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Abstract 

With an estimated annual incidence of over 2.2 million cases across the world, critical size bone 

defects pose an unmet challenge requiring improved therapeutic strategies. Current clinical 

solutions, namely autologous and allogeneic grafts, are associated with a number of 

complications which include supply shortage, donor site morbidity and immune rejection. Given 

the poor vascularization observed with bioresorbable bone template scaffolds, some have turned 

to engineering the endogenous repair pathway by developing implantable cartilage templates 

susceptible to the bone transformation process known as endochondral ossification seen in native 

defects. Yet considerations relating to the implants’ mechanical behavior, porosity and swelling, 

all of which are crucial to mimicking the endochondral ossification process, remain largely 

unaddressed in past studies. Through a parameter-driven preliminary study, we’ve devised a 

method to improve spatial resolution and property modulation by incorporating additive 

manufacturing into the fabrication process of cartilage templates destined for ossification-

mediated defect repair. Based on our findings that hydrogel extrusion introduces structural 

discontinuities leading to excessive swelling and time-dependent mechanical deformation, we 

advance a biofabrication method involving (1) the 3D printing of a porous hybrid construct 

comprised of a stiff polycaprolactone network interwoven with sacrificial poly(ethylene glycol) 

material, (2) the casting of a cell-laden hydrogel material into the primary porous network and 

(3) the evacuation of the sacrificial poly(ethylene glycol) material to create a secondary porous 

network. The architecture of the generated templates was modulated by varying the widths of the 

secondary pores and hydrogel struts. Generated templates were subjected to geometric analysis 

by photography, porosity evaluation by micro-computed tomography, stress relaxation testing 

and a swelling study. The incorporation of a stiff network constrained swelling by more than half 

while decreased porosity-to-hydrogel content ratios mitigated time-dependent deformation.
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1. Background 

1.1. Bone defect injury and existing solutions 

 Though bone has an exceptional capacity for regeneration, repairing severe bone defects 

remains a critical challenge. Indeed, once defects surpass a critical size, native pathways are no 

longer able to regenerate the defect area, leading to the formation of non-union gaps which 

amount to 100,000 fracture cases each year in the US alone [1]. The most salient and grave 

examples of such non-union gaps occur in long bones, and more specifically across the mid-

section (diaphysis or metaphysis) of long bones [2]. In such cases, gap lengths need only be 2.5 

to 3 times the diameter of the affected long bone for self-healing to not occur [3], though smaller 

gaps may also lead to non-unions. In tibias, for instance, a 25 mm gap is sufficient to preclude 

regeneration without intervention [4]. Overall, over 2.2 million annual cases in the world 

primarily linked to traumatic injury require the use of bone grafting, generating an annual cost of 

$2.5 billion [5]. Moreover, despite the predominance of high-energy injuries in the occurrence of 

bone defects, a number of other conditions may also lead to the formation of non-unions gaps in 

bones. Indeed, osteosarcoma, the most common type of primary bone tumor which represents 

1% of all cancers in the US, requires the resection of tumors, 85.5% of which occur in long 

bones, often leaving critical size bone gaps at excision sites [6]. In addition, bones may succumb 

to infection by bacteria from species including Staphylococcus, Pseudomonas and Aspergillus [7, 

8]. Such infection leads to an inflammatory bone disorder known as osteomyelitis, characterized 

by bone necrosis and destruction, and occurring in long bones in approximately 55% of cases 

[9]. Whether due to trauma, cancer or infection, the negative impacts of bone defects reverberate 

from local responses, which include inflammation, widespread soft tissue damage and 
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compromised vascularity, to functional consequences such as loss of mobility due to severe 

instability and possible sepsis from infection [10].  

Thus, almost invariably, massive bone defects require immediate surgical intervention in 

the form of excision/debridement followed by fixation through the use of compression plates, 

nails, wires or cement [11]. However, despite its necessity, fixation alone is not a viable 

treatment strategy since, in accordance with Wolff’s law, the resulting mechanical unloading 

from immobilization leads to bone loss in regions adjacent to the defect site [12, 13]. Bridging 

critical size gaps to promote regeneration therefore constitutes a vital complement to temporary 

fixation in intervention strategies for non-union defects. Though autografts and allografts remain 

the gold standard in bone graft substitutes, they are associated with a number of complications, 

including donor site morbidity and supply shortage for autografts [14], immune rejection, 

infectious disease transmission and socio-religious refusal for allografts [5, 11]. Accordingly, a 

number of biomaterial-based strategies are being investigated in order to develop a graft capable 

of osseointegration and load bearing functionality while promoting regeneration. 

 Metal and ceramic implants, coupled with osseointegrative methods including surface 

functionalization/coating [15] and therapeutic release [16], constitute one area of investigation. 

However, the non-degradable nature of these implants precludes the possibility for full repair 

through resorption and regeneration. Another active area of investigation has therefore been the 

development of bioresorbable polymer scaffolds as potential grafts. This strategy aims to induce 

the transition from implanted scaffold to newly generated bone tissue through the encapsulation 

of cells, such as mesenchymal stem cells (MSCs) [17], or the incorporation of 

immunomodulatory drugs [18] and proteins such as bone morphogenetic proteins (BMPs) [19]. 

Such approaches are governed by spatiotemporal requirements pertaining to the biomechanical 
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properties of the scaffolds. Indeed, upon implantation, the scaffolds must first match the physical 

demands of the surrounding bone to withstand native loads without contributing to stress 

shielding [20, 21]. Subsequently, the structure and fixation positioning of the scaffolds must 

trigger adequate mechanotransduction of seeded or surrounding cells, thereby promoting both 

osseointegration at the scaffold interface and tissue differentiation into bone as the scaffold 

degrades [22, 23]. Yet throughout the myriad of approaches considered, limitations remain in 

achieving the balance between structure, mechanical behavior and function needed to ensure 

both load bearing requirements upon implantation and susceptibility to resorption for gradual 

bone regeneration [24]. Specifically, the frequent failure of these resorbable scaffolds upon 

implantation to defect sites can often be attributed to insufficient integration due to poor 

vascularization [21]. Thus, despite a steadily increasing bone graft substitute market, factor- and 

cell-based grafts, which have the greatest potential for personalized regeneration, still lag behind 

non-resorbable grafts and allografts [25]. 

 The preponderance of bone defects today, occasioned by a growing exercise trend, an 

aging population and an increased incidence of bone-weakening conditions including 

osteoporosis and diabetes mellitus [26, 27], has therefore escalated the unmet need for a bone 

repair strategy capable of complete regeneration. 

 

1.3. The endochondral ossification approach 

Recently, in light of shortcomings with respect to vascularization and integration in 

efforts to engineer bone, some investigators have turned their attention to the native bone defect 

repair pathway, known as endochondral ossification. In this process, ruptured vessel leakage at 



4 

initial site of injury leads to the formation of a hematoma (fibrin clot) which becomes a center of 

inflammation due to the release of TGF-β1 and PDGF by platelets [28]. Over the following 24 

hours, recruited macrophages secreting TNF-α and IL-1 promote the invasion of blood vessels 

along with fibroblasts and osteochondroprogenitor cells which transform the hematoma into 

granulation tissue and subsequently, a fibrocartilaginous matrix known as a soft callous [28, 29]. 

The chondrocytes present in this matrix then proliferate, become hypertrophic, and mineralize 

their surrounding environment before undergoing apoptosis. Concurrently, invading blood 

vessels precipitate bone formation through vascularization as well as the recruitment of 

remodeling osteoclasts and bone forming osteoblasts [29, 30], gradually leading to the formation 

of a hard callus and, finally, trabecular bone tissue. This process resembles quite closely the 

embryonic development of long bones with the added involvement of inflammation [28, 31]. 

Furthermore, endochondral ossification hinges on the precise sequential and targeted delivery of 

a number of cytokines, proteins and growth factors, including angiogenic factors such as VEGF, 

matrix degrading proteases such as MMPs, as well as chondrogenic and osteogenic factors such 

as BMP-2 [29]. 

 In an attempt to engineer the repair pathway rather than the tissue itself, an increasing 

number of studies in recent years have sought to mimic this endochondral ossification process 

for bone regeneration. Since endochondral ossification is endogenous to long bones during 

development and most widely studied in long bones for repair [30, 32], these efforts remain 

mostly within the purview of long bone defect regeneration. There are currently numerous 

approaches aiming to replicate endochondral ossification, all of which consist in generating a 

cartilage template using chondrocytes or MSCs as well as various bioconjugation methods and 

biomaterials. These existing techniques include employing pure MSC aggregates which are 
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differentiated using chondrogenic medium [33], MSCs encapsulated in hydrogel casts [34, 35], 

MSCs seeded onto porous scaffolds [36, 37] and MSCs bioprinted into simple lattice or non-

porous structures [38-40]. 

 Throughout these studies, cartilage-like templates susceptible to ossification upon 

implantation show greater success with bone defect repair compared to cell-laden scaffolds 

ushered down a direct osteogenic pathway [35, 41]. Taken together with the extensive link 

previously established between hypertrophic chondrocytes and VEGF secretion vital to vessel 

ingrowth [41], these studies point to vascularization as being both a primary determinant of bone 

regeneration outcome and the main discriminant between scaffolds designated for either direct 

osteogenesis or endochondral ossification. We note however that, though all these studies devise 

specific delivery sequences of cytokines and growth factors to drive scaffolds down the multi-

step ossification pathway, they do not establish the spatial control needed to recapitulate the 

regional heterogeneity of the ossification milieu. Indeed, since vessel invasion occurs 

progressively from the outer edges of the callus, the active area of ossification corresponds to an 

interface between callus tissue and bone which shifts gradually further into the callus until the 

defect is fully healed [28, 42, 43]. Thus, the ossification milieu consists of dynamic yet 

regionally organized elements characterized by specific structures, mechanical properties and 

material behaviors. 

 

1.4. Additive manufacturing as a biofabrication technology 

Additive manufacturing techniques, also known as 3D printing, allow for precise spatial 

control in the fabrication of tissue constructs. Indeed, bioprinting, which generates constructs 
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through layer-by-layer deposition of cell-laden hydrogel material, has emerged as an 

advantageous approach over more traditional methods, such as molding, that do not offer 

sufficient control over the intricacies associated with engineering complex tissues [44]. In 

particular, bioprinting has the potential to allow for the encapsulation and patterning of multiple 

cell types as well as to ensure accurate control over construct geometry at the 

microenvironmental level. Though current bioprinting approaches include inkjet and laser-

assisted printing, extrusion printing has become an appealing option for biofabrication due to its 

affordability, capacity for high cell density and adaptability for materials, specifically hydrogels, 

with a diverse range of properties (viscosity, crosslinking/solidification method, etc.) [45-48].  

