric and spectroscopic) to form the test set.

This test set is then reduced to a subset containing the known (spectroscopically confirmed) high-z

quasars used to define the color spaces that train the algorithms along with a fraction of the unknown

(photometric) objects (the training set). Test objects are then fit using the trained algorithm and

are assigned a classification. Presented in Table 3.2 are the demographics of the test and the training

sets used in this study, as well as the final selected type-1 quasar candidates.

3.2.2 Test and Training Sets

In this study, the set of objects to be classified (the test set) and the objects used to train the

algorithms (the training set) were constructed in much the same way as in Richards et al. (2015).

The full test set was built using matched optical+MIR photometric data spanning the full SDSS

footprint, where WISE photometry (converted to Spitzer magnitudes) was used when Spitzer data

did not exist. Furthermore, to be considered for classification, these objects were required to be

SDSS sources with mAB > 15 in all optical bands (to remove contamination due to saturation) and

to have the ‘good’ SDSS flags as described in Richards et al. (2015). The full test set contains ∼ 50

million objects spanning the full SDSS footprint and includes both spectroscopic and photometric

quasars. For this study we further restricted our final test set to objects only in S82 since we

were particularly interested in candidates where deep Spitzer data exists from SpIES and SHELA.

After this cut, the final S82 test set is comprised of ∼ 2 million objects with optical+MIR color

information.

Scranton et al. (2002) demonstrated that SDSS star-galaxy separation is relatively clean to r ∼21.

The Stripe 82 catalogs are catalog co-adds, so the deeper data does not yield improved star–galaxy

separation without further work. As our targets are typically r ∼22, in Section 3.2.5 and Appendix

3.7.1 we describe the tests intended to exclude low-redshift galaxies acting as interlopers in our
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sample.

The quasar training set is constructed by first matching the full test set to the high-z quasars

in the Richards et al. (2015) composite catalog. In total, there are 22,737 high-z (z ≥ 2.9) matches

between these two sets which we use to train our algorithms, the majority of which come from SDSS

(DR7, DR10, and DR12). We also include 12 high-z (z ≥ 3.7) spectroscopic quasars from VVDS and

McGreer et al. (2013) which were confirmed after the composite catalog was generated. To ensure

that the training objects are not confused with other low-z sources, we queried the NASA/IPAC

Extragalactic Database2 (NED) to check the redshifts. We performed a follow up visual inspection

of the spectra for the objects which NED reported to be low-z, and removed four objects that had

non-quasar spectra. In all, there are 22,745 quasars with z ≥ 2.9 in the quasar training set to train

our machine-learning algorithms.

Additionally, we add to the training set non-quasar sources (‘stars’), which do not have spectro-

scopic information, randomly selected from the full test set. As described in Richards et al. (2015),

the ‘stars’ in the training set can also include previously unclassified quasars, stellar sources, and

compact galaxies. The additional ‘star’ information is important in the classification because it

defines the color space boundaries around the high-z quasars in the machine-learning algorithms.

The full training set is comprised of ∼700,000 ‘stars’ and confirmed quasars in the SDSS footprint

that are as faint as i ∼ 23 and observed to z ∼ 6. In this investigation, we split the training set into

two redshift ranges; a lower-z (2.9 ≤ z < 3.5) and a higher-z (3.5 ≤ z ≤ 5.2) range for selection.

The colors of the higher-z objects are much more distinct from low-z ‘stars’ compared to the objects

in the lower-z range, thus the selection is much more efficient in the higher-z range. Figure 3.2

depicts the colors of extended and point sources in the training set, and highlights the colors of

the known high-z quasars in each color space used to classify the test objects. We also provide the

demographics for both the testing and training sets in Table 3.2.

2http://ned.ipac.caltech.edu/forms/nnd.html
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Figure 3.2 Optical and infrared colors (computed from AB magnitudes) of the training set objects used to define the
classification color spaces. Extended objects in the training set are outlined by the gray contours and point sources
are depicted in light blue. The dark blue contours highlight the region where known, high-z (2.9 ≤ z ≤ 5.2) quasars
reside. The overlap of the extended sources and the high-z quasars opens the possibility that we classify, e.g., low-z
galaxies as quasars in our algorithms. To remedy this particular situation, we define a metric to identify point sources
which eliminates extended object (galaxy) contaminants, and by visual inspection (see Appendix 3.7.1).

3.2.3 Classification Algorithms

The colors of confirmed high-z quasars in the training set (shown in Figure 3.2) are used to teach

the machine-learning algorithms where high-z quasars lie in multi-dimensional color space. Colors

of the photometric objects in the S82 test set are then input into the trained algorithms to classify

them as high-z quasars. For this analysis, we utilize three classification algorithms; Random-Forest

Classification (RF), Support-Vector Classification (SVC), and Bootstrap Aggregation (Bagging) on

K-Nearest Neighbors (KNN), which we define below. All of these algorithms are openly available in

the Scikit-Learn3 Python package used in this study.

The RF classifier4 creates a set of N random decision trees, which split the training quasars by

3http://scikit-learn.org/stable/
4http://scikit-learn.org/stable/modules/ensemble.html#forest
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Table 3.2. Training and Test Sets

Data Set NObj z-range imag

Full Training ∼ 7.00× 105 0 ≤ z ≤ 6 15 ≤ i ≤ 24
High-z quasars ∼ 2.27× 104 2.9 ≤ z ≤ 6 16 ≤ i ≤ 23
Full Test ∼ 5× 107 – 16 ≤ i ≤ 23
S82 Test ∼ 2× 106 – 16 ≤ i ≤ 24
Candidatesa 1378 2.9 ≤ zb ≤ 5.1 18 ≤ i ≤ 23

Note. — The training and testing set demographics. The
training set is a combination of spectroscopic objects and pho-
tometric objects in the full test set. The training quasars is
the compilation of spectroscopic quasars used to train the algo-
rithms that are used to classify the S82 test objects. Combining
the photometric and spectroscopic quasars, there are 1378 high-z
quasars with which to compute the correlation function.
a Contains both spectroscopic and photometric quasars
bPhotometric redshifts

their colors into different branches, with each branch returning a classification (in this case high-z

or not). The colors of the test objects are then subject to the splitting that each tree has created,

and each of the trees assign a classification based on the conditions that the test objects satisfy. The

mode result of all of the trees is used as the final classification for each of the test objects.

We also employ the SVC algorithm5, which defines an optimal hyperplane that separates two

populations of objects by the largest margin. In this case, the training set objects create the six-

dimensional color space, and the hyperplane is defined by the plane that maximally separates the

known high-z quasars from the ‘stars’ in the training set. Classification of the test objects is based

on the side of the hyperplane they lie in this multi-dimensional color space.

Finally, we use “Bagging” with a KNN algorithm6, where Bagging is the process of splitting

the training set into N different subsets of randomly chosen training objects (with replacement).

Each of those subsets is used to train the machine-learning algorithm (KNN in this case), resulting

in N trained KNN algorithms. The KNN algorithm assembles the training set color information

5http://scikit-learn.org/stable/modules/svm.html#svm
6http://scikit-learn.org/stable/modules/neighbors.html#classification
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and classifies the test data by analyzing the closest ‘k’ training objects in color space. Similar to a

majority rule, the test object is classified based on the type of the closest ‘k’ training object (in this

case, high-z quasar or not). This analysis is done in all of the Bagging subsets, and the mean result

from all of the bags is chosen as the final classification.

To measure the effectiveness of each algorithm, we compute the two key selection parameters:

efficiency and completeness. The efficiency of an algorithm relates the number of objects that

it classifies correctly to the total number of objects it classifies, and can be used to estimate the

contamination of the classified sample by taking the difference from unity. Completeness is a measure

of how many quasars are properly classified compared to the total number of known quasars in the

data set.

Estimation of the completeness and efficiency of our algorithms requires the full training set to

be split into two subsets for cross-validation (CV); a subset with 75% of the data to be used as a

CV ‘training set’, and a subset with 25% of the data to be used as CV ‘test’ objects. These sets are

input into the classification algorithms discussed above. Since the CV test objects contain known

quasars, completeness and efficiency can be calculated using the classification results of the known

quasars from the CV test set. Ideally, both completeness and efficiency should be maximized to

recover all of the high-z quasars, and only the high-z quasars. Practically, however, quasar colors

can overlap with stars and low-z galaxies, so contamination and missed classifications are inevitable.

We compare our algorithms to the kernel density estimation (KDE) used in Richards et al.

(2015). This study classified photometric objects in the SDSS footprint using optical data along

with infrared data from WISE. The KDE method used in Richards et al. (2015) first defined a

color ‘bandwidth’ for each class of object (quasar or non-quasar) which acts to smooth the color

distributions, and a Bayesian stellar prior which defines the percentage of objects in the test sets

thought to be ‘stars’ (i.e., non-quasars). A probability density function (PDF) is then defined in

color space for a class of object, and the likelihood that a test object with certain photometric colors

belongs to a class is computed using the bandwidth and a kernel function. The posterior probability

that an object is a quasar given its color is computed by applying Bayes’ theorem using the defined
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Table 3.3. Estimated Completeness and Efficiency

Algorithm Completeness Efficiency Contamination
% % %

RF 83/78/80 43/93/86 57/7/14
SVC 82/79/79 40/95/86 60/5/12
Bagging KNN 83/80/80 85/95/88 15/5/12
KDE −/78/− −/97/− −/3/−

Note. — Estimated completeness, efficiency and contamina-
tion measured for the three algorithms used in this study com-
pared to the KDE method used in Richards et al. (2015). The
first three rows report our algorithms when selecting in a lower
redshift range (2.9 ≤ z < 3.5; left), a higher redshift range
(3.5 ≤ z ≤ 5.2; center), and when selecting in a broader red-
shift range (2.9 ≤ z ≤ 5.2; right). The values in the center are
used to compare to Richards et al. (2015). These values are es-
timates since the actual test set probes slightly fainter than the
validation set.

priors and likelihoods for each test object (see Richards et al. 2009 for details). This study classified

objects over a wide range of redshifts, however we will compare the performance of our algorithms

to their highest redshift classification (3.5 ≤ z ≤ 5).

