
 

 
 
Abstract - Real-time medical simulation for robotic surgery 
planning and surgery training requires realistic yet 
computationally fast models of the mechanical behavior of 
soft tissue. This paper presents a study to develop such a 
model to enable fast haptics display in simulation of soft-
tissue cutting. An apparatus was developed and experiments 
were conducted to generate force-displacement data for 
cutting of soft tissue such as pig liver. The force-
displacement curve of cutting pig liver revealed a 
characteristic pattern: the overall curve is formed by 
repeating units consisting of a local deformation segment 
followed by a local crack-growth segment. The modeling 
effort reported here focused on characterizing the tissue in 
the local deformation segment in a way suitable for fast 
haptic display. The deformation resistance of the tissue was 
quantified in terms of the local effective modulus (LEM) 
consistent with experimental force-displacement data. An 
algorithm was developed to determine LEM by solving an 
inverse problem with iterative finite element models.  To 
enable faster simulation of cutting of a three-dimensional 
(3D) liver specimen of naturally varying thickness, three 
levels of model order reduction were studied. Firstly, a 3D 
quadratic-element model reduced to uniform thickness but 
otherwise haptics-equivalent (have identical force-
displacement feedback) to a 3D model with varying 
thickness matching that of the liver was used.  Next, haptics-
equivalent 2D quadratic-element models were used. Finally, 
haptics-equivalent 2D linear-element models were used.  
These three models had a model reduction in the ratio of 
1.0:0.3:0.04 but all preserved the same input-output 
(displacement, force) behavior measured in the experiments.  
The values of the LEM determined using the three levels of 
model reduction are close to one another. Additionally, the 
variation of the LEM with cutting speed was determined. 
The values of LEM decreased as the cutting speed 
increased . 
 
 Index Terms—Haptic display, Soft tissue cutting, Local 
effective modulus.  
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I. INTRODUCTION 
 
Modeling deformable soft tissue is essential for accurate 

surgical simulation.  A realistic model of soft tissue can 
provide accurate force feedback to the user through a haptic 
interface device.  The mechanical characteristics of living 
tissue such as liver are highly nonlinear and complicated.  In 
real-time simulation requiring fast and accurate force 
feedback, the calculation time plays an equally important 
role as the realism of the model. Our objective here is to 
study haptically realistic yet computationally fast models 
suitable for real-time medical simulation for robotic surgery 
planning and surgery training.    
   Various approaches were used to study the properties and 
behavior of soft tissue. Fung [1] described soft tissue as 
nonlinear, inhomogeneous and viscoelastic.  Kerdok and 
Howe et al [2] used a truth cube observe soft tissue 
deformation and compared it to results from finite element 
model.   Hu and Desai studied the large-deformation tissue 
behavior in compression test [3].  Finite element method 
(FEM) [4] had been used as a tool to determine the physical 
behavior in soft tissue simulation under mechanical 
constraints. Bro-Nilsen and Cotin et al [5, 6] used 3D 
volumetric finite element model for surgery simulation.  To 
render the 3D continuum FE model of tetrahedral elements 
capable for real time simulation, they reduced the order of 
the model by statically condensing out the internal degree of 
freedom (dof) while keeping only the dof associated with 
surface nodes.  James and Pai [7] used boundary integral 
formulation and discretized the geometry with boundary 
element method  (BEM) in real-time simulation of the 
deformation of linear elastic objects. For linear elastic 
deformation, the solution can be attained by the 
superposition of pre-determined response of unit loading 
(influence functions or Green’s functions) and James and 
Pai implemented this feature with a low order updating 
algorithm. Zhuang and Canny [8] proposed finite element 
models to speed up the simulation of the large deformation 
of 3D objects subject to dynamics and static loads. For 
statics analysis, their model achieved model reduction 
primarily with the use of a graded mesh consisting of small 
elements at the exterior but large element in the interior. De 
and co-workers [9] proposed to use finite spheres method 
(FSM) as a meshless scheme for real-time medical 
simulation. The governing equations of elasticity were 
numerically solved by the method of collocation at the nodal 
points, which were placed near the surgical tool tip [10].  
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In our study, we proposed to achieve reality-based 
simulation by using material properties consistent with 
experimentally measured force-displacement data.  To attain 
fast but realistic force feedback in real-time simulation, we 
used coarse-mesh finite element model while retaining the 
realistic overall force-displacement behavior by using local 
effective modulus (LEM), which are consistent with 
experimental results.  To foster reduction of the computation 
effect and faster simulation, we studied three levels of 
3D/2D model order reduction. The goal in model order 
reduction is to preserve the overall input-output (overall 
displacement, force) behavior while eliminating the internal 
complexity of the model.  

