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Abstract 

Geospatial Variation of Ribbed Mussel (Geukensia demissa)  
Ecosystem Services across the Salt Marsh Landscape 

Joshua Andrew Moody 

Salt marshes are a hallmark feature of the Atlantic coastline, where they provide a variety of 

ecosystem services such as: protection from flooding; nutrient and pollutant sequestration; 

economic uplift from recreational and commercial ventures; and habitat for a variety of 

finfish, birds, invertebrates, and mammals.  Ribbed mussels (Geukensia demissa) are the 

functionally dominant animals of Gulf and Atlantic salt marshes, living in facultative 

mutualism with salt marsh cordgrass (Spartina alterniflora).  The cordgrass provides 

habitat and attachment sites for mussels.  In turn, the mussels, through the filtration of 

seston, provide nutrients for plant production through biodeposition.  The magnitude of 

this pelagic-benthic coupling depends on ribbed mussel population density and the quantity 

and quality of seston.  Since mussels are not evenly dispersed across the salt marsh 

landscape, their ecosystem services are geospatially variable which may have implications 

for resource managers interested in sustaining or enhancing mussel-mediated benefits. 

This dissertation’s objective was to quantify the annual variability in particle and nutrient 

filtration across three habitats of the salt marsh landscape:  low marsh habitats along 

primary tidal channels; intra-marsh creek networks; and vast expanse of high marsh 

platform.  Four representative salt marshes were selected for this study: Dividing Creek, 

Dennis Creek, and Maurice River in New Jersey along the Delaware Bay; and Coggeshall 

Cove in Rhode Island in the Narragansett Bay.  The relevance of seston filtration data for 

understanding ecosystem services was demonstrated by estimating the spatial distribution 

and magnitude of net particulate nitrogen removal and the contribution of biodeposits to 

vertical marsh accretion.  
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Clearance rates of water by ribbed mussels exhibited little spatial variation, but were 

dependent on seasonal temperatures.  Filtration rates of seston varied with both space and 

time, since seston quantity and quality was variable at the same scales.  Therefore, annual 

water processing rates can be extrapolated across regions that share similar temperature 

profiles, but local knowledge regarding seston variability is required to calculate particle 

filtration services. Annual gross filtration of total suspended solids (TSS) ranged between 

4,500 & 11,000 kg ha-1 yr-1 at three locations in New Jersey and 3,800 kg ha-1 yr-1 at one 

location in Rhode Island.  Filtration of particulate nitrogen (PN) ranged between 38 & 92 kg 

ha-1 yr-1 in New Jersey, assuming 60% of filtered nitrogen was either incorporated into 

somatic tissue or biodeposited, and 31 kg ha-1 yr-1 in Rhode Island, assuming 43% of filtered 

nitrogen was either incorporated into somatic tissue or biodeposited.  This translated into 

contributions to vertical accretion between 39 & 93 mm in New Jersey and 26 mm in Rhode 

Island, if distributed evenly across the salt marsh landscape at the four study sites. 

The majority of mussel-associated ecosystem services were located in small, mussel-rich, 

creek networks of both New Jersey (74%) and Rhode Island (69%).  However, large 

discrepancies in mussel density along the primary tidal channels between New Jersey and 

Rhode Island marshes, resulted in low service provisioning in New Jersey (3%) relative to 

Rhode Island (28%) in this “shoreline” habitat.  The ability to understand the geospatial 

variation in mussel-mediated services provides natural resource managers with the ability 

to prioritize areas of high service value for conservation.  Additionally, areas where services 

are underrepresented relative to regional potentials, presumably because of erosion or 

degradation, can be targeted for restoration or enhancement to maximize ribbed mussel 

biomass and service potential. 
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Chapter 1: Introduction 

1.1 Mid-Atlantic Salt Marshes 
 

Salt marsh ecosystems are a hallmark feature of our coastal environments (Mitsch and 

Gosselink 1993), particularly in the Delaware Estuary which is naturally sediment-rich and 

fringed with a near contiguous band of tidal wetlands (TREB 2017).  At the interface 

between the terrestrial and aquatic environments they act as: natural filtration systems, 

removing watershed sourced nitrogen pollution (Nelson and Zavaleta 2012); buffer zones 

against storm hazards (Costanza et al. 2008; Temmerman et al. 2012); breeding and 

juvenile refuges for many commercial and recreational fish species (Weinstein et al. 1984; 

Weinstein and O’Neil 1986); and habitat for a myriad of local and transitory species 

(Werme 1981; Kneib 1994).  Salt marshes also export dissolved and organic particulate 

matter to deeper water (Odum 1968), contributing to the sub-tidal food web (Dame et al. 

1986; Valiela et al. 2012) 

Mid-Atlantic salt marshes are typically characterized by the native smooth cordgrass 

Spartina alterniflora which is valuable for maintaining shoreline habitat (Warren et al. 

2007). Tall form Spartina alterniflora is found along the mid-intertidal zone and levee at the 

marsh edge, and along intra-marsh creek networks. In the high marsh, the vegetative 

community transitions to species more tolerant of dryer, saline conditions including short 

form Spartina alterniflora, Spartina patens, Salicornia virginica, and Disticlis spicata  

(Kuenzler 1961; Bertness 1984).  Salt marshes serve as habitat for many important resident 

invertebrates, such as bivalves (Geukensia demissa), crustaceans (Uca tangeri), gastropods 

(Melampus bidentatus), various nematodes and annelids, as well as vertebrates such as fish 

(Fundulus heteroclitus), turtles (Malaclemys terrapin), mammals (Ondatra zibethicus) and a 

large variety of birds (Ammodramus caudacutus, Agelaius phoeniceus).  The organic matter 
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of salt marsh producers serves as the basis for salt marsh and subtidal food webs, and 

although emergent vascular plants are the most conspicuous producers in a salt marsh, 

benthic algal production can also be high (Peterson et al. 1986; Currin et al. 1995; Deegan 

and Garritt 1997).  Within salt marshes, decomposing vascular plant material in the form of 

detritus supports a rich heterotrophic community of bacteria, protists, and fungi which can 

also be important sources of nutrition for benthic predators and scavengers.   

1.2 Ecosystem Services of Salt Marshes 

 

Ecosystem services have been defined as “the benefits human populations derive, 

directly or indirectly, from ecosystem functions” (Costanza et al. 1997).  These services 

include regulation of large scale processes including climate regulation, water cycling, and 

food production, as well as localized services such as erosion control, nutrient cycling and 

soil and peat formation.  The monetary value of ecosystem services has been estimated to 

be within the range of $16-54 trillion per year for the biosphere (Costanza et al. 1997; Daily 

et al 1997; de Groot et al. 2002).     The Millennium Wetland Assessment has cited wetlands 

as providing an array of ecosystem services including storm protection nutrient cycling, 

water quality, and carbon storage.  The New Jersey Department of Environmental 

Protection has estimated the average value of ecosystem services located along the 

Delaware Bay, many of them from wetlands, to be between $1,000-$12,000 per acre (Liu et 

al. 2010), greater than other natural habitats in the State.  

At the interface of the land and the water, salt marsh ecosystems provide a buffer to 

maritime storms and flooding.  In a meta-analysis of studies examining the role of salt 

marshes in protecting terrestrial environments from maritime sourced damage, Shepard et 

al. (2011) found that vegetation density, biomass production, and marsh size were all 

positively correlated with wave attenuation and shoreline stabilization.  Coastal vegetative 



3 
 

communities have also been shown to decrease the likelihood and magnitude of property 

loss and injury due to coastal hazards in vulnerable communities (Arkema et al. 2013).    

Besides flood protection, nutrient cycling is another primary function of coastal 

wetlands. Salt marsh halophytes act as nutrient sinks for nitrogen (Sousa et al. 2008) and 

phosphorous (Lillebo et al. 2004), leading to their removal from the ecosystem (Ibanez et al. 

2009).  Land-based agriculture, and other anthropogenic activities (Nixon et al. 1986), and 

groundwater-borne nutrients (Valiela et al. 1990) are primary sources of nutrients in 

coastal waters.  Salt marshes are able to serve as buffers, intercepting nutrients before they 

reach aquatic environments, and the retention of these nutrients within the salt marsh has 

been shown to reduce coastal eutrophication and enhance water quality (Sousa et al. 2010). 

The productivity from nitrogen uptake allows wetland plants to fix and sequester 

greater amounts of atmospheric carbon in the soil (Armentano and Meges 1986).  Salt 

marsh peat soils have the largest carbon content of all soils (Bridgham et al. 2006) due to 

high net primary production in wetlands relative to other terrestrial ecosystems (Amthor 

and Huston 1998; Keddy 2000), combined with low decomposition rates due to anaerobic 

conditions present during inundation (Stevenson and Cole 1999; White and Reddy 2000).  

As primary production increases and salt marsh biomass grows, dead organic matter is 

deposited on the salt marsh platform.  Over time, the burial of this organic matter leads to 

below ground carbon storage.  Although wetland soils make up a relative small percentage 

of terrestrial soils, they are estimated to contain approximately 20-25% of terrestrial soil 

carbon (Amthor and Huston 1998).   

Although salt marsh plants can help to sequester a portion of available nitrogen, excess 

nitrogen may compromise salt marsh stability and health. For example, Deegan et al. (2012) 

showed that nutrient levels elevated to those considered being eutrophic increased above 
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ground production at the expense of below ground production, and enhanced microbial 

decomposition.    These results imply that salt marshes currently not under nitrogen 

limitation may provide smaller belowground contributions to vertical accretion, which is 

imperative to keep pace with sea level rise. In addition, the nitrogen uptake allocated to 

above ground material was not completely sequestered in the marsh platform, but partially 

exported from the marsh as detritus. The increased microbial decomposition further 

reduced the organic peat layer, lowering the elevation of the marsh platform. The 

combination of returning nitrogen to the system, lowering the elevation of the marsh, and 

decreasing the amount of below ground biomass could result in accelerated marsh 

deterioration as sea level rises and other physiological stressors increase. 

 

1.3  Impacts of Sea Level Rise on Mid-Atlantic Salt Marshes 

 

Currently, global sea level is rising at the rate of approximately 3mm yr-1 (IPCC 2007), 

which is expected to accelerate (Church and White 2006).  In the Delaware Estuary, relative 

sea level rise rates are slightly higher (TREB 2017).  Redfield and Rubin (1962) suggested 

that without ample sediment availability, most marshes will not be able to keep pace with 

projected increases in sea level rise (Friedrichs and Perry 2001).  Marshes build elevation 

by either capturing suspended sediments or accumulating organic matter produced in situ.  

Recently, it has been suggested that many marshes have already lost the ability to maintain 

themselves under current sea level rise estimates due to insufficient sediment for 

sustainable vertical accretion (Delaune et al. 1983; Stevenson et al. 1985; Kearney et al. 

1988, 1994; Hartig et al. 2002; McKee et al. 2004; Turner et al. 2004).   
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In The Delaware Bay, comparisons of aerial photography and historic maps have shown 

extensive salt marsh loss since the 1840s (Philipp 2005).  Along the New Jersey coast, 

accretion rates of 1.7 mm yr-1 have been measured (Erwin et al 2006), which fall below 

current rates of sea level rise.  Accretion and subsidence rates can be highly variable 

spatially, but insufficient net accretion may be one factor explaining why Delaware Bay 

marshes are losing acreage in most areas (TREB 2017).  Furthermore, subsidence due to 

ground water extraction and post-glacial rebound can be as high as 2mm yr-1 (Sun et al. 

1999; TREB 2017).  Although marshes are able to migrate landward to some extent, 

seaward losses have outpaced landward gains, and this trend is expected to accelerate 

(Kreeger et al. 2010).  The Delaware Estuary has experienced wetland loss of 6,500 acres 

between 1996 and 2006, and currently, 37% of existing wetlands are categorized as 

severely stressed, 37% moderately stressed, and 27% minimally stressed (Kreeger and 

Padeletti 2013).  Marsh edge retreat greater than 1m yr-1 has been measured along 

coastlines of the Delaware Bay (Moody et al. 2011), and if this rate continues, we may 

experience a 25-75% wetland loss by 2100 (Partnership for the Delaware Estuary 2010).   