In our investigation, we split the classification of quasar candidates into a lower-z (2.9≤ z <

3.5) and a higher-z (z ≥ 3.5) bin. We found that the classification algorithms performed better at

higher-z compared to lower-z as reported in Table 3.3. This mainly because quasars begin to drop

out of the SDSS u-band filter at z ∼ 3.5, which significantly alters the u − g color space and helps

the machine-learning algorithms efficiently select these objects. The colors of z ∼ 3 quasars are

very similar to those at z ∼ 2.2, therefore the algorithms tend to confuse low-z quasars with higher

redshift quasars. Through cross validation, we found that the “Bagging” algorithm performed the

best at lower-z and all three perform equally well at higher-z as reported in Table 3.3. More details

are presented in Section 3.2.5 where we describe our final candidate selection.
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3.2.4 Photometric Redshifts

Photometric redshifts of our candidates were estimated with Nadaraya-Watson (NW) kernel regres-

sion7. NW is a natural extension of more familiar regression techniques. Linear regression fits a line

to 2-D data. Polynomial regression instead fits a higher order curve. Basis function regression (of

which polynomial regression is an example) uses a pre-determined “basis” function to fit the data.

NW is just basis function regression using a Gaussian kernel (Ivezić et al., 2014).

The NW algorithm defines the multi-dimensional color space of the training objects with spec-

troscopic redshifts, then builds a kernel matrix, K, which measures the pairwise distance between

the colors of the test objects and the colors of the training objects, where K is the Gaussian kernel:

K = exp

(
1

2σ2
‖dtest − dtrain‖2

)
. (3.3)

Here, ‖dtest−dtrain‖ is the Euclidean distance between the colors of the test objects and the color of

the training objects, and σ is the bandwidth of the kernel (σ = 0.05 produced the best self-validation

results in this study). From Equation 3.3, if a test object is close to a training object (i.e., if the

6D colors are very similar), the kernel approaches 1; however, the further the colors are from each

other, the smaller the Gaussian kernel becomes. Therefore, the kernel matrix is used as weights in

the estimate of the photometric redshift, defined by:

zphot =

∑
iKi · zspec,i∑

iKi
, (3.4)

where the kernel element in K is multiplied by the spectroscopic redshift corresponding to the

training quasar input into Equation 3.3. The final photometric redshift result for a candidate object

is then the weighted sum over all the spectroscopic redshifts of the training objects.

To test the effectiveness of this method, we calculate the photometric redshifts of the spectro-

scopic quasars on S82 over all redshift ranges using the same training set we use for the candidates.

Additionally, we split the quasars into a bright and faint subset, where we differentiate between

7http://www.astroml.org/modules/generated/
astroML.linear model.NadarayaWatson.html
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Figure 3.3 Left: Comparison of known high-z quasar spectroscopic redshifts with the estimated photometric redshift
using Nadaraya-Watson regression. The known quasars are split into bright (i ≤ 20.2; green points) and faint (i >
20.2; orange points) bins to test the effectiveness of this algorithm for quasars of different brightness. The black
dashed line depicts zphot − zspec = 0. Right: Difference between the photometric and spectroscopic redshifts for the
bright and faint quasars. Approximately ∼ 93% of the high-z quasars are constrained to |δz| ≤ 0.1 in both bins.

bright and faint at i=20.2. The results in Figure 3.3 show that there is a tight correlation between

the spectroscopic redshift of the quasar and its estimated photometric redshift for both subsets. In

both cases ∼ 93% of the photometric redshifts differ from the spectroscopic redshifts by no more

than, |δz| ≤ 0.1. These results are similar to the findings in Richards et al. (2015) for their highest

redshift bin, who used an empirical method outlined in Richards et al. (2001) and Weinstein et al.

(2004).

Using the NW regression algorithm, each candidate quasar selected with the aforementioned

algorithms was assigned a photometric redshift. A comparison of the candidate redshifts to the

spectroscopic redshifts is displayed in Figure 3.4. With candidates selected, and their photometric

redshifts computed, we now create a final sample of candidates with which to compute the correlation

function.

3.2.5 Clustering Sample

Although classification was performed on all of the S82 test objects, and photometric redshifts

were computed for all candidates that were selected, we further restricted the data set to create the

cleanest sample of faint, high-z quasars with which to compute the 2PCF. First, to retain the faintest
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Figure 3.4 Example color-redshift diagram of the spectroscopic training data (black) and the photometric redshifts
of the candidates (orange). The photometric redshifts estimated using the NW algorithm share the same color space
as the spectroscopic sample on which the algorithm was trained (2.9 ≤ z ≤ 5.1). The blue dashed curve indicates the
modal color as a function of redshift of the known quasars.

objects with the deepest photometry, we required that the objects lay within the SpIES/SHELA

footprint, where the deep MIR data exists, and that they were sufficiently far away from bright stellar

sources which contaminate the photometry (see Timlin et al. 2016 for more details). Additionally,

candidates were required to have photometric redshifts in the range 2.9 ≤ z ≤ 5.1, enabling us to

compare our results with Shen et al. (2007): the most recent wide-area spectroscopic study of quasar

clustering at redshifts as high as z ∼ 4.

To ameliorate potential sources of contamination, yet to select as many true high-z quasars

as possible, we combined the results of each of the selection algorithms (see Table 3.3). At low-z

(2.9 ≤ z < 3.4), we chose to only employ the “Bagging” classifier because of its high efficiency. While

including the results from the other two classifiers would have made our sample more complete, it

also would have added a large amount of contamination. At high-z (3.4 ≤ z ≤ 5.2), however, we

combined the selection results of the three algorithms since they all have low contamination as shown

in Table 3.3.

Despite combining the classification results in this manner, the sample still contained contami-

Chapter 3: High-z Clustering 3.2 Data and Selection



89

2 1 0 1 2 3 4 5 6
u− g

1

0

1

2

3

4

g
−
r

1 0 1 2 3 4
g− r

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r
−
i

1 0 1 2 3
r− i

1.5

1.0

0.5

0.0

0.5

1.0

1.5

i
−
z

1 0 1 2
i− z

3

2

1

0

1

2

3

4

z
−

[3
.6

]

Extended

Point

High-z quasars

Our Candidates

Extended

Point

High-z quasars

Our Candidates

2 1 0 1 2 3 4
z− [3. 6]

1.0

0.5

0.0

0.5

1.0

[3
.6

]−
[4
.5

]

Figure 3.5 Optical and infrared colors of the selected quasars (orange contours). The other contour colors are the
same as in Figure 3.2. These panels demonstrate that the location of the candidates in color space overlap with the
colors on which they were trained (dark blue contours).

nation from low-z galaxies. To eliminate the obvious galaxies, we restricted our data to point-like

sources only. We generated our own metric for high-z quasar point sources by taking the difference

between the PSFMAG8 and cMODELMAG8 (δmag) in the SDSS DR10 i-band. A difference of δmag ≤ 0.145

is used in the SDSS catalogs to label an object as a point source. We found that the known quasars

in our lower-z range (2.9 ≤ z < 3.4) had δmag = 0.2, whereas the known higher-z (z ≥ 3.4) had

δmag = 0.15. We apply this morphology cut to the selected objects in the appropriate redshift

range after the selection had been performed. This cut eliminated a significant fraction of extended

sources, which we consider to be contaminants in our sample (confirmed using visual inspection; see

Appendix 3.7.1).

Another source of contamination that we account for is high Galactic extinction objects which

can cause low-z objects to be mistaken for high-z quasars (Myers et al., 2006). Removal of these

8http://www.sdss3.org/dr10/algorithms/magnitudes.php
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highly extincted objects is particularly important in this study since the eastern edge of the SpIES

field overlaps with the Galactic plane (330◦ ≤ αJ2000 ≤ 344.4◦). To remove the contamination due

to these objects, we elect to cut out this region from our final analysis (see Appendix 3.7.1 for more

details). While this process eliminates some area over which we can perform the clustering analysis,

it also removes contaminants that are confused for high-z quasars in the machine-learning algorithms

(despite the extinction-corrected magnitudes).

Differences in the angular mask of the data and the randoms can also affect our clustering

measurement. The edges of the SHELA field are not uniformly covered in the mask, requiring that

we cut in declination (−1.2◦ ≤ δJ2000 ≤ 1.2◦) to ensure that the densities of the data and randoms

were approximately the same across the field. After cutting out the extinction region and these

under-dense regions, our final footprint covers 102 deg2 on Stripe 82.

Finally, every candidate object (before and after the morphology cut) was visually inspected using

the stacked g, r, z images from the Dark Energy Camera Legacy Survey (DECaLS9) image cutout

tool10. DECaLS images to similar depths as the SDSS S82 coadded catalog (r = 23.4 compared to

r = 24.6 on S82), but uses the Dark Energy Camera (DECam11), which has a finer resolution than

SDSS (0.26′′ compared to 0.39′′ per pixel). This added resolution enabled us to visually eliminate

a small number of obvious low-redshift galaxies which share color spaces with high-z quasars (see

examples in Appendix 3.7.1).

After the cuts and visual inspection, 1378 objects remained as high-z quasars (see Table 3.4).

Of these, 726 are spectroscopically confirmed from the Richards et al. (2015) comprehensive catalog

and we select 652 new high-z quasar candidates with which we can measure the 2PCF. None of the

quasars or candidates used in this study were used in the Shen et al. (2007) study. The colors of our

selected quasars are presented in Figure 3.5 and compared to the colors of the training objects. The

majority of the selected quasars share the same color space as the high-z quasars whose colors were

used to train the algorithms, but as our candidates delve fainter than the majority of the training

objects, there is some scatter in their colors. While there is stellar contamination in the sample

9legacysurvey.org
10https://github.com/yymao/decals-image-list-tool
11http://www.ctio.noao.edu/noao/content/DECam-User-Guide
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(which we will model in Section 3.4), some of the scatter in the colors could be due to contamination

from objects such as compact galaxies, which are more difficult to identify from colors alone.

Using the redshifts and the i-band apparent magnitudes, we compute the absolute magnitude

of these quasar candidates, and compare them to the spectroscopic sample from Shen et al. (2007)

(renormalized to z = 2 after K-correcting using the model in Richards et al. 2006) in the top panel

of Figure 3.6. The majority of the photometric candidates are fainter than the Shen et al. (2007)

quasars and are fainter than i = 20.2 (shown in the bottom panel of Figure 3.6), which is necessary

to break the degeneracy in the bias as a function of redshift. This investigation contains a small

number of objects brighter than i = 20.2 compared to Shen et al. (2007) because it covers a smaller

area (∼ 100 deg2 vs. ∼ 4000 deg2, respectively).