Additive manufacturing is especially suited to bone defect repair since it is capable of 

rapidly generating individual scaffolds with bulk shapes which fit the boundaries of each 

targeted defect, making it a feasible fabrication technique for both prototyping and testing as 

well as scaled-up personalized production. Moreover, through the use of multiple extrusion 

heads, this technology is capable of producing multi-material scaffolds, most notably cell-laden 

or factor-conjugated hydrogels reinforced with stiff thermoplastic networks. Noting these 

advantages, Daly et al. most recently fabricated hypertrophic cartilage templates from porous 

MSC-laden hydrogels reinforced with polycaprolactone (PCL) suitable for bone engineering 

through implantation [49]. Though it did validate additive manufacturing as a promising 

biofabrication strategy for bone defect repair, the study did not investigate the specific impact of 

the extrusion process itself on defect outcome nor did it evaluate the role of material behavior 

and architecture by modulating geometric parameters including pore size as well as hydrogel and 

PCL strut sizes. 
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In order to develop robust, consistent and scalable biofabrication platforms, some efforts 

have certainly been made to characterize the impact of bioprinting parameters, including printing 

speed and pressure as well as needle diameter, on extruded construct properties such as 

resolution [50, 51]. However, investigation into the mechanical behaviour of extruded constructs 

as compared to conventional biofabrication techniques remains lacking. Indeed, previous 

mechanical characterization studies of extruded constructs are largely constrained to the elastic 

component of construct behaviour [52-54] and do not extend to evaluating the mechanism 

behind differences in both elastic and time-dependent mechanical properties resulting from the 

bioprinting process itself [55]. Another crucial characteristic of scaffolds, most notably 

hydrogels, which remains unexplored with respect to additive manufacturing is the capacity to 

undergo swelling and shrinking as a result of fluid flow in response to imbalances between 

osmotic or mechanical pressure, electrostatic forces and elastic restoring forces [56, 57]. 

 Given these gaps in the literature, the application of additive manufacturing to bone 

defect repair warrants a preliminary identification of properties most crucial to the ossification 

process, followed by an investigation of the specific impact of the additive manufacturing 

process on these properties, and culminating in the establishment of precise control over these 

properties through the modulation of printing parameters. 
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1.4. Construct property considerations 

1.4.1. Structure and mechanical behavior 

Arguably the most influential and certainly most evident characteristic governing the 

development, homeostasis and repair of bone is mechanical behavior, a property which is 

determined not only by material composition but also by structure [58]. Notably, it has been 

widely established that the microstructure of trabecular bone, which is comprised of a tortuous 

network of interconnected rod and plate elements [59, 60], plays a critical role in determining 

stress distribution profiles experienced during mechanical loading [61]. Furthermore, the effects 

of regional mechanical stresses on endochondral ossification have previously been demonstrated 

extensively [62-64]. In addition, as previously mentioned, the ossification process does not take 

place uniformly across the callus tissue, but rather progresses inwards from the outer edges [28, 

42, 43], an occurrence which very likely depends in part on regional differences in structural and 

mechanical properties. Taken together, these findings underline the pivotal role of structure and 

mechanical behavior for cartilage templates in their outcome vis-à-vis ossification. Moreover, 

the importance of mechanical behavior in endochondral ossification engineering is further 

supported by implantation considerations for the cartilage template since hydrogels alone are not 

sufficiently strong. Reinforcements that raise the bulk modulus of the template whilst 

maintaining adequate strength for a sufficiently high fracture strain are indeed needed to properly 

affix implant to bone using existing surgical methods, which include press fitting and attachment 

to fixation plates [11, 65, 66]. 
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1.4.2. Swelling behavior 

Another hallmark phenomenon associated with endochondral ossification as well as other 

injuries involving inflammation is swelling, which occurs as ruptured vessel leakage and fluid 

accumulation at a site of injury contributes to tissue turgescence. Findings that swelling is linked 

and likely contributes to heterotopic ossification in soft tissues underline fluid flow as being a 

potentially important regulator in endochondral ossification [67]. Less directly, swelling is 

known to also impact mechanical behavior, most notably time-dependent mechanical properties, 

since, in cartilage-like constructs, water flow governs stress relaxation [68] and since, in native 

cartilage, glycosaminoglycans (GAGs) create swelling pressure through repulsion between 

negatively charged components to ensure adequate mechanical responses to loading [69]. 

Despite these clear indirect and putative direct roles in endochondral ossification, swelling may 

also cause unwanted deformation which may affect structural, compositional and mechanical 

properties in hydrogel-based scaffolds, thereby disrupting the engineered repair process [70]. 

1.4.1. Porosity 

 Finally, porosity is also a key characteristic of both bone and cartilage tissues as well as 

their engineered construct counterparts [71]. Indeed, as previously discussed, the architecture of 

a trabecular bone network, which is mirrored in and tantamount to the complementing macro-

scale porosity network, dictates regional stress distribution profiles during mechanical loading 

[61]. Similarly, in engineered cartilage constructs, it is in fact the microporous network that 

determines the rate and extent of fluid flow through each construct, and consequently the time-

dependent mechanical properties of each construct [68]. In addition to these microporous 

networks which also control the transport of nutrients and waste, engineered constructs also 
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possess maco-scale pores (1) to raise the fluid content available to the constructs by increasing 

both the fluid reservoir volume and the surface area of exposure to fluids, and (2) to 

accommodate seeded cells, newly formed tissue and invading vasculature for construct 

integration and remodeling [68, 72]. Moreover, parameters such as porosity, pore size and pore 

interconnectedness have been shown to affect rates of scaffold degradation, a process which 

must be tuned to match the rate of tissue formation [71]. 

 If follows from these findings that, for different materials, various types of porosities 

across a range of spatial scales amount to distinct mechanisms for mechanical reinforcement, 

fluid uptake and molecular transport. In soft materials, micropores may mimic the role of GAGs 

in controlling mechanical response through fluid flow while macropores may contribute to water 

uptake into the structure which in turn constitutes another mechanism of bulk volumetric 

swelling and deformation. In stiff materials, micropores may increase susceptibility to fracture 

[73] while macropores determine bulk elastic moduli and stress distributions during loading, 

much like in trabecular bone. Therefore, given that the active site of ossification during native 

bone repair is an interface between stiff bone material and soft cartilage-like callus material, 

there exists a tight interplay between properties relating to mechanical behavior, swelling and 

porosity which will be at play in constructs targeting bone repair through endochondral 

ossification. 

 

1.5. Description of proposed approach 

In light of the largely unexplored relationship between the mechanical behavior, swelling 

and porosity of engineered cartilage templates, especially in the context of using additive 
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manufacturing, we propose to develop a 3D printing-based biofabrication method for cartilage 

templates through a careful, parameter-driven study. This study will aim to concurrently probe 

the impact of extrusion on mechanical behavior, swelling and porosity in order to establish 

control over these properties through printing parameters as well as to inform decisions about the 

cartilage template fabrication strategy. 

As both an exercise in translational design and a foundation for the later establishment of 

design criteria and constraints, we’ve also laid forth a multi-step personalized intervention 

strategy for critical bone defects resulting from trauma, cancer or infection, as illustrated in 

Figure 1. We first envision a preliminary intervention whereby the site of injury is immobilized 

using existing techniques at the discretion of the orthopedic surgeon (ex: compression plates, 

intramedullary rods or Kirschner wires). Using defect boundary conditions obtained from 3D 

imaging, most likely CT-scanning, as well as mesenchymal stem cells isolated from the patient’s 

lipoaspirate [74] and differentiated into chondrocytes, engineered constructs would then be 

produced in accordance with the developed 3D printing-based biofabrication method. Consisting 

of a porous chondrocyte-laden hydrogel reinforced with a stiff network and shaped to fit the site 

of injury, each tailored construct is subsequently cultured until mature cartilage tissue replaces 

the hydrogel scaffold, at which point the construct is implanted to the site of injury and held in 

place through press fitting and compression plate fixation. Once the construct is fully ossified 

and integrated into the surrounding bone, the compression plates may finally be surgically 

removed. In addition to (1) the tailorability that 3D printing offers in terms of bulk geometry, 

porosity architecture, mechanical behavior and fluid flow, as well as (2) the improved 

vascularization, ossification and integration that endochondral ossification provides compared to 

direct osteogenesis, the proposed approach employs the patient’s own cells, precluding the 
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possibility of rejection, and the implanted scaffold is intended to fully resorb, leaving only native 

tissue devoid of foreign materials used for fixation or support. 

 

Figure 1. Proposed approach to critical bone defect repair. (a) A patient suffering from a long bone defect 

first undergoes an emergency surgery to immobilize the defect area (using compression plates, rods, nails, 

casts…). 3D imaging outlining defect boundaries (ex: CT scanning) is performed. In addition, the patient’s 

mesenchymal cells are harvested from adipose tissue through liposuction and differentiated into 

chondrocytes. (b) The boundary conditions and obtained chondrocytes are employed to construct a 
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customized cartilage template by printing a hybrid scaffold, consisting of a stiff support structure and a cell-

laden hydrogel network, and subsequently culturing the scaffold for tissue maturation. (c) The generated 

graft is implanted to the defect area and immobilized using press fitting, made possible by the stiff network 

within the scaffold, and compression plates. Following successful integration and ossification of the fabricated 

graft, compression plates are removed, leaving a fully healed long bone devoid of foreign material. 

 

2. Overview of aims 

The overall goal of developing a 3D printing-based biofabrication method for cartilage templates 

through a careful, parameter-driven study was divided into two aims: 

Aim 1: Assess the specific impact of the extrusion process on construct properties, most notably 

microstructure, mechanical behavior and swelling, as they relate to bioprinting parameters and 

establish parametric control over the 3D printing process. 

Aim 2: Develop a cartilage template biofabrication strategy informed by the findings of Aim 1 

and revolving around 3D printing, and investigate the parameter-dependent structural, 

mechanical and swelling behavior of generated constructs. 

