
Authorship Verification

A Thesis

Submitted to the Faculty

of

Drexel University

by

Ariel Stolerman

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy in Computer Science

April 2015



c© Copyright April 2015
Ariel Stolerman.

This work is licensed under the terms of the Creative Commons Attribution-
ShareAlike license. The license is available at http://creativecommons.org/

licenses/by-sa/2.0/.

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/


ii

Acknowledgements

First and foremost, I would like to show my deepest gratitude to my advisor, Dr. Rachel

Greenstadt, for her guidance from the moment I began this journey. Her experience, direction,

passion for research and investment were crucial for my academic, professional and personal growth

during this period in my life. Rachel had the rare ability to identify my strengths, which she

encouraged, and weaknesses, for which she provided me with guidance and constructive criticism

that helped me tremendously along the way. She knew to let me navigate on my own path, giving

nudges and correcting it exactly when needed. I am lucky to have had the opportunity to work with

Rachel and be mentored by her, deeply honored to have her as my doctoral committee chair, and

forever grateful for her guidance and support.

I would also like to extend my sincere gratitude to the other esteemed members of my doctoral

committee, Dr. Patrick Juola from Duquesne University, Dr. Santiago Ontañón Villar, Dr. Dario

Salvucci and Dr. Ali Shokoufandeh from Drexel University. I am honored to have you in my

committee.

I would like to give special thanks to my senior, long-graduated labmates, Dr. Michael Brennan

and Dr. Sadia Afroz. Along with Rachel, they have been the pioneers at the Privacy, Security and

Automation lab at Drexel, and paved the way for me and my graduate fellows to fascinating areas of

computational linguistics research. They have been my mentors in many ways, inspired me greatly,

and for that I am truly grateful to them.

I would also like to extend my thanks to my other past and present labmates at PSAL – Aylin

Çalişkan İslam, Andrew McDonald, Rebekah Overdorf, Pavan Kantharaju, Jeffrey Segall, Travis

Dutko, and the other members of the lab. With all I have shared some of the best parts of this

journey – fruitful discussions, conference prep-talks, last-minute paper submissions, and even class

assignments. Without you, this period would not have been the same. Finally, I would like to show

my gratitude to all the bright and talented supporting authors of my work, and those whom I had

the pleasure and privilege of being a supporting author of their work and have not mentioned yet

above: John I. Noecker Jr., Michael V. Ryan and Patrick Brennan from Juola & Associates; Dr.

Alex (Lex) Fridman, Sayandeep Acharya and Dr. Moshe Kam from Drexel University; and Dr.

Damon McCoy from George Mason University.

Last but certainly not least, I would like to thank my family and friends, who have been there

every step of the way. Special gratitude to my parents-in-law, Nili and Zelig Tochner, for their



iii

moral and practical support along the road, from the early stages of admissions at schools in a

foreign country to the final stages of writing my dissertation. To my mother, Paula Stolerman, and

my sister Dana Stolerman-Taggart and her family, for supporting this journey despite the distance

from home it had imposed.

Finally, to my lovely wife whom I love dearly, Yael Tochner, who supported and believed in

me during this experience. Thank you for opening me up to a great world of opportunities, and

accompanying me through this one.



iv

Dedications

To Dr. Zelig A. Tochner, my father-in-law, the igniter, motivator and primary supporter of my

pursuit of a doctorate degree. You are a role model of excellence, perseverance and self-growth, and

I am forever thankful for your guidance.

To my beloved father, Michael Stolerman, who has passed away before I embarked on this journey.

Your love and warmth still accompany me wherever I am, and you will always be in my heart. I

know I would have made you proud.



v

Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 One-Class Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 One-Class and Two-Class Classification Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Towards Authorship Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Stylometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Stylometry Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Linguistics and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Learning and Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Current State of Authorship Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Unmasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Distractorless Authorship Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Other Authorship Verification Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Directions for Continued Research in Authorship Verification. . . . . . . . . . . . . . . . . . . . 35

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3. JStylo: an Authorship Attribution Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. Native Language and Language Family Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 5-Class Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



vi

4.4.2 9-Class Languages, 3-Class Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.3 3-Class Languages, 3-Class Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.4 3-Class Families: Train on 2, Test on 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.5 9-Class Languages, Reclassify by Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5. Realtime Stylometric Modalities for Active Authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Challenges and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Initial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.3 Real-Time Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Evaluation and Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6. From Closed to Open-World Stylometry: The Classify-Verify Algorithm . . . . . . . . . . . . . . . . . . . . . 72

6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Hypothetical Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.2 Problems with Closed-World Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Real-Time Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.2 Flexible vs. Strict Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.4 Feature Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.5 Classify: Closed-World Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.6 Verify: Open-World Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.7 The Classify-Verify Algorithm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Main Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 Auto-Selected Verification Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.3 Adversarial Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.4 Many Authors in Online Domain Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



vii

6.3.5 Active Authentication Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.6 Additional Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A. Native Language and Language Family Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1 Feature Breakdown by Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 InfoGain Feature Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B. The Classify-Verify Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.1 Complete Classify-Verify Evaluation on EBG with 〈500, 2〉-chars . . . . . . . . . . . . . . . . . . . . . . . . 114

B.2 Complete Classify-Verify Evaluation on EBG with Writeprints . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.3 Complete Classify-Verify Evaluation on BLOGS with 〈500, 2〉-chars. . . . . . . . . . . . . . . . . . . . . 116

B.4 Complete Classify-Verify Evaluation on BLOGS with Writeprints . . . . . . . . . . . . . . . . . . . . . . 117

B.5 Complete Classify-Verify Evaluation on EBG with 〈500, 2〉-chars Using p-Induced

Verification Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.6 Complete Classify-Verify Evaluation on EBG with 〈500, 2〉-chars Using Robust Thresh-

olds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.7 Complete Classify-Verify Evaluation on BLOGS with 〈500, 2〉-chars Using p-Induced

Verification Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.8 Complete Classify-Verify Evaluation on BLOGS with 〈500, 2〉-chars Using Robust

Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.9 Complete Classify-Verify Evaluation on EBG Imitation Attack Documents with 〈500, 2〉-

chars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.10 Complete Classify-Verify Evaluation on EBG Imitation Attack Documents with 〈500, 2〉-

chars Using Non-Attack p-Induced Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.11 Complete Classify-Verify Evaluation on EBG Obfuscation Attack Documents with

〈500, 2〉-chars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.12 Complete Classify-Verify Evaluation on EBG Obfuscation Attack Documents with

〈500, 2〉-chars Using Non-Attack p-Induced Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.13 Complete Classify-Verify Evaluation on BLOGL with 〈500, 2〉-chars. . . . . . . . . . . . . . . . . . . . . 126

B.14 Complete Classify-Verify Evaluation on AAUTH with 〈500, 2〉-chars . . . . . . . . . . . . . . . . . . . . 127

B.15 Complete F1-Scores for All Figures Illustrated in Sec. 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



viii

List of Tables

2.1 Accuracy and F-Score results for the distractorless verification algorithm. . . . . . . . . . . . . . . . . . . 24

2.2 Evaluation of authorship verification methods presented in this document. . . . . . . . . . . . . . . . . . 35

5.1 Character count statistics for the 67-user active authentication sub-corpus across all 5

simulated work days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 The AA feature set. Inspired by the Writeprints [1] feature set, includes features across

different levels of the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Differences in distance calculation and t-threshold test for V , Vσ and V a. . . . . . . . . . . . . . . . . . . 83

6.2 F1-scores for Classify-Verify applied in a divide-and-conquer formulation on EBG and

BLOGS . Numbers in the leftmost column represent the configured subproblem size k,

and in parentheses – its size in practice. None of the scaling experiments outperform

applying Classify-Verify straight-forwardly on the complete problem. . . . . . . . . . . . . . . . . . . . . . . . 97

A.1 Total number of attributes, rare POS bigrams percentage and spelling errors percentage

for the basic feature set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 Feature-type average percentage (first row) and standard-deviation percentage (second

row) distribution for the InfoGain feature set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.1 Complete F1-scores for Classify-Verify applied on EBG , for the figures illustrated in

Sec. 6.3.1 and Sec. 6.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.2 Complete F1-scores for Classify-Verify applied on BLOGS , for the figures illustrated in

Sec. 6.3.1 and Sec. 6.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.3 Complete F1-scores for Classify-Verify applied on EBG in adversarial settings, for the

figures illustrated in Sec. 6.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.4 Complete F1-scores for Classify-Verify applied on BLOGL, for the figures illustrated in

Sec. 6.3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.5 Complete F1-scores for Classify-Verify applied on AAUTH , for the figures illustrated in

Sec. 6.3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



ix

List of Figures

2.1 Unmasking An Ideal Husband by Oscar Wilde, whose curve is below all other authors. . . . 20

2.2 Unmasking An Ideal Husband by Oscar Wilde using information-gain curves, whose curve
is the dark line below all other authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Unmasking same/different topic Hebrew-Aramaic collections. Solid lines are different-
author curves (same topic) and dotted lines are same-author curves (different topics). . . . . 20

2.4 Unmasking Torah Lishmah against Ben Ish Chai and 4 other authors. . . . . . . . . . . . . . . . . . . . . . . 20

2.5 ROC curve for the AAAC corpus using the distractorless verification algorithm with word
trigrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 JStylo step 1: problem set definition, where training documents are defined grouped
under their respective authors, and test documents are optionally added. . . . . . . . . . . . . . . . . . . 41

3.2 JStylo step 2: feature set definition, where features are combined, each defined with its
own extractor, pre/post-processors, normalization and factorization. . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 JStylo step 3: classifier selections, where classifiers are defined and configured for the
learning phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 JStylo step 4: the analysis phase, where resource configurations are set and the analysis
type is defined and run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 A flow of the authorship attribution process in JStylo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Accuracy for 5-class L1 identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Accuracy for 9-class L1 and 3-class LF identification. The combined method for LF
outperforms the other two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Effective accuracy for 9-L1 and 3-LF identification. Accuracy for L1 exceeds most accu-
racy results for LF, except for the combined method on the grammatical and InfoGain
feature sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Accuracy for 3-L1, 3-LF and 3-randomly-generated families identification. Using the
original families achieves the highest accuracy for LF identification.. . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Accuracy of training on 2 languages and testing on 1 other language for each LF. Simi-
larities of languages in the same family are distinguishable from similarities of languages
in different families. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Accuracy for L1 identification without fix and with fixing using LF attribution by the
standalone method, trivial method and random selection of family. The standalone
method yields the highest net fix in L1 classification accuracy.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Feature-type average percentage distribution for the 3-L1 vs. 3-LF InfoGain feature set. . 56



x

5.1 Averaged false accept and false reject rates (FAR/FRR) for all characterization phases
using the stylometric sensors with varying time-wise window sizes and varying threshold
for minimum number of characters per window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Percentage of remaining windows out of the total windows after filtering by the minimum
characters-per-window threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 F1-scores for evaluation of the EBG corpus using different character (left) and word
(right) n-grams with varying limits of the feature set size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 F1-scores for classification using SVM with 〈500, 2〉-chars and Writeprints. . . . . . . . . . . . . . . . . 80

6.3 ROC curves for V , Vσ and V aσ evaluation on EBG (left) and BLOGS (right). . . . . . . . . . . . . . . 84

6.4 F1-scores for classification using standalone verification with 〈500, 2〉-chars and Writeprints. 85

6.5 The flow of the Classify-Verify method on a test document D and a suspect set A, with
optional inputs of a manual threshold t and a known in-set portion p. . . . . . . . . . . . . . . . . . . . . . . 86

6.6 Classify-Verify F1-scores on EBG and BLOGS as a function of p = 0.1, ..., 1.0, with the
best standalone and classifier-induced verifiers. Classify-Verify successfully thwarts in-
set and not-in-set misclassifications; applied in open-world settings, it matches and even
outperforms standard classifiers in closed-world settings. P1 outperforms all others on
both datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 Classify-Verify F1-scores on EBG and BLOGS as a function of p = 0.1, ..., 1.0 using
p-induced verification thresholds. Attained results are similar to those attained with
“oracle” threshold in Sec. 6.3.1, and outperform closed-world classifiers in any setting.. . . . 89

6.8 Classify-Verify F1-scores on EBG and BLOGS as a function of p = 0.1, ..., 1.0 using
robust verification thresholds. Attained results are not as high as p-induced thresholds,
however considerably high with the advantage of being ready for any p scenario. . . . . . . . . . . 89

6.9 Classify-Verify F1-scores on EBG Imitation and Obfuscation attack documents, as a
function of p = 0.1, ..., 1.0. Classify-Verify successfully thwarts attacks in any setting,
even when configured with non-attack auto-selected p-induced thresholds.. . . . . . . . . . . . . . . . . . 90

6.10 Classify-Verify F1-scores on BLOGL as a function of p = 0.1, ..., 1.0. Even in an online
domain problem with many authors, Classify-Verify outperforms standard classifiers and
successfully thwarts misclassifications in almost any setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.11 Classify-Verify F1-scores on AAUTH as a function of p = 0.1, ..., 1.0. Classify-Verify
successfully thwarts misclassifications and outperforms standard classifiers in any setting,
in spite of the noisy and inconsistent nature of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.12 Classify-Verify F1-scores on AAUTH using SVM with P1 as a function of p = 0.1, ..., 1.0
for 5, 10 and 20 minute windows, compared to the range of F1-scores derived in the
original evaluation in Ch. 5 in closed-world settings (p = 1). Classify-Verify in flexible
configuration outperforms the original evaluation for any value of p; strict configuration
results are mixed.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



xi

6.13 Classify-Verify F1-scores on EBG and BLOGS using the 〈500, 2〉-chars feature set as
a function of p = 0.1, ..., 1.0, using the Chair-Varshney fusion algorithm for verification.
The left column shows results for fusing V , Vσ, V aσ and P1; the right column shows results
for fusing only the best classifier-induced and standalone verifiers. None outperforms
Classify-Verify with the best verifier alone, unfused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.1 Classify-Verify F1-scores on EBG using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.2 Classify-Verify F1-scores on EBG using the Writeprints feature set as a function of
p = 0.1, ..., 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.3 Classify-Verify F1-scores on BLOGS using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.4 Classify-Verify F1-scores on BLOGS using the Writeprints feature set as a function of
p = 0.1, ..., 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.5 Classify-Verify F1-scores on EBG using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0, using p-induced verification thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.6 Classify-Verify F1-scores on EBG using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0, using robust verification thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.7 Classify-Verify F1-scores on BLOGS using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0, using p-induced verification thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.8 Classify-Verify F1-scores on BLOGS using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0, using robust verification thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.9 Classify-Verify F1-scores on EBG imitation attack documents using the 〈500, 2〉-chars
feature set as a function of p = 0.1, ..., 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.10 Classify-Verify F1-scores on EBG imitation attack documents using the 〈500, 2〉-chars
feature set as a function of p = 0.1, ..., 1.0, using p-induced verification thresholds calcu-
lated in non-attack settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.11 Classify-Verify F1-scores on EBG obfuscation attack documents using the 〈500, 2〉-chars
feature set as a function of p = 0.1, ..., 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.12 Classify-Verify F1-scores on EBG obfuscation attack documents using the 〈500, 2〉-chars
feature set as a function of p = 0.1, ..., 1.0, using p-induced verification thresholds calcu-
lated in non-attack settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.13 Classify-Verify F1-scores on BLOGL using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.14 Classify-Verify F1-scores on AAUTH using the 〈500, 2〉-chars feature set as a function
of p = 0.1, ..., 1.0, for user input sliding windows of size 5, 10, 20 and 30 minutes with 1
minute overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



xii

Abstract
Authorship Verification

Ariel Stolerman

Advisor: Rachel Greenstadt, PhD

In recent years, stylometry, the study of linguistic style, has become more prominent in security

and privacy applications involving written language, mostly in digital and online domains. Although

literature is abundant with computational stylometry research, the field of authorship verification is

relatively unexplored. Authorship verification is the binary semi-open-world problem of determining

whether a document is written by a given author or not. A key component in authorship verifi-

cation techniques is confidence measurement, on which verification decisions are based, expressed

by acceptance thresholds selected and tuned per need. This thesis demonstrates how utilization

of confidence-based approaches in stylometric applications, and their combination with traditional

approaches, can benefit classification accuracy, and allow new domains and problems to be ana-

lyzed. We start by motivating the usage of authorship verification approaches with two stylometric

applications: native-language identification from non-native text and active linguistic user authenti-

cation. Next, we introduce the Classify-Verify algorithm, which integrates classification with binary

verification, applied to several stylometric problems. Classify-Verify is proposed as an open-world

alternative to restricted closed-world attribution methods, and is shown effective in dealing with

possibly missing candidate authors by thwarting misclassifications, coping with various domains

and scales, and even adversarial authors who try to fool the classifier.





1

1. Introduction

Stylometry is the application of authorship attribution using linguistic style learned from text.

Stylometry has existed for centuries, with historical, literary and forensic applications [55]. Perhaps

the most famous historical application of stylometry is in the case of the 12 disputed Federalist

Papers, whose authorship was believed to belong to either James Madison or Alexander Hamilton;

this case became a popular dataset for stylometry research [47, 75, 79, 94, 108]. This example

is but an illustration of how stylometry has become dominated by computational methods in the

last decades, specifically artificial intelligence applications involving natural language processing

for quantifying writing style and machine learning techniques for learning and classification. An

abundance of literature of stylometric techniques has accumulated over the years, showing constant

increase in accuracy and scale [1, 80], applied in legal contexts [24], security [57], plagiarism detection

applications [109] and more.

The classic and most common approach for stylometric analysis is closed-world supervised learn-

ing: classify an anonymous document to one author out of a known, closed set of authors. When it

is indeed the case, stylometric techniques can reach a high level of accuracy. Unfortunately, realistic

scenarios, involving problems in online domains or other digital open-ended realms, do not conform

to the ideal problem structures these analysis methodologies are designed for. In such cases there

is a need for trustworthy, semi-supervised, open-world techniques, namely authorship verification

methods.

Authorship verification in the context of computational stylometry is the application of linguistic

style learning to detecting whether a given document is written by a given author or not. As research

in computational stylometry is plentiful and continues to accumulate, this one-class classification

variant of stylometry is relatively unexplored. The assumption with authorship verification problems

is that we have prior information to model the style of some candidate author; however, we have

little to no information about other possible candidates, making this an open-world problem.

Authorship verification approaches, in a more high-level perspective, are in fact classification

techniques that rely on confidence measurements. Confidence takes a great role in verification,

usually expressed in a verification threshold that determines the rigidity of the authorship verifier

in hand, an approach naturally suited for dealing with the uncertainties in open-world scenarios.

Verification-driven approaches are thus preferred over the standard closed-world supervised ones



2

where there is great importance to the confidence that accompanies the classification: how sure are

we in the given results.

In this thesis, we demonstrate how utilization of authorship verification approaches can increase

the attained accuracy and confidence in classification problems, applied in various stylometric do-

mains. Specifically, we show how the combination of verification approaches with traditional closed-

world ones increases the performance of such techniques, for both closed-world domain problems,

and open-world areas unsuitable for traditional approaches alone. This work demonstrates how

authorship verification can be used effectively by laying out configurations, features and algorithms

employed over multiple applications, targeting different scenarios in the domain of stylometry prob-

lems. The ideas and methods presented in this work fall under three main aspects of authorship

verification research, as described next.

I. Generalization and Problem Relaxation for Improved Classification

This work demonstrates how to utilize information that lies in the categorization of the data we

aim to classify, using verification approaches along with traditional classifiers in order to improve

classification accuracy. In certain problems we may have the option to generalize or relax the analysis,

adjusting the tradeoff between the problem granularity and the potential accuracy and confidence

measurements: know less, but with higher certainty. Confidence-based verification methods can

be used as indicators of when generalizing or relaxing the problem in hand is preferable over finer

classification granularity, in order to attain a higher overall classification accuracy.

In Ch. 4 we examine the problem of native-language identification from second-language text. We

show how the hierarchical taxonomy of the domain of languages along with verification techniques

are exploited in a closed-world classification process for instances with low classification confidence,

in order to generalize the question to identifying a broader class – the language family – rather than

the language itself. Thus, less knowledge is attained, but with higher certainty. We further develop

our technique to a 2-step classification process where verification is used to indicate when narrowing

down the search domain is required, leading to closed-world classification corrections and an overall

higher native-language identification accuracy.

Our native-language identification algorithm demonstrates how authorship verification approaches

can be successfully interleaved with a closed-world, traditional classification process in order to im-

prove its overall accuracy, taking advantage of a broader categorization of the domain.



3

II. Stylometry-Based Security Applications

Authorship attribution has the ability to introduce high-level analysis that can be utilized for au-

thentication and identification in scenarios where other modalities may fail. For instance, anonymous

blog posts whose authors hide behind forged identities and fake technical characteristics (e.g. source

IP address) can still be analyzed for authorship, and crossed with sets of potential suspects. Using

stylometry in authentication systems can utilize confidence-driven approaches in order to adjust the

desired tradeoff between susceptibility to attacks and the rate of false alarms, making authorship

verification the natural approach to take in such instances. Whereas traditional closed-world stylom-

etry is limited to distinguishing between entities known to the identifying learning agent, verification

techniques are not bounded to a limited set of candidates, and can successfully catch culprits outside

the set known to the security system.

In Ch. 5 we focus on the active authentication problem, where user input is constantly monitored

by a learning system in order to identify if the user at the keyboard is the legitimate one, or has its

session been hijacked by an adversary. This work defines and evaluates a series of configurations,

consisting of sampling, learning and classification methodologies, and lays out conclusions concerning

the design of such security systems. We begin performing our evaluations using closed-world models,

and revisit the different configurations in Ch. 6, demonstrating the effectiveness of using authorship

verification techniques combined with closed-world methods for security applications like active

authentication.

III. Open-World Settings

The most challenging settings for stylometric methods are those where the true authors may

be missing from the set of known candidates, vast amounts of potential authors exist, and training

data is not necessarily abundant for ideal analysis; those settings are found in open-world domains,

specifically online. In these settings, traditional closed-world approaches fail miserably, as they

are not designed to take such scenarios into account. In their place we use authorship verification

techniques, which are naturally formulated for such scenarios.

Verification methods shed light on the confidence level derived from the algorithm of choice,

and with it the level of rigidity and acceptance of the algorithm’s decisions, thus allowing catching

instances where the true author may be missing, or simply a wrong attribution has been made. In

such settings, often the case in online domains, we want to avoid mistakenly attributing an innocent



4

author to a document, simply because of its similar style to that of the true, missing author.

In Ch. 6 we demonstrate how utilizing verification-driven approaches that allow tuning the de-

sired confidence are well-accustomed for the difficult open-world scenarios mentioned above. We

present the Classify-Verify algorithm, which shows how the synergy between verification approaches

along with traditional closed-world methods exploits the best of both worlds. The algorithm’s ef-

fectiveness is demonstrated in various settings and domains, including different types of writings

and textual sources, varying number of known candidate authors, different settings of assurance in

the completeness of the set of known candidates, and adversarial settings where authors attempt to

fool the classifiers. In all of the above, Classify-Verify outperforms traditional classifiers and thus is

given as an alternative that improves precision and accuracy in both open-world and closed-world

domains.

Key Contributions

Through examination of the problems above, this work demonstrates how effective authorship

verification is, useful to attain improved confidence and accuracy, crossing various domains and

scenarios. The questioning of classification results inherited in verification methods is shown useful

when combined with traditional methods, allowing new applications like biometric authentication,

better accuracy in common closed-world settings, and open-world domains where traditional methods

alone were not useful before. This thesis strives to elevate verification-infused classification as the

preferable approach for problems in textual and linguistic data analysis domains, both closed-world

and open-world alike.

1.1 Thesis Organization

Ch. 2 reviews the current state of authorship verification research, including problem definitions,

general stylometry and one-class classification approaches. Ch. 3 presents JStylo, an open-source

authorship attribution platform designed for stylometric analysis and research.

In Ch. 4 we utilize verification to identify native-language and language family of the authors from

non-native texts, demonstrating problem-relaxation and generalization using authorship verification,

used for improving closed-world classification. In Ch. 5 we analyze stylometry applied in active

linguistic authentication settings, demonstrating how authorship attribution can be utilized for

security systems, motivating the utilization of verification-based approaches in such applications.



5

In Ch. 6, the main chapter of this thesis, we present the Classify-Verify algorithm, a mixed

closed/open-world approach that utilizes both authorship attribution and verification techniques

for open-world stylometric analysis. The Classify-Verify method is applied in varying scenarios

including adversarial settings, online domains and the active authentication settings presented in

Ch. 5, demonstrating the effectiveness of integrating verification approaches in stylometric analysis

across various problems and domains.

Chapter-specific conclusions and directions for future work are discussed throughout the docu-

ment. In addition, final conclusions and suggestions for prospective research are discussed in Ch. 7.



6

2. Background

Authorship verification in the context of computational stylometry is the application of linguistic

style learning to detecting whether a given document is written by a given author or not. As research

in computational stylometry is plentiful [55] and continues to accumulate, the one-class classifica-

tion problem of authorship verification is explored relatively little. However, with the increase in

online communication and digital information, applications such as plagiarism detection [109] and

security [57] raise the need for trustworthy authorship verification techniques.

The assumption with authorship verification problems is that we have prior information to model

the style of a candidate author (and of course the document in question); we do not, however, have

any other information about other possible candidates, making this an open-world problem. That

is, we are not required to choose from a closed set of potential authors of the document, but rather

have to determine “yes” or “no” for one given author. These one-sided settings define the problem

as a one-class classification problem [104], and harden the problem greatly as opposed to a standard

binary/multinary classification task.

This chapter reviews the current state of authorship verification. The remainder of the chapter

is structured as follows: In Sec. 2.1 we discuss one-class classification approaches, as a basis for the

stylometry variant, namely authorship verification. Sec. 2.2 lays out methodologies in computational

stylometry, including problem formulation, feature selection and learning approaches. Sec. 2.3 re-

views the current state of authorship verification research. Finally, Sec. 2.4 discusses open problems

and possible directions for authorship verification research, followed by conclusions in Sec. 2.5.

2.1 One-Class Classification

The one-class classification problem [104] is the problem of distinguishing one class of objects

from all others, given training data only for the target class. As opposed to binary 1 classification

problems, here a boundary in the space of the objects of interest has to be inferred only from “good”

samples. We aspire to define a boundary that contains all of the target class objects, and does not

contain any outliers.

The one-class classification problem appears in the literature also as outlier detection [91], novelty

detection [14] and concept learning [50], terms which indicate different applications of one-class clas-

1We can ignore the more general n-ary case, as any multiclass problem can be reduced to a set of binary problems.



7

sification. Outlier detection is probably the most common application, used to identify irregularities

in a dataset, compensate for an undersampled class in a binary problem by detecting outliers with

respect to the other class, or comparing two data sets (e.g. to decide whether a classifier trained on

old data needs to be retrained on a new one).

2.1.1 One-Class and Two-Class Classification Problems

When comparing one-class and two-class classification problems, the set of problems in the latter

are also relevant in the first, including error definition, solution complexity measurement, the curse

of dimensionality [32] and others, where some even become more outstanding [104]. In one-class

problems, a boundary between the target class and the rest of the world is determined by one-sided

data, making it harder to determine how tight the boundary should be compared to binary problems,

where data to support both sides of the boundary is available (where usually equally balanced classes

are assumed). The central problem of feature selection that distinguishes well between the target

class and outliers also becomes harder.

From an error measurement point of view, because we rely solely on data from the target class,

we can minimize (in a controlled fashion) only the number of target objects erroneously classified

as outliers, namely false negatives or type II errors (this can be achieved trivially by accepting

always.) Two-class problems, on the other hand, contain probability information for all classes,

allowing control of type I errors as well, namely false positives. In outlier detection terms, this

would have translated to reducing outliers classified as the target class. In order to cope with this

lack of information, assumptions of the outlier data distribution have to be made.

Another difficulty that rises with one-class problems is the need for a closed boundary. This

requirement, which may have negative effects on two-class classifiers, hardens the problem and

affects other problems as well, like the curse of dimensionality, due to the boundary required to be

defined in all directions around the target class data. This causes the required sample size to often

be larger for one-class problems, compared with the other.

2.1.2 Methods

One method that suggests itself for one-class classification is reducing the problem to binary

classification by generating outliers around the target sample set [61, 92]. This method suffers from

two problems. First, it requires outliers close to the target. In addition, it scales poorly in high

dimensions, especially if the outlier data is required to be artificially generated.



8

Outlier detection in classification and regression problems can be performed using a Bayesian

approach [15, 93]. The probabilities that the classifier weights are correct given the data are used to

weigh the output, to restrain classifier outputs for objects distant from the target samples. These

methods are fit for outlier detection in classification and regression problems, however not for straight

forward outlier detection where only target samples are available.

Although different approaches exist for one-class classification, three sets of methods encompass

a wide range of models: density estimators, reconstruction methods and boundary methods [104].

The approaches differ in how characteristics of the data are handled or exploited, such as grouping or

feature scalability. The commonalities of all one-class methods are the use of a distance measurement

or a resemblance probability of an object to the target class, along with corresponding thresholds

(objects are identified as in the target class when the distance is below, or resemblance is above,

some threshold.) In addition, an important performance measurement of all one-class methods is

the tradeoff between the (fraction of) accepted target objects and rejected outliers, expressed in the

ratio of type I and type II error rates, commonly illustrated with Receiver Operating Characteristic

(ROC) curves [78].

Additional properties of one-class methods to be considered include: robustness to outliers con-

taminating the training set; flexibility that allows incorporating known outliers in probability esti-

mates; ease of configuration – number and meaningfulness of the required parameters (like number

of hidden layers in neural networks); and computation and memory requirements, especially for

the classification phase (as training is mostly done offline). Next we summarize the three main

approaches mentioned above. Technical and mathematical details are excluded; those can be found

in the referenced articles.

Density Methods

Density estimators assume the outlier data is uniformly distributed, and directly estimate the

probability distributions of the target class features. Applying a threshold on the distribution with

Bayes rule can differentiate between target objects and outliers. Literature includes approaches

where different density models are used to estimate the target class [14, 91]. This approach requires

a complete density estimate, and thus large datasets for high dimensional problems. In addition, it

assumes the data is a typical sample of the true distribution, which is often false. However, when it

is the case, the method is expected to perform well.

The simplest model is Gaussian (normal) density [15], which is insensitive to scaling of the data,



9

has almost no “magic parameters” to be set empirically, and if normal distribution of the data is

assumed, we can compute the optimal threshold for any desired type II error rate (however normality

of the data is hardly ever the case.) To relax the strict assumptions about the distribution of the

data, a mixture of Gaussians [32] model (MoG) can be used. It is a more flexible model, however

requires much more data (otherwise it suffers from high variance).

The Parzen density estimation [85] is an extension of MoG, which assumes the features are

equally weighted, and therefore sensitive to feature scaling. This is a non-parametric model with

no “magic parameters” to set. In addition, training the model is computationally inexpensive, but

testing is – making this model less applicable with a large dataset and high dimensional feature

space.

Boundary Methods

Boundary methods focus on the definition of a boundary around the target set. These methods

avoid estimation of the complete density of the data; instead, only samples of the boundary of

the data are required. This approach allows learning from the data when the target density is

absent, and when only a small sample set is available. However, boundary methods rely on distance

measurements between objects in the target class, which makes them sensitive to feature scalability.

The k-centers method [117] covers the target dataset with k balls placed on the training objects

in a fashion that minimizes the maxmin distances between all target objects and the k centers. This

method is sensitive to in-set outliers, but works well when these do not exist.