3.3 Clustering

3.3.1 Two-Point Correlation Function

Spatial clustering of a population of objects is quantified using the 2PCF, which is the joint prob-

ability of finding an object in two volume elements, dV1 and dV2, at some separation r12 (Peebles,

1980). This quantity can be expressed as:

dP = n2[1 + ξ(r12)] dV1 dV2 (3.5)

where n is the mean number density and ξ(r12) is the correlation function. In this equation, if the

2PCF is zero, the probability shows no excess compared to a Gaussian random distribution. We

can derive this statistic for a distribution of objects in a density field, ρ, where the probability of

finding an object in that field is dP = 〈ρ(r)〉 dV (Peebles, 1980). The probability of finding a pair

of objects in two density fields ρ1, ρ2 separated by a distance r is:

dP = 〈ρ1(r)〉〈ρ2(r)〉 dV1 dV2 (3.6)

The density in an expanding Universe is modeled with a linear perturbation ρ(r) = ρ̄[1 + δ(r)],
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Figure 3.6 Top: Absolute i-magnitude of the quasar candidates (orange points) compared to the spectroscopically-
confirmed quasars from Shen et al. (2007) (red points). The solid black curve depicts constant i-magnitude (i = 20.2),
where the Shen et al. (2007) objects are brighter than this magnitude and the photometric candidates are fainter. The
i-magnitudes were corrected for reddening to z = 2 using the model from Richards et al. (2006). Bottom: Distribution
of i-magnitudes for our candidates (orange) compared to the Shen et al. (2007) candidates (red). We have far fewer
bright objects (i ≤ 20.2) because our survey area is much smaller.

so Equation (3.6) becomes:

dP = 〈ρ̄[1 + δ1(r′)]〉〈ρ̄[1 + δ2(r)]〉 dV1 dV2 (3.7)

dP = ρ̄2[1 + 〈δ1(r′)δ2(r)〉] dV1 dV2 (3.8)
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Comparing with Equation (3.5) we see that the correlation function is the ensemble average of

the perturbations, ξ(r12) = 〈δ1(r′)δ2(r)〉. The density field can also be expressed in Fourier space

(Bonometto et al., 2002):

δ(r) =
1

(2π)3

∫
δ(k)e−ikrdk. (3.9)

Taking the Fourier transform of the correlation function yields:

〈δ1(r′)δ2(r)〉 =
1

(2π)3

∫
〈δ(k)δ∗(k)〉e−ikrdk (3.10)

where the ensemble average of the density modes, 〈δ(k)δ∗(k)〉, is the definition of the power spectrum,

P (k). The correlation function is, therefore, the Fourier transform of the power spectrum. We relate

our clustering results to the theoretical clustering of DM, which will be obtained through calculation

of the DM power spectrum. In this paper, we compute the angular projected correlation function,

ω(θ), which is a projection from three dimensional (3-D) volume space into two dimensional (2-D)

angular space.

3.3.2 Estimating the Correlation Function

To estimate the correlation function, one needs to compare the data set to a set of randomly dis-

tributed points. To compute the correlation function we use the estimator from Landy & Szalay

(1993):

ω(θ) =
〈DD〉 − 2〈DR〉+ 〈RR〉

〈RR〉
(3.11)

where 〈DD〉, 〈DR〉, and 〈RR〉 are the data-data, data-random, random-random pair counts within

an angular separation of θ (to measure the three dimensional correlation function, ξ(s) one simply

counts pairs within a 3-D comoving separation distances). The pair counts are normalized by the

ratio of the number of objects in the data and random sets. To reduce the shot noise in the

measurement, we use ∼100 times the number of points as the data catalog. The normalization of

the pair counts reconciles that there are more random points to match than data.
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The random data must lie on an identical angular mask as the data. To generate the random

catalog for our candidates, we first construct the angular mask using the MANGLE12 software

(Swanson et al., 2008). This package allows a user to combine polygons from telescope observations

to create a continuous mask, with accurate boundaries and holes, on the surface of a sphere. We

combine the fields from the SpIES and SHELA surveys (see Figure 3.1), and remove circular regions

of varying radii around bright stars from the 2MASS Point Source Catalog as outlined in Timlin

et al. (2016). Objects in these regions were excluded from the selection of quasars because they are

contaminated by the excess flux from the bright star, so we mask them using MANGLE. Random

positions are chosen across the full field, avoiding masked areas, to form the random mask which is

used in the LS estimator in Equation 3.11. Figure 3.7 compares the data to the random catalogs

within a sample of the field created in MANGLE.

Figure 3.7 High-z quasar data set (orange) and the random mask (grey) used to perform the clustering analysis. The
holes in the mask are cutouts of bright stars in the SpIES and SHELA field where the radius of the hole corresponds
to the brightness of the star (see Timlin et al. 2016 for more details). The holes and corners in this mask identify
locations where candidates cannot be selected; to eliminate bias, we mask these regions using MANGLE. Additionally,
we exclude objects in the declination range −1.2◦ ≤ δJ2000 ≤ 1.2◦ due to coverage issues in the edges of the SHELA
fields.

12http://space.mit.edu/~molly/mangle/
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3.3.3 Measuring bias

The linear bias in Equation 3.1 is used as a measure of the clustering strength of the population of

quasars and has been related to many physical parameters of quasars as well as their DM environ-

ments.

Estimating the bias, however, requires that we relate the projected correlation function to the

three dimensional power spectrum. To perform this task, we use Limber’s approximation which

projects the three-dimensional correlation function to two dimensions (Limber, 1953) for objects

with small separations (θ � 1 rad; Simon 2007). Projecting the correlation function requires that

we integrate the three dimensional correlation function along the line of sight of two objects,

ω(θ) =

∫∫
ξ(r1, r2)|r1|2|r2|2φ(r1)φ(r2)dr1dr2 (3.12)

where |r1|, |r2| are the magnitudes of the two distance vectors and φ(r) is a radial selection function.

The selection function acts as a probability distribution where the integral of r2φ(r) dr is normalized

to unity (Brewer, 2008). Shifting the coordinate system to one where the unit vectors are along the

line of sight, u = r1−r2, and across the line of sight, r = 1
2 (r1 +r2), Equation (3.12) can be rewritten

as:

ω(θ) =

∫ ∞
0

r4φ(r)2dr

∫ ∞
0

ξ(
√
u2 + r2θ2) du (3.13)

where, for small u, r1 ≈ r2 and for small angles, cos(θ) ≈ 1 − θ2

2 (see Peebles 1980, Brewer 2008

for more details). Equation (3.13) is the functional form of Limber’s Equation to project the 3-D

correlation function into two dimensions.

We transform Limber’s equation into familiar cosmological parameters. For instance, the ob-

served number of objects in radial shells can be described in terms of the redshift distribution of a

sample of objects by:

φ(r)r2 dr =
dN

dz
dz (3.14)
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Figure 3.8 Photometric redshift distribution of the quasar candidates. The blue curve was determined from kernel
density estimation using the ‘epanechnikov’ kernel with a bandwidth = 0.1. This curve is used in Limber’s equation
to estimate the bias by comparing the projected correlation function to the three dimensional dark-matter power
spectrum. The red histogram depicts the distribution of the photometric redshifts in the data set.

Solving for φ and incorporating into Limber’s equation, we get:

ω(θ) =

∫ ∞
0

(
dN

dz

)2(
dz

dr

)
dz

∫ ∞
0

ξ(
√
u2 + r2θ2) du (3.15)

with the variable r defined as the comoving distance χ (Brewer, 2008). Assuming a flat Universe:

dr = dχ =
c

H0Ez
dz (3.16)

where Ez = [ΩM (1 + z)3 + ΩΛ]
1
2 . Thus Equation (3.13) transforms to:

ω(θ) =

∫ ∞
0

(
dN

dz

)2
H0Ez
c

dz

∫ ∞
0

ξ(
√
u2 + r2θ2) du (3.17)

Using the fact that the correlation function is the Fourier transform of the power spectrum, and

since we know that u is small, we can employ the Hankel transformation on the second integral to
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obtain Limber’s equation in terms of the quasar power spectrum:

ω(θ) =
H0π

c

∫∫ (
dN

dz

)2

Ez
∆2
Q(k, z)

k2
J0(kθχ(z)) dk dz (3.18)

where ∆2
Q is the dimensionless quasar power spectrum (∆2 = k3P (k)

2π2 ) and J0 is the zeroth order

Bessel Function of the first kind (Bonometto et al. 2002; Myers et al. 2007; Brewer 2008). This

formula relates the 3-D quasar power spectrum to the 2-D correlation function.

Equation (3.1) can now be written in a similar fashion by replacing the correlation functions

with the dimensionless power spectra of quasars and dark-matter, ∆2
Q = b2∆2

DM . We substitute

this relation into Equation (3.18) which allows us to cast this equation as a function of bias directly,

ω(θ) =
b2H0π

c

∫∫ (
dN

dz

)2

Ez
∆2
DM (k, z)

k2
J0(kθχ(z)) dk dz (3.19)

where we assume that, for our samples of interest, bias does not evolve strongly with redshift or

scale (e.g., Myers et al. 2007). Using Equation (3.19), we can fit a bias value using the measurement

of the projected correlation function and the 3-D dimensionless dark-matter power spectrum.

To compute the dark-matter power spectrum, we use the Code for Anisotropies in the Microwave

Background (CAMB13), which is a general cosmology package that creates a model cosmography.

CAMB has the functionality to compute the dark-matter power spectrum including the nonlinear

corrections from the halo model in Smith et al. (2003). Combining the dark-matter power spectrum

(which is a function of wave-number, k, and redshift, z) with the redshift selection function for

our candidates (blue curve in Figure 3.8), we Monte Carlo integrate Equation (3.19) and generate

a theoretical model for the projected clustering of dark-matter. Finally, we fit the DM clustering

model to the measurement from our sample and obtain a bias.

13http://camb.info
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3.4 Results

3.4.1 Projected Clustering

The measured SpIES/SHELA angular projected 2PCF of the quasars in this sample is shown in

Figure 3.9. We estimate the errors on these points using both the Poisson approximation (see

Equation 3.27 in Appendix 3.7.4) along with the Jackknife resampling technique (Scranton et al.

