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Abstract 

Trait-like Resting-State Brain Oscillations Predict 
Subsequent Problem-Solving Strategies 

 
Brian Albert Erickson 

 
John Kounios, Ph.D. 

 
 
 
 
People use different processing strategies to solve problems. Previous research 

distinguishes between solving problems by analysis, that is, in a conscious, deliberate 

manner, versus by insight, in which the solution appears abruptly in awareness (the 

“Aha” phenomenon) after a period of unconscious processing. Prior work provides little 

evidence whether the tendency to solve problems using one or the other of these 

strategies constitutes a stable, trait-like cognitive style. We tested this hypothesis by 

assessing whether individuals evince a consistent preference for a particular solving 

strategy across days and types of problems and whether these cognitive styles have neural 

correlates. We recorded participants’ resting-state electroencephalograms (EEGs) on 4 

occasions, approximately once per week. At the end of the third and fourth sessions, 

participants attempted to solve a series of short verbal problems (compound remote 

associates during session 3 and anagrams during session 4). Based on participants’ trial-

by-trial reports of the manner in which they solved anagram problems, individuals were 

categorized as predominantly relying on an insight or an analytic solving strategy. The 

resting-state EEGs of these groups, recorded during previous sessions were compared. 

Participants in the analytic group showed greater EEG beta power over midline and right 

inferior-frontal regions compared to insightful participants; participants in the insightful 

group showed greater beta power over left superior parietal cortex compared to those in 

the analytic group. Group differences in solving strategy and resting-state EEGs assessed 
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with anagram problems generalized to the compound remote associates problems. 

Overall, these results demonstrate the behavioral and neural consistency of these 

cognitive styles over both time and type of problem. The finding that insightful solvers 

exhibited a lower ratio of frontal to parietal neural activity supports the hypothesis that 

insightfulness results from chronic relative frontal hypoactivation and concomitant 

parietal disinhibition whereas analytic solvers exhibit chronic relative frontal 

hyperactivation and parietal inhibition. 
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Chapter 1: Introduction 
 

Two individuals confronted with the same problem may use different strategies to reach 

identical solutions. The term cognitive style refers to individual differences in the 

tendency to favor particular processing modes or strategies. In the domain of problem 

solving, at least two general cognitive styles have been identified: analytic solving 

involves conscious, deliberate thought and insightful solving involves unconscious 

processing leading up to the sudden emergence into conscious of an idea or solution (i.e. 

the “Aha!” phenomenon; Kounios & Beeman, 2014).  

Cognitive styles may be thought of as features of personality (Nickerson, 1999; Feist, 

1999). The concept of personality includes the recurrence of particular perceptual modes, 

thoughts, and behaviors in response to similar events or situations. Behavior and internal 

experience are generated by the brain.  Therefore, personality traits are driven by 

individual differences in neural architecture or recruitment (DeYoung & Gray, 2009). For 

example, the traits of the “Big Five” factor model (John, Donahue, & Kentle, 1990) have 

well-established neural correlates including regional gray matter volume and functional 

architecture (DeYoung, et al., 2011; Adelstien, et al., 2011; Kumari, Williams, & Gray, 

2004).  

Personality traits derived from questionnaires such as the Big Five have the benefits of 

reliability and generality. However, because personality traits are based on self-reports 

about broad classes of behavior and experience, they are arguably a “blunt instrument” in 

that they do not isolate component mental processes. At present, the neural basis that 



Trait resting state predicts cognitive style 9 

predicts what strategy an individual will use when faced with a particular type of problem 

is poorly understood. The study of cognitive style addresses this issue through the 

development of tasks that, despite having definite solutions, leave subjects free to 

approach the problem through their preferred strategy. 

1.2: Creative versus Analytic Cognitive Style 

Creative and analytic thought are examples of two processing modes or strategies which 

can often be applied to the same problem with equally satisfactory results. Little is known 

about the neural drivers that cause individuals to favor one or the other of these cognitive 

styles. To begin, it is necessary to understand the relationship between creativity and 

analysis in problem solving. 

Analytic strategies are those that rely on deliberate, conscious manipulation of problem 

elements, as in hypothesis testing. Many studies of problem solving in cognitive science 

are implicitly studies of analysis – for instance, many basic math and logic problems fit 

this definition (Newell, Shaw, & Simon, 1958). The construct of creativity is less 

constrained. Most classic creativity tasks involve complex, multistep problems 

susceptible to order effects and the probable inclusion of significant analytic processing. 

This complicates the development of a task that contrasts creative and analytic thinking.  

This issue can be addressed by operationalizing creativity as the phenomenon of insight. 

Insight is generally understood to be a manifestation of creative cognition and has the 

advantage of a consensus definition (which is not the case for creativity in general). 

Insight is experienced as an “aha!” phenomenon in which a solution is suddenly available 

and seems obviously correct, without conscious awareness of intermediate steps 

(Kounios & Smith, 1995). Insight and analytic strategies are generally understood to be 
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opposing constructs relying on different thought patterns (Mrazek, Smallwood, & 

Schooler, 2012) which may sometimes coexist in parallel. 

1.2.1: The History of Insight 

Insight has been a topic of interest since antiquity, but became a topic of scientific study 

only in the early 20th century.  Behaviorists such as Edward Thorndike viewed learning 

and problem solving as a trial-and-error process in which response tendencies are 

gradually strengthened by rewards or weakened by punishments.  In contrast, the Gestalt 

psychologists recognized that the behaviorist view is insufficient, as shown by studies 

that demonstrated discrete, all-or-none transformations in visual perception.  

Furthermore, Wolfgang Kőhler's studies of problem solving in apes demonstrated what 

appeared to be sudden insights in problem solving (Köhler, 1925).  One of his studies 

involved placing a bunch of bananas behind a fence out of the reach of a chimpanzee.  

Two bamboo sticks were available to the chimp, but neither was long enough to reach the 

bananas and pull them within reach.  After a period of frustration and inaction, the chimp 

spontaneously arrived at the solution, namely, jamming one stick into the other – bamboo 

shafts are hollow – to make a longer rod that could be used to reach the bananas.  

Importantly, the chimpanzee had not been rewarded for intermediate steps that would 

have brought him incrementally closer to achieving this solution, such as holding both 

sticks at the same time or knocking them together.  The use and construction of the tool 

apparently came to the chimpanzee suddenly and all at once – an insight.  
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1.2.2: Classic Insight Problems 

Gestalt psychologists went on to demonstrate similar examples of insightful problem 

solving in humans.  Their methodology was based on a corpus of “insight problems” that 

typically elicit an “Aha!” experience when they are solved. A famous example is the 

Nine-Dot Problem, a simple puzzle that nevertheless results in nearly total failure to solve 

in standard laboratory studies (Kershaw & Ohlsson, 2004). A square grid of 9 dots is 

presented with instructions to connect all the dots using four straight contiguous lines and 

without retracing a line segment or lifting the pencil from the paper (Maier, 1930). 

Subjects typically approach this problem by testing every unique pattern of lines that 

satisfy the instructions before reaching a point at which no novel solutions are generated 

for an extended period (impasse; Erickson & Kounios, 2013). Impasse reflects an 

exhaustive exploration of the current problem space (the set of all problem states 

satisfying the task instructions) that nevertheless does not yield a viable solution. Impasse 

occurs on some problems when solvers impose implicit assumptions on the problem 

space, rendering the solution inaccessible. These implicit limitations often arise from past 

experience or gestalt perceptual phenomena. For instance, the Nine-Dot Problem hinges 

on perception of the dots as forming a bounded box. Reaching a solution requires 

recognizing and relaxing this implicit assumption, also known as restructuring the 

problem representation. Sometimes a hint can facilitate this restructuring. (The Nine-Dot 

Problem is apparently the origin of the phrase “think outside the box”; see Appendix A.) 

Restructuring is a sudden process associated with a feeling of certainty either that a now-

obvious specific solution is correct or more generally that a newly discovered class of 
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viable problem states contains a correct solution and only the details of implementation 

remain to be worked out.  

1.2.3. Issues with the Corpus of Classic Insight Problems 

Classic insight problems assume that insight is required to reach their solutions and, 

therefore, that all solutions to this class of problems occur through insight. The Gestalt 

psychologists also assumed that insight requires several steps (e.g., preparation, 

incubation, intimation, illumination, and verification; Wallas, 1926. However, a deeper 

investigation of “in-vivo” insight reveals that at least some of these assumptions are 

sufficient but not necessary to produce the feeling of insight. Specifically, insight can 

strike when no problem has been presented, or may be only tangentially related to a 

problem under consideration. In these scenarios the problem space is unbounded, and 

thus there can be no impasse. Classic insight problems may also be solved in a more 

stepwise “constraint relaxation” method that fails to elicit the quintessential insight 

“aha!” experience (Danek, Wiley, & Öllinger, 2016). Thus, the assumption that strong 

insight is being recruited to access a solution by problem design is insufficient. Indeed, 

one of the main limitations with the Gestalt psychologists’ research on insight was that it 

relied on an informal consensus regarding which problems were to be considered insight 

problems and which would be considered analytic problems. Additionally, failure to 

solve a classic insight problem could occur for many reasons, not limited to lack of 

insightful processing ability.  
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1.2.4: Insight/Analytic Self-Report Problems 

For the reasons outlined above, it is difficult to classify problems as exclusively insightful 

or analytic. In fact the primary objective difference between insight and analytical 

processing is not the structure of the problem, but the experience of a solution occurring 

suddenly and unexpectedly (Metcalfe & Wiebe, 1987). This logic led to the development 

of a more recent approach in which subjects are directly asked about their experience 

after solving puzzles. 