 

3. Aim 1 

3.1. Experimental design and material selection 

The objective of this aim was to gain a mechanistic understanding of how bioprinting 

affects the mechanical and swelling properties of extruded hydrogel constructs as part of a 

characterization evaluating the impact of both hydrogel composition and bioprinting parameters 

on construct properties. The employed biofabrication platform consists of a BioBots Beta 

pneumatic extruder in combination with gelatin methacrylate (GelMA) (Figure 2a and b). 
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GelMA was chosen because it is a widely-used bioink for extrusion [75, 76] that contains cell-

binding RGD motifs [77] and supports encapsulated cell viability [54, 78]. We modulated 

parameters including polymer content, photocrosslinking initiator concentration, printing speed, 

nozzle inner diameter and printing pressure (Figure 2c). Construct quality and resolution were 

evaluated using optical microscopy. Cell viability of cells encapsulated in extruded and molded 

constructs was using LIVE/DEAD® staining. Then, hydrogel cylinders of the exact same 

dimensions were prepared by molding or extrusion and uniaxial unconfined compression was 

performed to assess differences in Young’s modulus (Figure 2d). Differences in time-dependent 

mechanical properties between extruded and molded constructs were subsequently assessed in 

unconfined creep, an established if preliminary method for the characterization of viscoelastic 

and poroelastic materials [79-81]. Finally, the mechanism by which extrusion altered the 

mechanical properties of constructs was examined using optical microscopy and a swelling 

kinetics study. Taken together, the results of this investigation provide critical information as to 

how the bioprinting process modulates the performance of extruded constructs under mechanical 

stimulation. 
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Figure 2. Experimental design for Aim 1. (a) Various formulations of gelatin methacrylate (GelMA) hydrogel 

photocrosslinked with lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) were extruded into different 

structures (b) at varying travel feed rates, nozzle diameters and extrusion pressures (c). (d) Hydrogels with 

the same dimensions were prepared, and (e) hydrated unconfined compression testing, a swelling study, and 

optical microscopy were used to evaluate construct properties for comparison against molded counterparts 

prepared with the exact same dimensions. Scale bars: 5 mm. 
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3.2. Methods 

3.2.1. Gelatin methacrylation 

GelMA was synthesized using previously described methods [75, 76]. Briefly, a 10% w/v 

solution was prepared by dissolving gelatin (Type A, 300 bloom, porcine skin, Sigma Aldrich) in 

phosphate buffered saline (PBS) at approximately 60°C. Following complete dissolution, the 

solution temperature was maintained at 50°C and 0.14 mL methacrylic anhydride was added for 

each gram of dissolved gelatin. The methacrylation reaction was allowed to proceed for 4 hours 

at 50°C under vigorous stirring. PBS warmed to 40°C was added to obtain a GelMA 

concentration of 4.5% w/v, and then ice-cold acetone was added at a volumetric GelMA 

solution-to-acetone ratio of 1:4, allowing the GelMA to precipitate overnight. The precipitate 

was dried and dissolved in PBS at a concentration of 10% w/v by heating to approximately 50°C. 

Following vacuum filtration through a 0.22 µm filter (polyethersulfone membrane, Fisher 

Scientific), the solution was dialyzed (Slide-A-Lyzer G2 Dialysis Cassettes, gamma-irradiated, 

10K molecular weight cutoff, Fisher Scientific) for 3 days against deionized water with dialysis 

media change twice a day. The GelMA solution was finally lyophilized for four days and stored 

at -20°C.  

3.2.2. Hydrogel fabrication by bioprinting and molding 

 Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), a cytocompatible 

photoinitiator activated by visible light at a wavelength of 405 nm [82, 83], was used to initiate 

photocrosslinking of GelMA. Hydrogels were prepared by dissolving synthesized GelMA at 10-

20 w/v% in PBS along with LAP (Biobots) at 0.25% or 0.5%, as indicated. The employed 

bioprinting system was a BioBots Beta pneumatic extruder, which is equipped with an extrusion 
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pressure range of 0-140 psi and violet light irradiation capability at a wavelength of 405 nm. 

Prepared hydrogel formulations were loaded in a 10 mL syringe (BD) fitted with 27 gauge (27G, 

200 µm inner diameter), 22 gauge (22G, 420 µm inner diameter) or 18 gauge (18G, 840 µm 

inner diameter) nozzles (Jensen Global Dispensing) for extrusion. Solutions were allowed to 

physically crosslink (gel) in the syringe prior to extrusion (~20min). Computer models for the 

constructs (either lines or cylinders) were designed using Creo Parametric 3.0 and imported into 

Repetier-Host software, where printing speed was set prior to extrusion. Hydrogel lines were 

extruded at printing pressures ranging from 60 to 130 psi and travel feed rates from 4 to 12 

mm/sec, as indicated, under constant irradiation from the violet light source. Hydrogel cylinders 

were printed at 100 psi, 8 mm/sec, and in 6 layers. 

 Molded cylinders of the exact same dimensions as extruded cylinders were prepared by 

letting GelMA solutions gelate at solution depths matching that of extruded counterparts for 20 

min and then irradiating the solutions under violet light for the same amount of time as extruded 

cylinders (10 min). Biopsy punches (Fisher Scientific) were subsequently used to obtain molded 

cylinders with the exact same dimensions as extruded cylinders (1.4 mm height x 5 mm in 

diameter). Petri dishes were used as extrusion and molding substrates for extrusion pressure 

testing, line width evaluation, all mechanical testing and the swelling study, while glass slides 

were used for the microstructural analysis of constructs with optical microscopy.  

3.2.3. Imaging and analysis for line extrusions and cylinders 

 Single-layer extruded lines were imaged using an EVOS microscope (transmitted light, 

phase contrast, 4x magnification). For line extrusions with 18G nozzles, whose widths exceeded 

the imaging area of the microsope, full-size images of each line were generated by capturing two 
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images spanning the total width and performing a stitching operation using ImageJ [84]. The 

total area of each line (obtained from ImageJ) was divided by the total length to obtain the 

average line width.  

Representative photographs of extruded and molded cylinders were taken with a Canon 

S120 digital camera. Using a Zeiss AxioObserver Z1 microscope (phase contrast, 10x 

magnification), optical micrographs of extruded and molded cylinders (15 mm diameter, 1 mm 

height) were also taken to assess differences in microstructure. The focal plane of the 

micrographs was set to the surface of the glass, i.e. the plane of contact between the hydrogel and 

the glass substrate. 

3.2.4. Cell culture 

Although high viability of cells encapsulated in gels prepared with similar crosslinking 

protocols, including the use of GelMA, LAP, and light exposure for up to 10min, have been 

described in several studies [82, 83, 85], we conducted a cell viability assay to assess the impact 

of the extrusion process on cell viability. NIH/3T3 fibroblasts (ATCC® CRL-1658™) were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 4.5g/M glucose, L-glutamine, 

and sodium pyruvate (Corning, Corning, NY, Cat. No. 10-013) supplemented with 10% heat-

inactivated fetal bovine serum and maintained in an incubator at 37°C and 5% CO2. Cells were 

subcultured when approximately 80% confluent and detached using trypsin-EDTA (0.25%, 

phenol red) (ThermoFisher Scientific, Waltham, MA Cat. No. 25200056). Culture medium was 

changed every 3-4 days. The baseline viability of the cells was assessed using the Trypan Blue 

Exclusion method prior to encapsulation and the LIVE/DEAD® assay. 
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3.2.5. Cell encapsulation and viability study 

Concentrated stock solutions of cells and GelMA (maintained at 37C) were gently 

mixed together resulting in a final concentration of 10% GelMA and 5.0 x 10
5
 cells/mL.  For the 

creation of 3D printed constructs, approximately 5mL of cell-laden GelMA was poured into a 10 

mL syringe and allowed to cool for 20 minutes. Next, eight lines were 3D printed using a 27G 

nozzle, a travel feed rate of 8mm/sec, and a layer height of 0.2 mm onto a microscope slide 

before being exposed to 405 nm light for 10 minutes. For the creation of molded hydrogels, 1mL 

of cell-laden GelMA was poured into one well of a 6-well plate and allowed to cool for 20 

minutes. The thickness of the hydrogel approximated the thickness of the extruded lines 

described above. A 5 mm biopsy punch was used to obtain molded hydrogels, which were then 

were placed on a microscope slide and exposed to 405 nm light for 10 minutes. Cell viability was 

immediately assessed using the LIVE/DEAD® assay (Thermo Fisher Scientific) according to the 

manufacturers’ instructions. Briefly, the two components were combined with sterile PBS to 

generate 2 mL of a 4 μm ethidium homodimer (EthD-1) and 2 μm calcein AM solution. Live 

cells were stained with calcein AM (excitation/emission (ex/em): ~495nm/~515nm) and 

damaged or dead cells were stained with EthD-1 (ex/em: ~495nm/~635). Hydrogels, encircled 

with a hydrophobic pen, were incubated with 100-150 μL of LIVE/DEAD® solution for 20 

minutes at room temperature. Cells not subjected to hydrogel encapsulation were used as a 

positive control.  

3.2.6. Cell-laden hydrogel imaging acquisition and analysis 

One image of each sample (n=5 for all groups: 3D printed, molded, and positive cell-only 

control) was immediately captured using confocal microscopy (Zeiss LSM 700, Peabody, MA). 
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A z-stack of images (a minimum of n=20 per sample), standardized to image through the entire 

thickness of the sample, was captured through the microscope slides using a resolution of 512 x 

512 pixels via a 10x/0.3 Dry lens, 5% laser output using the 488nm and 639nm lasers, and a 

pinhole of 1AU.  Images were processed using ImageJ, where Z-stacks were compressed into 

one image using maximum intensity and subsequently subtracting the background using a rolling 

ball algorithm [86]. Subsequently, images were converted to RGB, channels were split to 

manually count dead (red) and live (green) cells using the ImageJ Cell Counter plugin. Percent 

viability was determined by dividing the number of live cells by the total number of cells and 

multiplying by 100%.  

3.2.7. Mechanical testing 

For mechanical testing, cylinders (5 mm diameter, 1.4 mm height) were placed on the 

compression platens of a Bose Electroforce 3220 in an unconfined setup, immersed in PBS, and 

preloaded with a compressive stress of 2.5 kPa prior to each test. To measure Young’s modulus, 

hydrogels were uniaxially compressed to a strain of 15% at a strain rate of 10 or 16.5% per 

minute, as indicated. Linear regression was performed on the obtained stress-strain data over the 

initial 7% of strain [87] to obtain the slope of the initial linear portion of the stress-strain curve 

(Young’s modulus). For creep testing, a 5 kPa stress was applied to the cylinders for 7 minutes 

(creep portion) followed by reduction of stress to 2.5kPa for 7 minutes (recovery portion). 

Exponential fitting of the creep and recovery portions of the data was performed using equations 

(1) and (2) respectively, where ε represents strain. Note that t corresponds to elapsed time from 

the moment at which a stress of 5 kPa was reached for equation (1) and the moment at which a 

stress of 0 Pa was reached for equation (2). acreep and arecovery correspond to the changes in strain 

caused by creep and recovery respectively while bcreep and brecovery correspond to the equilibrium  
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strain values of the creep and recovery portions respectively.  is a time constant that 

corresponds roughly to the amount of time it takes for the strain to reach around 37% of its final 

value (1/e). 

ε(t) = acreep exp (-
t

𝜏creep
) + bcreep                                                         (1) 

ε(t) = -arecovery exp (-
t

τcreep
)  + brecovery                                                      (2) 

From the fitting, time-dependent mechanical behaviour was quantified using four properties, 

namely extent of creep, average creep rate, extent of recovery and average recovery rate. The 

extent of creep is the total change in strain caused by creep while the extent of recovery is the 

percentage of this strain change that is recovered during unloading. Average creep and recovery 

rates correspond to the average rates of change in strain over the initial 99% of creep and 

recovery respectively. 