As plant community structure is influenced by elevation within a tidal prism (Mudd et 

al. 2009; Baustian et al. 2012), salt marsh vegetative communities shift positions in 

response to rising sea levels.  Woody up-land plants are being replaced by high marsh 

vegetation, which in turn are being replaced by low marsh vegetation.  This transitory 

marsh migration, referred to as marsh transgression, is impeded by anthropogenic 

infrastructure barriers in many locations (Thorne et al. 2012). In areas where landward 

transgression is impeded, habitats such as coastal wetlands are ultimately converted to 

mudflat ecosystems once sea level rise surpasses the ability of plant communities to keep 

vertical pace.   
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The vertical growth of salt marshes is dependent on contributions from peat 

accumulation and decomposition and the capture of inorganic sedimentations.  The relative 

contributions of these factors vary considerably among locations and studies.  For example, 

the accumulation of the peat layer in salt marsh habitats has been cited as the primary 

driver in vertical marsh growth (DeLaune et al. 1978; Neubauer 2008). Halophytes have 

exhibited steep declines in belowground production with increased inundation (Voss et al. 

2013) indicating that as sea levels rise, new additions to the peat layer can decrease.  Since 

decomposition is a reductive process, it had been thought that tidal inundation of wetlands 

may slow below ground decomposition rates, offsetting reductions in new peat, allowing 

marshes to grow vertically. However, recent studies suggest that inundation by tidal waters 

does not slow belowground decomposition (Kirwan et al. 2013), and additional material 

(i.e. sediment capture) will be needed for vertical accumulation to keep pace with projected 

increases in the rate of sea level rise.  

Another factor contributing to vertical accretion is the accumulation of sediment 

deposited from coastal waters on the flood tide.  As sediment rich water moves across the 

marsh platform, salt marsh plant communities slow the movement of the water resulting in 

sediment deposition leading to vertical marsh growth (Bricker-Urso et al. 1989, Leonard 

and Luther 1995).    Spartina alterniflora, the dominant lower marsh vegetation in Delaware 

Bay, production has been shown to be impacted when its optimum depth below mean high 

water is exceeded (Morris et al. 2002; Morris 2007).  Therefore, as sea levels rise, we can 

expect low growing Spartina alterniflora densities to decrease, minimizing its ability to 

baffle water and accrete vertically.  Additionally, rapid landward migration may reduce 

belowground production along the waterward edge, minimizing root mass which helps to 

stabilize sediments, increasing erosive potential (Bertness 1984).  The relative importance 

of plant production, peat accumulation, external sediment supplies, canopy density, and 



7 
 

hydroperiod to vertical accretion is the subject of much debate and local covariates may be 

dependent on site-specific conditions.  Nutrient loadings (see below) can also affect these 

complex interrelationships.  Regardless of which biophysical factor is locally limiting,  

clearly the ability to keep pace with sea level rise becomes more limited as the rate of local 

rise increases, especially in nutrient-stressed or sediment-deficient areas. 

1.4 The Life History of the Ribbed Mussel (Geukensia demissa) 
 

The class Bivalvia within the phylum Mollusca includes such organisms as clams, 

oysters, scallops, and mussels.  The physical structure of bivalves is distinguished by two, 

laterally compressed, calcium carbonate shells, joined at a hinge which are opened and 

closed through the use of one or more adductor muscles. Originally described by Lewis 

Weston Dillwyn in 1817, the ribbed mussel is a member of the Family Mytilidae, the only 

family in the Order Mytiloida.    It is placed in the genus of western Atlantic mussels 

Geukensia and is of the species demissa, or ribbed mussels.  Adult ribbed mussel shells are 

generally 4-10cm in length, toothless at the hinge, and oblong with a slight curvature.  

Ribbed mussels are characterized by an asymmetrical shell and a thick periostracum. The 

periostracum is dark in coloration, and its longitutinal grooves, or ribs, extend from the 

umbo to the posterior edge.   The animal uses a muscular foot for movement in the 

sediment, and it secretes protein complexes called byssal threads used for attachment and 

movement on stable substrate.   

The life history of the ribbed mussel initiates with the fertilization of eggs by sperm in 

the water column during a broadcast spawning event.  Ribbed mussels are iteroparous with 

reproductive output varying with age.  Young mussels tend to invest more resources into 

growth, while older individuals allocate more effort to reproduction (Bayne 1976).  

Kuenzler (1961) measured as high as 17% reproductive effort, as a proportion of total 
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production, contributed by adult ribbed mussels, which is a low percentage compared to 

other bivalve species possibly due to the energetic constraints of survival in the mid to 

upper intertidal zone.   

Body weight is the primary determinant of sexual maturation in ribbed mussels, which 

is influenced by the position of the animal in terms of proximity to the marsh edge (Borrero 

1987).  At the marsh edge, ribbed mussels commonly become sexually mature during their 

second growing season, but maturation of mussels in high marsh habitat may be delayed an 

additional year due to a reduction in submersion, and therefore feeding time. The minimum 

size for gametogenesis is approximately 12 and 17mm at the edge and at a distance of 3m 

from the edge, respectively (Borrero 1987).   Spawning is triggered by an increase in water 

temperature in the early summer, although a secondary spawning event of a lesser 

magnitude can take place in the late summer or early fall.   

1.5 Ecology of the Ribbed Mussel (Geukensia demissa) 

 

Ribbed mussels attach to the rhizome complex of S. alterniflora using their secreted 

byssal threads.  Ribbed mussels can grow and detach from these strands, allowing them to 

change their position among both the root systems of the cord grass and the local mussel 

population (Franz 2001).  Ribbed mussels supply S. alterniflora with nutrients through the 

deposition of pseudofeces and (often nutrient rich) feces, enhancing ecological productivity 

(Bertness 1984).  The enhanced productivity provides new attachment sites for ribbed 

mussels, which in turn, provides the cord grass with additional nutrients.  This mutualistic 

relationship facilitates the development of natural levees along marsh edges, which 

facilitates passive precipitation of suspended sediments from the water column, enhancing 

the vertical growth of the marsh (Bertness 1984).   Bertness (1984) found that the removal 

of ribbed mussels from experimental field plots resulted in the landward movement of the 
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marsh edge, while conversely; untouched plots containing high densities of ribbed mussels 

saw water-ward movement.   

Ribbed mussels are suspension feeders that actively pump water through gills for 

respiration and to capture suspended particulate material in order to derive nutrition.  

Three types of cilia, frontal cilia, laterofrontal cirri, and lateral cilia, are beat to maximize 

water movement (Aiello and Sleigh 1972) through the gills where particles can be trapped 

on mucus coated surfaces.  Particles are then transported in free suspension or mucus 

movement by the frontal cilia towards the labial palps where they are sorted to either be 

transported to the mouth or rejected as pseudofeces (Newell and Langdon 2004).   

Although the initial capture of particulate matter is indiscriminate, sorting results in 

selected matter being passed into the mouth and rejected material is passed to the marsh 

platform.  The primary foods of ribbed mussels have been shown to be nano, micro, and 

bacterioplankton (Wright et al. 1982; Kemp et al. 1990; Langdon and Newell 1990), but 

ribbed mussels are considered omnivorous and can derive nutrition also from 

heterotrophic flagellates, large-celled benthic micro-algae, as well as cellulosic detritus 

(Kreeger et al. 1988; Kreeger and Newell 2000, 2001).  Major growth events in ribbed 

mussels occur in conjunction with blooms of the most nutritious particles, typically in the 

spring and summer months.   Ribbed mussels appear to be more nutritionally-limited by 

nitrogen than carbon or energy when living in a naturally nitrogen-limited salt marsh 

environment (Kreeger and Newell, 2000). This is one reason researchers believe that ribbed 

mussels have become adapted to feeding on bacteria, which are more nitrogen-rich than 

phytoplankton (Kreeger and Newell 2000).  The main predators of ribbed mussels along the 

marsh edge are the blue crab (Callinectes sapidus), mud (Panoperous herbstii) crabs (Lin 

1989 and 1990), and shorebirds including clapper rails (Rallus longirostris) (Cohen 2005).     
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1.6  Spatial Variation of the Ribbed Mussel (Geukensia demissa) in Salt 

Marshes 

 

Ribbed mussels populations are not evenly distributed across the salt marsh landscape.  

After their planktonic life stage, larvae settle from the water column, with the majority of 

settlement occurring along the edge of the marsh (Bertness and Grosholz 1985; Nielsen and 

Franz 1994; Franz 2001) in close proximity to previously established mussel populations 

(Nielsen and Franz 1994).    The interstitial space of the shell assemblages, along with the 

stability provided by the larger mussel and Spartina complexes, provide refuge from 

predation and ice dislodgement, enhancing chances of survival (Bertness and Grosholz 

1985). 

Recruits to the marsh edge show a higher growth rate (Bertness and Grosholz 1985) 

and mature at a smaller size class (Franz 1996), but also display a lower survivorship 

(Franz 2001) than those in the high marsh. Mussel populations in the high marsh include 

larger and older size classes than populations along the marsh edge.  With the exception of 

the first two years of growth, high marsh mussels show a higher survivorship per year class 

(Franz 2001).  Although high marsh mussels mature at a slower rate than their counterparts 

along the marsh edge, their lifetime reproductive outputs are similar; although high marsh 

mussels require ~15 years to generate an output equivalent to the 5 year output of edge 

populations (Franz 2001).   

1.7 The Ribbed Mussel (Geukensia demissa) and the Nitrogen Cycle 

 

Nitrogen is essential for all organisms to construct amino and nucleic acids, and is 

considered the primary limiting nutrient for production in coastal ecosystems (Sprent 

1987).  The major nitrogen inputs to salt marshes are dissolved organic, inorganic, and 
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particulate nitrogen delivered by tidal waters, as well atmospheric nitrogen fixation by 

bacterial communities; lesser contributions are provided by precipitation and ground water 

fluxes (Valiela and Teal 1979).   In the salt marsh environment, energy rich ammonia is 

oxidized to nitrate which can subsequently be removed from the ecosystem through either 

the anoxic process of microbial denitrification or by transport in tidal waters. Nitrogen 

export has been measured to be equivalent to total input in typical reference marshes, 

indicating that the within-marsh cycle of nitrogen fixation (N2-NH3), nitrification (NH3-NO3), 

and denitrification (NO3-N2) are important for salt marsh communities to meet their 

internal nitrogen demands through recycling of limited nitrogenous compounds (Valiela 

and Teal 1979).     

In salt marsh ecosystems, changes in nitrogen imports and exports can have ecological 

effects.   For example, increased nitrogen input can enhance plant productivity, assuming 

carbon availability (Valiela and Teal 1979).   As global atmospheric CO2 levels are expected 

to increase (IPCC 2001), productivity-generated carbon sequestration may be important 

and limiting levels of available nitrogen has been shown to reduce this function (Reich et al. 

2006).  In some areas, the export of nitrogen from salt marshes can in turn increase primary 

production of algae in coastal waters which has been linked to decreased biological 

diversity (Valiela et al. 1990).  Ribbed mussels can deliver nitrogen filtered from the water 

column directly to plants, providing simultaneous water column nutrient removal (Jordan 

and Valiela 1982) and plant production services (Bertness 1984). 

Ribbed mussels, which outweigh all other metazoans in the marsh, are considered to be 

the functional dominant animals in salt marsh ecosystems (Kuenzler, 1961 Fell et al., 1982; 

Jordan and Valiela, 1982; Bertness 1984), helping to govern mass biogeochemical 

relationships such as nitrogen retention and export.  For example, ribbed mussels have 



12 
 

been shown to be able to filter 1.8 times the particulate nitrogen exported from the marsh 

through tidal flushing (Jordan and Valiela 1982).  Hence, where mussels are dense, they can 

significantly alter the nitrogen budget of a salt marsh, shifting the equilibrium to net 

nitrogen retention, enhancing productivity.  Conversely, when ribbed mussels are not 

abundant, marshes may be net nitrogen exporters. 

Ribbed mussels only retain approximately 10% of their ingested nitrogen for growth, 

and approximately 50% is deposited into the marsh in the forms of feces and pseudofeces 

(Jordan and Valiela 1982).   Spartina  alterniflora stands associated with aggregates of 

ribbed mussels exhibit higher soil nitrogen levels than stands without marsh mussels, 

indicating that feces and pseudofeces were nitrogen rich  and made available for plant 

production in the marsh environment (Bertness 1984).   This result is significant in that the 

nitrogen not selected for by the ribbed mussels was not necessarily removed from the salt 

marsh ecosystem and exported to coastal waters, but was retained and incorporated, or 

buried, within the marsh (Jordan and Valiela 1982).  