Anagram problems are one example of puzzles that have been studied with this method 

(Vincent, Goldberg, & Titone, 2006). An anagram is a string of letters that must be 

rearranged to form a word. Prior to presentation of anagrams, subjects are briefed on the 

characteristics that define an insight solutions (sudden awareness) versus analytic 

solutions (hypothesis testing, trial-and-error guessing, deliberate strategy). After each 

solved anagram, subjects are asked to report which strategy (insightful or analytic) they 

experienced during the solution. Interestingly, the distribution of reported strategies 

varies widely across subjects with some subjects reporting almost exclusive use of insight 

or analysis (Erickson & Kounios, 2013). 

The neural and behavioral correlates of self-reported insight and analytic strategies have 

been studied with anagrams and other simple word-problems for over two decades 

(Kounios & Smith, 1995; Bowden & Beeman, 1998; Jung-Beeman et al., 2004; Kounios 

et al., 2006; Kounios et al., 2008; Subramaniam, Kounios, Parrish, & Jung-Beeman, 

2009; Salvi, Bricolo, Franconeri, Kounios, & Beeman, 2015), validating participant 

reports as reflecting behaviorally and neurologically relevant features. Anagrams can be 
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designed to have only one solution, so that only solution strategy varies across problems. 

Moreover, subjects can easily tolerate completing dozens of anagrams in one session. 

These features make anagram problems ideal for analysis of the neural bases of insight 

versus analytic cognitive style. 

1.3: Neural Signatures of Cognitive Style 

Like all factors of personality and behavior, cognitive style is a function of neurology. 

Because cognitive styles are traitlike patterns of behavior, their contribution to neural 

activity should be present over multiple recordings. This raises multi-session resting-state 

(RS) brain activity as a candidate for exploration. Between 40 and 50% of the variance in 

RS-EEG hemispheric asymmetry is consistent over multiple recording sessions 

(Hagemann, Naumann, Thayer, & Bartussek, 2002; Hagemann, Hewig, Seifert, 

Naumann, & Bartussek, 2005), and some RS-EEG power and frequency features have 

been demonstrated to remain stable over a timescale of days, weeks, or longer (Meindl et 

al., 2010; John, Prichep, Fridman, & Easton, 1988; Salinsky, Oken, & Morehead, 1991; 

Gasser, Bächer, & Steinberg, 1985).  

Resting state features have also been shown to correlate with other traitlike factors 

including the Big Five (Kunisato et al., 2011), general fluid intelligence (gF; Finn et al., 

2015), and psychiatric classifications (Goodkind et al., 2015). RS activity has been 

directly linked to on-task recordings. fMRI classification algorithms can identify a 

subject’s on-task recordings from an anonymous database using only a sample RS 

recording, demonstrating that substantial variance is shared between RS and task-related 

activity (Finn et al., 2015). It is even possible to transform RS fMRI into accurate 

predictions of task-related activity (Tavor et al., 2016). Since trait-RS activity contains a 
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great deal of information about a subject’s on-task cognition, it may be a fruitful place to 

look for signatures of the cognitive styles individuals will employ when faced with a 

problem. 

1.4: The Present Study 

Identification of differences in trait RS-EEG related to subjects’ reliance on an insight 

versus analytic problem solving strategy could help to uncover the neural basis of this 

cognitive style, and perhaps shed light on the constituent insightful and analytic mental 

processes themselves. Additionally, it would validate this methodology for the detection 

of similar trait RS dependencies of other constituent processes of cognitive style. 

Thus, the present study used an anagram task to assess subjects’ insight versus analytic 

solving strategy preferences and link them to RS-EEG. Three sessions of RS-EEG were 

collected and averaged within-subject to isolate trait RS-EEG. Subjects then completed 

an anagram task, and their I/A ratio was used to sort them into primarily-insightful and 

primarily-analytical groups. These groups’ RS-EEG data was submitted to statistical 

analysis to determine scalp regions and frequency bands in which solvers who relied on 

insight had significantly different trait RS-EEG activity from solvers who relied on 

analysis. 

Importantly, because all of the RS-EEG data included in the analysis were recorded prior 

to presentation of anagrams, significant differences revealed by this method are 

predictive; that is, they show that RS-EEG predicts solvers’ reliance on an insightful or 

analytic cognitive style on a subsequent day. In a supplementary analysis, significant 

scalp-frequency clusters from the main analysis were compared to solvers’ reliance on 
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insight or analysis from a related type of problem, compound remote associates (CRAs), 

to explore the generalizability of the revealed trait RS-EEG predictors. These analyses 

explore traitlike RS-EEG features of cognitive problem-solving style.  
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Chapter 2: Methods 
 

2.1: Subjects 

Experimental protocols were approved by the Drexel University Institutional Review 

Board. Participants were recruited via fliers posted on the Drexel and University of 

Pennsylvania campuses. Subjects were prescreened to confirm that they were native 

English speakers; between the ages of 18 and 33; right-handed; had no diagnosed 

neurological conditions or learning disabilities; had normal or corrected-to-normal vision 

and hearing; had no symptoms of psychiatric conditions in the previous year; had no open 

head wounds or implants; and additionally, on each day of testing had not used any drugs 

or medications affecting brain function and had not consumed excessive alcohol for at 

least 24 hours prior to testing; and had adequate sleep the previous night. Each subject 

gave informed consent and verbally confirmed these criteria on the first day of testing, 

and subsequent sessions for relevant questions. Fifty-one right-handed, native English-

speakers (27 male, 24 female) participated in the study. They ranged in age from 18 to 29 

years of age (M = 20.69, SD = 2.97). Of these, 5 were excluded for failing to follow 

directions during one or more of the experimental tasks, 3 were excluded for solving 

fewer than 20% of the problems, 2 were excluded for excessive EEG artifact, and 1 was 

excluded for abnormally high EEG alpha activity (i.e., more than 3 SD greater than the 

mean of the sample). 

2.2 Experimental Design 

Subjects participated in 4 sessions on 4 separate days with approximately one-week 

separating consecutive sessions. Each session took from 1.5 to 2.5 hours. At the 
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beginning of each session, 10 minutes of resting-state EEG was recorded (see Resting-

State EEG Collection). This was followed by administration of the PANAS mood 

questionnaire (Watson, Clark, & Tellegen, 1988). The remaining questionnaires and 

activities varied across sessions. Instructional videos were presented with Microsoft 

PowerPoint; surveys were completed through Google Forms; and all other tasks were 

designed and administered with E-Prime 2.0. All stimuli were presented on a ViewSonic 

Graphics Series G790 monitor. Subjects were compensated $15/hour, paid at the end of 

each session.  

On the first day, participants first filled out three questionnaires: the Morning-

Eveningness Questionnaire (MEQ; Horne & Ostberg, 1975) to determine preference for 

and propensity to be active at different periods of the day; the Edinburgh Handedness 

inventory (Oldfield, 1971); and demographics. On the second day, EEG was recorded 

while participants completed a computer-based attention task (see Eriksen Flanker Task). 

Following that, they were disconnected from the EEG equipment in order to fill out the 

Creativity Achievement Questionnaire (CAQ; Carson, Peterson, & Higgins, 2005) and 

the Abbreviated Torrance Test for Adults (ATTA; Goff, 2002). On the third day, 

participants’ EEG was recorded while they solved compound-remote associates problems 

(see CRAs). On the fourth day, EEG was recorded while participants completed a set of 

anagrams (see Anagrams). Each EEG task was preceded by instructions to relax and 

avoid artifact-inducing movements and eye activity.  

As our strategy for revealing trait-like RS predictors of cognitive style relied on 

correlating RS-EEG recorded during sessions 1-3 with the problem-solving performance 

on the session 4 anagram task. It was therefore important to avoid biasing subjects’ brain 
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activity during the RS-EEG recordings. Since the RS-EEG recording preceded the event-

related task in each session, RS data from sessions 1-3 could not have been biased by the 

expectation of having to solve problems. Thus, the central results include only these first 

3 RS-EEG sessions; session 4 RS data are included in some ancillary analyses. 

2.3 Eriksen Flanker Task 

The attention task given on Day 2 of testing was modeled after a study by Rowe, Hirsh, 

& Anderson (2007) in which subjects were asked to identify the center letter in a row of 

seven letters. Participants were told that this was a “reaction time task” and that they 

should identify the center letter as quickly as possible.  Participants first viewed a video 

describing the Flanker task and procedure with the script: 

“The next part of the experiment will test your reaction time. We will monitor your 

button press responses in addition to the brain activity associated with each response. 

First, we’ll explain the instructions and give you some time to practice before beginning 

the experiment. If you have a question at any time prior to the beginning of the 

experiment, please ask. We want the instructions to be as clear as possible! You will only 

be using the mouse in this experiment. Hold it with both hands as shown here. Whenever 

you need to press the left button, use your left thumb. When you need to press the right 

button, use your right thumb. At the beginning of each trial, you will see a plus sign in 

the center of the screen. When you see this plus sign, keep your eyes fixed on it. Seven 

letters will appear. Try to pay attention only to the center letter and ignore the 6 

“distractors” appearing to the left and right of the center. If the center letter is a K, press 

the left mouse button. If the center letter is an S, press the right mouse button. Respond as 

soon as you identify the center letter. Responding quickly is just as important as 
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responding accurately. The center letter and the distractors will change from trial to trial. 

