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Abstract

Typical documentation for object-oriented programs in-
cludes descriptions of the parameters and return types of
each method in a class, but little or no information on valid
method invocation sequences. Knowing the sequence with
which methods of a class can be invoked is useful infor-
mation especially for software engineers (e.g., developers,
testers) who are actively involved in the maintenance of
large software systems.

This paper describes a new approach and a tool for gen-
erating class usage scenarios (i.e., how a class is used by
other classes) from method invocations, which are collected
during the execution of the software. Our approach is al-
gorithmic and employs the notion of canonical sets to cate-
gorize method sequences into groups of similar sequences,
where each group represents a usage scenario for a given
class.

1 Introduction and motivation

Software undergoes continuous modification in response
to changes in requirements, repairs of faults, performance
enhancements, and so on. To be effective, software engi-
neers must understand how the software works before they
attempt to modify it. Unfortunately, the size and complexity
of the software complicate the job of the software engineer,
who may have to expend a significant amount of effort to
comprehend the intricacies of the source code.

To help software engineers become more effective in un-
derstanding large software systems, the software engineer-
ing research community has responded with the develop-
ment of techniques and tools such as source code analy-
sis, software clustering, dynamic analysis of software ex-
ecution, profiling, program slicing, and visualization. To

see, from a high level, how existing tools and techniques
can help a software engineer understand a software system
better, consider the following scenario. Assume that a soft-
ware engineer, who is unfamiliar with the source code, is
asked to repair a fault in the ‘Save’ feature of a word pro-
cessing application. The engineer can analyze the source
code, perform software clustering, and visualize the results
to get an overview of the software’s design or architecture.
Separately, the engineer can instrument the source code and
execute the ‘Save’ feature to see which parts of the code
implement this feature. Having obtained an overview of the
software’s structure and having narrowed the scope of his
search to the most closely related code, the engineer can
then proceed with the modification of the code to repair the
fault.

A problem that software engineers often encounter,
for which an effective, practical solution does not exist
yet, is trying to understand how a class is used through
its class interface. For example, assume that the soft-
ware component under scrutiny is a class calledFile.
This class has an interface that consists of the methods
open(), read(), write(), close(), and the con-
structor methodFile(). In trying to understand how the
File class works, one of the questions that needs to be an-
swered is: what is a valid sequence of method invocations?
Is the sequence<open(), read(), close()> a valid
sequence, or should awrite() be performed following a
read()?

Often, there are method invocation sequences that repre-
sent varioususage scenariosfor a given class. A usage sce-
nario describes how a class is used, through its interface, by
other classes. For example, for theFile class we have the
following method invocation sequences and corresponding
usage scenarios:

• The sequence< open, close >, which can be used
to check the existence of a file.



• The sequence< open, read+, close >, which can
be used to read the contents of a file. (+ indicates one
or more repetitions.)

• The sequence< open, write+, close >, which
can be used to write the contents of a file.

• The sequence< open, read+, write+, close >,
which can be used to read a file, modify its content
and, store the modified content back into the file.

Of course, these are just some of the many usage scenar-
ios for theFile class.

Software engineers who need to understand how to use
the various classes of the software, would benefit from the
availability of information that describes, in an easy to un-
derstand way, the valid method invocation sequences for a
given class of the system.

The problem of knowing the valid method invocation
sequences would be alleviated if every software interface
had a specification, or at the very least a set of examples,
that codified how its component could be used. Many
programs have documentation (e.g., Java programs have
javadoc specifications) that describes the parameters and
return types of each method in a class or the entry points
of an API for a subsystem. Unfortunately, this type of doc-
umentation does not describe valid method invocation se-
quences.

In this paper, we describe a new approach for identifying
a small subset of method invocation sequences that repre-
sent usage scenarios for a class. We have developed a tool
based on this approach, calledScenariographer, which we
have used to analyze some widely-used classes with encour-
aging results.