Approximately 27% of filtered nitrogen is excreted as ammonia, hence ribbed mussels 

also remineralize more ammonia into the marsh ecosystem than all other groups of 

organisms at the population level (Jordan and Valiela 1982).  This release provides electron 

donors to microbial communities and thusly a secondary input of nitrogen at the ecosystem 

level.  These metrics create a nitrogen budget for ribbed mussels within which ~77% of the 

available filtered nitrogen is returned to the salt marsh as either bio-deposits or dissolved 

compounds in the water or sediment.  The combination of nitrogen input in the forms of 

feces, pseudofeces and ammonia therefore greatly increase nitrogen transformation and net 

retention in the salt marsh ecosystem, enhancing the availability of this limiting nutrient to 

vascular plants, benthic algae, and microbes.  Of the remaining ~23% of nitrogen retained, 
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2% was invested in byssal thread production (which are ultimately lost to environment), 

11% was retained internally for growth and 10% was released as gametes (Jordan and 

Valiela 1982).  Nitrogen cycling stimulated by ribbed mussel feeding therefore plays an 

important role in delivering nitrogen to an otherwise nitrogen-limited salt marsh 

community, and could be substantial enough to help govern overall nutrient removal and 

transformation services rendered by salt marshes.   

1.8 Research Questions and Dissertation Structure 

 

The key goal of this dissertation was to determine the geospatial distribution of ribbed 

mussel ecosystem services across the salt marsh landscape, as exemplified by the filtration 

of total suspended solids (TSS) and particulate nitrogen (PN) and the contribution of mussel 

biodeposits to marsh accretion.  Additionally, this research aimed to utilize regional 

differences in the distribution of these services to try and identify current areas of 

underrepresented services and to estimate the magnitude of service increase through the 

augmentation of ribbed mussel populations. The three focal research questions in this 

dissertation were as follows: 

1. Does the water processing rates of ribbed mussels vary across space and time? 

2. How does the magnitude of mussel mediated-ecosystem services vary across the 

salt marsh landscape? 

3. Are the current levels of services as measured within New Jersey salt marshes 

representative of their maximized regional potential? 

These questions were investigated in Chapters 2, 3, and 4 respectively.  The objective of 

chapter 2 was to determine spatial and temporal variability of water processing rates of 

ribbed mussels by measuring seasonal physiological processing of natural seston by ribbed 
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mussels collected from three habitats across the salt marsh landscape (high marsh, low 

marsh along primary channels (river), and low marsh along intra-marsh creek networks 

(creeks)), and from two regions (Delaware Bay, NJ and Narragansett Bay, RI.  Ribbed mussel 

population density and feeding time availability across the three habitats and two regions 

were then quantified in chapter 3, permitting the spatial magnitude of ribbed mussel 

filtration services to be assessed within and among the study marshes.  Chapter 4 evaluated 

these data regionally to: 1) identify spatial discrepancies in mussel-mediated services 

among regional habitats; and 2) estimate how ribbed mussel losses and gains could 

influence the extent of these services.  Chapter 5 discusses the findings from chapters 2-4 in 

the context of natural resource management and restoration ecology.  As new technologies 

are employed to mitigate current and future coastal vulnerabilities, it will be important to 

opportunistically target areas of high potential return for mitigation/restoration activities.  

The ability to identify areas that are appropriate ribbed mussel habitat, but are currently 

supporting low populations, may allow for intervention activities that enhance ribbed 

mussel biomass in tandem with other site-specific goals, such as shoreline stabilization, to 

maximize the ecosystem service outcomes of management and restoration activities. 
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Chapter 2: Temporal and Spatial Variation of the Gross Removal of Total 
Suspended Solids and Particulate Nutrients by Ribbed Mussels (Geukensia 

demissa) in Salt Marshes of the Mid-Atlantic Region, USA 

2.1 Abstract 

Ribbed mussels (Geukensia demissa) are a ubiquitous intertidal animal of eastern North 

American salt marshes, often living in close association with salt marsh cordgrass Spartina 

alterniflora. They are typically concentrated at the lower extent of the vegetated zone along 

tidal channels, but are also found across the marsh platform at higher intertidal elevations, 

albeit at lower densities.  As filter-feeding bivalves, ribbed mussels remove suspended 

micro-particulate matter and associated nutrients from the water column, potentially 

resulting in benefits to water quality.  However, the magnitude of such ecosystem services 

may depend on temporal and spatial variation in the mussel’s water clearance and particle 

filtration rates.   

 

Seasonal (spring, summer, and fall) water clearance and particle filtration rates were 

quantified for ribbed mussels collected from three habitats: low marsh along the main tidal 

channels; low marsh along intra-marsh creek networks; and high marsh.  To examine 

broader spatial variation, the experiments were replicated in four representative marshes, 

three in New Jersey (NJ), and one in Rhode Island (RI), USA.  Ecosystem services were 

represented by the gross filtration rate of total suspended solids (TSS) and particulate 

nitrogen (PN), normalized for mussel dry tissue biomass.  Clearance rates varied with 

seasonal temperatures, but exhibited low spatial variability among habitats and marshes.  

In contrast, filtration rates of TSS and PN were highly variable, driven largely by spatial 

variation in seston availability.  Seston services can therefore be predicted from body size, 

seasonal temperature, and site-specific seston composition.    
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2.2 Introduction 
 

As filter-feeding bivalves, ribbed mussels play a key role in the pelagic-benthic coupling 

of intertidal salt marsh ecosystems.  The transfer of nutrient rich particulate matter from 

the water column to either the animal through physiological assimilation or the subsurface 

of the salt marsh platform represents a nutrient sink with potential benefits to water 

quality.  Similar to many global coastal habitats, mid-Atlantic estuaries experience 

considerable eutrophic degradation, fueled by excess nutrient runoff (Nixon et al. 1986; 

Valiela 1992; Rabalais et al. 2009).  Since much of these excess nutrients are taken up by 

phytoplankton (Valiela et al. 1990; Sfriso et al. 1992; D'Avanzo and Kremer 1994), there has 

been strong interest in restoring native bivalve populations, such as oysters, to exert 

grazing pressure on algal blooms and to potentially facilitate nutrient burial and microbial 

denitrification via bivalve bio-deposits (Landry 2002; Higgins et al. 2011; Stadmark and 

Conley 2011; Gallardi 2014; Petersen et al. 2014).     

 

Despite their large population sizes (Bertness 1984; Bertness and Grosholz 1985; Franz 

2001; Evgenidou and Valiela 2002), interest in ribbed mussels for nutrient mitigation has 

remained low relative to oysters, even though they have comparable water processing rates 

(Riisgard 1988).  Clearance rates of ribbed mussels, defined as the volume of water swept 

clear of particles per unit time, have been shown to be temperature dependent, with 

mussels clearing water at a lower rates in colder water than in warmer water (Jordan and 

Valiela 1982, Kreeger et al. 1988; Kreeger and Newell 2000).  In temperate climates, this 

translates to seasonal variability in physiological processing with summer months being the 

most active, and lower rates observed in the fall and spring months.  In general, bivalves 

clear water at constant rates across a wide spectrum of food (seston) concentrations and 

qualities (Bayne et al. 1987, 1988), with the exception that they reduce feeding activity at 
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very low or very high concentrations that become inefficient for optimal foraging (Willows 

1992).  

 

Filtration rates, defined as the weight of material filtered from the water column per 

unit time, reflect the interplay between clearance rates and the food available for filtering.  

As clearance rates can be similar across a food availability gradient (Bayne et al. 1987, 

1988), filtration rates of animals clearing water at similar capacities can differ spatially due 

to differences in food availability. Additionally, even though ribbed mussel populations are 

concentrated at lower intertidal elevations along main tidal channels and intra-marsh 

creeks, they are found across the marsh platform at higher intertidal elevations, albeit at 

lower densities (Bertness 1984; Bertness and Grosholtz 1985; Franz 1993).   This 

distributional variability across an elevation gradient results in spatial differences 

regarding feeding time availability per day.  Therefore, bivalve water clearance and particle 

filtration services, and subsequently water quality benefits, can vary widely over space and 

time.   

Less well understood is whether the physiological capacity of mussels to filter seston 

varies across the diverse marsh landscape or among marshes having different seston 

character.  To assess the potential water quality benefits of ribbed mussels, it is vital that 

the seasonal interplay between water processing rates and in situ food composition be 

understood across the salt marsh landscape.  In this study, the temporal and spatial 

variation in ribbed mussel water clearance and particle filtration rates were assessed 

within and among representative salt marshes.  To be broadly representative and provide 

the basis for geospatial extrapolation, key physiological processing rates were determined 

seasonally for ribbed mussels fed natural diets collected from three representative marsh 

sub-habitats (low marsh along main tidal channels, intra-marsh creek networks, and high 



18 
 

marsh) and compared among four different marsh systems in two estuaries (three in 

Delaware Bay, NJ, and one in Narragansett Bay, RI). Physiological experiments were 

repeated seasonally in spring, summer and fall in NJ, and only once during summer in RI.   

 

2.3 Methods 
 

Physiological experiments were conducted using natural seston diets to ensure that 

mussel physiology did not react to a change in diet quantity or quality.  The onset of feeding 

was also timed to synchronize with site-specific immersion schedules.  Since physiological 

metrics also vary with body size, a range of mussel sizes were tested to be representative of 

the local population from each study marsh. Seasonal experiments were conducted at 

ambient water temperatures.  

 

2.3.1 Study Sites and Habitat Delineation 
 

Mussels for physiological rate studies were collected from three representative study 

salt marshes in New Jersey and one in Rhode Island (Fig. 2.1).  New Jersey salt marshes 

were chosen in Dennis Creek (DN), Dividing Creek (DC) and the Maurice River (MR), which 

are tributary watersheds along the Delaware Bay.  In Rhode Island, the study marsh was 

Cogshall Cove (RI), located on Prudence Island in Narragansett Bay.   

 

These marshes were selected due to their proximity to long-term wetland monitoring 

stations, including surface elevation tables.  At each site, three subhabitats were selected 

from which mussels were collected: low marsh along the main tidal channel, referred to as 

low marsh river (LMR); high marsh (HM); and low marsh along a representative intra-
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marsh creek referred to as low marsh creek (LMC).  Low marsh river habitat was delineated 

as being along the marsh’s primary tidal channel that does not drain completely at low tide, 

and was characterized by a 1-2 meter band of tall-form Spartina alterniflora between the 

marsh edge and the high marsh platform.  High marsh habitat was delineated by vegetation 

community composition comprised of either a mono culture or mix of: short-form Spartina 

alterniflora; Spartina patens; Distichlis spicata; Juncus spp. and/or Salicornia spp. Low marsh 

creek (LMC) habitat was characterized by a 2-4 meter band of tall-form Spartina alterniflora 

bisected by an inter-marsh drainage creek that drained fully at low tide.  

2.3.2 Ribbed Mussel and Seston Collection 

Fifteen ribbed mussels, of which 7-8 animals were selected for experimental use, 

representing the observational size range of the local population were collected from each 

habitat in each study marsh on the falling tide of the date of each seasonal experiment 

(Table 2.1). During transport to the nearby (outdoor) experiment site, mussels were placed 

in small containers and wrapped in wet paper towels to keep them moist and at constant 

temperature.  Mussels were gently rinsed using water collected on site, byssal threads were 

trimmed to the shell margin, and animals were laid on a damp towel until the 

commencement of each experiment.  Mussels were collected from the same location for 

each seasonal experiment (Table 2.1).  

 

Additionally, 20L of water was collected from the primary tidal channel for use in 

physiology experiments and for natural seston analysis.  Seston collection carboys were 

submerged 5-10cm below the water surface, being careful not to re-suspend soft material 

from the benthos or collect surface material.   Water was mixed and then passed through a 

100 µm sieve to remove large debris and particles too large for mussels to effectively filter. 
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Temperatures were monitored prior to and during experiments to ensure that they never 

deviated more than 3°C from in situ water temperatures.  

2.3.3 Experimental Approach 

Experiments were initiated approximately six hours after mussel collection to mimic 

incoming tide to preserve natural feeding patterns.  Clearance rates were assessed in static 

aquaria consisting of individual ribbed mussels held in 1 liter beakers.  The experimental 

design consisted of 24 beakers of mussels (n= 8 habitat-1) and 6 non-feeding controls for 

Dennis Creek (NJ) and Cogeshall Cove (RI), and 21 beakers for mussels (n= 7 habitat-1) and 

4 non-feeding controls for Dividing Creek (NJ) and Maurice River (NJ).  All beakers were 

filled with 800mls 100µm-sieved natural water from each site, and were vertically mixed 

prior to sampling by plunging gently with a 100ml graduated cylinder. 