They might match but they might not. Remember that your button press depends ONLY 

on the center letter. So in this example, you would press the right button. In this one, you 

would press the left button. If you get an answer wrong, you will see “error” appear on 

the screen for a few seconds before the computer moves onto the next trial. You will only 

receive feedback for incorrect answers. When you answer correctly, the computer will 

just move onto the next trial without any message. Now you’re ready to begin the 

practice trials! If you have any questions, you can ask now or at any time while you’re 

practicing.” 

All text including stimuli was written in white font against a very dark gray background 

(RGB: 38, 38, 38). Participants viewed a fixation cross for 500 ms before the stimulus 

was displayed on the screen. Each stimulus consisted of seven letters: either S or K. 

Participants were instructed to press the left mouse button if the center letter was a “K” 

and the right mouse button if the center letter was an “S.” Half of the stimuli were 

flanked by response-compatible letters (e.g. “K” in the middle of six other “K”) and half 

of the stimuli were flanked by response-incompatible letters (e.g. “K” in the middle of six 

“S”). Additionally, half of the stimuli were closely spaced (e.g. “KKKKKKK”) and half 

of the stimuli were distantly spaced (e.g. “K K K S K K K”). Combining these factors 

allowed for eight different possible stimuli, which were used for eight practice trials and 

randomly repeated for 480 experimental trials. If the participant answered incorrectly, 

“error” appeared on the screen for 500 ms. If the participant answered correctly, a blank 

screen was displayed for 500 ms. A fixation cross was displayed during the intertrial 

time, which randomly varied between 500, 600, 700, or 800 ms so that participants would 
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answer as quickly as possible rather than falling into a rhythm. The experimental trials 

were broken into three blocks of 160 trials with breaks of about 60 seconds between each 

block. For trials in which the letters were closely-spaced, the visual angle between each 

letter was .06 degrees. For distantly-spaced letters, the visual angle was .5 degrees. This 

was for letters of about .48 degrees of height. 

2.4 Compound Remote Associates 

Participants first viewed a video detailing the experimental procedure for compound 

remote associates (CRA) problems (Bowden & Jung-Beeman, 2003) and defining insight 

and methodical experiences: 

“This is a task that examines problem solving.  Before each trial begins, you will see a 
fixation cross on the computer screen. You determine when each problem will be 
presented to you by clicking both mouse buttons at the same time. Use your left thumb 
for the left button and your right thumb for the right button, as shown here. Before 
clicking the buttons to show that you are prepared, you should focus your attention and 
center your eyes on the fixation point in the center of the screen. Try not to move your 
eyes around. This is where the problem will appear. After you press the buttons to 
indicate that you are prepared, a word puzzle made up of 3 problem words will appear on 
the screen. Try to look at all of the words at once rather than each individual word—this 
will prevent unnecessary eye movements. Your job is to find a solution word that makes 
a familiar compound word or phrase with each of the problem words. The solution word 
could come before or after each of the problem words. The answer is “apple,” which 
combines with each of the problem words to form pineapple, crabapple and applesauce. 
Here’s another example.  What is the solution that can form a word or phrase with over, 
plant and horse?  The answer is ”power,” which generates overpower, horsepower, and 
power plant. In this example, two of the words are compound words, and the last is a 
compound phrase. Either is acceptable, as long as you are able to form a familiar word or 
phrase.  You will have 15 seconds to solve each word puzzle. As soon as you know the 
answer, simultaneously press both mouse buttons as quickly as possible. Responding 
quickly is as important as responding accurately. Remember to use your left thumb for 
the left button and your right thumb for the right button.  There is no rush to verbalize 
your response. You must wait until you see the solution prompt on the screen, and then 
you may say the solution aloud. If you do not come up with the solution to a word puzzle 
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after 15 seconds, the problem words will disappear from the screen and the fixation cross 
will reappear.  The computer will then move onto the next trial. If you do solve the 
problem, we want to know how you felt when you discovered the solution.  Specifically, 
we want to know if you solved the problem methodically or if you had a feeling of 
insight.  An insight is an "Aha!" feeling, characterized by suddenness and obviousness.  
You are not completely sure how you came up with it, but you are confident that it is the 
answer. The feeling of insight does not have to be overwhelming, but it should be 
something along these lines. A methodical thought process involves more deliberate 
processing. This commonly involves trial-and-error guessing; for example, you might 
have devised the word “applesauce” and then mentally placed “apple” alongside the other 
two problem words to form crabapple and pineapple. If you can remember how you 
arrived at a solution, then you used methodical thought processing. Most people 
interchange between insight and methodical strategies when solving word puzzles, and 
can easily determine which strategy they used. Use your intuition when deciding. If you 
experienced an “Aha!” feeling, please press the right button when the “Methodical” vs. 
“Insight” prompt appears. If you used methodical thought processing, press the left 
button. Try to use mostly these two responses, but if for some reason you are unsure and 
cannot decide, simply wait a few seconds and the experiment will automatically move 
onto the next trial. Keep in mind that this is not a test of intelligence, and these problems 
are intentionally difficult to solve.  Think of it as a challenge; press the button as quickly 
as possible when you think you know the solution, and have fun! 

A fixation cross was displayed at the beginning of each trial until participants clicked to 

initiate a problem. Upon button press, cross hairs appeared around the fixation cross in 

order to prepare the participants and focus their attention. After 1000 ms, three CRA 

problem words replaced the fixation cross within the cross hairs. The words were 

displayed in yellow, Courier New, 14-point font for up to 14 seconds. Participants were 

instructed to try to read all the words without moving their eyes. If they found an answer, 

they were to indicate that a solution had been found with another bimanual button press. 

Then “Solution?” appeared on the screen and the participants spoke the solution aloud, 

and the experimenter recorded whether or not the solution was correct. Then the 

participants indicated whether they had solved the problem by insight or analytically. 

Half of the participants indicated insight with their left thumbs while the other half 
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indicated insight with their right thumbs. In the rare cases where participants were unsure 

of the solution method they used, they did not press any buttons and after 4 seconds the 

solution method was recorded as “unsure.” Participants were told that insight problems 

were characterized by the “Aha!” experience. They were told that if they used trial-and-

error or some kind of method, then they solved the problem analytically, and that if they 

could remember how they arrived at a solution, they most likely used analysis. If the 

participant did not solve the problem within 14 seconds, then the fixation cross preceding 

the next trial was displayed. Participants could relax and refocus their attention for as 

long as desired while the fixation cross was displayed, and the procedure would only 

continue with another bimanual button press. This procedure was used for 12 practice 

trials followed by 153 experimental trials. 

2.5 Anagrams 

The anagrams task (Figure 1) was modeled on previously developed experiments 

(Kounios et al., 2006). Participants first viewed a video detailing the experimental 

procedure and defining insight and methodical experiences: 

“This is a task that examines problem solving.  Before each trial begins, you will see “Get 
Ready” and then a fixation cross on the computer screen. Then you will see an anagram 
on the screen.  For each anagram, we want you to come up with a word by rearranging 
the letters. For example, if you see the anagram “owlet”, you must try to rearrange the 
letters to make another word. The answer is “towel”. Here’s another example.  If you see 
the anagram “omits”, you must try to rearrange the letters to form “moist”. You must use 
all of the letters in the original anagram. You will have 16 seconds to solve each 
anagram. As soon as you know the answer, simultaneously press both mouse buttons as 
quickly as possible. Responding quickly is as important as responding accurately. After 
you make your response, a fixation cross will appear on the screen.  Please try to keep 
your eyes focused on the fixation until the “Solution” prompt appears.  There is no rush 
to verbalize your response. You must wait until you see the solution prompt on the 
screen, and then you can say the solution aloud. If you do not come up with the solution 



Trait resting state predicts cognitive style 24 

to an anagram after 16 seconds, the anagram will disappear from the screen and the 
fixation cross will reappear.  The computer will then move onto the next trial. If you do 
solve the problem, we want to know how you felt when you discovered the solution.  
Specifically, we want to know if you had a feeling of insight.  An insight is an "Aha!" 
feeling, characterized by suddenness and obviousness.  You are not completely sure how 
you came up with it, but you are confident that it is the answer. The feeling of insight 
does not have to be overwhelming, but it should be something along these lines. 
Alternatively, you could solve the anagram methodically. This normally involves some 
kind of strategy, such as systematically rearranging the letters in particular patterns. Trial-
and-error guessing would also be considered methodical.  Even if you’re working on a 
problem methodically, a solution could pop into your awareness all of a sudden as an 
insight that is not a product of your conscious, deliberate thought. This would be 
considered an insight, not a methodical solution. If you experienced the “Aha!” feeling, 
please press the left button when the “Methodical or Insight” prompt appears. If you 
solved the anagram methodically, press the right button. Try to use mostly these two 
responses, but if for some reason you are unsure and cannot decide, simply wait a few 
seconds and the computer will automatically move onto the next trial. Keep in mind that 
this is not a test of intelligence, and these problems are intentionally difficult to solve.  
Think of it as a challenge; press the buttons as quickly as possible when you think you 
know the solution, and have fun!  

Before each trial, participants saw “Get ready” in red text against a dark grey screen for 

two seconds. A fixation point appeared for 500 ms before the anagram appeared. The 

anagram remained on the screen for 16 seconds or until the participant found a solution. 

