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We proposed an approach to precisely control the density of tethered chains on solid substrates using
PEO-b-PS and PLLA-b-PS. As the crystallization temperature Tx increased, the PEO or PLLA lamellar
crystal thickness dL increased as well as the reduced tethering density ~�� of the PS chains. The onset of
tethered PS chains overcrowding in solution occurs at ~��� � 3:7–3:8 as evidenced by an abrupt change in
the slope between �dL��1 and Tx. This results from the extra surface free energy created by the tethered
chain that starts to affect the growth barrier of the crystalline blocks.

DOI: 10.1103/PhysRevLett.93.028301 PACS numbers: 83.80.Uv
FIG. 1. Schematic representation of the thickness of tethered
chains on a substrate in solution versus ~��. The ~�� � 1 is the
reference point at which tethered chains starts to laterally
interact with each other. Note that the tethered chains start
to get squeezed by their neighbors at ~��� � 3:7–3:8 (based on
can be approximated by renormalization group theory [8]. this work).
In the past decade, it has been recognized that polymer
brushes are key to enabling a wide range of potential
surface applications related to bio- and nanotechnologies.
Several approaches on how to tether chains, both neutral
and charged, to substrates have been proposed [1–3]. In
addition to physical absorption, chemically grafting
chains onto substrates can be accomplished via ‘‘grafting
to’’ [4] or ‘‘grafting from’’ polymerizations [5]. Both
approaches lack the precise control needed for uniform
chain tethering density (�) and/or uniform chain length
(monodisperse) of the tethered polymers.

So far, most theoretical treatments of tethered chains
on flat solid substrates have been focused on the descrip-
tion of the noninteracting (‘‘mushrooms’’) regime or the
strongly stretched (‘‘brushes’’) regime. It has been found
that the transition between these two regimes is rather
broad allowing a crossover regime to exist. The quantity
� has been frequently used to describe how close a
tethered chain is to its neighbors, and it is defined by
the reciprocal of the area covered by each tethered chain
[6]. The reduced tethering density (~��) (which ignores the
interaction between tethered chains and substrates) is
independent of molecular weight (MW) and type of
solvent used. It is defined by ~�� � ��R2g, where the Rg
is the radius of gyration of a tethered chain at specific
experimental conditions (i.e. solvent and temperature).
The physical meaning of ~�� can be understood as
how many tethered chains are in the area �R2g covered
by a chain in an unperturbed conformation in the same
solvent [7].

As schematically shown in Fig. 1, when tethered chains
are in the noninteracting regime, their tethering behavior
0031-9007=04=93(2)=028301(4)$22.50 
When the tethered chains enter the crossover regime with
weak to intermediate interactions, the ‘‘single-chain
mean-field theory’’ can be used to describe the interac-
tions [9]. The strongly stretched regime can be treated
with the numerical, self-consistent-field theory [10],
Monte Carlo [11] and scaling methods [12]. However,
the location of the boundaries between each of these
two regimes is not quantitatively known. In experiments,
most results concern the noninteracting and crossover
regimes. One study showed that the strongly stretched
regime was not reached at ~��� 12 [7]. On the other
hand, another study reported that tethered chains started
to be stretched at an estimated ~��� 6, but the sample
2004 The American Physical Society 028301-1



FIG. 2. TEM BF (a) image and AFM height image (b) of a
square-shaped ‘‘sandwiched’’ single crystal of the PEO-b-PS
diblock copolymer crystallized at Tx � 25:4 �C in choloroben-
zene/octane dilute solution. The inset in (a) is an (hk0) SAED
of this single crystal with assignments of crystallographic
planes. The random PE rod crystals decorated on the surface
indicate that the single crystal surface was covered by the
amorphous PS blocks.
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employed had a broad MW distribution (PDI � 1:7) [13],
which likely affected the results. Therefore we asked,
when do the tethered chains start to get squeezed by their
neighbors? So far, theoretical predictions and experimen-
tal observations have not provided a quantitative answer
to this question.

In order to answer this question, it is first necessary to
precisely control the ~�� and its local uniformity on a
substrate with a near monodisperse set of tethered
chains. We have developed a crystal surface engineering
route to generate tethered chains on a single crystal basal
surface using crystalline-amorphous block copoly-
mers. In a variety of solvents, the poly(ethylene oxide)
(PEO) blocks of dilute PEO-b-polystyrene (PEO-b-PS)
diblock copolymer solutions and the poly(L-lactic acid)
(PLLA) blocks in dilute PLLA-b-polystyrene (PLLA-
b-PS) diblock copolymer solutions can form large sized
single crystals having PS blocks covering the top and
bottom of the PEO or PLLA basal surfaces to form a
‘‘sandwiched’’ layer structure [14]. The most thermody-
namically stable state is a uniform distribution of the PS
blocks located on both of the surfaces. Since the PEO and
PLLA blocks are near monodisperse, and the number of
folds for each PEO or PLLA block in the PEO or PLLA
crystals is constant at a fixed crystallization tempera-
ture (Tx) in a specific solvent, so the basal surface area
covered by each tethered PS chain should be identical.
Furthermore, it is known that with increasing Tx, the
crystalline block crystal thickness (dL) increases (the
number of folds decreases) following a relationship
of dL / 1=�T (where �T � Td � Tx, and Td is the equi-
librium dissolution temperature of the crystal in the
solvent). Therefore, robust control of the ~�� of the tethered
PS chains on the crystal basal surface can be achieved
by adjusting Tx, solvent, and/or the MWs of the blocks.
In this study, two PEO-b-PS and two PLLA-b-PS diblock
copolymers with different molecular weights in two dif-
ferent solvents (in a chrolobenzene/octane mixed solvent
or in amyl acetate) are investigated.