3.2.8. Swelling kinetics 

 A swelling kinetics study was performed to assess the impact of microstructural 

differences on fluid flow. Molded and extruded cylinders (5 mm diameter, 1.4 mm height) were 

prepared and their exact dimensions (diameter and height) were measured with calipers before 

they were fully dried. For each cylinder, the polymer density was calculated by dividing the dry 

weight of the cylinder by the volume of the cylinder obtained from the dimensional 

measurements. After drying, cylinders were immersed in 10 mL PBS and weighed at multiple 

time points over 5 days of swelling. Swelling percentage was calculated using equation (3), 

where Mt corresponds to the hydrogel mass at time t and M0 corresponds to the initial weight of 

the dried polymer prior to immersion in PBS. 
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Swelling percentage = 
Mt-M0

M0
×100%                                                     (3) 

3.2.9. Statistical analysis 

 Two way-ANOVA with post-hoc Tukey analysis was performed to determine statistical 

significance between groups in the line width vs travel feed rate data and the Young’s modulus 

vs biomaterial composition data. One way-ANOVA with post-hoc Tukey analysis was 

performed to determine statistical significance between groups in the cell viability data.  Two-

tailed t-tests were performed to compare Young’s moduli, creep parameters and polymer density 

data between extruded and molded cylinders. A two-tailed t-test with Holm-Sidak correction for 

multiple comparisons was performed on extruded and molded groups in the swelling percentage 

data. All data are shown as mean ± SEM, with n=8 for all line width data, n=5 for cell viability 

data and n=6 for all mechanical testing and swelling data. All graphs were plotted using 

GraphPad Prism 6 software. A p-value of less than 0.05 was considered statistically significant. 

 

3.3. Results 

3.3.1. Combinatorial effects of extrusion parameters and biomaterial composition on construct 

quality and resolution 

Qualitative characterization of extruded lines (Figure 3) revealed the existence of an 

optimal extruding pressure at each GelMA concentration investigated (Table 1). For each 

GelMA concentration, extrusion skips were observed at pressures below the optimal range while 

unevenly excessive outpour was observed above that range.  
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Figure 3. Optimal extruding pressure is dependent on biomaterial composition. (a) Sequential lines, as shown 

byCADmodel, were extruded at various concentrations (10%, 15% and 20%w/v GelMA) and pressures (0–

140 psi) with a 27G nozzle. LAP concentration was 0.5%w/v and travel feed rate was 8 mm s−1. Micrographs 

shown are representative of line extrusions at 60 psi (b), 80 psi (c) and 100 psi (d) for 10% GelMA/0.25% 

LAP. Scale bars: 1000 μm. 

 

Table 1. Qualitative characterization of line extrusions reveals the existence of optimal GelMA 

concentration/extrusion pressure pairings. * Required extrusion pressure exceeds maximal capabilities. 

 Non-continuous flow, 

uneven thickness: 

beads instead of lines 

Optimal pressure, 

continuous flow, 

constant thickness 

Excessive outpour, 

uneven thickness, 

large chunks in lines 

10% w/v GelMA 60 psi 80 psi 100 psi 

15% w/v GelMA 80 psi 100-110 psi 120 psi 

20% w/v GelMA 100 psi 130 psi --* 

 

The impact of printing speed on line resolution was assessed by extruding lines at travel 

feed rates of 4 mm/sec, 8 mm/sec and 12 mm/sec. The impact of nozzle inner diameter was also 

evaluated by extruding lines with 27G, 22G and 18G nozzles.  As expected, increasing the travel 

feed rate resulted in a significant decrease in line width, corresponding to an increase in 

resolution (p<0.0001 for travel feed rate factor in two-way ANOVA, Figure 4a,c) while 

increasing the inner diameter of the nozzle significantly increased line width (p<0.0001 for one 

way ANOVA, Figure 4b,d). Interestingly, increasing the GelMA concentration from 10% to 20% 

w/v also resulted in a small but significant decrease in line width (p<0.05 for GelMA 

concentration factor in two way ANOVA).  
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Figure 4. Both travel feed rate and biomaterial composition modulate extrusion resolution, measured by line 

thickness. (a) Representative images shown for line extrusions at 4 mm s−1 (left), 8 mm s−1 (center) and 12 

mm s−1 (right) for 10% GelMA/0.25% LAP. Scale bars: 1000 μm. (b) Representative images shown for line 

extrusions with a 22G nozzle at the optimal pressure of 40 psi (left) and with an 18G nozzle at the optimal 

pressure of 10 psi (right) for 10% GelMA/0.25% LAP and a travel feed rate of 8 mm s−1. Scale bars: 1000 

μm. (c) Line thickness data as a function of GelMA concentration (10% or 20%) and travel feed rate, 

quantified by micrograph analysis (****p ≤ 0.0001, two way ANOVA and Tukey post hoc analysis). (d) Line 

thickness data as a function of nozzle gauge quantified by micrograph analysis (**p≤0.01, ****p ≤ 0.0001, one 

way ANOVA and Tukey post hoc analysis). 

 

3.3.3. Cell viability study 

 To confirm the cytocompatibility of the employed extrusion and photocrosslinking 

methods, a LIVE/DEAD® assay was performed immediately after the preparation of molded and 

extruded constructs encapsulated with 3T3 cells. Cell viability was high (~95%) for cells 
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encapsulated in extruded constructs and molded constructs, as well as for unencapsulated 

controls, with no significant differences between any of the experimental groups (Figure 5). 

There were no significant differences in cell viability between these three groups and the 

baseline cell viability measured by Trypan blue exclusion prior to encapsulation and the 

LIVE/DEAD® assay, which was 97.27% ± 1.12%. 

3.3.3. Impact of extrusion process on bulk mechanical properties 

 As expected, increasing the GelMA concentration from 10% to 15% and 20% resulted in 

an increase in the Young’s modulus of molded cylinders (Figure 6b). The concentrations of the 

photoinitiator (LAP) investigated here had no effect on hydrogel elastic behavior. 

 The impact of extrusion on Young’s modulus was assessed by comparing molded and 

extruded hydrogel cylinders prepared with 15% GelMA and 0.25% LAP. Surprisingly, while no 

differences were observed in Young’s modulus between molded and extruded cylinders (Figure 

6c), extruded constructs exhibited increased extents (Figure 7b) and rates of creep (Figure 7c) 

compared to molded constructs. Moreover, while the extent of recovery from creep was not 

different between extruded and molded constructs (Figure 7d), the rate of recovery from creep 

was higher for extruded constructs (Figure 7e). These results indicate that the extrusion process 

did not affect bulk elastic behaviour (Young’s modulus), but time-dependent mechanical 

behaviour was affected. 
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Figure 5. Cell viability was not affected by 3D printing process. (a)–(c) 3D printed hydrogel lines; (d)–(f) 

molded hydrogels; (g)–(i) cell-only controls. (j) Quantitative analysis of cell viability. Scale bars are 100 μm. 
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Figure 6. Elastic deformation behavior is modulated by biomaterial composition but not by printing itself. (a) 

Representative portion of stress/strain data from unconfined compression. (b) Young’s moduli of hydrogels 

prepared with 10%, 15%, 20% GelMA and 0.25%, 0.5% LAP (****p ≤ 0.0001). There was no significant 

difference between hydrogels prepared with 0.25% and 0.5% LAP. (c) Young’s moduli of printed and 

molded GelMA cylinders (15% GelMA, 0.25% LAP). Note that elastic moduli in (b) were measured in 

uniaxial compression with a strain rate of 10%/min, while elastic moduli in (c) were measured using a strain 

rate of 16.5%/min. 

 

3.3.4. Impact of extrusion process on microstructure and swelling properties 

 To investigate the mechanism behind the observed differences in time-dependent 

mechanical properties, molded and extruded cylinders were imaged under phase contrast 

microscopy. Molded constructs were characterized by uniform light transmission through the 

hydrogel (Figure 8a) while extruded constructs were characterized by a microstructure with 

extensive refraction (Figure 8b). Surprisingly, although extruded and molded hydrogels had 

similar polymer densities (Figure 8c) upon fabrication, differences in swelling behaviour 

between extruded and molded constructs were apparent after 1 day, with extruded constructs 

exhibiting both faster and more extensive swelling compared to molded counterparts (Figure 7d). 
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Figure 7. Printing affects rate and extent of time-dependent mechanical behavior. Printed and molded 

GelMA cylinders (15% GelMA, 0.25% LAP) were subjected to creep testing in hydrated unconfined 

compression. (a) Representative strain vs time data shown for creep + recovery testing of printed cylinders. 

(b) Creep extent data, obtained from exponential regression of creep portion (**p ≤ 0.01). (c) Creep rate data, 

obtained from exponential regression of creep portion (****p ≤ 0.0001). (d) Recovery extent data, obtained 

from exponential regression of recovery portion. (e) Recovery rate data, obtained from exponential regression 

of recovery portion (**p ≤ 0.01). 
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Figure 8. Printed and molded hydrogels exhibit different microstructures as well as swelling behavior. 

Optical micrographs for molded (a) and printed (b) GelMA samples (15% GelMA, 0.25% LAP). Scale bars: 

500 μm. (c) Polymer density of extruded and molded cylinders. No statistical difference between the two 

groups. (d) Swelling percentage data (*p ≤ 0.05, **p ≤ 0.01) obtained from weighing printed and molded 

GelMA cylinders (15% GelMA, 0.25% LAP) over time in immersion in PBS. 

 

3.4. Discussion 

Overall, our findings show that the bioprinting process results in hydrogels with unique 

microstructures that differ from their molded counterparts prepared with the same polymer 

solution and with the same dimensions, causing major changes in time-dependent mechanical 

properties and swelling behavior. 

The identification of optimal extrusion pressures and the observed increase in resolution 

with printing speed and nozzle gauge are consistent with previous characterizations of extrusion-
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based methods [88-90]. The impact of GelMA concentration on Young’s modulus is also in 

agreement with previous studies performed with other photoinitiators [54]. However, the 

unexpected impact of GelMA concentration on resolution, very likely the result of increased 

flow resistance due to the concomitant rise of hydrogel viscosity with polymer concentration, 

reveals yet another mechanism at play in the determination of printing specifications. The fact 

that the extrusion process did not affect cell viability is in agreement with previous reports that 

allowing hydrogel solutions to undergo gelation prior to extrusion protects encapsulated cells 

from the detrimental effects of extrusion-induced shear forces [91]. 

