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Optimum cavity length for high conversion efficiency quantum wen 
diode lasers 

D. P. Bour and A. Rosen 
David Sarnoff Research Center, eN 5300, Princeton, New Jersey 08543-5300 

(Received 3 March 1989; accepted for publication 16 May 1989) 

The cavity length which maximizes the peak power conversion efficiency is determined for 
quantum wen diode lasers. These calculations are based upon simple models of the diode 
injection laser's electrical and optical behaviors, including saturation in the quantum wen gain
current characteristic. Here the influences of the distributed optical cavity loss, electrical 
resistivity, and facet reflectivity on the optimum cavity length are described. Although a lower 
facet reflectivity results in increased threshold current, there are advantages to ionger devices, 
as the peak conversion efficiency is not reduced. Since the optimum cavity length is greater for 
low reflectivity, the diode series resistance is smaller. Furthermore, when operating at the point 
where conversion efficiency is a maximum, the power output of the device with low facet 
reflectivity exceeds that of the device with higher facet reflectivi.ty. Therein lies the principle 
advantage of reduced front-facet reflectivities in high power, high efficiency quantum well 
diode lasers. Good agreement results when these predictions are applied to a strained 
InGaAsl AIGaAs single quantum well laser (A = 0.93 f./m). 

I. INTRODUCTION 

Among the current applications of incoherent, high. 
power AIGaAs diode laser arrays are optical triggering of 
p-i-n diodes, j and optical pumping of Nd3 + ions in various 
host crystals.2 For such applications, it is desirable to not 
only have high power output, but high power conversion 
efficiency as well, so that heat-sinking requirements are 
minimized. Thus, quantum well <QW) diode lasers have 
proven most appropriate, due to their low threshold cur
rents; to date QW devices have been reported with conver
sion efficiencies exceeding 57%.3 A simple model of the QW 
laser diode's optical and electrical behavior demonstrates 
that conversion efficiencies are low in the short-cavity re
gime, due primarily to the high threshold current of short
cavity QW lasers. Similarly, in long-cavity lasers the reduced 
external quantum efficiencies along with increasing thresh
old current also lead to poor conversion efficiencies. Here we 
apply recently developed theories4

,5 concerning the gain
current relationship in QW lasers to determine the optimum 
cavity length for high conversion efficiency QW diode lasers. 

It CONVERSION EFFICIENCY 

Above threshold, the light output (POUI ) versus drive 
current (I) characteristic is a simple linear relation6

: 

Pout (1) = 1Je (hvlq) (1- I'h)' (1) 

where hv is equal to the photon energy, q is the electronic 
charge, 11 e is the external differential quantum efficiency 
(DQE), and Ith is the threshold current. Similarly, for cur
rents well above the diode turn-on voltage ( Vo ), the diode 
voltage ( V) increases linearly with drive current6

: 

V(l) = Vo + JR s ' (2) 

where R, is the seri.es resistance of the the diode. The drive 
power is equal to the current-voltage (1- V) product. 

Often it is assumed that V;) = /tvlq. Although the diode 
begins to pass current when V> hv/q, a realistic diode 1- V 
characteristic demonstrates a turn-on region spanning sev
eral tenths of a volt. Therefore, we do not require that 
Vo = ht)lq, and instead assume a value Vo > hvlq. In an ex
trapolation of the J- V characteristic from the high-current 
regime (where it is approximately linear) back to 1=0, we 
normally find for our AIGaAs QW diode lasers (with 
hv~ 1.5 eV) that Vo -1.9 V. We note that this value is 
slightly lower than the band-gap energy of the cladding lay
ers. Thus, diode voltage can be underestimated if we set 
Vo = hv/q, but by allowing Vo to be greater than hvlq a 
better fit to the measured diode 1- V characteristic is ob
tained, especially for high-drive currents. A realistic range of 
Vo values is 1.5 V < ~) < 2.2 V, where the lower limit is the 
photon energy, and the upper limit is detennined by the 
band gap of the cladding layers. 