 

 Ten milliliter water samples were collected from each beaker just prior to the addition 

of bivalves at the start of the feeding experiment.  After mussels were added, water samples 

were taken at four 30min intervals once feeding had initiated, determined by the opening of 

valves, protrusion of siphons and the presence of feces.  Delayed feeding of approximately 

60 minutes occurred during the (colder) fall experiments.  Water samples were taken from 

the just beneath the water surface in the middle of each beaker, approximately 1 min 

following gentle mixing which was observed to be sufficient to allow any resuspended 

biodeposits such as feces to settle.  Each 10ml water sample was added to a 20 ml Coulter 

vial, fixed with 4 drops of acid Lugol's solution, and stored at room temperature for later 

analysis.   
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2.3.4 Mussel Body Metrics 

At the conclusion of each feeding experiment, ribbed mussel shell height was measured 

to ±0.01 mm and weighed to ±0.01 g.  Animals were sacrificed, shells were dried and 

weighed, and tissues (and associated liquor) were frozen in pre-weighted 20ml Coulter 

vials at -20°C, and subsequently freeze-dried and weighed to ±0.00001 g for determination 

of dry tissue weight (DTW)  for subsequent allometric standardization of physiological rate 

functions to body weight. 

2.3.5 Clearance Rate Calculation 

Water samples were analyzed for the concentration of particles having diameters 

between 2-63 µm using a Coulter Multi-Sizer II (Beckman Coulter, La Brea, USA). Intrinsic 

variability among water samples was normalized using a fitted regression curve of the 

decline in particle concentration for the total feeding interval for each animal.  This 

equation was used to determine the initial and final particle concentration.  If particle 

concentration of a sample was measured at <50% of the initial concentration, it was deleted 

from the regression to avoid potential negative responses in feeding activity due to 

declining food quantity.   

 

Clearance rates per animal were then calculated using the equation of Coughlan (1969): 

 

        Clearance Rate (Lh-1) = [log Ci - log Cf ] * [V T-1] 

 

where Ci = initial particle concentration, Cf = final particle concentration, V = water volume, 

and T = incubation time.  Clearance rates were subsequently corrected for values measured 

in control beakers, thus accounting for any changes in suspended particle concentrations 

that may have resulted from processes other than mussel grazing activity, such as microbial 
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activity or particle settlement.  Clearance rate was allometrically normalized for each 

animal for a final clearance rate in the units: l h-1gDTW-1. 

2.3.6 Seston Composition 

The quantity and quality of microparticulate matter that mussels were fed on was 

determined by assessing the TSS, POM, %OM, C:N molar ratio, and PN of seston in each 

water type (i.e. marsh per season).  Replicate samples (n=6 marsh-1 season-1) of seston were 

collected from each water type on pre-combusted glass fiber filters (Whatman GF/F, 

retention 0.7 µm) using vacuum filtration.  Volumes of water filtered were equal to 90% of 

the pre-determined clogging volume per watertype.  Post-filtration, the filter and funnel 

were rinsed with 5 ml of 0.5 M ammonium formate to remove inorganic salts.  Filters were 

frozen until analysis. 

 

Each filter was cut in half using a cutting template to insure exact, replicable cutting of 

each filter.  One half of each filter was used for determination of total suspended solids 

(TSS), particulate organic matter (POM), and percent organic content (%OM) using the loss-

on-ignition method (Davies 1974). Weights of TSS and POM were multiplied by 2 (to 

account for the other half of the filter) and divided by the filtered volumes to calculate 

concentrations (mg/L).   The second half of each filter was analyzed for the molar 

concentrations of carbon and nitrogen to calculate C:N and total particulate nitrogen (which 

was divided by the filtered volume) of TSS using a Flash EA112 elemental analyzer.  Filters 

were subsampled using a hole punch.  Standard quality assurance methods were followed, 

including the running of check standards, and every fifth sample was run in duplicate.    
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2.3.7 Filtration Rate Calculation 

Clearance rates (l hr-1) were converted to filtration rates (grams seston hour -1) by 

multiplying measured clearance rates by the measured mean ambient seston concentration 

appropriate for each treatment group (n=6).    

2.3.8 Allometric Scaling of Physiological Rates 

Filtration rates increase with increasing bivalve size (Winter 1978), which can also vary 

widely among species.  To facilitate comparisons among studies and to enable ecosystem 

service calculations for natural bivalve populations, clearance and filtration rates were 

adjusted for body dry tissue weight (DTW).  Weight-adjusted rates were determined by 

least squares linear regression analyses on log-log data of mussel DTW and physiological 

rates, following the approach of Kreeger et al. (2001).  A separate regression equation was 

determined seasonally per habitat per marsh (i.e. each treatment group, total of 36 

regressions).  Where slopes of resulting equations were similar (e.g. among different 

habitats and among different marshes for the same season), a subsequent regression 

equation was generated on pooled data to minimize error.  Weight standardization allowed 

for the best comparability of rate functions among species, environmental conditions, and 

studies.   

2.3.9 Statistical Analyses 

All data were tested for normality using a Shapiro-Wilk test prior to ANOVA analysis, 

the results of which were presented as mean ± standard error (se).  If a 2-way ANOVA 

interaction term was identified as significant, main effects were not reported as to not 

violate the principle of marginality, and a simple main effects test was subsequently 

performed.  If interactive effects were not significant, a secondary two-way ANOVA was run 

isolating individual factor effects with no interaction term.  As mussels were collected from 
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the same locations for each seasonal experiment; size and weight statistics were pooled 

across seasons and evaluated per habitat per marsh.  ANOVA analyses were conducted 

using a linear model approach, employing a type III sum of squares for unbalanced designs.  

Where significant treatment effects were identified, Tukey HSD post-hoc analyses were 

performed.  

Correlations among average seasonal water processing clearance rates and seston 

characteristics among marshes were performed using the percentage bend correlation 

method available in the WRS2 package.  All analyses were conducting using R statistical 

software version 3.0.3 (R Core Team 2014)    

2.4 Results 

2.4.1 Mussel Body Metrics 

Generally, mussels had longer shell lengths and greater dry tissue weights in the 

channelside habitats (i.e. LMR and LMC) than in the high marsh, but this difference was not 

always statistically significant (Table 2.2). This trend was consistent across all marshes with 

the exception of the Maurice River where shell length and dry tissue weight were closer in 

value across all habitats (Table 2.2). The Dividing Creek and Rhode Island marshes 

generally exhibited a wider range of dry tissue weights per habitat than both Dennis Creek 

and Maurice River which contained the smallest mussels per habitat. On average across 

habitats, mussels in Rhode Island were significantly larger than in New Jersey (p<0.006; NJ 

=0.55±0.04 gDTW; RI =0.87±0.14 gDTW). Pooling data by habitat per region, New Jersey 

and Rhode Island mussels did not differ in weight in the LMC and HM habitats (p>0.99 and 

p>0.96 respectively), but mussels in the LMR habitat in Rhode Island were significantly 

heavier than their counterparts in New Jersey (p<0.001).   
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2.4.2 Seston Composition 

There were significant interactions between marsh and season for all seston metrics 

(p<0.001 for all metrics) with the exception of C:N  which displayed no significant 

differences among factor levels (marsh: p> 0.45; season: p> 0.20; marsh*season: p> 0.06).  

Partitioning data by season, simple main effects tests for all other seston metrics showed 

significant differences in metric values among marshes per season, with no consistent 

pattern among seasons (Table 2.3). Total suspended solids, POM, and PN followed similar 

seasonal patterns among marshes, with Dennis exhibiting significantly greater values than 

Dividing Creek and Maurice River in the summer and fall, while Maurice was highest in the 

spring (Table 2.3).  Percent organics were greatest in Rhode Island (27.73±2.52, Table 2.3), 

and although some statistically significant differences were measured among all New Jersey 

marshes seasonally, the ranges were similar and values were at least 35% lower than in 

Rhode Island (Table 2.3). 

TSS was significantly correlated with POM within New Jersey marshes (Dividing Creek: 

t=23.91, p<0.001, r2=0.99; Dennis Creek: t=15.77, p<0.001, r2=0.97; and Maurice River: 

t=12.62, p<0.001, r2=0.95), but was just above the statistical threshold of α=0.05 in Rhode 

Island (t=2.34, p<0.08, r2=0.76). TSS correlated inversely with %OM in Dividing Creek (t=-

7.08, p<0.001, r2=0.87) and Maurice River (t=-2.27, p<0.04, r2=0.49), but not in Dennis 

Creek (t=0.08, p>0.93, r2=0.02) or Rhode Island (t=-0.97, p>0.38, r2=0.43).  Percent organic 

were higher among the NJ sites near the Delaware Bay mouth and decreased moving up 

Bay.  Percent organic matter was almost twice as high in Rhode Island than at the New 

Jersey sites in the summer (Table 2.3). Of note is that fall samples were collected 11 days 

after hurricane Sandy, which may have contributed to higher than normal seasonal fall 

values for some seston components. 
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2.4.3 Clearance Rates 

Generally, clearance rates increased seasonally with temperature from fall, to spring, 

and summer in all marshes (Table 2.4).  There was a significant interactive effect between 

marsh and season, and a simple main effects test showed no significant variability among 

marshes in the fall (p>0.07) or summer (p>0.15), but Maurice River differed significantly 

from Dividing and Dennis Creeks in the spring (p<0.001 for both marshes).   

Partitioning data by season, there was minimal variability among habitat types within 

marshes.  Two-way ANOVA analysis showed no significant habitat or marsh effects on 

clearance rate in the fall (marsh: p>0.06; habitat: p>0.10; marsh-habitat interaction: p>0.14; 

=0.044±0.007 l hr-1 gDTW-1) or summer (marsh: p>0.15; habitat: p>0.27; marsh:habitat: 

p>0.38; =0.614±0.039 l hr-1 gDTW-1), but a significant interactive effect was present in the 

spring (p< 0.005).  Simple main effect tests showed that the spring Dividing Creek clearance 

rate in the LMC habitat (0.51±0.06 l hr-1 gDTW-1) was significantly greater than those in the 

LMR (p<0.001, 0.17±0.03 l hr-1 gDTW-1) and HM (p<0.005, 0.27±0.04 l hr-1 gDTW-1) habitats 

which did not differ from each other (p>0.31).  No significant differences in spring clearance 

rates among habitats were detected in Dennis Creek (p>0.41) or Maurice River (p>0.42).  

Seasonal mean clearance rates per marsh are reported in Table 2.4 and habitat specific 

clearance rates per season per marsh are reported in Appendix A.  There were no significant 

correlations between clearance rates and any seston metrics (Appendix B). 

 

2.4.4 Filtration Rates 

There was a significant interactive effect between marsh and season for both TSS 

(p<0.01) and PN (p<0.01) filtration rates.  Average TSS filtration per marsh significantly 

differed among all seasons (p<0.05 for all marshes), except in Dennis Creek in which TSS 
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filtration rates did not significantly differ between the fall and spring (p>0.97, Table 2.5). 

Seasonally, average PN filtration per marsh displayed greater seasonal homogeneity with 

spring and fall rates similar in Dennis Creek (p>0.99), and summer and spring rates similar 

(p> 0.97) in Maurice River (Table 2.5).    

Among marshes, seasonal TSS and PN filtration did not follow any consistent pattern. 

Maurice River had the highest rates in the spring and Dennis Creek had the highest in the 

summer and fall (Table 2.5).  Pooling data regionally, seasonal averages of TSS filtration (mg 

l-1 gDTW-1) increased with temperature in New Jersey (fall: 5.65±0.77; spring: 28.69±3.85; 

summer: 43.27±2.69), and summer filtration was significantly higher (p<0.01) than in 

Rhode Island (7.23±1.22).  Similar trends were measures for PN filtration in New Jersey 

(fall: 0.04±0.01; spring: 0.21±0.03; summer: 0.48±0.03) and were significantly higher than 

Rhode Island (0.06±0.01 mg l-1, p<0.01) in the summer.   

 

2.5 Discussion 

 

Ribbed mussels are increasingly being studied for their role in pelagic-benthic coupling 

and biogeochemical relationships in Atlantic salt marshes (Galimany et al. 2013, Bilkovic et 

al. 2017). To evaluate how ribbed mussel populations affect water quality and cycling of 

particulate matter, it is vital to understand the factors that govern key physiological rates 

associated with their suspension-feeding behavior.  Although this study confirms previous 

work that has shown a generally positive relationship between water temperature and 

bivalve water processing rates (Widdows and Bayne 1971; Bayne et al. 1988; Wilbur and 

Hibish 1989; Kreeger and Newell 2001), the temporal and spatial variability of these 

processes within and among salt marshes are less understood.  