In the (k) Nearest Neighbors method [32], denoted NN-d, a cell (sphere) is expanded centered

around the test object until it captures k target objects. A local density measurement is then derived,

and the test object is accepted if its local density is larger or equal to that of its first neighbor. Using

k = 1 would result with calculating the densities of the boundary alone. Known variants like the

Local Outlier Factor (LOF) differ by the distance function used or using averaged distances across

all k neighbors. Another feature of NN-d is that it may reject regions that are contained in the

target distribution. Lastly, the basic NN-d which uses k = 1 has no parameters to set, but it is scale

sensitive due to the direct usage of distance measurements.

Support Vector Data Description [111] (SVDD) is targeted to directly obtain the boundary

around the target data. This method allows efficient mapping of the data to high dimensional space

(done implicitly using kernels [112]) to attain a more flexible data description, and outlier sensitivity

is controlled more flexibly. In addition, outlier information can be incorporated to better the data



10

description. One-class support vector machines are discussed in [74, 96].

Reconstruction Methods

Reconstruction methods make use of prior knowledge and assumptions about the generation

process to fit a model to the data. The object measurements are reconstructed from the model,

and the reconstruction error is then used to measure how well the objects fit the model, under the

hypothesis that the larger the error is, the more likely it is an outlier. It follows that these methods

work well only when the model fits the data well, and outliers do not satisfy the assumptions about

the target distribution.

In k-means clustering [15] and Learning Vector Quantization [21] (LVQ) clustering of the data is

assumed which can be characterized by prototype objects that impose a Voronoi decomposition of

the space. The important difference between the k-means method and the k-center method from the

previous section is that it is more robust to outliers on the expense of accepting all target objects.

LVQ is a supervised variant of k-means (adding cluster labels). In Self-Organizing Maps [62] (SOM),

the prototype placing is constrained to form a low dimensional manifold. These methods are all scale

sensitive due to using Euclidean distance in the error definitions.

Principal Component Analysis [15] (PCA), also known as Karhunen-Loève transforms, are used

to project objects onto a lower dimensional space. The mapping is optimized to maximize the

variance of the projected feature vectors. If a clear linear subspace is available, this method works

well. Since feature scaling affects their variance, PCA is scale sensitive. Moreover, since it is focused

on variances, the training cannot include outlier information. PCA can be extended to a mixture of

PCAs, where each PCA has a different basis and therefore subspace. This method requires a large

sample set, it is sensitive to outliers, however it is scale insensitive.

Auto-encoders [51] and diabolo networks are types of neural networks, trained to reconstruct

inputs at the output layer. The training process aims to minimize the mean squared error, and

it is hypothesized that target objects are reproduced with smaller error than outliers are. These

methods, like any neural network, necessitate defining magic parameters such as learning rate and

stopping criterion, however they can be optimized and thus perform very well.

2.1.3 Towards Authorship Verification

In this section we reviewed common, non-domain-specific, one-class classification methods. Au-

thorship verification is the application of one-class classification methods to stylometric datasets,



11

i.e. training models using stylistic features extracted from text of a single target author, with no

(or very little) knowledge of outliers – texts of other candidate authors. Sec. 2.3 discusses several

prominent authorship verification algorithms, which can be mapped back to methods presented in

this section. But first, another scope of generalization is presented in the following section – the

domain of style based authorship attribution problems, namely stylometry.

2.2 Stylometry

Stylometry is the application of authorship attribution using linguistic style found in text. Sty-

lometry has existed for centuries, with historical, literary and forensic applications [55]. Perhaps the

most famous historical application of stylometry is in the case of the 12 disputed Federalist Papers,

whose authorship was believed to belong to either James Madison or Alexander Hamilton; this case

became a popular dataset for stylometry research, some of which can be found in [47, 75, 79, 94, 108].

These examples are an illustration of how stylometry has become dominated by computational meth-

ods in the last decades, specifically artificial intelligence applications involving natural language pro-

cessing for quantifying writing style and machine learning techniques for learning and classification.

Current authorship attribution techniques can achieve more than 80% accuracy on a dataset of 100

authors [1], over 30% for 10,000 authors [66] and even significant accuracy for 100,000 authors [80].

Stylometric research is motivated by the hypothesis that every individual has a unique writing

style, a “stylistic fingerprint” that can be quantified and learned. In [55] it is suggested that this

uniqueness originates in that the language learning process is individual, thus everyone learns lan-

guage slightly differently than another, resulting with small variants in how we communicate and

specifically write. These differences, originated in conscious and subconscious decisions when we

write, are expressed in different levels of the text. They can then be measured with a vast range of

features, simple to complex, as discussed later in Sec. 2.2.2.

Authorship attribution problems can be coarsely divided into 3 categories [55]: closed-world

problems, where we aim to find an author of a document from a known set of suspects; open-world

problems, where again we seek to reveal the authorship of a document, but without prior information

on possible authors; and using stylometric analysis to classify text by different characteristics of the

document or the author, such as native language of the author, age, gender, number of authors of a

document [7, 10, 70] etc.

Authorship verification in the context of stylometry is the problem of determining whether a



12

given document is written by a given author or not based on the linguistic style of the text. As

discussed in Sec. 2.1, this problem is much harder than the common supervised stylometry, where a

decision has to be made out of a closed suspect list. With authorship verification, only knowledge of

one potential author is assumed to be available, with no list of alternatives. Despite the differences,

basic concepts of computational stylometry apply in the case of verification as well. Therefore, the

rest of this section is dedicated to better understand the building blocks of stylometry research:

problem formulation, linguistic features selection and classification methodologies. Thorough sur-

veys of authorship attribution methods, mostly formulated in the standard multi-class classification

problem configuration, can be found in [55, 65, 73, 81, 99].

2.2.1 Stylometry Problems

The basic components of any stylometry problem are a test document of unknown authorship

and a candidate author or set of authors, represented by a set of writings from which linguistic style

can be inferred. From this starting point, several research questions can be asked. For convenience,

the following notations are used: let D denote a document, D a set of documents, A an author and

A a set of authors. Following are the questions of interest:

Who in A wrote D? The most explored research question in the literature is this authorship

attribution version of supervised learning. We are given a set of labeled documents of candidate

authors from which we aim to model their style, to later attribute the most stylistically similar

author from A as the author of D. Some of the abundance of methods developed to solve this

question are surveyed in [81, 99].

Segment D (or D) by authors. Or, formulated as a question, how many authors are involved

in writing the documents in D and which D ∈ D was written by which author (or: how many

involved in writing D, and which author wrote which section/paragraph)? This is the unsupervised

version of stylometry, in which we are given unlabeled data that we are required to cluster into sets

of stylistically similar documents.

Is D written by A? This is the authorship verification problem, where we are given a candidate

author and are required to determine whether the document in question is written by this author or

not. A close problem to verification is plagiarism detection, where usually two texts are compared

to find similarities between them. Since authors in stylometry problems are represented by a set of

documents they authored, plagiarism detection and authorship verification are essentially the same

problem.



13

These basic queries can be combined to formulate other interesting questions. For instance, a

mixed open- and closed-world model in which we may ask: given D and A, is D written by some

A ∈ A? if so, by who? (a question that is addressed thoroughly in Ch. 6) Other instances of

questions may be variants of the above, like similarity detection, a relaxation of the unsupervised

problem above: given D and the number of authors of the documents in D, segment it by authors.

Koppel et al. reduce the domain of problems detailed above to one formulation which they

address as the “fundamental problem” of authorship attribution [67], and if answered, can solve all

problems in the domain: given two documents, determine whether they were written by a single

author or not. This formulation is probably the most difficult form of problem to address, and

it essentially describes the authorship verification problem discussed in this survey (only not from

a particular author’s perspective): is some given document written by an author (represented by

another document), or not. This further supports the importance and relevance of investigating

the authorship verification problem: solving it will unveil solutions to many other problems in the

domain of authorship attribution.

In order to answer any of the questions above, one must follow two steps: quantification – extract

linguistic features from the data, learning and classification – learn models of the training and test

data, and apply the classification process corresponding to the research question. These steps are

discussed in the next sections.

2.2.2 Linguistics and Features

In the heart of every learning problem is the representation of the raw data in a space such that

the classes of interest are most distinguishable. In stylometry this process translates to extract-

ing linguistic features to model the style of a document or an author, utilizing natural language

processing tools and methodologies.

Basic elements of written language, such as morphology, syntax, and lexical semantics [58] help

in identifying authors uniquely. These elements encompass a virtually endless space of features,

from which the researcher has to carefully choose those with the highest distinguishability between

authors. For instance, looking at frequencies of English letter bigrams alone, which are all pairs

of letters, includes 262 = 676 features. There is no consensus on one particular set of features

that achieves the highest distinguishability in authorship datasets, nor there should be; the selected

feature set may be different across domains, volume of available data and class of interest. However,

an extensive amount of work and decades of research suggest several types of features are highly



14

effective in stylometric analysis [55], as presented next.

Function Words. Function words are topic independent words, used to describe relationships

between other, content related, words. Some classes of function words include articles (“the”, “a”,

“an”), pronouns (“he”, “she”, “him”) and particles (“if”, “however”, “thus”). The use of function

words has shown to be effective in early stages of research, such as the aforementioned case of

the Federalist Papers [79]. In addition, since these words are content independent, they provide

a good method to perform cross domain analysis, avoid the trap of topic-dependent modeling and

capture differences when modeling characteristics like native language of authors of English text [70].

Moreover, function words are the most common class of words to be present in written language,

making them a reliable attribute to measure when performing stylistic profiling [55].

Vocabulary. The vocabulary an author uses can deliver very useful information in isolating

this author’s style from others. For instance, using centre and colour rather than center and color

may indicate the author is of British nationality and not American [55]. Examples of more general

vocabulary attributes include different measurements of vocabulary richness, which aim to capture

how wide and complex the vocabulary diversity of an author is. The synonym-based method [27] is

a fine example of a pure vocabulary based method, in which the selection of each word is measured

and weighted by accounting for how common that word is and how many choices the author had.

Syntax. Syntactic features quantify the grammatical structures an author uses. Similar to

function words, this class of features is also content and topic independent. Syntactic features

span from very basic and easily extracted, such as punctuation, to complex and computationally

challenging, such as parts-of-speech (POS) tags (the syntactic roles of words in a sentence, like

verbs, nouns or adjectives). Some features capture both vocabulary and syntactical attributes, such

as word n-grams, where frequencies of sets of n consecutive words are measured. Taking this idea

further, measuring character n-grams can provide a more structural look at the text, avoiding the

need to apply morphological analysis sometimes required for a clean word-based analysis [55].

The list of potential features expands far beyond the 3 categories above. Some are numeric

measurements that try to capture the complexity of the text, such as word, character or sentence

statistics, or different readability or vocabulary richness metrics like Yule’s characteristic k. Others

are classes of features of the same type, usually measured by frequency (absolute or relative), such

as different n-grams in the character, word, sentence or even paragraph level, including lemmas

(canonical forms), idiosyncrasies, spelling/grammar errors etc.

In the context of authorship verification, the little research that has been done is not characterized



15

by special features that can be said to be different than standard authorship attribution techniques.

Even the unique unmasking algorithm [64, 68] (discussed in detail in Sec. 2.3.1), which measures

“depth-of-difference” by looking at certain metadata of the extracted linguistic features, uses word

unigrams as basis, which is fairly common in authorship attribution methods. This does not come as

a surprise, since both verification and attribution techniques aim to find a quantified representation

of the text such that author distinguishability aspires to be high. Therefore it is only natural that

features used in attribution are borrowed for verification.

2.2.3 Learning and Classification

Approaches to computational stylometry rely heavily on machine learning methods for super-

vised and unsupervised learning of the feature space. Most research utilizes out-of-the-box algorithms

such as support vectors machines, neural networks, principal component analysis etc., listed in de-

tail in [55]. In addition, there exist methods tailor-made for stylometry, such as the Writeprints

method [1] or the synonym-based method [27]. Next we discuss some of the leading learning ap-

proaches in use.

Supervised Stylometry. The most prevalent approach in stylometry research is supervised

learning, that aims to find an author of some anonymous document from a given labeled set of

documents written by known authors. Support vector machine (SVM) classifiers are proven to be

effective both performance and accuracy-wise in most cases [55]. However, others such as Bayesian

classifiers, linear discriminant analysis, neural networks, and decision trees appear in the literature

as well, and proven to be useful in some instances.

Unsupervised Stylometry. Under unsupervised settings, we are given unlabeled text, usually

a set of documents, which we are required to segment into clusters of similar authorship. This

approach is useful when information of authorship has to be deduced from the data, for instance

recognizing authorship of paragraphs in a multi-author document [7]. One common approach for

unsupervised learning in stylometry is using principal component analysis, which assists in reducing

large feature spaces (often the case in stylometry) by projecting vectors onto a subspace with the

highest variance of features, in order to maintain distinguishability. The Writeprints method [1] is an

example of a variant of PCA suited for similarity detection. The unsupervised domain of problems

is harder than the common supervised approach, and it is of increasing interest in recent years.



16

2.3 Current State of Authorship Verification

Among the abundance of research on computational stylometry, there is a rather limited work

on authorship verification. As document classification has been the target of some one-class classi-

fication work, the question of interest has not always been that of authorship. For instance, in [74]

one-class SVMs are used for category (i.e. topic) classification of the Reuters article dataset. In

addition, that work and others are more focused on the machine learning perspective than on the

linguistic profiling question. However, some work has focused on authorship verification, as discussed

next.

In this section we provide a survey of verification approaches found in the literature. For two of

these approaches a thorough description is provided, due to their uniqueness and importance in the

area of authorship verification. The first is the unmasking algorithm [64, 68] which entails measuring

the “depth-of-difference” between a set of known texts by a candidate author and an anonymous

document to be tested. The second is a simplified framework for verification that does not attempt

to reduce the model to a binary one by using a distractor set (modeling not the author), namely

distractorless verification, whose importance is in its simplicity and evaluation in real-world settings.

2.3.1 Unmasking

Koppel et al. present the unmasking algorithm [64, 68], designed as an iterative process in which

the most differentiating features are eliminated gradually, in order to measure the accuracy degrada-

tion rate of the learnt models. They hypothesize that when the training author matches the author

of the test document, the accuracy degrades much faster than otherwise. They demonstrate how

this method distinguishes well between shallow differences, originated in a conscious or unconscious

changes in one’s style, and deeper differences between styles of different authors. They claim this

method is robust and language, period and genre independent.

In addition, they note two important points in authorship verification, excluded from general

one-class problems. First, there is an abundance of negative examples in authorship verification

problems – any writings known to not belong to any of the tested authors. Such a set will not be

complete, however negative information is incorporated to some extent in their algorithm. Second,

when considering long text samples, they can be chunked into smaller samples, effectively creating

example sets, each with one author.

Koppel et al. define an authorship verification problem over example sets of writings, where every



17

chunk in every set consists of at least 500 words, without breaking up paragraphs. This method

seems reasonable given they evaluate it over a corpus of books, as detailed in the next section.

They define the problem as follows: for every author A and book X, AX is the set of all the

works of A except X (if A is not the author of X, AX is simply the entire works of A). The objective

is to classify the pairs 〈A,X〉 as either same-author or different-author accordingly. These notations

are used throughout the remainder of this section.

Corpus

The corpus used contains 21 publicly available 19th century English books of varying genres,

written by 10 different authors. Excluding one problematic author-book pair and repeating pairs,

the corpus allows constructing 189 distinct different-author pairs and 13 distinct same-author pairs.

The corpus is used to both set the configuration of the classifier generated by their method and to

later evaluate it.

The Unmasking Algorithm

The unmasking algorithm is divided into two phases. In the first phase, an iterative classification

process is applied in order to construct accuracy degradation curves. The selected feature set for

classification contains the 250 words with the highest averaged frequency in the training and test

data, giving equal weight to AX and X. The usage of 250 is chosen as experiments indicated it

is a reasonable boundary between common words, and those tied to a particular work. They run

an iterative process for 10 iterations, in each a linear-kernel SVM is used for cross-validation. The

process is as follows:

1. Record the accuracy of a 10-fold cross-validation experiment on AX versus X

2. In each fold, eliminate the 3 strongest-weighted positive and 3 strongest-weighted negative

features

3. Repeat

Their hypothesis is that if A is the author of X, only a relatively small set of features captures

the differences between them, overcoming theme, genre and other distinctions. Therefore in such

instances a rather fast degradation is expected when this set of features is gradually removed from

the classification process.



18

Next they quantify the differences between same-author and different-author curves by extracting

the following features from them:

• Accuracy after every iteration

• Accuracy difference between any two consecutive iterations

• ith accuracy drop in one iteration, for i ∈ {0, 1, ..., 9}

• ith accuracy drop in two iterations, for i ∈ {0, 1, ..., 9}

After classifying the curves based on the vectors above into same- and different-author sets using

ground truth, a meta-learning process is applied in order to determine the roles of the various

features. All 13 distinct same-author curves were found to hold the following 2 conditions, whereas

only 5 of the 189 different-author curves hold them:

• Accuracy after 6 iterations dropped below 89%

• The second-highest accuracy drop in two iterations is above 16%

In addition to the accuracy curves above, they suggest an alternative measurement of “depth-

of-difference” by looking at the number of features with significant information gain, with respect

to some threshold. Similarly it is expected that same-author curves will show a more sudden drop

than others.

In terms of the one-class classification approaches discussed in Sec. 2.1.2, this method is not a

pure one-class approach, as it reduces the problem to a binary classification one, between models

built for same- and different-author curves. However this approach can be classified as a boundary

method: support vector machines are used to construct the degradation curves and a boundary is

attempted to be defined between these two classes in the meta-learning phase.

Extension: Using Negative Examples

As a last phase, an optional correction method, denoted as elimination, that utilizes negative

examples is suggested. For every author A, if writings of other authors with similar type to A (e.g.

geography, chronology, culture and genre) are available, they may be used to eliminate some false-

positives. That is, in case the basic unmasking concludes A wrote some book X, an elimination

method is applied with the potential to overrule the unmasking, resulting with classifying X as



19

not written by A. The elimination process cannot, however, reverse the decision if the unmasking

determines A is not the author of X: consider the set of writings of those similar authors representing

not-A; if the elimination determines that X is written by A, it would only mean X’s style is closer

to A’s style than to not-A’s style, but not necessarily that it was written by A.

For every author A and set of authors of the same type
⋃n
i=1Ai, we define all Ai collectively

as not-A, and similarly define not-Ai, for all i. In addition, for any book X denote A(X) as the

percentage of X’s chunks classified as A (complement to those classified as not-A). Under these

notations the elimination process works as follows:

• Learn a model for A against not-A

• Learn a model for Ai against not-Ai, for all i

• Calculate A(X) and Ai(X), for all i

• If ∃i : A(X) ≤ Ai(X), conclude that A did not write X

• Otherwise, accept the original decision that X is written by A

Evaluation and Results

In the main experiments, the authors first establish a baseline by testing each author-book pair

〈A,X〉 with a model built for AX using a one-class SVM with RBF kernel and the 250 most frequent

words in AX . Each pair is classified as same-author only if more than half the chunks of X were

attributed to AX . The poor results obtained were 30% true-positive and 24.33% true-negative,

which outperformed using other thresholds or kernels.

Next, they evaluate the configuration of the unmasking method obtained over the corpus by

applying a series of independent leave-one-out tests. Each book B in turn is first eliminated from the

corpus. Curves are then extracted for each 〈AX , X〉 pair using unmasking, followed by meta-learning

using a linear SVM to distinguish between same-author and different-author curves. Next, for each

author A curves are extracted for 〈AB , B〉, which are then classified using the B-independent learned

model. They report 19/20 correct same-author and 181/189 correct different-author classifications,

concluding to an overall accuracy of 95.7% with similar false positive and negative rates. An example

set of curves extracted for An Ideal Husband is shown in Fig. 2.1.

In order to test the alternative information-gain based curves method, they conduct the same

experiments as above with curves generated by using varying thresholds between 0 and 0.6, with



20

 

 

against the model of each AX. We assign the pair 
<AX,X> the value same-author if more than half the 
chunks of X are assigned to AX. This method performs 
very poorly. Of the 20 pairs that should have been 
assigned the value same-author, only 6 are correctly 
categorized, while 46 of the 189 pairs that should be 
assigned the value different-author are incorrectly 
classified. These results hold using an RBF kernel; 
using other kernels or using a threshold other than half 
(the number of chunks assigned to the class) only 
degrades results. 

 

5.3  Unmasking Applied 

Now let us introduce the details of our new method 
based on our observations above regarding iterative 
elimination of features. We choose as an initial feature 
set the 250 words with highest average frequency in AX 
and X (that is, the average of the frequency in AX and 
the frequency in X, giving equal weight to AX and X). 
Using an SVM with linear kernel we run the following 
unmasking scheme:  

1. Determine the accuracy results of a ten-fold 
cross-validation experiment for AX against X. 

2. For the model obtained in each fold, eliminate 
the 3 most strongly-weighted positive features 
and the 3 most strongly-weighted negative 
features. 

3. Go to step 1. 

 

In this way, we construct degradation curves, as in 
Figure 2, for each pair <AX,X>. 

 

 

 

 

 

 

 

 

Figure 2. Unmasking An Ideal Husband against each of the 
ten authors. The curve below all the authors is that of Oscar 
Wilde, the actual author. (Several curves are 
indistinguishable.) 

 

5.4  Meta-learning: Identifying Same-Author  
Curves 

We wish now to quantify the difference between same-
author curves and different-author curves. To do so, we 
first represent each curve as a numerical vector in terms 
of its essential features. These features include, for i = 
0,…,9:  

� accuracy after i elimination rounds  

� accuracy difference between round i and i+1  

� accuracy difference between round i and i+2  

� i th highest accuracy drop in one iteration 

� i th highest accuracy drop in two iterations 

We sort these vectors into two subsets: those in which 
AX and X are the by same author and those in which AX 
and X are by different authors. We then apply a meta-
learning scheme in which we use learners to determine 
what role to assign to various features of the curves.  

Technically speaking, we have 189 distinct different-
author curves but only 13 distinct same-author curves, 
since for authors with exactly two works in our corpus, 
the comparison of AX with X is identical for each of the 
two books. To illustrate the ease with which same-
author curves can be distinguished from different-
author curves, we note that for all 13 distinct same-
author curves, it holds that:  

� accuracy after 6 elimination rounds is lower 
than 89% and  

� the second highest accuracy drop in two 
iterations is greater than 16%.  

These two conditions hold for only 5 of the 189 
different-author curves. 

5.5  Accuracy Results: Leave-one-book-out Tests 

In order to honestly assess the accuracy of the method, 
we use the following cross-validation methodology. For 
each book B in our corpus, we run a trial in which B is 
completely eliminated from consideration. We use 
unmasking to construct curves for all author/book pairs 
<AX,X> (where B does not appear in AX and is not X) 
and then we use a linear SVM to meta-learn to 
distinguish same-author curves from different-author 
curves. Then, for each author A in the corpus, we use 
unmasking to construct a curve for the pair <AB,B> and 
use the meta-learned model to determine if the curve is 
a same-author curve or a different-author curve. 

Using this testing protocol, we obtain the following 
results: All but one of the twenty same-author pairs are 
correctly classified. The single exception is Pygmalion 
by George Bernard Shaw. In addition, 181 of 189 
different-author pairs were correctly classified. Among 
the exceptions were the attributions of The Professor by 
Charlotte Bronte to each of her sisters. Thus, we obtain 
overall accuracy of 95.7% with errors almost identically 
distributed between false positives and false negatives. 

60

70

80

90

100

0 1 2 3 4 5 6 7 8

Figure 2.1: Unmasking An Ideal Husband by
Oscar Wilde, whose curve is below all other
authors.

KOPPEL, SCHLER AND BONCHEK-DOKOW 

 1274 

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6

 
Figure 6. Information-gain curves for An Ideal Husband versus ten authors. The dark line is 

Oscar Wilde, the actual author. 

 

9 Conclusions  
The essentials of two-class text categorization are fairly well understood. We have shown in this 
paper that by using ensembles of text-categorization results as raw material for meta-level 
analysis, we are able to solve a more difficult and sophisticated problem such as authorship 
verification. Even when we completely ignore negative examples and thus treat authorship 
verification as a true one-class classification problem, our methods obtain extremely high 
accuracy on out-of-sample author/book pairs. When we use just a bit of non-representative 
negative data, classification is even better. 

Nothing in our method is tied to any particular language, period or genre and some evidence 
presented suggests that similar results are obtained as these parameters are varied. In fact, some 
evidence presented suggests that the method is immune to deliberate attempts to cover up 
authorship. 

The point of the unmasking method suggested here is to measure of the true “depth of 
difference” between two example sets. This measure is clearly of a different type than other 
measures, such as margin width, that could in principle depend on a single highly differentiating 
feature. Although we have tested the method on a single application, it is not unreasonable to 
speculate that the new measure presented here ought to be applicable to other applications in 
which we need to determine whether given phenomena were generated by a single process.  

References 
H. Baayen, H. Van Halteren and F. Tweedie (1996). Outside the cave of shadows: Using 

syntactic annotation to enhance authorship attribution, Literary and Linguistic Computing, 11, 
1996. 

Figure 2.2: Unmasking An Ideal Husband by
Oscar Wilde using information-gain curves,
whose curve is the dark line below all other
authors.

steps of 0.01 (see example in Fig. 2.2.) This method worked rather well for different-author curves

and resulted with 182/189 correct classification, however only 11/20 of the same-author curves were

correctly classified.

KOPPEL, SCHLER AND BONCHEK-DOKOW 

 1272 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10

 
Figure 4 Unmasking of  rabbinic legal responsa. Solid lines are different-author curves (on 

same topic) and dotted lines are same-author curves (on different topics). 

7.1 Solution to a Literary Mystery: The Case of the Bashful Rabbi 
Finally, we apply our method to an actual literary mystery. Ben Ish Chai was the leading rabbinic 
scholar in Baghdad in the late 19th century. Among his vast literary legacy are two collections of 
responsa. The first, RP (Rav Pe'alim) includes 509 documents known to have been authored by 
Ben Ish Chai. The second, TL (Torah Lishmah) includes 524 documents that Ben Ish Chai claims 
to have found in an archive. There is ample historical reason to believe that he in fact authored 
the manuscript but did not wish to take credit for it for personal reasons (Ben-David, 2002).  

For the sake of comparison, we also have four more collections of responsa written by four 
other authors working in the same area during the same period. While these far from exhaust the 
range of possible authors, they collectively constitute a reasonable starting point. There is no 
reason to believe that any of these authors wrote TL. 

In any event, the impostors method handily eliminates all candidates but Ben Ish Chai. We 
now wish to use unmasking to check if Ben Ish Chai is indeed the author. Unmasking is 
particularly pertinent here, since Ben Ish Chai did not wish to be identified as the author and there 
is evidence that he may have deliberately altered his style to disguise his authorship. (In fact, the 
strongest distinguishing features – and hence the first eliminated by unmasking – result from Ben 
Ish Chai employing different standard signoffs in RP and TL; it is hard to know whether this 
reflects deliberate subterfuge or mere chronological drift.) 

In Figure 5, we show the results of unmasking for TL against Ben Ish Chai as well as, for 
comparison, each of the other four candidate authors. The curve for Ben Ish Chai is the one far 
below those of the others. This affirms the consensus among historians (Ben-David 2002) that 
Ben Ish Chai was indeed the author of TL. Indeed, as in our previous experiments, the differences 
between the curves are most clear at the sixth iteration. 
 

Figure 2.3: Unmasking same/different topic
Hebrew-Aramaic collections. Solid lines are
different-author curves (same topic) and dot-
ted lines are same-author curves (different
topics).

 

 

7.  Solution to a L iterary Mystery: The Case of 
the Bashful Rabbi 

Finally, we apply our method to an actual literary 
mystery. Ben Ish Chai was the leading rabbinic scholar 
in Baghdad in the late 19th century. Among his vast 
literary legacy are two collections of Hebrew-Aramaic 
responsa (letters written in response to legal queries). 
The first, RP (Rav Pe'alim) includes 509 documents 
known to have been authored by Ben Ish Chai. The 
second, TL (Torah Lishmah) includes 524 documents 
that Ben Ish Chai claims to have found in an archive. 
There is ample historical reason to believe that he in 
fact authored the manuscript but did not wish to take 
credit for it for personal reasons.  

For the sake of comparison, we also have four more 
collections of responsa written by four other authors 
working in the same area during the same period. While 
these far from exhaust the range of possible authors, 
they collectively constitute a reasonable starting point. 
There is no reason to believe that any of these authors 
wrote TL. 

In any event, the elimination method handily eliminates 
all candidates but Ben Ish Chai. We now wish to use 
unmasking to check if Ben Ish Chai is indeed the 
author. Unmasking is particularly pertinent here, since 
Ben Ish Chai did not wish to be identified as the author 
and there is evidence that he may have deliberately 
altered his style to disguise his authorship. In Figure 4, 
we show the results of unmasking for TL against Ben 
Ish Chai as well as, for comparison, each of the other 
four candidate authors. 

 

 

 

 

 

 

 

 

Figure 4. Unmasking TL against Ben Ish Chai and four 
impostors. 

 

The curve for Ben Ish Chai is the one far below those of 
the others. Applying the formula learned above 
confirms what is suggested visually by the figure: Ben 
Ish Chai was indeed the author of TL. It is particularly 
interesting to note that the curves obtained in this 
experiment on Hebrew-Aramaic legal letters are quite 
similar to those obtained on 19th century English 
literature. 

8.  Conclusions 

The essentials of two-class text categorization are fairly 
well understood. We have shown in this paper that by 
using ensembles of text-categorization results as raw 
material for meta-level analysis, we are able to solve a 
more difficult and sophisticated problem such as 
authorship verification. Even when we completely 
ignore negative examples and thus treat authorship 
verification as a true one-class classification problem, 
our methods obtain extremely high accuracy on out-of-
sample author/book pairs. When we use just a bit of 
non-representative negative data, classification is even 
better. 

Nothing in our method is tied to any particular 
language, period or genre and some anecdotal evidence 
suggests that similar results can be obtained as these 
parameters are varied. More experiments are required to 
confirm this hypothesis. 

The unmasking method suggested here might find more 
general application beyond the particular case of 
authorship verification considered here.  Unmasking 
should work generally as a measure of the true “depth 
of difference”  between two example sets.   

9.  Bibliography 

Baayen, H., H. van Halteren, F. Tweedie (1996). 
Outside the cave of shadows: Using syntactic 
annotation to enhance authorship attribution, Literary 
and Linguistic Computing, 11, 1996. 

Binongo, J.N.G. (2003). Who wrote the 15th Book of 
Oz? An application of multivariate analysis to 
authorship attribution. Chance 16(2), pp. 9-17. 

Chang, C.C. and Lin, C. (2001) LIBSVM: a Library for 
Support Vector Machines (Version 2.3) 

Dagan, I., Y. Karov, D. Roth (1997), Mistake-driven 
learning in text categorization� in EMNLP-97: 2nd 
Conf. on Empirical Methods in Natural Language 
Processing� 1997, pp. 55-63. 

De Vel, O., M. Corney, A. Anderson and G. Mohay 
(2002), E-mail Authorship Attribution for Computer 
Forensics, in Applications of Data Mining in 
Computer Security, Barbará, D. and Jajodia, S. (eds.), 
Kluwer. 