The intuition for our approach is based on the obser-
vation that themethod invocation sequences of a partic-
ular class usage scenario share certain similarities, but
are fairly dissimilar from the sequences that correspond
to other usage scenarios. For example, considering the
method invocation sequences and usage scenarios for the
File class that were described above, we observe that all
of the sequences used for just reading the contents of a file
are of the form< open, read+, close >, while the
sequences used for reading, manipulating, and storing the
contents of a file are of the form< open,read+,write+,
close>.

Our approach is algorithmic and relies on runtime in-
formation to identify the methods invoked for profiled in-
stances of a class. The algorithm computes the distance be-
tween every pair of method invocation sequences using a
well-defined distance measure (i.e.,edit distance of ordered
sequences). Using this distance measure, the algorithm then
computes thecanonical setof method sequences, which is
a small subset of the sequences thatbest characterizes the

elements of the original set. By definition, each element of
the canonical set is associated with a group of method se-
quences, called thecanonical group, representing a possible
usage scenario for a given class. The theoretical framework
of our technique is based on a non-linear optimization for-
mulation of canonical sets [10, 11]. An approximate so-
lution to the optimization can be computed efficiently us-
ing semidefinite programming techniques [14] and round-
ing [27].

Our approach does not guarantee that for any set of
method sequences it will correctly identify all class usage
scenarios. However, as the results of a case study show in
Section 5, the approach has been fairly effective in practice.
We have been able to analyze software applications con-
sisting of thousands of objects and methods to obtain usage
scenarios for some widely-used classes.

The remaining of the paper is organized as follows: Sec-
tion 2 reviews related work. Section 3 describes the design
and implementation ofScenariographer. The high-level ar-
chitecture of the tool is presented, followed by a description
of the subsystems that compriseScenariographer. Section 4
describes the algorithms for computing canonical sets and
classifying the method invocation sequences into groups
that represent the class usage scenarios. Section 5 presents
the results of a case study, which includes two Java applica-
tions. Finally, Section 6 summarizes the work presented in
this paper and discusses our plans for future work.

2 Background

Our focus on class usage scenarios has been motivated
by the popularity and success of use cases in software en-
gineering practices. Software engineers find use cases to be
a convenient way to describe how a system is used by ex-
ternal users [12]. Operating at a different abstraction level,
class usage scenarios aim to describe how a class is used by
other classes of the system.

Although there is a substantial body of work on use
cases, we are not aware of any work that specifically ad-
dresses the problem of analyzing object-oriented software
systems to determine usage scenarios for a given class, ei-
ther through static or dynamic analysis.

The automata theory and artificial intelligence commu-
nities have studied the problem of inferring finite state ma-
chines from examples (e.g., strings). Some people refer
to this problem as ‘grammar generation’, while others re-
fer to it as ‘inductive inference’. Recently, as a result of
the increased popularity of finite state machines in con-
nection with various object-oriented design methods (e.g.,
UML [12]) this problem has attracted the interest of the
software engineering community. Researchers have ex-
tended some of the basic approaches for generating finite
state machines and applied them to domain-specific prob-



lems. The work by Ammonset al., which we describe at the
end of this section, is the one that is closest related to our
work. What follows in this section overviews representa-
tive work in this area, which we believe provides necessary
context for our approach.

A general paradigm of inductive inference was estab-
lished by Gold, including the commonly-used criterion for a
successful inference called ‘identification in the limit’ [16].
Work done within the general paradigm established by Gold
was surveyed and explained by Angluin and Smith [5].

Biermann and Feldman [7] developed a method that,
given a finite set of input-output pairs that sufficiently char-
acterizes some finite-state computable function, finds the
machine that realizes that function. The method includes
an adjustable parameterk that allows one to vary the pre-
cision and complexity of the synthesized machine. At low
settings ofk, the machine tends to have few states, some
non-determinism, and may yield a number of possible out-
puts for any given input. At higher values ofk, the synthe-
sized machine has more states, but is deterministic and has
a precise representation of the desired input-output pairs.