If a solution was found, participants pressed both mouse buttons with their thumbs at the 

same time. If there were more than 500 ms between the two button presses, the 

participant saw a dialogue box reading “You must click BOTH buttons at the SAME 

time.” Then the fixation point returned for 500 ms before “Solution?” appeared on the 

screen. Participants had four seconds to report whether they solved the anagram by 

insight or analytically. Half of the participants pressed the left mouse button to indicate 

insight and the right button to indicate analytical solutions; the other half pressed the left 

button to indicate analytical solutions and the right button to indicate insight. This 

procedure was used for 15 practice trials and 180 experimental trials. 
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Figure 1: Anagrams trial procedure 
Time course of a single anagram trial, in seconds (s) and milliseconds (ms). After a 

fixation, ready screen, and fixation, the anagram stimulus was shown for 16s (timeout, at 
which point the next trial was initiated) or until the subject made a bimanual response 
button click (R-BM) indicating they had a solution. The subject was then prompted to 

verbally report the solution (here “basis”) and the experimenter scored the response (R-
S). A visual strategy prompt of the button mapping for insight and methodical (e.g., 

analytic) strategies immediately followed, lasting for 4s or until the subject responded 
with a left or right mouse button click (R-IA). 

 
 
 
2.6 Resting State 

Each experimental session began with a resting-state EEG recording. Participants were 

instructed to relax and allow their minds to wander freely during four 2.5-min blocks of 

alternating eyes-open and eye-closed EEG recordings (with eyes-open always first). 

There was a 20-sec break between each block. During the eyes-open blocks, participants 

gazed at a white fixation cross against a black background on a computer monitor. To 

help minimize eye movements during the eyes-closed blocks, participants were instructed 

to imagine that they were still fixating on the fixation cross.  

2.7 EEG Acquisition and Data Preprocessing 

84-channel electroencephalographic data were acquired using silver silver-chloride 

electrodes embedded in a nylon cap (MANSCAN system, SAM Technology, Inc., San 

Francisco, CA) using International 10-20 system locations with additional electrodes and 
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linked-mastoid reference. Preprocessing was performed in MATLAB 7.14 (Mathworks, 

Inc., Natick, Massachusetts, USA) using functions from the EEGLAB toolbox (Delorme 

& Makeig, 2004). Data within eyes condition were merged for each session and 

bandpass-filtered from 2 to 55 Hz. Data were regularly epoched at 1-second intervals, 

and bad channels were removed by visual inspection of the time course and FFT. Data 

were passed through a semi-automatic artifact detection tool (Delorme, Sejnowski, & 

Makeig, 2007), and epochs were classified as clean or artifactual by the following 

methods: threshold (+/- 300mV), joint-probability (channel/global limit 5SD/3SD), 

kurtosis (6.5SD/3SD) and spectral profile (exceeding -100 to 25db over 20 to 55Hz), 

followed by manual review. These parameters were tuned to detect primarily very large 

artifacts and electromyographic (EMG) activity - the removal of which improves ICA 

decomposition quality - while retaining stereotypical artifacts such as eye blinks and eye 

movements for correction by independent components analysis (ICA). ICA weights were 

calculated using EEGLAB’s FASTICA algorithm. The ADJUST toolbox (Mognon, 

Jovicich, Bruzzone, & Buiatti, 2011) was used to automatically detect and remove 

artifactual ICA components representing blinks, eye movements and spatial 

discontinuities. ADJUST detections were limited to the third of the components with the 

highest mutual information to ensure that only reliable and important components were 

removed. The remaining components were manually reviewed. Data were then passed 

through the semi-automatic artifact detection tool again with more conservative 

parameters: threshold (+/- 40mV), joint-probability (channel/global limit 4SD/3SD), 

kurtosis (6.5SD/2SD) and spectral profile (exceeding -100 to 25db over 20 to 55 Hz), 

followed by manual review. Channels previously removed were then recovered through 
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interpolation. EEG data were preprocessed using ICA artifact correction and manual 

review in EEGLAB 12. Analyses were conducted in the SPM12 M/EEG toolbox (Litvak 

et al., 2011). The FFT of 1s regularly epoched sensor-level RS data was calculated from 2 

to 50 Hz in frequency steps of 2 Hz (Hamming windowed), robust averaged and log 

transformed within session.  

2.8 SPM Model Structure 

Spectral data were averaged within-session and log transformed, and transformed to 3D 

Scalp x Frequency .nii format images ([x,y], mm; [z], Hz). All SPM analyses were 

conducted at sensor-level. Importantly, SPM images were Z-transform normalized within 

frequency step, across electrodes. EEG absolute power within frequency bands varies 

between subjects due to variations in skull thickness and white/gray matter density which 

affect cortical signal power (Smit, Boomsma, Schnack, Hulshoff Pol & de Geus, 2012) as 

well as individual differences. Z-transformed relative power has been shown to correlate 

more closely with PET perfusion than absolute power (Cook, O’Hara, Uijtdehaage, 

Mandelkern, & Leuchter, 1998) and improves the validity of between-subject 

comparisons. 

There are several possible methods for computing statistical parametric maps, including 

one sample, two-sample and paired models. All of these models are simplifications of the 

flexible factorial (flexfac) model. The flexfac model allows inputting of multiple scans 

(scalp-frequency image files) per subject. Each scan is associated with a matrix of binary 

or integer values specifying which condition it represents. In this study, each scan was 

assigned a value for group (insight, analytic) eyes condition (open, closed); day of testing 

(1-4); and gender (M,F). The flexible factorial model partitions between and within-
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subject error. Depending on whether the subject term is included in the model, either the 

between or within-subject error term will be used to compute the F-statistic. Because day 

of testing and eyes condition are within-subject effects, flexfac models testing these 

factors (as confounds) included the “subject” factor. Tests on the gender confound and 

the main effect of group are between-subject effects and do not include the subject term. 

The flexfac method is more sensitive than comparable options, such as two-sample or 

regression tests on within-subject averages, as it both partitions within and between 

subject variance and models confound variables. 

2.9 Grouping 

Subjects in the middle of the distribution of I/A ratios do not strongly represent either 

group, and could have moved to one side or the other with very little change in their 

number of solutions. This makes median split ineffective at defining well differentiated 

groups (Kozhevnikov, 2007). To isolate groups with the greatest potential to reveal 

different solution-style related RS-EEG patterns, we calculated the log ratio of the 

number of anagram insight solutions to the number of analytic solutions (I/A ratio) and 

removed subjects representing the middle quintile of the distribution of this ratio. The 

remaining subjects formed the Insight and Analytical groups. 

CRAs also have an insight – analytic judgement, and could have been used to group 

subjects. CRAs were not used for two reasons. First, CRA accuracy was fairly low 

(averaging 51% across included subjects). Insight analytic ratios are unstable when 

solution counts are very low (<10), meaning that one more or fewer solution of either 

type would dramatically change the ratio. This issue is compounded by the explicit focus 

of this analysis on the most extreme subjects. The much higher anagrams task accuracies 
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(averaging 71%) resulted in much more stable ratios. Secondly, because the anagrams 

task was delivered on day 3 before any mention of creativity or insight versus analytic 

judgements, during anagrams subjects were relatively naïve. Response bias may have 

increased on day 4 (CRAs) due to the intervening period in which subjects may have 

contemplated the insight analytic judgement. 

Gender was balanced across all participants included in the final analysis, but not 

between-groups. As the genders were ultimately shown to vary significantly in their 

anagram I/A ratio (p=.038) across all subjects, between-group gender balancing would 

have unavoidably conflicted with and critically weakened I/A group construction. Gender 

was instead included and explored as a covariate in an SPM flexible factorial model. 

2.9 Hypotheses 

 2.9.1: Strategic Consistency: since I/A ratio is purported to index a consistent 

cognitive style trait, different problem-solving tasks should elicit similar I/A ratios. 

Therefore, I/A ratios for the CRA task were expected to correlate with those from the 

Anagrams task. 

 2.9.2: PANAS group differences: Prior work has shown that positive mood 

predicts higher I/A ratios, consistent with a body of work linking creative cognition and 

positive mood (Subramaniam et al., 2009). Therefore, PANAS scores were expected to 

be higher for the insight groups than for the analytic group across sessions. 

 2.9.3: Resting-state group differences: it was hypothesized that contrasts of RS-

EEG data by group membership would reveal clusters of significant differences. Specific 

predictions about the scalp-frequency profile of significant differences were not made. It 
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was expected that RS-data would differ by eye condition over frontal-temporal and 

occipital regions, but that eye condition would not interact with group differences 

(Hagemann et al., 2002).   
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Chapter 3: Results 

3.1: Intersession Period 

To ensure that the analysis represented a durable, traitlike factor, the inter-session period 

was kept to 1 day at minimum. Average durations between sessions are described in 

Table 1. 

 
 

Table 1: Days elapsed between sessions by group 
Time elapsed between sessions, averaged within and between subjects by group. 

 

 Insightfuls Analytics 

 mean ± SD mean ± SD 

Intersession period (days) 15.0 ± 15 16.7 ± 10 

 
 
 
3.2: PANAS 

Subjects completed the PANAS mood questionnaire on each day of testing immediately 

after resting-state EEG recording. Consistent with prior work linking mood, insight and 

creativity, we found a significant difference between the insight and analytic groups on 

day one through three average PANAS scores (p=.022; three-day averages were used to 

maintain consistency with the main analysis). This result suggests several possible 

relationships between trait RS-EEG, mood and I/A ratio. Most simply, the content or 

degree of subjects’ mind-wandering could transiently bias mood immediately prior to 

collection of PANAS data; in this case, mood acts as an intermediate variable between 

trait factors and I/A ratio. Alternatively, an independent trait bias in mood valence could 

have more complicated interactive effects on RS-EEG, PANAS scores and/or I/A ratio. 