In this paper, Section II describes the experimental 
equipment and procedure.  Section III presents the algorithm 
to determine LEM by solving an inverse problem with 
iterative finite element method.  Section IV presents the 
three levels of 3D and 2D model order reduction studied.  
Section V shows the results and Sections VI presents the 
conclusions and remarks.   

II. SOFT TISSUE CUTTING EXPERIMENTS  

2.1 The soft tissue cutting apparatus 
 

 

 
 
Figure 1. Experimental setup for measuring the cutting 
forces and grabbing images during liver cutting. 

 
The soft-tissue cutting apparatus consists of a scalpel-blade 
cutting subsystem, a computer control subsystem, a digital 
data-acquisition subsystem, and a data post-processing 
subsystem (see figure 1) [11].  The test equipment to 
measure the liver cutting forces was designed to have a 
variable cutting speed to measure the effect of cutting speed 
on cutting forces within the specimen (speeds can be varied 
from 0 to 3.81cm/second). The constrained boundary shown 
in the figure was designed to simulate the attachment of the 
liver on one end as in a human body (such as the attachment 
to the diaphragm). The cutting mechanism consists of two 
vertical supports, a lead screw assembly with a geared DC 
motor and an incremental encoder (manufactured by Maxon 

Motors, model A-max32 with planetary gearhead GP 32C 
and digital encoder HEDL 55 with line driver RS 422), and 
a JR3 precision 6-axis force/torque sensor (model 85M35A-
I40, with worst case resolution of 0.05 N in Fx and Fy, 0.1 
N in Fz and 0.00315 Nm in Tx, Ty and Tz) to which a 
surgeon’s scalpel is attached.    

We used #10 Bard-Parker stainless steel surgical blade in 
our experimental studies, consistent with what is used by 
surgeons.  The cutting blade traverses linearly based on the 
rotary motion of the DC motor.  An anti-backlash nut 
connects the lead screw to the force sensor.  The scalpel was 
screwed to the force sensor and the force sensor was 
mounted on an aluminum plate with one end attached to the 
anti-backlash nut traveling along the lead screw and the 
other end on a lower guiding shaft (parallel to the lead 
screw) with a linear bearing to provide low friction linear 
travel. The design and construction of the cutting assembly 
ensured that the system was sufficiently rigid with no 
backlash so that the forces recorded by the force sensor are 
those obtained by cutting the tissue alone.  A Bumblebee 
stereo camera system is arranged at 30cm in front of the 
experimental setup. The dSPACE DS1103 controller board 
(manufactured by dSPACE, Inc.) recorded the position and 
force data from the motor’s encoder and force sensor in real-
time along with grabbing images at the rate of 13 
frames/second.  We have implemented a proportional + 
derivative (PD) controller to enable precise movement of the 
motor (and hence the cutting blade during cutting tasks).   
 
2.2 Experimental procedure for measuring liver cutting 
forces 

 
Since the experiments were performed on ex-vivo liver 

tissue, the preparation of the tissue before the experiment 
helped maintain the properties of the tissue as close as 
possible to the in-vivo properties.  We transported the liver 
from freshly slaughtered pigs to our laboratory within 2 
hours post mortem.  The liver tissue sample was not 
preconditioned because in surgery, the cutting forces 
experienced by the surgeon are on non-preconditioned 
tissues.  Before starting the experiment, we cut the pig’s 
liver into specimens of size 8x15x2.5cm.  The outer 
encapsulated surface was not cut since we were interested in 
measuring the cutting forces on the liver.  A bar of 
rectangular shape made of machineable plastic with an array 
of small nails clamped at the bottom end penetrated through 
one edge of the liver specimen to simulate a single 
constrained boundary surface. While this is not an exact 
replication of the boundary conditions for a human liver 
(which is partially attached on one end to the diaphragm) 
this is none-the-less a valid simplification for our initial tests 
and model (based on our discussions with surgeon 
collaborators).  
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2.3 Characteristics of the cutting force-displacement curve 
 
The experimentally measured force-displacement curve 

of pig-liver cutting showed a characteristic pattern.  The 
overall force-displacement curve is formed by repeating 
units each consisting of a local deformation segment 
followed by a local crack-growth segment (Figure 2).  In the 
each deformation segment the force increment increases 
linearly with the displacement increment (see insert of 
Figure 2). The crack-growth segment shows an 
instantaneous unloading (load drop). Each visually observed 
localized blade cut on the tissue clearly corresponded to a 
sudden drop of the force measured by the force sensor.  A 
filtering procedure has been developed to post-process the 
data to produce a force versus cut-length curve clearly 
illustrating the “hilltops” and “valleys” of the sequence of 
localized loading and unloading in the tissue specimen 
during cutting.  
 

