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Social navigation exploits the knowledge and experience of peer users of information
resources. A wide variety of visual–spatial approaches become increasingly popular as a
means to optimize information access as well as to foster and sustain a virtual community
among geographically distributed users. An information landscape is among the most
appealing design options of representing and communicating the essence of distributed
information resources to users. A fundamental and challenging issue is how an
information landscape can be designed such that it will not only preserve the essence of
the underlying information structure, but also accommodate the diversity of individual
users. The majority of research in social navigation has been focusing on how to extract
useful information from what is in common between users’ profiles, their interests and
preferences. In this article, we explore the role of modelling sequential behaviour patterns
of users in augmenting social navigation in thematic landscapes. In particular, we
compare and analyse the trails of individual users in thematic spaces along with their
cognitive ability measures. We are interested in whether such trails can provide useful
guidance for social navigation if they are embedded in a visual–spatial environment.
Furthermore, we are interested in whether such information can help users to learn from
each other, for example, from the ones who have been successful in retrieving documents.
In this article, we first describe how users’ trails in sessions of an experimental study of
visual information retrieval can be characterized by Hidden Markov Models. Trails of
users with the most successful retrieval performance are used to estimate parameters of
such models. Optimal virtual trails generated from the models are visualized and
animated as if they were actual trails of individual users in order to highlight behavioural
patterns that may foster social navigation. The findings of the research will provide direct
input to the design of social navigation systems as well as to enrich theories of social
navigation in a wider context. These findings will lead to the further development and
consolidation of a tightly coupled paradigm of spatial, semantic and social navigation.

# 2002 Elsevier Science Ltd. All rights reserved.

KEYWORDS: social navigation; behaviour semantics; information visualization; hidden Markov
Models; information foraging
1. Introduction

Social navigation exploits the knowledge and experience of peer users of information
resources. The concept of social navigation was introduced in 1994 (Dourish &
1071-5819/02/$ - see front matter # 2002 Elsevier Science Ltd. All rights reserved.
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Chalmers, 1994), in which they distinguished three models of information navigation:
spatial navigation, semantic navigation, and social navigation. In its original form,
social navigation refers to the notion of navigation guided by the choice of like-minded
people. As explained in Footprints in the Snow, the ideas of social navigation build on a
general concept that interacting with computers can be seen as navigation in
information space (Munro, Hook & Benyon, 1999). There has been an increasing
interest over the last few years in social navigation. The scope of social navigation has
been substantially expanded from collaborative recommendation on the Internet to the
use of the metaphor of footprints in various systems (Hill, Stead, Rosenstein & Furnas,
1995; Wexelblat & Maes, 1997).
A wide variety of visual–spatial approaches become increasingly popular as

a means to optimize information access as well as to foster and sustain a virtual
community among geographically distributed users. In particular, information
landscape has become one of the most appealing design metaphors for re-
presenting and communicating the essence of distributed information re-
sources to users (Chen & Carr, 1999a; Rennison, 1994; Waterworth, 1999; Wise Jr.
et al., 1995).
The advances in information visualization have introduced a fresh perspective to

investigate social navigation in virtual environments, especially the ones that are built
on strong spatial–semantic couplings (Chen, 1999a; Chen & Davies, 1999). On the one
hand, the increasingly wide spread of graph drawing algorithms means that more and
more users are likely to deal with graphs visualized in one way or another. On the other
hand, until recently it is still very much uncharted water in terms of how users actually
interact and respond to various structural cues. For example, what topological features
in visual–spatial interfaces influence users’ search behaviour, what navigation cues
should be incorporated to help users and how can social navigation benefit from
insights into users’ trails?
Our interest in social navigation is influenced by Erickson’s work (Erickson, 1993).

We have been exploring a fresh angle to conceptualize a deeper relationship between
information visualization, spatial hypermedia, and three-dimensional multi-user virtual
environments. Information visualization provides a new dimension to the construction
and navigation of three-dimensional multi-user virtual environments. Virtual environ-
ments should provide explicit representations of underlying semantics of an
information space. Over the last few years, we have been pursuing two lines of
interrelated research: information visualization (Chen, 1999a) which concentrates on
cognitive concerns of individual users, and multi-user spatial–semantic virtual
environments (Chen & Davies, 1999; Chen, Thomas, Cole & Chennawasin, 1999)
which adapts the philosophy of social construction of knowledge. Searching for a
synergy between information visualization and virtual environments has profound
implications on social navigation.
The most fundamental principle of social navigation is to learn from others. By

understanding others’ navigation trails and their behaviour in visual information
retrieval, one can improve their own understanding of the information source they are
dealing with and subsequently improve search strategy. In this article, we address this
issue concerning social navigation: in a visual information retrieval setting, how users
find their way in a visual–spatial interface, what we can learn from the successful users,
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and how we can make such heuristics available to peer users so as to foster social
navigation.
The rest of this article is organized as follows. First, we introduce the notion of trails

and footprints in an abstract information space and various works on this topic.
Second, we introduce a conceptual framework for accommodating and recommending
trails. Then, we describe how we re-construct user behaviour in an experimental study
and build Hidden Markov Models. Finally, we generate optimal paths using the Viterbi
algorithm and conclude the article.