Our experimental design did not permit full exploration of these relationships because 
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PANAS data was only collected once per session. However, any potential confounding 

effect of mood was explored by entering Anagram I/A ratio and day 1 to 3 averaged 

PANAS scores as covariates against day 1 to 3 within-subject RS-EEG averages. In this 

model, no clusters survived an F-test of the main effect of mood or mood*I/A ratio 

interaction with a standard cluster forming threshold p_clust = .001. Thus, while the 

source and effect of I/A related differences in mood remains uncertain, in our data they 

do not predict RS-EEG or interact with RS-EEG prediction of I/A ratio.  

3.3: Morning-Eveningness Questionnaire 

Subjects completed the MEQ on their first day of testing. The MEQ scores participants 

on their preference for and propensity to be active at different periods of the day. A 

significant group difference was observed on scores of the morning-eveningness 

questionnaire, p=.011, indicating that insightfuls prefer morning activities relative to 

analytics. These measurements scored insightfuls overall in the “neither” type, while 

analytics scored overall as “moderately evening” type. Despite the interesting group 

difference in this survey, our results are unlikely to be explained by morning or evening 

preference as sessions were scheduled almost exclusively for afternoons. MEQ 

differences in insightfuls and analytics is a promising topic for future analysis. 

3.4: Edinburgh Handedness Inventory 

Since several components of our experimental design involved language function, 

subjects were prescreened with a question about their handedness and also performed the 

Edinburgh Handedness inventory on the first day of testing. All subjects were right 

handed, and the groups did not significantly differ in the extremity of their handedness 

(p=.248) 
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3.5: Anagram and CRA behavioral data 

3.5.1: Response Accuracies  

Mean response accuracies are shown in Table 2.  There were no significant group effects 

(Fs < 1.0).  Anagram insight/analytic ratio was not correlated with solving accuracy 

(r(32) = .05, t[1,30] = .274, p = .39; Figure 2a). CRA insight/analytic ratio was 

significantly positively correlated with solving accuracy (r(32) = .39, t[1,30] = 2.33, p = 

.01; Figure 2b). 42 subject analyses were qualitatively similar (figure 2c & 2d). 

 
 
 

 
 

Figure 2: Correlation of solving accuracy and insight/analytic bias 
(A) Solving accuracy versus anagram I/A ratio for 32s (middle quintile removed). No 

correlation present. (B) Solving accuracy versus anagram I/A ratio for 42s (middle 
quintile retained). No significant correlation. Middle quintile variance is similar or equal 

to insightful and analytic groups. (C) Solving accuracy versus CRA I/A ratio (middle 
quintile removed). Moderate, significant (p = .01) correlation favoring insightfuls. (D) 
Solving accuracy versus CRA I/A ratio (middle quintile retained). Correlation is only 
slightly weakened. Added subjects are distributed across CRA I/A ratios since middle 

quintile is defined by anagram I/A ratio. 
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Table 2: Response timeouts and accuracies. 

Timeouts are the proportion of trials not generating a response in 16s. Accuracy was 
assessed as proportion of all trials and as a proportion of trials generating a response. No 

group effects were significant. 
 

 Insightfuls Analytics 

 Task – Anagrams  Task – CRAs Task – Anagrams Task – CRAs 

 mean ± SD mean ± SD mean ± SD mean ± SD 

% Timeout .28 ± .12 .54 ± .14 .28 ±	.11 .56 ±	.15 

% Correct of 
all trials .69 ± .12 .35 ± .08 .70 ±	.11 .32 ±	.10 

% Correct of 
all responses .96 ± .04 .79 ± .15 .98 ±	.02 .77 ±	.14 

 
 

 
3.5.2: Response Times 

Mean response times are shown in Table 3.  For both tasks, analytic solution times were 

slower than insight solution times.  Specifically, for the anagram task, a repeated-

measures analysis of variance (ANOVA) showed a significant main effect of solution 

type (F[1,30] = 27.90, p < .001).  There were no significant group or group*solution-type 

effects (F[1,30] < .66, p = .43).  For the CRA task, there was also a significant main 

effect of solution type (F[1,30] = 19.20, p < .001).  The group effect approached 

significance (F[1,30] = 3.75, p = .06), but the group*solution-type interaction did not 

(F[1,30] = .003, p = .95). 

 
 
 
 
 
 
 



Trait resting state predicts cognitive style 35 

 
 
 

Table 3: Response times. 
Response time in milliseconds of the Insightful and Analytic groups on the anagram and 

CRA tasks, separated by insight and analytic response types, including correct and 
incorrect responses. 

 

 Insightfuls Analytics 

 Task - Anagrams  Task - CRAs Task - Anagrams Task - CRAs 

 mean ± SD mean ± SD mean ± SD mean ± SD 

Insight Response 
time (ms) 4950 ± 3684 5861 ± 2920 4465 ± 3688 5537 ± 2678 

Analytic Response 
time (ms) 6689 ± 3881 6972 ± 2876 5815 ± 3653 6691 ± 2564 

 
 
 
3.6: Anagram SPM Results 

Three flexfac models were created to test the hypothesis of interest and confounding 

variables. Potential confounds were included in the final model if they produced a 

significant main effect or interacted with the Insightful/Analytic group variable. All tests 

on flexfac models were corrected at a cluster forming threshold of p<.001, which 

conforms to assumptions of Random Field Theory that may be violated with less 

conservative thresholds (Gehrig, Wibral, Arnold, & Kell, 2012). This parameter 

addresses concerns recently raised about the validity of random field theory multiple 

comparisons correction, upon which SPM methods rely (Eklund, Nichols, & Knutsson, 

2016). 

The first model tested Gender as a potential confound, since this factor was not balanced 

across participants. Image files were entered into a between-subjects flexfac model with 
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factors Group (insightful/analytic) and Gender. No clusters survived a test of the main 

effect of Gender or the Group*Gender interaction; therefore, gender was not included in 

the final model. 

Second, a within-subjects flexfac model was created with factors Subject, Group, Eyes 

and Day. This design is valid for within-subject main effects and within-between factor 

interactions. An F-test revealed an expected main effect of Eyes condition in several 

broad clusters spanning multiple frequency ranges over occipital, parietal and frontal 

cortex (all clusters p<.0001). Follow-up directional t-tests confirmed greater broadband 

occipito-parietal activity in eyes-closed condition, versus greater broadband fronto-

temporal activity in eyes-open condition (Figure 3; all clusters p<.0001). Therefore, the 

eyes factor was retained in the final model. No Group*Eyes interaction was observed. No 

main effect of Day or Group*Day interaction was observed, so Day was not included in 

the final model. 
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Figure 3: SPM significance maps of flexible factorial contrast for eye condition main 
effect. 

Sagittal, coronal and transverse views of significant voxels. Views are through 
transparent scalp-frequency space, with pixel color representing the most significant 
voxel in the plane. Results were thresholded at p_clust = .001 and interpreted at the 

cluster level. Brain image in transverse view is representative. (a) T-contrast of eye open 
> closed condition revealing significant broadband clusters over frontotemporal areas, 
particularly in beta frequency. (b) T-contrast of eye closed > open condition revealing 

significant broadband clusters over occipito-parietal areas, particularly in beta (midline) 
and alpha (lateral-posterior). 

 
 
 
Based on the above models, a between-subjects flexible factorial model was created with 

factors Group and Eyes and subjected to a group main effect F-test. This model revealed 

group differences in the left-parietal region in beta frequency (16hz to 22hz), P_FWE = 

.008, and in frontal midline in beta frequency (16Hz to 22Hz) at P_FWE = .015. The 

direction of these effects was explored through T-tests. Analyst > Insightful scans 

revealed clusters of significantly greater activity in mid-frontal beta (P_FWE = .034, 

16Hz to 20Hz), and right-frontal beta (P_FWE = .025, 14Hz to 22Hz; marginally 

significant in F-test, p=.052; Figure 4a). Insightful > Analyst scans revealed clusters of 

significantly greater activity in left-parietal beta (P_FWE = .008, 16hz to 20hz), and a 
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marginally significant cluster in left-temporal alpha (P_FWE = .073, 10hz to 12hz; 

Figure 4b). 

 
 

 
 

Figure 4: SPM significance maps of flexible factorial contrast for group main effect. 
Sagittal, coronal and transverse views of significant voxels. Views are through 

transparent scalp-frequency space, with pixel color representing the most significant 
voxel in the plane. Results were thresholded at p_clust = .001 and interpreted at the 
cluster level. All significant clusters are in beta frequency. Brain image in transverse 

view is representative. (a) T-contrast of analytic > insightful group revealing two 
significant beta-frequency clusters over midline-frontal and right-frontal cortex. (b) T-
contrast of insightful > analytic group revealing one significant beta frequency cluster 
over parietal cortex, and one marginally significant alpha frequency cluster over left 

temporal cortex. 
 
 
 
3.7: Regional Relationships and Transient Hypofrontality 

A correlation analysis was performed to explore the relationships between the significant 

cluster regions. RS data from days 1 through 3 (including both eye conditions) was 

averaged within-subject, and power values were extracted from the scalp-frequency 

locations of the peak voxel of each of the three significant regions (left-temporal alpha 

was explored in a separate analysis, below). The three regions were significantly 
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correlated, positively between the two frontal clusters and negatively between both 

frontal regions and left-parietal (Figure 5a).  