Figure 2(a) shows a square-shaped single crystal of
the PEO-b-PS in bright field transmission electron mi-
croscopy (TEM, JEOL 1200 EX II). The number average
MW of the PEO blocks, MPEO

n , was 11 k g=mol, while the
MPS

n was 4:6 k g=mol (PDIPS � 1:01, PDIoverall � 1:03).
The crystal was grown in the mixed solvent. The inset
of Fig. 2(a) is an electron diffraction pattern of this
crystal in the correct orientation. The two pairs of stron-
gest diffraction spots were attributed to the (120) planes,
indicating that the PEO chain direction in the crystal is
parallel to the surface normal. The four edges of this
single crystal are bounded by four (120) planes. A poly-
ethylene (PE) decoration method [15] was also used to
determine the surface orientation of the single crystal of
PEO-b-PS. The random orientation of those rods revealed
that the PE chains have, as expected, decorated the
featureless amorphous PS layer surface.
028301-2
Figure 2(b) is an atomic force microscopy (AFM, DI
Nanoscope IIIA) height image of the PEO-b-PS single
crystal crystallized at 25:4 �C. The overall lamellar
thickness, doverall, was 15.5 nm. As a first approxima-
tion, we assumed that the density of two PS layers was
identical to that of the amorphous PS bulk (�a

PS �
1:052 g cm�3). The �c

PEO and �a
PEO at room temperature

were also assumed identical to the bulk crystal density of
1:239 and 1:124 g cm�3, respectively. The PEO blocks in
this system possessed 95% crystallinity (W c

PEO) [16].
Using the equation dPEOL � doverall 	 VPEO (%), the thick-
ness of the PEO layer, dPEOL , could be estimated.

dPEOL � doverall

	
MPEO

n =�W c
PEO�

c
PEO
W a

PEO�
a
PEO�

MPEO
n =�W c

PEO�
c
PEO
W a

PEO�
a
PEO�
MPS

n =�PS
:

The dPEOL was also verified by a seeding experiment.We
used the PEO-b-PS single crystals as seeds for further
crystal growth of a homo-PEO fraction. The added ho-
mopolymer fraction can only nucleate on the (120) facets
of the PEO block crystal to grow a homo-PEO single
crystal. The initial thickness of the homo-PEO lamellar
crystals connected with the block PEO crystal can be
readily measured by AFM, and serves as direct evidence
of the dPEOL in the PEO-b-PS single crystal. In the Tx
regime studied, the observed homo-PEO initial lamellar
thicknesses were identical to the dPEOL calculated from the
equation. Figure 3(a) shows the relationship of the dPEOL
with respect to Tx for the crystals of this PEO-b-PS
grown in the mixed solvent. This figure also includes
028301-2
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data obtained in another PEO-b-PS diblock copolymer
(MPEO

n � 40:1 k g=mol, MPS
n � 7:7 k g=mol, PDIPS �

1:01, PDIoverall � 1:06) in amyl acetate dilute solution.
Both of the dPEOL initially increase with Tx. After Tx
reached 27:2 �C for the first sample and 28:3 �C for the
second sample, the rate of dPEOL increase changed.

The PEO blocks generate a fixed number of folds (and
thus, stems) in the crystal covered by two tethered PS
layers at each Tx. For the first PEO-b-PS sample, e.g., the
Tx � 25:4 �C while doverall � 15:5 nm and dPEOL �
10:5 nm. Thus, dPS � 2:5 nm. Using the definition of
dPS�PSNA=MPS

n (where NA is the Avogadro number), we
calculated that � � 0:34=nm2. Similar calculations were
also carried out for the second PEO-b-PS sample.

Figure 3(b) shows two relationships between �dPEOL ��1

and Tx using the dPEOL data in Fig. 3(a). Below Tx
� �

27:2 �C for the first sample, the relationship was almost
linear (for discussion, see below). At the Tx

�, a slope
decrease appeared due to the fact that the dPEOL was only
slightly increased above this Tx

�. Since the Rg of the PS
chains (RPSg ) of MPS

n � 4:6 k g=mol in the mixed solvent
was 1.8 nm [17] and the � at this Tx was 0:375�
0:01=nm2, the value of ~��� at which the slope change
occurred was 3:8� 0:1. At this ~�� � , the tethered PS
chains start to get squeezed by neighbors and lateral
repulsion builds up to affect the PEO block crystal growth
in solution. The second PEO-b-PS sample possessed a
different MPS

n and was in amyl acetate. Note that amyl
acetate is a very good solvent, and the mixed solvent is
close to the � condition for the PS blocks [17]. At Tx

� �
28:3 �C where the slope change took place, the value of
~��� was again 3:8� 0:1.