The power conversion efficiency (11<) as a function of 
drive current is 

1]c(1) = ?7e(hvlq)[ (1- lth )II( Vo";- IRs)]. (3) 

The condition dr;cldI = 0 determines the current at which 
the conversion efficiency is maximum (In): 

(4) 

where x is a dimensionless parameter defined as x = Vol 
IthR,. Consequently, the peak conversion efficiency is 

while the power output at the point of peak conversion effi
ciency is 

(6) 

We seek to maximize the peak conversi.on efficiency, while 
concurrently producing a high power output at the 17;,eak op
erating point. 
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III. CAVITY LENGTH DEPENDENCE 

Since the quantities 1]e' R s' and l'b are dependent upon 
the cavity length (L), the cavity length may be chosen to 
mdimize the peak conversion efficiency; the optimum cav
ity length is that which maximizes 1J~eak. The cavity-length 
dependence of the threshold current is especially strong in 
QW lasers, where Ith increases sharply in short-cavity de
vices, due to high average losses along with QW gain satura
tion. 4,5,7 The modal gain at threshold is 
Gth = a + (1 /2L) In ( 1/ R fR r ), where a is the distributed 
optical loss (consisting of absorption and scattering losses), 
and Rf and Rr are the front- and rear-facet power reflectivi
ties, respectively (R r is taken to be 1 since the highest front
end power is desirable). Recent modeling of QW laser di
odes by Chinn, Zory, and Reisinger4 has shown that the 
modal gain (G) increases logarithmically with drive current 
density (1), or G = Go In(I/lo )' Although the parameters 
Go and 10 are structure and temperature dependent, values 
Go s;,;40 cm -1 and Jo ~ 100 A/cm2 were shown to closely 
reproduce the rigorously calculated gain-current relation
ship for a typical QW laser structure. Likewise, these values 
predict threshold currents which are in very good agreement 
with experimental results, and so are retained here for illus
trative calculations. For instance, a threshold current den
sity of J th = 240 A/cm2 results for a diode with uncoated 
facets (R = 0.3), a = 5 em I and L = 400 p,m. The cavity
length dependence of threshold current is given by 

(7) 

where W is the stripe width. 
The external DQE is also cavity length dependent, as 

the presence of any internal optical loss reduces 1] e below the 
internal DQE (rJi )8: 

1 1 
--=- [a+ (1I2L) In (l/RfRR)]I 
1]. (L) 1Ji 

0/2L) In (l/RfRr) . (8) 

Although the internal DQE does not influence the calculat
ed optimum cavity length, both 7]rak and Po are directly 
proportional to 1] i • 

The final quantity which depends on cavity length is the 
diode series resistance, which is inversely proportional to the 
stripe area, and so increases in short-cavity devices: 

(9) 

Here Ps is the sheet resistivity, including contributions from 
both material resistivity and contact resistivity. Low values 
of Ps are desirable to reduce the voltage drop across the di
ode, thereby reducing heating and power consumption. 
Sheet resistivities as low as Ps = 1 X 10 - 4 n cm2 have been 
achieved. 3 This is equivalent, for example, to a series resis
tance Rs = 0.5 n for a SOX 400 ;,tm2 stripe laser. A lower 
limit to Ps is -1 X 10 - 5 n cm2

, based upon the hole trans
port properties of the heavily doped AIGaAs P-c1adding lay
er. 

Combining Eqs. (5) and (7)-(9) gives the cavity-
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length dependence of peak conversion efficiency, as shown 
in Fig. 1. Parameters used are typical of high-performance 
QW laser material: Go = 40 cm - 1, 10 = 100 A/cm2

, Va 
= 1.9 V, Ps = 1 X 10- 4 .n em2

, a = 5 em 1, hv = 1.5 eV, 
and 1]; = 0.9. Rear-facet reflectivity is R, = 1.0, while the 
calculated 1]~eak (L) result is shown for two front-facet re
flectivities, Rf = 0.1 and Rf = 0.3. Comparing these curves 
shows that the facet reflectivity does not affect the maximum 
value of peak conversion efficiency; for the parameters used 
here the maximum 1]~eak is -0.49 for each case. Further
more, the optimum cavity length (Lo, the cavity length 
where 1]~eak is maximum) is shorter for the case of higher 
reflectivity. Additionally, 1]~eak is a more sensitive function 
of cavity length when the reflectivity is high. 