2002; Myers et al. 2007; Ross et al. 2009; Eftekharzadeh et al. 2015), where a subset of the data (and

the randoms) is removed from the full set, and the clustering analysis is performed on the remaining

objects. In this investigation, the data sample was split into ten declination slices, resulting in

ten separate clustering measurements, each excluding a different region. Using the ten jackknife

clustering measurements and their RR pair counts, we compute the full covariance matrix by:

Cij =
∑
L

√
RRL(θi)

RR(θi)
[ωL(θi)− ω(θi)]

×

√
RRL(θj)

RR(θj)
[ωL(θj)− ω(θj)],

(3.20)

where L denotes the removal of one of our 10 regions to form a jackknife sample comprising the other

9 regions, and θi, θj represent the clustering result at different separation values. The error bars on

the orange points in Figure 3.9 show the standard deviations of the full measurement, computed

by taking the square root of the main diagonal of the covariance matrix (Myers et al. 2007, Ross

et al. 2009, Eftekharzadeh et al. 2015). We take Poisson errors to be the minimum error of the

data, therefore we replace any Jackknife error with a value less than the Poisson estimate with the

Poisson error value (see Appendix 3.7.4).

The orange curve in Figure 3.9, which is a fit of the DM clustering model to the measured

clustering result, incorporates an estimate of stellar contamination in the sample. Following the

method in Myers et al. (2006), stellar contamination is modeled using the measured correlation

function of known stars in the field (with g < 17.1; Myers et al. 2006), as well as the efficiency, e, of

the classification algorithms (e =0.86 in this study; see Table 3.3). With an efficiency of e = 0.86,

we predict 14% contamination from stellar sources in our DM model fit. The correlation function
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Table 3.5. Pair Counts Results

θ DD DR RR ω(θ) σJK(θ) σP (θ)
(arcmin)

0.076 0 7 828 -0.754 0.5038 –
0.116 0 17 1980 -0.781 0.5074 –
0.175 0 37 4370 -0.756 0.2472 –
0.266 2 116 10432 0.756 2.7091 1.7556
0.403 2 268 23350 -0.459 0.8997 0.5406
0.611 8 542 53470 0.507 0.6561 0.7534
0.927 12 1162 120784 0.073 0.5107 0.4381
1.405 32 2652 273444 0.247 0.3623 0.3118
2.131 74 6022 619802 0.269 0.2385 0.2086
3.231 156 13782 1403064 0.158 0.1461 0.1312
4.899 324 30643 3191350 0.100 0.0680 0.0865
7.428 692 69474 7209140 0.034 0.0398 0.0556

11.262 1506 155010 16201178 0.015 0.0295 0.0370
17.075 3226 343452 36027696 -0.014 0.0239 0.0245
25.889 7104 747011 78725580 0.002 0.0116 0.0168
39.253 14932 1581774 166710784 -0.005 0.0088 0.0115
59.516 29674 3141776 330927082 -0.005 0.0058 0.0082
90.237 53028 5579277 583004272 -0.007 0.0067 0.0061

136.818 75010 7795784 815069184 0.006 0.0048 0.0052
207.443 100858 10584579 1113270342 0.002 0.0050 0.0045

Note. — Pair counts and correlation function measurements within in-
creasing separations on the sky. Also recorded are the error estimates from
the main diagonal of the covariance matrix (see Equation 3.20) estimated
using jackknife resampling, as well as Poisson errors (see Equation 3.27). In
this investigation, jackknife errors are replaced with Poisson errors where
the ratio of jackknife to Poisson is less than unity (see Appendix 3.7.4). In
this table, we report DD and RR as double counted pairs.
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Figure 3.9 Clustering result from Table 3.5 of the 1378 high-redshift (2.9 ≤ z ≤ 5.1) photometric candidates (orange
diamonds). Fitting the DM model to the data over the range 1′ to 30′ (black dashed vertical lines) produces a best fit
bias of b = 6.78 ± 1.79 (orange curve). This model accounts for excess power at large scales by incorporating stellar
contamination into the model fit from Equation 3.21. The dotted line indicates the best fit power-law with θ0=0.71 ±
0.546 arcmin and δ=1.39 ± 0.618. The lower panel shows the ratio between the measured points and the DM model.
Error bars were computed using jackknife resampling, where the grey lines represent the correlation function results
for each of the jackknife samples.

estimate becomes:

ω(θ) = e2ωQQ(θ) + (1− e2)ωSS(θ) + ε(θ) (3.21)

where ωQQ(θ) is the model result from Limber’s equation, ωSS(θ) is the stellar correlation function

in the field, and ε(θ) is the cross correlation between quasars and stars (theoretically zero; Myers

et al. 2007) which is insignificant in our study. Following Myers et al. (2006), we estimate the stellar

correlation function by performing the clustering analysis of SDSS point sources which have bright

g-band magnitudes (16.9 < g < 17.1). The stellar correlation function in the footprint of this survey

is ωSS '0.1 at 30′, slightly less than what Myers et al. (2006) found (ωSS '0.25) using an expanded

version of the KDE-selected sample of Richards et al. (2004). We also fit a single power law to the

data of the form:

ω(θ) =

(
θ

θ0

)−δ
, (3.22)

where θ0 is the angular separation over which objects are correlated, and δ defines the degree of
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clustering as a function of angular scale.

Using the measurement and errors of the 2PCF (see Table 3.5), and the DM model estimated

using Limber’s Equation, we can determine the bias that best relates the measurement and the

theory. Similar to the fit in Myers et al. (2007), the bias was fit on scales with sufficient data-data

pairs (θ ≥ 1′) and before the stellar correlation function dominates the quasar clustering signal

(θ ≤ 30′). In principle, stellar contamination does not greatly change the correlation function at

small scales (Myers et al., 2006), however, photometrically-selected samples inevitably contain some

level of contamination, thus it is imperative that we incorporate an estimation of contamination in

our model.

We fit the bias value, b, as well as the cross-correlation, ε, over the range of 1′ to 30′ (removing

the negative value points) using Equation 3.21. The best-fit bias value is b = 6.78 ± 1.79 and

ε = −0.010 ± 0.018 for the full sample of 1378 quasar candidates, which have an average redshift

of 〈z〉 = 3.38. Using a simple chi-squared, goodness-of-fit test χ2 = 1.73 over 5 degrees of freedom

(DOF), which corresponds to a p-value of p = 0.885 on the fitting scales. Our model is also consistent,

within error, with the data at larger scales despite fitting over the range of 1′ to 30′. This behavior

reveals the effect that the stellar contaminants have and suggests that our larger-scale correlation

function is contaminated with stellar sources.

Over the same scales (1′ to 30′), we fit the two-dimensional power-law model in Equation 3.22

to the data. The best-fit values from this two parameter model are θ0 = 0.71 ± 0.546 and δ =

1.39 ± 0.618. Using only the best-fit amplitude of the power-law model, we estimate that the

significant of this clustering result is ∼ 1.3σ above the null hypothesis of an unclustered sample (i.e.

θ0 = 0 at all scales). Reducing the error bars inherent to our selection technique is not practical in

the near future given the depth of WISE and the limited mapping capability of Spitzer ; however,

the combination of other deep and wide-area optical and infrared data in the near future, such as

The Dark Energy Survey (DES; Diehl et al. 2014) and Euclid (?), should allow further progress.
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3.4.2 Faint Quasar Clustering

The results in Figure 3.9 show the clustering strength of all of our candidate quasars, both bright

(i < 20.2; 252 objects) and faint (i ≥ 20.2; 1126 objects). In this analysis, we remove the bright

quasars and cluster only the 1126 faint objects to directly test the degeneracy in the models of

Hopkins et al. (2007a). The computation of the correlation function and bias is the same as the

previous section, we simply change the redshift selection function in Limber’s equation to match

the new distribution. We find a best fit bias of b = 6.64± 2.23 and ε = 0.005± 0.022 for this faint

sample with an average redshift of 〈z〉 = 3.39. The chi-squared test results in χ2 = 0.45, again over

5 degrees of freedom (DOF), which corresponds to a p-value of p = 0.994 on the fitting scales. The

results of this analysis are shown in Figure 3.10. The error in this fit is much larger than in the full

sample which we attribute to the size of the error bar at ∼ 5 arcmin and the difference in value at ∼

30 arcmin, which are both likely due to a smaller number density of objects. Despite this difference,

the bias between this sample and the full sample are consistent; however, we focus on the full sample

results in the next section.
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Figure 3.10 Clustering result of the faint sample of high redshift photometric candidates (orange diamonds). Fitting
a new DM model to the data over the range 1′ to 30′ (black dashed vertical lines), we find a best fit bias of b = 6.64±2.23
(orange curve). Once again, we also model stellar contamination using Equation 3.21 with the new selection function
for the faint objects. The dotted line indicates the best fit power-law with θ0=0.42 ± 0.582 arcmin and δ=0.99 ±
0.502. As in Figure 3.9, we show the ratio of the data to the DM model in the lower panel and errors are computed
with jackknife resampling (grey lines).
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3.5 Implications

3.5.1 Comparison to Other Observations

This paper presents the first measurements of the autocorrelation function of photometrically-

selected high-z quasars; however, there are other measurements of quasar clustering with which

we can compare across our redshift range of interest. Here we examine the techniques and results

of the surveys in the literature to those in our study.

We first compare our results to the results of the BOSS survey from Eftekharzadeh et al. (2015).

This study examined the redshift-space correlation function of spectroscopically-confirmed quasars

in the SDSS field in the redshift range of 2.2 ≤ z ≤ 2.8. For a more direct comparison with our

angular-projected correlation function, we compute the angular correlation function of the BOSS

data from Eftekharzadeh et al. (2015), using their NGC CORE sample and a random catalog with

five times the data; shown in the top panel of Figure 3.11. Despite spanning slightly disjoint redshift

ranges, the two correlation functions agree on scales before contamination dominates the signal

(∼ 25h−1 Mpc or ∼ 20′; Eftekharzadeh et al. 2015). Since these correlation functions have similar

power in the clustering signal, yet are at different redshifts, the best fit bias values are different (see

Figure 3.12).