 
Figure 2. Raw experimental data from liver cutting.  
Typical repeating units of linear loading segment 
followed by sudden unloading segment are shown. 

 
2.4  Stereo-image determination of depth-of- cut  
 

 

As is expected, during the cutting process the depth of the 
blade embedded in the tissue affects the magnitude of the 
cutting force encountered by the blade (see Figures 3 insert).  
The depth of cut was measured using optical stero imaging, 
and was used to obtain the normalized cutting force (per unit 
depth of cut).  We used stero images to analyze how deep 
the blade was inside the liver specimen during cutting.  A 
Bumblebee two-lens stereovision camera system grabbed 
snap shots of cutting (Figure 3) at 13 frames/second.  The 
images were analyzed offline using Matlab6.5 with image 
processing toolbox. 

After obtaining snap shots, we performed post processing 
by tracking the center of the black rectangular box (Figure 
3), which was on the top of the cutting blade.  Then using 
edge detection, we were able to detect the liver surface as 
shown in Figure 3 insert.  The distance from the center of 
the rectangular box and the surface of the liver is measured 
in term of pixel.  Since the position of the center of the box 
to the end of the blade is 4 cm, we determine the depth of 
cut through conversion from pixel to distance in centimeter. 

III. DETERMINATION OF LOCAL EFFECTIVE MODULUS  

3.1  Finite element model for computing the local effective 
modulus (LEM) 
 

It is desirable to construct a predictive computational 
model that can simulate the cutting process and predict the 
mechanical response (cutting force versus cutting-blade 
displacement characteristics) of liver cutting.  To be of real-
time application, this simulation model should not be 
computationally intensive yet still capture the real force-
displacement behavior.  We propose to use coarse-mesh 
finite element (FE) models and effective material properties 
consistent with experimentally measured force-displacement 
curve.   
     Five 3D and 2D coarse-mesh finite element models with 
three different levels of model simplification were used in 
this study. The following three levels of model reduction are 
constructed to simplify the model but retain the overall 
force-displacement response behavior: a) a thickness-
normalized 3D model with 480 quadratic elements, b) 2D 
models with 120-element quadratic elements, and c) 2D 
models with 120 linear elements.  Additionally, in each of 
the 2D models two sub-model varieties were used: plane-
stress elements and plane-strain elements. While using this 
coarse-mesh FE model for simulation via haptic feedback 
device, the contact force feedback felt by the surgeon must 
be accurate.  To ensure that these coarse-mesh FE models 
can preserve the experimentally measured force-
displacement characteristics, we need to use an effective 
modulus that is consistent with the experimental data.  We 
describe below the procedure to determine this local 

 

 
Figure 3.  Snap shot from the stereo camera. 
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effective modulus (LEM).  The finite element analysis was 
conducted with the ABAQUS 6.3 software [12].   

 
The LEM consistent with experimental data can be 

determined by solving an inverse problem formulated with 
the data from the linear loading segments (Figure 2 insert) 
and a coarse-mesh FE model. After obtaining the force-
displacement curve from the experiment, we filtered the data 
followed by identifying each linear deformation segment 
shown in Figure 2 insert.  To simulate each of the linear 
deformation segments with local displacement increment ∆U 
and force increment ∆F, we used either a 3D finite element 
model with unit thickness or a 2D finite element model.  As 
looked at from above, the FE mesh we used consisted of a 
left half and a right half of identical elements and joined at 
the adjoining center line. At the centerline, the contacting 
nodes from the left half and right half were “tied” with 
multi-point constraint (MPC) equations. Hence, the two 
halves formed a continuous solid.  During the analysis, as 
we simulated the scalpel cut along the centerline of the 
specimen step by step, we would “untie” the adjoining nodes 
element by element.  Hence the cut or crack grew step by 
step during the process of FE analysis.    

Since our FE model is of unit thickness, we first divided 
the experimentally measured force increment ∆F by the 
depth of the blade embedded in the tissue at that instant of 
cutting (see section 2.4 above.)  The result is a ∆F per unit 
length of the blade cutting the tissue.  We denote this depth-
normalized or thickness-normalized force increment as 
∆Fexp.  