Diederich, J., J. Kindermann, E. Leopold and G. Paass 
(2003), Authorship Attribution with Support Vector 
Machines, Applied Intelligence 19(1), pp. 109-123 

Holmes, D. (1998). The evolution of stylometry in 
humanities scholarship, Literary and Linguistic 
Computing, 13, 3, 1998, pp. 111-117. 

Holmes, D. I., L. Gordon, and C. Wilson (2001), A 
Widow and her Soldier: Stylometry and the American 

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

Figure 2.4: Unmasking Torah Lishmah
against Ben Ish Chai and 4 other authors.

Finally, applying elimination on the tests above (using the original accuracy-curves) resulted

with only a single new false-negative. Meanwhile all 8 false-positive classifications were corrected,

leading to an overall accuracy of 99.04%.

In a set of additional experiments, they test the parameter choice of 250 words (n), 10 iterations

(m) and 3 features to be removed from each extreme of the feature set (k), by repeating the leave-one-

out experiments with different parameters. They show the obtained accuracy is somewhat robust



21

with regard to m and k, however as n increases the accuracy degrades. They conclude that this

result is due to the importance of significantly stripped-down feature sets to the distinguishability

of the curves in the meta-learning phase.

Next, the authors measure topic variability effects on unmasking. They use a corpus of 20th

century Hebrew-Aramaic collections of letters by 3 different authors, each containing texts on 3

different topics. They run 2 sets of experiments: each author vs. all others on the same topic, and

each author’s topic against the same author’s other topics. They show that topic related words

are quickly eliminated, leaving topic-independent stylistic markers as the only features remaining:

different-author curves, although tested with the same topics, remain with high accuracy, whereas

same-author curves degrade rather quickly despite the topic variations. See Fig. 2.3.

As a final test they use the unmasking method to solve the anecdotal literary mystery of the

Bashful Rabbi: examining whether the Torah Lishmah, a Hebrew-Aramaic collection of letters, is

written by the 19th-century rabbinic scholar Ben Ish Chai, who claimed to have found them whereas

the consensus among historians is that he is in fact the author but wished to hide it (and may have

taken measures to obfuscate his style). For comparison, a similar collection by Ben Ish Chai is used,

along with 4 other collections of the same type by 4 other authors from the same area and time. The

curves extracted by unmasking shown in Fig. 2.4 suggest that Ben Ish Chai was indeed the author.

Contribution

Recursive feature elimination procedure was first presented by Guyon et al. [42] in the context of

gene selection for cancer classification. However, the unmasking paper is novel in utilizing “depth-

of-difference” measurement for verification in the domain of written-text, and it is one of the pioneer

methods in the field of authorship verification. Unmasking is shown to be limited to tasks with large

training data [95], with experiments suggesting a minimum of 5,000 to 10,000 words; nevertheless,

this method is proven robust and highly accurate with a large enough dataset, untied to a particular

language, period or genre. Moreover, the model suggested may be transferred to other applications

for “depth-of-difference” measurement between two given samples.

2.3.2 Distractorless Authorship Verification

Noecker and Ryan address the verification problem avoiding construction of a negative set rep-

resenting the class of not the author in question, relying solely on the author’s training data [82].

Their approach uses simplified feature sets, distance measurement and a threshold to determine



22

classification results. Although their best results suffer from rather low F-score measurements, their

work provides a baseline distractorless authorship verification framework, robust across different

types of writings (language, genre or length independent) with tunable parameters to determine the

desired type I and type II error rates, a useful feature for various applications.

The problem defined by the authors is very straight forward: given a document D and a candidate

author A, determine the likelihood that A is the author of D.

Corpora

The distractorless verification method is evaluated on two corpora: the Ad-hoc Authorship

Attribution Competition corpus (AAAC) [54] and the PAN 2011 Authorship Identification Training

Corpus [89].

The AAAC corpus contains texts across different genres, languages and lengths. It consists of

texts of 63 authors, with 264 training documents and 98 test documents, across 13 different problems.

The PAN 2011 Authorship Identification Training Corpus contains texts that represent “real-

world” writings, one of the reasons it was chosen by the authors. It includes non-coherent, unorga-

nized and short texts, like emails from the Enron dataset. Another reason it is chosen is to be used

as control in order to generalize beyond the AAAC corpus. The corpus consists of 5,064 training

documents and 1,251 test documents of 10 authors.

Algorithm

The analysis begins with preprocessing of the datasets, in which whitespaces and character case

are standardized. In addition, any author-identifying tokens in the PAN corpus are stripped down.

Character n-grams and word n-grams are used as feature sets, extracted using a sliding window

technique (with sliding step of 1). Character n-grams, with n from 1 to 20, are chosen due to their

high performance known in authorship attribution research, and word n-grams, with n from 1 to 10,

are chosen for completeness. These rather simple features are chosen due to their fast calculation

and robustness against errors (unlike high-level features, such as POS-tags).

Next, for any given set of features of size n, a centroid of the feature vectors for the author’s

training documents is extracted to build a model M = 〈m1,m2, ...,mn〉. For each i, mi is the average

relative frequency of feature i across the training documents, where the relative frequency is used

to eliminate document length variation effect. In addition, a feature vector F = 〈f1, f2, ..., fn〉 is

extracted from document D, where fi corresponds to feature i’s relative frequency in D.



23

Finally, a distance function δ and a threshold t are set for the final test. The generic distance

function is defined such that if δ(x, y) > δ(x, z), x is considered to be closer to y than to z (in

that sense, δ is more a resemblance metric than a distance metric.) The authors use normalized

dot-product (cosine distance), as it is shown effective for authorship attribution and efficient for

large-scale datasets. For an author model M and a document model F as described above, the

distance is calculated as follows:

δ(M,F ) =
M · F
‖M‖‖F‖

=

∑n
i=1mifi√∑n

i=1m
2
i ×

√∑n
i=1 f

2
i

(2.1)

The threshold t is set such that if δ(M,F ) > t, we determine that D is written by A. It is empirically

determined by analysis of the average δ between the author’s training documents.

Following is a summary of the algorithm:

1. Use author A’s training documents to build a model M = 〈m1,m2, ...,mn〉 such that for all i,

mi is the centroid of feature i.

2. Extract the corresponding feature vector F = 〈f1, f2, ..., fn〉 from the test document D.

3. Determine a threshold t and calculate ∆ = δ(M,F ). If ∆ > t, determine that D is written by

A. Otherwise, determine it isn’t.

The distractorless method is an example of a one-class boundary approach, closest to the k-

centers method described in Sec. 2.1.2 using k = 1: a single centroid is defined for the target

author by averaging over the author’s documents, and a boundary around the author is set using

the acceptance threshold t.

Evaluation and Results

Summary of accuracy and F-score results are shown in Tab. 2.1. The high accuracy and low

F-score suggest a skew in the results in favor of instances where the author is not the author of the

test document (using the unmasking terminology, there are naturally much more different-author

pairs than same-author ones.) To better illustrate the results, and in accordance with the evaluation

technique of one-class classification algorithms mentioned in Sec. 2.1.2, we generated ROC curves

by repeating the experiments of this paper for the AAAC corpus to obtain type I and type II error

rates. Fig. 2.5 illustrates the best curve obtained, using word trigrams as features. It is seen that

when the true positive rate (TPR) approaches 70%, the slope is rather steep, resulting with a false



24

Table 2.1: Accuracy and F-Score results for the distractorless verification algorithm.

Corpus and Features Best Accuracy Best F-Score

AAAC with char. n-grams 87.44% 47.12%
AAAC with word n-grams 88.04% 44.58%
PAN with char. n-grams 92.23% 51.35%
PAN with word n-grams 91.53% 43.08%

positive rate (FPR) of at most 26.7% (at 68.4% TPR). However at that point on, the slope becomes

moderate, resulting with a faster increase rate of FPR (for instance, at a TPR of 80%, FPR is

already at 53.8%.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TP
R

 

FPR 

Figure 2.5: ROC curve for the AAAC corpus using the distractorless verification algorithm with
word trigrams.

In addition to the analysis above, a relaxed version of the algorithm is introduced where confi-

dence ratings of the verification results are incorporated, and a level of confidence can be set such

that any answer beneath it results with no classification (i.e. insufficient information to determine

yes or no). Preliminary evaluation where the 20% most difficult problems are eliminated show an

increase in accuracy from 92% to 96%. For applications that can absorb the confidence penalty,

these results are promising.

Contribution

The distractorless authorship verification algorithm is simply constructed and provides a baseline

for verification, eliminating errors generated by using negative examples in training. This framework



25

allows tuning type I vs. type II error rates, as required by the application in which it is incorporated.

The high accuracy rates attained over several real-world datasets demonstrate that verification is

obtainable with satisfying effectiveness scaling across different domains and types of writings, as

opposed to long literary works like those used to evaluate the unmasking algorithm. The ROC curve

in the regenerated experiments with the AAAC corpus shown in Fig. 2.5, however, suggests that the

accuracy results should be taken with a grain of salt and type I/type II error rates ratio should be

carefully measured for the task in hand.

In addition, future developments of this work include interesting directions, from adding confi-

dence levels for classification relaxation, through incorporating a mixture-of-experts style voting sys-

tem that combines several distance techniques and feature sets, to tuning a default non-application-

specific threshold. All the directions above lay solid grounds for improving state-of-the-art techniques

in authorship verification.

2.3.3 Other Authorship Verification Approaches

In addition to the two methods presented thus far, the literature includes more work in the

field, all rather recent. Other approaches include different focus and formulation of the authorship

verification problem, such as in the context of plagiarism detection, one-sided models versus 1-

against-all formulation, varying amounts of training data etc. The following summarizes a few more

approaches, each with its own uniqueness, focus and contribution to the field.

Linguistic Profiling

One of the most common applications of authorship verification is plagiarism detection, a sce-

nario where we wish to determine whether an individual claiming to be the author of a given text

is fraudulent. Some work has examined authorship verification in the context of plagiarism detec-

tion [28, 121], however van Halteren [109] lays a general approach for the same task as a verification

problem. He defines stylometric analysis as linguistic profiling and addresses both the recognition

and verification problems.

Features Three feature sets are used: the first is a lexical feature set, which includes common

words, context independent part-of-speech tags, utterance lengths and all possible bi- and trigrams

of the above; for efficient processing, features with less than some minimum occurrence across the

corpus are filtered and counted as “other”, yielding a total of 100K features. The second is a



26

syntactic feature set, which consists of n-grams of syntactic constituents derived with the Amazon

parser as syntactic features, which yields (after filtering) 900K features. Finally, the third feature

set is a combination of the former two.

Corpus The Dutch Authorship Benchmark Corpus [11] (ABC-NL1) is used for evaluation, con-

sisting of 72 texts by 8 authors on 9 different topics, and controlled for age, educational level, and

genre.

Algorithm The quantified document vectors are denoted as the profile vectors, which consist of

the feature-wise standard deviations with respect to the mean observed in a profile reference corpus

(the entire test corpus, including attributed and non-attributed documents) where all values are

normalized for document length. Verification is determined by using a normalized distance-based

score with threshold optimization, as follows:

• An author profile vector A is constructed by taking the feature-wise average over all profile

vectors extracted from that author’s training documents

• A profile vector T is extracted from the sample

• A weighted combination is calculated: ∆T = (
∑n
i=1 |Ti − Ai|D|Ti|S)1/(D+S), where D and

S are the weighting factors for the author-sample score difference and sample score itself,

respectively

• The final score is determined as ScoreT = (
∑n
i=1 |Ti|D+S)1/(D+S) −∆T s.t. the higher it is,

the closer the sample profile is to the author profile

This algorithm combines a reconstruction approach, where a model is applied on the data using

standard deviations calculated with respect to a reference corpus, and a boundary method approach,

where a distance is calculated between the author and the sample model and compared to an

acceptance threshold that effectively defines the boundary.

Evaluation and Results Evaluation is applied using 9-fold cross-validation, where each fold

consists of texts on the same topic. A single fixed acceptance threshold is used, such that every

score above it is deemed accepted. The verification methods performance is measured via false accept

and false reject rates (i.e. false positives and false negatives, respectively). As there is a tradeoff

between the two rates, and the verification application in mind is plagiarism detection, FARFRR=0



27

is evaluated, i.e. the lowest false accept rate achievable given zero tolerance to false rejects, where

an author may be wrongly accused of plagiarism.

The best result reported is FARFRR=0 = 8.1%, achieved with the combined feature set. In

addition, the system manages to achieve up to FARFRR=0 = 2.4% and FARFRR=0 = 0.2% by

using renormalization (essentially using the knowledge that each of the 8 authors wrote exactly one

test document) and “oracle” thresholds, respectively. Moreover, authorship attribution (referred as

“recognition” in the text) accuracy for 2-way and 8-way comparisons are reported to reach as high

as 99.4% and 97%, respectively (and up to 100% with renormalization).

Contribution This work is one of the first to define and address the authorship verification

problem. Although the method presented here incorporates some “magic parameters” (acceptance

threshold included; parameter selections are explored in [44]) that need to be configured empirically,

and the evaluation presented is rather limited in dataset size and real-world-like properties, it lays

good grounds for further work on verification.

Plagiarism Detection without Reference Collections

Many plagiarism detection methods target verification of documents with respect to a reference

collection of documents by potential original authors. Meyer zu Eissen et al. [120, 121] target to

solve a harder problem: detect a plagiarized passage within a document by identifying changes in

writing style within the document, which can then lead to searching origins in external sources for

the passages suspected to be plagiarized. This type of problem is referred to as intrinsic plagiarism

detection.

Features The authors use a feature set that consists of several types of features: average sentence

length; 18 part-of-speech tags; average number of stopwords; grading measurements which include

the Gunning Fog index, Flesch-Kincaid Grade Level, and the Dale-Chall formula; and finally vocab-

ulary richness measurements which include Honore’s R, Yule’s K, and a novel method: the averaged

word frequency class.

Word frequency class is a measurement that assigns a bin for each word based on its frequency

relative to the most frequent word (in the measured context: document, paragraph, etc.). For every

word w, the class is defined as blog2(f(w∗)/f(w))c, where f(w) is the frequency of w and w∗ is the

most frequent word.



28

Corpus The authors present a new corpus constructed specifically for evaluating plagiarism de-

tection, controlled for: authenticity, homogeneity, possibility to include different types of plagiarism,

processable by human and machine and with clear separation between text and metadata. Their cor-

pus consists of computer science articles from the ACM digital library, manually modified to include

original and modified paragraphs taken from other articles. Template documents are represented as

XMLs from which instances can be created to contain varying number of plagiarized passages.

Algorithm The analysis is performed on each document by first breaking it into passages. Then

features are extracted from each passage p to formulate feature vector fp, and from the document d

as a whole to formulate vector fd. Then each fp is compared with fd to produce a relative differences

vector, for binary classification (plagiarized/original).

As seen next, the algorithm uses a discriminant analysis classifier for the binary classification,

making it a reconstruction method.

Evaluation and Results First the authors evaluate their suggested vocabulary richness mea-

surement, namely the average word frequency class (denoted AWFC), compared to Honore’s R

and Yule’s K, in terms of stability with respect to the text length. For that purpose they measure

AWFC on 4 different authors as a function of the percentage of analyzed text, which resulted in

an almost constant value (different between the authors), independent of that percentage. In addi-

tion, compared to the other measurements, AWFC is proven the most non-varying, even for small

passages, deeming it useful for intrinsic plagiarism detection.

The main evaluation is applied using 10-fold cross validation over 450 generated document in-

stances which contain 3–6 plagiarized passages, 40-200 words per passage. Using a classical dis-

criminant analysis classifier, the authors report ≈ 70%/80% precision/recall for 3% plagiarized text,

which increase to over 80%/90% for 18% plagiarized text. They obtain similar results using SVMs.

Their novel AWFC vocabulary richness is reported to be the most discriminating feature used.

Contribution Other than the new length-robust vocabulary richness measure, namely AWFC,

this work lays a basis for an important authorship verification application – plagiarism detection

research, in one of its harder formulations which they define as intrinsic plagiarism detection. This

problem is similar to the unsupervised stylometry problem, where attributing authors to their parts

of a multi-authored document is sought [63]. This work provides a novel corpus targeted for plagia-

rism detection research, and a precision/recall baseline to be further improved in future work.



29

Intrinsic Plagiarism Analysis with Meta Learning

Stein and Meyer zu Eissen [100] revisit the intrinsic plagiarism detection problem and suggest

coupling the solution suggested previously in [120] with meta learning – namely the unmasking

technique [64]. They present a hypothesis generation method for the intrinsic plagiarism detection

problem. They evaluate the hybrid solution on an artificially plagiarized dataset, and on a real-world

plagiarized document, demonstrating its efficiency in solving the problem.

Features A feature is addressed as a style marker σ, which is a mapping of text segments to nu-

merical values. Since plagiarized sections are often short, the feature set is to be selected accordingly.

The feature set used in the main experiment includes 20 POS tags, and 9 style markers including

average sentence length, Honore’s R and average German word frequency class.

Corpus The authors evaluate two corpora. The first is comprised of 50 scientific single author

German papers, 12-15 pages in length. These documents were plagiarized manually by adding k

plagiarized sections to create a template from which 2k instance documents can be created. Instances

were generated to create a varying percentage of plagiarized text θ ∈ [0.05; 0.5]. Overall there

were 16,000 non-plagiarized sections, and 1500 plagiarized paragraphs. For evaluation in real-world

settings, a known plagiarized postdoctoral thesis from the 1980s is used.

Algorithm In the improved style marker analysis method suggested in this paper, the features are

assumed to be Gaussian distributed for the target class, and uniformly distributed for the outlier

class. For a section s in document d, denote S+ as the event it is not plagiarized, and S− the

event it is. By hypothesizing the a-priori probabilities P (S−) = θ and its complement P (S+), d

is decomposed into sections s1, ..., sn. For a single style marker σ, its expectation and variance

are estimated over s1, ..., sn, P (σ(s)|S+) and P (σ(s)|S−) are computed, and Bayes rule is applied

for calculating P (S+|σ(s)) and P (S−|σ(s)). Applied over m style markers, the final decision is

S ∈ {S+, S−} that maximizes P (S)
∏m
i=1 P (σi(s)|S).

For the meta learning phase (which can follow either the method above, or the intrinsic plagiarism

detection method in [120]), first all sections attributed as plagiarized are accumulated to create d−,

and similarly d+ is formed. Unmasking is then applied to create a curve over d− against d+, which

in turn is classified as either same-author or different-author (using the notations in Sec. 2.3.1). If

it is classified as different-author, the document is determined to be plagiarized.



30

The improved style marker analysis method is a perfect example of a density method, that

assumes densities for the author and outlier classes and applies Bayes rule with a threshold for

differentiation. It is followed by a boundary method – the unmasking meta-learning phase.

Evaluation and Results First, the unmasking technique is evaluated on the artificially plagia-

rized data. same-author curves are generated from sections in d+ against other sections in d+, and

different-author curves from d+ against d−. As expected, the degradation in the former curves was

significantly faster than the latter, proving the usability of unmasking in this scenario.

In the main experiment, the hybrid method above is applied to the artificially plagiarized corpus

with a discriminant analysis classifier. The obtained precision and recall for the non-plagiarized

class were in 80-90% for the varying θ; for θ = 0.5, precision and recall for the plagiarized sections

were 55% and 70%, respectively.

Finally, the method is tested on the plagiarized postdoctoral thesis. It is first divided into 138

sections, out of which 13 were classified as possibly plagiarized (from which 3 are known to be so).

Two known plagiarized sections were missed, possibly due to a too coarse decomposition. In the

meta learning phase, the d+/d+ curve and the d+/d− curve are clearly same- and different-author

curves, i.e. the unmasking phase confirmed the plagiarism.

Contribution This work is significant mainly in its introduction of unmasking application to

the intrinsic plagiarism detection problem, which can be argued to be a more relevant real-world

problem, both in type and length, compared to the literary problems it was initially evaluated

over. The hybrid solution suggested here shows successful fusion of verification methodologies, and

inspires such combined solutions in future work by demonstrating the potential gain in performance

for authorship verification applications.

Many Authors, Limited Data

Luyckx and Daelemans [72] address the problem of performance overestimation of current stylom-

etry approaches, which usually rely on unrealistically large amounts of training data, overestimate

the importance of specific features for generalized problems and tested with a small number of au-

thors. They refer to the authorship verification problem as the more realistic case where the number

of suspects is unknown. They explore this problem in a 1-vs-all fashion using negative examples

on problems with many suspects and little training data. They present a memory-based learning



31

approach and show it is more robust than the commonly used “eager” learning methods such as

SVMs or maximum entropy classifiers.

Features Features are selected automatically by their predictive value to the problem, as com-

monly used in classification problems. The authors focus on part-of-speech (POS) grams as syntactic

features, since these are unconsciously selected by authors (as opposed to token level features), ex-

tracted using the Memory-Based Shallow Parser. The χ2 metric is used to select features that

best discriminate between the classes, where: χ2 =
∑k
i=1

(χi−µi)2
σi

. The authors use several fea-

ture sets and a combination thereof, including lexical distribution n-grams, fine-grained POS grams,

coarse-grained POS grams, function words and the Flesch-Kincaid readability index.

Corpus The authors present the Personae corpus, a 145-author collection of Dutch essays, about

1400 words each, written by undergraduate level students on a documentary about Artificial Life,

thus it is controlled for language, educational level, age, genre and topic. In addition, the students

took the Myers-Briggs Type Indicator (MBTI) test for personality evaluation.

Algorithm Two approaches are taken for learning, “lazy” and “eager”. For lazy learning the

authors use the Tilburg Memory-Based Learner (TiMBL) [30], an inductive algorithm based on

k-nearest-neighbors (using k = 1) with feature relevance weighting. With this algorithm, no ab-

straction of the classes is applied; rather test instances are matched to all training vectors stored

in memory, from which the class is determined. As eager learning methods, Sequential Minimal

Optimization SVMs and Maximum Entropy learners are used. The authors hypothesize that, as

opposed to the eager learners, the lazy approach avoids abstracting away from uncommon forms in

the training data, that may be useful for classification under limited data conditions.

Both the k-NN “lazy” learning and SVM “eager” learning approaches are types of boundary

methods.

Evaluation and Results The authors aim to examine 3 topics: the effects of large number of

authors, the effects of limited data, and finally – performance of authorship verification under these

two constraints. For the first, they experiment with gradually increasing the number of suspects

in the set. For the second, they experiment with 2 and 145 authors, using 20% of the corpus for

testing, and gradually increasing the size of the training data. For the third, each author is tested in

a 1-vs-all fashion, using 80% for training and 20% for testing. All experiments are conducted with



32

5-fold cross validation. The feature set selected using the χ2 metric is narrowed down to n = 50.

Data in each fold is divided into 10 fragments, where the generated feature vector is the means

vector.

The results for the first two experiments are as expected: accuracy drops as the number of authors

increases (down to 34% for 145 authors), feature set combinations outperform individual feature sets,

and some feature types (sets) are shown more effective than others – but such generalization cannot

be made for individual features. In addition, as the training data increases, so does the accuracy,

and the TiMBL classifier is proven more robust to limited data than the eager algorithms tested.

In the main authorship verification experiments, using TiMBL and the lexical feature set yields

the highest result of 56.04% precision (with 7.03% recall and 12.49% F-score), significantly higher

than found for this kind of problem formulation in the literature thus far.

Contribution The main contribution of this paper is in the realistic problem formulation it eval-

uates verification on: large number of authors and limited training data. Although the reported

results may not be satisfactory for real-world applications, they provide a fair baseline for future

realistic experiments, more commonly encountered in forensic contexts.

Particle Swarm Model Selection for Authorship Verification

Escalante et al. recognize that differences in author styles may require a variety of features and

classifiers selected ad-hoc per author in order to maximize overall classification accuracy [33]. For

that purpose they apply particle swarm model selection, PSMS, to the authorship verification task,

which forms a set of binary classifiers (one per author) for a given collection. Accordingly, they

formulate the verification problem as a binary 1-vs-all problem. PSMS is the application of Particle

swarm optimization to the model selection problem in binary classification. In addition to classifiers,

their application is able to automatically select preprocessing and feature selection methods. The

PSMS methodology is evaluated on two datasets, concluding that ad-hoc classifier selection per

author is preferable over using one classifier for all authors, and provide understanding about the

importance of different features to different authors.

Features The authors use bag-of-words, a rather simple feature set, as they focus on the de-

velopment of classification models. Each document is represented as a boolean vector of size |V |,

where V is the vocabulary of the entire collection of documents. Each entry j is assigned 1 if the



33

corresponding word wj ∈ V appears in the document, and 0 otherwise.

Corpus To avoid overfitting and allow generalization of the evaluated methodology, two datasets

are used. The first is MX-PO [29], a Spanish poetry dataset with 281 training documents and 72 test

documents by 5 authors, with 8,970 features. The second is CCAT [48], an English news articles

collection by 50 authors, with 2500 training and 2500 test documents, and 3,400 features. Only

words that appear in a minimum of 5 times in MX-PO and 20 times in CCAT are kept.

Algorithm For a given dataset with M authors, the dataset is labeled M times resulting with M

training sets, such that in training set i, all document vectors by author i are labeled +1, and all

others −1. Then, PSMS is applied on each training set i in order to select the best methods for

preprocessing, feature selection and classification for the corresponding author, and optimize their

hyperparameters.

For every author i, PSMS is applied on its corresponding labeled set as follows: each full model,

i.e. numerical vectors that codify a combination of preprocessing, feature selection and classification

methods, is considered a particle. The swarm is the collection of all particles. The optimization

problem is minimizing the classification balanced error rate BER = E++E−
2 , where E+ and E− are

the positive and negative error rates, respectively.

Each particle is initialized with position xti =
〈
xti,1, ..., x

t
i,d

〉
and velocity vti =

〈
vti,1, ..., v

t
i,d

〉
, d

being the search space dimension. Particles are initialized randomly, and updated in an iterative

process that takes into account the current position, the best position obtained by the particle, the

best particle in the swarm thus far and additional weighting constants and randomness. Finally,

after a fixed number of iterations, a model is selected for the corresponding author, and the process

is repeated for all authors.

The PSMS approach utilizes a search space over multiple types of classification techniques, and

therefore does not fall under one particular approach from those described in Sec. 2.1.2.

Evaluation and Results Evaluation is applied via cross validation by measuring the average

precision, recall, F1 measure and BER for each of the selected classifiers. The classifiers tested

include a linear classifier, näıve Bayes, neural networks, SVM and others; feature selection methods

include F-test, T-test, AUC criterion and others; preprocessing methods include normalization, stan-

dardization and scaling. In addition to optimizing preprocessing, feature selection and classification



34

methods, PSMS is tested with fixing the classifier to nonparametric linear, and with optimizing only

the classifier hyperparameters (with several classifiers).

The main results indicate that PSMS outperforms a fixed configuration: for MX-PO, BER is

the lowest at 23.68% and F1 measure is the highest at 60.37%, when fixing the classifier to linear;

for CCAT, BER is the lowest at 13.54% with the linear classifier, and F1 measure is the highest at

63.41% for the full optimization configuration.

Contribution This work breaks the standard go-to approach often taken in stylometry research,

authorship verification included, of using a single learning algorithm across all authors in the given

problem. The results obtained with the multi-classifier approach taken here show that using PSMS

for individual preprocessing, feature selection and classifier methods benefits performance, and allows

learning what features are important for each author. This approach may have great importance

especially for hard problems such as authorship verification, where attaining high accuracy is more

difficult than standard stylometry problems, and requires creative solutions.

2.4 Synthesis

This chapter reviewed the current state of authorship verification research. We presented this

computational stylometry variant of one-class classification problems, and laid out current method-

ologies to solve it. The methods reviewed here, for which performance evaluations is summarized

in Tab. 2.2, provide a solid basis for authorship verification research. Specifically, the two methods

reviewed thoroughly, namely unmasking and distractorless verification, show promising approaches

that can be utilized and further developed. The advantage of the unmasking technique over the

others is expressed in its ingenuity of measuring the “depth-of-difference” between texts while strip-

ping down stylistic characteristics, which targets to remove shallow differences and thus distinguish

between same-origin and different-origin texts. The distractorless verification approach is advanta-

geous in its simplicity, modularity, tunability and real-world evaluation baseline set with it. Indeed,

we adopt the distractorless verification design as the basic verification technique used in our Classify-

Verify algorithm, presented in Ch. 6.

All methods presented here attempt to utilize known approaches from the stylometry and machine

learning domains, and do so with varying amounts of success. Clearly, this domain of problems is

in its infancy, and research should continue to focus on finding more accurate, scalable and robust

methods, applied to more privacy, forensics and security oriented domains. Next, several directions



35

Table 2.2: Evaluation of authorship verification methods presented in this document.

Method Corpora (# Authors) Language Best Measured Performance

Unmasking [64, 68] Books (10) English 99.04% accuracy

Distractorless AAAC (63) Varying
88.04% accuracy, 47.12% F-
score

Verification [82] PAN 2011 (10)
92.23% accuracy, 51.35% F-
score

Linguistic Profiling [109] ABC-NL1 (8) Dutch FARFRR=0 = 8.1%

Intrinsic Plagiarism 450 plagiarized ACM English 80%/90% precision/recall
Detection (IPD) [120, 121] science articles (for 18% plagiarized text)

IPD with Meta Scientific papers (50) German
Authentic: 80-90% preci-
sion/recall

Learning [100]
Plagiarized: 55%/70% preci-
sion/recall

Many authors with Personae (145) Dutch
56.04%/7.03% preci-
sion/recall

limited data [72] 12.49% F-score

PSMS [33] MX-PO (5) Spanish 23.68% BER, 60.37% F-score
CCAT (50) English 13.54% BER, 63.41% F-score

for future development in the field are discussed. Ideas, techniques and approaches presented in the

chapters to follow attempt to address some of these important directions.

2.4.1 Directions for Continued Research in Authorship Verification

Expanding Empirical Foundations

The limited amount of work has led to a rather limited number and diversity of datasets that have

been tested with different verification methods. The standard closed-world authorship attribution

domain, however, is abundant with datasets that can be trivially formulated to test verification. If

more datasets are to be used and tested, it can assert the usability of current and future verification

methodologies, with emphasis on which techniques are suited to what problems. Verification methods

should be tested on datasets that challenge with a high number of potential authors, taking pure

one-sided learning approaches, limited amounts of training data, texts with real-world characteristics

and the like. The work of Escalante et al., discussed in Sec. 2.3.3 provides a baseline for this direction.

Furthermore, extending evaluations to existing datasets that are common in the literature would

allow uniform settings, required to truly compare approaches and determine which algorithm is

suited best for different problem formulations. General stylometric techniques have been compared

over the same baseline before [54], and such experiments should be applied within the domain of



36

one-class methods as well, stressing the constraints in terms of data availability, increased number of

authors, various genres and domains etc. Such configurations should simulate real-world problems

where one-class approaches can be of use, such as security applications, open-world domains and

the like.

Specifically, the Active Linguistic Authentication dataset [57] is a perfect candidate for test-

ing authorship verification methods for a security oriented application. The active authentication

problem is to constantly monitor system input in order to provide continuous authentication of

the user in front of it with respect to a known legitimate user. The dataset consists of one week’s

worth of user input in a simulated office environment, including complete keyboard, mouse and web

browsing behavior, for a total of 80 users. Authorship verification approaches are natural for this

type of problem, as what characterizes the adversary is unknown. The other legitimate users are

potential suspects (e.g. employees that share the same work environment and have physical access

to their colleague’s computer), however effectiveness against external attacks is a desired quality of

such security systems. Research of verification methods in the face of this type of incoherent, noisy

and inconsistent data is challenging, can greatly contribute to a real-world problem domain, and

potentially applicable in other verification related problems.