More interesting is the finding that the extrusion process impacts the time-dependent 

mechanical behaviour of hydrogel constructs. The fact that swelling kinetics between molded 

and extruded hydrogels were different, despite similar densities, suggest that microstructural 

differences contribute to the observed differences. Indeed, the interstices present in the 

microstructure of the extruded construct constitute an interconnected network of space available 

to the surrounding medium, thereby increasing the rate and extent of fluid flow both into and out 

of the construct during loading and unloading. The differences in mechanical behavior of the 

extruded and molded constructs would be expected to be even greater after the hydrogels reached 

swelling equilibrium, which should be studied in future work. It is also possible that spatial 

differences in crosslinking existed because the first printed layers were exposed to the light 

source for longer periods of time than the last printed layers.  However, because molded and 

extruded hydrogels did not show differences in elastic moduli, any spatial differences in 

crosslinking were likely too minor to affect mechanical properties.  Finally, it is possible that 

lateral translation of the potentially unconstrained structural filaments with respect to each other 

may constitute another mechanism by which extrusion increases the rate and extent of creep. 
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However, our finding that the extent of recovery is identical in extruded and molded constructs 

suggests similar extents of permanent deformation. Clearly, further studies are warranted to 

thoroughly investigate the effects of the extrusion process on the microstructure and mechanical 

properties of hydrogels.  

Time-dependent mechanical properties of extruded highly porous scaffolds have 

previously been evaluated, most notably with stress relaxation testing [92, 93]. These studies, 

however, solely assess the impact of intended scaffold porosity rather than the unintended impact 

of the extrusion process itself on the mechanical behaviour of constructs. Similarly, previous 

swelling studies performed on extruded constructs [39] overlook the impact of extrusion as they 

lack comparisons against molded counterparts. Interestingly, it was previously shown that the 

swelling behaviour of constructs fabricated with inkjet printing is not different from that of 

nonprinted hydrogels [94]. Given that inkjet printing dispenses liquid droplets that form a series 

of consolidated layers devoid of unintended discontinuities [95], these results serve to confirm 

our finding that interstices formed during extrusion are responsible for the observed differences 

in swelling behaviour. However, further studies are required to thoroughly characterize the 

microstructure of extruded and molded hydrogels. 

This study did have several limitations. Firstly, the only biomaterial evaluated was gelatin 

methacrylate. Although this material is widely used in tissue engineering [54], the results may 

differ for other bioinks, including collagen [96], hyaluronic acid [97] and alginate [98], as well as 

other crosslinking methods such as physical or ionic crosslinking. In addition, this study only 

evaluated one composition of gelatin hydrogel in extruded and molded forms under just two 

mechanical testing scenarios. Future studies should include multiple time-dependent mechanical 

testing protocols for varying bioprinting parameters, namely extrusion speed and nozzle 
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diameter, as well as for constructs with different biomaterial formulations, all of which are likely 

to affect transient and equilibrium loading responses. Moreover, although our goal in this study 

was to compare the properties of extruded and molded hydrogels immediately after fabrication, 

mechanical characterization after the hydrogels reach swelling equilibrium also will be important 

for their intended functions. Nanoindentation studies may be more relevant tests to determine 

how encapsulated cells might respond to changes in mechanical behaviour [99]. Swelling studies 

should be conducted using osmotic solutions that more accurately recapitulate the intended 

application, as PBS has been shown to be a poor indicator of the high osmotic pressures found in 

many tissues in vivo [100]. Finally, we were not able to thoroughly characterize the 

microstructure of the hydrogel constructs, considering most methods of porosimetry require gel 

dehydration, which would affect the microstructure of the gels [87]. Future studies should be 

directed at characterizing differences in microstructure due to the extrusion process. 

 Concretely, the results of the study in Aim 1 establish a number of considerations for 

devising the cartilage template biofabrication strategy in Aim 2. First, since the filament-based 

printing process introduces interstices, creating a microstructure which promotes further swelling 

and time-dependent deformation, it’s worth noting that printing resolution, which determines the 

size of extruded filaments and therefore the density of these interstices, also likely affects 

swelling and mechanical behavior in extruded hydrogels. Second, the excessive swelling 

observed with extruded hydrogels must somehow be mitigated to prevent unwanted scaffold 

deformation upon implantation. And finally, once the fabrication platform is established and 

constructs are generated, the characterization of these constructs must include time-dependent 

mechanical testing since we’ve now established that this property is sensitive to the 3D printing 

process. 
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4. Aim 2 

4.1. Design implementation: criteria, constraints and envisioned strategy 

 In light of the proposed patient intervention strategy and the results from Aim 1, we’ve 

laid out a number of criteria and constraints to guide the development of the construct fabrication 

method: 

 Targeted defect types: As previously discussed, given that most cases of bone trauma, 

cancer and infection target long bones [6, 9, 101] and that the endochondral ossification 

process is both endogenous to long bones during development and more widely studied 

in long bones in the context of native repair, templates will be targeted to critical size 

non-union defects involving long bones. In addition, it’s important to note that non-union 

fractures require different intervention strategies depending on whether they’re located at 

the midsection (diaphysis/metaphysis) or the distal/proximal ends (epiphysis/physis) 

because the two regions exhibit different compositional, geometric and mechanical 

properties [102]. Therefore, since over 70% of long bone fractures occur in the diaphysis 

or metaphysis region [103] and fractures along the midsection are often the gravest as 

they may break the skin and lead to infection [2], we’ve more specifically focused the 

target region of the proposed constructs to the midsection (diaphysis/metaphysis) of long 

bones. 

 Bulk size and shape: As previously mentioned, critical-size defects, which are not 

capable of being repaired natively, have lengths of more than 2.5 to 3 times the diameter 

of the affected bone [3] and typically correspond to a volume range of 10-50 cm
3
 [104]. 

The fabrication method must therefore accommodate any bulk shape and size 
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requirements within this volume range. This will be ensured by the scalability and shape 

conformation capabilities of additive manufacturing. 

 Surgical fixation: Taking into account that the generated constructs would be surgically 

affixed to the site of injury using press fitting and compression plate fixation, both of 

which are established scaffold fixation methods [65, 105], the templates must withstand 

the press-fit strain needed for adequate fastening between the two separated bone 

segments. During press fitting, the prevention of implant sliding or loosening is ensured 

by the material and morphological properties at the implant surface as well as the strain 

experienced by the implant as a result of compression plate fixation [106]. Since 

hydrogels lack the material and frictional properties to ensure press fitting regardless of 

the applied strain, a reinforcing network is required for the proposed surgical fixation 

method. This reinforcing network must be strong enough to withstand the press fit strain 

as well as any additional strain which may be the result of micromotions typically 

observed in bone fixation plates. To that end, we require that the generated constructs not 

fracture before a compressive strain of 1%, which is sufficiently large to account for the 

applied press fit strain as well as fixation plate micromotions [107, 108]. 

 Elastic modulus: Considering the importance of mechanotransduction in the ossification 

process, we advance that the bulk elastic behavior of the fabricated constructs should be 

around that of native cartilage-like callous tissue in the initial stages of healing. The 

range of elastic moduli reported for both native hyaline cartilage and early soft callus 

tissue is 1-5 MPa [109, 110]. Within three weeks of healing, the elastic modulus of the 

callus region is estimated to increase to 50 MPa [111]. Since the hydrogel scaffolds to be 

fabricated will be reinforced with stiff networks in order to ensure the possibility of press 
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fitting, it is expected that their bulk elastic modulus will exceed the 5 MPa upper limit of 

native early soft callus tissue. However, this modulus must not be so great that stress 

shielding occurs, preventing the mechanotransduction of encapsulated cells. We postulate 

that an indicative point at which stress shielding becomes significant is the appearance of 

woven bone, which is the earliest and most disorganized type of bone tissue formed 

during endochondral ossification prior to trabecular bone formation [29, 30]. 

Accordingly, we’ve set the upper limit for the elastic modulus of the templates to the 

lowest reported values for the elastic modulus of woven bone, i.e. around 30 MPa [110, 

112]. Thus, the bulk elastic modulus of the generated constructs must lie between 5 and 

30 MPa. 

 Printing precision and consistency: The use of additive manufacturing as part of the 

envisioned fabrication strategy is intended to ensure that complementary networks with 

varying architectures and dimensions are concurrently formed in each multi-material 

construct with accuracy over space and uniformity over time. This capability guarantees 

that different computer-generated architectures will lead to the formation of 

geometrically distinct experimental groups of constructs. Previous studies characterizing 

traditional 3D printing methods hold that geometric measurements with relative standard 

deviations smaller than 20% are indicative of adequate reproducibility [113]. 

Accordingly, to confirm that the employed additive manufacturing platform is able to 

attain the level of precision and consistency needed for adequate fidelity, we submit that 

the widths measured from any given strut element for a specific construct architecture 

must (1) not have a mean which deviates by more than 20% of the intended value 

(precision) and (2) not have a relative standard deviation of more than 20% (consistency). 
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 Construct parameter modulation: As previously discussed, we’ve established the 

capacity for parameter modulation as a requirement for the biofabrication platform in 

order to be able to conduct comprehensive studies with the generated constructs and to be 

able to tailor constructs on a case-by-case basis. Given that porosity constitutes the 

construct property which mediates both mechanical and fluid flow behavior, it would be 

reasonable to select it as the primary metric for tailorability. For comparison, the porosity 

of trabecular bone typically varies between 70% and 90%, which amounts to a porosity 

range of 20% [114]. Similarly, we require that the devised biofabrication method will be 

able to generate constructs a various porosities over a min-max range which exceeds 

20%. As an added criterion, we also require that significant differences in mechanical 

and/or swelling behavior be observed depending on the porosity of the constructs 

generated. 

 Slow degrading material content: As a crucial component of endochondral ossification, 

vascularization is another important consideration in the design of the biofabrication 

platform. Of note in the context of this design is the fact that the reinforcing network is 

expected to resorb in the span of weeks to months: the material thus amounts to volume 

inaccessible to vasculature. Indeed, bloods vessels would only be able to invade through 

the porous network and, to a lesser extent, through remodeled areas of the hydrogel 

(which resorbs faster than the slow degrading material). Accordingly, a maximal 

threshold must be set for slow degrading material content within the constructs. In native 

settings, the lowest porosities recorded for trabecular bone is 30% [115], which 

corresponds to a maximal bone content of 70%. Hence, we’ve set the maximal 

volumetric content of slow degrading material in the generated scaffolds to be 70%. 
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 Swelling mitigation: Based on previous animal implantation studies for bone defect 

repair, the swelling percentage of implanted hydrogels is acceptable if it is less than 

around 100%, which corresponds to 2-fold volumetric increase [116]. Moreover, in 

gelatin-based hydrogels with concentrations of less than 10%, dehydration causes over an 

8-fold drop in volume [117]. Taking these two indicative values together, we submit that 

the mean equilibrium swelling percentage of dehydrated hydrogels within the generated 

constructs must not exceed 1500%, which corresponds to a 16-fold increase in volume. 