An application of inductive inference is the auto-
programming system developed by Biermann and Krish-
naswamy [8]. This system constructs programs from exam-
ple computations supplied by the user. The sample compu-
tations are in the form of condition-instruction pairs, with
the conditions being Boolean expressions on the variables
of the program. Programs can be represented as directed
graphs with instructions as nodes and transitions as edges.
The essential problem addressed by Biermann and Krish-
naswamy is how to label instructions that appear multiple
times in the sample computations, so that the end result is
something more interesting than a linear directed graph.

The auto-programming system was the basis for an algo-
rithm developed by Koskimies and Makinen to synthesize
state machines from event trace diagrams [17]. A UML
event trace diagram describes the order in which certain
events are sent from one object to another. Motivated by the
fact that event trace diagrams are not readily available for
many legacy software systems, Systa and Koskimies pro-
posed the use of runtime information as a way to generate
event trace diagrams [26]. These trace diagrams can then be
used with the Koskimies and Makinen algorithm to synthe-
size a state machine, described above, thus creating a state
machine that describes the behavior of the various classes
of objects of a legacy system. Note that the work by Systa
and Koskimies solves a different problem than the one we
have solved. Our emphasis is on characterizing class usage
scenarios from method invocation sequences.

Ammonset al. developed a machine learning approach,
calledspecification mining, for discovering formal specifi-
cations of the protocols that code must obey when inter-
acting with an application program interface (API) or ab-

stract data type (ADT) [3]. Specification mining, which also
uses runtime information, summarizes the frequent interac-
tion patterns as state machines. To overcome some analy-
sis obstacles, it requires human expertise for defining flow
dependencies, a non-trivial activity. Further, to deal with
computational issues associated with the generation of state
machines for large software system, it operates on small in-
teraction scenarios, and not complete execution traces.

3 Scenariographer

This section describes the design and implementation of
Scenariographer, the tool that collects runtime information
and produces a small set of method invocation sequences
representing usage scenarios for a given class. Although
the discussion focuses on the analysis of Java programs, it is
worth mentioning that our technique andScenariographer
are not specific to Java; we can useScenariographerto ana-
lyze object-oriented software written in other programming
languages.

Scenariographerconsists of three major subsystems:
data gathering, repository, andanalysis. Figure 1 illus-
trates the high-level architecture ofScenariographer.

The data gathering subsystem collects the runtime in-
formation that is required to construct symbolic expressions
representing the method invocation sequences for the ob-
jects of a given class. This information includes the unique
identifier of an object, its type, and method entry and exit
events. To collect the information, we use JVPROF, a dy-
namic analyzer that is implemented using the JVMDI and
JVMPI interfaces [24, 25]. The runtime information col-
lected by JVPROF is stored as an XML document, which is
later exported to the repository.

The repository subsystem defines the data model and
stores runtime information collected by the data gathering
subsystem, such as program entities, relationships, and run-
time events. The repository is manipulated using SQL and
is queried using either SQL or SMQL (Software Modelling
Query Language), our own query langauge [22]. The repos-
itory uses any JDBC-compliant database.

SMQL simplifies the data retrieval and analysis of pro-
gram data to create software views. Even though the repos-
itory can be queried using SQL, designing queries for com-
prehending software systems using SQL is cumbersome.
Many of the queries that are of interest, for example queries
that involve the transitive closure of a relation, are not sup-
ported directly by SQL. SMQL is a set-based language that
facilitates the definition of queries about entities, relations,
and events by translating the SMQL code into SQL query
statements. SMQL provides a built-inclosure function
as well as binary operators such as union, intersection, and
join. Further details about the data gathering and repository
subsystems are described elsewhere [22, 23].



JDBC Compliant

Database


(SQL Server)


SQL

(JDBC)


SMQL


Data Gathering Subsystem


Analysis Subsystem
Repository Subsystem


Java Dynamic Analyzer

JVPROF


Software to be

Analyzed


MS Extractor


MS Classifier


Method Sequences


RE Approximator

Sequences


Canonical Set


Usage Scenarios

Canonical Set


Canonical Groups


Runtime Data

(XML format)


Figure 1. High-level architecture of Scenariographer

The analysis subsystem creates an object-interaction
model from the runtime information, computes the canon-
ical set, and identifies the various class usage scenarios. It
consists of three components: MS Extractor, MS Classifier,
and RE Approximator.