Figure 4 shows the flowchart of our determination of the 
LEM for each deformation segment of the force-
displacement curve (Figure 2). For each deformation 
segment, we conducted a linear elastic FEM analysis with 
Poisson’s ratio 0.3 and an initial modulus of arbitrary 
magnitude E1. We applied the experimental measured 
displacement increment ∆Uexp of the deformation segment to 
the FEM node that was in contact with the cutting blade. We 
performed the FEM analysis and compared the FEM 
computed force increment ∆FFEM of that node to the 
experimentally measured ∆Fexp.   

In the first iteration, ∆FFEM will not be equal to ∆Fexp.  To 
start the next iteration, we updated the new value of the 
effective modulus to E2 with equation (1) and repeated the 
iteration process.  
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This process continued until ∆FFEM of a new iteration was 
“equal to” the normalized force increment ∆Fexp as 
determined by the convergence criterion of equation (2).   
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The final E value so determined is the effective modulus at 
the location in the tissue where the cutting blade was in 
contact with the tissue, Eeffective. We denoted this quantity as 
the local effective modulus (LEM).   

The data of the experimentally measured force increment 
∆F has incorporated into it the varying depth of cut, which 
depends on the instantaneous location of the scalpel and the 
natural bulge of the liver specimen. Consequently, the local 
effective modulus LEM has incorporated with it the 
influence of the natural bulge in thickness of the liver 
because it is derived from the actual force increment ∆F 
sensed by the scalpel as it traversed liver portions of varying 
thickness.   

With LEM determined via inverse analyses from 
experimental data, we can conduct surgery simulation by 
forming a coarse-mesh FEM model of the liver, assign the 
elements in the FEM model with their respective Eeffective and 
use that FEM model to virtually simulate various patterns of 
liver cutting and can vary the cutting parameters such as 
cutting speed and cutting angle.  Such an FEM model 
embedded with self-consistent local effective modulus 
would be able to predict a cutting-force versus displacement 
characteristics in each of the monotonic loading segments 
consistent with experimentally-measured values, should 
actual experiment of that particular cutting pattern be 
performed.  In this way, a surgeon trainee using a surgery-
training simulator will see the length of the cut grow and 
feel the cutting forces via a haptic feedback device. 

 
 
Figure 4. Flow chart for determination of self consistent 
effective modulus. 
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IV. THREE LEVELS OF MODEL ORDER REDUCTION 
 
To have faster simulation yet have realistic force feedback, 
our goal is to use model order reduction to simplify the 
internal complexity of the model and simultaneously 
preserve the overall input-output (displacement-force) 
behavior.  The realistic force feedback part is attained via 
using LEM. The speed of the simulation depends on how 
much order reduction the model can attain. We studied three 
levels of model order reduction. 
 
4.1 3D quadratic-element model with unit thickness 
 
The common way to construct a 3D model of the liver is to 
generate a 3D continuum shape reflecting the actual shape 
of the liver and discretize the geometry into continuum 
elements. To provide haptic feedback in surgery simulation, 
it is most important that the surgeon trainee receive accurate 
force feedback and also sees the instantaneous length of the 
cut.  It is less important to see the actual thickness of the 
liver.  We can thus simplify the general 3D model into a 3D 
model with unit thickness, and use LEM derived from 
thickness-normalized ∆Fexp.  Figure 5a shows such a model.  
The size of the specimen was 8 cm x 15cm while the 
element size was 1 cm x 1cm x 0.25cm.  The model consists 
of 8 elements in the width dimension, 15 elements in the 
length dimension, and 4 elements in the thickness 
dimension.  These 480-element model are constructed with 

quadratic continuum elements (20-node brick elements of 
the Serendipity family of isoperimetric elements). The 
displacements can vary quadratically, and strain and stress 
can vary linearly, in each element. The cutting path with the 
“tied” double nodes (section 3) along the cut plane (the 
plane along which the scalpel with travel in the liver) is 
along the center line. There are four columns of elements to 
its left of the cutting path and four columns of elements to 
its right This mesh has 2830 nodes and 8490 degrees of 
freedom (8490 equations).    

During the simulation of the cutting process, the tied 
nodes on the cutting path were untied once the cut already 
occurred.  Since the model should replicate the behavior of 
the liver during cutting as much as possible, the un-tied 
nodes were constrained to move along the axis so that the 
two cut parts would not overlap. At the leading edge, the 
model was constrained by fixed nodes along the edge. The 
constraints were intended to replicate how we constrained 
the liver specimen during cutting experiment through the 
nails array clamped at the leading edge. 
 