1.1. SOCIAL NAVIGATION

Landmarks and well-trodden footpaths are among the most commonly used navigation
cues in the real world. The idea of edit wear and read wear is one example of how such
cues can be adapted for social navigation in virtual worlds (Dieberger, 1997; Hill,
Hollan, Wroblewski & McCandless, 1992). In this article, we focus on the counterpart
of footpaths in virtual environments.
The growing number of three-dimensional multi-user virtual environments opens

opportunities for researchers and practitioners to exploit the role of new information in
such environments for social navigation. For example, the use of avatars in virtual
environments allows us to study how people co-ordinate the use of shared information
space in terms of the positioning of avatars, their orientation and proximity to each
other (Jeffrey & Mark, 1999). Some systems are also designed with indirect information
on positioning and access. In the Knowledge Garden system, the design follows the
metaphor of a garden, where one can plant, prune or touch (Crossley, Davies, McGrath
& Rejman-Greene, 1999). The Knowledge Garden is a collection of document
references clustered by similarity. Social navigation cues are provided by swinging
branches of a cluster whenever someone is accessing the files.
A footpath becomes increasingly wider as more people follow it. Spatial structures

are being re-organized as far as these travellers are concerned. Space transformation is
indeed a familiar concept in adaptive and self-improving information systems. For
example, in information retrieval, an indexing space should become more and more
efficient through its underlying space transformation in response to various relevance
feedback received (Salton, 1975).
Figure 1 shows the interface design of the StarWalker virtual environment}a

prototype developed to explore the interrelationship between spatial–semantic models
and the dynamics of avatars’ movements (Chen et al., 1999). The central component of
the StarWalker environment is the virtual world, which is a visualization of a semantic
space, typically based on a collection of scientific publications. The organizational
principle of the visual–spatial design is to use spatial proximity to reflect semantic
similarity. Documents are mapped into the virtual world such that similar documents
are near to each other, whereas unrelated documents are further apart}a widely
accepted heuristic in information visualization (Chalmers, 1992; Kamada & Kawai,
1991; Wise Jr. et al., 1995).
What are the possible implications of such proximity–similarity mapping in a spatial–

semantic interface on users’ navigation behaviour? Is it possible to establish a strong
coupling between spatial–semantic metaphor and users’ navigation behaviour? Figure 2



Figure 1. Interface design of the StarWalker virtual environment.
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reveals a screenshot from StarWalker in action. In an open session in StarWalker,
several avatars appeared to be attracted to the area with red poles. What would happen
if more avatars were here and what if a longer duration was observed? What if users are
required to search for specific information?
Behavioural semantics is an approach to modelling and analysing user behaviour in a

shared semantic space. It aims to provide increased intelligibility among users and
foster social navigation. It is a complementary approach to content analysis approaches
such as discourse analysis, conversation analysis, and social episode studies. In this
article, we describe our research in our attempts to answer these questions and
introduce a conceptual framework for the study of behavioural semantics in this
context.
In this article, we focus on the notion of trails of information foragers as they search

information through a thematically organized visual–spatial interface. If one can make
sense of the position and various movement and transition patterns of other users in a
shared virtual world, then it is more likely that such information will increase mutual
intelligibility, thereby increasing the chance of social navigation.

1.2. TRAILS AND FOOTPRINTS

Visualizing and animating the dynamics of user activities is a challenging issue with
profound significance. The history of the notion of trails can be traced back to several
decades, whereas the use of footprints has been particularly rooted in the study of social
navigation.
In 1945, Bush (1945) envisaged a global and persistent device for storing and

retrieving information}Memex. The Memex of more than half a century ago and the
now household name of the World Wide Web have a lot things in common. For
example, the concept of association to Memex then is like hyperlinks to the web today.
For both Memex and the web, there is an underlying information space that users want



Figure 2. Is this a sign of social navigation?
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to access. However, a crucial concept raised by Bush has not yet been fully realized on
today’s web. On today’s web, users are surfers, whereas in Bush’s Memex, users are not
only surfers, but also builders with their own trails in the information space. Bush called
this type of users trailblazers.
Because in Memex everything is about association, trails allow new comers to the

ever-growing information space to experience what others have previously experienced
and what associations have been made. The central idea of trailblazing is to preserve
such valuable information and make it an integral part of the information space. To
some extent, we began to see some forms of trailblazing on the web. For example, on-
line bookstore Amazon can tell their customers about books they might find tempting
to buy, simply based on what books are there in their shopping baskets now and the
buying habits of those customers in the past who have bought the same books. In this
case, the footprints of previous customers are invisible to new customers.
The vision of Bush has inspired several examples of visualizing trails and pathways

intellectual or behavioural in nature. For example, the path model described in
Chalmers, Rodden and Brodbeck (1998) provides a good example of revealing a
perceived structure of an information space through users’ navigation. The notion of
intellectual pathways has been explored in trailblazing scientific literature (Chen, 1999b;
Chen & Carr, 1999b; Small, 1999). The number of users who followed a hyperlink
connecting two documents has been used to estimate the degree of relatedness between
the two documents (Pirolli, Pitkow & Rao, 1996).
Alan Wexelbalt’s Footprints system developed at the Media Lab at MIT is one of the

pioneering systems that emphasise the dynamic structure as conceived and experienced
by users on the web (Wexelblat & Maes, 1997). The Footprint systemy visualizes the
paths of users travelling from one document to another on a web locality. To make the
cut on the Footprints system, a document must have been visited at least once. Such
yThe latest version of Footprints is available at http://footprints/media.mit.edu.
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visualization is useful for webmasters to spot broken links and other abnormality in
users’ access patterns. In Knowledge Garden, although users’ trails are not directly
visible, one can instead see the plant swinging in real-time whenever someone else is
reading the corresponding document in the garden (Crossley et al., 1999).