Next, we compare with the results of He et al. (2018), who computed the quasar cross-correlation

function (as opposed our measurement of the auto correlation function; ACF) for photometrically

selected quasars in the redshift range 3 ≤ z ≤ 4. In the He et al. (2018) investigation, quasars

are selected using optical and near-infrared colors from the Hyper Suprime-Cam14 (HSC). In total,

they selected 1023 quasars as candidates across 172 deg2, 901 of which were both faint (i ≥ 21)

and high-z. Using these candidates, they computed the cross-correlation function (CCF) between

their candidates and Lyman-Break Galaxies at z ∼ 4. Figure 3.11 (middle panel) depicts the results

from the CCF analysis compared to our study. Since the measurement is performed with two

different statistics, the amplitudes of the two w(θ) should not be directly compared; however the

bias measurements from these two surveys can be compared, despite being computed with different

14https://www.naoj.org/Projects/HSC/surveyplan.html

Chapter 3: High-z Clustering 3.5 Implications

https://www.naoj.org/Projects/HSC/surveyplan.html


105

T
a
b

le
3
.6

.
H

ig
h

-z
B

ia
s

M
ea

su
re

m
en

ts

M
ea

su
re

m
en

t
z
-i

n
te

rv
al

〈z
〉

N
q
s
o

b
ia

s
θ 0

δ
M
i[

z=
2
]

M
D
M
H

(a
rc

m
in

)
fa

in
t,

b
ri

g
h
t

(×
1
0

1
2
h
−

1
M
�

)

T
h

is
w

or
k

(a
ll

)
2.

90
,

5.
10

3
.4

8
1

3
7
8

6
.7

8
±

1
.7

9
0
.7

1
0
±

0
.5

4
6

1
.3

9
±

0
.6

1
8

-2
3
.8

0
,

-2
7
.5

0
1
.7

0
–

9
.8

3
T

h
is

w
or

k
(f

ai
n
t)

2.
90

,
5.

10
3
.4

9
1

1
2
6

6
.6

4
±

2
.2

3
0
.4

2
0
±

0
.5

8
2

0
.9

9
±

0
.5

0
2

-2
3
.8

0
,

-2
6
.4

0
1
.0

4
–

1
0
.6

H
e

et
al

.
(2

01
8)
a

3.
00

,
4.

00
3
.8

0
9
0
1

5
.9

3
±

1
.4

3
0
.1

4
8
±

0
.0

5
0

0
.8

6
a

-2
3
.7

0
,

-2
5
.8

6
1
.0

0
–

2
.0

0
E

ft
ek

h
ar

za
d

eh
et

al
.

(2
01

5)
b

2.
64

,
3.

40
2
.9

7
2
4

7
2
4

3
.5

7
±

0
.0

9
–

–
-2

4
.4

0
,

-2
9
.3

1
0
.6

0
–

0
.7

2
S

h
en

et
al

.
(2

00
7)
b
,c

2.
90

,
3.

50
3
.2

0
2

6
5
1

7
.9

0
±

0
.8

0
–

–
-2

6
.0

0
,

-3
0
.0

0
2
.0

0
–

3
.0

0
S

h
en

et
al

.
(2

00
7)
b
,c

3.
50

,
5.

40
4
.0

0
1

7
7
5

1
4
.0
±

2
.0

0
–

–
-2

6
.5

0
,

-3
0
.0

0
4
.0

0
–

6
.0

0

N
ot

e.
—

B
ia

s
es

ti
m

at
es

fo
r

se
le

ct
ed

su
rv

ey
s

o
f

co
m

p
a
ra

b
le

re
d

sh
if

ts
to

o
u

r
st

u
d

y.
a

C
ro

ss
-c

or
re

la
ti

on
of

th
e

fa
in

t
sa

m
p

le
.

P
ow

er
la

w
in

d
ex

h
el

d
fi

x
ed

a
t
δ

=
0.

8
6

in
th

is
st

u
d

y.
b

R
ed

sh
if

t
sp

ac
e

es
ti

m
at

e,
th

u
s

n
o

an
gu

la
r

p
ow

er
la

w
in

fo
rm

a
ti

o
n

is
g
iv

en
.

c
S

h
en

et
al

.
(2

00
7)

re
su

lt
s

sp
li

t
in

to
tw

o
re

d
sh

if
t

b
in

s
to

re
fl

ec
t

th
e

b
ia

s
va

lu
es

sh
ow

n
in

F
ig

u
re

3
.1

2
.

Chapter 3: High-z Clustering 3.5 Implications



106

10-3

10-2

10-1

100 BOSS 2. 2 z 2. 8

SpIES+SHELA 
(This work)

10-3

10-2

10-1

100

ω
(θ

)

HSC 3 z 4
 (CCF)

10-1 100 101 102

θ (Arcmin)

10-3

10-2

10-1

100 DR5 2. 9 z 5. 4 

Figure 3.11 Top: Comparison of the clustering measurement from this study (orange diamonds) to the angular
correlation function from the BOSS survey (black stars), which was computed using a subset of the data from
Eftekharzadeh et al. (2015). Middle: Comparison to the CCF results of He et al. (2018) (light blue triangles). While
the ACF (our study) and CCF (He et al., 2018) cannot be directly compared, these results cover approximately the
same redshift range, and have slightly different bias values (see Figure 3.12). Bottom: Clustering results of the full
redshift range in this study compared to that of spectroscopically-confirmed quasars from SDSS Data Release Five
(inverted red triangles; Shen et al. 2007). The two surveys cover the same redshift range; however, the quasars in
this study are significantly fainter than those in Shen et al. (2007), as shown in Figure 3.6. Poisson error bars are
depicted for the Shen et al. (2007) data, using the data-data pair counts we estimate in our analysis. Points for Shen
et al. (2007) are offset by 0.1×θ arcmin for clarity. We compare with these three surveys since they are closest in
redshift range (although not exactly the same), and are consistent on scales before contamination dominates (∼ 20′;
Eftekharzadeh et al. 2015).
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statistics (CCF and ACF). Our ACF measurements find a bias of b = 6.78 ± 1.79, and the bias from

the CCF of the less-luminous (i ≥ 21) quasars in He et al. (2018) is b = 5.93 ± 1.43; both results are

displayed in Figure 3.12. The biases of these two studies overlap within their measurement error,

and can be interpreted using a similar physical model. We will discuss the physical implications of

this model in Section 3.5.3. A larger sample of spectroscopic high-z quasars is needed to reduce the

uncertainties in the bias measurement of high-z quasars.

We also compare our study over the full redshift range to the results of Shen et al. (2007), who

investigated the clustering properties of spectroscopically-confirmed high-z quasars from SDSS Data

Release five (DR5). These DR5 quasars span a redshift range of 2.9 ≤ z ≤ 5.4, and are bright (i ≤

20.2; see Figure 3.6). With spectroscopic redshifts, Shen et al. (2007) present a measurement of the

3D redshift-space correlation function, so to compare their results to ours, we compute the angular

projected correlation function using their data and the DR5 mask from Ross et al. (2009). The

results are shown in the bottom panel of Figure 3.11. The correlation function is, in general, higher

in amplitude for the objects in DR5 than our candidates over the relevant scales (∼ 30′), however

we find a slightly smaller bias value than Shen et al. (2007).

The Shen et al. (2007) quasar sample has an i-band limiting magnitude of Mi = −26.5 (their

Table 6), and is thus only sampling the very bright end of the quasar luminosity function. By

contrast, our data as well as the data from He et al. (2018) have an i-band limiting magnitude of

Mi ' −24.0. A direct comparison of the bias values (see Figure 3.12) between Shen et al. (2007), He

et al. (2018), and our study hints at a level of luminosity-dependence of clustering for high-z (z ≥ 3)

quasars. This difference in clustering would suggest that, at z ≥ 3, the mass of the dark-matter

(DM) halo hosting bright quasars is larger than the host DM halo masses of low luminosity quasars.

Luminosity dependence at high-z would be a fascinating result since, at low-z, it has been shown

that clustering is weakly dependent on luminosity, if at all (da Ângela et al. 2008; Shen et al. 2009;

Eftekharzadeh et al. 2015; Chehade et al. 2016).
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3.5.2 Dark Matter Halo Mass

Using the measured quasar bias in this study, and the hypothesis that quasars are biased tracers

of the underlying DM distribution, we can estimate the characteristic mass for a typical DM halo.

Here we use the formalism of Tinker et al. (2010), who fit analytic models to the results of simulated

clustering of DM halos in a flat ΛCDM cosmology. We adopt the fitting function in Equation (6) of

Tinker et al. (2010):

b(ν) = 1−A νa

νa + δac
+Bνb + Cνc, (3.23)

where b(ν) is the measured bias in our study and ν is the “peak height” of the density field defined

by ν = δc/σ(M). Here, the peak height is defined in terms of the critical density for collapse of

the DM halo (δc=1.686) and the linear matter variance at the radial scale of each halo, Rhalo =

(3Mhalo/4πρ̄m)1/3 (ρ̄m = 2.78× 1011Ωmh
2M�; He et al. 2018), defined by:

σ2(M) =
1

2π2

∫
P (k, z)Ŵ 2(k,R)k2dk. (3.24)

We estimate the matter power spectrum, P (k, z), using CAMB and our adopted cosmology, where

Ŵ (k,R) is the spherical top-hat window function;

Ŵ (k,R) =
3

(kR)3
(sin(kR)− kRcos(kR)) . (3.25)

The parameters A, a, B, b, C, c in Equation (3.23) are adopted from Table 2 of Tinker et al.

(2010) for ∆ = 200, where ∆ is the ratio of mean density to background density (similarly used in
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Eftekharzadeh et al. 2015, DiPompeo et al. 2016, He et al. 2018):

y = log10(∆)

A = 1 + 0.24ye−(4/y)4

a = 0.44y − 0.88

B = 0.183 (3.26)

b = 1.5

C = 0.019 + 0.107y + 0.19e−(4/y)4

c = 2.4

Using the measured bias values in Equation 3.23, the power spectrum from CAMB, and the

parameters defined above, we can solve for the characteristic halo mass (see Table 3.6). For our

measured bias over the full redshift range of b = 6.78 ± 1.79, the characteristic halo mass ranges

between 1.70–9.83×1012h−1M�. Computing the halo mass from the bias estimated using only the

faint quasars, yields 1.04–10.56×1012h−1M�, where the large mass ranges in both estimates are a

direct result of the large uncertainty in the bias values.