28 
 

Seasonal water processing rates were similar within and among marshes, with some 

significant variability identified during the spring, when mussels were emerging from 

winter inactivity.  Spring differences among marshes and among habitats in Dividing Creek 

could be attributed to varying stages of physiological adaptation to quickly changing 

temperatures.  Kreeger and Newell (2001) did not find consistent significant differences in 

ribbed mussel clearance rates (per diet type) between the winter (5°C) and spring (21°C) 

and between the summer (26°C) and autumn (16°C), even though each seasonal pair had a 

wide temperature differential.  These results indicate a lag response in emerging and 

regressing from minimum (winter) and maximum (summer) water processing rates, 

respectively.  In this study, even though mean spring temperature (15.4°C) was similar to 

Kreeger and Newell’s autumn temperatures (16°C), the measured clearance rate was 

similar to Kreeger and Newell’s spring rate (5.6°C temperature difference).  The similarity 

between clearance rates at 21°C (Kreeger and Newell 2001) and 15.4°C (this study) may be 

due to the amount of time the mussels had been exposed to each temperature, with mussels 

in recently warmed water exhibiting a clearance rate that still reflects their previous 

environmental conditions that had been consistent for a longer duration.  Alternatively, 

feeding rate differences per temperature might have been influenced by other factors such 

as food quality and nutritional status. 

In this experiment the mussels from the Maurice River had significantly higher 

clearance rates in the spring than those in Dennis and Dividing Creeks (Table 2.4), which 

may indicate that water in the Maurice River had been increasing in temperature for a 

longer duration than in Dennis and Dividing Creeks.  Delayed response in clearance rate to 

changes in temperature is supported by Wilbur and Hilbish (1989), who reported an 

increase in clearance rates from 0.53 (l hr-1) to 0.77 (l hr-1) when temperatures were raised 

from 15°C to 25°C, and that further increases to 1.17(l hr-1) were observed after 21 days.  
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Conversely, animals kept at 15°C displayed no physiological changes over the course of the 

experiment.   

The clearance rate reported by Wilbur and Hilbish at 15°C was within the range of 

values reported by Kreeger and Newell (2001) at 21°C and in this study at 15.4°C.  This may 

reflect local variability in response to rising spring water temperatures and further studies 

should be conducted to identify key temperature thresholds and exposure times that 

regulate physiological response.  Mohlenberg and Riisgard (1979) showed that water 

processing rates among bivalves acclimated to different temperature regimes, were not 

significantly different.  These results indicate that long term water processing rates for 

ribbed mussels may be similar across regions, but should be calculated from multiple 

experiments spanning the inter-annual variability of local water temperatures with animals 

acclimated to experimental target values. 

Spatially within marshes, there was little significant variability among habitats.  These 

results are supported by Bayne et al. (1988) and Jordan and Valiela (1982) that found no 

significant reductions in water processing rates of suspension feeding bivalves due to 

increased aerial exposure (elevation differences among habitats and/or marshes) or 

reduced feeding times. These results suggest that ribbed mussels clear water at the 

maximum capacity that temperature allows independent of emersion time.   Tidal influence 

on feeding rates has been explored in other bivalve species.  Widdows and Shick (1985) 

compared clearance rates between inter- and subtidal populations of Mytilus edulis and  

Cardium edule and found no evidence that intertidal individuals compensated for reduced 

feeding time by increasing clearance rates relative to subtidal individuals. 

The clearance rates reported in this paper were generally lower than some reported 

values for Geukensia demissa feeding on natural diets (≥1 l hr-1 gDTW-1, Jordan and Valiela 
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1982, Riisgard 1988, Galimany 2013), but were within the ranges reported by others 

(Kreeger and Newell 2001, Lonsdale et al. 2009). A potential source of this discrepancy was 

the extremely high concentrations of TSS in the New Jersey feeding experiments relative to 

studies reporting comparatively higher rates.  For example, Galimany et al. (2013) reported 

June-October average clearance rates between 0.84±0.09 and 3.12±0.26 l hr-1 for ribbed 

mussels processing water that has seston concentrations between ~4-18 mg l-1.   The range 

of average clearance rates found in this study (Table 2.4) were within the range found in 

Kreeger and Newell (2001, 0.03±0.01 l hr-1  – 1.24±0.05 l hr-1), which were conducted using 

natural seston diets between 14 and 30 mg l-1.  Galimany et al. 2013 found that clearance 

rates of ribbed mussels decreased significantly with particle load, and the decline in average 

clearance rates from Galimany et al. (2013) to Kreeger and Newell (2001) to this study 

(Table 2.3) fits that pattern.   

Although the low New Jersey clearance rates in this study fit that pattern of decline with 

increasing TSS, the summer Rhode Island clearance rates conducted with a natural diet of 

13.24±2.34 mg l-1 does not. This may be due to regional differences in food quality (Table 

2.3).  Minor differences in clearance rates can occur when food quality is low, and Delaware 

Bay contains high concentrations of refractory detritus which may affect water processing. 

Another potential source of clearance rate variability may be the lack of post-handling 

acclimation time in these experiments. Jordan and Valiela (1982), Kreeger and Newell 

(2001), and Galimany (2013) allowed time for mussels to acclimate to their experimental 

surrounding post handling (2+ weeks, 18hrs, and 2hrs respectively).  Mussels in these 

experiments were collected at low tide, cleaned of sediment and any attached byssal 

threads, and placed almost immediately into experimental beakers with no submerged 

acclimation time.  This may have contributed to increased stress and the lower 

physiological rates measured here. Whether or not clearance rates were suppressed due to 
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either high levels of TSS or from a stress response due to recent handing, the clearance rates 

presented here are within the range of previously reported values, and represent a 

conservative measure for of seasonal clearance rates fed on natural seston diets.   

In contrast to clearance rates, filtration rates varied widely across space and time (Table 

2.5).  Seston availability and composition was highly variable (Table 2.3), and hence 

filtration rate followed these patterns closely.  Summer TSS and PN filtration rate variability 

generally reflected the natural spatial variability of seston across marshes (Tables 2.3 & 

2.5).  Subtle variability in filtration rates among different mussel groups could also have 

been influenced by changes in food quality and seasonal nutritional demands, or salinity 

differences which were not accounted for in this study.  For example, higher summer 

filtration rates of New Jersey mussels compared to Rhode Island mussels (Table 2.5) might 

have resulted from the comparatively lower food quantity and higher food quality of Rhode 

Island seston, even with the larger-on-average Rhode Island mussel biomass and slightly 

lower temperature (Table 2.3).  Unlike clearance rates, filtration rates are rarely reported in 

the literature, which may be due to their dependence on site-specific TSS qualities.  

Therefore, we were unable to compare these values to rates from others studies under 

similar TSS and seasonal conditions. 

Despite minor differences, water processing rates were generally consistent across 

marshes and habitats for a given temperature. As temperature changed seasonally, water 

processing rates responded in a positive fashion.  These data highlight the importance of 

understanding the inter-annual variability in physiological rates when calculating annual 

estimates.  For example, employing water processing rates calculated at summer 

temperatures as a measure of average annual function, will greatly overestimate water 

processing capabilities.   Conversely, as these data showed little variation across space, it 
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would be reasonable to extrapolate previously measured water processing rate estimates 

(e.g. seasonal, annual, etc…) across estuaries and bays that share similar temperature and 

seston characteristics. 

As filtration rates reflect in situ seston concentrations, which were highly variable 

across both time and space, spatial variation in ribbed mussel ecosystem services may be 

driven by site-specific food differentials.  Thusly, site-specific data for seston quality and 

quantity are required to assess particle (and associated nutrient) filtration, and filtration 

rates may be spatially constrained to greater degree than clearance rates. As both of these 

rates are per unit dry tissue weight of ribbed mussels, calculation of the spatial and 

temporal distribution of ribbed mussel ecosystem services requires the integration of 

regional seasonal clearance rates, site-specific seston quality and quantity, as well as spatial 

estimates of ribbed mussel biomass, and feeding time availability.
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Figure 2.1  Marshes where ribbed mussels were collected for seasonal 
physiological experiments 
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Table 2.2  Mean ± se for shell length (mm) and dry tissue weight (g) of ribbed 
mussels by habitat per marsh, pooled over seasons (n).  Letters denote 
significant differences between habitats within marshes calculated using a 
post-hoc Tukey's test of honestly significant differences; habitats within 
marshes that share a letter were not significantly different. DC=Dividing 
Creek; DN=Dennis Creek; MR=Maurice River; and RI=Coggeshall. HM=High 
Marsh; LMR= Low Marsh River; LMC= Low Marsh Creek. 
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Chapter 3: Ecosystem Services of the Ribbed Mussel (Geukensia demissa) 

Across the Salt Marsh Landscape 

3.1 Abstract 

Ribbed mussels are ubiquitous in Mid-Atlantic salt marshes where, through filter-

feeding activity, they remove suspended particles, contribute to nutrient cycling, and 

potentially help marshes keep pace with sea level rise. Ribbed mussels live in multiple 

habitats across the salt marsh landscape - along edges of the primary marsh shoreline, 

within marsh drainage creeks, as well as high marsh areas.  Although abundant, the spatial 

distribution of ribbed mussels, and their habitats, are not consistent within or among 

marshes. This variation in spatial population demographics and relative habitat size affects 

the distribution of mussel mediated ecosystem services.   

The spatial distribution of the three marsh habitats described above were delineated 

within each of four representative marshes across two regions (3 NJ, 1 RI).  Mussel 

population densities and demographics were quantified in each habitat of each marsh 

through field surveys and GIS extrapolation. Particle removal services, represented by the 

gross filtration rate of TSS and particulate nitrogen (PN) normalized for mussel dry tissue 

biomass, were assessed for each marsh habitat and adjusted for differences in feeding times 

across the landscape. The average gross filtration of TSS and PN by ribbed mussels 

measured between 3.83*103 -1.11*104 kg ha -1 yr-1 and 30.9-92.5 kg ha-1 yr-1, respectively.  

Particulate nitrogen biodeposition was estimated between 22.8±8.36 and 55.5±23.1 kg ha-1 

yr-1 in New Jersey and 13.3±4.52 kg ha-1 yr-1 in Rhode Island, contributing between 

0.39±0.14 and 0.93±0.38 mm yr-1 in NJ marshes and 0.28±0.09 mm yr-1 in RI to vertical 

marsh enhancements. Most ecosystem services were concentrated in creeks for all marshes 

(>65%).  However, New Jersey marshes had much lower services (<10%) along marsh 
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shorelines compared to Rhode Island (>25%), potentially because of higher erosion along 

New Jersey marshes. 

 

3.2 Introduction 

Ribbed mussels are suspension feeders that actively pump water to capture suspended 

particulate material in order to derive nutrition.  Water movement is driven through the 

gills where particles are indiscriminately retained through efficient use of three types of 

cilia (frontal cilia, laterofrontal cirri, and lateral cilia).  Trapped particles are then 

transported, in free suspension or mucous movement, by the frontal cilia towards the labial 

palps where they are sorted to either be selected for ingestion or rejected as pseudofeces 

(Newell and Langdon 1996).  Ingested matter passes into the gut where it can either be 

absorbed or rejected (Fig 3.1a). Particulate matter that is not digested is passed through the 

gut and defecated (rejected; Fig. 3.1a).  Through these complex pre-ingestion sorting and 

post-ingestion processes, mussels can enrich their diet and digest matter that best suits 

their current physiological demands. 

Nitrogen is essential for all organisms to construct amino and nucleic acids, and is 

considered the primary limiting nutrient for production in coastal ecosystems (Sprent 

1987), especially salt marshes (Odum 1968).  The major natural nitrogen inputs to salt 

marshes are dissolved organic, inorganic, and particulate nitrogen delivered by tidal waters, 

as well atmospheric nitrogen fixation by bacterial communities; lesser contributions are 

provided by precipitation and ground water fluxes (Valiela and Teal 1979).   In the salt 

marsh environment, nitrogen export has been measured to be equivalent to total input, 

indicating that the within-marsh cycle of nitrogen fixation (N2-NH3), nitrification (NH3-NO3), 

and denitrification (NO3-N2) are important for salt marsh communities to meet their 
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internal nitrogen demands through recycling of limited nitrogenous compounds (Valiela 

and Teal 1979).    Additionally, changes in nitrogen imports and exports can have ecological 

effects.   Increased nitrogen input enhances plant productivity and belowground 

decomposition rates (Valiela and Teal 1979, Turner et al. 2002; Deegan et al. 2012; Kirwan 

and Mudd 2012; Watson et al. 2014).    In some areas, the export of nitrogen from salt 

marshes can in turn increase primary production of algae in coastal waters which has been 

linked to decreased biological diversity (Valiela et al. 1990).   