IV. OPTIMUM CAVITY LENGTH 

For short-cavity QW lasers, threshold current and se
ries resistance are great, so that 1]~eak is low. Similarly, in the 
long-cavity regime, although threshold current densities and 
series resistances are low, the internal optical losses lead to a 
low external DQE, thereby reducing 1]~eak. In addition, as 
threshold current densities are only slowly decreasing in the 
long-cavity regime, at some point the threshold current be
gins to increase with cavity length; Ith is minimum when 
L = (1/2Go )In{1/Rf R r ). Thus at each extreme theconver
sion efficiency is low, and the goal here is to adjust cavity 
length so that 1J;."'k is greatest. Setting d1Jr:ak/dL = 0 is the 
condition for maximizing ll~eak with respect to cavity length; 
the resultant equality determining the optimum cavity 
length (L,,) is 

1 + (xy/z1]e)~l + x = 0, (10) 

where y and z are defined as 

d1J. - (a1]e/L ) 

y= dL = a + (1/2L) In (l/RfRr) ' 
(11a) 

FIG. 1. Cavity length (Ll dependence of peak power conversion efficiency 
(ll~ak), for the case of rear-facet reflectivity Rr = 1 and front-facet reflecti
vities Rf = 0.3 and = 0.1 (Go = 40 em ',1" = 100 A/cm2

, JI;) = 1.9 V, 
p, = IxlO~4ncm2,a=5cm- ',hl'= 1.5 eV,and Tf; =0.9). 
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dx x 
Z=:- = -- (1/2L)ln(l/RfRr) . 

dL GaL 
(lIb) 

Note that Eq. (10) is ultimately independent of both Wand 
17;, so these parameters have no effect on L o • 

The solution of Eq. (10) gives the optimum cavity 
length, and is useful in determining how various parameters 
affect Lo. In addition to the gain parameters Go and J o, the 
most important material characteristics influencing Lo are 
the sheet resistivity Ps (because it determines how the diode 
power consumption increases with drive current) and the 
internal optical loss a (since given some internal quantum 
efficiency, optical losses place the fundamental limit on the 
diode power output). Thus, Fig. 2 shows contours of con
stant L", plotted as a function of a and the dimensionless 
quantity (Vo /JoPs)' From these contours, Lo'ssensitivity to 
variations in a, Vo' Jo' and p, can be seen; and in order to 
illustrate the effect of Go, calculations for Go = 40 cm ·1 

(solid curves) and Go = 35 cm -I (dashed curves) are 
shown, Facet reflectivities are Rr = 1 and Rf = 0.3, Note 
that for low optical losses, long cavities are desirable. In this 
case, threshold current densities are lower and external 
quantum efficiencies are stiH high relative to the case of high
er optical loss. Similarly, in the case of high sheet resistivity it 
is advantageous to have long cavities, since increased diode 

--

---
10 

2Upm! 

G !i 111 20 
DISTRIBUTED lOSS a(uri) 

FIG. 2. Curves of constant Lo (optimum cavity length); dependence on the 
iniemal opticalluss (a) and the dimensionless parameter ( Va / JoPs ), cal
cuJatedfor Rr = I andRf = 0.3. Solid curves are for Go = 40cm ',dashed 
curves for Go = 35 cm - '. If the front-facet reflectivity is changed to a new 
value R .;-, the value of each Lo contour should be multiplied by 
In [ (lIR f) J;1n [(1/0.3)]. 
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area reduces the series resistance. Although La is influenced 
by many factors, it is important to note that all parameters 
can be obtained by characterizing simple, broad-area lasers. 

v. EFFECT OF FACET REFLECTiVITY 

Figure 2 shows how the internal optical loss, the gain, 
and the electrical characteristics determine the optimum 
cavity length for R, = 1 and Rf = 0.3, The facet reflectivity 
is a fabrication parameter which also plays a strong role 
through its effect on threshold current [Eq. (7)] and exter
nal DQE [Eq. (8) J. While the front-facet coating is typical
ly a single-layer dielectric (AI2 0 3 ) film of appropriate 
thickness to give 0 < R f < 0.3, the rear-facet coating is a stack 
of A /4 dielectric layers to achieve high reflectivity. Referring 
to the condition determining La [Eq. (10)], it is important 
to notice that the cavity length always appears in a term 
(l/2L)ln(1IRf R r ). Therefore, if the facet reflectivity is 
changed while all other parameters remain constant, the 
quantity (1/2Lo )InC 1/ RfRr ) must not change if the equa
lity in Eq. (10) is to be maintained. Subsequently, the result 
of changing the front-facet reflectivity from Rf to R; is a 
change in the optimum cavity length from its old value Lo . to 
a new value L~: 