In addition to the uniquely characterized active authentication dataset, the following datasets are

good candidates for evaluation, and some of them are used for evaluations of verification techniques

in this thesis:

• The ICWSM Spinn3r Dataset. [19] This corpus contains a set of 44 million blog posts made

between August 1st and October 1st, 2008. The posts include the text as syndicated, as well

as metadata such as the blog’s homepage, timestamps, etc. This dataset has been previously

used in internet scale authorship attribution [80]. The large number of authors in this dataset

provides unique challenges for stylometric techniques, and verification approaches in particular.

This dataset is also evaluated in a verification context in Ch. 6.

• The Extended Brennan-Greenstadt Adversarial Corpus. [16] The EBG corpus contains writings

of 45 different authors, with a minimum of 6,500 words per author divided into documents

of approx. 500 words in length. It also contains adversarial documents, where the authors

deliberately change their writing style either by hiding it (obfuscation attack), or imitating

another author (imitation attack). These unique adversarial settings allow stressing the abili-

ties of verification methods and test how well they perform in the face of a deliberate hiding



37

attempt. This dataset is evaluated in Ch. 6.

• The Enron Email Dataset. [60] This corpus contains email communication between employees

of the now defunct Enron corporation and was released during a legal investigation of the

corporation. The dataset contains emails by 158 users, and has been used extensively for

various research purposes.

• The Ad-hoc Authorship Attribution Competition Corpus. [54] The AAAC was a stylometry

evaluation experiment presented in the 2004 International Conference of the Association for

Computers and the Humanities. It contains well-defined problems over a total of 63 authors,

spanning over various languages, genres and lengths. Since it has been used to evaluate and

compare various stylometric methods, the distractorless verification discussed in Sec. 2.3.2

included, it is a leading candidate for future evaluation of verification approaches.

In addition to the above, other interesting datasets that have been used for stylometric evaluation

exist, which consist of tweets, emails, blogs, literary works etc. The corpora above are but selected

samples, that have been successfully used for evaluation of one or more stylometric methods, and

thus provide a variety of focuses that allow testing different characteristics and uses for authorship

verification methods.

Throughout the rest of this document, we revisit various datasets and applications that were

approached before in research, some of which are listed above, and examine new applications such as

the biometric authentication problem. In Ch. 4 we present a native-language identification algorithm

that involves verification over a dataset of English texts by authors of foreign-native. In Ch. 5 we

evaluate the Linguistic Active Authentication dataset. We finalize by examining our Classify-Verify

algorithm in Ch. 6, evaluated over the Extended Brennan-Greenstadt Adversarial corpus, datasets

derived from the ICWSM Spinn3r dataset, and again the Active Linguistic Authentication dataset.

All the datasets evaluated in this document attempt (and some succeed) to outperform the techniques

originally used over these various datasets, demonstrating the effectiveness of verification approaches

and strengthening the empirical foundations of research in the field.

Fusion of Classification and Verification, and of Verification Methods

An additional direction to examine is the classification-verification hybrid question, mentioned

in Sec. 2.2.1: given a document D of unknown authorship and documents by a set of known authors

A, determine the author Ai ∈ A of D, or that D’s author is not in A. The mixture of open- and



38

closed-world settings is highly applicable to real-world scenarios, where we might have a potential

suspect list, but would want to avoid false accusations if the real suspect is not among them.

In addition to classification-verification hybrid, combinations should be attempted within the

realm of verification methods, utilizing decision fusion architectures for ensemble learning. A

mixture-of-experts approach has the potential to increase the overall performance over the stan-

dalone verifiers. This idea is demonstrated with PSMS, as discussed in Sec. 2.3.3, in a macro fashion

where different classifiers are selected for different authors. However, a micro approach that fuses

several verifiers for each author can benefit from an abundance of algorithms even further. Pre-

liminary work with decision fusion of different modalities (keystroke patterns, mouse movement

behavior, stylometry etc.) evaluated on the Active Linguistic Authentication dataset supports this

idea [36, 37], and motivates utilizing such approach within the authorship verification domain.

The Classify-Verify algorithm, presented in Ch. 6 and the main contribution of this thesis, is

designed to solve precisely the hybrid problem above, by combining closed-world and open-world

techniques. It demonstrates the effectiveness of augmenting traditional closed-world classification

procedures with one-sided binary verifiers, enabling to identify low-confidence decisions that indicate

a possible misclassification. Classify-Verify is also evaluated on the “micro” hybrid approach – fusion

of several authorship verifiers for the open-world phase of the algorithm.

Privacy, Security and Adversarial Stylometry

The role of stylometry in privacy and anonymity is a field of increasing interest [90], and introduc-

tion of open-world techniques such as verification impose even bigger threats on pseudonymity and

the privacy of Internet users. The effects and usability of verification methods should be measured

and accounted for in research that examines the privacy risk computational stylometry techniques

introduce on one hand, and the effectiveness in tackling open-world problems on the other.

Privacy-oriented stylometry research did not remain untouched, and countermeasures against

stylometry have been shown effective using active circumvention [16, 76]. The performance of tra-

ditional classifiers in the face of an adversary that deliberately changes his style, have been shown

to drop down to levels of random chance. The approach of verification methods, that doubt the

legitimacy of possible candidates, as opposed to classical stylometry that always picks the best (or

least-worst) candidate, is naturally formulated to thwart attacks.

This theory regarding the performance of open-world verifiers in the face of an adversary is

demonstrated in Ch. 6, where we evaluate our Classify-Verify algorithm with the Extended Brennan-



39

Greenstadt Adversarial corpus. The algorithm is validated as effective in identifying attacks/active

circumvention, proving the importance of verification methods in security and privacy problems in

the stylometry domain.

2.5 Conclusions

Stylometry is a wide field of research that lays many interesting and important directions for

computational linguistics, AI and security research, with extensive foundations and a great deal of

background work. Authorship verification is an important subdomain, that poses great challenges,

with high applicability to real-world security and privacy problems. Stylometry provides a fertile

ground of datasets and problems, which draws research on verification methodologies to the field,

that can later be generalized and transferred to other domains.

The survey presented in this chapter illustrates how effective current authorship verification

methods are for a variety of problems in the field. However, these methods only scrape the sur-

face, and much is yet to be explored. Mainly, empirical experimentation, classification/verification

mixture, ensemble learning and the increasing interest in stylometry-related privacy and security

problems, motivate authorship verification research and unfold important and practical directions

to explore.

In the following chapters we examine some of the ideas identified in this chapter as impor-

tant directions for future research of authorship verification. We demonstrate the gain of utilizing

authorship verification approaches in varying applications and domains. Specifically, we focus on

showing the effectiveness that can be attained from combining verification approaches with tradi-

tional classifiers, the foundation of the Classify-Verify algorithm presented in Ch. 6. We demonstrate

the effectiveness of verification techniques when used in scenarios such as open-world applications,

adversarial settings and the like, and discuss privacy and security implications of these applications.



40

3. JStylo: an Authorship Attribution Framework

JStylo is an open-source Java framework for authorship attribution research, developed as part

of this thesis at the Privacy, Security and Automation lab at Drexel University [76]. The author of

this thesis is the developer of the first version of JStylo, released in early 2012, and also a primary

contributor to later versions. The ownership of the JStylo repository and development has since

been transferred to other members of PSAL. More information can be found at the PSAL website:

http://psal.cs.drexel.edu/.

The JStylo framework uses natural language processing tools and packages to mine text for

linguistic features, and supervised machine learning methods for classification of documents based

on those features. JStylo allows loading anonymous documents to be classified, and documents of

candidate authors. It then mines the texts in order to learn the style of the candidate authors

and the test documents, and matches the latter to the authors they best fit stylistically. JStylo

provides a graphic user interface and a Java API to be extended or used in large-scale projects.

JStylo uses the JGAAP authorship attribution framework API [53] as baseline, and extends its

abilities, customizability and feature extraction variety. The main workflow of JStylo consists of

four consecutive phases, as described next: defining a problem set, defining a feature set, selecting

classifiers and running the analysis.

Problem Set. A problem set is defined by a training corpus, constructed of documents of all

candidate authors (supervised learning), and a set of anonymous documents whose authorship is

to be determined. It can be exported to and imported from a simple extensible markup language

(XML) file. The set of test documents is optional; users can apply a cross-validation analysis on

the training documents. A screenshot of JStylo at the problem set definition phase is presented in

Fig. 3.1.

Feature Set. A feature set is defined by a set of various stylistic features to be extracted from

the text in order to model the style of its author. JStylo provides over 50 different configurable

features, spanning over different levels of the text, including parts-of-speech, function words, word

or character n-gram frequencies etc. JStylo supports several predefined feature sets, including a

close formulation of the extensive feature set used by the Writeprints algorithm [1].

Each feature is defined by text preprocessors/filters, applied prior to feature extraction (e.g.

punctuation removal, whitespace canonization); the “core” of the feature which is the feature ex-

http://psal.cs.drexel.edu/


41

Figure 3.1: JStylo step 1: problem set definition, where training documents are defined grouped
under their respective authors, and test documents are optionally added.

tractor itself; post-processors to be applied after extraction (e.g. picking the top features frequency-

wise); and applying normalization or factoring (e.g. normalizing over the total number of words).

Most of these components are based on the JGAAP API. A screenshot of JStylo at the feature set

definition phase is presented in Fig. 3.2.

Classification and Analysis. The classifiers available in JStylo include a subset of Weka

[43] classifiers commonly used, such as support vector machine, Näıve Bayes, decision tree, etc.

In addition, JStylo provides an implementation of the Writeprints algorithm, due to its successful

performance as shown in [1]. The analysis can be run either as k-fold cross validation over the training

set, or train models with the training set and test the documents in the test set. Screenshots of

JStylo at the classifier definition and analysis phases are presented in Fig. 3.3–3.4.

The complete authorship attribution flow in JStylo is illustrated in Fig. 3.5. The main advan-

tages of JStylo over other authorship attribution platforms are in allowing integration of multiple

features to represent various stylistic characteristics of documents in one style model (vector), and

in the high level of feature-set customizability (per-feature preprocessors, feature extractors and

postprocessors). Its user-friendly graphic interface and Java API allow a high level of usage by



42

Figure 3.2: JStylo step 2: feature set definition, where features are combined, each defined with its
own extractor, pre/post-processors, normalization and factorization.

Figure 3.3: JStylo step 3: classifier selections, where classifiers are defined and configured for the
learning phase.



43

Figure 3.4: JStylo step 4: the analysis phase, where resource configurations are set and the analysis
type is defined and run.

 

Figure 3.5: A flow of the authorship attribution process in JStylo.



44

both linguistic researchers and computer scientists, providing a convenient platform for stylometry

research.

In addition to a standalone authorship attribution framework, JStylo is also the attribution

engine of Anonymouth [76, 77], an authorship anonymization platform, designed to help anonymizing

texts and thus assist online users in maintaining their content anonymity (whereas anonymity at the

network level can be maintained by onion routing systems like Tor [31]). A workflow in Anonymouth

includes initialization with a “camouflage” corpus – a set of texts by authors to blend the target

document’s style into, a set of texts by the author to learn his/her style, and the target document to

be anonymized. Anonymouth aims to provide suggestions that help diverting the target document’s

style towards the other texts such that its style is indistinguishable from theirs (or more precisely, an

average thereof), with respect to some given feature set and classification method. The rest of the

process is iterative: using JStylo to apply attribution on the document with the “blend” dataset and

author texts as training data; output the probability of the document being written by the author vs.

any of the other “blend” authors, expressed as anonymity level; provide suggestions for variations

to better anonymize the document; and repeat until the document is sufficiently anonymized.

The JStylo and Anonymouth code bases are maintained on GitHub, at https://github.com/

psal/jstylo and https://github.com/psal/anonymouth, respectively. JStylo is used for author-

ship attribution analysis throughout all of the experiments presented in this document.

https://github.com/psal/jstylo
https://github.com/psal/jstylo
https://github.com/psal/anonymouth


45

4. Native Language and Language Family Identification

** This work was completed with support from Aylin Çalişkan İslam. [101]

Mining text for features to infer characteristics on its author is a well-researched area. One

author property that has been researched is native language, extracted from the author’s writing

in a non-native language. Identifying native language is applicable in security and privacy, as it

can reveal traits of an anonymous author. Learning the native language of an anonymous author

can assist in profiling criminals or terrorists, but it may also undermine the privacy of legitimate

anonymous authors by helping to unveil their identity.

Influences of native language (L1) on second language (L2), referred as the L1-L2 transfer effect,

is seen in writing and can be utilized to identify native language. In this chapter we examine aspects

of a broader class – the language family to which the native language of an author belongs. In

the rest of the chapter, native language and native language family will be referred as L1 and LF,

respectively.

First, we examine the correct classification rates of LF compared to L1. As L1 is a subset of

LF, the number of L1 classes is greater than or equal to the number of corresponding LF classes.

Therefore, higher LF classification accuracy can be trivially achieved by taking the family of the

attributed L1 in a L1 classification task. This can be helpful in cases where high accuracy is preferred

over classification granularity. We introduce a novel, improved method that achieves higher correct

classification rate for LF identification, compared to the trivial method.

The main contribution presented in this chapter is in showing how L1 identification accuracy

can be increased by incorporating family information via LF identification, in a two-step classifica-

tion approach that incorporates verification. In our two-step classification algorithm, we examine

for the first time the idea of combining a verification approach with traditional closed-world clas-

sification: the verification test is applied after an initial L1 classification, and determines whether

additional information in the form of LF identification should be extracted to gain a decision with

higher certainty in a second classification step. Our algorithm is shown effective in increasing the

overall accuracy of the L1 identification application, and thus a successful hybrid of verification and

classification approaches.

We use stylometric analysis and machine learning techniques to identify L1 and LF. We conduct



46

a series of experiments by mining English text written by non-native English authors for linguistic

features. We use 4 different feature sets detailed in Sec. 4.3: the first is primarily based on features

used in past L1 identification research; the second is the same as the first, with additional grammat-

ical features; the third is only the grammatical features added to the second set; and the fourth is

the top weighted features extracted from the second set. We evaluate performance of the attained

results by examining the accuracy – true-positive rate.

Sec. 4.1 provides background and summarizes prior work. Sec. 4.2 describes the corpus used for

evaluation. Sec. 4.3 describes the configuration used for feature extraction and classification. Sec. 4.4

discusses the different experimental configurations and their evaluation. We finalize with discussion

on the attained results in Sec. 4.5, followed by conclusions and directions for future research in

Sec. 4.6.

4.1 Background

Introductory studies in the area identify the written or spoken language itself, focusing on tele-

phone dialogue corpora [5, 119]. Further studies focus on extracting specific information from text or

speech after identifying the language being used. Wanneroy et al. [113] investigate how non-native

speech deteriorates language identification and use acoustic adaptation to improve it. Choueiter

et al. [25] classify different foreign accented English speech samples by using a combination of het-

eroscedastic LDA and maximum mutual information training. Tomokiyo and Jones [105] characterize

part-of-speech sequences and show that Näıve Bayes classification can be used to identify non-native

utterances of English.

The first work to utilize stylometric methods for native language attribution is introduced by

Koppel et al. [69, 71]. They explore frequencies of sets of features, and use them with multi-linear

support vector machines to classify text by the author’s native language. They use a set of features

consisting of function words, letter n-grams, errors and idiosyncrasies, and experiment on a dataset of

authors of five different native languages taken from ICLEv1 [40], reaching to 80.2% accuracy. Tsur

and Rappoport [107] revisit Koppel’s work using only the 200 most frequent character bigrams, and

achieve 65.6% accuracy, with only a small degradation when removing dominant words or function

words.

Brooke and Hirst [18] present a method of utilizing native language corpora for identifying native

language in non-native texts. They use word-by-word translation of large native language corpora



47

to create sets of second language forms that are possible results of language transfer, later used in

unsupervised classification. They achieve results above random chance for L1 identification, however

insufficiently accurate.

More related work can be found in [6, 17, 22, 34, 39, 110, 114, 115]. The work mentioned above

and the approach taken in this chapter both utilize the L1-L2 transfer effect to gain information about

an author’s native language. Gibbons proved the impact of native language family ’s typological

properties on L2 [38]. This work is the first to combine stylometry and native language family’s

effect on L2, utilized for L1 identification.

4.2 Corpus

We use the ICLEv2 [41] corpus that contains English documents written by intermediate to

advanced international learners of English, with language backgrounds of 16 mother-tongues. The

first version of the corpus was used in significant previous work [69, 71, 107]. They were able to

use 258 documents of sizes 500-1000 words for each language. We use version 2 of the corpus and

restrict all documents in our experiments to those with 500-1000 words as well. However, we found

that constraining our documents to these lengths allows us to use only 133-146 documents per

language. We conduct a series of experiments with different sub-corpora constructed of documents

representing 11 native languages out of the 16 available in the corpus. The native languages we use

are: Bulgarian, Czech, Dutch, French, German, Italian, Norwegian, Polish, Russian, Spanish and

Swedish, all Indo-European languages. These languages represent 3 language-families in a coarse

partition: Germanic, Slavic and Romance, which are used as the LF classes in the experiments to

follow. All sub-corpora configurations are detailed in Sec. 4.4.

Since we are looking at a set of languages from both L1 and LF aspects, we maintain only the

sub-corpora that allow a sufficient amount of languages in each represented family, i.e. 3 languages

in each of the Germanic, Slavic and Romance families. Therefore we removed 5 of the 16 available

languages in the corpus.

4.3 Methodology

4.3.1 Feature Selection

Koppel et al. represent each document as a 1,035-dimensional feature vector, consisted of 400

function words, 200 most frequent letter n-grams, 185 misspellings and syntactic errors and 250



48

rare POS bigrams. The 250 rare POS bigrams are the least common bigrams extracted from the

Brown Corpus [35], and their appearances are considered to be erroneous or non-standard. In our

experiments we use 4 different feature sets, partially based on that used by Koppel et al., configured

as follows:

Basic: includes the 400 most frequent function words, 200 most frequent letter bigrams, 250 rare

POS bigrams and 300 most frequent spelling errors. The 400 most frequent function words were

taken from a list of 512 function words used in the original experiments by Koppel et al. For the

200 letter n-grams, we choose bigrams, as they are shown to be effective for the task in previous

research. The 250 rare POS bigrams are extracted from the Brown Corpus using the POS tagger

by Toutanova et al. [106]. Finally, we simplify the error types by considering only misspelled words,

based on a list of 5,753 common misspellings, constructed from Wikipedia common misspellings

and those used for the Writeprints stylometric similarity algorithm [1]. We ignore any misspellings

with less than 2 appearances across the entire sub-corpus. Since many of the rare POS bigrams

and misspellings have no appearances, the effective vector lengths vary between 653-870 features.

Total number of features, rare POS bigrams and spelling errors for the experimental variations are

detailed in Tab. A.1.

Extended : identical to the former, with the addition of the 200 most frequent POS bigrams

across the entire sub-corpus used for each experiment. These syntactic features are selected as

an additional representation of grammatical structures in the text. There are several methods

for natural language classification, including genetic, typological and areal [20]. We consider the

typological classification that uses structural features to compare similarities between languages and

classify them into families. Therefore we choose grammatical evidence in L2 as features that may

represent similar transfer effects among languages in the same family.

Grammatical : consists of only the 200 most frequent POS bigrams, representing the grammatical

level of the text.

InfoGain: We use the 200 features with the highest information gain extracted from the extended

feature set using Weka [43], calculated for any given feature by measuring the expected reduction

in entropy caused by partitioning the test instances according to that feature. Feature-type distri-

butions for the experimental variations are detailed in Tab. A.2.



49

4.3.2 Classifier

We train a sequential minimal optimization support vector machine (SVM) classifier [88] with

a linear kernel. SVMs are chosen as they are used extensively in prior work and outperform other

methods tested, including decision trees, nearest-neighbors, Bayesian and logistic regression classi-

fiers.

4.4 Evaluation

We conduct 5 different experiments using various sub-corpora and the 4 feature sets described

previously, with L1 and LF classification tasks. We evaluate the results by using the true-positive rate

to capture accuracy. The figures in the following sub-sections use the labels L1 and LF as before,

and Random for random chance in that specific experiment (e.g. 20% for a 5-class task). Any

numbers in parentheses represent the number of classes for that label’s corresponding experiment

(e.g. L1 (9) refers to a 9-class classification task). Following is a detailed description of the different

variations, and the attained results.

4.4.1 5-Class Languages

In order to achieve baseline results for L1 identification, we experiment with a 5-language dataset

similar to that used by Koppel et al., constructed of documents of Bulgarian, Czech, Russian, Spanish

and French native authors. Our restriction to 500-1000 word long documents allow us to use only

139 documents per language, randomly sampled. With this experiment we aim to evaluate our

chosen feature sets for L1 identification, to set a baseline for the experiments to follow. We run

10-fold cross validation, also used for the experiments in Sec. 4.4.2, Sec. 4.4.3 and Sec. 4.4.5.

The extended feature set yields the highest accuracy: 77.26%. The accuracy for all other fea-

ture sets are 75.39%, 70.36% and 54.96% for the basic, InfoGain and grammatical feature sets,

respectively, as illustrated in Fig. 4.1.

4.4.2 9-Class Languages, 3-Class Families

Once a baseline for L1 is established, we continue to LF identification. In this experiment

we compare 9-L1 identification with the corresponding 3-LF identification. For the 9-L1 task we

randomly sample documents of 9 languages, 3 for each of the Germanic, Slavic and Romance language

families, in order to maintain the same number of languages per family in every experiment. We



50

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Basic Extended Grammar InfoGain

L1

Random

Figure 4.1: Accuracy for 5-class L1 identification.

construct 16 different 9-L1 sets, choosing 3 out of 4 Germanic languages, 3 out of 4 Slavic languages

and the only 3 Romance languages available. In each experiment we use the same number of

documents per language, varying between 133-146.

For LF identification we conduct 3 sets of experiments, each containing 16 3-LF experiments,

corresponding to the 16 that were performed for L1 identification.

First, we run the trivial experiment of attributing the family of the predicted language resulted

from the L1 identification experiments. This method is denoted as the trivial method.

Next, we run the same experiments conducted for L1, with the only difference of using LF as the

class rather than L1. For instance, any instance previously labeled as Italic, French or Spanish is

now labeled as Romance. As a result of that configuration, each experiment also contains the same

number of documents per LF, varying between 399-438. This method is denoted as the standalone

method.

Lastly, we run experiments combining the standalone and trivial approaches. We hypothesize

that if L1 is attributed with high confidence, so is the LF of that attributed L1; however, if the

confidence level decreases, a standalone LF experiment achieves better results. We run the L1

identification experiments and set a threshold as the averaged probability of the predicted class

across the entire test set, based on the class probability distribution outputted by the SVM classifier.

To obtain proper probability estimates, we fit logistic regression models to the outputs of the SVM.

Every instance classified with probability above the threshold is attributed the family using the

trivial method, and every instance below – using the standalone method. This two-step classification

method is denoted as the combined method, and it uses traditional closed-world classification with

an intermediate verification step to determine the type of decision to perform on the second step –



51

accepting the trivial LF from the outputted L1, or performing a separated LF experiment.

Averaged results for the L1 and LF (trivial, standalone and combined) identification experiments

are illustrated in Fig. 4.2. The accuracy for L1 identification is 67.78%, 65.64%, 59.34% and 44.02%

for the extended, basic, InfoGain and grammatical feature sets, respectively. Out of the 3 LF

identification methods, the combined method achieved the best accuracy, supporting our hypothesis,

with 90.57%, 86.24%, 86.2% and 85.29% for the InfoGain, grammatical, extended and basic feature

sets, respectively.

0

10

20

30

40

50

60

70

80

90

100

Basic Extended Grammar InfoGain

L1 (9)

LF trivial (3)

LF standalone (3)

LF combined (3)

L1 Random

LF Random

Figure 4.2: Accuracy for 9-class L1 and
3-class LF identification. The combined
method for LF outperforms the other two.

0

10

20

30

40

50

60

70

80

90

100

Basic Extended Grammar InfoGain

L1 (9)

LF trivial (3)

LF standalone (3)

LF combined (3)

Figure 4.3: Effective accuracy for 9-L1 and
3-LF identification. Accuracy for L1 exceeds
most accuracy results for LF, except for the
combined method on the grammatical and
InfoGain feature sets.

Although it seems LF identification outperforms L1, if we measure the added knowledge over

the corresponding random classification rates (1/9 = 11.1% for L1, 1/3 = 33.3% for LF) to get the

“effective” accuracy, illustrated in Fig. 4.3, L1 is more accurate in most cases. The LF combined

method is the only one that exceeds the effective accuracy of L1, with the grammatical and InfoGain

feature sets. Combined with the standard (non-effective) results, it appears that the InfoGain feature

set with the LF combined method achieves the highest accuracy with the most added knowledge

over random classification. The smallest difference between L1 and LF identification accuracy is

seen for the grammatical feature set.

4.4.3 3-Class Languages, 3-Class Families

In order to have the same random-chance baseline for both L1 and LF tasks, we compare 3-L1

with 3-LF identification, using the same sub-corpus as before.



52

For L1 we construct 9 experiments, in each randomly sampling 3 languages from 1, 2 and 3

different language families (3 experiments each). The reason for this choice is that as more families

are used, the farther the chosen languages are from one another. Therefore the choice above is

intended to balance the effect of LF in those experiments. We use 133 documents per language for

all experiments.

For LF we construct 2 sets of 9 experiments, in order to examine the notion that languages

in the same family have more family-distinguishable commonalities as opposed to random sets of

languages. In the first, we create 3 random sets of languages to be considered as families. We

randomly sample documents from all 11 languages to construct sets for the 3 randomly-generated

families used as classes. Here we also maintain 133 documents per language family. In the second

we run a similar configuration, only using the actual language families.

The averaged accuracy attained for L1 is 84.23%, 82.29%, 81.67% and 66.97% for the extended,

InfoGain, basic and grammatical feature sets, respectively. These results, illustrated in Fig. 4.4,

show that L1 identification consistently outperform the results of both sets of LF experiments.

0

10

20

30

40

50

60

70

80

90

100

Basic Extended Grammar InfoGain

L1 (3)

LF (3)

Random LF (3)

Random

Figure 4.4: Accuracy for 3-L1, 3-LF and 3-randomly-generated families identification. Using the
original families achieves the highest accuracy for LF identification.

The accuracy attained for actual language families is 72.43%, 70.09%, 68.72% and 56.55% for the

extended, basic, InfoGain and grammatical feature sets, respectively, which consistently outperform

that of the randomly-generated families: 61.46%, 60.01%, 58.81% and 48.67%. This confirms that

true language families are ideal when grouping L1 into sets. As in the previous experiment, the

difference in accuracy between L1 and LF identification was the smallest with the grammatical

feature set.



53

4.4.4 3-Class Families: Train on 2, Test on 1

In order to examine similarities of L1-L2 transfer effects for languages in the same family, we

conduct 3 additional 3-class experiments in which we train the classifier on 2 languages from each

family (a total of 6 languages) and test on 3 other languages representing the 3 families. Each

language in the training and test sets contains 133 documents.

The averaged accuracy obtained is 55.05%, 53.21%, 48.28% and 48.20% for the extended, basic,

InfoGain and grammatical feature sets, respectively, as illustrated in Fig. 4.5. These results support

the notion that languages in the same family have more commonalities than languages in different

families. Moreover, similarities of languages in the same family are distinguishable from similarities

of languages in different families.

 

0

0.1

0.2

0.3

0.4

0.5

0.6

Basic

Extended

Grammar

InfoGain

Random

Figure 4.5: Accuracy of training on 2 languages and testing on 1 other language for each LF.
Similarities of languages in the same family are distinguishable from similarities of languages in
different families.

4.4.5 9-Class Languages, Reclassify by Family

This experiment, the main contribution presented in this chapter, illustrates how LF classification

can improve L1 classification by incorporating verification in a two-step classification process. We

conduct the same 16 9-L1 experiments as in Sec. 4.4.2. A threshold is then set as in the combined

method, such that each classified instance with predicted probability less than that threshold is

treated as misclassified. For all allegedly-misclassified instances we attribute the family they belong

to, using various methods detailed later. As last step we reclassify those instances using a training

set constructed only of the 3 languages in the family they are classified as, and consider these results



54

as L1 classification-correction for those instances. We measure the overall change in accuracy.

The experiments are conducted 3 times, each with a different method for LF attribution for the

instances below the threshold: 1) The standalone method – running LF identification over all those

instances, using the same training set (with LF as classes rather than L1), 2) The trivial method –

using the family of the predicted language of those instances, and 3) Random family selection.

We measure the net fix in accuracy – change in the correctly classified instances, taking into

account corrected classifications and new misclassifications. For all feature sets, LF attribution

using the standalone method yields the highest fix rate, followed by LF attribution using the trivial

method. The randomly attributed family method consistently yields negative fix rate, i.e. reduced

overall accuracy. See figure 4.6.

0

10

20

30

40

50

60

70

80

90

100

Basic Extended Grammar InfoGain

L1 w/o fix

LF standalone

LF trivial

Random LF

Figure 4.6: Accuracy for L1 identification without fix and with fixing using LF attribution by the
standalone method, trivial method and random selection of family. The standalone method yields
the highest net fix in L1 classification accuracy.

The extended feature set yields the best results. Starting at a baseline of 67.17% for L1 identifi-

cation without any fix, the true-positive rates obtained for this feature set are 70.9% and 68.05% for

attributing LF by the standalone and the trivial methods, respectively. The increase in accuracy is

statistically significant, with p < 0.01. The random family attribution method yields a decrease in

accuracy to 66.35%.

It is notable that although best results are achieved with the extended feature set, the standalone

method achieves higher increase in accuracy in some of the other feature sets. The increase rates

for this method are: 6.43%, 4.48%, 3.73% and 3.67% for the InfoGain, grammatical, extended and

basic feature sets, respectively.



55

4.5 Discussion

There are two notable observations regarding using verification approaches in L1/LF identifica-

tion, where acceptance thresholds are interleaved in the process. The first is seen in Sec. 4.4.2, where

using the combined method for LF identification derives higher accuracy than both the trivial and

the standalone methods. This may suggest that when L1 is predicted with high confidence, LF is

predicted well, but when the confidence level is low, it is better to apply standalone LF classification.

Since the combined method uses the best of the two others, it outperforms both.

The second and most important observation regarding utilization of verification approaches com-

bined with traditional classifiers is seen in Sec. 4.4.5: L1 identification is improved by up to 6.43% in

accuracy for 9-L1 classification by introducing information about the language family, thus providing

a smaller set of language classes in which the actual language is more likely to be found. Attributing

LF by standalone experiments yields higher L1 classification accuracy than attributing it by the

family of the predicted language, which supports the idea that the family of the attributed L1 is the

actual family with higher probability than LF attributed by a standalone experiment, only when L1

is attributed with high confidence (i.e. above the selected verification threshold).

The results in Sec. 4.4.2 and Sec. 4.4.3 suggest that all 4 feature sets achieve better accuracy for

L1 than for LF (standalone) classification. This may occur since for L1 we attempt to distinguish

between individual languages as they transfer to English. However, LF identification necessitates

finding features that intersect between languages in a particular family, and distinguish well between

different families as they are transferred to English. This makes LF identification a more difficult

task.