Ribbed mussels, the functional dominant animals in salt marsh ecosystems (Kuenzler 

1961; Fell et al. 1982; Jordan and Valiela, 1982; Bertness 1984), help to govern mass 

biogeochemical relationships such as nitrogen retention and export. They have been 

reported to filter 1.8 times the particulate nitrogen exported from the marsh by tidal 

flushing (Jordan and Valiela 1982), and hence, where mussels are dense, their presence can 

significantly alter the nitrogen budget of the salt marsh.  Jordan and Valiela (1982) modeled 

a nitrogen budget for ribbed mussels in Great Sippewissett Marsh, MA (Figure 3.1bi).  

Measurements showed that mussels absorbed 50% of ingested nitrogen, with the other 

50% being passed through the animal in the form of feces and pseudofeces (biodeposition).  

Of the 50% absorbed, mussels only retained approximately 10% of their ingested nitrogen 

for growth while ~12% was allocated for the production of gametes and byssal threads, and 

27% was immediately returned to the environment as excreted ammonia.  Hence, most 

nitrogen that filtered by ribbed mussels was either assimilated or deposited to the benthos 

(~60%) and not quickly returned to coastal waters (Jordan and Valiela 1982).  

Subsequent studies have confirmed these cycling values as being a good annual 

estimator, with summer experimental clearance values being slightly higher and winter and 

spring values slightly lower (Bayne et al. 1988; Wilbur and Hilbish 1989; Kreeger and 
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Newell 1996 and 2001).  Galimany et al. (2013) reported higher absorption efficiencies of 

71% in a study conducted between Milford, CT and Bronx, NY.  These sites had lower 

particulate matter with higher POM concentrations in the natural seston.  Kreeger and 

Newell (2000, 2001) showed that absorption efficiencies vary widely across food types, 

being higher for diets with more nutritious particles such as bacteria and benthic diatoms.  

Under Galimany et al. absorption rates, and assuming equal fate partitioning percentages 

for the absorbed materials, only 44% of the absorbed materials are removed from the 

short-term nitrogen cycle due to enhanced ammonia and byssal production (Fig 3.1bii).  

The combination of nitrogen in feces, pseudofeces and ammonia represents a sizeable 

nitrogen transformation, thus contributing to in situ biogeochemical cycling wherever 

mussels are abundant. Additionally, by moving suspended matter to sediment via feces and 

pseudofeces (a.k.a benthic-pelagic coupling), dense mussel beds could hypothetically 

facilitate marsh accretion both directly by enhancing sedimentation and indirectly by 

fertilizing plants (Leonard and Luther 1995; Nepf 1999) making plants near mussels more 

productive (Bertness, 1984).   

Although ribbed mussels are abundant in salt marshes along the eastern coast of the US, 

their spatial distribution is not consistent within or among marshes (Bertness and Grosholz 

1985; Franz 2001) and thusly, neither are their effects on particle and nitrogen cycling.  Salt 

marsh ecosystems are composed of a variety of micro-habitats delineated by hydroperiod 

and ecological relationships (Bertness 1991).   Mussel densities are typically greatest along 

tidal channels in low marsh areas (Bertness and Grosholz 1985; Franz 2001), likely due to 

advantages of this positioning (e.g. increased feeding times and tidal flushing) outweighing 

the drawbacks (e.g. increased physical stress and predation). The majority of settlement 

occurs among conspecifics along the edge of the marsh in close proximity to previously 
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established mussel populations, resulting in a positive feedback loop between mussel 

density and recruitment (Bertness and Grosholz 1985; Nielsen and Franz 1994; Franz 

2001). Low marsh areas provide longer inundation/feeding time than high marsh habitats, 

and mussels in the low marsh exhibit higher growth rates (Jordan and Valiela 1982; Stiven 

and Gardner 1992; Franz 1993) and mature at a smaller size class (Franz 1996) than those 

in the high marsh. In contrast, mussels in the high marsh are longer-lived and have higher 

survivorship (Franz 2001), but the smaller size and density of high marsh mussels means 

that the biomass of the high marsh population (per unit area) is lower than in low marsh 

areas (Bertness and Grosholz 1985).  These differences in vertical positioning of ribbed 

mussels across the landscape will also have an effect on the time available for filtration- 

mussels at higher elevations have less time to feed than those at lower vertical positions.   

Previous studies investigating ribbed mussel filtration services have focused on 

quantifying water (Widdows and Bayne 1971; Bayne et al. 1988; Wilbur and Hibbish 1989; 

Kreeger and Newell 2001; and Galimany et al. 2013) or nutrient (Jordan and Valiela 1982; 

Bilkovic et al. 2017) processing without accounting for landscape level spatial variability. 

This study aimed to characterize the current mussel-mediated ecosystem service 

contributions across the entire salt marsh landscape, including the edges of main tidal 

channels and intra-marsh creek networks, as well as in the vast high marsh areas.  To 

investigate services at the landscape level, each of the three habitats described above were 

delineated in three representative marshes in NJ and one in RI, which were subsequently 

assessed for mussel population densities and demographics.  Results were integrated with 

habitat-specific and marsh-wide filtration rates of ribbed mussels fed on natural seston 

from the previous studies and normalized by the each habitat’s elevation-based feeding 

time availability (i.e. time of submersion), to quantify the spatial distribution of 

representative ecosystem services.  These data were subsequently used to investigate 
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marsh-wide implications of seston filtration and biodeposition: a) contribution to vertical 

marsh building through the deposition of inorganic material biodeposited as feces and 

pseudofeces; and b) the term removal of particulate nitrogen from coastal waters.  

3.3 Methods 

3.3.1 Site Selection 

Study locations were selected in three representative study salt marshes in New Jersey, 

and one in Rhode Island.  New Jersey salt marshes were chosen in Dennis Creek, Dividing 

Creek and the Maurice River, which are tributaries along the Delaware Bayshore (Fig. 3.2A).  

In Rhode Island, the study marsh was Cogshall Cove, located on Prudence Island in 

Narragansett Bay (Fig. 3.2B).  These locations were deemed to be representative of typical 

eastern U.S.A. salt marshes based on biological and physical traits for a broader array  of 

coastal wetlands being monitored for the Mid-Atlantic Coastal Wetland Assessment in New 

Jersey (Partnership for the Delaware Estuary 2014) and as related by the Environmental 

Protection Agency Office of Research and Development Atlantic Ecology Division in Rhode 

Island. Within each of the four representative salt marsh systems, three replicate study sites 

were chosen.  The lower position (1) was selected near the river/channel mouth, the upper 

position (3) was selected at the furthest extent upriver where observationally 

representative mussel populations were present, and the middle position (2) was located 

between the other two, at a location with similar observational mussel populations (Fig. 

3.2C-F).  All study sites contained a mussel population and the three habitats of interest  

3.3.2 Habitat Delineation 

The three habitats that were surveyed at each site per marsh were: low marsh along the 

main marsh shoreline, referred to as low marsh river (LMR); high marsh (HM); and low 

marsh along a representative small creek that drained fully at low tide referred to as low 
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marsh creek (LMC).  Widths of LMR and LMC habitats generally correspond to tall-form S. 

alterniflora zonation, and for standardization these were based on average widths from 

literature and as measured from long-term Delaware Bay data sets (Deegan, 2012; PDE 

Partnership for the Delaware Estuary 2014). Low Marsh River habitat, for example, was 

delineated as being along the main river/channel of the marsh that does not drain at low 

tide, and characterized by, at least, a 1-2m band low marsh vegetation (Spartina alterniflora 

tall-form) from the water's edge to the high marsh platform.  High Marsh habitat was 

delineated by vegetation community composition, including: Spartina alterniflora short-

form; Spartina patens; Distichlis spicata; Juncus spp. and Salicornia spp. Low Marsh Creek 

habitat was characterized by a minimum of a 2-4 meter band of tall-form Spartina 

alterniflora bisected by an intra-marsh drainage creek. The boundaries of these habitat 

types were mapped at each site using a high resolution RTK-GPS, and were extrapolated in 

subsequent analysis by digitization of high resolution aerial images (IKONOS 2013, 1:300 

scale). 

3.3.3 Transect and Sampling Plot Layout 

Within each study site, three parallel transects were spaced 10m apart, oriented 

perpendicular to the main tributary channel axis, and spanning the three habitats types of 

interest (Fig. 3.2G). In general, the origin of each transect was fixed at the seaward extent og 

contiguous vegetation in LMR habitat, crossed landward through HM habitat, and ended in 

LMC habitat.  The length of each transect varied from 45m - 100m in length.  

One study plot was centered on each transect within each of the three habitat types 

(n=3 plots/transect; n=3 plots/habitat/site).  Each plot had an associated paired set of 1 m2 

sampling quadrats.  One was designated for destructive sampling, and one for non-

destructive sampling.  These paired quadrats were centered 0.5m to the left and right of 
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each transect.  Looking landward into the marsh from the transect origin, the destructive 

and non-destructive paired data collection plots were located to the left and right of each 

transect, respectively (Fig 3.2G). The position of the paired data collection plots allowed for 

movement along each transect without disturbing the study areas, while retaining a 

proximity that allowed for data to be representative of the study plot. Additionally, as some 

data collection techniques can be invasive to the marsh, by grouping destructive and non-

destructive methods in separate plots, less marsh area needed to be disturbed and one plot 

always retained its structural integrity (could be useful for potential future data collection).   

Each site contained 3 paired destructive/non-destructive sampling quadrats per habitat, 

totaling n=18 sampling quadrats/habitat/marsh. 

3.3.4 Physiological Rates, Total Suspended Solids (TSS) and Particulate 

Nitrogen (PN) Concentrations 

To estimate annual seston filtration rates per marsh, each seasonal weight specific 

clearance rate (WSCR; spring, summer, and fall) from previous studies (Chapter 2) were 

assumed representative of the average WSCR of 25% of the year for each marsh. Mussels 

were assumed to filter negligibly during winter (Kreeger and Newell 2001), so each marsh 

received a number of winter clearance rates of 0 lhr-1 gDTW-1 equal to their seasonal sample 

size. Total Suspended Solid (TSS) and PN values were calculated from 18 

measurements/marsh (n=6/season) in New Jersey and six observations in Rhode Island 

collected during the summer. 

Since seasonality was not assessed for Rhode Island marshes, spring and fall weight 

specific clearance rates were estimated from summer rates by assuming a similar seasonal 

physiological scaling to the New Jersey marshes. The ratio of summer New Jersey WSCR: 

Rhode Island WSCR was calculated and used as a correction factor to predict fall and spring 
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New Jersey WSCR for Rhode Island mussels (Table 3.1). Twenty-four observations of each 

seasonal value (8 habitat-1) were added to the WSCR data set, with an addition 24 values of 

"0" representing winter WSCRs, to balance the influence of the 24 experimental summer 

values.  These values (n=96; 24 observed in summer and 24 each estimated in fall, spring 

and winter) were used to calculate the annual Rhode Island WSCR.  Due to the use of a 

single WSCR replicated eight times to independently calculate both fall and spring 

physiological processing, there was no variability among Rhode Island values for those 

seasons.   

3.3.5 Ribbed Mussel Density and Size Demographics 

Ribbed mussel densities were assessed using both rapid and intensive measures.  As a 

rapid measure of mussel density, the visible presence of live mussels was counted within 

sampling quadrats by counting the shell bills, or "lips". Ribbed mussel lip counts were 

collected in each paired destructive and non-destructive plot during early spring 2011, 

before the vegetation came out of senescence.  By conducting the survey at this time of year, 

the surface of the marsh was more visible than it would have been during the growing 

season.  A 1m2 quadrat was placed on the marsh surface at each destructive and non-

destructive data collection plot.  The quadrat was divided into four equal sections by placing 

two meter sticks perpendicular to each other at the 0.5m mark of each side of the quadrat. 

Beginning in the lower right hand corner facing into the marsh on the side of the quadrat 

nearest to a body of water and moving landward, the lips of visible mussels were counted.  

This was repeated in all four sections of the quadrat, yielding a total mussel lip count per 1 

m2 quadrat. 

To account for unobserved mussels due to either sampling error or mussel burial, a 

0.25m2 subsection of each destructive quadrat was excavated for a more accurate mussel 
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count.  Excavated marsh samples were located on the edge adjacent to river and creek in 

LMR and LMC plots respectively, and in the center of each HM plot. Quadrats were 

excavated to a depth of approximately 25cm to ensure that all mussels would be removed. 