L' = L In(1fRfR r ) 

o (J In(1/ RJR r ) 
(12) 

DISTRIBUTEIl UlSS a(cm-1) 

FIG. 3. Contours where normalized peak conversion efficiency (7f'{"k / 
1/; )(qVo /hv) is constant: opticalloss (a) and (Va Ilop,) dependence. Sol
id curves are for Go = 40 cm ',dashed curves for Go = 35 em - '. 
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FIG. 4. Characteristics of strained 
InGaAsl AIGaAs single-quantum 
well laser: (a) plot of 1117e VS Land 
linear fit used to determine 1] i = 0.54 
and a = 4.6 em -1; (b) piot of 
In(Jth ) vs (ilL) and linear fit used 
to determine Go ~~ 33.4 em " Jo 
,= 91.1 Alcm'; and (c) current-vol

tage characteristic of diodes with 
L = 250 and L = 600,urn (W~" 90 
,urn), along with linear fits using Vo 
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This is demonstrated in Fig. 1, where Lv is increased from 
159 to 304 pm when the front-facet reflectivity is reduced 
from R f = 0.3 to 0.1 (R r = 1). Likewise, the constant La 
contours of Fig. 2 may be appropriately rescaled according 
to Eq. (12) if the reflectivity is changed. For example, if the 
front-facet reflectivity is reduced from R f = 0.:3 to 0.1, each 
contour's Lo value increases by a factor of ~ 1.9. 

Since the quantity (1I2L o )InOIRfR, ) is unchanged 
when the facet reflectivity is altered, neither the external 
DQE [Eq. (8) 1 nor the peak conversion efficiency [Eq. 

2816 J. Appl. Phys., Vol. 66, No.7, 1 October 1989 

iI.4 0.6 U 
!(A) 

(5) 1 of optimized devices are affected by such changes, as is 
evidenced by Fig. 1. For devices with optimum cavity length, 
contours of constant normalized peak conversion efficiency 
(7J~eak/7Ji) (q Vo Ihv), dependent upon the cavity optical loss 
a and the dimensionless quantity ( Vr) IJoPs)' are shown in 
Fig. 3. As in Fig. 2, the solid curves are for Go = 40 em - 1 

while the dashed curves are for Go = 35 em I. These con
tours are not affected by facet reflectivity, and they demon
strate how low optical loss and low sheet resistivity both 
contribute to a high peak conversion efficiency. For high 
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performance laser material, Fig. 3 predicts rl~eak>O.5, in 
agreement with the best observed conversion efficiencies. 2.3 

Although the attainable 'I'j~eak is unaffected by facet re
flectivity, the power output at the 17~cak operating point [Po, 
Eq. (6)] is increased for optimized diodes with reduced re
flectivities. In fact, both the threshold current and Po are 
changed by the same factor as the optimum cavity length 
itself. For example, if the front-facet reflectivity were re
duced from R f = 0.3 to 0.1, L", I'h' and the corresponding 
Po would increase by a factor ~ 1.9. Therein lies the primary 
advantage of low front-facet reflectivities in hi.gh-power di
ode arrays. Although threshold currents are increased, in 
optimized devices the power output is greater at the operat
ing condi.tion of peak conversion efficiency. Moreover, since 
longer cavities are optimal in the situation of low R1 , diode 
series resistance is also reduced. The front-facet reflectivity 
is more sensitive to facet-coating thickness fluctuations 
when R f = 0.1, however, than when R f = 0.3 (thickness 
=J/2). 