1.3. INFORMATION FORAGING AND EFFECTIVE VIEW NAVIGATION

Information foraging refers to a wide variety of activities in information search,
including exploring, locating and assessing information. One may think of the user as
someone who is hunting information and wants to maximize the rate of retrieving
relevant information. This analogue is originated from the so-called optimal foraging
theory developed in biology and anthropology. A mathematical model for information
foraging can be found in Pirolli and Card (1995). In order to predict users’ behaviour in
information foraging, the profitability of a given document can be defined as the
proportion of relevant documents in a cluster of documents divided by the time it will
take to process the cluster, for example, to read all the documents in the cluster. Pirolli
and Card (1995) found that even a crude, approximate model of information foraging
predicts the observation that the harder the query is, the fewer clusters the users will
select. According to the theory, profitability becomes lower if users have to spend more
time to examine a set of documents.
The theory adopts optimal foraging theory in biology and anthropology, which

analyses the value of food-foraging strategies and whether they should be adapted given
a particular situation. Information foraging theory applies similar trade-off analytical
techniques in modelling the value of information gains against the costs for the user.
In general, users must decide whether or not to pursue a given document upon

encountering it, the time to spend processing a collection of documents, the choice of
moves to make in navigation, the choice of strategy under uncertainty, or the degree of
resource sharing.
In this article, we introduce the optimal information foraging theory in order to set

our approach to modelling and animating users’ trails in a broad context. From a social
navigation point of view, trails of users in an information space can be used as an
indicator of the profitability of a document cluster. The longer the users spend their
time in a cluster, the more likely that the cluster contains relevant documents. The more
frequently the users mark documents as relevant in an area, the more profitable this
area is likely to be.
Another potentially relevant perspective is called effective view navigation (Furnas,

1997). In view navigation a user moves about an information structure by selecting
something in the current view of the structure. Furnas (1997) explores implications of
basic requirements for effective view navigation. He explored some basic issues
concerning finding things in various information structures, be they webs, trees, tables
or even simple lists.

1.4. HIDDEN MARKOV MODELS

Hidden Markov Models (HMMs) have been widely used in signal processing and
speech recognition (Rabiner & Juang, 1993). HMMs provide a suitable means for us to
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model user behaviour in information search. In particular, given the basis of optimal
information foraging, HMMs can be used to enhance our theory about how users are
expected to behave.
HMMs consists of states, which are not observable, and observations, which are

probabilistic functions of states. State transitions are governed by a stochastic process.
Observations are also a stochastic process. An HMM can be defined as follows: N

denotes the number of hidden states; Q denotes the set of states Q ¼ f1; 2; . . . ; Ng; M

denotes the number of symbols, or observations; V denotes the set of symbols V ¼
f1; 2; . . . ; Mg and A denotes the state-transition probability matrix.

A ¼

a11 a1 . . . a1N

. . . . . . aij . . .

. . . . . . . . . . . .

aN1 aN2 . . . aNN

2
6664

3
7775;

where aij ¼ Pðqt ¼ jqt�1 ¼ iÞ, 14k4M.
B denotes the observation probability distribution:

BjðkÞ ¼ Pðot ¼ kjqt ¼ jÞ; 14k4M :

p denotes the initial-state distribution:

pi ¼ Pðq1 ¼ iÞ; 14i4N:

l denotes the entire HMM model, l ¼ ðA; B; pÞ
An HMM is completely defined by l ¼ ðA; B; pÞ, which in turn are called parameters

of the model. HMMs typically address the following three basic problems:

1. Given observation O ¼ ðo1; o2; . . . ; oTÞ and model l ¼ ðA; B; pÞ, efficiently
compute PðOjlÞ. Given two models l1 and l2, this can be used to choose the
better one.

2. Given observation O ¼ ðo1; o2; . . . ; oTÞ and model l find the optimal state sequence
q ¼ ðq1; q2; . . . ; qTÞ.

3. Given O ¼ ðo1; o2; . . . ; oTÞ, estimate model parameters l ¼ ðA; B; pÞ that max-
imize PðOjlÞ.

A well-known algorithm from Viterbi has been widely used to find the most likely
path through the HMM for each sequence, although for small state spaces it is possible
to work out the answer using a brute-force approach.
In order to apply HMMs to the sequences of user activities observed in information

foraging within a thematic space, we derive the transition matrix and observation
probability as follows. The state space consists of all the documents in a thematic space.
Each document corresponds to a unique state:

S1 ¼ d1;S2 ¼ d2; . . . ; SN ¼ dN

A user’s trail refers to the sequence of documents processed by the user in the entire
session to complete a given task, including reading and marking documents. Each trail
in the thematic space corresponds to a state sequence S ¼ fdi1; di2; di3; . . .g. The state
transition probability matrix is derived from the sequence of documents visited by a
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user in his/her session:

aij ¼
di ! dj

di

:

The observation probabilities are defined as follows. Three observation symbols are
defined: ok, K ¼ 1, 2, 3. O1 denotes the user moves the mouse over a document. O2
denotes the user clicks on the document. O3 denotes the user marks the document as
relevant. A sequence of observed symbols could be O ¼ f1; 1; 1; 2; 1; 1; 2; 3; . . .g. The
observation probability is also estimated from the log files:

bik ¼
okðdiÞ

di

:

The reason we choose the document space as the state space and the three actions as the
observation symbols is based on the consideration that the sequence of activities such as
node over, node click and node mark is a stochastic process. This observable process is
in turn the function of a latent stochastic process}the traversal of the thematic space
by the user because which document the user will move to in his/her next step is very
much opaque to observers.