4.2 2D quadratic-element models  
 
To reduce the model order further, we reduced the 3D 
quadratic model of section 5.1 to a 2D model with quadratic 
elements. These are 8-node quadrilateral elements of the 
Serendipity isoparametric element family.  The inplane 
displacement can vary quadratically, and the inplane strains 
can vary linearly, in the element.  We conducted analysis 
both with a plane-stress elements and plane strain elements.  
The 2D mesh (Figure 5b) consists of 120 elements of 1cm x 
1cm size filling the 8cm x15cm x 1cm specimen. The mesh 
has 8 elements in the width dimension, and 15 elements in 
the length dimension.  There are 438 nodes and 876 degrees 
of freedom (876 equations).  

 
4.3  2D linear-element models  
      
To further reduce the 2D models above, we conducted 
plane-stress analysis and plane-strain analysis with 2D linear 
elements.  The mesh looks identical to that in Figure 5b.  
The difference with section 5.2 is the elements do not have 
mid-side node. Four-node quadrilateral elements of the 
Serendipity element family are used. The displacements can 
vary linearly, and the strains and stress are constant, in each 
element. The model has 120 elements, 160 nodes and 320 
degrees of freedom (320 equations).    

V. RESULTS 
We performed a quasi-static analysis using ABAQUS 

finite element software version 6.3-1.  Since the deformation 
during deformation segment appeared to be linear (Figure 2 
insert), we conducted isotropic linear elastic analysis.  The 
poison ratio was assumed to be 0.3. 

a) 

 
b) 

 
Figure 5.  Displacement profile from: a) 3D quadratic-
element model, b) 2D quadratic-element plane-stress 
model 

364



 

With experimental force-displacement data from 0.15 
inch/sec cutting speed, we performed analysis to determine 
LEM using the 3D-quadrati-element model (20-nodes 
element) and 2D-quadrtic-element model (8-node elements).  
Along a cutting path, we determined the LEM corresponded 
to each deformation segment. The values of the LEM so 
determined are shown in Figures 6, 7 and Table 1. 

       
With the same force-displacement during the deformation, 

we performed similar analysis using 2D-linear-element (4-
node elements) in plane-stress model and plane-strain 
model.  Results are shown in Figures 6, 7 and Table 2.  
Results from Figures 6, 7, Tables 1 and 2 show that the 
LEM based on 3D model falls in the bracket between the 
LEM from 2D plane-stress and plane-strain models.  The 
results help verify that the 2D plane-stress and plane-strain 
model can produce equally good results for LEM as the 3D 
model.  

LEM from 
 2D  

linear FE models 

Ratio of LEM 
from 2D to that 
from 3D model  

Distance 
from 

constrained 
edge (cm) 

LEM from 
3D 

quadratic 
FE model 

(N/m2) 
Plane- 
stress 

(N/m2) 

Plane -
strain 

(N/m2) 

Plane-
stress/ 
3D 

Plane-
strain/ 
3D  

2.15 3200 5000 4700 1.57 1.47 
2.90 7300 8800 8100 1.21 1.12 
4.08 9700 10500 9700 1.09 1.00 
4.75 36900 39000 36100 1.06 0.98 
5.14 29700 31300 28800 1.05 0.97 
5.64 37400 39100 36000 1.04 0.96 
6.09 18200 18900 17500 1.04 0.96 
6.61 60400 62500 57600 1.04 0.95 
6.90 50000 51600 47600 1.03 0.95 

Table 2. Comparison of LEM determined from 3D 
quadratic-element model and 2D linear-element plane-
stress model and plane-strain model. 

From the perspective of computational effort, there is a 
significant difference among these models – the size (or 
order) of the model and the computational efforts needed to 
solve them.  Table 3 shows a comparison among these 

models in terms of the total number of elements, total 
number of nodes and total number of equations.   Using the 
number of equations as a measure of the size (or order) of 
the model, the relative size of the 3D-quadratic-element 
model to 2D-quadratic-element model to 2D-linear-element 
model is 1.0:0.3:0.04. It is expected that compared with the 
3D-quadratic-element model, the 2D-quadratic-model will 
be one order of magnitude less computational-intensive.  
Further, the 2D-linear-element model is only about 4% as 
computational intensive as the 3D-quadratic model.  Indeed, 
our computation time for the 2D-linear-model is about 4% 
of that of the 3D-quadratic-element model.    
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Figure 6. Comparison between the values of LEM from 
3D-quadratic element model, 2D-quadratic-element 
models and the 2D-linear-element models 
 