The excavated marsh mud, peat and plant material was added to buckets filled partially 

with water so that mud could be rinsed from plants and rhizomes, thereby making all 

attached mussels visible.  Mussels were separated and transferred to a clean bucket.  All 

mussels >10 mm in shell height were then counted.    A randomly selected subgroup of 

twenty five mussels from each sample (when available) were then measured using calipers 

(Absolute Digimatic) to ±0.01 mm shell height.  Mussel densities in each 0.25m2 destructive 

quadrat were multiplied by four to estimate densities of the entire 1m2 quadrat.  A 

correction factor was then derived to estimate actual densities by comparing mean 

densities in excavated destructive plots to lip counts in the destructive plots. The mussel 

density in each non-destructive quadrat was then calculated by multiplying this correction 

factor by the non-destructive quadrat lip counts.  A summary of calculations is given in 

Table 3.2.  

3.3.6 Ribbed Mussel Biomass 

Ribbed mussel Dry Tissue Weight (DTW) to Shell Height (SH) allometric relationships 

were derived from measured and sacrificed mussels used in physiology experiments 

conducted seasonally in 2012-2013.  These allometric relationships were derived 

separately for each habitat of each marsh (n=21 or 24 mussels/marsh/habitat) and a power 

regression curve of the form DTW=b*SHm (b= intercept; m=slope) was fitted for each group 

of mussels by marsh and habitat. (Table 3.3).  These marsh and habitat specific allometric 

relationships were then used to predict the dry tissue weight of each of the 25 ribbed 

mussels measured within each of the excavated destructive quadrats.   The average DTW of 

mussels per destructive quadrat was then calculated and was multiplied by the predicted 
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mussel density of the destructive quadrat to estimate the total mussel biomass in each 1m2 

destructive plot.  To estimate the mussel DTW in each non-destructive plot, the average 

DTW per mussel in the associated paired destructive quadrat (DQ) was multiplied by the 

non-destructive quadrat (NDQ) predicted mussel density.  

3.3.7 Inundation time per Habitat 

Nine HOBO U20-001-01-Ti water level data loggers (referred to as “sensors”) were used 

to measure inundation time per day across the HM, LMC, and LMR habitats. An additional 

sensor was placed above the marsh platform as a control to measure ambient atmospheric 

pressure.  Measurements were collected only at site 2 (middle site) in Dennis Creek (3 Aug – 

4 Sep 2015), Dividing Creek (5 Sep – 27 Oct 2015) and the Maurice River (27 Oct – 9 Dec 

2015). Deployment was of a length of time sufficient to capture water levels during two 

neap and spring tides at each location. Data sets were cropped so that each contained the 

same number of days relative to tidal events to standardize temporal inundation patterns 

across sites.  

Due to limitations of sensor availability, sensors were not deployed during the same 

time frames among marshes, and inundation times assessed at each site 2 were assumed 

representative for sites 1 and 3 per marsh.  Among marshes, there were no significant large 

scale water level anomalies during the times of deployment that would have skewed data 

abnormally. Within marshes, sensors were deployed in the center of each plot along the 

monitoring transects (n=3 habitat-1 marsh-1). Sensors were secured in 6” PVC housing 

drilled with ¼” holes spaced 3cm apart along the bottom to allow water access while 

preventing debris from coming in contact with the sensor.  The housing was attached to two 

2.5’ ¼” PVC stakes used to secure the sensor at the marsh surface. The location of each 

sensor was surveyed using a Trimble R6 RTK-GPS unit.  
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Each sensor measured changes in pressure relative to the atmospheric control which 

were correlated to inundation greater than 0 cm, 1 cm and 2.5 cm above the sensor using 

the HOBOware software provided with the data loggers.  The 2.5 cm inundation depth was 

selected as a conservative indicator of complete submergence relevant to ribbed mussel 

filtration.   This avoided potentially false readings due to localized sedimentation and 

flooding at the HOBO sensor that could possibly occur using the 0cm and 1cm calculations. 

A percent time of inundation (PTI) was calculated by the software as the percent of time 

during the deployment that the sensors measured more than 2.5cm inundation. This value 

was used to calculate the daily inundation time (hrs day-1). 

Arcsine square root transformed PTI was regressed against the RTK-GPS elevation 

(NAVD88 m) measurements at each plot at site 2 for each New Jersey marsh (Table 3.4).  

The slope and intercept of each New Jersey marsh-specific regression were used to calculate 

the arcsine square root PTI for each plot at sites 1&3 in the their respective marshes (n=3 

habitat-1 site-1), which was back transformed to an elevation-based PTI estimate for each 

plot (n=3 habitat-1 site -1 marsh-1).  As HOBO sensors were not able to be deployed at the 

Rhode Island marshes, relative percent inundation time per plot within at the Rhode Island 

sites was calculated as a function of the measured plot percent distance from mean water 

(MW) and arcsine square root PTI at each site 2 in New Jersey.   

For all site 2 New Jersey plots at which water level sensors were deployed (n=27; 3 

habitat-1 marsh-1), percent distance from mean tide line (MTL) was calculated (using -

0.038m NAVD88; NOAA Fortescue, NJ datum 8536931) as the plot distance above MTL (no 

plots were located below MTL) divided by the total distance (m) between MTL and mean 

higher high water (r2=0.67, F-stat=24.79 on 1 and 25, p>0.001). The slope (-0.90921) and 

intercept (2.01281) were used to back-calculate the daily percent inundation time of the 
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Rhode Island plots using Rhode Island percent distance from MTL calculations.  Rhode 

Island percent distance from MTL per plot (N=27; n=3 habitat-1 site-1) was calculated using 

the distance of RTK-GPS elevation data collected in each Rhode Island plot from the 

elevation of the MTL (-0.051m NAVD88; NOAA Newport, RI datum 8452660).   

3.3.8 Habitat Delineation and Percent Habitat Area 

The area of each habitat type (LMR, HM, and LMC) was assessed in the vicinity 

surrounding each study site.  The assessment area for the habitat mapping was bounded by 

a 300m buffer applied to the midpoint of the center transect (transect 2) and without 

crossing the main channel/river, referred to as the habitat assessment area (HAA).  The 

total HAA was calculated using the Calculate Geometry tool in ArcGIS 10.2.  IKONOS 2014 

digital imagery (0.82m black and white, 3.28m multispectral resolution) was used to 

digitize creek and river edges at 1:300 scale within the 300m buffer site.  A 2m buffer was 

applied to the digitized main channel and creek edges from the edge moving into the marsh 

and was classified as LMR and LMC habitat, respectively.  The area between digitized paired 

inter-marsh creek edges was considered open water and was excised from the total area of 

the site using the Erase tool.  By subtraction, the remaining area not classified as LMR or 

LMC was classified as HM habitat.  The relative percentage of space occupied by each 

habitat within the HAA was considered the percent habitat area. The percentage of the total 

area comprised of the three habitat types was then used to estimate marsh-wide mussel 

DTW and associated ecosystem services. 

3.3.9 Calculation of Filtration Rate of Total Suspended Solids and Particulate 

Nitrogen 

Site specific filtration rates of TSS and PN (SSFR-TSS and SSFR-PN, respectively) per 

marsh per habitat were calculated using the following equation: 
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𝑆𝑆𝐹𝑅 (
𝑘𝑔

𝑦𝑟 ℎ𝑎
) = 𝐹𝑅 (

𝑚𝑔

ℎ𝑟 𝑔𝐷𝑇𝑊
) ∗ 𝐼𝑚𝑇 (

ℎ𝑟

𝑑𝑎𝑦
) ∗ 𝐻𝑎𝑏𝐵𝑖𝑜 (

𝑔𝐷𝑇𝑊

𝑚2
) ∗ 𝑃𝑒𝑟𝐻𝑎𝑏(%) ∗ 𝐶𝑜𝑛𝐹(

𝑘𝑔 𝑚2𝑑𝑎𝑦

𝑚𝑔 ℎ𝑎 𝑦𝑟
) 

FR = the annual mean filtration rate by marsh calculated by multiplying the mean annual 

weight-specific clearance rate by the mean annual TSS or PN values;  ImT = immersion time 

calculated using the water level data loggers; HabBio = mussel biomass estimates; PerHab = 

percent area of each habitat; and ConF = conversion factor used to correct the units to the 

appropriate final values. Site-specific filtration rates per marsh per habitat were used to 

calculate the marsh-wide and habitat-specific per marsh filtration rates of TSS and PN. 

3.3.10 Contribution to Vertical Accretion 

Potential vertical enhancement describes the potential contribution to elevation 

building by the portion of the filtered material that is deposited onto the marsh through 

pre-ingestion rejection as psedofeces or post-ingestion fecal deposits by ribbed mussels. 

Pseudofeces and feces contain both rejected organics and inorganics.  As a conservative 

estimate however, only the inorganic portion was considered for vertical accretion. The 

annual mean percent inorganic material (PIM) of TSS filtered by ribbed mussels for each 

marsh was calculated as: 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑒𝑎𝑛 𝑇𝑆𝑆 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐼𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 = 1 − 𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑒𝑎𝑛 𝑇𝑆𝑆 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑂𝑟𝑔𝑎𝑛𝑖𝑐𝑠 

The habitat-specific FR-TSS for each site per marsh was multiplied by the annual mean PIM 

to calculate the amount of inorganic material (kg ha-1 yr-1) filtered annually (n=3 per habitat 

per marsh).  The volume:weight conversion ratio of 1g:1cm3 of water was used as a 

conservative estimate to convert the mass of filtered material to a volume as follows: 
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𝑀𝑎𝑠𝑠 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 (𝑘𝑔 ℎ𝑎−1 𝑦𝑟−1) → 𝑀𝑎𝑠𝑠 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 (𝑚𝑔 𝑚𝑚−2𝑦𝑟−1) → 𝑢𝑠𝑒 1𝑚𝑔 = 1𝑚𝑚3

= 𝑀𝑎𝑠𝑠 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 (𝑚𝑚3𝑚𝑚−2𝑦𝑟−1)

= 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 (𝑚𝑚 𝑦𝑟−1) 

This estimate was considered conservative as biodeposits can contain rejected organics, 

and so biodeposit masses will be greater than assessed using just the inorganic portion. 

3.3.11 Net Removal of Particulate Nitrogen (PN)  

Net particulate nitrogen removal refers to the quantity of particulate nitrogen removed 

from the water column through either bio-deposition or growth (i.e. shell or tissue growth 

not including byssal thread or gamete production).  Bio-deposition and growth were 

calculated by multiplying the habitat-specific FR-PN for each site per marsh by the 

estimated deposition and growth percentages (Figure 3.1B).  In New Jersey, the fate of 

filtered nitrogen was estimated based on the nitrogen budget of the ribbed mussel reported 

in Jordan and Valiela, 1982 (Fig. 3.1bi) where 50% of filtered nitrogen was absorbed and 

50% was biodeposited. Of the absorbed nitrogen, 10% was estimated to be assimilated as 

somatic and shell growth. Therefore biodeposition and somatic growth were calculated as 

habitat-specific FR-PN multiplied by 0.5 and 0.1 respectively.  For Rhode Island, a higher 

absorption efficiency of 71% as reported in Galimany et al. (2013; Fig. 3.1bii) was 

employed.  The TSS and POM values reported by Galimany et al. (2013) were representative 

of the values measured at the Rhode Island sites, and thusly this higher absorption 

efficiency was used to calculate net particulate nitrogen removal in Rhode Island. As 71% 

was estimated to be retained, 29% was considered available for biodeposition.  In New 

Jersey, 20% of the absorbed nitrogen (10% of total filtered nitrogen) was assumed to be 

assimilated for growth.  Assuming the same proportion of filtered nitrogen was allocated for 

growth in Rhode Island, habitat-specific FR-PN was multiplied by 20% of the absorbed 
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nitrogen: habitat-specific FR-PN*0.14=Rhode Island Growth.  All percentages used as fate 

coefficients are listed in Table 3.5. 

3.3.12 Statistical Analyses 

Prior to analysis, all data were tested for normality using a Shapiro-Wilk test, and for 

homogeneity of variance using either a Bartlett or Levene test for normal and non-normal 

data respectively.  Where there was evidence that data were non-normally distributed, but 

variances were equal across factor levels, a Kruskal-Wallis test was used to calculate 

differences in medians of dependent variables among factor levels.  When there was 

evidence that data were non-normally distributed and the variances were not equal across 

factor levels, results of a Kruskal-Wallis test were interpreted as differences in mean ranks 

of the dependent variables among factor levels.  Non-parametric post-hoc analysis following 

a rejection of a Kruskal-Wallis were conducted using a Dunn’s test of multiple comparisons 

using rank sums (Dunn 1964) with a Bonferroni correction to minimize type-I error 

(dunn.test package, Dinno and Dinno 2017).  Both Kruskal-Wallis and Dunn’s test are 

appropriate for non-normal and unbalanced data sets, as well as data with tied ranks. 