We compare our estimated halo masses to the masses found in Shen et al. (2007) who computed

the minimum halo mass, which is slightly different from our computation in that an estimate of the

luminosity function is required. Over the redshift range of 2.9 ≤ z ≤ 3.5, Shen et al. (2007) find a

minimum halo mass of ∼(2-3)×1012h−1M�, and in the redshift range z ≥ 3.5, Shen et al. (2007)

estimates a minimum halo mass of ∼(4–6)×1012h−1M�.

The low-z halo mass estimate from Eftekharzadeh et al. (2015) of ∼0.66 ×1012h−1M� over the

redshift range of 2.64 ≤ z ≤ 3.4 (their Table 7), is a factor of ten smaller than our results; however

they also report halo masses on the redshift range 2.20 ≤ z ≤ 2.80 of ∼ 1.2–2.8 ×1012h−1M�,

which is ∼ 3× smaller than our result. This difference arises from the different redshifts as well

as the large difference in bias. The high-z estimate of the He et al. (2018) less-luminous sample is

1–2×1012h−1M�. Again, the difference here is mainly due to the difference in bias between the two
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studies. However, if we take these results at face value it does imply that less luminous quasars tend

to have smaller halo masses at high-z. A larger sample of spectroscopically confirmed faint, high-z

quasars is needed to answer this question with greater certainty. If we could increase the number

of pair counts along the fitting scales by 50%, we estimate that the error bars would decrease by ∼

20% (using the Poisson error estimate which scales as DD−0.5). More data would reduce the error

on the bias which, in turn, leads to a tighter constraint on the DM halo masses.

3.5.3 Implications for Feedback

The measurement of the 2PCF and bias of the faint, high-z quasars in this study is ideal information

to constrain the feedback mechanisms presented in Hopkins et al. (2007a). The Hopkins et al. (2007a)

study compared the clustering of quasars and galaxies as a function of different intrinsic properties
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Figure 3.12 The evolution of the bias with redshift. We show the bias result for our full candidate sample (orange
diamond). Also displayed are the feedback models from Hopkins et al. (2007a) as well as the low- and intermediate
redshift measurements from Ross et al. (2009) (dark blue circles) and Eftekharzadeh et al. (2015) (light blue triangles),
respectively. Finally, we show the high-z bias of the bright quasars from Shen et al. (2007) (red squares) and the new
HSC study from He et al. (2018) (purple triangle). The bias increases with redshift in our sample and tends to agree
with the “inefficient feedback” model, however we cannot rule out the “maximal growth” model.
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(e.g., mass, luminosity, redshift) to investigate triggering mechanisms and the growth of the quasar

and galaxy populations. Included in this study was an analysis of how different quasar feedback

mechanisms affect their clustering strength. These models were designed to fit measured results

at low-z (e.g., Croom et al. 2005, among others) which we represent using the Ross et al. (2009)

results, yet vary at high-z (z ≥ 3). This study highlighted three feedback scenarios; “efficient” and

“inefficient” feedback, as well as a “maximal growth” model. We depict the clustering predictions

from these three models as the black lines in Figure 3.12, and provide a brief explanation below.

The solid line in Figure 3.12 depicts the clustering evolution with redshift if BH growth shuts

down after the quasar epoch. This is the “efficient” feedback model in Hopkins et al. (2007a), and

assumes that quasars represent a single, short-lived, phase in the growth of the central BH. Here,

feedback efficiently terminates the quasar phase, and the central BH ceases its growth. This model

assumes that the observed properties of quasars at z < 2 are the same as at higher redshifts, thus

the predicted clustering strength weakens at high-z to reflect observations at low-z.

Additionally, Hopkins et al. (2007a) presents a model in which quasars, and their central BHs,

grow intermittently until z ∼ 2.5 when “downsizing” begins (the dashed line in Figure 3.12). In this

model, the quasar grows with the luminosity function, and the evolution of the luminosity function

is dictated by the same objects growing hierarchically. Thus, feedback is “inefficient” since the BH

continues to grow over various epochs, as opposed to the first model where, after the initial quasar

phase, BH growth ends. This also means that brighter quasars live in very massive DM halos and

fainter quasars would live in smaller DM halos at early times.

The “maximal growth” model postulates that the central BHs continue to grow proportionally

with the DM halo until z ∼ 2. This model assumes that quasars are continually accreting at their

Eddington rates. Here, feedback is not only inefficient prior to z ∼ 2 but is not sufficient to stop

the BH from growing at its most maximal rate. These quasars live in the highest mass DM halos

which accumulates gas unimpeded by the radiation from the central quasar. Therefore, the predicted

clustering is very high from this model is shown by the dot-dashed line in Figure 3.12.

At low-z, the three models are designed to match measurements of the 2PCF (Croom et al. 2005;
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Myers et al. 2007; Ross et al. 2009), but beyond z ∼ 3, the models diverge. Additionally, the three

models become degenerate for a sample of quasars with i ≤ 20.2 (Hopkins et al., 2007a); all taking

the form of the “maximal growth” model. Our study, however, examines quasars fainter than the

limit at high-z, thus breaking the degeneracy between the models in the redshift range 3 ≤ z ≤ 4.

Figure 3.12 displays the best fit bias result over all of our candidates over the full redshift range in

this study (orange diamond). The bias of the of faint candidates (i ≥ 20.2) is not depicted, however

is consistent with the full result. Also depicted in Figure 3.12 is the error in both the bias, which

is a result from fitting the dark-matter model, and in redshift, where, since our redshift distribution

is not Gaussian, we depict the first and third quartile of the redshifts (as opposed to the standard

deviation).

Within the error of these results, the bias in our study overlaps both the “maximal growth” model

and the “inefficient feedback” model, as shown in Figure 3.12, for the full sample of candidates in

this analysis. The “maximal growth” model is also consistent with the results of Shen et al. (2007);

however, we remind the reader that our investigation clustered a different population of quasars than

Shen et al. (2007). We analyzed the clustering of faint quasars and are therefore capable of breaking

the degeneracy limit noted in Hopkins et al. (2007a). As shown in Figure 3.12, our result deviates

from the “maximal growth” model toward the “inefficient feedback” model, which coincides with

the result from He et al. (2018) at z ∼ 4. The “inefficient feedback” model predicts that feedback

from the central BH intermittently shuts down the accretion of gas onto the BH at early times.

This model also suggests a degree of luminosity dependence of quasar clustering at high-z and that

fainter quasars live in less massive DM halos as compared to bright quasars. To better understand

these models at z ∼ 3.4 will likely require a larger sample of spectroscopically-confirmed quasars

that are both faint, and high-redshift.

At first glance, it may appear that the findings in Eftekharzadeh et al. (2015) contradict our re-

sults; however, a significant difference in the bias measurements between our study and Eftekharzadeh

et al. (2015) can be attributed to the difference in the redshift selection functions. While Figure

3.11 shows that our results and the angular correlation function of Eftekharzadeh et al. (2015) have
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a similar amplitude, the DM model is strongly dependent on the redshift selection function. Lower

redshift ranges result in larger power in the angular correlation function model which, in turn, re-

sults in a smaller bias fit (i.e., decreasing redshift in the model shifts the orange curve in Figure

3.11 to the right). As a result, we expect Eftekharzadeh et al. (2015) to have a lower bias than

our investigation despite having similar amplitudes in angular correlation space. Taking these bias

values at face value shows a rapid change in the bias at z ∼ 3.1. Understanding this jump in bias

at this particular redshift will be the topic of future work.

3.6 Summary

In this investigation, we have determined the two-point autocorrelation function of 1378 photometrically-

selected, faint (i ≥ 20.2), high-z (2.9 ≤ z ≤ 5.1) quasars across ∼100 deg2 on SDSS S82. Details

about this catalog as well as our main findings are as follows:

• We combine the deep optical photometry on S82 from SDSS with new, deep MIR information

from the SpIES and SHELA surveys to form a comprehensive catalog of photometric objects.

Utilizing their optical/MIR colors, and the colors of known high-z quasars from the Richards

et al. (2015) composite catalog (see Figure 3.2), we use three machine-learning algorithms to

select 1378 faint, high-z quasar candidates.

• We estimate the photometric redshifts of these candidates using Nadaraya-Watson kernel re-

gression. When tested on spectroscopic quasars, this algorithm predicts photometric redshifts

within a range of zphot − zspec = 0.1 for 93% of the quasars (Figure 3.3). The overlap in

color-redshift space between the photometric candidates and the known quasars with which

they were selected is presented (Figure 3.4).

• Figure 3.6 demonstrates that our candidates are generally fainter than the objects used in the

Shen et al. (2007) study. This aspect of our sample helps to break the degeneracy between the

feedback models studied in Hopkins et al. (2007a).

• Utilizing the estimator from Landy & Szalay (1993), we compute the angular 2PCF of our

faint high-z quasars, where a random mask is generated using MANGLE (Figure 3.7). The
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correlation function result is presented in Figure 3.9

• We estimate a linear bias using the method of Limber (1953) which relates the 3D DM power

spectrum to the angular correlation function. We compute the 3D power spectrum using

CAMB and our fiducial cosmology. Over the full redshift range of our sample (〈z〉 = 3.38),

the bias is b = 6.78± 1.79. The best-fit values from the power law model are θ0 = 0.71± 0.546

and δ = 1.39± 0.618.

• In Figure 3.10, we remove the bright objects and recompute the correlation function of 1126

faint quasar candidates. We find the faint quasars have a bias of b = 6.64 ± 2.23, similar to

the full study. The agreement in bias demonstrates that the bright quasars in the sample do

not skew the bias result of the faint objects. We compare the results of our full study with

other surveys in Figure 3.11.

• Using the estimates of bias, we compute characteristic DM halo masses using the formalism

of Tinker et al. (2010). Our quasars inhabit DM halos with masses of 1.70–9.83×1012h−1M�.

This mass estimate covers a wide range due to the large uncertainty in the bias.

• We use our bias estimate to constrain the feedback models of Hopkins et al. (2007a) in Figure

3.12. Our data is consistent with both the “maximal growth” model, which assumes that

the central quasar is not powerful enough to shut down accretion of material onto the BH,

as well as the “inefficient feedback” model, which suggests that feedback from the central

source intermittently shuts down accretion of the central BH. The “inefficient feedback” model,

however, also coincides with the bias of faint quasars at z ∼ 4 found in He et al. (2018). Finally,

the “inefficient feedback” model suggests that fainter quasars sit in smaller DM halos.