TheMS Extractor(Method Sequence Extractor) creates
the object-interaction model and extracts the method in-
vocation sequences for a given class [22]. Objects are
uniquely identified by their runtime references, and thus
each object has its own method sequence. The MS Extrac-
tor then constructs symbolic representations of the method
invocation sequences, which are use by the MS Classifier to
compute the canonical set.

The MS Classifier(Method Sequence Classifier) is the
component that implements the algorithm for computing
the canonical set, and uses the resulting elements to cre-
ate the canonical groups of method invocation sequences
that correspond to class usage scenarios. The MS Classi-
fier is implemented using MatLab and Perl scripts. The al-
gorithms for computing the canonical sets and groups are
described in detail in Section 4.

TheRE Approximator(Regular Expression Approxima-
tor) is an optional component whose objective is to encode
the elements of the canonical groups, and hence the se-
quences that define the class usage scenarios, into an ex-
pression that improves readability for the end user. The
approximation process is described in more detail in Sec-
tion 4.3.

To illustrate the relationship between method invoca-
tion sequences, canonical sequences, and canonical groups,
consider the following example of theFile class, with
the symbolsO, R, W, C representing the methodsopen(),
read(), write(), andclose(), respectively.

Assume that the method invocation sequences obtained
from the execution of a program that contains theFile
class are as follows:

P = {ORC, ORRC, ORRRC,ORRRRC,OWC,

OWWWRC,ORWWWWWC,

OWWWWWWWWWWC,ORRRRRRRRRRWC}

Given the above sequences, the MS Classifier will produce
the canonical set:

P ′ = {ORRC, OWWWRC}

and the canonical groups:

P1 = {ORC, ORRC, ORRRC, ORRRRC,

ORRRRRRRRRRWC}

P2 = {OWWWRC, OWWWWWWWWWWC,

ORWWWWWC, OWC}.

Note that each canonical group is centered around an ele-
ment ofP ′.

To improve readability, these canonical groups can be
simplified to regular expressions (as described in Sec-
tion 4.3) as follows:

P1 = O(R)1,2,3,4,10(W )0,1C

≈ O(R)+(W )?C

P2 = O(R)0,1(W )1,3,5,10C

≈ O(R)?(W )+C

The powers indicates the periodicity of the symbol. For
example a periodicity of(0, 1) means zero or one (optional)



occurrence,(1, 3, 5) means one, three or five occurrences of
the symbol. The first groupP1 represent a usage scenario
that can be summarized as the file-reads scenario, and the
groupP2 represent the file-writes scenarios.

4 Computing canonical sets and class usage
scenarios

This section describes the algorithms for computing
canonical sets and classifying the method invocation se-
quences into groups that represent class usage scenarios.

Section 4.1 describes the algorithm for computing
canonical sets. The description is at a high-level; for a de-
tailed description of the algorithm please refer to [10, 11].

Section 4.2 describes how the elements of the canonical
set are used to form canonical groups of method invocations
sequences.

4.1 Computing canonical sets

Intuitively, for a given set of method sequences under a
known similarity function, its canonical set is the small sub-
set of its members that best characterizes the elements of
this set. Formally, ifP = {p1, ..., pn} is the set of method
invocation sequences andS : p×p → R

≥0 denotes the sim-
ilarity function, we are interested in asmallsubsetP ′ ⊆ P
that maximizes the similarity betweenP ′ andP \ P ′. We
use the set notationP \P ′ to denote our original setP with
the members of the canonical setP ′ removed. Unfortu-
nately, problems with combinatorial constraints of this type
are known to be computationally hard [13]. However, there
is credible theoretical and experimental evidence [27] that
good approximation frameworks can be developed to deal
with such problems.