1.5. THEORETICAL FRAMEWORK

In order to produce an integrated and cohesive theory, we introduce a theoretical
framework for modelling trails of information foragers in thematic spaces. Figure 3
shows a flow chart of this framework. The framework starts with a proximity–similarity
mapping, which is a common technique in information visualization. Then users are
asked to complete a series of tasks designed with reference to Shneiderman’s
information visualization taxonomy (Shneiderman, 1996). Users’ trails in each session
are logged and modelled as HMMs. Users’ profiles are also established in terms of their
cognitive abilities and other possible criteria. Finally, synthesized user trails are
generated from the HMMs and animated in context through the same graphical
interfaces to the underlying thematic spaces.

2. Information foraging in thematic spaces

2.1. DESIGN OF THEMATIC SPACES

In order to study users’ information foraging behaviour, we have constructed four
thematic spaces. Users are asked to conduct a series of tasks in each thematic space.
Each session corresponds to the completion of one task. In each session, the following
information is logged to a computer file: the occurrence of an event, the time stamp of
the event and the target document on which the event takes place.
Four thematic spaces were generated from the Los Angeles Times’ news articles

included in the Text Retrieval Conference CDROM. Each document space consisted of
the top 200 documents retrieved through a single keyword query to the document
collection. The length of these articles was controlled between 250 and 750 words. The



Figure 3. Modelling trails of information foragers in thematic spaces.

Figure 4. The ALCOHOL thematic space in three visualizations, from left to right, Principle Component
Analysis, Minimum Spanning Tree and Pathfinder.
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four keywords used were alcohol, endangered, game and storm. Corresponding spaces
were named accordingly by these keywords.
Figure 4 shows the ALCOHOL thematic space visualized by three layout

mechanisms, namely Principle Component Analysis (PCA), Minimum Spanning Trees
(MST) and Pathfinder Networks (PF). In PCA-based visualization, the connectivity is
not denoted by explicit links. Instead, one must infer the semantic similarity between
two documents solely based on their spatial proximity. In MST-based visualization,
N � 1 explicit links connect all the documents together. Users can see these links on
their screen. In PF-based visualization, additional explicit links are allowed as long as
the triangular inequality condition is satisfied. In our examples, the PF version tends to
have only a handful of extra links at most in comparison to the MST version. Detailed
descriptions of the use of these techniques for information visualization can be found in
Chen (1999a).
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2.2. DESIGN OF TASKS

The design of the tasks was based on Shneiderman’s mantra: Overview, Zoom, Filter,
Details on Demand, which highlights users’ cognitive needs at various strategic stages
in visual information retrieval.
In Task A, users are required to locate and mark documents relevant to a search

topic. For example, in the Alcohol space, users were asked to locate and mark any
documents that mention an incident of drink driving. 20–25 documents were judged as
relevant by experts for TREC conferences. From Task A through Task D, the scope of
the target areas becomes smaller and smaller. In particular, from Task A through Task
C, the target area at each level is a proper subset of the one for the immediately
precedent task. The depth of Task C is designed to be equivalent to that of Task D. This
inclusion relationship is made clear in the instructions to users who participated in the
experiment. We expect that this should be also reflected through the trails of users} we
should be able to observe that the trails of users become increasingly focused on smaller
areas in the underlying thematic spaces.
We can study sequential patterns in these trails through visual representations of

both the thematic spaces and the trails. If documents relevant to a task are marked in
the visual interface, we should observe that the trail of a successful information forager
should lead to the target area. In addition, once users’ enter the target area, their trails
should indicate whether they explore documents within the target area more
purposefully than their trails outside the target area.

2.3. HIDDEN MARKOV MODELS

In order to characterize sequential patterns of users’ trails, we construct HMMs based
on the actual trails logged from sessions of the experiment. HMMs are both descriptive
and normative } one can not only describe what happened with information foraging
sessions, but also predict what might happen in similar situations. On the one hand, the
state transition probability matrix is derived from the actual trails of users. On the other
hand, behavioural patterns captured by HMMs provide insights into how users would
behave as they are exposed to the same type of structural and navigational cues in the
same thematic space.
In terms of the three basic problems that HMMs address, we can reword the basic

problems as follows. The first basic question states that given observation
O ¼ ðo1; o2; . . . ; oTÞ, which is a sequence of information foraging actions of a user,
and model l ¼ ðA; B; pÞ, efficiently compute PðOjlÞ. Given two models l1 and l2, this
can be used to choose the better one. We first derive an HMM model from the log files
of two users: one has the best performance score, but without any node click events; the
other has all types of events. We use llog to denote this model. Given an observation
sequence, it is possible to estimate model parameters l ¼ ðA; B; pÞ that maximize
PðOjlÞ, we use lseq to denote this model. We choose the navigation path of the user with
the best performance as the input sequence.
The second basic question states that given observation O ¼ ðo1; o2; . . . ; oTÞ and

model l find the optimal state sequence q ¼ ðq1; q2; . . . ; qT). In this case, we submit
the navigation paths of users to the model llog and animate the optimal state sequences
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within the thematic space. In this way, we can compare the prevalent behavioural
patterns. For the purpose of social navigation, such animation will allow other users to
study not only the actual trail with the best performance, but also the optimal state
sequence based on the collective behavioural patterns. For those users whose data were
not included in the training data, it is particularly interesting to see their behavioural
patterns transformed by the HMMs.
Finally, the third basic question states that given observation O ¼ ðo1; o2; . . . ; oTÞ,

estimate model parameters l ¼ ðA; B; pÞ that maximize PðOjlÞ. We focus on the user
with the best performance score in searching the thematic spaces. For example, if we
observe a user clicking and marking to a great extent, it is likely that the user has
successfully located the cluster of relevant documents.