The results obtained for randomly generated families in Sec. 4.4.3 and Sec. 4.4.5, which are con-

sistently lower than using the actual families, suggest that the contribution of using the latter yields

the best performance. That is, languages in the same family have more commonalities distinguish-

ing them from other families, than random sets of languages have. The advantage of partitioning

languages into sets by their actual families is supported also by the results in Sec. 4.4.4.

When conducted the experiments in Sec. 4.4.4 we also attempted training on one language and

testing on two languages from each family. The results attained were close to random chance, as

opposed to the results in Sec. 4.4.4. This might have been due to over-fitting when trained only

on one language. By training on two and testing on one we manage to capture more family-wide

features, rather than the specific language ones.



56

 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Function
words

Letter
bigrams

Rare POS
bigrams

Spelling
errors

POS
bigrams

L1

LF

Figure 4.7: Feature-type average percentage distribution for the 3-L1 vs. 3-LF InfoGain feature set.

The slight decrease in accuracy of the basic feature set experiment in Sec. 4.4.1 compared to the

results obtained by Koppel et al. [69, 71] (75.39% and 80.2%, respectively) might be caused by two

main issues. First, we use only 133-139 documents per language instead of the 258 used originally.

Second, we do not consider grammatical error-types, but only spelling errors. By that we may miss

capturing some L1-L2 transfer effects that help distinguish between different native languages.

Looking at the results using the different feature sets, in most cases the extended feature set

outperforms the rest. This may suggest that adding grammatical features increases accuracy for

both L1 and LF. Furthermore, in all experiments using only the grammatical features achieves a

rather good accuracy (significantly higher than random chance), considering that we use only 200

of these features. This supports the notion that grammatical features are useful for both L1 and LF

identification.

Another interesting notion regarding the grammatical feature set is seen in the portion these

features consist of the InfoGain feature set for the experiments in Sec. 4.4.3: 33.05% for L1 and

57.16% for LF, illustrated in Fig. 4.7. This suggests that the grammatical level of the text has greater

significance for identifying LF compared to L1. When analyzing the portion lexical features consist

of the InfoGain feature set, an opposite trend is seen: function words and letter bigrams consist

29.94% and 33.94% of the features for L1, as opposed to 17.44% and 23.55% for LF, respectively.

This suggests that analysis of the lexical level of the text is more beneficial for L1 detection than

for LF detection. Although less significant, the same trend is seen with spelling errors: 3% for L1

and 1.83% for LF.



57

4.6 Conclusions

The main conclusion of this chapter is, when trying to gain information about the native language

of an English text author, integrating family identification can increase the total accuracy, using

the method introduced in Sec. 4.4.5, where all low-confidence classifications are reapplied within

a smaller set of candidates – languages within the family attributed to those instances using a

standalone experiment. This utilization of LF identification as an intermediate generalization step,

determined by setting a threshold over the L1 classification probability distributions, demonstrates

how verification-based approaches can be used in stylometry applications to improve the overall

results, specifically when integrated in closed-world classification procedures like the above. The

confidence measurements may provide knowledge of when additional information should be sought

out to improve the baseline classification accuracy.

Furthermore, when dealing with a large number of L1 classes, higher accuracy can be attained

by reducing the level of specification to language families, which can be obtained with high accuracy

using the combined method, that integrates both the trivial LF by predicted L1 and LF by standalone

experiment methods using the average confidence level as threshold.

In addition, using the most frequent POS bigrams, which represent the grammatical level of the

text, is shown to increase accuracy in both L1 and LF identification tasks, mostly for the latter. Using

lexical features as function words and character bigrams is helpful especially for L1 identification.

We suggest several directions for future work. First, new feature sets that may capture other

similarities between languages in the same family should be evaluated. For instance, since languages

in the same family tend to share basic vocabulary, it may have some level of transfer to L2 that

could be captured by a synonym-based classifier. For instance, “verde” in Spanish and “vert” in

French may be translated to “verdant”, whereas “grün” in German and “groen” in Dutch may be

translated to “green”.

In addition, the approach of increasing accuracy by applying knowledge of a broader class on the

task can be further explored for applications in other stylometry-based information extraction tasks.

For instance, using wide age ranges as the broader class for classifying age of anonymous authors, or

personality prototypes for personality type identification. Testing such applications in adversarial

settings, where authors deliberately attempt to hide those characteristics we are trying to expose,

can also be of interest for forensic applications of such trait-recognition methods.

In conclusion, the LF/L1 identification approaches presented in this chapter demonstrate the



58

effectiveness of integration of several levels of categorization of the data we analyze, in order to

extract more information about the original classes we are attempting to identify – in this case,

author native language. Moreover, these methods demonstrate how utilizing a verification approach

in the classification process, which serves as a binary indicator of what approach is to be taken,

and how confident we are in the classifier decisions, eventually results in fixing misclassifications

(more than creating new ones) that would have been missed otherwise. This approach of integrating

authorship verification with traditional closed-world classifiers is revisited in Ch. 6, where we present

the Classify-Verify algorithm for mixed open and closed-world stylometry.



59

5. Realtime Stylometric Modalities for Active Authentication

** This work was completed with support from, and supported the work of Alex Fridman,

Sayandeep Acharya, John Noecker Jr., Michael Ryan, Patrick Brennan, Patrick Juola and Moshe

Kam. [36, 37, 56, 57, 102]

Active authentication is the process of continuously verifying a user based on his/her on-going

interaction with the computer. The challenge of identity verification for the purpose of access

control is the tradeoff between maximizing the probability of intruder detection, and minimizing

the cost for the legitimate user in time and distractions due to false alerts, and extra hardware

requirements for physical biometric authentication. In recent years, behavioral biometric systems

have been explored extensively in addressing this challenge [3]. These systems rely on input devices

such as the keyboard and mouse that are already commonly available with most computers, and are

thus low cost in terms of having no extra equipment requirements. However, their performance in

terms of detecting intruders, and maintaining a low-distraction human-computer interaction (HCI)

experience has been mixed [13], showing error rates ranging from 0% [83] to 30% [84] depending on

context, variability in task selection, and various other dataset characteristics.

The bulk of biometric-based authentication work is focused on verifying a user based on a static

set of data. This type of one-time authentication is not sufficiently applicable to a live multi-user

environment, where a person may leave the computer for an arbitrary period of time without logging

off. This context necessitates continuous authentication when a computer is in a non-idle state. In

particular, to represent this general real-world scenario, we use the Active Linguistic Authentication

Dataset [57]. This dataset consists of data collected in a simulated office environment, which contains

behavioral biometrics associated with typical human-computer interaction (HCI) by an office worker.

The application of stylometry as a high-level modality for authenticating users in a continuous

user verification system is novel; initial evaluation of authorship attribution technologies are proven

promising, reaching more than 90% identification accuracy over 14 users [57], as detailed in Sec. 5.3.2.

In this chapter, we consider a set of stylometric classifiers, also referred to as sensors, as a rep-

resentative selection of high-level behavioral biometrics. This work aims to evaluate authorship

attribution approaches in realistic settings for active authentication, which require constant moni-

toring and frequent decision making about the legitimacy of the user at the computer in a dynamic



60

and time-sensitive environment. Moreover, this work is designed as a preliminary evaluation of one

modality among many to consider for an active authentication system. The main goal for these sty-

lometric modalities is to be interleaved with other low- and high-level modalities, such as keyboard

dynamics [97], mouse movements [4], web browsing behavior [116] and the like, in one centralized

decision fusion system. Usage of such modalities, stylometry included, can provide a cost-effective

alternative to sensors based on physiological biometrics [49].

Although this work is targeted for active authentication, a live security application of stylometric

analysis, its implications on the usability and configuration of stylometric sensors are relevant for

forensic contexts as well: consider a standard post-mortem forensic analysis of user input data

aggregated throughout an entire day; this work lays grounds for what features to look at in such

“noisy” settings, the size of windows to look at, the effects of looking at overlapping windows, how

idle periods in data input should be considered, etc.

The remainder of the chapter is structured as follows. Sec. 5.1 reviews background and related

work. Sec. 5.2 discusses the simulated work environment dataset that we used for evaluation. The

stylometry biometrics applied on the dataset are discussed in Sec. 5.3, followed by evaluation in

Sec. 5.4. We conclude and discuss directions for future work in Sec. 5.5.

5.1 Background

A defining problem of active authentication arises from the fact that a verification of identity

must be carried out continuously on a sample of sensor data that varies drastically with time. The

classification therefore has to be made based on a “window” of recent data, dismissing or heavily

discounting the value of older data outside that window. Depending on what task the user is

engaged in, some of the biometric sensors may provide more data than others. For example, as

the user browses the web, mouse and web activity sensors will be actively flooded with data, while

keystroke dynamics or stylometric sensors may only get a few infrequent key presses. This motivates

the work on multimodal authentication systems where the decisions of multiple classifiers are fused

together [98]. In this way, the verification process is more robust to the dynamic mode of real-time

HCI.

In this chapter we examine only the effectiveness of stylometry sensors under active authentication

settings. The main goal of this work is combination in a multi-modal biometric system (see [36, 56]).

The idea of decision fusion is motivated by the work in [8] that greater reduction in error rates is



61

achieved when the classifiers are distinctly different (i.e. using different behavioral biometrics), with

several fusion approaches available to be applied [23, 45, 59].

In active authentication settings, authorship verification is applied, where unknown text is clas-

sified by a unary author-specific classifier. The text is attributed to an author if and only if it is

stylistically close enough to that author. Although pure verification is the ultimate goal, standard

authorship attribution as a closed-world problem is an easier (and sometimes sufficient) goal. In

either case, classifiers are trained in advance, and used for real-time classification of processed sliding

windows of input keystrokes. If enough windows are recognized as an author other than the real

user, it should be considered as an intruder. Application of stylometric analysis to this sort of task

brings higher level inspection into the process, compared to other lower level biometrics like mouse

movements or keyboard dynamics [12, 118].

In pure authorship attribution settings, where classification is done off-line on complete texts

(rather than sequences of input keystrokes) and in a supervised setting where all candidate authors

are known, state-of-the-art stylometry techniques perform very well. For instance, at PAN-20121,

some methods achieved more than 80% accuracy on a set of 241 documents, sometimes with added

distractor authors.

In active authentication settings, a few challenges arise. First, open-world stylometry is a much

harder problem, with a tendency to high false-negative (false reject) rates. Verification techniques

such as those discussed in Ch. 2 have shown effectiveness in more standard authorship verification

settings. However, the amount of data collected by sliding windows of sufficiently small durations

required for an efficient authentication system, along with the lack of quality coherent literary writ-

ings may result with these methods performing insufficiently for our goal. Second, the inconsistent

frequency nature of keyboard input along with the relatively large amount of data required for

good performance of stylometric techniques make a large portion of the input windows unusable for

learning writing style.

On the other hand, this type of setting allows some advantages in potential features and analysis

method. Since the raw data consists of all keystrokes, some linguistic and technical idiosyncratic

features can be extracted, like misspellings caught prior to being potentially auto-corrected and

vanished from the dataset, or patterns of deletions (selecting a sentence and hitting delete versus

repeatedly hitting backspace deleting character at-a-time). In addition, it is more intuitive in this

kind of setting to consider overlap between consecutive windows, resulting with a large dataset,

1http://pan.webis.de



62

grounds for local voting based on a set of windows and control of the frequency in which decisions

are outputted by the system.

5.2 Corpus

We utilize the complete Active Linguistic Authentication Dataset (presented initially in [57]

while still being collected), a dataset designed specifically for the purpose of behavioral biometrics

evaluation, based on data collected in a simulated work environment. For the collection of the data,

an office space was allocated and organized. The space contained 5 desks, each with a laptop, mouse

and headphones. This equipment and supplies were chosen to be representative of a standard office

workplace. One of the important properties of this dataset is that of uniformity. Due to the fact that

the computers and input devices in the simulated office environment were identical, the variation in

behavioral biometrics data can be more confidently attributed to variation in characteristics of the

users, rather than effects of variations in physical environmental settings.

The complete dataset contains data collected from 80 users. Due to crashes in the mouse, key-

board, web browser tracking software, or sick days taken, a few more than 80 subjects participated,

to cover the missing data and reach the 80 users goal. However, within the final 80 users data, some

users had significantly less data than the rest. In order to eliminate user activity variance effects on

our evaluation, we set a threshold of 60,000 seconds minimum activity (16.67 hours). This filtering

left us with 67 qualifying users for the evaluation presented in this chapter.

During each week of the data collection, 5 temporary employees were hired for a total of 40

hours of work. Each day they were assigned two tasks. The first was an open-ended blogging task,

where they were instructed to write blog-style articles related in some way to the city in which the

testing was carried out. This task was allocated 6 hours of the 8 hour workday. The second task

was less open-ended. Each employee was given a list of topics or web articles to write a summary

of. The articles were from a variety of reputable news sources, and were kept consistent between

users except for a few broken links due to the expired lifetime of the linked pages. This second task

was allocated 2 hours of the 8 hour workday.

Both tasks encouraged the workers to do extensive online research by using the web browser.

They were allowed to copy and paste content, but they were instructed that the final work they

produced was to be of their own authorship. As expected, the workers almost exclusively used two

applications: Microsoft Word 2010 for word processing and Internet Explorer for browsing the web.



63

Table 5.1: Character count statistics for the 67-user active authentication sub-corpus across all 5
simulated work days.

Statistic Value

Min. per user 17,027
Max. per user 263,165
Avg. 84,206
Total 5,641,788

Although the user generated documents are available in the dataset, the evaluation in this chapter is

based on the stream of keystrokes recorded throughout the work day, with the purpose of simulating

the settings which a real-time authentication system will have to work under.

The 67-user dataset is further parsed in order to provide one large stream of mouse/keyboard

events. For every user, the entire 5 days of data were concatenated into one stream (in JSON

format), and marked to be divided into 5 equally sized folds, for later cross-validation evaluation.

In addition, any inactivity period exceeding 2 minutes is marked, to be considered as idle. For the

purposes of our evaluations, a subset of events including only keyboard strokes are kept (whereas

mouse events are to be used by other sensors [36]). The format of one continuous stream allows

to utilize the data to its full in evaluation of a real-time, continuous active authentication system.

Keystroke events statistics for the parsed 67-user dataset are summarized in Tab. 5.1. The keystroke

events include both the alpha-numeric keys and also special keys such as shift, backspace, ctrl,

alt, etc. In counting the key presses in Tab. 5.1, we count just the down press and not the release.

5.3 Methodology

5.3.1 Challenges and Limitations

An active authentication system presents a few concerns. First, a potential performance overhead

is expected to accompany deployment of such a system, as it requires constant monitoring and

logging of user input, and on-the-fly processing of all its sensor components. With stylometric

sensors, large amounts of memory and computation power may be consumed by language processing

tools (e.g. dictionary based features, part-of-speech taggers etc.), therefore a careful configuration

should be applied to balance the tradeoff between the accuracy of the system and its expected

resource consumption behavior. This issue becomes more prominent in a multi-modal system, where

multiple sensors are used.

Another concern with this type of authentication system is its user input requirements. In



64

non-active authentication schemes, the user is required to provide credentials only when logging

in, and perhaps when certain operations are to be executed. The provided credentials consist of

some sort of personal key (password, private key etc.), dedicated for the purpose of identifying the

system’s users. In active authentication systems based on stylometric modalities, all of the user

keyboard input is required. In a multi-modal system, all interaction may be required, including

mouse events and web browsing behavior. The precise sequence and timing of keyboard events is

essential for the system’s performance. However, this type of input is not designed for stylometric

analysis and authentication, and most probably contains sensitive and private information, collected

when the user types in passphrases to log into accounts, writes something personal s/he wishes to

keep confidential, or simply browses the web. To cope with these security and privacy issues, some

actions can be taken in the design of such a system: the collected data should be managed carefully,

by avoiding storage of raw collected data (i.e. save only parsed feature vectors extracted from the

data) and use encrypted storage for the data that is stored. The privacy issue specifically applies to

stylometric modalities, where the contents of the user input is of importance, and can potentially

be highly sensitive.

5.3.2 Initial Evaluation

In [57] we present an initial evaluation of a subset of the Active Linguistic Authentication Dataset,

when data of only 14 users was available (as the dataset was still in collection). Two methods of

evaluation were applied.

First, each day’s worth of work was analyzed as one unit, or document, for a total of 69 documents

(5 days for 14 users, minus a missing day by one user). One-vs-all analysis was applied, using a

simple nearest-neighbor classifier with Manhattan or Intersection distance metric. The feature sets

consisted of character n-grams, with n ranging between 1 and 5. The best configuration resulted in

88.4% accuracy.

In the second analysis, a number-of-characters-based sliding window technique was applied to

generate the input segments to be classified, to better simulate the performance of a realistic active

stylometric authentication system. The generated windows were non-overlapping, with window sizes

set to 100, 500 and 1,000 words (tokens separated by whitespace). The motivation for requiring a

minimum window size is in order to allow sufficient data required for stylistic profiling of the window.

An extensive linguistic feature set, inspired by that used in the Writeprints [1] stylometric similarity

method was used, along with a linear SVM and a nearest-neighbor classifier. The best result achieved



65

was 93.33% accuracy with 0.009/0.067 FAR/FRR.

These reported results are sufficient to determine that using stylometric biometrics for active

authentication is beneficial; however, the approach taken in this analysis, although satisfactory as

preliminary results, lacks addressing a few key requirements in an active authentication system.

First, only 14 subjects were used for the initial analysis, and its performance over a large set of

users is yet to be evaluated. Stylometry research has thus far provided solutions for large author

sets, but even those were never attempted on a dataset with such incoherent and noisy qualities;

the performance of the approaches above may certainly be proven inefficient when the author set

increases in size.

Perhaps the main issue with this method of analysis is the units determined for learning and

classification. Day-based windows are certainly not useful for active authentication, which aims to

provide intruder alert as quickly as possible (in a time frame of minutes, perhaps seconds). Even the

second data-based-windows analysis is insufficient: each window may have an arbitrary length in

time on which it spans, and collecting the minimum amount of words may allow an intruder enough

time to apply his/her attack. Moreover, due to the possibility of time-wise long windows, which may

cross idle periods, data of different users can be mixed (e.g. first half of the window is the legitimate

user input, whereas the second half, an idle-period later, is by an intruder) causing contamination

of “bad” windows with “good” data, which may throw off the classifier and cause it to miss an alert.

In the next section we provide an analysis in a more realistic setting of the authentication system.

We focus on a time-wise sliding window (rather than data-wise), and allow overlapping windows in

order to provide the system the ability to output frequent decisions. With this approach, the system

is compelled to decide whether to accept/reject the latest window in a timely manner, based on the

data it has acquired thus far, or to determine it cannot make a decision. A balance between the

amount of collected data, the required time-wise size of windows and desired decision frequency is

inspected in the following section.

5.3.3 Real-Time Approach

The stylometric classifiers, or sensors, presented in this section are based on the simplest settings

of closed-world stylometry: we use classifiers trained on the closed set of all 67 users, where each

classification results with one of those users as the author. A more sophisticated approach would

use open-world verifiers, where each legitimate user is paired to its own classifier, in a one-class/one-

vs-all formulation. Such verification approach is more naturally suited for this open-world scenario,



66

where possible imposters can originate outside the set of legitimate users (e.g. an intruder from

outside an office that takes over an unlocked computer, rather than a vicious colleague); however, in

this chapter we consider the case of a closed set of possible users, as a baseline for future verification-

based classifiers. Another look at the active authentication problem from a verification point of view

is taken in Ch. 6.

In the preprocessing phase, we parse the keystrokes data files to produce a list of documents

(text windows) consisting of overlapping windows for each user, with the following time-based sizes

in seconds: 10, 30, 60, 300, 600 and 1,200. For the first 3 settings we advanced a sliding window

with steps of 10 seconds of the stream of keystrokes, and for the last 3 – steps of 60 seconds. The

step size determines how often a decision can be made by the sensor. In addition, although the

window generation is configured with a fixed time-wise size and step, e.g. {300, 60}, in practice the

timestamps of the generated windows correlate with the keystroke events, by relaxing the generation

to {≤ 300,≥ 60} (empty windows are discarded.) In a live system a similar approach is expected

to be used: a window is “closed” and a decision is made for it when the size limitation time is up,

hence ≤ 300. In addition, when determining the beginning of a window followed by another window,

a difference of at least one character is expected (otherwise the second window is simply a subset of

the first); therefore if the time span between the first character in a window and the one that follows

is greater than the determined step size, effectively a greater step size will be applied, hence ≥ 60.

We choose to ignore idle periods within the generated windows, as if the stream of data is

continuous with no more than 2 minutes delay between one input character and the next. This

is applied in the dataset by preprocessing the keystroke timestamps, such that any idle period

longer than 2 minutes is artificially narrowed down to precisely 2 minutes. Furthermore, the data

is aggregated and divided into 5 equally-sized folds for analysis purposes, thus potentially contains

windows that originally contain an idle period between days. Although this preprocessing suffers

from the issues of possible mixed legitimate/non-legitimate user-input windows, or mixed time-of-day

windows (e.g. end of one day and beginning of the next) if applied in a real system, in our analysis

it is applied to allow generating as many windows as possible. Since the analysis presented here is

not applied on legitimate/non-legitimate mixed windows, idle-crossing windows are reasonable for

our purposes.

Specifically for stylometry-based biometrics, selecting the size of the window affects a delicate

tradeoff between the amount of captured text (and probability for correct stylistic profiling of that

window) and response time of the system, whereas other biometrics can perform satisfactorily with



67

small windows (even the size of seconds). This is somewhat overcome by using small steps (and

overlapping windows), leaving this as a problem only at the beginning of the day, until the first win-

dow is generated. Similar to the analysis in [57], during preprocessing only keystrokes are taken (key

releases were filtered out) and all special keys are converted to unique single-character placeholders.

For instance BACKSPACE is converted to β and PRINTSCREEN is converted to π. Any representable

special keys like \t and \n are taken as is (i.e. tab and newline, respectively).

Feature Set

The chosen feature set is probably the most crucial part of the configuration. The constructed

feature set, denoted the AA feature set hereinafter, is a variation of the Writeprints [1] feature set,

which includes a vast range of linguistic features across different levels of the text. A summarized

description of the features is presented in Tab. 5.2. By using a rich linguistic feature set we are able

to better capture the user’s writing style. With the special-character placeholders, some features

capture aspects of the user’s style usually not found in standard authorship problem settings. For

instance, frequencies of backspaces and deletes provide some evaluation of the user’s typo-rate (or

lack of decisiveness). Feature extraction is applied using the JStylo authorship attribution frame-

work [76], discussed in Ch. 3. Definition and implementation of all the features the AA feature set

consists of is available in JStylo, making our evaluations easily reproducible.

Two important processing procedures are applied in the feature extraction phase. First, every

word-based feature (e.g. the function words class, or different word-grams) is applied a tailor-made

preprocessing tool developed for this unique dataset, that applies the relevant special characters

on the text. For instance, the character sequence chββCchββhicago becomes Chicago, where

β represents backspace. Second, since the windows are determined by time and not amount of

collected data as in [57], normalization is crucial for all frequency-based features (which consist the

majority of the feature set). These features are simply divided by the most relevant measurement

related to the feature. For instance, character bigrams are divided by the total character count of

the window.

Classification

For classification we use sequential minimal optimization (SMO) support vector machines [88]

with a linear kernel and complexity parameter C = 1, available in Weka [43]. Support vector

machines are commonly used for authorship attribution and are known to achieve high performance



68

Table 5.2: The AA feature set. Inspired by the Writeprints [1] feature set, includes features across
different levels of the text.

Group Features

Lexical Avg. word-length
Characters
Most common character bigrams
Most common character trigrams
Percentage of letters
Percentage of uppercase letters
Percentage of digits
Digits
2-digit numbers
3-digit numbers
Word length distribution

Syntactic Function words
Part-of-speech (POS) tags
Most common POS bigrams
Most common POS trigrams

Content Words
Word bigrams
Word trigrams

and accuracy. As mentioned earlier, these are closed-world classifiers, i.e. classify each window

to one of the known candidate users (with the legitimate user as the true class). No acceptance

thresholds are integrated in the classification process.

Finally, the data is analyzed with the stylometry sensors using a varying threshold for minimum

characters-per-window to consider, spanning from 100 to 1000 with steps of 100. For every threshold

set, all windows with less than that amount of characters were thrown away, and for those windows

the sensors output no decision. The different thresholds allow assessing the tradeoff in the sensor’s

performance in terms of accuracy and availability: as the threshold increases, the window is richer

with data and will potentially be classified with higher accuracy, but the portion of total windows

that pass the threshold decreases, making the sensor less available. Note that even the largest

threshold (1000 characters) is considerably smaller than recommended for stylometry analysis –

a minimum of 500 words. After filtering, only configurations with training data available for all

users are kept, which expectedly yielded removal of sensors configured to small windows with high

minimum number of characters thresholds.

After removal according to the rule above, 37 stylometry sensors are kept that span over a variety

of time-wise window sizes and minimum character-wise window sizes. For the rest of the chapter,

the stylometry sensors are denoted as Sn,m, where n denotes the time-wise window size in seconds



69

and m denotes the minimum characters-per-window configuration.

5.4 Evaluation and Results

The generated user data streams, divided into 5 equally sized folds, are intended to be evaluated

in a multi-modal decision fusion active authentication system. Such a system requires knowledge

of the expected FAR/FRR rates of its different sensors, in order to make a cumulative weighted

decision. Therefore the intended evaluation is based on 5-fold cross validation, where in each of the

5 validations, 3 folds are used for training, 1 fold is used for characterization of the sensors expected

FAR/FRR, and the last fold is used for testing. Thus each of the 5 validations outputs a decision for

each test instance (from the last fold) and a global FAR/FRR characterization of the sensor in that

validation. Eventually, the results of all 5 validations are averaged to determine the performance

of the system. The configuration of the validations is cyclic, such that in the first folds 1, 2 and 3

are used for training, 4 for characterization and 5 for testing; in the second, 2, 3 and 4 are used for

training, 5 for characterization and 1 for testing, and so on.

The evaluation technique described above is applied in this section in order to measure how the

stylometric sensors are expected to perform in a multi-modal system. Since the false accept rate

(FAR) and false reject rate (FRR) produced in the characterization phase of the main experiments

provide an evaluation of the reliability of the decisions made in the test phase, we use them to

evaluate the standalone performance of the stylometric sensors. Averaged FAR and FRR results are

shown in Fig. 5.1. Fig. 5.2 illustrates the averaged percentage of remaining windows, after removing

all those below the minimum characters threshold.

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

100 200 300 400 500 600 700 800 900 1000 

Fa
ls

e
 A

cc
e

p
t 

R
at

e
 

Minimum characters per window 

10 

30 

60 

300 

600 

1200 

Window Size 
(Seconds) 

 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

0.7 

100 200 300 400 500 600 700 800 900 1000 

Fa
ls

e
 R

e
je

ct
 R

at
e

 

Minimum characters per window 

10 

30 

60 

300 

600 

1200 

Window Size 
(Seconds) 

Figure 5.1: Averaged false accept and false reject rates (FAR/FRR) for all characterization phases
using the stylometric sensors with varying time-wise window sizes and varying threshold for minimum
number of characters per window.



70

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

100 200 300 400 500 600 700 800 900 1000 

A
va

ila
b

le
 w

in
d

o
w

s 
o

u
t 

o
f 

to
ta

l (
%

) 
Minimum characters per window 

10 

30 

60 

300 

600 

1200 

Window Size 
(Seconds) 

Figure 5.2: Percentage of remaining windows out of the total windows after filtering by the minimum
characters-per-window threshold.

The high FRR and low FAR suggest that the majority of the sensors are rather strict, i.e. they

almost never falsely identify an intruder as legitimate, but in the price of a high false-alarm rate.

The FRR results indicate that as the window size (in seconds) increases, the less the minimum

characters-per-window threshold affects performance. Same trend is seen with the FAR results: the

large windows (300, 600 and 1,200) show insignificant differences across varying minimum characters

thresholds.

The availability of decisions as a function of the minimum characters-per-window thresholds

completes the image of how the stylometry sensors perform. For instance, S1200,100, triggered every

60 seconds (the step configuration of the 1200-second-windows sensors), will produce a decision 95%

of the time, with accuracy of approx. 0.5/0 FRR/FAR.

5.5 Conclusions

The initial stylometric evaluation of the active authentication dataset in [57] provides a proof of

concept for the effectiveness of stylometric biometrics in an active authentication system; however,

the shortcomings of this preliminary evaluation are put to the test with settings simulating a more

realistic active authentication environment, with many users and high frequency decision making

constraints. Under such settings, the effectiveness of stylometric sensors deteriorates drastically,

down to 0.5 false rejection and 0 false acceptance rates. Nevertheless, these results are shown

useful in a mixture-of-experts approach that fuses multi-modal sensors applied in [36], where adding

stylometric sensors to the fusion reduced FAR and FRR from ≈ 0.008 to ≈ 0.002.

The results attained in the real-time evaluation, produced by using a closed-world approach,



71

indicate that perhaps using a verification-based approach that allows tuning the allowable FAR and

FRR can benefit the stylometric sensors in the context of active authentication. Utilizing confidence

measurements has been applied in one aspect here: demanding user stream windows to contain a

minimum amount of data, expressed in minimum-number-of-characters thresholds. This utilization

is shown effective in canceling out sensors configured to low time-wise lengths, deeming only windows

of 5 minutes and above to have some level of usability.

The approach of preferring accuracy over availability, a “better safe than sorry” approach, is the

motivation of the algorithm presented next in Ch. 6 – the Classify-Verify algorithm. Evaluation of

the active authentication dataset with the Classify-Verify algorithm (Sec. 6.3.5) is shown to increase

the confidence and overall performance of the classifiers used, by introducing a binary verification

step to determine whether to accept the underlying classifier’s decision or not.



72

6. From Closed to Open-World Stylometry: The Classify-Verify Algorithm

** This work was completed with support from Rebekah Overdorf and Sadia Afroz. [103]

The web is full of anonymous communication with high value for digital forensics, that was

never meant to be analyzed for authorship attribution. The potential for authors of anonymous

documents to be “de-anonymized” raises privacy concerns. These concerns become greater if the de-

anonymizing party need not to come up with an exact list of suspects to reliably perform attribution.

This is the scenario we explore in this chapter.

The effectiveness of stylometry has considerable implications for anonymous and pseudonymous

speech. Recent work has exposed limits on stylometry through active circumvention [16, 76]. Stylom-

etry has thus far focused mostly on limited, closed-world models. In the classic stylometry problem,

there are relatively few authors (usually fewer than 20, nearly always fewer than 100), the set of

possible authors is known, every author has a large training set and all the text is from the same

genre. However, problems faced in the real-world often do not conform to these restrictions.

Controversial, pseudonymous documents that are published on the Internet often have an un-

bounded suspect list. Even if the list is known with certainty, training data may not exist for all

suspects. Nonetheless, classic stylometry requires a fixed list and training data for each suspect, and

an author is always selected from this list. This is problematic both for forensics analysts, as they

have no way of knowing when widening their suspect pool is required, and for Internet activists as

well, who may appear in these suspect lists and be falsely accused of writing certain documents.

In this chapter we explore a mixed closed-world and open-world authorship attribution problem

where we have a known set of suspect authors, but with some probability (known or unknown) that

the author we seek is not in that set. For simplicity of notation, we denote documents whose author

is in the known suspect set as in-set documents, and those whose author is missing – not-in-set

documents. The key contributions presented in this chapter are:

The Classify-Verify algorithm. This novel method augments authorship classification with

a verification step, and obtains similar accuracy on open-world problems as traditional classifiers

in closed-world problems. Even in the closed-world case, Classify-Verify can improve results by

replacing wrongly identified authors with “unknown.” Classify-Verify can be tuned to different

levels of rigidity, to achieve the desired false positive and false negative error rates. It can also



73

be automatically tuned to maximize the desired evaluation measurement, taking into account the

expected proportion of documents by authors in the suspect list versus those who are absent – in-set

and not-in-set rates. Alternatively, it can be automatically set with robust thresholds when that

expected proportion is unknown.