If one follows the relationship of dPEOL / 1=�T, the
dPEOL increases should follow the dashed lines in
Fig. 3(a). The only slightly increased dPEOL at temperatures
FIG. 3. Relationships of (a) the dPEOL values for two PEO-b-PS di
respect to Tx in a close to � solvent (chlorobenzene/octane) and a
27:2 �C and 28:3 �C, both the reduced tethering densities ~��� are 3

028301-3
above Tx
� � 27:2 �C and 28:3 �C destroyed this relation-

ship. This is due to the additional repulsion caused by the
squeezed and frustrated PS chains fighting to return to
their most probable conformations which requires a
larger coverage area. This repulsive force hampers the
formation of thicker crystals and favors the growth of
thinner crystals. In both cases, the slight increase of the
dPEOL above the Tx

� is expected to result from the extra
entropic surface free energy created by the repulsion
which joins the nucleation barrier of the PEO block
crystal growth at Tx > Tx

�.
In the case of the two PLLA-b-PS diblock copolymers

(MPLLA
n of 27:3 k and 56:8 k g=mol with MPS

n of 6.0 k and
9:2 k g=mol, respectively) in amyl acetate, we also ob-
served that changes in the slopes in the two plots of
�dPLLAL ��1 with respect to Tx occurred at Tx

� � 79:5 �C
and 74:3 �C (Fig. 4). Although the � and/or the solvent
type were different compared with those in the PEO-b-PS
cases (about several times to an order of magnitude dif-
ference) and the values of RPSg of the MPS

n � 6:0 k and
9:2 k g=mol in amyl acetate were 2.9 and 4.2 nm at 70 �C,
respectively [17], both calculated values of ~��� were 3:7�
0:1. In Fig. 4, we also include a linear relationship be-
tween �dPLLAL ��1 and Tx for a PLLA homopolymer crys-
tallized at the same conditions. This indicates for the
homopolymer, the relationship of dPLLAL / 1=�T does
hold. It is interesting that the slope of this linear relation-
ship is close to those for the PLLA-b-PS copolymers when
Tx < Tx

�, revealing that below Tx
�, the growth of the

PLLA blocks are not significantly affected by the PS
blocks.

The results reported in this study have further im-
plications for Fig. 1, which was originally a general
representation of tethered chain molecules on a substrate.
When the ~�� of the PS blocks is lower than ~��� at Tx < Tx

�,
block copolymers with respect to Tx, and (b) the �dPEOL ��1 with
very good solvent (amyl acetate) for the PS blocks. At Tx� �
.8.

028301-3



FIG. 4. Relationship between �dPLLAL ��1 and Tx for the two
PLLA-b-PS diblock copolymers with different MWs in a good
solvent (amyl acetate) can be seen. At Tx� � 79:5 �C and
74:3 �C, both of the reduced tethering densities ~��� are 3.7.
The �dPLLAL ��1 versus Tx relationship for a homo-PLLA in the
same solvent is also included.
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the crystal growth in this Tx regime is kinetically con-
trolled [18]. In the Tx regime where Tx > Tx

�, the crys-
talline blocks favor the growth of thicker crystals, which
lowers the free energy by removing folds, but thicker
crystals are disfavored by the amorphous blocks, which
would have to stretch to accommodate them. This tradeoff
of the free energy leads to an understanding that at each
Tx > Tx

� in this Tx regime is ‘‘thermodynamically’’
controlled [18]. Note that the thickness still slightly in-
creased with Tx as shown in Figs. 3 and 4, reflecting that
at the Tx

� point the interaction between the amorphous PS
blocks becomes so significant as to influence the dPEOL or
dPLLAL within the broad crossover regime.

Quantitatively, the slope in the relationship between
�dL��1 versus Tx is equal to �H=�2Td�e� (where �H is
the heat of dissolution and �e is the folded surface free
energy). The similar slopes of the �dPLLAL ��1 versus Tx in
these three cases thus imply that the values of �e for the
homo-PLLA and two PLLA-b-PS crystals were similar
below Tx

�. Compared with the slopes above Tx
�, the value

of �e increases by a factor of 2:3. Similarly in the
PEO-b-PS cases, the value of �e could be estimated to
have changed by a factor of 2.5.

Based on the results of PEO and PLLA in four diblock
copolymer systems, we conclude that the tethered PS
chains do not become compressed in solution until ~���

reaches �3:7–3:8. As expected, MWs of the blocks and
types of solvent used affect the Tx

� at which the tethered
028301-4
chains influence the crystal core thickness. However, the
value of ~��� should be MWand solvent independent, and is
most likely universal for tethered chains.
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