2.4. VISUAL REPRESENTATIONS OF TRAILS

In order to capture behavioural as well as contextual characteristics and patterns, we
have decided to animate users’ navigation time series against the backdrop of the
corresponding topical space. There are three types of actions that users can apply to a
document in the space: mouse over to reveal the title of the document mouse click to
view the content of the document, and mark the node as relevant to a given retrieval
task.
Figure 5 is an annotated screenshot of the graphical interface design, which explains

the animation design in detail. Non-relevant documents are marked as red. Traversal
paths are defined as the transitions from one document to another. These paths appear
in the animation as dotted yellow links. The ALCOHOL topical space consists of 200
documents relating to the topic of alcohol. Relevancy judgements from experts are
available from the TREC test data. Documents judged to be relevant to the original
search are marked with a bright yellow dot in the centre. If the user marks a document
as relevant in his/her search session, this document will be coloured in blue. When the
user visits a document, a dark circle is drawn around the current document. The time
Figure 5. Information foraging trails.
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spent on a document is denoted by a growing green belt until the user leaves the
document. If the user comes back to a document he/her had visited before, we will see a
new layer of dark circle and an additional layer of green belt will start to be drawn. One
can choose to carry these discs grown in one session into the next session. In this case, a
red disc will outline the profile of previous session.
Based on the above reasoning, we can formulate our expectations in the following

hypotheses.

(a) Spatial–semantic models may reduce the time spent on examining a cluster of
documents if the proximity–similarity mapping preserves the latent semantic
structure.

(b) Spatial–semantic models may mislead information foragers to over-estimate the
profitability of a cluster of documents if the quality of clustering is low.

(c) Once users locate a relevant document in a spatial–semantic model, they tend to
switch to local search.

(d) If we use the radius of disc to denote the time spent on a document, the majority of
large discs should fall in the target area in the thematic spaces.

(e) Discs of subsequent tasks are likely to be embedded in discs of preceding tasks.

3. Results

The performance results have showed that users performed better with interfaces based
on MST visualizations. We will focus on trails of users in these spaces, especially in the
Alcohol thematic space. Four users participated in sessions for Task A in this space.
Figure 6 shows an overview map of the ALCOHOL space in which documents relevant
to Task A are marked with bright yellow dots in the centre. All the relevant documents
are clustered in the branch located at the lower right-hand corner of the map, with the
Figure 6. The distribution of target documents for Task A in the ALCOHOL space (MST).
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exceptional documents being number 63 and number 21. Another special node in the
map is number 57. As will be shown subsequently, three out of four users we studied
chose this node as the starting point for their navigation.

3.1. TRIALS OF INFORMATION FORAGERS

Because of the superior performance results with MST-based interfaces, in the
following discussion, we focus on information foraging behaviour in the MST version
of the ALCOHOL topical space. Four users took part in the experiment and searched
the ALCOHOL space visualized as an MST.
Table 1 lists the details of these four users, including their psychometrics and retrieval

performance measure Fpr, which is defined as follows:

Fpr ¼
pr

p þ r

where p is the precision and r the recall
In the psychometrics block in the table, measures above the average are highlighted

in bold. Various factor-referenced tests are included in the experiment, MV}Visual
Memory, MA}Associative Memory, VZ}Spatial Ability, FI}Ideational Fluency,
P}Perception Speed, FA}Association Fluency, S}Spatial Orientation (Eckstrom,
French, Harman & Derman, 1976). User jbr has above-average measures in most
cognitive ability tests, except in Perceptual Speed (P). In contrast, user nol has a strong
P, but relatively weak in others. In terms of the Fpr measures breakdown by tasks, user
jbr has the best performance in Task A (Fpr ¼ 0:54), whereas user nol has Fpr ¼ 0:00 in
Task A.
Figure 7 shows the trail of user jbr in Task A in the thematic space on alcohol

because he has the best performance in this group. Task A is designed in relation to the
initial overview task in Shneiderman’s taxonomy. In this task, users must locate clusters
of relevant documents in the map. Subsequent tasks become more and more focused.
Each trajectory map corresponds to the navigation and information foraging actions of
one user.
As shown in the trajectory map, user jbr started from the node 57 and moved

downwards along the branch. Then the trajectory jumped to node 105 and followed the
Table 1
Cognitive ability scores of users completed Task A in the alcohol-MST condition

User MV FA S MA VZ FI P Sex Fpr Measure (MST)

T.A T.B T.C T.D

jbr 22.00 38.00 102.00 27.00 18.75 49.00 52.00 M 0.54 0.32 0.80 0.00

msh 9.00 18.00 55.00 22.00 �1.25 21.00 25.00 M 0.14 0.49 0.36 0.11

mas 20.00 37.00 79.00 19.00 3.00 32.00 44.00 M 0.08 0.07 0.03 0.00

nol 18.00 15.00 73.00 14.00 7.25 31.00 59.00 F 0.00 0.00 0.13 0.09
Average 21.05 21.62 102.19 16.81 11.52 28.19 57.00
S.D. 6.62 7.47 31.17 6.84 5.41 8.11 13.83