In recent work [10] we developed a framework, which is
not domain-specific, for computing approximate solutions
to the canonical set problem. The framework formulates the
canonical set problem as an integer programming optimiza-
tion with a flexible set of objectives and constraints. To ad-
dress the intractability of the integer programming problem,
we developed an original relaxation of the semidefinite op-
timization problem (SDP), following the approach of other
researchers [15, 14, 19]. We then developed a procedure for
constructing canonical sets from the solution of the relaxed
semidefinite optimization.

Additionally [11], we introduced the notion of abounded
canonical set, BCS, which placed upper and lower bounds
on the cardinality of the canonical set, removed the multi-
objective formulation, and allowed for a total similarity
function (i.e., any two elements are comparable).

At a high level, the process of constructing the canonical
set can be described as follows :

1. Encode the method sequences as strings.

2. Compute the similarity matrix using edit-distance.

3. Formulate the integer programming problem.

4. Perform a relaxation.

5. Use SDP to solve the relaxation.

6. Use rounding to obtain an approximate solution.

In the following sections we present an overview of the
similarity measure for method sequences and our method
for constructing bounded canonical sets.

4.1.1 Problem formulation

The BCS problem can be stated formally as follows: Given
a set of method invocation sequencesP = {p1, ..., pn}, a
similarity functionS : p × p → R

≥0, and two integer
boundskmin andkmax, the bounded canonical setfor P
is a subsetP ′ ⊆ P that best characterizes the elements ofP
with respect to the similarity functionS while having car-
dinality k, wherekmin ≤ k ≤ kmax. If it is unclear how
to set thekmin andkmax parameters, thenkmin can be set
to 1 andkmax to n, the algorithm will then try to obtain a
solution based on these inputs.

4.1.2 Similarity measure

We now present an overview of the distance function used
to measure the similarity between method invocation se-
quences.

As our initial distance function we selected the well-
knownedit-distance[18]. Intuitively, the edit-distance be-
tween two method invocation sequencespi andpj measures
the minimum cost of changes needed to transformpi to pj .
The set of valid changes and operations includes,insertions,
deletions, andsubstitutionsin pi or pj .

Associated with each valid operation there exists a cost.
The cost represents the amount of a single modification re-
quired to transform one sequence to another. The cost is not
necessarily a uniform function for different kinds of oper-
ations. For example, inserting a method invocation which
does not already exist in the sequence is a more costly op-
eration than inserting a call that already exists, as it in-
creases the potential of resulting in a different usage sce-
nario. The cost is a function of the frequency of a particular
method invocation in the sequence. For example, inserting
a method invocation represented by the symbolR into the
sequence< ORRC > will cost more than inserting it into
the sequence< ORRRRRRRC >, because the sequence
< ORRC > has fewerRs. Furthermore, the cost is a func-
tion of the location. For example, inserting anR after the
first R in the sequence< ORRWWC > is cheaper than



inserting theR after the firstW . The cost function, which
accounts for both the frequency distribution of invocations
in a sequence and their location, is a windowed inverse ex-
ponential function. A closed form description of the cost
function can be found in [4]. The cost of a sequence of
operations is defined as the sum of the individual costs.

The goal is to find a sequence of changes with minimum
cost to transformpi into pj . It is known that the problem of
finding the minimum cost of edit sequences to transformpi

into pj can be solved in polynomial time using an efficient
dynamic programming algorithm [2].

The edit-distance is used to create a similarity matrix that
holds the similarity between all pairs of strings (method se-
quences). We define the similarity as:

Sij =
1

1 + d(pi, pj)

whereSi,j is the similarity between stringpi andpj , and
d(pi, pj) is the distance betweenpi andpj calculated by the
edit-distance function.

We would like to note that functions to measure similar-
ity between method invocation sequences are not limited to
edit-distance and the cost functions described above. It is
possible to define other functions, perhaps even more ap-
propriate for the type of applications we are interested to
analyze. This is the topic of ongoing research and we plan
to present results that compare the performance of different
similarity functions in future work.