 

Design Strategy: In order to retain the spatial control that 3D printing provides while barring the 

use of filament-based hydrogel extrusion, we’ve devised a fabrication technique which couples 

hybrid construct printing with hydrogel casting and sacrificial pore formation. More expressly, 

we envision printing a two-component porous construct using thermoplastic materials through 

melt extrusion. We then cast the hydrogel material (i.e. the cell-carrier component of the 

templates) into the porous network of the hybrid construct. Subsequently, we evacuate away one 

of the two thermoplastic components (i.e. the sacrificial network) of the construct, creating a 

secondary pore network for vascularization and nutrient supply. Thus, with this strategy, we are 

able to accurately shape the architectures of the stiff network, the hydrogel network and the pore 

network without having to riddle the hydrogel with interstices by extrusion. 
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4.4. Experimental design, fabrication strategy and material selection 

Material selections were made to accommodate for the devised fabrication strategy: 

 Reinforcing network: Polycaprolactone (PCL) was chosen for the reinforcing network as 

it is widely used in scaffold fabrication, especially as a melt-extrusion polymer for 

accurate 3D printing  [49, 118]. It is also water insoluble and slow-degrading, ensuring 

that it will remain present throughout the repair process upon implantation. At an average 

molecular weight of 14,000, PCL has a melting point of 65 °C. 

 Sacrificial network: Since the PCL and sacrificial material create interweaving networks 

and must therefore be printed concurrently layer-by-layer, the sacrificial network should 

ideally be comprised of a thermoplastic material with a melting point similar to that of 

PCL to minimize print time and temperature fluctations during melt extrusion. Yet the 

removal of the sacrificial material must also be relatively simple, non-toxic and rapid. 

Bearing these considerations in mind, we’ve selected poly(ethylene glycol) (PEG) for the 

sacrificial material as it is a stiff polymer extensively used in cell culture applications 

[119] and capable of being printed as a melt-extrusion polymer. At a molecular weight of 

20,000, PEG has a melting point of 65 °C, equal to that of the selected PCL material. 

Importantly, it is water soluble and can therefore be dissolved away through simple 

immersion in aqueous media. 

 Hydrogel material: Since the hydrogel must  be cast within a micro-scale pore 

architecture and not printed, photocrosslinking is no longer an viable option: the hydrogel 

must be in a liquid, uncrosslinked form to be able to suffuse through the entire pore 

network. Only when complete suffusion occurs can this cell-carrying material be 
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crosslinked into a hydrogel. Accordingly, ionic crosslinking was chosen to be the 

hydrogel crosslinking method. To retain the cytocompatible and cell-adhesive properties 

of gelatin as seen in Aim 1, we’ve selected a mixture of gelatin and gellan gum 

(GG/gelatin) to be the basis for the hydrogel system. Indeed, while gelatin ensure cell-

binding through its integrin motifs, gellan gum, another widely used biomaterial for cell 

encapsulation, ensures that crosslinking occurs in the presence of divalent cations [120], 

most notably Ca
2+

, which is found in culture medium solutions such as Minimum 

Essential Medium Eagle – Alpha Modification (αMEM). In addition, the combinatorial 

use of gelatin and gellan gum has previously been shown to generate stable composite 

hydrogels [121]. Specifically, a composite formulation of 0.75% w/v gellan gum and 

0.25% w/v gelatin generates a viscous liquid material at 37 °C which can be cast into the 

porous 3D printed constructs and subsequently crosslinked in a 0.2 g/L calcium chloride 

solution such as αMEM. 

 

Figure 9a(1-3) illustrates the biofabrication strategy developed in accordance with the previously 

described strategy and the selected materials. Experimental groups were generated by varying 

the widths of the pore struts (0 mm, 0.5 mm and 1 mm) as well as the widths of the hydrogel 

struts (0.5 mm and 1 mm), as shown in Figure 9b-c. Generated constructs were subsequently 

charaterized by photography to assess geometry, by micro-computed tomography (micro-CT) 

imaging to verify that each intended fabrication step is achieved, by compression testing to 

evaluate mechanical behavior, and by swelling testing to assess fluid flow behavior into the 

constructs (Figure 9a(4)). 
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Figure 9. Cartilage precursor template preparation process. (a)  A porous hybrid construct is printed by 

interweaving crosshatch networks of PCL (gray) and PEG (orange) in a repeating PCL strut-pore channel-

PCL strut-PEG strut pattern and immersed in a non-crosslinked, composite GG/gelatin solution (blue) to fill 

the primary porous network. The construct is subsequently immersed in culture media containing Ca2+ in 

order to crosslink the solution into a hydrogel and dissolve away the PEG network, creating a secondary 

porous network. Characterization of final, sectioned constructs included geometry analysis by photography, 

porosity analysis using micro-CT scans, mechanical testing and a swelling study. (b) Established 

nomenclature of construct experimental groups as classified by hydrogel channel thickness and pore channel 

thickness. Percentages indicated correspond to construct porosities. (c) Computer models of all four 

experimental groups. Generated constructs consisted of 10 layers, each with a height of 0.5 mm, and had bulk 

dimensions of 5 mm x 5 mm x 5 mm. PCL struts had widths of 1 mm. Both the widths of the primary pore 

channels to be filled with hydrogel material and the PEG struts to be dissolved away forming secondary pore 

channels were varied to values of 0.5 mm and 1 mm. 

 

4.5. Methods 

4.5.1. 3D printing 

Using an EnvisionTEC 3D-Bioplotter®, poly(ethylene glycol) (PEG; average Mn 

20,000; Sigma) heated to 80°C and polycaprolactone (PCL; average Mn 14,000; Sigma) heated 

to 90°C were melt-extruded into porous hybrid constructs with a crosshatch architecture and a 

repeating PCL strut-pore channel-PCL strut-PEG strut pattern. The extrusion process was 

performed on matte paper and both PCL and PEG printing heads were fitted with stainless steel 

24G needles (300 μm inner diameter; Sigma). Printing speed was set to 3 mm/sec for the PCL 

head and 2 mm/sec for the PEG head. Extruded templates consisted of 10 layers, with each layer 

having a height of 0.5 mm. Both the widths of the primary pore channels and those of the PEG 

struts were varied to values of 0.5 mm and 1 mm by altering the dimensions of the computer 

generated 3D models imported into the 3D-Bioplotter software. The printed templates were 

subsequently sectioned into samples of size 5 mm x 5 mm x 5 mm using a surgical scalpel. 

4.5.2. Hydrogel suffusion and PEG removal 

A composite (GG/gelatin) solution of 0.75% w/v gellan gum (GG) and 0.25% w/v gelatin 

was prepared by dissolving Gelzan™ CM (Sigma) and Type A, 300 bloom, porcine skin gelatin 
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(Sigma) powders in deionized water at 37°C under stirring. Sectioned samples were immersed in 

the prepared composite solution, which was subsequently allowed to cool to room temperature. 

After 15 minutes, samples were removed from the composite solution and immersed in 

Minimum Essential Medium Eagle – Alpha Modification (αMEM), which contains 0.2 g/L 

calcium chloride, for 2 hours at 37°C in a stirring water bath to ensure PEG dissolution and 

crosslinking of the composite solution into a hydrogel. 

4.5.2. Construct imaging and width analysis 

Top and isometric photographs of samples from each experimental group both after 

printing and after sectioning were taken using a Canon PowerShot G11 camera. The widths of 

the PCL struts, PEG struts and hydrogel channels were obtained using the scaling and measuring 

functions in ImageJ through manual endpoint selection over multiple struts and channels. 

4.5.3. Micro-computed tomography 

Construct architecture was analyzed by micro-computed tomography using a calibrated 

desktop micro-CT scanner (SkyScan 1272, Belgium) at a voltage of 50 kV and a current of 200 

μA. Four sectioned 1P/1HG constructs were scanned at an xyz resolution of 15 μm and an 

exposure time of 160 ms: one immediately after extrusion, a second after αMEM immersion over 

2 hours, a third after immersion in a composite GG/G solution cooled to room temperature for 

physical gelation, and a fourth after immersion in a composite GG/G solution cooled to room 

temperature and subsequently in αMEM for 2 hours. Obtained isotropic slice data were 

reconstructed into 2D xy slice images, which were in turn compiled and analyzed to render 3D 

xyz images. Samples were reconstructed using a region of interest (ROI) with approximately 200 

slices. Threshold levels were set to eliminate image noise and distinguish combined PCL, PEG 

and hydrogel material from pore regions. Porosities were determined using the software by 
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selecting regions of interest which, in the xy plane, correspond to unit pattern elements of the 

constructs’ repeating architecture. 

4.5.4. Mechanical testing 

Final constructs from all experimental groups were placed on the compression platens of 

an Instron 4411 Materials Testing Machine (Instron Ltd, High Wycombe, England) in an 

unconfined setup, immersed in PBS, and preloaded with a compressive stress of 40 kPa prior to 

each test. The performed stress relaxation test consists of an initial uniaxial compression portion 

to a strain of 5% at a rate of 0.5% per second, followed by dwelling at that strain for 2 minutes 

(stress relaxation portion). Linear regression was performed on the obtained stress-strain data 

over the initial 1% of strain to obtain the slope of the initial linear portion of the stress-strain 

curve (Young’s modulus). Exponential fitting of the stress relaxation portion of the data was 

performed using equation 4, where σ represents stress. arelax corresponds to the change in stress 

caused by relaxation while brelax corresponds to the equilibrium stress value reached over time. τ 

is a time constant that corresponds to the amount of time it takes for the stress to reach 

approximately 37% of its final value (1/e). 

𝜎 = 𝑎𝑟𝑒𝑙𝑎𝑥 𝑒𝑥𝑝 (−
𝑡

𝜏
) + 𝑏𝑟𝑒𝑙𝑎𝑥          (4) 

From the fitting, time-dependent mechanical behavior was quantified using the total change in 

stress during relaxation (-arelax), the total change in stress as a percentage of the initial stress prior 

to relaxation (arelax/(arelax+brelax)x100%) and the average stress rate, which corresponds to the 

average rate of change of stress over the initial 99% of stress relaxation. 

4.5.5. Swelling test 

A swelling kinetics study was performed to assess differences in hydrogel swelling in the 

presence of the PCL network and in unconstrained conditions. Fully prepared 0P/1HG constructs 
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were dried over a period of 1 week. Given the known initial weight concentration of the 

GG/gelatin hydrogel and assuming the measured decrease in weight during drying corresponds 

to the initial water weight of the GG/gelatin hydrogel material contained within the constructs, 

plain weight-matched GG/gelatin hydrogels were also prepared and dried over a period of 1 

week. Both 0P/1HG constructs and plain hydrogel samples were subsequently immersed in 10 

mL αMEM and weighed at multiple time points over 7 days of swelling. Swelling percentage 

was calculated using equation (5), where Mt corresponds to the hydrogel mass at time t and M0 

corresponds to the initial weight of the dried GG/gelatin polymer prior to immersion in PBS. 