Classify-Verify is evaluated on several datasets in simulated scenarios with in-set values ranging

from 10% (of the test authors having training data) to 100% (complete closed-world settings).

Results are compared to two baselines established using 1) only Classify : closed-world classifiers

applied in open-world settings; and 2) only Verify : open-world binary verifiers, configured as 1-of-n

classifiers. Classify-Verify is shown to outperform both baselines.

Adversarial settings. Previous work has shown that traditional classification performs near

random chance when faced with writers who change their style. Classify-Verify filters out most

of the attacks in the Extended-Brennan-Greenstadt Adversarial corpus [16], an improvement over

previous work which requires training on adversarial data for attack detection [2].

Large datasets. One of the real-world targets of the Classify-Verify method, being a mixture

of a closed- and open-world approach, is to be used in online domains, where problems may include

a large number of authors. We perform a set of experiments using a subset of the Spinn3r blog

dataset [19] which includes 911 candidate authors, and show that Classify-Verify is successful in

these many authors, online domain settings.

Active authentication settings. Behavioral biometric systems [3] aim to actively authenti-

cate users for access control purposes. Based on usage of common input devices such as keyboard

and mouse, these systems can block intruders that managed to bypass common gateway security

measures, like passwords. The Active Linguistic Authentication Dataset [57] provides user input

data in a simulated work environment, targeted for evaluation of such systems. As shown in Ch. 5,

real-time stylometric evaluation of sliding user input windows has some effectiveness [102], yet this

problem can be naturally formulated as a Classify-Verify problem, and in this chapter it is evaluated

as such. Classify-Verify is shown to perform well even in such settings, facing dynamic, “noisy” and

inconsistent user input.

The Sigma Verification method. This method is based on the distractorless verification

method [82] (discussed in Sec. 2.3.2), which measures the distance between an author and a doc-

ument. Sigma Verification incorporates pairwise distances within the author’s documents and the

standard deviations of the author’s features, and although does not outperform the distractorless

method always, it is yet shown as a better alternative suitable for datasets with certain character-



74

istics.

This chapter is structured as follows: Sec. 6.1 recapitulates the closed-world and open-world

authorship attribution problems, and defines the Classify-Verify problem. Sec. 6.2 details the eval-

uation methodology applied, including experimental setup, datasets, feature sets, closed-world and

open-world settings, and finally the Classify-Verify algorithm and configuration. Sec. 6.3 presents

all evaluation results for the various experimental configurations applied with the Classify-Verify

method. Sec. 6.4 discusses conclusions and directions for future work.

6.1 Problem Statement

The Classify-Verify problem is a mixture of the authorship attribution and authorship verification

problems defined in Sec. 2.2.1. To recap, the authorship attribution problem is: given a document

D of unknown authorship and documents by a set of known authors A = {A1, ..., An}, determine

the author Ai ∈ A of D. This problem assumes D’s author is in A. The authorship verification

problem is: given a document D and an author A, determine whether D is written by A.

Finally, the Classify-Verify problem is the following: given a document D of unknown authorship

and documents by a set of known authors A, determine the author Ai ∈ A of D, or that D’s author

is not in A. This problem is similar to the attribution problem, with the addition of the class

“unknown”, denoted as ⊥. This problem may include an additional parameter p = Pr[AD ∈ A], the

probability that D’s author is in A. As mentioned above, we address documents whose authors are

in the set of suspects A as in-set documents, and those with absent authors – not-in-set documents.

The in-set probability is denoted in short as p (hence the not-in-set probability is 1− p.)

6.1.1 Hypothetical Scenario

The Classify-Verify problem is illustrated in the following hypothetical scenario. Consider Bob’s

workplace which he shares with n− 1 other employees, under the management of Alice. Bob leaves

his desk to get a cup of coffee, and incautiously forgets to lock his computer. When he returns, he

discovers that a vicious (and sufficiently long) email has been sent in his name to Alice! He quickly

goes to Alice in order to explain, and Alice decides to check the authorship of the email to assert

Bob’s innocence (or refute it). Luckily Alice has access to the company’s email database, so she can

model the writing style of her n employees. Unluckily, the security guard at the door tends to doze

off every once in a while, resulting with unauthorized people wondering off in the company’s halls,



75

such that the expected portion of authorized people in the office at any given time is p.

A closed-world system would only be able to consider the n employees and identify one of them as

the culprit. This would be problematic if the email was written by one of the unauthorized entrants.

A Classify-Verify approach would be able to consider this possibility.

6.1.2 Problems with Closed-World Models

Applying closed-world stylometry in open-world settings suffers from a fundamental flaw: a

closed-world classifier will always output some author in the suspect set. If it outputs an author, it

merely means the document in question is written in a style more similar to that author’s style than

the others, and the probability estimates of the classifier reflect only who is the least-worst choice.

Meanwhile, the absence of the document’s author from the set of suspects remains unknown. If we

relax the precision of our results to k-accuracy [80], i.e. target to narrow down our set of suspects

to k rather than just one, the problem will not be solved – all k options will still be wrong.

This problem becomes prominent especially in online domains, where the number of potential

suspects can be virtually unbounded, and we may have only a handful of candidate authors in hand.

Failing to address the limitations of closed-world models may result in falsely attributed authors

with consequences for both the forensic analyst and the innocent Internet user.

The Classify-Verify method applies an abstaining classification approach, according to which

classification decisions are rejected when the classifier’s confidence in the decision is low [26, 46, 87],

thus reducing the misclassification rate. With the Classify-Verify method, closed-world classification

is initially applied, followed by an open-world author-specific verifier to determine whether to accept

or reject the classifier’s decision. Thus, the closed-world assumption is broken, and its limitations

are removed by allowing to reject possibly wrong attributions.

6.2 Methodology

6.2.1 Real-Time Evaluation Methodology

Initial evaluation of the Classify-Verify method in different in-set/not-in-set scenarios is applied

in theoretical settings [103], as detailed next. For a given dataset of n authors, each document

is evaluated twice: once as in-set, and once as not-in-set. n variants of the chosen closed-world

classifiers are evaluated on n variants of the dataset, where classifier Ci is evaluated on dataset

i which contains training data for all authors but Ai (i.e. n − 1 authors). Then, any document



76

by Ai is classified as in-set by one of the n − 1 classifiers trained on Ai (Ci+1 mod n is arbitrarily

chosen), and as not-in-set by Ci. Then, to evaluate performance for some given value of p, the

in-set proportion, a classification confusion matrix is generated to contain a weighted average of

p-weighted in-set accuracy and (1 − p)-weighted not-in-set accuracy. Baseline performance of the

closed-world classifiers in open-world settings for any value of p is evaluated as simply p times the

accuracy in pure closed-world settings. Most of the evaluation is focused on the scenario where

p = 0.5 (documents are equally likely to be in-set and not-in-set).

This configuration provides a solid theoretical performance measurement, however insufficient

in order to predict how well Classify-Verify works in real-world settings, where authors of test

documents are truly missing from the set of candidates. To provide a better evaluation, an extensive

set of experiments is applied for a range of in-set scenarios with p = 0.1, ..., 1.0 with steps of 0.1

(i.e. 10% in-set authors, 20% etc. up to 100% – pure closed-world settings). For each value of p

for a dataset with n authors, a set of 10 experiments is applied, where for each experiment a set

of p × n authors are randomly chosen as in-set authors, and training data only for those authors

is maintained, such that any document written by an author not in the chosen set is truly a not-

in-set document. The final results reported for each p are an average over the corresponding 10

experiments. As opposed to the initial theoretical evaluation, applying Classify-Verify in these

real-world settings predicts how well it performs when faced with authors actually missing.

Finally, each experiment is evaluated with n-fold cross-validation. We choose F1-score as evalu-

ation criterion:

F1-score = 2× precision× recall
precision+ recall

precision =
tp

tp+ fp
, recall =

tp

tp+ fn

F1-score is a natural choice as it is a weighted measurement of precision and recall, between

which the tradeoff is expressed based on the rigidity of the underlying verifier - the likelihood to

reject classifier decisions. The more likely the verifier is to reject, the lower recall and the higher

precision would be; however, when the verifier is lenient and more likely to accept classifier decisions,

recall is expected to increase due to non-rejected true positives, and precision – decrease, as a result

of a higher false acceptance rate.



77

6.2.2 Flexible vs. Strict Evaluation

We apply two types of evaluation: flexible and strict. With flexible evaluation, each thwarted

misclassification, whether originated by the document being not-in-set or simply in-set classifier

mistake, is deemed a “true” classification - i.e. truly assigned to ⊥ (unknown). This method is

common in evaluating abstaining classifiers [46], which favors precision over recall: we rather know

less, but have high confidence in the results we get. That goal is achieved by essentially setting the

ground-truth of any instance the underlying classifier has misclassified as “unknown”. Thus, if the

verifier rejects the classifier’s wrong decision – i.e. assigns it to the class “unknown” – it is counted

as a true positive.

In addition to flexible evaluation, we apply the strict approach, according to which a thwarted

misclassification originated in an in-set document is deemed “false”: we penalize the classifier if it

had the potential to find the true author (as it is in-set), but did not, regardless of whether that

misclassification was thwarted by the underlying verifier. Strict evaluation provides a fuller picture

of the performance of the Classify-Verify method in different scenarios, showing the distribution of

misclassifications between those originated in the classifier making a mistake among in-set authors,

and documents that are truly not-in-set. In all figures presented in Sec. 6.3 that illustrate both

flexible and strict F1-scores, the difference between the two lines represents the misclassified in-set

documents that were thwarted by the underlying verifier and assigned to “unknown” instead.

6.2.3 Datasets

We utilize several datasets for evaluating the Classify-Verify method. Most of the evaluations in

this chapter focus on two of these datasets: the Extended-Brennan-Greenstadt (EBG) Adversarial

corpus [16] and the ICWSM 2009 Spinn3r Blog dataset [19].

The EBG corpus, denoted EBG , consists of a set of 45 authors with 500-word documents for a

total of at least 6,500 words per author. The authors were instructed to provide the writings from

sources like formal essays, college applications etc., therefore it contains mostly “clean” and formal

writing style. It is evaluated in Sec. 6.3.1 and Sec. 6.3.2. EBG also contains adversarial documents

where the authors were instructed to attempt hiding their writing style in order to circumvent

classification, which is evaluated in Sec. 6.3.3.

The Spinn3r blog corpus contains 44 million blog posts, and is used to create two datasets:

a smaller version that consists of blogs by 50 authors, denoted BLOGS (where the s stands for



78

“small”), and a large version that consists of blogs by 911 authors, denoted BLOGL. BLOGS is

set to contain a similar number of authors as EBG , used as a control corpus to avoid overfitting

configurations on EBG , and is evaluated alongside EBG in Sec. 6.3.1 and Sec. 6.3.2. BLOGL,

evaluated in Sec. 6.3.4, is used to examine the Classify-Verify method in online domain settings with

a high number of authors.

Finally, we utilize the Active Linguistic Authentication Dataset [57], denoted AAUTH , which

contains user data collected in a simulated work environment, as discussed and evaluated in Sec. 5.

80 temporary workers were assigned research and writing tasks for a period of one week, during

which a complete keyboard, mouse, application and browsing behavior was monitored and recorded.

We follow the real-time dataset setup applied in Sec. 5 and use a subset data by 67 users that passed

a threshold of 16.67 hours of total minimum activity. This dataset is evaluated in Sec. 6.3.5.

6.2.4 Feature Set

The feature set used for stylometric evaluation has great effect on the attribution accuracy.

As the field of stylometry provides a vast range of features that can be adopted for document

quantification [55], we evaluate two feature sets: the Writeprints and the 〈500, 2〉-chars feature sets.

As in the previous chapters, feature extraction is applied using JStylo [76].

The Writeprints algorithm [1] is a PCA variant developed for stylometric similarity detection

problems, and has been proven very effective with over 90% accuracy for a set of 50 candidate

authors. This algorithm utilizes a vast set of features across different levels of the text, including

lexical, syntactic, and content related features. We adopt the feature set used by this algorithm,

denoted Writeprints, which has been shown effective for the EBG dataset [16].

For simplicity, in addition to Writeprints, we utilize a feature set that consists only of one type of

feature: the k most common word n-grams or character n-grams, with k from 50 to 1000 with steps

of 50, and n from 1 to 5 with steps of 1. The most-common feature selection heuristic is commonly

used in stylometry [1, 64, 82] to improve performance and avoid over-fitting, as are the chosen ranges

of k and n. F1-score closed-world results for evaluation of EBG using 10-fold cross-validation with

SVM and character/word n-grams are illustrated in Fig. 6.1.

Of word and character n-grams, characters perform better with the best F1-score results attained

with character bigrams at ≈ 0.93 (for k = 400 and above), compared to the best score of 0.879 for

words, attained using n = 1 and k = 1000. Both feature sets outperform the EBG evaluation with

Writeprints at F1-score of 0.832 (as obtained originally in [16]). Finally, we choose the 500 most



79

 

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

F1
-S

co
re

 

# most common character n-grams taken 

char 1-grams char 2-grams char 3-grams

char 4-grams char 5-grams writeprints
 

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

F1
-S

co
re

 

# most common word n-grams taken 

word 1-grams word 2-grams word 3-grams

word 4-grams word 5-grams Writeprints

Figure 6.1: F1-scores for evaluation of the EBG corpus using different character (left) and word
(right) n-grams with varying limits of the feature set size.

common character bigrams as our feature set (at F1-score of 0.928), denoted 〈500, 2〉-chars, used

throughout all of our experiments. It is chosen for its simplicity, performance and effectiveness.

For control, we evaluate the effectiveness of using 〈500, 2〉-chars compared to using the Writeprints

feature set on BLOGS , via 10-fold cross validation with SVM. Although both results are lower than

those obtained for EBG , 〈500, 2〉-chars outperformed Writeprints with F1-score of 0.64 versus 0.509,

respectively. Both 〈500, 2〉-chars and Writeprints are evaluated next in Sec. 6.2.5 and Sec. 6.2.6 in

different in-set/not-in-set settings, where 〈500, 2〉-chars is shown to outperform Writeprints in al-

most every configuration, therefore used for all experiments in this chapter.

6.2.5 Classify: Closed-World Setup

Closed-world classifiers applied to stylometry problems are used to attribute authorship of an

unknown test document to an author from a closed set of candidates. As discussed in Sec. 6.1, this

type of configuration is not suited for open-world settings, since the classifier always provides the best

(or least-worst) decision assuming the true author is in the candidate set. We utilize closed-world

classifiers to provide baseline performance measurements on our evaluated datasets, to illustrate how

the Classify-Verify method can outperform them in open-world settings, and for the closed-world

classification step of the Classify-Verify method discussed later in Sec. 6.2.7.

We use a linear kernel sequential minimal optimization support vector machine (SMO SVM)

classifier [88], implemented in Weka [43] with complexity parameter C = 1. SVMs are proven

effective for authorship attribution, including the datasets evaluated in Sec. 6.3 [16, 55, 102, 103].

Finally, to reinforce our feature set selection discussed in the previous section, we evaluate



80

  
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EBG 

<500,2>-chars

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BLOGS 

Writeprints

Figure 6.2: F1-scores for classification using SVM with 〈500, 2〉-chars and Writeprints.

Writeprints and 〈500, 2〉-chars on EBG and BLOGS in all p = 0.1, ..., 1.0 scenarios (probabili-

ties of in-set) using a purely closed-world approach. The evaluation confirms that 〈500, 2〉-chars

indeed outperforms Writeprints for all values of p on both datasets. However small the difference

is, especially for lower values of p, simplicity and feature extraction performance rule in favor of

〈500, 2〉-chars. F1-scores as a function of p are illustrated in Fig. 6.2.

6.2.6 Verify: Open-World Setup

Open-world verifiers applied to stylometry problems are used to determine whether a given test

document is written by a single candidate author or not. This formulation is much harder than

closed-world scenarios, as the verifier must determine what is deemed “close-enough”, manifested in

an acceptance threshold. Näıve approaches such as reducing the problem to a one-versus-all closed-

world formulation using a “distractor set” of documents not written by the candidate author are

insufficient in many cases, as discussed thoroughly in Sec. 2.

In the next sections we discuss and evaluate several verification methods. The first family

of methods is classifier-induced verifiers, which require an underlying (closed-world) classifier and

utilize its class probabilities output for verification.

The second family of methods is standalone verifiers, which rely on a model built using author

training data, independent of other authors or classifiers. We evaluate two verification methods:

the first is the distractorless verification method, denoted V [82], which was thoroughly reviewed

in Sec. 2.3.2. It is used as a baseline as it is a straight forward verification method, proven robust



81

across different domains, and does not use a distractor set (model of “not-A”). We then present the

Sigma Verification method, which applies variations to V by adding per-feature standard deviations

normalization (denoted Vσ) and adding per-author threshold normalization (denoted V a; the method

with both adjustments combined is denoted V aσ ). We evaluate and compare V with its new variants.

Classifier-Induced Verifiers

One promising aspect of the closed-world model that can be used in open-world scenarios is

the confidence in the solution given by distance-based classifiers. A higher confidence in an author

may, naturally, indicate that the author is in the suspect set while a lower confidence may indicate

that s/he is not and that this problem is, in fact, an open-world situation. Following classification,

verification can be formulated simply by setting an acceptance threshold t, measure the confidence

of the classifier in its classification, and accept the classification if and only if it is above t.

Next we discuss several verification schemes, based on classification probabilities outputted by

closed-world classifiers. For each test document D with suspect authors A = {A1, ..., An}, a classifier

produces a list of probabilities PAi which is, according to the classifier, the probability D is written

by Ai (
∑n
i=1 PAi = 1). We denote the probabilities P1, ..., Pn as the reverse order statistic of PAi ,

i.e. P1 is the highest probability given to an author (i.e. the chosen one), P2 the second highest and

so on.

These methods are obviously limited to classify-verify scenarios, as verification is dependent on

classification results (therefore evaluated in the Classify-Verify evaluation section, Sec. 6.3). We

use SVM classifiers with the 〈500, 2〉-chars feature set, fitting logistic regression models to the SVM

outputs for proper probability estimates. The classifier-induced verification methods evaluated in

Sec. 6.3 are:

P1 The classifier’s probability output for the chosen author. If it is above some threshold, we

deduce the classifier is confident enough of its top choice, relative to all others, therefore

accept. the P1 statistic is the one used for the 2-step classification approach applied for native

language identification in Sec. 4.4.5.

P1-P2-Diff The difference between the class probability of the chosen author and the next best choice, i.e.

P1−P2. If the chosen author probability is far enough from the rest, it is assumed to be true.

Gap-Conf Measurement of the gap-confidence [86] statistic. This method is identical to P1-P2-Diff , with

the difference that each probability i for author Ai is generated by an Ai-vs-all classifier:



82

instead of training a single SVM, we train n one-versus-all SVMs, one per author. For a given

document D, each classifier i in turn produces 2 probabilities: the probability PAi that D is

written by Ai and the probability it is not. Gap-Conf is the difference PAi −PAj between the

top two candidates Ai and Aj . The hypothesis is similar to P1-P2-Diff : the probability of the

true author should be much higher than that of the second-best choice.

Standalone Verification

Standalone verifiers are classifier-independent and are defined solely by a model built for the

candidate author and an acceptance threshold. If the distance between the author model and the

test document model is below the threshold, the document is deemed written by the author. We

utilize 3 standalone methods – distractorless verification [82], V , and two novel variants thereof, Vσ

and V a (combined together to V aσ ), referred to as Sigma verification. These methods are configured

as follows:

V Distractorless Verification. Described thoroughly in Sec. 2.3.2, this method uses aver-

age relative frequency vectors to model the author and test document, combined with cosine

distance (dot product) and an acceptance threshold. This method is proven robust across

domains and languages.

Vσ Per-Feature SD Normalization. A variant of V that uses the variance of the author’s

writing style. If an author has a rather unvaried style, we aim for a tighter bound for veri-

fication, whereas for a more varied style we can loosen the model to be more accepting. For

that we use the standard deviation of an author, denoted SD, on a per-feature basis. We

first calculate the SD of all features for each author. When computing distance between an

author and a document, we divide each feature-distance by its SD, so if the SD is smaller, A

and D move closer together, otherwise they move farther apart. This idea is applied in [9] for

authentication through typing biometrics.

V a Per-Author Threshold Normalization. Another variant of V that adjusts the verification

threshold t on a per-author basis, based on the average pairwise distance between all of the

author’s documents, denoted δA. V does not take this into account and instead uses a fixed

threshold. Using δA to determine the threshold is, intuitively, an improvement because it

accounts for how spread out the documents of an author are. This allows the model to relax if

the author has a more varied style. Similarly to V , this “varying” threshold is still applied by



83

setting a single threshold t across all authors; however for V a every author-document distance

measurement δ is adjusted by subtracting δA prior to being compared with t, thus allowing

per-author thresholds but still requires the user to set only one fixed threshold value.

Tab. 6.1 details the differences in distance calculations and threshold test among V , Vσ and

V a. We denote δD,A as the overall distance measured by some distance metric δ between the

feature vector of document D and the centroid vector of author A across all of A’s documents,

denoted C(A). In addition we denote the respective feature level representation of δ as follows:

δD,A = ∆(Di, C(A)i)
n
i=1, where n is the number of features (dimension of D and C(A)). Finally, we

define σ(A) as the standard deviation vector of author A’s features, and δA as the pairwise distance

between all of A’s documents.

Table 6.1: Differences in distance calculation and t-threshold test for V , Vσ and V a.

XXXXXXXXXXDistance
Test

δ < t δ − δA < t

δD,A = ∆(Di, C(A)i)
n
i=1 V V a

δσD,A = ∆( Di
σ(A)i

, C(A)i
σ(A)i

)ni=1 Vσ V aσ

Note that using V a may derive nonintuitive thresholds (e.g. negative thresholds when using

cosine distance, which normally produces values in [0, 1]). However this is only to adjust to the

distance shift from δD,A (used in V ) by δA to δD,A − δA used by V a, i.e. it is a byproduct of the

per-author threshold normalization.

Standalone Verification: Evaluation

We evaluate the methods above on EBG , and BLOGS as control. The evaluation is done by

examining false positive rates and their corresponding false negative error rates. EBG is evaluated

only on the non-adversarial documents, and BLOGS is evaluated in its entirety. The evaluation is

done using 10-fold cross-validation. In each fold, every test document is tested against every one of

the authors models, including its own. ROC curves for evaluation of V , Vσ and V aσ on EBG and

BLOGS are illustrated in Fig. 6.3.



84

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TP
R

 

FPR 

V Vσ Vaσ 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TP
R

 

FPR 

V Vσ Vaσ 

Figure 6.3: ROC curves for V , Vσ and V aσ evaluation on EBG (left) and BLOGS (right).

The results are mixed: on EBG , Vσ and V aσ significantly outperform V (from FPR of 0.05 and

0.114, respectively). However on BLOGS , V significantly outperforms both Vσ and V aσ . These

differences may be due to the discrepancy between the literary styles of the two datasets, where

accounting for how “wide” an author’s style is with Vσ and V aσ seems more fitting to formal texts

(EBG), and a simpler method as V is better suited for less structured and formal texts (blogs). The

results suggest that there is no one method preferable over the other, and selecting a verifier for a

problem should rely on empirical testing over a stylistically similar training data.

As for the effect of adding the per-author threshold adjustments, for both corpora Vσ outper-

forms V aσ on low FPR until they intersect (at FP = 0.27 and FP = 0.22 for EBG and BLOGS ,

respectively), at which point V aσ begins to outperform Vσ. These properties allow various verifica-

tion approaches to be used per need, dependent on FPR/FNR constraints the problem in hand may

impose.

Finally, similarly to closed-world classification, in order to validate the feature selection for

the underlying verifiers in the Classify-Verify method, we evaluate the performance of V for p =

0.1, ..., 1.0 using 〈500, 2〉-chars and Writeprints. The evaluation is applied in a closed-world fashion,

where distances are measured between the test document and each author model, and the author

with the shortest distance is the chosen class. Evaluation results reveal that 〈500, 2〉-chars is well

suited for verification as well as classification, where it is almost identical to Writeprints on EBG ,

and outperforms it on BLOGS . F1-scores are illustrated in Fig. 6.4.



85

  
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EBG (45) 

<500,2>-chars

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BLOGS (50) 

Writeprints

Figure 6.4: F1-scores for classification using standalone verification with 〈500, 2〉-chars and
Writeprints.

6.2.7 The Classify-Verify Algorithm

The Classify-Verify algorithm combines an underlying closed-world classifier trained on a set of

candidate authors A = {A1, ..., An}, along with a set of verifiers for each author in A, thus expanding

closed-world authorship problems to open-world, by essentially adding another class: “unknown”.

First, the document in question D is classified, and some author Ai is chosen. Then, the test

document is fed into Ai’s corresponding verifier (for standalone verifiers; classifier-induced verifiers

are global and based on the classifier alone.) If the verifier accepts, based on a verification threshold

t, it outputs Ai as the chosen author. Otherwise, it outputs ⊥, signifying “unknown”. These two

steps are aimed to complement each other: the classifier provides the best choice possible from a

known set of candidates, and the verifier has to deal with only that best choice (rather than verify

each author in the set). The classifier contributes its better suitability for choosing one of many, and

the verifier provides its open-world ability to reject decisions with low confidence. Classify-Verify is

essentially a classifier over the suspect set A ∪ {⊥}.

The verification acceptance threshold t selection determines the rigidity of the configuration,

which affects the precision and recall attainable by the algorithm. The basic approach taken in most

experiments in Sec. 6.3 utilize an “oracle” threshold: a range of manually set thresholds are tested,

and the results for the threshold that yields the best results are presented (as if we predicted the best

threshold in advance, hence “oracle”). However, we propose an empirical approach for automatically

setting the acceptance thresholds, given various knowledge of p, the probability of any given test



86

 

 

  Train 

   

                    

Document   

   

Accept Reject 

  

  

Set   

   

   

Figure 6.5: The flow of the Classify-Verify method on a test document D and a suspect set A, with
optional inputs of a manual threshold t and a known in-set portion p.

document being in-set. The automatic threshold selection techniques are as follows:

p-Induced. For any given value of p in a n-fold cross-validation experimental setup, for each

test fold i we apply n-but-i-fold validation on the training set using a range of thresholds. For each

fold i, the threshold that yielded the highest results on the training validation is selected. The idea

is that thresholds that perform well on training simulations are expected to perform similarly under

test. As opposed to using oracle thresholds, p-induced thresholds are not in danger of overfiting to

the test data, as they are calculated independent of it.

Robust. For the case where the value of p is unknown, we require a method to select the

threshold such that it is useful for any possible value of p. The robust threshold selection technique

is similar to p-induced, only instead of selecting the threshold that performs well in simulation for

a particular value of p, it is calculated for all p = 0.1, ..., 1.0, and the threshold that yields the

highest averaged results is selected for testing. The robust threshold does not guarantee the highest

measurement; however, it aims to maximize the expected value of that measure, independent of p,

and thus robust for any open-world settings.

Finally, the flow of the Classify-Verify algorithm is illustrated in Fig. 6.5, and the algorithm is

described in Alg. 1.



87

Algorithm 1 Classify-Verify

Input: Document D, suspect author set A = {A1, ..., An}, target measurement µ
Optional: in-set portion p, manual threshold t

Output: AD if AD ∈ A, and ⊥ otherwise
CA ← classifier trained on A
VA = {VA1

, ..., VAn} ← verifiers trained on A
if t, p not set then

t← Robust threshold maximizing µ of Classify-Verify cross-validation on A
else if t not set then

t← p-induced threshold maximizing µ of Classify-Verify cross-validation on A
end if
A← CA(D)
if VA(D, t) = True then

return A
else

return ⊥
end if

6.3 Evaluation

6.3.1 Main Evaluation

In our main experiments we evaluate the Classify-Verify method on the EBG and BLOGS

datasets, using every configuration mentioned above: SVM classifiers with standalone verifiers,

SVM with classifier-indcued verifiers and only standalone verifiers. For standalone verifiers, those

are used in the “classify” phase in a closed-world fashion such that the author with the shortest

distance from the test instance is the chosen one.

F1-scores illustrated in Fig. 6.6 show results for the best performing standalone and classifier-

induced Classify-Verify configurations, on both datasets. The results suggest that Classify-Verify is

successful in thwarting misclassifications, originated in-set or not-in-set, when applied in real-world

settings for any value of p. All F1-scores illustrated in Fig. 6.6 are detailed in Tab. B.1–B.2

For both datasets, of all the mix-and-match classifiers and verifiers, the best results are gained

with SVM + P1. In general, Classify-Verify is shown to perform better with closed-world SVM for

the “classify” phase rather than closed-world formulated verifiers. The small difference between the

EBG strict and flexible results with SVM suggests that the in-set misclassification rate is rather

low. On the other hand, same results for BLOGS show higher SVM in-set misclassification rates,

which grows alongside p. However, when the origin of thwarted misclassifications is set aside and we

examine the bottom-line flexible performance, it reaches as high as baseline closed-world classifiers

in pure closed world settings for EBG , and surpasses it for BLOGS . Complete results using all



88

  

  
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EB
G

 

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
LO

G
S 

SVM + Vaσ 

Classify CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

CV/Strict

Figure 6.6: Classify-Verify F1-scores on EBG and BLOGS as a function of p = 0.1, ..., 1.0, with the
best standalone and classifier-induced verifiers. Classify-Verify successfully thwarts in-set and not-
in-set misclassifications; applied in open-world settings, it matches and even outperforms standard
classifiers in closed-world settings. P1 outperforms all others on both datasets.

Classify-Verify configurations with both the 〈500, 2〉-chars and Writeprints feature sets on EBG

and BLOGS are found in Fig. B.1–B.4.

Due to the better performance of Classify-Verify with SVM used in the “classify” phase, we

continue only with that classifier for the rest of the experiments in this chapter, and present only

the best standalone and classifier-induced results.

6.3.2 Auto-Selected Verification Thresholds

We apply the two automatic acceptance threshold techniques discussed in Sec. 6.2.7, namely

p-induced and robust. F1-scores illustrated in Fig. 6.7–6.8 suggest that both automatic threshold

selection techniques perform well in real-world settings for any value of p, and even similarly to

using oracle thresholds (that yield the best results on the test data) used in the previous section.

All F1-scores illustrated in Fig. 6.7–6.8 are detailed in Tab. B.1–B.2. Complete F1-scores across all

configurations are illustrated in Fig. B.5–B.8.



89

  

  
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
EB

G
 

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
LO

G
S 

SVM + Vaσ 

Classify CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

CV/Strict

Figure 6.7: Classify-Verify F1-scores on EBG and BLOGS as a function of p = 0.1, ..., 1.0 using p-
induced verification thresholds. Attained results are similar to those attained with “oracle” threshold
in Sec. 6.3.1, and outperform closed-world classifiers in any setting.

  

  
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EB
G

 

SMO + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SMO + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
LO

G
S 

SMO + Vaσ 

Classify CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SMO + P1 

CV/Strict

Figure 6.8: Classify-Verify F1-scores on EBG and BLOGS as a function of p = 0.1, ..., 1.0 using
robust verification thresholds. Attained results are not as high as p-induced thresholds, however
considerably high with the advantage of being ready for any p scenario.