3.8: Predictive Modeling 

To determine if the three significant clusters contributed independently or if their 

correlations were causal to the I/A ratio, we explored whether regression on multiple 

predictors and their interactions better characterized the anagram I/A ratio data than any 

one region independently. In a stepwise multiple regression we found the most 

parsimonious model of anagram I/A ratio included right-frontal and left-parietal regions 

while excluding mid-frontal. Interaction terms between the three regions were not 

significant. The final model correlated with Anagram I/A ratio with r_adjusted = .777 and 

RMSE = .819 (Figure 5b). This correlation and RMSE outperforms a model using only 

the parietal peak voxel, r_adjusted = .693, RMSE = .921. 

To demonstrate robustness, the final stepwise regression model was subjected to K-fold 

cross validation with 8 folds. Over 100 iterations, the average RMSE of the K-fold model 

increased only slightly, to .885. By contrast, a similar cross-validated model trained on 

only the parietal peak voxel predictor resulted in an RMSE of .941. The RMSE is in the 

units of the outcome variable (I/A ratio). The standard deviation of the I/A ratios included 

in the 32 subject analysis was 1.23. Therefore, using the two-predictor model, a subject’s 

I/A ratio can be predicted to within .66 standard deviations. 

The model was additionally trained using values from sensor space. The CP3 and F10 

electrodes were closest to the peak voxel locations of the parietal and right-frontal 

clusters, respectively. The power spectra of these electrodes was averaged across all days 
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and eye condition within-subject, and frequency power at the peak voxel frequencies 

(both 20Hz) was extracted. A model retrained on this data with the same cross-validation 

methodology as described above resulted in r_adjusted = .30, RMSE = 1.05, or .85 

standard deviations. 

To test the generalizability of our model we additionally applied it to prediction of day-3 

CRA I/A ratios over the 32 subjects included in the original analysis. Despite the lower 

stability of CRA I/A ratios and differences between the tasks, our model is still a 

significant predictor of CRA I/A ratio (R=.43, p=.0128, RMSE = 1.1999). 

 
 
 

 
Figure 5: Relationships between predictor clusters and performance of model 
(A) Schematic representation of intercorrelations between the significant clusters (lower 
boxes), and the correlation of each cluster independently with the IA ratio (upper boxes). 
Blue and red connectors indicate positive and negative correlations, respectively. (B) I/A 
ratio predicted by two-cluster stepwise linear regression model versus observed (actual) 
I/A ratio. Multiple linear regression model equation includes only the left-parietal and 
right-frontal clusters as predictors. Regression coefficient of MLR model is a significant 
improvement over any individual predictor (r=.78). 
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3.9: Model Generalizability 

To assess the generalizability of our model, we tested its performance on a dataset with 

these subjects reincluded (42 subjects total). This test revealed that the model 

significantly predicts I/A ratio, r=.406, p=.021, RMSE=1.02. Therefore, our left-parietal - 

right-frontal model generalizes, with some loss of accuracy, to the full range of I/A ratios. 

We additionally tested whether a new model, retrained on the three predictors across all 

subjects, would better predict the I/A ratio than our original model. A stepwise multiple 

regression eliminated both mid-frontal and right-frontal predictors, retaining only the left-

parietal predictor, but was slightly less accurate in describing I/A ratio than our original 

model, r=.377, p=.033, 100 iteration average k-fold (8 folds) validated RMSE=1.10. Our 

original two predictor model is thus slightly better at predicting I/A ratio across all 

participants. 

3.10: Left-temporal Alpha 

While left-temporal alpha was not significantly correlated with anagram I/A ratio, 

correlation with CRA I/A ratio was highly significant, r=.690, p<.0001. Therefore, we 

reran the stepwise multiple regression against CRA I/A ratio including the left-temporal 

alpha peak voxel as a predictor. The stepwise model rejected all predictors except left-

temporal alpha, achieving a correlation of r=.690, p<.0001, 100 iteration average k-fold 

(8 folds) validated RMSE=.952. When interactions are allowed, stepwise multiple 

regression includes predictors left-temporal alpha and its interaction with left-parietal 

beta, which is not independently significant, r=.766, p<.0001, 100 iteration average k-

fold (8 folds) validated RMSE=.911; slightly more predictive than the linear model alone. 
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3.11: Alternative SPM Regression Analysis 

To investigate the nature of the middle quintile in relation to the insightful and analytic 

groups, a between-subjects SPM regression analysis including all subjects with 

acceptable behavioral and EEG data (n=42) was performed with factors Group and Eyes, 

and subjected to a Group main effect F-test. This model revealed no significant clusters, 

although non-significant clusters in left-parietal beta and right-frontal beta were 

prominent at P_FWE = .084 and P_FWE=.165, respectively. 

To better explain the effects, fitted responses of this model are plotted at the peak voxel 

locations of the parietal and right-frontal clusters from the main 32 subject analysis 

(Figure 6). These plots reveal that the middle quintile group had substantially higher 

activity in the parietal cluster than would be predicted by the 32 subject analysis – as high 

as the most insightfully-biased subjects. Results for right-frontal cluster were less clear, 

and generally follow a pattern of increasing variance with decreasing I/A ratio; however, 

these results are for only one voxel and may not be representative of the overall pattern. 
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Figure 6: 32 versus 42 subject fitted responses at parietal and right-frontal peak voxels. 
I/A ratio versus intensity at selected peak voxels. Gray dots are intensity values; black 
dots are fitted (predicted) responses by linear regression. Intensity is unitless. (A) 42 
subject model fitted responses at right-frontal cluster peak voxel, approximate middle 

quintile in red outline. (B) 32 subject model fitted responses at right-frontal cluster peak 
voxel (C) 42 subject model fitted responses at parietal cluster peak voxel, approximate 
middle quintile in red outline. (D) 32 subject model fitted responses at parietal cluster 

peak voxel. 
 
 
 

3.12: Weak versus Extreme Cognitive Style 

If subjects with a weak bias towards one or the other strategy have qualitatively different 

RS profiles from insightfuls and analytics, these differences might be related to weak 

versus extreme cognitive style, as opposed to the particular direction of style bias. To test 

this theory, a flexible factorial model including factors group and eyes was created with 

groups formed from the 16 most strategically unbiased versus the 16 most biased 

subjects. This analysis revealed no significant clusters. 
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3.13: Effect of Data Length 

Isolation of the traitlike RS activity associated with strategy selection bias may not 

require all four sessions. We performed the same model creation and K-fold analysis 

procedure described above on data averaged over different numbers of RS sessions, from 

one to four. RMSE follows an exponential decline as more RS sessions are included, 

demonstrating the effect of averaging on the “state” noise components of RS EEG (Table 

4). Practical improvement in predictive power is not gained with more than 3 or 4 

sessions, except potentially in individuals with unstable RS activity. 

In sum, our results describe an insight / analytic “cognitive style axis”, and more 

generally demonstrate that it is possible to isolate traitlike variation in resting-state 

recordings and use multi-dimensional predictors to titrate estimates of personality factors 

and cognitive style. With refinement, this technique may have specific value as an 

applied predictor of cognitive problem solving style and associated phenomena. The 

richness of the traitlike RS EEG signal suggests that the trait-activity isolation method 

may be applicable to identification of traitlike neural predictors of other tasks and 

constructs. 
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Table 4: Model improvement as a function of data length 
Root mean squared error (RMSE) of stepwise regression model (32s) with an increasing 
number of included sessions per subject. As additional sessions of resting state data are 
added to the within-subject averages from which power values are drawn, the RMSE of 
the model decreases. Practical improvement is not gained with more than 3 days of data. 

 

 RMSE 

Day 1 only 1.073 

Days 1 to 2 .922 

Days 1 to 3 .881 

Days 1 to 4 .875 
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Chapter 4: Discussion 

4.1: Predictive Implications 

These results demonstrate consistent, trait resting-state differences between individuals 

who approach problems insightfully versus analytically, in data collected days to weeks 

before the grouping task. The results are considered below in the context of the anagram 

task and the insight / analytic ratio. However, the paradigm described for extracting trait-

like RS predictors of on-task cognitive features is also extensible to other cognitive 

features of interest. Fox, Spreng, Ellamil, Andrews-Hannah and Christoff (2015) 

commented “[…] different forms and content of mind-wandering entail at least partially 

dissociable neural correlates. […] the investigation of specific functional roles for the 

various brain networks and regions involved has undoubtedly begun in earnest.” The 

paradigm described here may serve as a general mechanism for advancing that goal. The 

deep linkage between RS and task suggests future applications in which simple RS 

recordings could stand in as a simpler proxy for on-task measures and diagnostics. 

4.2: Variable Engagement in Mind-Wandering 

It is now well understood that subjects are not cognitively idle just because they have not 

been given an instruction. They produce “stimulus independent thought”, or mind-

wandering (Smallwood & Schooler, 2006). Mind-wandering is the decoupling of 

attention from sensory input and task-related processing to episodic memory retrieval, 

planning and problem solving (Schooler, Smallwood, Christoff, Handy, & Reichle, 

2011). In the context of RS, mind-wandering is “spontaneous cognitive operations during 

conscious rest” (Laufs et al., 2003). Individuals vary in their propensity to engage in 

mind-wandering in daily life (Killingsworth & Gilbert, 2010), suggesting similar 
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variation in RS. Therefore, group RS differences could reflect different amounts of 

engagement in mind-wandering behavior. The propensity to produce mind-wandering 

may be related to ability to maintain vigilance or exogenous attention (Schooler et al., 

2011). Strength or flexibility of attention is also centrally implicated in behavioral 

differences in creative output and ability (Carson, Peterson, & Higgins, 2003; Ansburg & 

Hill, 2003; Zabelina, O’Leary, Pornpattananangkul, Nusslock, & Beeman, 2015), and 

specifically in the I/A ratio (Wegbreit, Suzuki, Grabowecky, Kounios, & Beeman, 2012). 