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑀𝑡−𝑀0

𝑀0
× 100%     (5) 

4.5.6. Statistics 

One-way ANOVA with post-hoc Tukey analysis was performed to determine statistical 

significance between groups in the strut/channel width data and the mechanical testing data. A 

two-tailed t-test with Holm-Sidak correction for multiple comparisons was performed on the 

swelling percentage data. All graphs are shown as mean ± SEM and the line width data is shown 

as mean ± S.D., with n=8 for the strut/channel width data, n=1 for the porosity data from micro-

CT imaging, n=6 for the mechanical testing data and n=7 for the swelling data. All graphs were 

plotted using GraphPad Prism 6 software. A p-value of less than 0.05 was considered statistically 

significant. 

 

 

 

 

4.6. Results 
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4.6.1. Construct geometry assessment 

 Immediately after the 3D printing of porous hybrid constructs from all four experimental 

groups, geometric analysis was performed by photography, as seen in Figure 10, to assess 

printing fidelity and consistency. Recorded measurements, shown in Table 2, include PCL strut 

widths, PEG strut widths and the widths of primary porous network channels to be filled with 

hydrogel. Overall, measurements remained close to intended values, with means not straying 

from target by more than 0.16 mm. Given the low variation in values for measurements from 

each group, which is indicative of high consistency, the observed differences between intended 

and targeted values are most likely the result of offsets in the width of elemental filaments 

between the computer models and actual extrusions. 

4.6.2. Porosity assessment by micro-CT 

 To ensure that the construct preparation steps occurred as anticipated, a single 1P/1HG 

print was sectioned into four constructs, one of which remained unchanged while the other three 

were subjected to different steps of the preparation process, including (1) immersion in aqueous 

media (αMEM) to verify complete PEG dissolution, (2) immersion in a GG/gelatin solution and 

crosslinking in αMEM to ensure complete hydrogel suffusion, and (3) immersion in a GG/gelatin 

solution followed by immersion in αMEM to confirm final construct formation. Each construct 

was scanned using micro-CT and, since the described steps amount to material additions and 

removals with associated volumetric changes, the success of each preparation step was evaluated 

by comparing the porosity measurement from each construct against the corresponding expected 

value. Overall, measured porosity percentages did not stray by more than 11% from targeted 

values, indicating that both PEG dissolution and hydrogel suffusion were complete and 
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successful when carried out both separately and sequentially, though more extensive studies are 

required to confirm this finding. 
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Figure 10. Photographic evaluation of constructs from all experimental groups immediately after printing 

from top (a-d) and isometric views (e-h) as well as after sectioning into individual samples (i-l). All scale bars: 

0.5 mm. 
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Table 2: Widths of PCL struts, PEG struts and hydrogel channels for all experimental groups calculated 

from obtained images. Data shown as mean ± S.D. 
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Figure 11. 3D images rendered from micro-CT scanning of 1P/1HG samples at different stages of preparation 

confirm complete hydrogel suffusion into the primary porous network as well as the dissolution of the 

sacrificial PEG network, leading to the formation of a secondary porous network. (a) Scan of 1P/1HG 

construct immediately after extrusion. (b) Scan of 1P/1HG construct immersed in culture media after 

extrusion. (c) Scan of 1P/1HG construct immersed in hydrogel solution after extrusion. (d) Scan of 1P/1HG 

construct immersed in hydrogel solution and subsequently in culture media. (e) Porosity values of the 

1P/1HG construct at each stage of preparation as expected from designs and as measured from generated 

micro-CT scans. 
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4.6.3. Mechanical properties 

 To evaluate both bulk elastic and time-dependent mechanical properties of the generated 

templates, final constructs from all four experimental groups were subjected to stress relaxation 

testing under unconfined hydrated testing, whereby strain was linearly increased to 5% and held 

constant for 2 minutes (Figure 12a). No failure was observed in any of the constructs during and 

after testing. Elastic modulus measurements, calculated from the stress and strain data obtained 

during the linear increase in strain, were quite similar across all groups, as shown in Figure 12b, 

with a global average of 26.3 (±1.14) MPa. 

 Time-dependent mechanical behavior was also quantified using exponential regressions 

of the relaxation portion of the stress vs time data. Specifically, the extent of stress change both 

alone (Figure 12c) and as a percentage of stress immediately prior to relaxation (Figure 12e), the 

time constant τ indicative of the time scale of relaxation (Figure 12d), and the average rate of 

stress change over the initial 99% of relaxation (Figure 12f) were calculated. Though no 

significant differences were found across groups for τ, values for the 1P/0.5HG group were 

markedly and consistently higher than values for the 0.5P/1HG group across the three remaining 

metrics. In addition, we note a trend of differences isolating the 0P/1HG group from other 

groups. Indeed, the 0P/1HG group had a greater absolute change in stress during relaxation 

compared to the 1P/1HG and 0.5P/1HG groups as well as a lower change in stress as a 

percentage of initial value during relaxation compared to the 1P/0.5HG group. 
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Figure 12. Interplay between pore and hydrogel geometries alters the time-dependent mechanical properties 

of prepared constructs. (a) Representative stress vs time curve obtained from stress relaxation testing 

protocol. (b) Young’s moduli of constructs from all experimental groups. Total stress relaxation (c), τ value of 

stress relaxation (d), total stress relaxation as a percentage of initial stress (c) and average stress relaxation 

rate (d) in constructs from all experimental groups as determined from exponential regressions of the stress 

relaxation portion of mechanical testing (*p ≤ 0.01, ***p ≤ 0.001, one way ANOVA and Tukey post hoc 

analysis). 

 

 

 



52 

4.6.4. Effect of stiff network on hydrogel swelling behavior 

 To probe the impact of the reinforcing stiff PCL network in the rate and extent of fluid 

flow into the GG/gelatin hydrogels, a swelling study was performed with dried 0P/1HG 

constructs and dried weight-matched hydrogel control samples (without a reinforcing stiff 

network) over the course of 7 days. Within a half hour of swelling, significant differences appear 

between the two groups and persist until day 4 with the control group exhibiting considerably 

greater swelling percentages, which confirms that hydrogel swelling is indeed constrained by a 

reinforcing stiff network. Interestingly, at day 7, though the mean swelling percentage of the 

control group was over two times greater than that of the 0P/1HG group, no significant 

difference was found between the two groups. 

 

Figure 13. Hydrogels in 0P/1HG constructs and weight-matched plain hydrogel control exhibit different 

swelling behavior. Swelling percentage data (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001) obtained from weighing 

hydrogels immersed in culture medium over time. 
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4.7. Discussion 

Characterization results for the generated constructs establish the proposed biofabrication 

strategy as a viable method of producing tailorable constructs for bone defect repair through 

endochondral ossification. Indeed, the developed fabrication strategy is capable of generating 

templates with great spatial resolution as well as tunable architectural and mechanical properties 

whilst still minimizing unwanted swelling deformation. In addition, the decision to cast the 

hydrogel material instead of extruding it will very likely be of benefit to encapsulated cells as 

they will not be subjected to the damaging shear stresses experienced during extrusion [122]. 

Nevertheless, more extensive studies remain to be made to confirm findings and optimize the 

platform. For instance, though the printing process was shown to be fairly consistent as 

evidenced by the minimal variation in geometric measurements across replicates, some 

improvements could be made with printing fidelity by further harmonizing the widths of 

individual extrusion filaments with those of corresponding computer generated models. 

Moreover, additional replicates across all experimental groups are certainly required to confirm 

the obtained micro-CT results according to which each step of the fabrication process was 

successful. 

 Delving into the mechanical properties of the constructs, it is reasonable to assume that, 

discounting volumetric composition, since the compressive modulus of polycaprolactone, which 

is recorded to be around 40 MPa [123], is markedly higher than that of the hydrogel material, 

which would be in the order of 0.1 MPa as supported by findings from Aim 1, polycaprolactone 

would be the primary determinant of elastic modulus in these constructs. It therefore stands to 

reason that the experimental groups with the highest PCL content, namely 0.5P/1HG and 

1P/0.5HG, would exhibit higher moduli compared to groups with lower PCL content, namely 
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0P/1HG and 1P/1HG. Yet surprisingly, though the means of the high PCL content groups were 

to be sure higher than those of the low PCL content groups, there was no significant difference 

between any of the groups. Although the presence of hydrogel material in the constructs might 

account for this, a more likely explanation can be found in the dimensions of the tested 

constructs, which were 5 mm x 5 mm x 5 mm. It is possible that, at this size, the PCL networks 

might have buckled under compression in such a way that the differences in PCL content 

between groups were not found to have had a significant impact on elastic modulus. This is 

supported by findings that properties such as elastic modulus are dependent on size for both PCL 

and other materials [124, 125]. Further compression testing with constructs of greater size would 

be required to verify this hypothesis. 

 Contrary to the uniformity observed across experimental groups vis-à-vis elastic 

behavior, time-dependent mechanical behavior exhibited significant variability across groups for 

multiple metrics. The most crucial indicator in the elucidation of the primary mechanism behind 

stress relaxation in these constructs is the finding that differences were most consistently seen 

between the 0.5P/1HG and 1P/0.5HG groups. From a structural standpoint, though both groups 

have the same PCL content (57% by volume), they are the two most dissimilar groups in terms 

of the ratio of porosity to hydrogel content. Indeed, while the 0.5P/1HG group has a porosity of 

14% and a volumetric hydrogel content of 29%, leading to a porosity-to-hydrogel content ratio 

of 0.5, the 1P/0.5HG group has a porosity of 29% and a volumetric hydrogel content of 14%, 

leading to a porosity-to-hydrogel content ratio of 2. For comparison, the porosity-to-hydrogel 

content ratio of the 1P/1HG group is 1. And since both the extent and rate of stress relaxation is 

greater in the 1P/0.5HG group compared to the 0.5P/1HG group, we can surmise that the likely 

mechanism of stress relaxation in the constructs during compression is the squeezing of hydrogel 
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material into pore spaces which alleviates internal stresses. Since there is the most amount of 

pore space with respect to hydrogel material in the 1P/0.5HG group, it is therefore quite tenable 

that hydrogel material was displaced faster and to a greater extent into the pore network, leading 

to greater stress relaxation and an increased relaxation rate. Conversely, since there is the least 

amount of pore space with respect to hydrogel material in the 0.5P/1HG group, hydrogel material 

was squeezed slower and to a lesser extent into the pore network, leading to lower stress 

relaxation and a decreased relaxation rate. Another group with marked differences in time-

dependent mechanical behaviour compared to others is the 0P/1HG group. This observation, 

compounded with the fact that there is no porosity in the 0P/1HG group, suggests that another 

mechanism is at play during relaxation under compression in this group. Looking closer, the 

finding that the 0P/1HG group had the greatest absolute change in stress yet the second lowest 

change in stress as a percentage of initial value indicates that great stresses were accumulated 

prior to relaxation during the linear increase in strain. This is most probably because there were 

no stress-alleviating pores into which hydrogel material could have been forced into. The 

ensuing hypothesis is therefore that stress relaxation was achieved in the 0P/1HG constructs 

through the simple displacement of hydrogel material outside of the construct boundaries. We 

note that the proposed conjecture for stress alleviation through squeeze deformation has been 

explored in previous studies, examples of which include mechanical characterizations of 

hydrogels for cartilage and nucleus pulposus engineering [126, 127], lending additional credence 

to our hypothesis. 