Figure 7. Trajectory of user jbr as he is excelling on Task A in the thematic space on alcohol.
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long spine of the graph. Finally, the user reached the area where relevant documents are
located. One of the most interesting trajectory patterns is that once the user locates a
relevant document, he tends to explore the immediate neighbouring area. This confirms
our expectation. Long-range jumps across the space become increasingly rare as the
user gets familiar with the structure of the space. The trajectory eventually remained
within the area with the most relevant documents, and it did not go outside that area
ever since. This also confirms our expectation.
In the trajectory replay, the time spent on a document is animated as the radius of a

green disc growing outward from where the document is located. This design will allow
us to verify whether the majority of large green discs appear in areas with relevant
documents and whether areas with few relevant documents will only be connected by
sporadic navigation paths.
We observed that users were able to mark certain documents extremely fast. For

example, user jbr apparently spent almost no time to determine the relevancy of
documents 80, 20 and 64 and marked them in blue. It appears once users have identified
two relevant documents, they tend to identify relevant documents in between very
quickly. Explicit links in the visualization play a crucial role in guiding the course of
navigation of users. Users not only follow these links in their navigation, but also make
their relevance judgement based on the cues provided by these visible links. In other
words, users have taken these explicit links into account when they access the
profitability of a document cluster.
Figure 8 shows the trajectory of another user conducting the same task in the same

space. However, in this case, the traversal did not reach the target area. Instead, the
user has spent a considerable amount of time foraging in areas that contain no relevant
documents. In particular, the user repeatedly visited node 120 and even marked it in
blue. This is shown in the map as the huge green disc on the top.
Figure 9 shows the trajectories of the other two remaining users in the same alcohol

space for Task A. One can tell from the path of their trails that their performance is not



Figure 8. Trajectory of user nol conducting Task A in the thematic space on alcohol.

Figure 9. Trajectories of two other users in the ALCOHOL space.
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as successful as the first user jbr. Documents in the target area were hardly visited.
Interestingly, all four users started with the same branch of documents in the thematic
space } the one starting with node 57 on the top and downward.
Each user participated four retrieval tasks A–D. Tasks A–C are about the same topic,

but require increasingly specific and more detailed information from the space. Task D
is on a different topic at the same level as Task C. Trajectory maps are designed so that
an outline of the trajectory from the previous task can be preserved and carried over to
the next task. For example, if the user spends a long time at a document in Task A, the
accumulative trajectory map starts with the information. Following the same logic on
the relationship between relevance judgement and the time spent on a document, we
expect to see the scope of areas within which the user spends considerably longer time in
their navigation will be gradually narrowed down. In addition, as users become more
and more familiar with the structure and content of the trajectory map, we expect that
there is no need for them to re-visit areas that seem unlikely to be profitable.
Figure 10 shows the trajectories of the same user jbr for four tasks. It is clear from

the maps that the user spent longer and longer time in areas with relevant documents.
In the last trajectory map for Task D, the user began to forage information in
new areas.



Figure 10. Accumulative trajectory maps of user jbr in four consecutive sessions of tasks. Activated areas in
each session reflect the changes of the scope.
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3.2. HIDDEN MARKOV MODELS

Trajectories of individual users have revealed many insightful findings. The next step is
to extract behavioural patterns from the group of users as a whole. From a social
navigation point of view, one has not only to understand the characteristics of the
trajectory of individual users in a spatial-semantic space, but also to identify the
commonality across individuals’ behavioural patterns.
HMMs allow us to describe and predict sequential behaviour characteristics of users

foraging information in thematic spaces. We categorize users’ information foraging
actions into three types of action events.

(1) Node over.
(2) Node click.
(3) Node mark.

When the user moves his/her mouse over a document in the thematic space, the title
is flashed out on the screen. When the user clicks on the document, the content of the
document becomes available. When the user has decided that the current document is
relevant for the task, he/she can mark the document. Table 2 lists the breakdowns of
these actions across the four users. User jbr marked 17 documents as relevant. The
other three users marked considerably less.
The following example illustrates user jbr’s original sequence of information foraging

actions, or observations in terms of HMMs. The total length of the sequence is 120,
among which 103 were node overs and the remaining 17 were node marks. No node
marking was recorded during this session. This is in part due to a temporary problem
with logging node click events. However, it is still a valid representation from the HMM
point of view, and after all, we are interested in node marking events.



Observed sequence of symbols for user jbr (T ¼ 120)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1
1 1 1 1 1 1 1 3 1 3 1 3 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 3 1
1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 3 1 3 1 3 1 1 1 1 1 3 1 3 1

Table 2
Foraging actions of users observed in the MST-version of the thematic space on alcohol

Users Node over Node click Node mark Total

jbr 103 0 17 120
mas 104 9 5 118
msh 97 4 2 103
nol 78 26 4 108

Table 3
State transition matrix of the HMM lstate derived from the training data for the

ALCOHOL topical space (N ¼ 200, M ¼ 3)

lstate s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
s2 0.000 0.625 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
s3 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
s4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
s5 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
s6 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
s7 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
s8 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
s9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.800
s10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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First, we use two users’ trails as the training set to build the first HMM lstate. We
choose users jbr and nol because one marked the most documents and the other clicked
the most number of times. Table 3 shows a small part of the state transition
matrix}only transitions among the first 10 states are shown.
Table 4 shows the observation probability distribution over three information

foraging actions. The entire matrix is not shown due to its size. For example, as far as
the document number 4 is concerned, it is certain that the only information foraging
action is node over.
The third parameter of an HMM is the initial distribution, denoted as p. Table 5

shows a part of the initial distribution. Intuitively, this is the likelihood that users will
start with a given document for their information foraging.
In addition to the above approach, one can derive an HMM by using an algorithm

called the Baum–Welch algorithm based on a given sequence of observed actions. We



Table 4
Observation probability distribution derived from users’ log files (jbr and nol)