Attentive faculties could act as a hidden variable that affects RS behavior, by how much 

mind-wandering occurs, and I/A ratio, by perception and processing of the stimuli. 

4.3: Approach to Resting State 

More subtly, although subjects in RS are not behaving differently, they may be thinking 

differently. Cognition during RS depends on ongoing cognitive and affective processes, 

and the focus of attention. This is well summarized by Laufs et al. (2003), who remarked 

that “the default mode of brain activity at rest has a specific functional connotation with 

cognitive and emotional processes revolving around the subject’s internal state.” The 

instructions in RS in this study were simply to “remain still and relaxed.” Subjects in a 

task-free period could choose any behavior between vigilant mindfulness and 

unconstrained mind-wandering (Fox et al., 2015). These opposing modes of thought 

(Mrazek, Smallwood, & Schooler, 2012; Dixon, Fox, & Christoff, 2014; Lebuda, 

Zabelina, & Karwowski, 2016) have been previously linked to I/A strategy selection in a 

study showing that greater self-reported trait mind-wandering predicted more CRA 

problems solved by insight, and that when instructed to use an analytic strategy, 

participants with higher scores of trait mindfulness were more accurate overall (Zedelius 
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& Schooler, 2015). Thus, RS differences could as easily arise from differences in 

interpretation of the instructions as from the amount of mind-wandering occurring, or raw 

ability to focus attention.  

One explanation for the link between mind wandering and insight is that release of 

attention from the problem, known as an “incubation period”, is necessary to admit new 

stimuli and memory retrieval essential to unconscious task-relevant processing (Schooler 

et al., 2011). However, this theory does not explain insight facilitation on short 

insight/analytic strategy tasks such as are used in Zedelius & Schooler (2015) and the 

present work, because these problems are (presumably) too short for meaningful impasse 

and mind wandering to occur. Thus, the RS predictors of strategy selection we observe 

are more likely to be a function of subjects’ basic approach to task-free periods. 

4.4: Considerations for Interpretation of Scalp-Frequency Results 

EEG has high temporal and frequency resolution. In the present analyses, all observed 

contrast differences are in beta frequency. Beta is known as a signature of active, higher-

order cognitive processing (Ray & Cole, 1985) linked to perception, motor control 

(Sherman et al, 2016) and perceptual feature binding (Jaušovec & Jaušovec, 2000). There 

also exists evidence for a more general and unifying role for beta oscillations in 

“maintaining the status quo” (Engel & Fries, 2010). Beta oscillations may reflect a region 

increasing its resistance to input, in order to maintain the current state or processing task. 

This interpretation would fit with a theory of cognitive style as a persistent attentional 

scope or mode of processing that might shape other aspects of ongoing thought. 
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Interpreting the scalp locations of the observed group differences is complicated by the 

low spatial resolution of EEG. Electrochemical voltage changes in a particular area of 

cortex (a “source”) spread effectively instantaneously to all areas of the scalp, falling off 

in amplitude with the inverse of the distance from the generator to the recording site. The 

scalp, skull, and other intervening tissues further smear the scalp voltage profile. 

Therefore, scalp EEG is a spatial average of a large number of diffuse signals. Because 

adjacent areas of the brain may have very different functions and connections, this spatial 

imprecision makes functional interpretation difficult. Therefore, it is desirable to unmix 

scalp EEG signals to a more precise approximation of the original sources (source 

localization or “the inverse problem”). However, most source localization techniques 

depend on EEG phase information, which is lost during scalp-frequency transformation 

such as is applied in this work. Localization analysis is the primary direction for future 

work on this analysis (see 5.1: Future Work), as most functional hypotheses depend on a 

finer spatial resolution than is achieved with a raw scalp topography. 

4.5: DMN/DAN Modulation 

Mind-wandering is positively correlated with default mode network (DMN) activity 

(Mason et al., 2007). If insightfuls and analytics engage in RS mind-wandering at 

different rates, we would expect to observe differential recruitment of the DMN. Our data 

are partially consistent with this theory, assuming that the peak voxels of the significant 

clusters generally approximate the scalp location of the true sources. Frontal beta in 

medial and inferior regions could indicate increased DMN and mind-wandering activity 

(Christoff et al., 2016), but these regions are also implicated in externally directed 

cognition (Dixon et al., 2014). Right inferior frontal areas are also strongly linked to 
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inhibition. Although this linkage has mostly been explored through active (go-no-go) 

tasks rather than resting state, there is evidence that the inferior frontal region also 

responds to endogenous signals related to cognitive control (Aron, Robbins, & Poldrack, 

2014), such as might be required to “stop thinking.” These signals are primarily encoded 

in beta band (Swann et al., 2009). Midline frontal beta oscillations have also been linked 

to top-down endogenous cognitive control of attention (Van de Vijver, Ridderinkhof, & 

Cohen, 2011). The superior parietal area is implicated in endogenous, sustained top-down 

orienting of attention toward current goals as a component of the dorsal attention network 

(DAN; Corbetta, Patel, & Shulman, 2008). In the present analysis the group variable did 

not significantly interact with eye condition as might be expected of an attentional 

modulation, but in fact this is consistent with evidence that the DAN is functionally 

connected even in eyes-closed resting-state (Fox, Corbetta, Snyder, Vincent, & Raichle, 

2006; Patriat, Molloy, Meier, Kirk, & Nair, 2013). However, there are also broad 

implications of parietal function in episodic memory retrieval (Wagner, 2005). Notably, 

medial-frontal and fronto-parietal regions are among areas found most predictive of 

subject identity (that is, expressing the most idiosyncratic yet consistent cross-session 

activity) in prior studies of RS (Finn, et al., 2015). 

Clearly, spatial interpretation without Laplacian or other source-localization is 

adventurous. “Raw” EEG scalp signals are not only diffuse, but depending on the 

orientation of the structure or section of gyri that produces them, may appear at some 

distance from the actual generator or on the opposite side of the head (“paradoxical 

lateralization”). Even without these complications, it is not possible to support whether 

our data are more consistent with a DMN or DAN modulation without better localization. 
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The distance between parietal and frontal clusters, and their anticorrelation (see below), 

makes it clear that they originate from separable sources. Although it is not possible to 

say certainly without localization, it is likely that these sources originate in the lobes 

(parietal and frontal) they appear over. Thus, at present our results could inform theories 

that rely on only the broad functionality of each lobe. 

Correlation between frontal regions is consistent with findings that medial frontal cortex 

cognitive control function is linked to inferior frontal structures tractographically (Li et 

al., 2013) and in active task paradigms (Ridderinkhof, Ullsperger, Crone, & 

Nieuwenhuis, 2004). In the context of the broad inhibitory function of the frontal cortex, 

the anti-correlation between power in frontal and parietal regions suggests that the 

insightful/analytic dynamic may be partly traceable to cognitive control that can inhibit or 

release parietal activity. This interpretation supports the Matched Filter Hypothesis 

(MFH) advanced by Chrysikou, Weber and Thompson-Schill (2013). “Matched filter” is 

a signal processing term referring to a filter that ideally parses signal from noise. In the 

MFH, prefrontal cortex (PFC) cognitive control is conceptualized as a filter that acts on 

low level information, such as perceptual stimuli or subconscious associations. While 

many tasks benefit from increased cognitive control to screen out irrelevant data, tasks 

that are more implicit and creative may in fact rely on low-level information. For ideal 

performance, the PFC filter must be “matched” to the task demands. CRA’s are a salient 

example of a task that relies on weak associations. Insight solutions to CRAs are 

theorized to rely on simultaneous activation of the weak associates of each of the three 

stimulus words, and subsequent discovery of their overlap. Anagram insight solutions 

may rely on unconscious parallel processing of possible letter and bigram positions 
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(Novick & Sherman, 2003) which are weak “associations” of the stimulus string. Because 

solution by insight relies on these weak associations, it can only be achieved when PFC 

filtering is relaxed.  

The MFH is supported by studies showing that reduced involvement of the PFC due to 

dual-task demands, frontal lesions, disorders and age (childhood) can improve 

performance on tasks requiring bottom-up, data-driven implicit processing, as opposed to 

more explicit tasks that utilize rulesets and working memory. This dichotomy echoes the 

concept of cognitive style. With further localization and network analysis, the results 

presented here could extend MFH to subjects’ resting-state cognition. This would imply 

that creative and analytic “types” of people engage different levels of PFC filtering at 

rest. This is consistent with earlier studies advancing transient hypofrontality as a main 

mechanism of creative thought (Dietrich, 2002), but suggests that hypofrontality is partly 

chronic and related to individual traits. 

4.6: Left Temporal Alpha 

Although the SPM results in the left temporal alpha cluster were not significant, the 

scalp-frequency location of this cluster is intriguing. First, we found that left temporal 

alpha peak voxel power significantly correlated with each of the three other significant 

regions, positively with left-parietal and negatively with both frontal regions. This result 

links the exploratory left-temporal alpha result to the insightful > analytic state. 