4.1.3 BCS construction

In this section, we describe our method for constructing
bounded canonical sets in polynomial time. Starting with
a set of method invocation sequencesP = {p1, ..., pn}
of a class, and a similarity functionS : p × p → R

≥0,
we construct a complete edge weighted graphG = G(P),
where the method invocation sequences{p1, ..., pn} are
represented by vertices, and the edges have weights corre-
sponding to the measure of similarity between the vertices.
We useV to denote the vertices ofG andV ∗ to denote the
subset ofV corresponding to the BCS.

Examining the canonical set shown in Figure 2, we cat-
egorize the edge set ofG into three groups:intra edges,
where both endpoints are within the canonical setV ∗, cut
edges, where one of the endpoints is in the canonical set
and the other is not, andextra edges, which are the rest.
Our goal is to minimize the sum of the weights of the intra
edges, while at the same time maximizing the sum of the
weights of the cut edges. In doing so, we attempt to place
the vertices that are most representative of the others in the
BCS, while keeping the BCS members as dissimilar as pos-
sible.

Intra Edge

Extra Edge

Canonical Set

Cut Edge

Figure 2. BCS edges

The problem of maximizing the weight of the cut edges
is known to be NP hard. Goemans and Williamson [15] ex-
plored the problem MAX -CUT in graphs, and used semidef-
inite programming (SDP) relaxations to provide good ap-
proximate solutions. See Goemans [14] and Mahajan and
Ramesh [19] for a survey of recent results and applications
of SDP. Following their lead, we formulate our problem of
BCS as an integer programming problem, and then use SDP
to give us a good approximate solution.

4.2 Computing canonical groups

GivenP = {p1, ..., pn}, the set of method invocation se-
quences, andP ′ = {q1, ..., qk}, the set of canonical method
invocation sequences, the MS Classifier uses a minimum
distance classification approach to compute the canonical
groups. The steps used to compute the canonical groups are
as follows:

1. For each method invocation sequence,pi, in P , com-
pute its similarity to all of the canonical sequences in
P ′.

2. Place the method invocation sequencepi in a group
that corresponds to the canonical method invocation
sequence,qi, to which it is most similar (i.e.,smallest
edit distance measure).

3. In the event of a tie in max similarity, placepi in all of
the corresponding canonical groups.

Each resulting canonical group contains similar method in-
vocation sequences that represent a usage scenario of the
class.

4.3 Regular expression approximation

As we mentioned earlier, the Regular Expression Ap-
proximator (RE Approximator) is an optional component
whose objective is to encode the elements of the canoni-
cal groups into an expression that improves readability for
the end user. In what follows in this section we describe this
approximation process.

Our implementation is based on work in the areas of
string matching [20, 6] and the approximation of regular



(A)1 (BIKLMH)1 (CD)1 (K)1 (EFGH)45 ǫ

(A)1 ǫ (CD)1 ǫ (EFGH)13 (J)1

(A)1 (BIKLMH)1,0 (CD)1 (K)0,1 (EFGH)13,45 (J)0,1

(A) (BIKLMH)? (CD) (K)? (EFGH)+ (J)?

Table 1. Alignment of subsequences

expressions [9]. The outline of the approximation process
is as follows:

1. Compute the longest common subsequence (LCS) of
each method invocation sequence. The LCS sets of all
method invocation sequences are combined into one
LCS set, which is used in the next step to ensure that
the segmentation of all method invocation sequences is
performed in the same order for all sequences.