State o1 o2 o3

s1 0.333 0.333 0.333
s2 0.625 0.312 0.062
s3 0.333 0.333 0.333
s4 1.000 0.000 0.000
s5 0.333 0.333 0.333
s6 0.333 0.333 0.333
s7 0.333 0.333 0.333
s8 0.333 0.333 0.333
s9 0.333 0.333 0.333
s10 0.600 0.200 0.200

Table 5
Initial distribution of the HMM model

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0.000 0.080 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.025

Table 6
State transition matrix of the HMM lobs by the Baum–Welch algorithm

lobs s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
s2 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
s3 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
s4 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
s5 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
s6 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
s7 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
s8 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
s9 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
s10 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
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use user jbr’s action sequence as the input and generate an HMM. This model is
denoted by lobs. Table 6 shows a part of the state transition matrix of this model.
Similarly, the observation probability distribution is shown in Table 7 in part. The

initial distribution of the second HMM is shown in part in Table 8.
The following example illustrates the difference between a first-step Markov chain

and an HMM. Suppose we have a transition path from node d1 to d9 and eventually
mark d9 as relevant.

r1 ¼ ðd1; d4; d8; d9; M9Þ:



Table 7
Observation distribution of the HMM lobs

State o1 o2 o3

s1 0.997 0.001 0.004
s2 0.997 0.001 0.004
s3 0.997 0.001 0.004
s4 0.999 0.001 0.002
s5 0.997 0.001 0.004
s6 0.997 0.001 0.004
s7 0.998 0.001 0.003
s8 0.997 0.001 0.004
s9 0.997 0.001 0.004
s10 0.997 0.001 0.004
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If we only consider the transition probability of the path, we have

pðr1Þ ¼ pðd1Þpðd1 ! d4Þpðd4 ! d8Þpðd8 ! d9Þpðd9 ! b3Þ

¼ 0:007� 0:006� 0:006� 0:006� 0:004

¼ 6:05� 1012:

If we know the probability of visiting node dk leading to the marking of d9, we can
compute the likelihood that the node d9 will be marked if the user follows this path.
Assume that the following probabilities are known, in fact, they can be estimated from
the sequential data in the log files:

pðd1Þpðd1 ! d4Þpðm9jd4Þpðd4 ! d8Þpðm9jd8Þpðd8 ! d9Þpðm9jd9Þ

¼ 0:007� 0:006� 0:020� 0:006� 0:024� 0:006� 0:004

¼ 2:91� 1015:

Using the HMM derived from user jbr’s and user nol’s actual sequences, we can verify
the internal structure of the model using the well-known algorithm } the Viterbi
algorithm. Given a HMM l and a sequence of observed symbols, the Viterbi algorithm
can be used to generate a sequence of states. One can examine this state sequence and
compare it with the original sequence of events log from the user.
The following is the state sequence generated by the Viterbi algorithm based on the

HMM lstate, which returns the sequence of states that is most likely to emit the observed
symbols, i.e. the information foraging sequence. Relevant documents in the state
sequence are highlighted in bold. This sequence is identical to the original sequence
recorded in the session.

State sequence generated by the HMM for user jbr
67 57 120 199 65 61 61 61 73 73 73 87 170 134 105 170 142 172 156 112
192 77 47 138 128 114 186 30 13 13 18 114 135 50 161 50 43 50 66 50

50 66 161 66 66 169 66 66 169 169 123 123 83 149 169 169 123 123 149

149 83 11 138 159 121 123 149 149 100 100 91 91 83 83 119 83 83 119

119 83 41 162 162 82 50 82 82 82 82 161 122 31 43 135 81 161 43 43

135 81 81 135 14 135 135 14 14 20 20 80 80 189 189 152 56 189 189 64 64 158



Table 8
Initial distribution of the HMM model lobs

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 . . .
0.007 0.007 0.007 0.004 0.007 0.007 0.006 0.007 0.007 0.007 . . .

Table 9
State sequence and information foraging sequence of user nol in the thematic space on

alcohol (length=108)

State sequence

4 10 10 10 10 10 102 153 153 153 191 62 191 191 62 102 102 102 102 96 96 151 151 177
174 191 153 191 191 154 90 107 138 163 163 24 177 129 57 57 57 182 182 166 166 67 97
97 2 2 2 2 97 97 97 97 2 2 120 120 168 120 120 2 97 2 2 97 2 2 120 2 2 2 2 2 168 129
24 24 195 195 195 188 48 61 65 65 61 61 190 94 132 132 47 47 49 49 49 49 49 138
138 138 107 107 22 22

Symbol sequence
1 1 1 2 1 3 1 1 1 2 1 1 1 2 1 1 1 1 2 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 2
1 1 1 1 2 1 1 1 2 1 2 1 3 1 2 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 1 1 2 1 1 1 1 2 1 3 1 1 2 1 2 1 2

Figure 11. Trajectory of the optimal path over the original path of user jbr.
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As a comparison, Table 9 shows the state sequence and information foraging action
sequence for user nol. A total of 78 node over actions were made, 26 node clicks and
only four node mark actions.
Based on the HMM lstate, we used user jbr’s observed information foraging action

sequence as the input and applied the Viterbi algorithm to generate the optimal state
transition path. Figures 11 and 12 shows the trajectory of the path generated by the
Viterbi algorithm. The path started from the left-hand side of the thematic space and



Figure 12. Trajectory of the optimal path over the original path of user nol.
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traced the horizontal spine across the map and reached the target area. The path
finished in the target area with several extended visits to relevant documents in this
area. The optimal path is drawn on top of the original trail of the same user. By
showing the two versions of the trails on the same thematic map, it becomes clear where
the discrepancies are and where the conformance is. Since this is a novel way to
represent paths in an HMM, many characteristics are yet to be fully investigated. Even
though, the synthesized path appears to be promising and it moves straight to the target
area some wandering in the original trail has been filtered out. For social navigation,
the optimal path is likely to provide an enhanced profile for this group of users.