Creativity theory has long postulated a special role for the right hemisphere (Kounios & 

Beeman, 2014), and prior work on CRAs has revealed a burst of temporal gamma in right 

anterior superior temporal lobe at the moment of solution (Jung-Beeman et al., 2004). 

Thus it was interesting to explore whether any correlation existed between the I/A ratio of 
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the tasks in this experiment, and the marginally significant RS left temporal alpha cluster. 

Since alpha is primarily implicated as an inhibitory frequency (Klimesch, Sauseng, & 

Hanslmayr, 2007), such a result might indicate a right-dominant temporal lobe state. 

4.7: Alternate SPM analyses 

The SPM results and stepwise multiple regression model were based on a dataset with 

subjects in the middle quintile of anagram I/A ratios removed. Subjects with middling I/A 

ratios (who thus do not strongly rely on one strategy or the other) might represent an a 

different “fast switching” type that quickly moved between insight and analytic modes. 

These subjects could exhibit a different resting state pattern which not lying on a 

continuum with highly insightful and analytic solvers. Regardless of the underlying 

phenomena, subjects with middling I/A ratios could easily have been included in either 

group with a few more insight or analytic solutions, and their inclusion weakens the 

group separation (Kozhevnikov, 2007). Ideally, an inflection point or “transition zone” 

would be identified which defined “no style” individuals from both insightfuls and 

analytics. An obvious candidate is the value log I/A ratio = 1, where the numbers of 

solutions by each method are equal. However, it is not clear that an “average” solver 

should have a log ratio of 1; insight or analysis might be more prevalent as a solving 

method, defining the other extreme. Since little is known about cognitive style, the actual 

distribution of these inflection points is unknown. Alternatively, if I/A ratio does not 

contain critical inflection thresholds as a proxy for cognitive style, then a continuous 

regression including the middle quintile might be more appropriate. 

However, an alternate version of the SPM analysis was performed using all subjects with 

acceptable data (including the middle quintile) as a regression on I/A ratio to explore 
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whether the results depended on removal of the middle quintile. No significant clusters 

resulted from this analysis. It is not possible to support a detailed interpretation of this 

null result, but it is in line with the assumption that the middle quintile subjects’ resting 

state pattern is not on the same continuum as the extreme subjects.  

A related question is whether the most biased subjects have a different pattern of resting-

state activity than the most unbiased. This explores any predictors of the presence of a 

cognitive style versus individuals who are agnostic. This strikes at the concept of 

“cognitive flexibility”. For instance, individuals with no cognitive style might be 

engaging in fast set-switching between a creative versus analytic mindset. However, an 

analysis repartitioning the subjects in this manner found no significant voxels. This is an 

interesting avenue for future exploration. Many high-level treatments of the phenomenon 

of creativity suggest that alternating between a highly divergent and open frame of mind 

that generates possibilities, and a structured or convergent mindset in which those 

possibilities are rigorously tested or value-assessed is a possible mechanism for creative 

genius, especially of the type encompassing long creative projects which involve both 

technical and creative aspects. Ultimately, an extremely insightful or analytic mindset 

may not be the most productive, although in the context of this study it is the most 

informative. 

Ideally, a three-way comparison between insightful, middle, and analytic subjects would 

be performed to clarify these questions. This study did not have enough subjects to 

achieve sufficient power for such an analysis. 
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4.8: Predictive Modeling 

The stepwise predictive model exceeded the predictive power of any of the regional 

predictors by a significant margin. Given SPM scalp-frequency maps, the cross-validated 

model could predict I/A ratio to within .66 standard deviations – given only sensor data, 

it could predict I/A ratio to within .85 standard deviations. With future improvements, 

this opens the door to assessment of cognitive style without laborious cognitive tasks, and 

to the potential generalization of the cognitive style fronto-parietal predictor to other 

creative tasks. It should be noted that these results were obtained with a 32 subject model 

(middle quintile removed). With the middle quintile re-added, the predictive stepwise 

regression model was still fairly accurate, but it is questionable whether the inclusion of 

these subjects in the model is appropriate given the failure to observe significant SPM 

clusters at those locations with these subjects re-included. The middle quintile remains an 

unexplained source of variance. 
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Chapter 5: Conclusion 

This thesis has demonstrated a technique for isolation of trait resting-state neural 

signatures of cognitive style. General considerations for designing and implementing 

investigations of other cognitive traits are summarized with an overview of an EEG 

processing and analysis pipeline for preparing and investigating these data. The analysis 

of insight/analytic cognitive style revealed group differences over frontal and parietal 

lobes that occur days to weeks before the grouping task, and thus are predictive rather 

than descriptive of the variance in anagram solution style bias. The lack of source 

localization makes the specific pattern of these results difficult to interpret. However, at a 

lobe-level, the spatial results are in agreement with the Matched Filter Hypothesis, and 

could represent differential levels of chronic executive inhibition during resting state in 

insightfuls and analytics. Finding these signals in isolations of trait-like resting state 

suggests that these differences in executive inhibition could be deep and influential to 

individuals’ approaches to a wide domain of problem solving. This is supported by the 

applicability of the fronto-parietal model to CRA data as well as anagrams. 

5.1: Future Directions 

Replication with a greater subject count would make possible a more detailed 

consideration of subjects in the middle quintile of the insight/analytic distribution. In the 

future, replication with a different insight/analytic judgment task would help to generalize 

these results. 

Source localization and network analysis are important for improving the specificity of 

the conclusions of this work. Efforts to complete these analyses are underway. Because 

scalp-frequency transformation of the type used here destroys phase information, an 
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alternative Laplacian transformation will be used (Nunez et al., 1994). Because EEG 

signals fall off nonlinearly as a function of their distance from the source generator, scalp 

areas where voltage changes rapidly are likely to approximate the true sources. Laplacian 

transformation calculates the second spatial derivative of scalp-frequency power, or the 

rate of change of the rate of change in EEG scalp power. This is a form of high-pass 

spatial filter. The Laplacian enhances focal voltage changes and attenuates the smoother 

signal change that is likely to represent uninformative smearing and signal diffusion. The 

Laplacian does not provide the three dimensional source approximations that model-

based techniques like LORETTA and beamforming do. However, it relies on very few 

assumptions compared to model-based methods. Laplacian transformation and SPM 

analysis will be performed on these data in the near future. 

Network analysis will be performed via the MultiVariate Granger Causality (MVGC) 

toolbox (Barnett & Seth, 2014). Because granger causality analysis is biased by 

highpassing at even low values (.1Hz), alternate preprocessing has been developed for 

this analysis. As an alternative to highpassing, linear detrending is used to remove slow 

drift (Delorme et al., 2011). The Cleanline plugin is used to remove line-noise as an 

alternative to lowpassing (Mullen, 2012). Standard preprocessing as described in the 

main methods followed, with the exception that all gross-artifact identification and 

rejection was performed automatically. The results of this analysis may shed light on the 

network connectivity between right frontal and left parietal lobes in solvers with different 

cognitive styles, and provide additional evidence for or against integration of these results 

with the matched filter hypothesis. 
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This work supports the role of resting-state recording as a source of predictors for 

psychological and cognitive style variables. The methods described are applicable to 

uncovering resting-state predictors of any cognitive style exposed by a similar free-

strategy problem. Resting state analysis may develop to encompass a personal diagnostic 

that can be used to assess many dimensions of individual differences without response 

bias through quick and non-invasive neural recording. Future work should explore 

advanced machine-learning classification algorithms to form more accurate and detailed 

predictions about cognitive style from rich scalp-frequency EEG statistical parametric 

maps, rather than peak voxel intensities. 
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Appendix A: Anagram and CRA Insight / Analytic Ratios by Subject 

 
 
 
 

Group Subject 
Anagram 
I/A 

CRA 
I/A 

Neither 104 0.17 -0.05 
Neither 106 0.19 0.61 
Neither 114 0.22 1.03 
Neither 117 0.57 -0.49 
Neither 118 0.32 1.21 
Neither 126 0.36 0.25 
Neither 203 0.28 -1.79 
Neither 209 0.52 0.41 
Neither 216 0.10 1.03 
Neither 222 0.55 0.27 
Analytic 102 -0.56 -1.18 
Analytic 103 -0.19 -0.30 
Analytic 105 -0.93 0.14 
Analytic 108 0.09 -1.15 
Analytic 110 -0.02 -0.41 
Analytic 111 -0.85 1.18 
Analytic 115 -0.15 -0.84 
Analytic 120 -0.46 0.27 
Analytic 123 -0.81 0.03 
Analytic 124 -0.85 -1.10 
Analytic 204 -0.28 0.22 
Analytic 210 -0.33 0.30 
Analytic 212 -0.30 0.16 
Analytic 214 -0.52 -1.39 
Analytic 220 0.04 -2.08 
Analytic 225 -0.10 -0.22 
Insight 107 1.42 2.15 
Insight 109 3.54 1.63 
Insight 112 1.21 0.13 
Insight 122 3.23 2.11 
Insight 125 1.25 0.00 
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Insight 202 3.16 0.51 
Insight 206 0.96 1.59 
Insight 208 0.83 -2.20 
Insight 211 0.64 -0.04 
Insight 215 1.22 1.95 
Insight 217 1.94 2.72 
Insight 218 1.10 -0.66 
Insight 219 1.98 1.13 
Insight 221 0.98 1.96 
Insight 223 1.82 0.22 
Insight 224 2.02 1.19 

  



 

 