Further studies of the 2PCF of faint, high-z quasars will benefit from the new optical and

infrared surveys on the horizon. Surveys performed with the Large Synoptic Survey Telescope

(LSST; LSST Science Collaboration et al. 2009) in the optical and the Wide-Field Infrared Survey

Telescope (WFIRST; Spergel et al. 2013) and, to an extent, the James Webb Space Telescope

(JWST; Gardner et al. 2006) in the infrared will be able to observe fainter than what we have
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now. These surveys will add an immense amount of data to our sample and a significant amount of

area which, in turn, increases the significance of the results. Similarly, spectroscopic investigation

on the candidates will allow us to add to the high-z training data, as well as make the necessary

corrections to our photometric redshifts to compute the redshift-space 2PCF. In this investigation,

however, we have demonstrated that, using machine-learning techniques, we can both select faint,

high-z quasars cleanly and compute the 2PCF on these samples. These techniques will be crucial

in the next phase of astronomy, which will be dominated by photometric data that lacks detailed

spectroscopic follow-up.
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3.7 Appendix

3.7.1 Contamination Checks

Contamination in any clustering sample can drastically change the correlation function and the

resulting bias. We carefully define our sample in this study to avoid contamination as much as

possible. As part of this work, we also performed a clustering analysis using the selection results

without restricting to the point sources alone. We found that, if we just use color selection and do

not check for low-z contamination, we get a bias value of b ∼ 5 instead of b ∼ 6.5, which would lead

us to different conclusions in Figure 3.12. It is therefore very important that we eliminate as much

contamination as possible in this study.

While we explicitly model stellar contamination in this study, there are other forms of contam-

ination that dilute the clustering signal. The two main sources of additional contamination are

mis-identification of objects in the classification algorithms, and regions where the angular mask of

the random objects is not identical to the data. Here we describe our methods to identify and reduce

contamination from galaxies in our analysis.

3.7.2 Extinction Cut

As mentioned in Section 3.2.5, we cut the overlapping region between SpIES and the outskirts

of the disk of the Milky Way (330 ≤ αJ2000 ≤ 344.4 which corresponds to a galactic latitude

of −51.5 ≤ bgal ≤ −41.5) to eliminate highly-extincted objects from the analysis which act as

contaminants in the clustering signal. Figure 3.13 depicts the clustering result before (green circles)

and after (orange diamonds) this extinction cut, as well as their best fit DM models (which have

slightly different redshift selection functions). These models are fit as before using an efficiency

of e = 0.86 which means that 14% of the sample are stellar contaminants. At large scales, the

model (green curve) lies below the measured clustering strength, which implies that there are more

contaminants than estimated using just stellar contamination. After the extinction cut is performed,

however, there is much better agreement between the model and the data (in fact, it appears that

the model over-estimates the contamination at large scales). Deep infrared spectra are required to

determine the particular type of object contaminating the sample, however it is most likely stars
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that were reddened by Galactic dust such as late type M-dwarf stars. These objects would not

appear in optically–selected samples, however since we include the infrared colors in our selection,

they could be selected as quasars.

While the extinction cut resulted in a loss of ∼ 20 deg2, it also significantly decreased the power

of the correlation function at larger scales (see Figure 3.13). There were, however, objects in that

field with lower extinction measurements that were also cut. Ideally, we would keep these objects to

use in our correlation function measurements, but cutting on the extinction value causes the density

to drop significantly in this area, which affects the correlation function if not properly accounted

for in the angular mask. Our future work to remedy this problem is to change the density of the

random mask in this field to reflect the data.
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Figure 3.13 Correlation function of the final sample after the extinction cut (orange diamonds) compared to the
correlation function of the full sample of objects, including the region 330 ≤ αJ2000 ≤ 344.4 (green circles; offset by
0.1 arcmin for clarity). While the correlation function is similar over the fitting range (1′ ≤ θ ≤ 30′), the power at
larger scale is significantly higher for the full study compared to the extinction cut survey. The green circles are offset
by 0.1 ∗ θ for clarity.
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3.7.3 Visual Inspection

Visual inspection using the DECam Legacy Survey image cutout tool17 enabled us to examine the

classified objects and eliminate obvious sources of contamination. The superior depth and resolution

of DECam is crucial for the follow-up visual inspection of the candidates that were selected in each

algorithm. This inspection also drove the need to create the point-source metric we used to cut

all extended objects in this study. We note that fainter quasars are more likely to be classified as

extended emission, thus spectroscopic follow-up is needed on all faint candidates, not just the point

sources used in this study.

Figure 3.14 Visual inspection examples of contamination using image cutouts from DECam for objects classified
as quasars in this study. Left: Obvious galaxy contaminant selected by our algorithm. This object is a low-redshift
galaxy which has similar u−g colors to quasars with z ≤ 3. Center: An object selected by our algorithm that exhibits
extended behavior, but is not visually an obvious contaminant like the galaxy in the left panel. Objects like this are
removed in our final clustering result; spectroscopic follow-up is needed to classify these objects as galaxies. Right: A
known high-z quasar that we also select using our algorithm. This particular object is at z ∼ 3.7 and is a typical point
source commonly associated with quasar activity. The co-added color of this quasar appears to be green, however
quasars in this study can have a range of colors in DECam Legacy Survey cutouts, depending on their redshift. Each
frame is ∼ 45′′ on a side.

Figure 3.14 depicts three types of objects that passed the high-z quasar selection algorithms

(in either redshift range). In the left panel we show local galaxies (z ∼ 0.3) which, as a result of

the 4000Å break in their spectra, can be mistaken for the Lyman-α forest from high-z quasars (at

z ∼ 3.5). This confusion causes the low-z galaxies to pass the machine-learning selection. These are

obvious contaminants that were easily detected and removed by hand.

We also selected objects that appeared to have extended emission; an example of which is shown

in the center panel of Figure 3.14. While these objects could be galaxies at higher redshift (e.g.,

17https://github.com/yymao/decals-image-list-tool
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Lyman-Break galaxies; He et al. 2018), it is also possible that they could be faint quasars at high-z

whose emission from the central engine is not bright enough to outshine the host galaxy. For the

faint quasars in our study, this could certainly be the case. These objects did not pass our final

point source metric and thus were removed from our final analysis.

Finally, in the right-hand panel of Figure 3.14, we show a known quasar at redshift z ∼ 3.7 which

our machine-learning algorithm also classifies as a high-z quasar. This object passes the point-source

metric and is thus included in this study. Most of the objects that we call point like have similar

profiles to this object (albeit, some are much fainter). Once again, spectroscopic follow-up is needed

on these objects as well for a combination of testing the classification and testing the redshifts

estimates from our machine-learning algorithms.

3.7.4 Error Estimates and Fitting Parameters
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Figure 3.15 Ratio of the Jackknife errors to Poisson errors for the full quasar candidate sample. Poisson errors
were computed using the pair counts reported in Table 3.5. In this investigation, we replace the Jackknife errors with
Poisson errors wherever the ratio is less than unity.

To ensure that we obtain reasonable jackknife errors, we compare our errors in Table 3.5 to the
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Poisson errors (Peebles, 1973) defined as:

σPoisson =
1 + ω(θ)√

DD
. (3.27)

Poisson error is a measure of the noise due to the number of pairs in the sample (Ross et al., 2009),

and is most valid at smaller scales where pairs of objects are independent of each other (?). We

depict the ratio of our Jackknife errors to the Poisson errors in Figure 3.15. Poisson errors represent

a minimum standard deviation in a clustering measurement, particularly on the smallest scales, thus

the ratio of the Jackknife to Poisson errors should be of order unity. In this investigation, we replace

the Jackknife errors with Poisson errors wherever the ratio of the two in Figure 3.15 is less than one.

We also test the best fit parameters from both the power law model and the dark-matter model

by generating χ2 maps for each space. We compute the χ2 as:

χ2 =
∑ (ωmeasured(θ)− ωmodel(θ))

2

σ2
(3.28)

For our power law model, we iterate the power law index over the range 0.5 ≤ δ ≤ 2.2 in 300 steps

and the correlation angle 0 ≤ θ0 ≤ 1.2 in 400 steps and compute the χ2 value. Figure 3.16 depicts

the results of this analysis for the full sample of quasar candidates (left) and the faint sample (right).

In both cases, we find that the best-fit parameters given in Table 3.6 (represented by the black ‘x’)

lie in the region of the minimum χ2. We also plot the 1σ region and find that it is consistent with

the ranges given in Table 3.6.

Figure 3.17 depicts the χ2 map of the dark-matter model, and is computed in a similar manner

as before. Here, we iterate both the bias values over a range of 3 ≤ b ≤ 9 in 300 steps, and the

cross-correlation term over a range −0.03 ≤ ε ≤ 0.01 in 600 steps. Again, we find that the values

reported in Table 3.6 are consistent with the minimum χ2 value, and the errors span an appropriate

range.

Chapter 3: High-z Clustering 3.7 Appendix



121

0.0 0.2 0.4 0.6 0.8 1.0 1.2
θ0

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

δ

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

χ
2

0.0 0.2 0.4 0.6 0.8 1.0
θ0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

δ

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

χ
2

Figure 3.16 χ2 map of the free parameters in the power law model the full (left) and faint (right) samples of
photometrically selected quasars. The black point depicts the location of the minimum value of χ2 which corresponds
to the best fit values in Table 3.6. The black contour outlines the 1σ region in this space. The range in sigma in both
dimensions is representative of the range recorded in Table 3.6.
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Figure 3.17 χ2 map of the free parameters in the DM model for the full (left) and faint (right) samples of photo-
metrically selected quasars. As in Figure 3.16, the black point depicts the location of the minimum χ2 corresponding
to the values in Table 3.6. The black contour outlines the 1σ region in this space, and reflects the errors presented in
Table 3.6.
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Chapter 4: Conclusion

4.1 The Spitzer IRAC Equatorial Survey

In this work, we have presented the stacked images and catalogs from the Spitzer IRAC Equatorial

Survey. Spanning ∼115 deg2 on SDSS Stripe 82, SpIES is the largest area Spitzer survey to date.

The equatorial Stripe 82 field was specifically chosen for this survey because of the deep photometric

and spectroscopic optical data that already exists, along with a plethora of multi-wavelength obser-

vations which, when combined, provides a complete picture of the objects in the field. SpIES was

also designed to adjoin with the SHELA survey, which added ∼20 deg2 of continuous mid-infrared

coverage on Stripe 82.