4. Discussion

This is the first step towards the development of an integrated approach to the study of
behavioural semantics. The number of users who conducted Task A with the same
visualization of the same thematic space is four. We focused our analysis on the
thematic space on alcohol in MST because on the average, users scored relatively higher
with MST visualizations. The thematic space was exposed to users for the first time in
Task A. Apart from the structural model, no navigation cues were readily available to
users. Users must first locate areas in the thematic space where they can find documents
relevant to the task. The optimal information foraging theory provides an appropriate
description of this type of processes.
We have made an assumption that this is an information foraging process and it is

also a stochastic process because much of the judgements and decisions made by users
in their exploration and foraging of relevant documents are implicit and difficult to
externalize. The introduction of HMMs allows us to build descriptive and normative
models so that we can characterize sequential behaviour of users in the context of
information foraging. The visual inspection of information foraging trails is
encouraging. Animated trails and optimal paths generated by HMMs have revealed



Table 10
Coverage of the study reported in this article

Space\visualization PCA MST PF

Alcohol No Yes No
Endangered No No No
Game No No No
Storm No No No

C. CHEN ET AL.160
many insights into how users were dealing with the tasks and what the prevailing
characteristics and patterns are. Replay and animate HMM-paths over actual trails
allow us to compare transition patterns in the same context.
Due to the small sample size that we can use in the modelling process, we have not

been able to gather trails from a sufficient number of users and classify trails according
to cognitive ability scores such as Spatial Ability, Associative Memory and Perceptual
Speed. We are planning to conduct an experiment which focuses on individual
differences in information foraging behaviour in the same thematic space by increasing
the sample size and extending the duration of sessions. Although each foraging session
lasted for 30min, if we break down to tasks, each user has only 5min.
The levels of tasks are related to the scope of search. In this article, we studied Task

A, which is by nature a global information foraging within the entire thematic space.
Evidence shows that subsequent tasks have changed to local search to a great extent.
This raises an interesting question as to how one can extend the study to tasks involving
different search strategies. We have touched upon the shrinking-scope tendency in this
article, but studies of the full range of tasks with reference to Shneiderman’s task-data
type taxonomy should lead to deeper insights into how users interact with visual–spatial
interfaces.
As far as the resultant HMMs are concerned, a clearer understanding and

interpretation of various characteristics manifested by paths selected by HMMs are
certainly desirable. We have only analysed a small portion of the data generated from
our experiment. Among 12 combinations of visual–spatial interfaces and underlying
thematic spaces, we have only studied one}Alcohol in MST. Table 10 lists the
remaining combinations that have not been studied in this article.
There are a number of possible ways to incorporate social navigation cues into a

virtual environment with the behaviour semantic approach. HMM allow us to generate
optimal paths and characterize various transition patterns in a thematic space. In
addition to animations of trails and HMM-paths, one can use ghost avatars to traverse
the thematic space along with the real users. Ghost avatars can travel along HMM-
generated paths as well as actual trails, which will in turn inspire other users and draw
their attention to profitable areas in information foraging.

5. Conclusion

In conclusion, many of our expectations have been confirmed in the visualization and
animation of trails of information foragers in thematic spaces. The task we have studied
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is a global information foraging in nature. The initial integration of the optimal
information foraging and Hidden Markov Models (HMMs) is promising, especially
with the facilities to animate user trails within the thematic spaces.
Visual representations of information foraging have led to valuable insights into how

users explore and navigate through thematic spaces. The only visible navigation cues
for users in these spaces are structures resulted from a proximity–similarity mapping.
Labelling in its own right is a challenging issue}how to generate the most meaningful
labels and summarize unstructured documents. However, because the aim of this study
is to investigate information foraging behaviour, it has been decided not to label
document clusters for users in the experiment. Precisely because of this reason, the
optimal information foraging theory and HMM are appropriate tools. Users have
indeed raised the issue concerning labelling local areas in the thematic space.
In future studies, there are several possible routes to pursue. One can repeat the study

with a large sample size of users and classify users according to their cognitive abilities
or other criteria. Then one can compare HMMs across different user classes and make
connections between information foraging behaviour of users and their individual
differences. Future studies should expand the scope of tasks to cover a fuller range of
information foraging activities. Visual–spatial interfaces should be carefully designed
for future studies so that fundamental issues can be addressed.
As far as social navigation is concerned, one can enhance navigation cues in a multi-

user virtual environment with various actual trails and synthesized paths. The findings
of the research will provide direct input to the design of social navigation systems as
well as to enrich theories of social navigation in a wider context.
Our goal is to improve the understanding of how such information can help users to

learn from each other, for example, from the ones who have been successful in
retrieving documents. Additional navigation cues, guided tours and even ghost avatars
are likely to provide a richer source of information for users to maintain awareness, to
judge the profitability of information resources, and to follow like-minded people.
The behaviour semantic approach will lead to the further development and

consolidation of a tightly coupled paradigm of spatial, semantic and social navigation.
This novel approach offers a methodology that can be used to combine technologies of
information visualization and user behavioural modelling. Not only can a user’s
navigation path be vividly replayed on the computer screen, but also a virtual path
derived from a group of users with certain characteristics in common.
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