90

Thresholds for Best Results on Attack Data p-Induced Thresholds from Non-Attack Data 

  

  
 

0

0.2

0.4

0.6

0.8

1

0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EB
G

 O
b

fu
sc

at
io

n
 

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EB
G

 Im
it

at
io

n
 

SVM + P1 

Classify CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

CV/Strict

Figure 6.9: Classify-Verify F1-scores on EBG Imitation and Obfuscation attack documents, as a
function of p = 0.1, ..., 1.0. Classify-Verify successfully thwarts attacks in any setting, even when
configured with non-attack auto-selected p-induced thresholds.

6.3.3 Adversarial Settings

The EBG corpus provides unique documents where the authors are instructed to attempt cir-

cumventing stylometric techniques by changing their writing style in two fashions: obfuscation and

imitation attacks. In the obfuscation attack, the authors were guided to try changing their writing

style with no particular theme. In the imitation attack, the authors are guided to imitate the unique

writing style of the author Cormac McCarthy (the obfuscation task was given first, to prevent sub-

jects from being affected by the imitation task when hiding their style.) Both attacks are proven

effective in circumventing stylometry accuracy down to random chance [16]. We repeat the original

evaluations of EBG in adversarial settings, and expand them for all Classify-Verify scenarios with

p = 0.1, ..., 1.0. In these scenarios we may look at the class ⊥ as “possible attack”, rather than

simply “unknown”.

F1-score results in Fig. 6.9 illustrate circumvention performance in two scenarios: using thresh-

olds that yield the best performance for the circumvention detection problem, and p-induced thresh-



91

  
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

Classify CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

CV/Strict

Figure 6.10: Classify-Verify F1-scores on BLOGL as a function of p = 0.1, ..., 1.0. Even in an online
domain problem with many authors, Classify-Verify outperforms standard classifiers and successfully
thwarts misclassifications in almost any setting.

olds derived from Classify-Verify performance in standard settings. For the latter, it means empiri-

cally selected thresholds that yield best performance on the non-attack documents, applied in attack

scenarios. Flexible results suggest that Classify-Verify is successful in circumventing attacks for all

values of p, especially for a configuration that targets attack detection. However lower, attack de-

tection in non-attack environment is also proven effective across the range of p values. All F1-scores

illustrated in Fig. 6.9 are detailed in the Tab. B.3. Complete F1-scores across all configurations are

illustrated in Fig. B.9–B.12.

6.3.4 Many Authors in Online Domain Settings

The Classify-Verify method aims to provide a solution for hybrid problems commonly defined

over online domains, where the set of candidate authors may be very large. Therefore we evaluate

it on the BLOGL dataset, which contains blogs by 911 authors. F1-scores illustrated in Fig. 6.10

suggest that Classify-Verify is successful in such settings as well. The results are similar to those

attained for BLOGS , however with a slight difference: the best standalone verifier (V aσ ) presents

a more robust flexible performance than the best classifier-induced P1 verifier, and outperforms it

for p = 0.9 and p = 1.0. All F1-scores illustrated in Fig. 6.10 are detailed in Tab. B.4. Complete

F1-scores across all configurations are illustrated in Fig. B.13.



92

    

 

  

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5
m

 

SVM + V 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2
0

m
 

SVM + V 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
0

m
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Classify CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3
0

m
 

CV/Strict

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.11: Classify-Verify F1-scores on AAUTH as a function of p = 0.1, ..., 1.0. Classify-Verify
successfully thwarts misclassifications and outperforms standard classifiers in any setting, in spite
of the noisy and inconsistent nature of the data.

6.3.5 Active Authentication Settings

We evaluate Classify-Verify on the AAUTH dataset, a dataset that presents unique settings

highly applicable to continuous authentication security systems. We follow the experimental setup

in Ch. 5 [36, 37, 102] and evaluate the dataset on documents generated from sliding windows of

a fixed size and overlap, over the user keyboard input streams. Since the small-sized windows

have shown low availability and contribution to the decision process, we focus on 4 sizes of sliding

windows: 5, 10, 20 and 30 minutes (the last is not applied in the original AAUTH evaluation), all

with an overlap of 1 minute. For instance, a system that uses a 5-min window with 1-min overlap

is able to produce a decision every minute based on the past 5 minutes (starting at 5 minutes after

the day begins).

It is notable that this unique dataset contains not just final products of user writings, but a

complete keyboard input, with 1-character placeholders for special characters like alt represented

by α, backspace as β etc. This provides the ability to capture not only writing style, but typing

style as well. For instance, chββCchββhicago instead of Chicago captures typo and correction

frequencies.

F1-scores, illustrated in Fig. 6.11, suggest that Classify-Verify is successful in thwarting false



93

   

   
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
V

/F
le

xi
b

le
 

5m 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10m 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20m 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
V

/S
tr

ic
t 

Lower Baseline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Upper Baseline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Classify-Verify

Figure 6.12: Classify-Verify F1-scores on AAUTH using SVM with P1 as a function of p = 0.1, ..., 1.0
for 5, 10 and 20 minute windows, compared to the range of F1-scores derived in the original evaluation
in Ch. 5 in closed-world settings (p = 1). Classify-Verify in flexible configuration outperforms the
original evaluation for any value of p; strict configuration results are mixed.

positives in active authentication settings as well. As expected, baseline classification performance

improves as the size of the window increases, since more data exists to model that window’s style.

However, flexible results using SVM with P1 suggest that the smaller windows, 5 and 10 minutes,

perform better. This may be a consequence of having little data in such small windows, which results

in a high rate of misclassifications that are later thwarted by the verifier, resulting in true-positives

for the “unknown” class under the flexible configuration. These windows do not, in fact, provide us

more information than the larger ones (20 and 30 minutes), as can be seen by their lower F1-scores

for the strict evaluation. However, the flexible results support the effectiveness of Classify-Verify

in that it successfully maintains a rather high and steady F1-score, regardless of the quality of the

data in hand – when the window size shrinks, and therefore more misclassifications occur, the rate

of instances classified as “unknown” legitimately grows. All F1-scores illustrated in Fig. 6.11 are

detailed in Tab. B.5. Complete F1-scores across all configurations are illustrated in Fig. B.14.

In order to truly asses Classify-Verify performance over the data, we compared it with the results

attained by the original evaluation in Ch. 5. Fig. 6.12 illustrates Classify-Verify F1-scores for 5, 10

and 20 minute windows as a function of p = 0.1, 0.2, ..., 1.0, using the best performing Classify-



94

Verify configuration – SVM with P1. As baseline, we use the range of F1-scores attained by the

original evaluation in Ch. 5, illustrated in lower and upper bounds. This range is a result of different

minimum characters applied for window filtering, ranging from 100 to 1000, leading to a varying

amount of data to model the window by, and thus its likelihood to be correctly classified. Moreover,

baseline results are illustrated only in closed-world settings; it is likely to assume baseline results

would become worse as p decreases.

The comparison suggests that Classify-Verify is indeed successful in thwarting misclassifications,

and outperforms baseline results with the flexible configuration. The comparison with the strict

results suggests that Classify-Verify becomes more aggressive in classification rejections as the win-

dow size decreases, and therefore is outperformed by the baseline methodology for small windows

and high p value. However, given Classify-Verify provides a decision for all windows (no minimum

characters filters are applied) in varying in-set/not-in-set scenarios, and the aggressive rejection rate

can be relaxed by manually tuning thresholds for small windows, Classify-Verify is still suggested

as the preferred technique.

6.3.6 Additional Experiments

Aside from the various experimental settings evaluated in the previous sections, we evaluate two

additional approaches in an attempt to further improve the Classify-Verify performance. Unfortu-

nately, both approaches have proven unsuccessful in improving the straight forward Classify-Verify

approach taken above; therefore we layout the experimental settings and approaches as grounds for

future work.

Verification Fusion

As shown effective on AAUTH , fusion of verifiers in a decision fusion center where the verifiers

are distinctively different can increase the overall precision [8, 36]. For that purpose we construct a

decision fusion center (DFC) and apply the the Chair-Varshney fusion rule [23], used to formulate

a “fusion verifier” for the verify phase of Classify-Verify.

For any classify phase output author Ai, the verification problem in the verify phase is defined

as a binary hypothesis testing problem with 2 hypotheses:

 H0 reject – output ⊥

H1 accept – output Ai

(6.1)



95

The DFC produces a global decision based on local decisions {u1, u2, ..., un} generated by the

different verifiers, for which we use subsets of V , Vσ, V aσ and P1, where:

ui =

 −1 if H0 is declared

+1 if H1 is declared
(6.2)

The optimal decision rule is expressed as follows:

f(u1, u2, ..., un) =

 1 if a0 +
∑n
i=1 aiui > 0

−1 otherwise
(6.3)

With the a priori probabilities P0 = Pr(H0) and P1 = Pr(H1), and P iM and P iF representing the

false accept and false reject rates of the ith verifier, respectively, the optimal weights minimizing the

global probability of error are given by:

a0 = log
P1

P0

ai =

 log
1−P iM
P iF

if ui = +1

log
1−P iF
P iM

if ui = −1
(6.4)

P iM and P iF are calculated empirically via cross-validation on the training data. The a priori

probabilities of the hypotheses P0 and P1 are unknown, therefore a0 is set in a range of values, and

an “oracle” value is used – the one that yields the highest results on the test set.

F1-scores using fusion for the verify phase in Classify-Verify on EBG and BLOGS are illustrated

in Fig. 6.13. The attained results do not surpass the best Classify-Verify configuration already

known from Sec. 6.3.1, perhaps due to the high similarity of the fused verifiers, whereas the fusion

algorithm assumes the verifiers are distinctly different.

Divide-and-Conquer: Scaling Classify-Verify

In addition to applying fusion, we attempted to apply a divide-and-conquer scheme on EBG

and BLOGS . Since the underlying classifiers perform better the smaller the problem is (in terms of

number of authors), we tried the following formulation for a problem over n authors:

• Divide the problem into k randomly chosen, non-overlapping problems of size n
k

• Apply Classify-Verify on each of the k subproblems, classifying all test documents

• For every document D that has been classified k times (one per subproblem), discard all

subproblems that outputted ⊥



96

  

  
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EB
G

 

SVM + Fusion: V, Vσ, Vaσ, P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Fusion: Vσ, P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
LO

G
S 

SVM + Fusion: V, Vσ, Vaσ, P1 

Classify CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Fusion: Vaσ, P1 

CV/Strict

Figure 6.13: Classify-Verify F1-scores on EBG and BLOGS using the 〈500, 2〉-chars feature set as
a function of p = 0.1, ..., 1.0, using the Chair-Varshney fusion algorithm for verification. The left
column shows results for fusing V , Vσ, V aσ and P1; the right column shows results for fusing only
the best classifier-induced and standalone verifiers. None outperforms Classify-Verify with the best
verifier alone, unfused.

• Run a final Classify-Verify round for each D among all non-rejected subproblem author out-

puts, and assign D the chosen author, or ⊥ if rejected

The idea behind this formulation is to utilize Classify-Verify to discard batches of authors in the

first round, resulting with a smaller set of authors for the final round, thus increasing the probability

of a successful classification. In practice, none of the scaling formulations applied have outperformed

applying Classify-Verify on the entire set. F1-scores for different problem breakdowns are detailed

in Tab. 6.2.

6.4 Conclusions

Whether stylometry can be applied accurately in open-world settings has important privacy

implications for both anonymous authors and those who fall in a suspect set and thus in danger

of being falsely accused of authorship. These implications extend to security applications involving

linguistic detection metrics, like authentication systems based on usage of common input devices.

The Classify-Verify method presented in this chapter provides a solution for mixed closed/open-

world scenarios, with validated performance in real open-world settings, tested in a varying range



97

Table 6.2: F1-scores for Classify-Verify applied in a divide-and-conquer formulation on EBG and
BLOGS . Numbers in the leftmost column represent the configured subproblem size k, and in paren-
theses – its size in practice. None of the scaling experiments outperform applying Classify-Verify
straight-forwardly on the complete problem.

EBG Classify Only Flexible Classify-Verify Strict Classify-Verify

All 45 0.889 0.926 0.898
Scaling 5 0.587 0.619 0.59
Scaling 10 (11-12) 0.80 0.851 0.815
Scaling 15 0.833 0.865 0.843
Scaling 20 (22-23) 0.868 0.894 0.874

BLOGS

All 50 0.437 0.766 0.445
Scaling 5 0.137 0.791 0.138
Scaling 10 0.327 0.553 0.328
Scaling 15 (16-17) 0.366 0.67 0.369
Scaling 20 (25) 0.43 0.732 0.442

of in-set/not-in-set probabilities.

Classify-Verify is proven effective not only in open-world settings where authors may be missing

from the training set, but can also improve results in closed-world settings, by abstaining from low-

confidence classification decisions. It is shown to perform well over various domains and problems,

including formal writings, online blogs and noisy keyboard streams; small to large number of candi-

dates, with in-set values that range from 10% to 100%; authors unaware they are being attempted

identification, to those who try to attack the detection systems by hiding their style; and in different

perspectives over performance that differentiate between the origin of thwarted misclassifications

expressed as flexible and strict evaluation. In all the configurations above, Classify-Verify triumphs

traditional classifiers by dismissing misclassification in favor of truly claiming: author is unknown.

From the various mixtures of underlying closed-world classifiers and open-world verifiers used

in the Classify-Verify engine, the classifier-induced method that uses SVM with a simple threshold

applied on the chosen class probability, namely P1, seems to outperform the rest. This suggests

that there is enough information within such closed-world classifiers to apply abstaining techniques,

thwart misclassifications and thus increase precision.

We conclude that Classify-Verify should be the preferable approach taken over standard stylome-

try classifiers in both closed and open-world settings. We propose Classify-Verify should be adopted

for other security and privacy domains, like it has been successfully applied for website fingerprinting

attacks [52].



98

In addition, we propose future work to focus on examining additional verifiers. As shown effective

on AAUTH , fusion of verifiers in a decision fusion center where the verifiers are distinctively different

can increase the overall precision [8, 36]. However, as attempted in Sec. 6.3.6, applying fusion using

the Chair-Varshney fusion algorithm [23] on EBG and BLOGS does not produce results that surpass

the best Classify-Verify configuration already known, perhaps due to high similarity of the fused

verifiers. We propose to apply fusion with additional distinct linguistic verifiers (differentiated by

classification algorithm and/or features), and attempt fusion techniques in active authentication

settings.



99

7. Conclusion

The application of stylometry to authorship attribution is a practice that stretches back decades,

with amounts of accumulated research and satisfactory solutions that deem problems in the field –

over hundreds and even thousands of potential authors – solved. Nevertheless, the continuous growth

of online discourse, domains with ever-increasing pools of authors and effective countermeasures

against author identification, require the development of authorship attribution approaches that are

robust to these challenging settings.

This work has shown how authorship verification, the stylometric application of one-class machine

learning approaches, is efficient in tackling these novel problem domains by setting confidence levels

as gatekeepers on classifiers decision making, rather than operate under the assumptions of classic

stylometry that chooses the best out of a closed set of options, regardless of the possibility the true

author could be absent.

The work on native language and language family identification discussed in Ch. 4 demonstrated

the utilization of verification in generalizing classification problems in favor of improving their so-

lution. The main contribution of this work is the methodology by which native language of a

non-native English author is extracted from English text. In this two-step classification process,

verification is used to identify low-confidence decisions, and narrow down the decision domain for

those instances to languages in only one prospective language family (identified in an additional

standalone classification process). The success of this approach illustrates how thresholding over

class probability distributions extracted from distance-based classifiers can benefit the verification

process. Moreover, it shows how verification over those classifier statistics help to identify when

additional information is required, and how that information can be extracted from the same data

– but in a different, broader perspective, language families in this particular case. This type of

verification applied in a generalization process can be applied to other domains in machine learning

in general, and stylometry in particular, where classes can be clustered into identifiable groups, like

language families.

The work on active linguistic authentication discussed in Ch. 5, and revisited in Ch. 6, illustrated

the usage of linguistic style learning for security, manifested in stylometric modalities applied in an

active authentication system. The various sliding-window configured sensors over the user’s keyboard

input demonstrated how continuous security applications can benefit from introducing this type of



100

high-level verification. Thresholds set over decision availability of the different sensors, that along

with the inspected window size are inversely proportional to the decision frequency, demonstrate

the delicate tune-ups required for producing an accurate and usable decisions for access control

purposes. With that in mind, these modalities have been shown to provide a unique quantification

of user identity, and therefore should be considered for usage in such systems.

Both applications above demonstrate the effectiveness and importance of authorship verification

utilization in various applications, leading to the main novelty presented in this work, the Classify-

Verify algorithm. As discussed and demonstrated extensively in Ch. 6, this hybrid approach for

mixed closed-world and open-world stylometry, which interleaves classic one-of-many classification

with a binary verification decision step, has been shown to provide a more accurate and confident

view of the stylometric problem domain. With Classify-Verify, misclassifications are thwarted in

favor of a somewhat less complete, yet more accurate decision process, in which verification-driven

certainty is the leading principle. Classify-Verify demonstrates a fusion of the best of both worlds,

where high accuracy closed-world procedures are applied to narrow several choices down to one,

which is later put to a binary test by a suspicious, tunable verifier. We conclude that this hybrid

approach is preferable over standard, limited closed-world approaches, and should be adopted espe-

cially for open-world (or semi-open-world) problem domains, including but not limited to: problems

with a large candidate set, adversarial settings, challenging active-authentication systems, online

domains and the like.

The applications of authorship verification presented in this document provide a strong incentive

to adopt this approach for stylometric analysis. Verification is well-structured to handle uncertainty

that may originate in dynamic environments and mass data, such as the Internet, underground

communities and any online domain. The advantages of applying verification to these fast-emerging

realms compared to classic approaches are not only numerous, but even necessary. This thesis pro-

poses future research of stylometric applications should focus on verification tools and methodologies,

such as those presented in this document. Research should utilize the vast set of corpora collected

over years of stylometry research in order to establish a solid ground of empirical evaluations of

verification approaches; Promising approaches such as decision fusion should be further explored;

And these approaches should be tested in extreme measures that include adversarial settings and

other security and privacy oriented applications.



101

Bibliography

[1] Ahmed Abbasi and Hsinchun Chen. Writeprints: A stylometric approach to identity-level

identification and similarity detection in cyberspace. ACM Trans. Inf. Syst., 26(2):1–29, 2008.

[2] S. Afroz, M. Brennan, and R. Greenstadt. Detecting hoaxes, frauds, and deception in writing

style online. In Proceedings of the 33rd conference on IEEE Symposium on Security and

Privacy. IEEE, 2012.

[3] A.A.E. Ahmed and I. Traore. A new biometric technology based on mouse dynamics. Depend-

able and Secure Computing, IEEE Transactions on, 4(3):165 –179, july-sept. 2007.

[4] A.A.E. Ahmed and I. Traore. A new biometric technology based on mouse dynamics. Depend-

able and Secure Computing, IEEE Transactions on, 4(3):165 –179, July-Sept. 2007.

[5] Bashir Ahmed, Sung-Hyuk Cha, and Charles Tappert. Language identification from text using

n-gram based cumulative frequency addition. Proc. CSIS Research Day, May 2004.

[6] Charles S. Ahn. Automatically detecting authors’ native language. Thesis, Naval Postgraduate

School, March 2011.

[7] Navot Akiva and Moshe Koppel. Identifying distinct components of a multi-author document.

In EISIC, pages 205–209, 2012.

[8] K.M. Ali and M.J. Pazzani. On the link between error correlation and error reduction in

decision tree ensembles. Citeseer, 1995.

[9] Livia CF Araujo, Luiz HR Sucupira Jr, Miguel G Lizarraga, Lee L Ling, and Joao BT Yabu-

Uti. User authentication through typing biometrics features. Signal Processing, IEEE Trans-

actions on, 53(2):851–855, 2005.

[10] Shlomo Argamon, Moshe Koppel, James W. Pennebaker, and Jonathan Schler. Mining the

blogosphere: Age, gender and the varieties of self-expression. First Monday, 12(9), 2007.



102

[11] Harald Baayen, Hans van Halteren, Anneke Neijt, and Fiona Tweedie. An experiment in

authorship attribution. In 6th JADT, pages 29–37. Citeseer, 2002.

[12] Ned Bakelman, John V. Monaco, Sung-Hyuk Cha, and Charles C. Tappert. Continual

keystroke biometric authentication on short bursts of keyboard input. In Proceedings of

Student-Faculty Research Day, CSIS, Pace University, 2012.

[13] Francesco Bergadano, Daniele Gunetti, and Claudia Picardi. User authentication through

keystroke dynamics. ACM Trans. Inf. Syst. Secur., 5(4):367–397, November 2002.

[14] Chris M Bishop. Novelty detection and neural network validation. In Vision, Image and Signal

Processing, IEE Proceedings-, volume 141, pages 217–222. IET, 1994.

[15] Christopher M Bishop et al. Neural networks for pattern recognition. 1995.

[16] Michael Brennan, Sadia Afroz, and Rachel Greenstadt. Adversarial stylometry: Circumventing

authorship recognition to preserve privacy and anonymity. ACM Trans. Inf. Syst. Secur.,

15(3):12:1–12:22, November 2012.

[17] Julian Brooke and Graeme Hirst. Native language detection with ’cheap’ learner corpora. In

The 2011 Conference of Learner Corpus Research (LCR2011), 2011.

[18] Julian Brooke and Graeme Hirst. Measuring interlanguage: Native language identification

with l1-influence metrics. In Proceedings of the Eight International Conference on Language

Resources and Evaluation (LREC’12), Istanbul, Turkey, may 2012. European Language Re-

sources Association (ELRA).

[19] Kevin Burton, Akshay Java, and Ian Soboroff. The icwsm 2009 spinn3r dataset. In Proceedings

of the Third Annual Conference on Weblogs and Social Media (ICWSM 2009), San Jose, CA,

2009.

[20] Lyle Campbell and William J. Poser. Language Classification: History and Method. Cambridge

University Press, 2008.

[21] Gail A Carpenter, Stephen Grossberg, and David B Rosen. Art 2-a: An adaptive resonance

algorithm for rapid category learning and recognition. Neural networks, 4(4):493–504, 1991.

[22] Maria Luisa Carrio-Pastor. Contrasting specific english corpora: Language variation. Inter-

national Journal of English Studies, Special Issue, pages 221–233, 2009.



103

[23] Z. Chair and P.K. Varshney. Optimal data fusion in multiple sensor detection systems.

Aerospace and Electronic Systems, IEEE Transactions on, AES-22(1):98 –101, jan. 1986.

[24] Carole E Chaski. Best practices and admissibility of forensic author identification. JL & Pol’y,

21:333–725, 2013.

[25] Ghinwa F. Choueiter, Geoffrey Zweig, and Patrick Nguyen. An empirical study of automatic

accent classification. In ICASSP, pages 4265–4268, 2008.

[26] C Chow. On optimum recognition error and reject tradeoff. Information Theory, IEEE

Transactions on, 16(1):41–46, 1970.

[27] Jonathan H. Clark and Charles J. Hannon. A classifier system for author recognition using

synonym-based features. In Proceedings of the artificial intelligence 6th Mexican international

conference on Advances in artificial intelligence, MICAI’07, pages 839–849, Berlin, Heidelberg,

2007. Springer-Verlag.

[28] Paul Clough. Plagiarism in natural and programming languages: an overview of current tools

and technologies, 2000.

[29] Rosa Maŕıa Coyotl-Morales, Luis Villaseñor-Pineda, Manuel Montes-y Gómez, and Paolo

Rosso. Authorship attribution using word sequences. In Progress in Pattern Recognition,

Image Analysis and Applications, pages 844–853. Springer, 2006.

[30] Walter Daelemans, Jakub Zavrel, Ko Van der Sloot, and Antal Van den Bosch. Timbl: Tilburg

memory-based learner. version, 4:02–01, 2003.

[31] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation onion

router. In Proceedings of the 13th USENIX Security Symposium, August 9-13, 2004, San

Diego, CA, USA, pages 303–320, 2004.

[32] Richard O. Duda and Peter E. Hart. Pattern classification and scene analysis. Wiley-

Interscience, New York, 1973.

[33] Hugo Jair Escalante, Manuel Montes y Gómez, and Luis Villaseñor Pineda. Particle swarm

model selection for authorship verification. In CIARP, pages 563–570, 2009.



104

[34] Dominique Estival, Tanja Gaustad, Son B. Pham, Will Radford, and Ben Hutchinson. Author

profiling for english emails. In 10th Conference of the Pacific Association for Computational

Linguistics (PACLING 2007), pages 262–272, 2007.

[35] Winthrop Nelson Francis and Henry Kucera. Frequency Analysis of English Usage: Lexicon

and Grammar. Houghton Mifflin, 1983.

[36] Alex Fridman, Ariel Stolerman, Sayandeep Acharya, Patrick Brennan, Patrick Juola, Rachel

Greenstadt, and Moshe Kam. Decision fusion for multimodal active authentication. IT Pro-

fessional, 15(4):29–33, 2013.

[37] Lex Fridman, Ariel Stolerman, Sayandeep Acharya, Patrick Brennan, Patrick Juola, Rachel

Greenstadt, and Moshe Kam. Multi-modal decision fusion for continuous authentication.

Computers & Electrical Engineering, (0):–, 2014.

[38] Erin Elizabeth Gibbons. The effects of second language experience on typologically similar and

dissimilar third language. Thesis, Brigham Young University, Center for Language Studies,

2009.

[39] Felix Golcher and Marc Reznicek. Stylometry and the interplay of topic and l1 in the differ-

ent annotation layers in the falko corpus. In Humboldt-Universitat zu Berlin, QITL-4, 2009.

[Online: Stand 2012-03-22T16:09:09Z].

[40] Sylvaine Granger, Estelle Dagneaux, and Fanny Meunier. International Corpus of Learner

English : Version 1 ; Handbook and CD-ROM. Pr. Univ. de Louvain, Louvain-la-Neuve, 2002.

[41] Sylvaine Granger, Estelle Dagneaux, Magali Paquot, and Fanny Meunier. The International

Corpus of Learner English, Version 2: Handbook and CD-Rom. Pr. Univ. de Louvain, Louvain-

la-Neuve, 2009.

[42] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for

cancer classification using support vector machines. Mach. Learn., 46(1-3):389–422, March

2002.

[43] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The weka data

mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[44] Hans Van Halteren. Author verification by linguistic profiling: An exploration of the parameter

space. ACM Trans. Speech Lang. Process., 4(1):1:1–1:17, February 2007.



105

[45] S. Hashem and B. Schmeiser. Improving model accuracy using optimal linear combinations of

trained neural networks. Neural Networks, IEEE Transactions on, 6(3):792–794, 1995.

[46] Radu Herbei and Marten H Wegkamp. Classification with reject option. Canadian Journal of

Statistics, 34(4):709–721, 2006.

[47] David I Holmes and Richard S Forsyth. The federalist revisited: New directions in authorship

attribution. Literary and Linguistic Computing, 10(2):111–127, 1995.

[48] John Houvardas and Efstathios Stamatatos. N-gram feature selection for authorship iden-

tification. In Artificial Intelligence: Methodology, Systems, and Applications, pages 77–86.

Springer, 2006.

[49] L.W. James. Fundamentals of biometric authentication technologies. International Journal of

Image and Graphics, 1(01):93–113, 2001.

[50] Nathalie Japkowicz. Concept-learning in the absence of counter-examples: an autoassociation-

based approach to classification. PhD thesis, Rutgers, The State University of New Jersey,

1999.

[51] Nathalie Japkowicz, Catherine Myers, and Mark Gluck. A novelty detection approach to

classification. In International joint conference on artificial intelligence, volume 14, pages

518–523. Lawrence Erlbaum Associates Ltd., 1995.

[52] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. A critical

evaluation of website fingerprinting attacks.

[53] P. Juola. Jgaap, a java-based, modular, program for textual analysis, text categorization, and

authorship attribution.

[54] Patrick Juola. Ad-hoc authorship attribution competition. In Proc. 2004 Joint International

Conference of the Association for Literary and Linguistic Computing and the Association for

Computers and the Humanities (ALLC/ACH 2004), Göteborg, Sweden, June 2004.

[55] Patrick Juola. Authorship attribution. Foundations and Trends in information Retrieval,

1(3):233–334, 2008.



106

[56] Patrick Juola, John I. Noecker, Ariel Stolerman, Michael V. Ryan, Patrick Brennan, and

Rachel Greenstadt. Keyboard-behavior-based authentication. IT Professional, 15(4):8–11,

2013.

[57] Patrick Juola, John Noecker Jr., Ariel Stolerman, Michael V. Ryan, Patrick Brennan, and

Rachel Greenstadt. A dataset for active linguistic authentication. In Proceedings of the Ninth

Annual IFIP WG 11.9 International Conference on Digital Forensics, Orlando, Florida, USA,

January 2013. National Center for Forensic Science.

[58] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice-Hall Inc., 2

edition, 2009.

[59] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classifiers. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 20(3):226–239, 1998.

[60] Bryan Klimt and Yiming Yang. Introducing the enron corpus. In CEAS, 2004.

[61] Mark W Koch, Mary M Moya, Larry D Hostetler, and R Joseph Fogler. Cueing, feature

discovery, and one-class learning for synthetic aperture radar automatic target recognition.

Neural Networks, 8(7):1081–1102, 1995.

[62] Teuvo K. Kohonen, Manfred R. Schroeder, and Thomas S. Huang. Self-Organizing Maps.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition, 2001.

[63] Moshe Koppel, Navot Akiva, Idan Dershowitz, and Nachum Dershowitz. Unsupervised decom-

position of a document into authorial components. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Human Language Technologies - Volume

1, HLT ’11, pages 1356–1364, Stroudsburg, PA, USA, 2011. Association for Computational

Linguistics.

[64] Moshe Koppel and Jonathan Schler. Authorship verification as a one-class classification prob-

lem. In Proceedings of the twenty-first international conference on Machine learning, ICML

’04, pages 62–, New York, NY, USA, 2004. ACM.

[65] Moshe Koppel, Jonathan Schler, and Shlomo Argamon. Computational methods in authorship

attribution. Journal of the American Society for information Science and Technology, 60(1):9–

26, 2009.



107

[66] Moshe Koppel, Jonathan Schler, and Shlomo Argamon. Authorship attribution in the wild.

Language Resources and Evaluation, 45(1):83–94, 2011.

[67] Moshe Koppel, Jonathan Schler, Shlomo Argamon, and Yaron Winter. The “fundamental

problem” of authorship attribution. English Studies, 93(3):284–291, 2012.

[68] Moshe Koppel, Jonathan Schler, and Elisheva Bonchek-Dokow. Measuring differentiability:

Unmasking pseudonymous authors. J. Mach. Learn. Res., 8:1261–1276, December 2007.

[69] Moshe Koppel, Jonathan Schler, and Kfir Zigdon. Automatically determining an anonymous

author’s native language. In Proceedings of the 2005 IEEE international conference on Intel-

ligence and Security Informatics, ISI’05, pages 209–217, Berlin, Heidelberg, 2005. Springer-

Verlag.

[70] Moshe Koppel, Jonathan Schler, and Kfir Zigdon. Determining an author’s native language by

mining a text for errors. In Proceedings of the eleventh ACM SIGKDD international conference

on Knowledge discovery in data mining, KDD ’05, pages 624–628, New York, NY, USA, 2005.