2. Compress the method invocation sequences using the
combined LCS set. This step segments each method
invocation sequence into subsequences and finds the
repetitions of each subsequence. Note that each subse-
quence is a member of the LCS set. For example, the
following two sequences:

ABIKLMHCDKEFGHEFGH · · · EFGH

ACDEFGHEFGHEFGHEFGH · · · EFGHJ

Can be compressed into:

(A)1(BIKLMH)1(CD)1(K)1(EFGH)45

(A)1(CD)1(EFGH)13(J)1

3. Align the compressed sequences to produce a single
expression that represents all of the method invocation
sequences. The alignment is performed using the an-
chor subsequences, which are the common repeated
subsequences. Empty (ǫ) subsequences are inserted
as needed to produce the aligned sequences. For the
above example, the alignment process produces the
alignment shown in the first two rows of Table 1. Then
the aligned sequences are combined into a single ex-
pression as shown in the third row of Table 1.

4. Approximate the aligned single expression as a regular
expression using the following rules:

• If the subsequence has a minimum periodicity of
zero and a maximum periodicity of one, then the
subsequence is optional?(zero or one).

• If the subsequence has a monotonically increas-
ing periodicity starting at zero, then set the peri-
odicity to∗ (zero or more).

• If the subsequence has a monotonically increas-
ing periodicity starting at one, then set the peri-
odicity to+ (one or more).

Program classes1 methods2 objects events

Jext 257/426 983/4,495 54,434 181,964
Jetty 102/189 899/2,088 1,459 24,820

(1) The number of classes exercised versus the total number of classes in the
source code

(2) The number of methods exercised versus the total number of methods in the
source code

Table 2. Systems analyzed

The approximated regular expression is shown in the
fourth row of Table 1.

The approximated regular expressions of the method se-
quences represent the usage scenarios of the class under
study.

5 Case study

To evaluate our approach, we usedScenariographer
to generate usage scenarios for two widely-used classes:
gnu.regexp.RE and java.net.Socket. Both
classes are used in open source programs written in Java,
which gave us access to the source code of applications
that are of reasonable size for our evaluation. The class
gnu.regexp.RE is used by the text editorJext [1],
while thejava.net.Socket class is used by theJetty
web server [21]. Relevant properties of these applications
are shown in Table 2.

An outline of the process used to infer the class usage
scenarios for both classes is as follows:

• We executed the Java application in profiled-mode
using the JVPROF profiler. We exercised selected
features of the application and the collected runtime
events were stored in the repository.

• We used the method sequence extractor (MS Extrac-
tor) to extract the method invocation sequences from
the class instances. TheMS Extractoreliminated all
self-calls (i.e., invocations an object made to itself)
from the method sequences to keep only the public
methods that were invoked by other objects.

• The method sequence classifier (MS Classifier) was
then used to compute the canonical sets of method



invocation sequences and corresponding canonical
groups.

• On the last step, we exercised the option to combine
the method invocation sequences of each group into a
single regular expression by executing theRE Approx-
imator.

Thegnu.regexp.RE class, which is part of the GNU
regular expression package, provides an interface for com-
piling and matching regular expressions. The analysis of
the method sequences of theRE class produced three usage
scenarios. The association between symbols and methods
for theRE class is as follows:

A < init > Constructor

B match

C isMatch

D chain

The simplified sequences of the groups that represent each
scenario are:

• Group-1:

{A(B)178, AB, A(B)2, A(B)7,

A(B)18, A(B)31}

The combined expression of the above sequences is:

A(B)1,2,7,18,31,178 ≈ A(B)+

This group represents a usage scenario in which theRE
object is created (<init> method), then one or more
match methods are invoked. Thematch method
checks if the input, in its entirety, is an exact match of
a regular expression. The scope of thematch method
is thegnu.regexp package. Theismatch method
is essentially similar to thematch method with the
exception of its public scope, which makes it visible
outside of thegnu.regexp package.

• Group-2:

{AC, A, AB, A(C)2, A(C)4, A(C)7,

A(C)14, A(C)22, A(C)160, AD}

The combined expression is:

A(C|B|D)0,1(C)0,2,4,7,14,22,160 ≈ A(C|B|D)?(C)∗

This group represents a usage scenario in which the
RE object is created (<init> method), then an optional
invocation to one of the{match,isMatch, chain}
methods, followed by zero or more invocations of the
isMatch method. Note that thechain method is
used to add a token that corresponds to part of a regular
expression to the internalRE list data structure.