 Finally, the swelling study results serve to confirm another method by which swelling 

deformation may be constrained using the developed biofabrication strategy: the presence of a 

reinforcing stiff network reduces the rate and extent of fluid flow into hydrogels by acting as a 
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physical barrier to increasing hydrogel volume. Interestingly, as previously observed, no 

significant difference was found at day 7 between the swelling percentages of the 0P/1HG and 

control groups, though we did note that the mean swelling percentage of the control group was 

over two times greater than that of the 0P/1HG group. A possible explanation for this is that 

between days 4 and 7, the hydrogel material fully enveloped the stiff network in the 0P/1HG 

constructs, thereby eliminating the ensuing effectiveness of the stiff network at constraining 

swelling. 

 Overall, a follow-up comprehensive investigation is required to validate the interesting 

findings and conjectures regarding the fabricated constructs, especially with respect to 

mechanical and swelling behavior, given the limitations of the conducted study. Firstly, 

additional tests are required to probe the veracity of the advanced hypotheses, including testing 

with constructs of greater size, creep testing to confirm stress relaxation findings, and 

visualization of hydrogel squeeze/swell-based deformation through optical microscopy or 3D 

imaging methods. The study could also benefit from complementing mathematical models (ex: a 

finite element analysis of the stress relaxation tests) which could account for key findings. 

Finally, cell studies are needed to investigate whether cell encapsulation alters any construct 

properties. Once such an extensive study is completed, viability, tissue differentiation and pre-

clinical animal implantation studies are warranted to fully confirm product feasibility and to 

investigate how parameter modulation impacts the efficiency of the constructs with respect to 

bone defect repair. Given that the porosity-to-hydrogel content ratio is lowest for the 0.5P/1HG 

group and that hypoxia has been widely shown to promote chondrogenesis [128, 129], we 

surmise a priori that the 0.5P/1HG group will generate tissue most similar to cartilage and will 

therefore perform better upon implantation. 
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5. Evaluation of proposed strategy and conclusions 

5.1. Criteria/constraint satisfaction 

At the conclusion of the study, we gauged the success or failure of the developed 

biofabrication strategy with respect to each previously established criteria and constraint: 

 Bulk size and shape for targeted defect types: Though construct characterization 

was performed at the spatial scale of unit elements of the PCL, hydrogel and pore 

network architectures, the use of additive manufacturing and the structural 

integrity that the stiff network provides ensure that the generated constructs may 

be scaled up and shaped to conform to any non-union defect along the mid-

section of long bones. 

 Surgical fixation: It was found that during mechanical testing, none of the 

constructs fractured at strains of up to 5%, which exceeds the 1% limit criteria 

previously set and confirms that the generated templates will not fail during 

implantation upon press fitting and plate fixation. 

 Elastic modulus: With a global mean of 26.3 (±1.14) MPa and fairly uniform 

measurements across replicates and groups, the generated constructs are 

acceptably within the 5-30 MPa range established to prevent stress shielding and 

ensure mechanotransduction while adequately supporting press fitting. 

 Printing precision and consistency: The greatest deviation in width mean from 

target value was found to be 29% (9% greater than the set criteria value) while the 

largest relative standard deviation for any given group of measurements was 

reported to be 22% (2% greater than the set criteria value). The employed additive 

manufacturing platform therefore narrowly misses both the targeted precision and 
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consistency levels required to produce either distinct or identical multi-material 

constructs as neede. Thus, as previously discussed, printing fidelity should be 

further improved by harmonizing the widths of individual extrusion filaments 

with those of corresponding computer generated models. In addition, minor 

improvements stand to be made in terms of ensuring geometric uniformity across 

multiple iterations of the same printing task. This can be accomplished by further 

standardizing environmental conditions, which include ambient temperature, air 

convection and the amount of loaded material within extrusion cartridges, across 

all prints. 

 Construct parameter modulation: By successfully modulating pore and hydrogel 

strut widths in the construct architecture, the developed fabrication strategy was 

able to generate constructs with a variety of porosities exceeding the set minimal 

range of 20% and with marked differences in time-dependent mechanical 

behavior, all of which confirms the tailorability of generated constructs through 

parameter modulation. 

 Slow degrading material content: The maximal volumetric PCL content in the 

fabricated scaffolds, which was 57%, is also acceptably under the established 

threshold of 70%, which lends support to the prediction that the generated 

templates will support adequate vascularization. 

 Swelling mitigation: In addition to the reduction in swelling achieved through the 

successful elimination of hydrogel extrusion from the fabrication process, the 

incorporation of a stiff network also participated in further constraining swelling. 

Indeed, the recorded swelling percentage remained well under 1500% after 1 
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week of swelling. These findings lend credence to the expectation that 

deformation due to swelling will be minimized. 

Thus, overall, the developed fabrication strategy met nearly all of the previously established 

criteria and constraints, though we note that more rigorous standards must be implemented 

during the previously proposed comprehensive follow-up investigation in order to validate 

predictions with respect to structural integrity for fixation, mechanotransduction, parameter 

modulation, hydrogel deformation and vascularization. 

 

5.2. Decision matrix against alternative bone defect repair strategies 

 The advanced approach to bone defect repair was also evaluated against previously 

discussed alternative strategies in the clinical and tissue engineering realms, namely previous 

techniques aiming to mimic endochondral ossification without the use of 3D printing, non-

resorbable implants such as ceramics and metals, resorbable scaffolds for direct osteogenesis, 

autologous grafts, and allogeneic grafts. This assessment was performed based on a number of 

points, each scored on a scale of 1 (most inadequate) to 5 (most ideal): 

 A primary set of considerations, which were each assigned the highest weight of 3 in the 

evaluation process, relate to the pure feasibility of developing a medical product targeting the 

bone defect market. In essence, these considerations constitute prerequisites to developing a safe 

and efficacious implantable construct. Specifically, they include (1) the possibility of grave 

complications (such as immune rejection, toxicity and loosening), (2) load bearing function upon 

implantation, (3) successful fixation at the time of implantation, and (4) eventual 

osseointegration (as a result of vascularization, endochondral ossification, osteoinduction or 
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osteoconduction). For the prevention of complications, lower scores were assigned to the gold 

standard methods of autologous and allogeneic grafting since their numerous shortcomings are 

what are currently fueling the investigation into alternative strategies. Load bearing function 

upon implantation was deemed best for non-degradable implants due to the strong mechanical 

properties of metals and ceramics, and worst for hydrogel-based tissue engineering approaches 

which require additional fixation methods to withstand native loads. Similarly, successful 

fixation was considered to be most ideal with non-resorbable implants since metals and ceramics 

constitute sturdier substrates for existing fixation methods. Finally, osseointegration was 

estimated to be best with endochondral ossification-based methods since mimicking the native 

repair process would generate the most native-like and integrated bone tissue. 

 The next set of considerations, each assigned a weight of 2, relate to the maximization of 

implant success across the most number of patients. Specifically, these considerations include (5) 

widespread availability for mass production, (6) tailorability of bulk size, shape, microscale 

architecture and mechanical properties, and (7) the implant lifespan, which determines the 

frequency of follow-up interventions (each of which has an associated risk). The greatest score 

for availability was assigned to non-degradable implants, which are made of entirely synthetic 

and widely accessible materials, while the lowest score was accorded to autografts due to the 

shortage of donor bone tissue sites within each individual. As for implant lifespan, the highest 

scores were accorded to strategies which target complete regeneration and therefore eventually 

do away with foreign materials in the body either through surgical removal or native resorption. 

 The last consideration, which is assigned a weight of 1 and pertains to convenience and 

quality of life for patients, corresponds to the total duration of the first intervention. Non-

resorbable implants were rated highest for intervention duration since metal and ceramic 
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implants can be made ready for implantation as soon as bone defect cases present. Conversely, 

tissue engineering strategies were rated lower since they require a preliminary intervention to 

immobilize the defect area while constructs are fabricated and cultured to maturation before 

implantation can occur.  

 The results of this comprehensive comparison can be seen in the decision matrix in Table 

3. Overall, we note that our proposed strategy involving 3D printing, hydrogel casting and 

sacrificial pore formation brings the formerly lagging endochondral ossification approach to the 

forefront, making it a viable strategy capable of competing with alternative potential solutions 

and claiming a considerable portion of the bone defect market share. 
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Table 3: Decision matrix between proposed approach and alternative solutions. 

 

Assigned 

weight 

Proposed 

approach 

Previous 

ossification 

techniques 

Metal 

and 

ceramic 

implants 

Bioresorbable 

osteogenic 

scaffolds 

Autografts Allografts 

Serious 

Complications 
3 4 4 3 4 3 2 

Load bearing 

function 
3 3 2 5 3 4 4 

Successful 

fixation 
3 4 2 5 4 4 4 

Osseo-

integration 
3 5 4 2 2 4 4 

Availability 2 4 4 5 4 2 4 

Tailorability 2 5 2 3 5 3 3 

Implant 

lifespan 
2 5 5 2 3 5 4 

Duration of 

intervention 
1 2 2 5 2 4 4 

TOTAL 78 60 72 65 69 68 
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5.3. Conclusions 

 In sum, the advanced strategy for bone defect repair establishes a basis biofabrication 

platform for subsequent optimization studies, for a parameter-driven mechanistic investigation of 

the native bone defect repair process, and for the development of a viable, implantable and 

tailorable product targeting critical size bone defect repair. Indeed, by addressing prior 

limitations with respect to spatial control, swelling and systemic tailorability, the developed 

method represents the next step to existing developmental engineering approaches efforts in the 

realm of bone repair. Moving forward, future work aiming to solidify the platform should 

include more comprehensive characterization studies validating obtained findings, follow-up cell 

studies probing both viability and tissue differentiation, and preclinical animal implantation 

studies assessing repair outcomes. 
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