The SpIES images were taken in a 3.6 micron and a 4.5 micron filter, and consisted of over 70,000

individual pointings of the Spitzer telescope. All of these images were cleaned of artifacts such as

latent images and column pulldown and were stacked together. The observations were split into

segments of 8×28 sequential pointings of the telescope called AORs (shown in Figure 2.2), where

each AOR was observed over two epochs to identify transient objects, and each epoch consisted of

two dithers, or small offsets, which eliminated the effects of bad pixels in the images. For each filter,

all of the pointings in each AOR were stacked to generate the final, full depth, SpIES images that

were used to generate source catalogs.

This work presents a single-band catalog for each observed wavelength, as well as a dual-band

catalog which contains objects that were detected in both bands. There are a total of 5.4 million

objects in the dual-band catalog, with ∼3.9 million being flagged as ‘highly reliable’ and having a

signal-to-noise greater than three. We measured the positional accuracy of these objects against

matching point sources in the SDSS catalogs, and have implemented slight corrections to the SpIES

positions. Additionally, we report the measured photometry from six circular apertures as well

as their respective photometric errors, which are estimates of the combined background error and

Poisson error. Finally, we include several flags, such as a bright star mask, which indicates which
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objects are close to bright stars, and coverage flag, which reports how many pointings covered each

object, as a service to the user.

The completeness of the survey, which reports the fraction of objects recovered in the extraction

process as a function of magnitude, was estimated using a Monte Carlo approach. Simulated point

sources of varying magnitude were randomly placed in our stacked AOR images that were then

subject to the source extraction routine. In Figure 2.12, we showed that SpIES is 90% complete at

AB magnitudes of 21.75 in the 3.6 micron detector and 21.90 in the 4.5 micron detector, similar to

other surveys of similar depth. These completeness values can also be used as an estimate of the

depth of the survey, however we further estimate depth using the magnitude errors reported in the

dual-band catalogs. A 5σ error in flux corresponds to a magnitude error of ∼0.2, which we find to

be at an AB magnitude of 21.93 in the 3.6 micron images and 22.00 in the 4.5 micron images, as

depicted in Figure 2.14.

Finally, this work demonstrated that the SpIES images were deep enough to fulfill the mission goal

of detecting high-z quasars. The SpIES dual-band catalog was matched to the composite catalog

of Richards et al. (2015) which contains known quasars that are both faint and high-z. SpIES

recovered ∼ 98% of the high-z (z ≥ 3.5) quasars in the field and matched to ∼ 94% of the faint

(i ≥ 20.2) and high-z quasars in this field. Figure 2.17 showed that SpIES has both the sensitivity

and the resolution to detect quasars at redshift ∼ 6 and quasars as faint as 22nd magnitude in the

SDSS i-band. Therefore, the SpIES catalogs are capable of detecting and selecting high-z quasars

for a clustering measurement. All images and catalogs were made public to the broader astronomy

community in 2016.

4.2 High-Redshift Quasar Clustering

The deep infrared data from SpIES and SHELA was combined with the deep optical data from

SDSS to classify high-z quasars photometrically. Using the optical and infrared information for

the known high-z quasars (depicted in Figure 3.2), we trained three machine-learning algorithms

to photometrically select faint, high-z quasars from the SpIES and SHELA footprint. To reduce

contamination from galaxies in this selection, we tested the robustness of the machine-learning
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algorithms at different redshift ranges. We found that selection from the Bootstrap Aggregation of

K-Nearest Neighbors was the most robust in a lower redshift range (2.9 ≤ z ≤ 3.4) whereas all three

algorithms performed equally well at higher redshifts (3.4 ≤ z ≤ 5.2; see Table 3.3). We therefore

split the selection into these two redshift ranges to reduce contamination. Also, to be considered a

quasar, we limited the sample to point sources only. Our final sample consisted of 652 new, high-z

quasar candidates which we combined with 726 spectroscopically-confirmed or previously selected

quasars, resulting in a data set of 1378 objects in the SpIES+SHELA field with which to compute

the correlation function.

Photometric redshifts were then estimated for each of these candidates using the Nadaraya-

Watson regression algorithm, which is a form of basis function regression. Once again, the photo-

metric information from the known quasars was used to train the photo-z algorithm. When tested

on quasars with spectroscopic redshifts, the estimated redshift from photometric colors and the spec-

troscopic redshift do not differ by more than ∆z ∼ 0.1 for approximately 93% of these known high-z

quasars, as shown in Figure 3.3. Using these redshift estimates, we compute the absolute magnitude

of the selected quasar candidates, and show in Figure 3.6 that they are fainter than the quasars from

Shen et al. (2007), which measured the high-z quasar correlation function for the brightest quasar

per square degree on the sky. In fact, the selected candidates delve deep enough to break degeneracy

in the feedback models of Hopkins et al. (2007a) between 3 ≤ z ≤ 4.

To compute the angular correlation function, we employ the estimator from Landy & Szalay

(1993) which is calculated by comparing the angular distribution of the data to that of a random

field. To avoid noise in the correlation function, however, it is imperative that the random points

cover an identical field to the data, so to ensure that the field boundaries are the same we input the

corner positions of the SpIES and SHELA AORs into the MANGLE software. Using these positions,

MANGLE draws and snaps together spherical caps to form a continuous polygon on the sky. Within

this polygon, we generate a random distribution of points which we compare the to data to estimate

the correlation function.

We then fit a dark-matter model to the clustering result to obtain a linear bias factor. The dark-
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matter model used in this work is defined by Limber’s Equation, which is the Fourier Transform

of the three-dimensional dark-matter power spectrum for a ΛCDM universe, projected into two-

dimensions. We used a combination of CAMB, to compute the dark-matter power spectrum, and

Monte Carlo integration to generate a model to fit to the data. Using a least-squares fit, we found

a linear bias of b = 6.78 ± 1.79. Using this value of bias and the formalism of Tinker et al. (2010),

we estimate the characteristic dark matter halo mass of the quasars in this sample to be 1.70–

9.83×1012h−1M�, which is consistent with other results. We also fit a single power-law model to

the correlation function and found an index of δ = 1.39± 0.618 and amplitude of θ0 = 0.71± 0.546

arcmin. The correlation function and best-fit models are depicted in Figure 3.9.

Finally, in Figure 3.12 we compare our measured bias result with the predicted bias from each

of the feedback models in Hopkins et al. (2007a). Our measurement is most consistent with both

the ‘inefficient feedback’ model across our redshift range, however, due to the uncertainty in our

result, we also overlap the ‘maximal growth’ model. The ‘inefficient feedback’ model implies that

the quasar is intermittently shutting down at early times in the universe. This means that the

radiation from the central source is powerful enough to push gas away from the SMBH, however the

gas does not escape the gravitational potential. Therefore, the gas will eventually fall back into the

central region which, in turn, reactivates the quasar. This model also hints at a level of luminosity

dependence of quasar clustering at high-z; a trend which has been observed to weakly exist, if at all,

at lower redshift. We have a higher confidence in the ‘inefficient feedback’ model due to the work of

He et al. (2018), who computed the cross-correlation function of faint, high-z quasars and galaxies

and recovered a bias that agrees with ours.

In summary, we have presented both the images and source detection catalogs for the SpIES

survey which is the largest Spitzer survey to date. We have discussed why SpIES is ideally placed to

detect and classify faint, high-z quasars, and we have demonstrated that SpIES is sensitive enough

to recover known, high-z quasars as faint as i ∼ 22 and as distant as z ∼ 6. After matching the

source catalogs with deep optical data from SDSS, we trained three machine-learning algorithms

on known quasars to classify quasars at high-z. Applying these trained algorithms to our matched
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objects, we have found 652 new quasar candidates which we combine with 726 known or previously

selected quasars to generate a catalog of 1378 quasar candidates. We then computed the angular

two-point autocorrelation function of these candidates, and fit a dark matter model to the results

which gives an estimate of the bias. This bias is most consistent with the ‘inefficient feedback’ model

in Hopkins et al. (2007a) which predicts intermittent quasar activity in the early universe. Finally,

this result also hints at a luminosity dependence of quasar clustering which has been shown to not

exist at lower redshifts.

4.3 Future Work

This work inspires a few different follow-up projects. First, and foremost, we need spectroscopic

measurements of the 652 quasar candidates that were selected in our algorithm, as well as the

candidates selected in Richards et al. (2015) and Peters et al. (2015) that we use in this investigation.

This will help confirm that the majority of these objects are, in fact, quasars, and it will also provide

true redshift measurements as opposed to the estimates from the Nadaraya-Watson algorithm. With

accurate measurements of the redshift, the three-dimensional correlation function can be accurately

computed which provides another estimate of the linear bias of the quasars at high redshift. This

will help to confirm the result presented here and reduce the uncertainty in this result.

Along these lines, we can reduce the uncertainty by adding data to the analysis. Until recently,

the Stripe 82 field has been home to some of the largest-area, deep optical and infrared data crucial

for the selection of faint, highz quasars. New optical data from the Dark Energy Survey (DES;

Diehl et al. 2014) in the South Pole Deep Field can be combined with existing Spitzer data from

the Spitzer -South Pole Telescope Deep Field (SSDF; Ashby et al. 2013). The SSDF field probes

to approximately the same depth as SpIES, and would effectively double the area that could be

used to measure clustering. Combining the infrared and optical data in this field would allow for

photometric selection, similar to our work, however the optical data does not contain the u-band, so

some testing would be required here, particularly when selecting in the 2.9 ≤ z ≤ 3.4 redshift range.

With some testing, we are confident that another measurement of the clustering of faint, high-z

quasars can be performed with better accuracy using a combination of the SpIES+SHELA+SSDF
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fields.

With or without spectroscopic follow-up on the candidates, an estimate of the quasar luminosity

function (QLF) can be made with the data in hand. The candidates in our analysis are faint

enough to find the turn-over of the QLF at high-z. This measurement will be very useful to test

the known X-ray QLF results of Glikman et al. (2011) and Giallongo et al. (2015). To perform this

measurement, one will need to generate a sample of simulated quasars which can be passed through

our selection results to more accurately model the completeness of the algorithms used to select

the candidates. With that completeness function, however, we can use the formalism of Ross et al.

(2013) and Peters et al. (2015) to estimate the QLF of these faint quasars.
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