Additionally, we used the 3D-quadratic-element model to 

conduct a parametric study for the effect of cutting speed on 
the deformation resistance (the LEM) of the liver tissue.  
Experimental force-displacement data were collected for 
seven cutting speeds (0.10cm/sec, 0.38cm/sec, 0.89cm/sec, 
1.27cm/sec, 1.65cm/sec, 2.16cm/sec, and 2.54 cm/sec).  
LEM were determined for each of these cutting speeds. The 
average value of the LEM for each cutting speed was 
calculated. Figure 8 shows the average of the LEM for each 
of the cutting speeds. It is apparent that the deformation 
resistant as measured by LEM decreases as the cutting speed 
increases.     

LEM from 2D  
quadratic FE models 

Ratio of LEM from 
2D to that from 3D 

model 

Distance 
from 

constraine
d edge 
(cm) 

LEM from 
3D 

quadratic 
FE model 

(N/m2) 
Plane- 
stress 

(N/m2) 

Plane -
strain 

(N/m2) 

Plane-
stress / 
3D 
model 

Plane-
strain / 
3D 
model 

2.15 3200 3400 3100 0.97 1.1 
2.90 7300 7900 7300 1.0 1.09 
4.08 9700 10100 9200 0.96 1.04 
4.75 36900 37800 35000 0.94 1.02 
5.14 29700 30500 28100 0.94 1.02 
5.64 37400 38900 35700 0.95 1.04 
6.09 18200 18600 17200 0.94 1.0 
6.61 60400 61500 56700 0.94 1.02 
6.90 50000 50800 46900 0.94 1.02 

Table 1. Comparison of LEM determined from 3D 
quadratic-element model and 2D-quadratic-element plane-
stress model and plane-strain model. 

FE Model 3D quadratic 
elements 

2D quadratic 
elements 

2D  
linear 

elements  
Number of elements 480 120 120 

Number of nodes 2830 
 

438 160 

Number of 
equations 

8490 876 320 

Relative model size 1.0 0.1 0.04 
Table 3. Comparison among the 3D and 2D models. 
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Figure 7. Magnified view of a portion of Figure 6a 
showing the LEM from quadratic-element model of 3D 
analysis is bracketed between LEM determined from 2D 
plane-stress analysis and plane-strain analysis. 
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Figure 8.  Average LEM based on 3D model at various 
cutting speeds. 

 

VI.  CONCLUSIONS AND REMARKS 
 
      In this paper, we presented the experiments to generate 
the force-displacement characteristic during the cutting of 
soft tissue.  The force-displacement curve consists of two 
repeating basic building blocks: a local deformation segment 
followed by a local crack growth segment.  A procedure was 
developed to determine the local effective modulus during 
the local deformation segment of the force-displacement 
curve.  
 For real-time medical simulation requiring accurate haptic 
feedback, it is important to have reality-based models that 
are fast (computationally non-intensive) but still preserve the 
actual overall force-displacement behavior. Several 3D and 
2D finite element models with three levels of model order 
reduction were studied. These model order reductions 
simplify the internal complexities of the model while 

preserving the overall input-output (displacement-force) 
behavior. All these models can determine the local effective 
modulus equally well, and the results of the 3D model are 
bracketed by results from the 2D plane-stress model and 2D 
plane-strain model.  .  

 A plane-stress FE model is most appropriate for 
simulating the cutting of very thin liver specimens in which 
the through-thickness stress is negligible (i.e. completely 
unconstrained in the thickness dimension and allows free 
through-thickness deformation).  A plane-strain FE model is 
most appropriate for very thick liver specimens in which the 
through-thickness strain is negligible (i.e. fully constrained 
in the thickness dimension and does not allowed to through-
thickness deformation).  It is reasonable that the results of 
the 3D model falls in-between the results from the two 
limiting case of plane-stress and plane-strain models 

With regard to computation effort required, there is a 
significant difference among these models.  The 
computation effort required for the 2D-quadratic-element 
model is one order of magnitude less that required for the 
3D-quadratic-element model.  The computation effort for 
the 2D-linear-element model is two orders of magnitude 
smaller that that of the 3D-quadratic-element model.   
 A parametric study for the effect of cutting speed on the 
local effective modulus of pig-liver cutting revealed that the 
apparent deformation resistance of the pig-liver tends to 
decrease as the cutting speed increases.    
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