ACM.

[71] Moshe Koppel, Jonathan Schler, and Kfir Zigdon. Determining an author’s native language by

mining a text for errors. In Proceedings of the eleventh ACM SIGKDD international conference

on Knowledge discovery in data mining, KDD ’05, pages 624–628, New York, NY, USA, 2005.

ACM.

[72] Kim Luyckx and Walter Daelemans. Authorship attribution and verification with many au-

thors and limited data. In Proceedings of the 22nd International Conference on Computational

Linguistics - Volume 1, COLING ’08, pages 513–520, Stroudsburg, PA, USA, 2008. Association

for Computational Linguistics.

[73] M.B. Malyutov. Authorship attribution of texts: A review. In Rudolf Ahlswede, Lars Bumer,

Ning Cai, Harout Aydinian, Vladimir Blinovsky, Christian Deppe, and Haik Mashurian, ed-

itors, General Theory of Information Transfer and Combinatorics, volume 4123 of Lecture

Notes in Computer Science, pages 362–380. Springer Berlin Heidelberg, 2006.

[74] Larry M Manevitz and Malik Yousef. One-class svms for document classification. The Journal

of Machine Learning Research, 2:139–154, 2002.



108

[75] Colin Martindale and Dean McKenzie. On the utility of content analysis in author attribution:

The federalist. Computers and the Humanities, 29(4):259–270, 1995.

[76] Andrew McDonald, Sadia Afroz, Aylin Caliskan, Ariel Stolerman, and Rachel Greenstadt. Use

fewer instances of the letter ”i”: Toward writing style anonymization. In Privacy Enhancing

Technologies Symposium (PETS), 2012.

[77] Andrew WE McDonald, Jeffrey Ulman, Marc Barrowclift, and Rachel Greenstadt. Anony-

mouth revamped: Getting closer to stylometric anonymity. 2013.

[78] Charles E Metz. Basic principles of roc analysis. In Seminars in nuclear medicine, volume 8,

pages 283–298. Elsevier, 1978.

[79] F. Mosteller and D. Wallace. Inference and Disputed Authorship: The Federalist. Addison-

Wesley, 1964.

[80] Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John Bethencourt, Emil Stefanov,

Eui Chul Richard Shin, and Dawn Song. On the feasibility of internet-scale author identi-

fication. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 300–314. IEEE,

2012.

[81] Smita Nirkhi and RV Dharaska. Comparative study of authorship identification techniques for

cyber forensics analysis. International Journal of Advanced Computer Science & Applications,

4(5), 2013.

[82] John Noecker Jr. and Michael Ryan. Distractorless authorship verification. In Proceedings

of the Eight International Conference on Language Resources and Evaluation (LREC’12),

Istanbul, Turkey, May 2012. European Language Resources Association (ELRA).

[83] M.S. Obaidat and B. Sadoun. Verification of computer users using keystroke dynamics. Sys-

tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 27(2):261 –269, apr

1997.

[84] T. Ord and SM Furnell. User authentication for keypad-based devices using keystroke analysis.

In Proceedings of the Second International Network Conference (INC-2000), pages 263–272,

2000.

[85] Emanuel Parzen. On estimation of a probability density function and mode. The annals of

mathematical statistics, 33(3):1065–1076, 1962.



109

[86] Hristo Spassimirov Paskov. A regularization framework for active learning from imbalanced

data. PhD thesis, Massachusetts Institute of Technology, 2010.

[87] Tadeusz Pietraszek. Optimizing abstaining classifiers using roc analysis. In Proceedings of the

22nd international conference on Machine learning, pages 665–672. ACM, 2005.

[88] J. Platt. Fast training of support vector machines using sequential minimal optimization. In

B. Schoelkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector

Learning. MIT Press, 1998.

[89] Martin Potthast et al. Pan 2011 lab: Uncovering plagiarism, authorship, and social software

misuse. Conference CFP at http://pan.webis.de/, 2011.

[90] Josyula R Rao and Pankaj Rohatgi. Can pseudonymity really guarantee privacy? In Proceed-

ings of the Ninth USENIX Security Symposium, pages 85–96, 2000.

[91] Gunter Ritter and Maŕıa Teresa Gallegos. Outliers in statistical pattern recognition and an

application to automatic chromosome classification. Pattern Recognition Letters, 18(6):525–

539, 1997.

[92] Stephen Roberts, Lionel Tarassenko, James Pardey, and David Siegwart. A validation index

for artificial neural networks. In Proceedings of Int. Conference on Neural Networks and Expert

Systems in Medicine and Healthcare, pages 23–30, 1994.

[93] Stephen J Roberts, William Penny, and David Pillot. Novelty, confidence and errors in con-

nectionist systems. In Intelligent Sensors (Digest No: 1996/261), IEE Colloquium on, pages

10–1. IET, 1996.

[94] Joseph Rudman. The non-traditional case for the authorship of the twelve disputed federalist

papers: A monument built on sand. Proceedings of ACH/ALLC 2005, 2005.

[95] Conrad Sanderson and Simon Guenter. Short text authorship attribution via sequence kernels,

markov chains and author unmasking: an investigation. In Proceedings of the 2006 Conference

on Empirical Methods in Natural Language Processing, EMNLP ’06, pages 482–491, Strouds-

burg, PA, USA, 2006. Association for Computational Linguistics.

[96] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C

Williamson. Estimating the support of a high-dimensional distribution. Neural computation,

13(7):1443–1471, 2001.



110

[97] D. Shanmugapriya and G. Padmavathi. A survey of biometric keystroke dynamics: Ap-

proaches, security and challenges. Arxiv preprint arXiv:0910.0817, 2009.

[98] T. Sim, S. Zhang, R. Janakiraman, and S. Kumar. Continuous verification using multimodal

biometrics. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(4):687–700,

2007.

[99] Efstathios Stamatatos. A survey of modern authorship attribution methods. Journal of the

American Society for information Science and Technology, 60(3):538–556, 2009.

[100] Benno Stein and Sven Meyer zu Eissen. Intrinsic plagiarism analysis with meta learning. In

PAN, 2007.

[101] Ariel Stolerman, Aylin Caliskan, and Rachel Greenstadt. From language to family and back:

Native language and language family identification from english text. In Proceedings of the

2013 NAACL HLT Student Research Workshop, pages 32–39, Atlanta, Georgia, June 2013.

Association for Computational Linguistics.

[102] Ariel Stolerman, Alex Fridman, Rachel Greenstadt, Patrick Brennan, and Patrick Juola. Ac-

tive linguistic authentication revisited: Real-time stylometric evaluation towards multi-modal

decision fusion. In The Tenth Annual IFIP WG 11.9 International Conference on Digital

Forensics, January 2014.

[103] Ariel Stolerman, Rebekah Overdorf, Sadia Afroz, and Rachel Greenstadt. Classify, but verify:

Breaking the closed-world assumption in stylometric authorship attribution. In The Tenth

Annual IFIP WG 11.9 International Conference on Digital Forensics, January 2014.

[104] D.M.J. Tax. One-class classification. Master’s thesis, Delft University of Technology, Delft,

June 2001.

[105] Laura Mayfield Tomokiyo and Rosie Jones. You’re not from ’round here, are you?: naive

bayes detection of non-native utterance text. In Proceedings of the second meeting of the

North American Chapter of the Association for Computational Linguistics on Language tech-

nologies, NAACL ’01, pages 1–8, Stroudsburg, PA, USA, 2001. Association for Computational

Linguistics.



111

[106] Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer. Feature-rich part-of-

speech tagging with a cyclic dependency network. In Human Language Technology Conference

(HLT-NAACL 2003), 2003.

[107] Oren Tsur and Ari Rappoport. Using classifier features for studying the effect of native lan-

guage on the choice of written second language words. In Proceedings of the Workshop on

Cognitive Aspects of Computational Language Acquisition, CACLA ’07, pages 9–16, Strouds-

burg, PA, USA, 2007. Association for Computational Linguistics.

[108] Fiona J Tweedie, Sameer Singh, and David I Holmes. Neural network applications in stylom-

etry: The federalist papers. Computers and the Humanities, 30(1):1–10, 1996.

[109] Hans van Halteren. Linguistic profiling for authorship recognition and verification. In Proceed-

ings of the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main

Volume, pages 199–206, Barcelona, Spain, July 2004.

[110] Hans van Halteren. Source language markers in europarl translations. In Proceedings of the

22nd International Conference on Computational Linguistics - Volume 1, COLING ’08, pages

937–944, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics.

[111] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

[112] Vladimir N. Vapnik. Statistical learning theory. Wiley, 1998.

[113] R. Wanneroy, E. Bilinski, C. Barras, M. Adda-Decker, and E. Geoffrois. Acoustic-phonetic

modeling of non-native speech for language identification. In Proceedings of the ESCA-NATO

Workshop on Multi-Lingual Interoperability in Speech Technology (MIST), The Netherlands,

1999.

[114] Sze-Meng Jojo Wong and Mark Dras. Contrastive analysis and native language identification.

In Proceedings of the Australasian Language Technology Association Workshop 2009, pages

53–61, Sydney, Australia, December 2009.

[115] Sze-Meng Jojo Wong, Mark Dras, and Mark Johnson. Topic modeling for native language

identification. In Proceedings of the Australasian Language Technology Association Workshop

2011, pages 115–124, Canberra, Australia, December 2011.

[116] R.V. Yampolskiy. Behavioral modeling: an overview. American Journal of Applied Sciences,

5(5):496–503, 2008.



112

[117] Alexander Ypma and Robert PW Duin. Support objects for domain approximation. Citeseer,

1998.

[118] Nan Zheng, Aaron Paloski, and Haining Wang. An efficient user verification system via mouse

movements. In Proceedings of the 18th ACM conference on Computer and communications

security, CCS ’11, pages 139–150, New York, NY, USA, 2011. ACM.

[119] Marc A. Zissman. Automatic language identification using gaussian mixture and hidden

markov models. In Proceedings of the 1993 IEEE international conference on Acoustics, speech,

and signal processing: speech processing - Volume II, ICASSP’93, pages 399–402, Washington,

DC, USA, 1993. IEEE Computer Society.

[120] Sven Meyer zu Eissen and Benno Stein. Intrinsic plagiarism detection. In Advances in Infor-

mation Retrieval, pages 565–569. Springer, 2006.

[121] Sven Meyer zu Eissen, Benno Stein, and Marion Kulig. Plagiarism detection without reference

collections. In Advances in Data Analysis, pages 359–366. Springer Berlin Heidelberg, 2007.



113

Appendix A. Native Language and Language Family Identification

A.1 Feature Breakdown by Experiment

Table A.1: Total number of attributes, rare POS bigrams percentage and spelling errors percentage
for the basic feature set.

Task Total Features Rare POS Bigrams Spelling Errors
Value Avg. SD Avg. % SD % Avg. % SD %

5-L1 771.5 3.53 0.25% 0.001% 20.22% 0.09%
9-L1 vs. 3-LF 831 17 0.26% 0.07% 26.92% 1.40%

3-L1 vs. 3-LF: L1 705.44 18.84 0.25% 0.09% 12.64% 1.51%
3-L1 vs. 3-LF: LF 699.44 13.57 0.30% 0.11% 11.41% 0.84%

2-L1 vs. 2-sub-LF: L1 665.75 14.72 0.18% 0.07% 7.71% 1.04%
2-L1 vs. 2-sub-LF: LF 673.25 8.61 0.18% 0.18% 8.16% 0.69%

3-LF: train on 2, test on 1 766.33 3.21 0.26% 0.001% 21.18% 0.51%

A.2 InfoGain Feature Distributions

Table A.2: Feature-type average percentage (first row) and standard-deviation percentage (second
row) distribution for the InfoGain feature set.

Task Function Words Letter Bigrams Rare POS Bigrams Spelling Errors Common POS Bigrams

5-L1
25% 34% 0% 4.25% 36.75%
1.41% 9.89% 0% 0.35% 8.13%

9-L1 vs 3-LF: L1
20.4% 29.37% 0% 2.68% 47.53%
5.95% 7.76% 0% 1.58% 12.81%

9-L1 vs 3-LF: LF
25.28% 48.62% 0% 0.46% 25.62%
5.11% 6.32% 0% 0.99% 4.82%

3-L1 vs 3-LF: L1
29.94% 33.94% 0.05% 3% 33.05%
11.29% 18.21% 0.33% 5.36% 13.55%

3-L1 vs 3-LF: LF
17.44% 23.55% 0% 1.83% 57.16%
6.64% 13.60% 0% 2.73% 19.41%

2-L1 vs. 2-sub-LF: L1
17.5% 8.25% 0% 2% 72.25%
1.63% 4.43% 0% 2.16% 5.80%

2-L1 vs. 2-sub-LF: LF
27.37% 18.12% 0% 2.12% 52.37%
18.64% 5.61% 0% 1.70% 23.47%

3-LF train on 2, test on 1
23.5% 49.5% 0% 0.5% 26.5%
3.60% 1% 0% 1% 5.19%



114

Appendix B. The Classify-Verify Algorithm

B.1 Complete Classify-Verify Evaluation on EBG with 〈500, 2〉-chars

   

   

   
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.1: Classify-Verify F1-scores on EBG using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0.



115

B.2 Complete Classify-Verify Evaluation on EBG with Writeprints

   

   

   
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.2: Classify-Verify F1-scores on EBG using the Writeprints feature set as a function of
p = 0.1, ..., 1.0.



116

B.3 Complete Classify-Verify Evaluation on BLOGS with 〈500, 2〉-chars

   

   
   

 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.3: Classify-Verify F1-scores on BLOGS using the 〈500, 2〉-chars feature set as a function
of p = 0.1, ..., 1.0.



117

B.4 Complete Classify-Verify Evaluation on BLOGS with Writeprints

   

   

   
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.4: Classify-Verify F1-scores on BLOGS using the Writeprints feature set as a function of
p = 0.1, ..., 1.0.



118

B.5 Complete Classify-Verify Evaluation on EBG with 〈500, 2〉-chars Using p-Induced

Verification Thresholds

   

   

   

 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.5: Classify-Verify F1-scores on EBG using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0, using p-induced verification thresholds.



119

B.6 Complete Classify-Verify Evaluation on EBG with 〈500, 2〉-chars Using Robust

Thresholds

   

   

   

 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.6: Classify-Verify F1-scores on EBG using the 〈500, 2〉-chars feature set as a function of
p = 0.1, ..., 1.0, using robust verification thresholds.



120

B.7 Complete Classify-Verify Evaluation on BLOGS with 〈500, 2〉-chars Using p-Induced

Verification Thresholds

   

   

   
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.7: Classify-Verify F1-scores on BLOGS using the 〈500, 2〉-chars feature set as a function
of p = 0.1, ..., 1.0, using p-induced verification thresholds.



121

B.8 Complete Classify-Verify Evaluation on BLOGS with 〈500, 2〉-chars Using Robust

Thresholds

   

   

   
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.8: Classify-Verify F1-scores on BLOGS using the 〈500, 2〉-chars feature set as a function
of p = 0.1, ..., 1.0, using robust verification thresholds.



122

B.9 Complete Classify-Verify Evaluation on EBG Imitation Attack Documents with

〈500, 2〉-chars

   

   

   
 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.9: Classify-Verify F1-scores on EBG imitation attack documents using the 〈500, 2〉-chars
feature set as a function of p = 0.1, ..., 1.0.



123

B.10 Complete Classify-Verify Evaluation on EBG Imitation Attack Documents with

〈500, 2〉-chars Using Non-Attack p-Induced Thresholds

   

   

   
 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.10: Classify-Verify F1-scores on EBG imitation attack documents using the 〈500, 2〉-chars
feature set as a function of p = 0.1, ..., 1.0, using p-induced verification thresholds calculated in
non-attack settings.



124

B.11 Complete Classify-Verify Evaluation on EBG Obfuscation Attack Documents

with 〈500, 2〉-chars

   

   

   
 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.11: Classify-Verify F1-scores on EBG obfuscation attack documents using the 〈500, 2〉-
chars feature set as a function of p = 0.1, ..., 1.0.



125

B.12 Complete Classify-Verify Evaluation on EBG Obfuscation Attack Documents

with 〈500, 2〉-chars Using Non-Attack p-Induced Thresholds

   

   

   
 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.12: Classify-Verify F1-scores on EBG obfuscation attack documents using the 〈500, 2〉-
chars feature set as a function of p = 0.1, ..., 1.0, using p-induced verification thresholds calculated
in non-attack settings.



126

B.13 Complete Classify-Verify Evaluation on BLOGL with 〈500, 2〉-chars

   

 
  

   
 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + V 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Vaσ 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + Gap-Conf 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM + P1-P2-Diff 

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just V 

Classify

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vσ 

CV/Flexible

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Just Vaσ 

CV/Strict

Figure B.13: Classify-Verify F1-scores on BLOGL using the 〈500, 2〉-chars feature set as a function
of p = 0.1, ..., 1.0.



127

B.14 Complete Classify-Verify Evaluation on AAUTH with 〈500, 2〉-chars

 

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

 
 
 

        

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

               

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

      P1 

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

      P1 P2      

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

1
 
 
 

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

2
 
 
 

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

 
 
 
 

0

012

014

016

018

1

011 012 013 014 015 016 017 018 019 1

yyyyyyyy yeeeyeeyeye

0

012

014

016

018

1

011 012 013 014 015 016 017 018 019 1

yeetttytt

0

011

012

013

014

015

016

017

018

019

1

011 012 013 014 015 016 017 018 019 1

Figure B.14: Classify-Verify F1-scores on AAUTH using the 〈500, 2〉-chars feature set as a function
of p = 0.1, ..., 1.0, for user input sliding windows of size 5, 10, 20 and 30 minutes with 1 minute
overlap.



128

B.15 Complete F1-Scores for All Figures Illustrated in Sec. 6.3

Table B.1: Complete F1-scores for Classify-Verify applied on EBG , for the figures illustrated in
Sec. 6.3.1 and Sec. 6.3.2.

EBG

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SVM + Vσ
Classify 0.074 0.182 0.272 0.392 0.471 0.569 0.644 0.731 0.805 0.889
CV/flexible 0.911 0.847 0.804 0.768 0.757 0.757 0.755 0.781 0.818 0.889
CV/strict 0.907 0.835 0.783 0.745 0.729 0.728 0.727 0.757 0.798 0.889
SVM + P1

Classify 0.074 0.182 0.272 0.392 0.471 0.569 0.644 0.731 0.805 0.889
CV/flexible 0.908 0.905 0.902 0.883 0.873 0.876 0.876 0.877 0.886 0.926
CV/strict 0.905 0.890 0.876 0.849 0.829 0.825 0.818 0.816 0.829 0.898
p-induced thresholds, SVM + Vσ
Classify 0.074 0.182 0.272 0.392 0.471 0.569 0.644 0.731 0.805 0.889
CV/flexible 0.908 0.842 0.803 0.768 0.752 0.751 0.750 0.773 0.805 0.875
CV/strict 0.904 0.829 0.782 0.743 0.723 0.721 0.728 0.757 0.795 0.885
p-induced thresholds, SVM + P1

Classify 0.074 0.182 0.272 0.392 0.471 0.569 0.644 0.731 0.805 0.889
CV/flexible 0.906 0.893 0.892 0.877 0.868 0.873 0.871 0.873 0.884 0.926
CV/strict 0.902 0.877 0.867 0.846 0.827 0.823 0.812 0.816 0.825 0.894
Robust thresholds, SVM + Vσ
Classify 0.074 0.182 0.272 0.392 0.471 0.569 0.644 0.731 0.805 0.889
CV/flexible 0.844 0.785 0.767 0.751 0.752 0.754 0.749 0.767 0.781 0.811
CV/strict 0.842 0.776 0.750 0.731 0.725 0.722 0.717 0.734 0.753 0.807
Robust thresholds, SVM + P1

Classify 0.074 0.182 0.272 0.392 0.471 0.569 0.644 0.731 0.805 0.889
CV/flexible 0.665 0.802 0.856 0.873 0.872 0.870 0.856 0.829 0.811 0.799
CV/strict 0.662 0.791 0.834 0.839 0.828 0.818 0.796 0.766 0.752 0.774

Table B.2: Complete F1-scores for Classify-Verify applied on BLOGS , for the figures illustrated in
Sec. 6.3.1 and Sec. 6.3.2.

BLOGS

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SVM + V aσ
Classify 0.062 0.122 0.184 0.231 0.252 0.303 0.330 0.368 0.390 0.437
CV/flexible 0.894 0.848 0.784 0.725 0.698 0.663 0.639 0.626 0.607 0.604
CV/strict 0.863 0.774 0.648 0.542 0.475 0.438 0.415 0.403 0.396 0.439
SVM + P1

Classify 0.062 0.122 0.184 0.231 0.252 0.303 0.330 0.368 0.390 0.437
CV/flexible 0.893 0.824 0.834 0.807 0.800 0.777 0.769 0.770 0.770 0.765
CV/strict 0.862 0.746 0.683 0.595 0.525 0.469 0.422 0.397 0.394 0.445
p-induced thresholds, SVM + V aσ
Classify 0.062 0.122 0.184 0.231 0.252 0.303 0.330 0.368 0.390 0.437
CV/flexible 0.891 0.848 0.782 0.726 0.689 0.647 0.614 0.614 0.587 0.586
CV/strict 0.858 0.773 0.649 0.531 0.476 0.440 0.414 0.398 0.391 0.426
p-induced thresholds, SVM + P1

Classify 0.062 0.122 0.184 0.231 0.252 0.303 0.330 0.368 0.390 0.437
CV/flexible 0.890 0.829 0.829 0.798 0.786 0.767 0.760 0.760 0.760 0.756
CV/strict 0.858 0.749 0.681 0.588 0.521 0.463 0.419 0.395 0.394 0.444
Robust thresholds, SVM + V aσ
Classify 0.062 0.122 0.184 0.231 0.252 0.303 0.330 0.368 0.390 0.437
CV/flexible 0.778 0.777 0.703 0.667 0.650 0.638 0.630 0.624 0.609 0.600
CV/strict 0.756 0.721 0.604 0.539 0.478 0.437 0.388 0.358 0.333 0.365
Robust thresholds, SVM + P1

Classify 0.062 0.122 0.184 0.231 0.252 0.303 0.330 0.368 0.390 0.437
CV/flexible 0.534 0.618 0.700 0.747 0.762 0.763 0.760 0.758 0.752 0.704
CV/strict 0.517 0.572 0.585 0.565 0.511 0.467 0.416 0.363 0.320 0.308



129

Table B.3: Complete F1-scores for Classify-Verify applied on EBG in adversarial settings, for the
figures illustrated in Sec. 6.3.3.

EBG in Adversarial Settings

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Obfuscation: oracle thresholds on attack data, SVM + Vσ
Classify 0.014 0.022 0.034 0.037 0.031 0.039 0.047 0.051 0.064 0.064
CV/flexible 0.966 0.943 0.924 0.917 0.924 0.907 0.901 0.897 0.872 0.868
CV/strict 0.871 0.715 0.598 0.464 0.362 0.248 0.180 0.101 0.091 0.075
Obfuscation: p-induced thresholds from non-attack data, SVM + P1

Classify 0.014 0.022 0.034 0.037 0.031 0.039 0.047 0.051 0.064 0.064
CV/flexible 0.930 0.925 0.884 0.869 0.870 0.808 0.781 0.712 0.558 0.317
CV/strict 0.838 0.699 0.573 0.427 0.322 0.221 0.151 0.069 0.038 0.028
Imitation: oracle thresholds on attack data, SVM + P1

Classify 0.018 0.013 0.019 0.015 0.014 0.006 0.004 0.006 0.001 0
CV/flexible 0.954 0.957 0.948 0.954 0.960 0.972 0.978 0.972 0.993 1
CV/strict 0.879 0.716 0.589 0.447 0.340 0.224 0.147 0.066 0.021 0
Imitation: p-induced thresholds from non-attack data, SVM + P1

Classify 0.018 0.013 0.019 0.015 0.014 0.006 0.004 0.006 0.001 0
CV/flexible 0.899 0.911 0.896 0.851 0.822 0.787 0.738 0.616 0.463 0.306
CV/strict 0.832 0.694 0.568 0.410 0.307 0.198 0.138 0.047 0.016 0

Table B.4: Complete F1-scores for Classify-Verify applied on BLOGL, for the figures illustrated in
Sec. 6.3.4.

BLOGL

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SVM + V aσ
Classify 0.076 0.154 0.219 0.277 0.335 0.386 0.428 0.438 0.419 0.446
CV/flexible 0.895 0.837 0.794 0.770 0.745 0.728 0.718 0.707 0.691 0.682
CV/strict 0.860 0.763 0.689 0.632 0.583 0.548 0.521 0.479 0.433 0.453
SVM + P1

Classify 0.076 0.154 0.219 0.277 0.335 0.386 0.428 0.438 0.419 0.446
CV/flexible 0.926 0.894 0.868 0.845 0.824 0.805 0.777 0.677 0.536 0.446
CV/strict 0.892 0.817 0.748 0.683 0.625 0.575 0.532 0.436 0.398 0.446



130

Table B.5: Complete F1-scores for Classify-Verify applied on AAUTH , for the figures illustrated in
Sec. 6.3.5.

AAUTH

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
30m, SVM + P1

Classify 0.065 0.149 0.229 0.304 0.372 0.426 0.486 0.543 0.596 0.655
CV/flexible 0.883 0.780 0.688 0.629 0.655 0.674 0.687 0.704 0.719 0.736
CV/strict 0.868 0.730 0.608 0.556 0.565 0.566 0.555 0.564 0.591 0.659
30m, SVM + V
Classify 0.065 0.149 0.229 0.304 0.372 0.426 0.486 0.543 0.596 0.655
CV/flexible 0.883 0.786 0.702 0.623 0.560 0.539 0.547 0.582 0.629 0.674
CV/strict 0.868 0.738 0.611 0.500 0.438 0.431 0.449 0.504 0.572 0.656
20m, SVM + P1

Classify 0.060 0.138 0.212 0.267 0.324 0.377 0.424 0.483 0.531 0.576
CV/flexible 0.891 0.797 0.724 0.715 0.726 0.719 0.714 0.716 0.717 0.714
CV/strict 0.867 0.724 0.627 0.602 0.570 0.532 0.511 0.514 0.538 0.584
20m, SVM + V
Classify 0.060 0.138 0.212 0.267 0.324 0.377 0.424 0.483 0.531 0.576
CV/flexible 0.892 0.802 0.720 0.659 0.592 0.541 0.548 0.566 0.588 0.610
CV/strict 0.868 0.729 0.602 0.501 0.421 0.406 0.417 0.457 0.513 0.577
10m, SVM + P1

Classify 0.053 0.120 0.184 0.231 0.279 0.320 0.356 0.402 0.440 0.475
CV/flexible 0.899 0.846 0.815 0.788 0.760 0.736 0.725 0.712 0.701 0.692
CV/strict 0.867 0.766 0.690 0.620 0.548 0.485 0.453 0.441 0.449 0.482
10m, SVM + V
Classify 0.053 0.120 0.184 0.231 0.279 0.320 0.356 0.402 0.440 0.475
CV/flexible 0.899 0.814 0.735 0.677 0.618 0.567 0.537 0.538 0.540 0.543
CV/strict 0.867 0.722 0.589 0.479 0.391 0.366 0.365 0.388 0.426 0.476
5m, SVM + P1

Classify 0.047 0.103 0.153 0.189 0.223 0.251 0.277 0.308 0.336 0.361
CV/flexible 0.906 0.858 0.822 0.796 0.769 0.745 0.727 0.708 0.691 0.677
CV/strict 0.867 0.754 0.660 0.577 0.492 0.416 0.371 0.346 0.343 0.364
5m, SVM + V
Classify 0.047 0.103 0.153 0.189 0.223 0.251 0.277 0.308 0.336 0.361
CV/flexible 0.906 0.836 0.771 0.729 0.684 0.648 0.617 0.575 0.539 0.509
CV/strict 0.867 0.722 0.586 0.475 0.367 0.324 0.306 0.307 0.328 0.362




	List of Tables
	List of Figures
	Abstract
	Introduction
	Thesis Organization

	Background
	One-Class Classification
	One-Class and Two-Class Classification Problems
	Methods
	Towards Authorship Verification

	Stylometry
	Stylometry Problems
	Linguistics and Features
	Learning and Classification

	Current State of Authorship Verification
	Unmasking
	Distractorless Authorship Verification
	Other Authorship Verification Approaches

	Synthesis
	Directions for Continued Research in Authorship Verification

	Conclusions

	JStylo: an Authorship Attribution Framework
	Native Language and Language Family Identification
	Background
	Corpus
	Methodology
	Feature Selection
	Classifier

	Evaluation
	5-Class Languages
	9-Class Languages, 3-Class Families
	3-Class Languages, 3-Class Families
	3-Class Families: Train on 2, Test on 1
	9-Class Languages, Reclassify by Family

	Discussion
	Conclusions

	Realtime Stylometric Modalities for Active Authentication
	Background
	Corpus
	Methodology
	Challenges and Limitations
	Initial Evaluation
	Real-Time Approach

	Evaluation and Results
	Conclusions

	From Closed to Open-World Stylometry: The Classify-Verify Algorithm
	Problem Statement
	Hypothetical Scenario
	Problems with Closed-World Models

	Methodology
	Real-Time Evaluation Methodology
	Flexible vs. Strict Evaluation
	Datasets
	Feature Set
	Classify: Closed-World Setup
	Verify: Open-World Setup
	The Classify-Verify Algorithm

	Evaluation
	Main Evaluation
	Auto-Selected Verification Thresholds
	Adversarial Settings
	Many Authors in Online Domain Settings
	Active Authentication Settings
	Additional Experiments

	Conclusions

	Conclusion
	Native Language and Language Family Identification
	Feature Breakdown by Experiment
	InfoGain Feature Distributions

	The Classify-Verify Algorithm
	Complete Classify-Verify Evaluation on EBG with "426830A 500,2 "526930B -chars
	Complete Classify-Verify Evaluation on EBG with Writeprints
	Complete Classify-Verify Evaluation on BLOGS with "426830A 500,2 "526930B -chars
	Complete Classify-Verify Evaluation on BLOGS with Writeprints
	Complete Classify-Verify Evaluation on EBG with "426830A 500,2 "526930B -chars Using p-Induced Verification Thresholds
	Complete Classify-Verify Evaluation on EBG with "426830A 500,2 "526930B -chars Using Robust Thresholds
	Complete Classify-Verify Evaluation on BLOGS with "426830A 500,2 "526930B -chars Using p-Induced Verification Thresholds
	Complete Classify-Verify Evaluation on BLOGS with "426830A 500,2 "526930B -chars Using Robust Thresholds
	Complete Classify-Verify Evaluation on EBG Imitation Attack Documents with "426830A 500,2 "526930B -chars
	Complete Classify-Verify Evaluation on EBG Imitation Attack Documents with "426830A 500,2 "526930B -chars Using Non-Attack p-Induced Thresholds
	Complete Classify-Verify Evaluation on EBG Obfuscation Attack Documents with "426830A 500,2 "526930B -chars
	Complete Classify-Verify Evaluation on EBG Obfuscation Attack Documents with "426830A 500,2 "526930B -chars Using Non-Attack p-Induced Thresholds
	Complete Classify-Verify Evaluation on BLOGL with "426830A 500,2 "526930B -chars
	Complete Classify-Verify Evaluation on AAUTH with "426830A 500,2 "526930B -chars
	Complete F1-Scores for All Figures Illustrated in Sec. 6.3