VI. COMPARISON WITH EXPERiMENT 

These optimization calculations have been applied to a 
strained InGaAs/ AIGaAs single-quantum-well (SQW) la
ser. The laser structure is similar to low threshold GaAs/ 
AIGaAs SQW lasers, and consi.sts of a 7o-A strained 
IUo.2 Gao. 8 As/ Alo.2 Gaos As SQW with AI, Gal _ x 

As(O.2<x<O.6) graded-index separate confinement het
erostructure, grown by atmospheric pressure organometal
lic vapor phase epitaxy.9 For a strained QW, lasing wave
length depends not only on aHoy composition and quantum 
shifts, but also on the strain-induced band gap shift. 10 Here a 
biaxial compression increases the band gap, resulting in a 
lasing wavelength A.. = 0.93 fJm (hv = 1.33 eV). Simple 
broad-area lasers (90-pm-wide oxide stripe) of several cav
ity lengths, and with uncoated facets, were used to determine 
the appropriate parameters (Go, 1o, Vo' a, rli' andps). 

Shown in Fig. 4(a) as a function of cavity length are the 
observed values of the inverse external DQE (111]", solid 
points). Fitting to the linear behavior predicted by Eq. (8) 
(dashed line), the internal quantum efficiency and internal 
optical losses are found to be 1]i = 0.54 and a = 4.6 cm - 1, 
respectively. In a similar manner, the threshold current den
sity (Jt!, = It" /WL) depends on cavity length through Eq. 
(7). A linear fit ofln (Jtb ) to 1/ L (dashed line) fits the mea
sured threshold current densities (solid points) as shown in 
Fig. 4(b). The gain parameters thus obtained from this fit 
and the previously obtained optical loss are Go = 33.4 cm 1 

and J o = 91.1 A/cm2
, The current-voltage characteristic of 

both a 90 X 250!-lm 2 laser and a 90 X 600 ,um2 1aser are shown 
by the solid curves in Fig. 4(c). These curves are well ap
proximated (dashed lines) by using Vo = 1.7 V and Ps 
= 1.8 X 10- 4 n cm2 in. Eqs. (2) and (9). 

The parameters obtained in this way (I/;.) = 1,7 V, p, 
= 1.8X10 4 Hcm2

, Go =33.4 cm-l, 10 =91.1 A/cm2
, 

a = 4.6 em 1, and 7Ji = 0.54) are used to predict the opti
mum cavity length for a high conversion efficiency, strained 
SQW laser with facet coatings. For rear-facet reflectivity 
Rr = 1 and front-facet reflectivity Rf = 0.3, Fig. 5 shows the 

2817 J. Appl. Phys., Vol. 66, No.7, i October 1989 

t .. ... 
1S 

FIG. 5. Solid line: predicted peak conversion efficiency as a function of cav
ity length for strained InGaAsl AIGaAs laser with R, ~, 1, RJ .= 0.3; open 
circles: measured peak conversion efficiencies for devices with highly reflec
tive rear-facet coating and A. 12 front-facet coating (Rr =, 0.3). 

expected cavity-length dependence of peak power conver
sion efficiency for lasers fabricated from this material. The 
maximum attainable conversion efficiency is 1}~eak ~ 26%, at 
the optimum cavity length Lo = 209 pm. 

To compare with these predictions, broad-area oxide
stripe lasers of various cavity lengths and with highly reflec
tive dielectric stack coatings on the rear fucet CRr > 0.95) 
and a J /2 A12 0.\ coating (Rf = 0,3) on the front facet were 
fabricated from this material and tested. Measured peak 
conversion efficiencies (open circles) agree well with the 
prediction, as shown in Fig. 5, thereby illustrating the ten
dency toward an optimum cavity length. Thus, the strained
layer laser behavior is accurately described by these simple 
models. Moreover, by fully characterizing the laser material 
using simply fabricated lasers with uncoated facets, the opti
mum cavity length of more useful devices (with coated fac
ets) has been obtained. 

VII. SUMMARY 

Simple models of diode laser optical and electrical be
havior, used in conjunction with a realistic description of the 
QW gain-current relationship, predict the optimum cavity 
length for high-power conversion efficiency QW lasers. We 
have specifically determined how the optimum cavity length 
is influenced by the gain, loss, facet reflectivity, and electri
cal characteristics. Reducing the front-facet reflectivity re
sults in higher threshold current, and requires that opti
mized devices be made longer. It does not affect the 
maximum attainable conversion efficiency, however, and of
fers the advantage of lower series resistance and a higher
power output at the point of peak conversion efficiency. 
These results were applied to a strained InGaAs/ AIGaAs 
strained quantum well laser; and they can be applied to other 
QW laser structures using the appropriate parameters, all of 
which can be measured on broad-area lasers. 
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