• Group-3:

{AD(B)178, AD, ADB, AD(B)2,

AD(B)7, AD(B)31, AD(B)18}

The combined expression is:

AD(B)0,1,2,7,18,31,178 ≈ AD(B)∗

This group represents a usage scenario in which the
RE object is created (<init> method) followed by an
invocation to thechain method, followed by one or
more invocations to theisMatch method.

It is worth noting that group-1 and group-3 could be identi-
fied as one scenario of the formA(D)?(B)∗.

Our second example illustrates that for certain classes,
such asjava.net.Socket, there are multiple practical
issues that one has to deal with to determine usage sce-
narios. For example, we found out that method invocation
sequences can get long and complex, and may contain re-
peated subsequences, which may not be traceable to the de-
veloper’s source code.

Consider the following method invocation sequence
from the Socket class, which we obtained from the
Jetty web server:

AEHDEFGHNC(EFGH)2(NEFGH) ←֓

(N(EFGH)2N(EFGH)2N(EFGH)2(NEFGH))2 ←֓

((EFGHN)(EFGH)2(NEFGH))2

Each symbol in the above sequence represents an invoca-
tion to one of the methods shown below:

A <init> B setImpl
C getInputStream D getOutputStream
E getLocalAddress F getLocalPort
G getPort H getInetAddress
J close I postAccept
K setSoTimeout L setSoLinger
M setTcpNoDelay N getSoTimeout
O connect P isClosed

In the above sequence, we observe the following re-
peated subsequences:{EFGH , NEFGH , EFGHN}.
We inspected the source code and found that these
method subsequences are not traceable to the source
code of the application that uses theSocket class.
Rather, they are the result of invocations from the
methods SocketInputStream.write() and
SocketOutputStream.read(). This is a case
where a class usage scenario involves a group of classes
(i.e.,java.net.Socket, SocketInputStream, and
SocketOutputStream).

We were interested to find out if by group-
ing the calls from SocketInputStream and



SocketOutputStream we could improve the re-
sult. Indeed, by considering these classes as a group we
were able to produce the simpler sequence:

· · · (W )3(RW )2R(WR(W )2RWR)4

where,

R java.net.SocketInputStream.read()
W java.net.SocketOutputStream.write()

We see that the subsequences{EFGH , NEFGH ,
EFGHN}, in theSocket-only case, are replaced by sim-
pler subsequences{W, R}.

TheSocket example illustrates that, for certain classes,
the usage scenarios do not reflect how a given class is used,
unless its collaborating objects are incorporated in the anal-
ysis. We are investigating the estimation of usage scenarios
for subsystems comprised of closely collaborating objects.
Specifically, in future work we plan to highlight how sets of
classes are used by treating them as a single subsystem. In
the case of theSocket class, this set of classes will be the
Socket, theInput Stream, and theOutputSream
classes.

6 Conclusions and future work

In this paper we described an algorithm and a tool to
estimate the usage scenarios of a class from its execution
profile. The estimation process produces canonical groups,
where each group comprises a set of similar method invoca-
tion sequences that represent a usage scenario. Each group
of method invocation sequences can be further simplified
into a regular expression.

Through a case study, we demonstrated the ability of the
tool to collect data at run time, extract method invocation
sequences from class instances, and classify the sequences
into similar groups. The examples in the case study show
how the estimation of usage scenarios simplifies the task of
understanding how a system uses a class.

Our immediate research efforts will focus on three areas.
First, the application and evaluation of different similarity
cost functions to minimize the effect of overlapping groups.
Second, the generalization of the usage scenarios to subsys-
tems (i.e.,sets of collaborating objects). Third, the improve-
ment of the usage scenario presentation by automatically
generating pseudo code fragments similar to those found in
textbooks and user documentation.

Our long term objective is to develop a tool capable of
creating sample programs that illustrate different usage sce-
narios for a given class.Scenariographprovides us with
some of the important capabilities that we need to develop
and implement such a tool.
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