When no evidence was provided that data were not from a normal distribution and the 

variability among factor levels displayed homogeneity, differences in metrics among 

habitats, marshes, and regions were calculated using a nested linear mixed model in the 

nlme package (Pinheiro et al. 2017) and ANOVA testing.  Habitat was considered a fixed 

factor, and site nested in marshes were treated as random factors.  When a significant 

difference among factor levels was detected using ANOVA analysis, post-hoc analysis of 

differences among factor levels was conducted using a Tukey test of honestly significant 

differences in the glht function in the multcomp package (Hothorn et al 2017). All statistical 

calculations were conducted using R 3.0.3 open source statistical software. 
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3.4 Results 

3.4.1 Physiological Rates, Total Suspended Solids (TSS) and Particulate 

Nitrogen (PN) Concentrations 

Annual weight specific clearance rates were significantly different among marshes 

(p<0.02). Dennis Creek annual WSCR were significantly lower than Maurice River (p<0.02), 

but not Rhode Island (p<0.92) or Dividing Creek (p>0.42) marshes.   Dividing Creek, 

Maurice River, and Rhode Island marshes did not differ from each other (Table 3.6, 

Appendix D). Annual total suspended solids (TSS) and particulate nitrogen (PN) 

concentrations in Rhode Island were significant lower than concentrations in all New Jersey 

marshes, which did not differ from each other (Table 3.6, Appendix D).  Regionally, New 

Jersey TSS and PN averaged 89.9±6.29 and 0.75±0.05 mg l-1 respectively and Rhode Island 

averages were approximately 15% of these (Table 3.6).   

 

Annual marsh-wide weight specific filtration rates of TSS and PN did not follow the 

same ordinal pattern as WSCR (Table 3.6). Dennis Creek had the lowest WSCR, but the 

second highest WSFR, likely due to having the largest concentration of TSS/PN. Conversely, 

Dividing Creek ranked second in WSCR, but due to the lower concentration of TSS/PN 

relative to the other New Jersey marshes, ranked third in overall WSFR.  These data could 

suggest that WSFR is largely driven by the concentrations of material present to be 

removed, but Maurice River, which ranked second for TSS/PN loads, was ranked first for 

both WSCR and WSFR TSS/PN.  This ranking is likely due to the magnitude of the WSCR 

relative to the other marshes.  The Rhode Island ranking dropped from third for WSCR to 

fourth for WSFR, and as noted above this marsh also ranked last for TSS/PN concentrations. 
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3.4.2 Ribbed Mussel Biomass 

Mussel biomass densities were not normally distributed (Shapiro-Wilks p<0.05 per 

marsh per habitat) and data distributions differed among (Levene test: p<0.001) and within 

marshes in the LMR (Levene test: p<0.001) and LMC (Levene test: p<0.02) habitats, but 

were similar in the HM (Levene test: p>0.85).  Kruskal –Wallis tests indicated no significant 

mussel biomass differences among medians of marshes in HM areas (p>0.09; Fig 3.3a) but 

indicated significant differences among marshes in the LMC and LMR habitats (p< 0.001 for 

both; Figs 3.3b & 3.3c respectively).  As the data distributions in these habitats were 

significantly different, these result indicate significant differences in the magnitude of the 

marsh-specific distributions of mussel density. 

Dunn post-hoc analysis indicated that LMC habitat in the Maurice River had a 

significantly different distribution than all other marshes (p<0.001, Fig. 3.3b), while there 

was no evidence to support differences among the other marshes (p<0.90 for all other pair-

wise comparisons, Fig. 3.3b).  Along rivers, post-hoc analysis showed Rhode Island had a 

significantly greater distribution than all New Jersey marshes (p<0.001, Fig 3.3c), which 

when analyzed independently, showed no evidence of distributional differences (p<0.49 for 

all pair-wise comparisons; Fig.3.3d). 

There were no significant differences in the magnitude of ribbed mussel biomass among 

New Jersey marshes, but all New Jersey marshes displayed smaller ranges of values than 

Rhode Island (Table 3.7 marsh-wide values; test results in Appendix D).   Pooling data 

across New Jersey marshes, the distribution of ribbed mussel biomass along the LMC (83.8 

gDTW m-2) was significantly greater than along the LMR (0.07 gDTW m-2) and in the HM 

(2.27 gDTW m-2; p<0.001 for both tests), which did not differ from each other (p>0.13).  

Among New Jersey marshes, Dividing and Dennis Creeks LMC mussel biomass distributions 
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were significantly greater than both the LMR and HM habitats (p<0.01 for all tests) which 

did not rank differently from each other in either marsh (p>0.99 both tests; Table 3.7).  Pair-

wise ranking in the Maurice River did not identify any significant distributional differences 

in ribbed mussel biomass among habitats (LMC-HM p>0.82; LMR-HM p>0.85; LMC-LMR 

p>0.36; Table 3.7).  Rhode Island HM habitat had a significantly lower density than both the 

LMC and LMR habitats (p<0.01 for both tests), which did not significantly differ from each 

other (p>0.29; Table 3.7).   

Although the Rhode Island LMR and LMC habitats did not statistically differ the LMR 

had an average ribbed mussel biomass 102% greater than in the LMC habitat, and had 

1,812%, 34,251%, and 736% percent greater average mussel biomass than along LMR 

habitats in Dividing Creek, Dennis Creek, and Maurice River respectively (Table 3.7).  

Although not as striking a discrepancy, the Rhode Island LMC habitat had average ribbed 

mussel biomass 58%, 12%, and 554% greater than the LMC habitats in Dividing Creek, 

Dennis Creek, and Maurice River, respectively (Table 3.7).  There were less percentage 

differences between the HM habitats in Rhode Island and New Jersey marshes, with Rhode 

Island only having ~2% more mussel biomass than in Dennis Creek and Maurice River, but 

43% more than in Dividing Creek.  Even though this percentage seems large, the average 

biomass was so low in the Rhode Island HM (9.60 gDTW m-2), its value was nearly negligible 

(Table 3.7).   

Although all statistical comparisons were conducted using medians, means±se were 

used in calculating the scaling of ecosystem services by biomass.  All patterns regarding 

means of ribbed mussel biomass at the marsh and habitat levels followed the patterns 

exhibited by the medians.  All marsh and habitat specific means are located in Table 3.7 and 

all site and habitat specific values are listed in Appendix E. 
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3.4.3 Inundation time and Elevation per Habitat  

In New Jersey marshes, a general pattern of increasing inundation time from HM, to 

LMC, to LMR habitats was present, whereas in Rhode Island, LMC received the longest 

inundation time followed by LMR and then HM.  There was no significant interaction 

between marsh and habitat (p>0.62) regarding inundation and elevation time in NJ 

marshes, but both marsh and habitat were independently significant (p<0.001 for both).  

These results indicate that although inundation time and elevation varies within and among 

marshes, their pattern is similar across NJ marshes (Fig. 3.4a). Daily inundation and 

elevation differed among all habitats in Dennis Creek (p<0.0001 for all), and nearly in 

Dividing Creek (p<0.001 for elevation) with only river and creek habitats not significantly 

differing by daily inundation time (p>0.063). Dividing Creek mean inundation and elevation 

were 10.51 hr d-1 and 0.60m, 8.81 hr d-1 and 0.77m, and 12.07 hr d-1 and 0.39m for the 

creek, high marsh and river habitats respectively (Fig. 3.4a).  Dennis Creek mean inundation 

and elevation were 11.39 hr d-1 and 0.67m, 9.74 hr d-1 and 0.84m, and 14.61 hr d-1 and 

0.37m respectively (Fig. 3.4a). In the Maurice River, the inundation of the river habitat 

(10.83 hr d-1) differed from the creek (7.58 hr d-1; p=0.04) and the high marsh (6.83 hr d-1; 

p=0.01), and elevation differed between the river (0.52m) and the high marsh (0.78m; 

p<0.03), but not between either of the previous habitats and the creek (0.74m; Fig. 3.4a).  

In RI, inundation time significantly differed among all habitats (p<0.0001) as did 

elevation (p<0.001). Inundation time and elevation displayed converse patterns with creek 

receiving the most inundation and sitting at the lowest elevation (13.35 hr/d and 0.14m; 

Fig. 3.4a) and the high marsh receiving the least inundation and at the greatest elevation 

(5.31 hr/d and 0.65m; Fig. 3.4a) , with the river habitat in the middle (9.17 hr/d and 0.38m; 

Fig 3.2B). All site and habitat specific values are listed in Appendix E. 
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3.4.4 Percent Habitat Area 

Results of a Kruskal-Wallis rank sum test show significant differences in percent area 

among habitats within marshes (DC: p<0.03; DN p<0.01; MR: p<0.03; and RI p<0.03).    In all 

marshes, the HM comprised the largest percent area of all marshes (DC= 0.79; DN=0.69; 

MR=0.68; RI=0.68; Fig. 3.4b) and the LMR habitat comprised the least (DC= 0.05; DN=0.03; 

MR=0.03; RI=0.08; Fig. 3.4b).  Although creek habitat size was greater than the river habitat 

size in all marshes, it was closer to river values than to the high marsh values (DC= 0.16; 

DN=0.28; MR=0.29; RI=0.24; Fig. 3.3C). All site and habitat specific values are listed in 

Appendix E. 

3.4.5 Filtration Rate of Total Suspended Solids and Particulate Nitrogen 

Marsh-wide annual mean gross filtration services of TSS and PN measured between 

1.15*104 ±2.64*103 and 3.34*104 ±5.64*103 kg ha -1 yr-1 and 92.8±21.3 and 277±47 kg ha-1 

yr-1 respectively (Table 3.7).   There was a significant interaction between marsh and 

habitat for filtration rates of TSS and PN (p<0.001 for both tests).  Simple main effects tests 

showed that Dennis Creek had significantly higher filtration rates for both TSS and PN 

(p<0.01 for all pair-wise tests) than all other marshes, which did not significantly differ 

from each other (Appendix D).  Partitioning by habitat, mean filtration rates of TSS and PN 

were significantly higher in LMC habitat than in the LMR and HM habitats, which did not 

differ from each other, in Dennis and Dividing Creeks and in Rhode Island (Table 3.8).  

Maurice River filtration rates of TSS and PN did not significantly differ among habitats 

(Table 3.8).  Generally, mean filtration rates in New Jersey marshes were higher in the LMC 

and HM habitats than in the LMR habitat.  In Rhode Island, the largest average was along the 

LMC habitat, but the LMR habitat showed larger average filtration rates than in the HM 

habitat (Table 3.7).    
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3.4.6 Contribution to Vertical Accretion 

 

The marsh-wide contribution of mussel inorganic biodeposits to vertical marsh 

accretion ranged between 1.16±0.60 and 2.78±0.47 mm yr-1 in New Jersey and was 

calculated to be 0.83±0.19 mm yr-1 in Rhode Island.  In all New Jersey marshes, inorganic 

biodeposition generally increased from LMR to HM to LMC across the landscape.  Rhode 

Island habitats did not follow this pattern.  As with New Jersey, mussel deposits in the LMC 

habitat had the greatest contribution to vertical marsh building, but was followed by the 

LMR habitat, with HM supplying the lowest calculated contribution (Table 3.7).  

3.4.7 Net Removal of Particulate Nitrogen (PN)  

 

In New Jersey marshes, between 68.5±35.2 and 166±23 kg PN ha-1 yr-1 were net 

removed from the water column (Table 3.7).  Approximately 83% of the net removed 

material was deposited into the substrate and 17% was retained for growth.  The marsh-

wide averages were most similar to the HM contributions, which like the other filtration 

services, were generally second in terms of habitat contributions to a marsh-wide total, 

after the LMC habitat (Table 3.7).  Rhode Island estimated net filtration services of PN were 

lower than in New Jersey at 39.9±9.2 kg ha-1 yr-1, with the highest services located in the 

LMC, followed by the LMR habitat, and lastly the HM.  Since absorption was estimated to be 

higher in Rhode Island (71%, Table 3.5), the retention of PN for growth in Rhode Island was 

generally similar to Dividing Creek and Maurice River in New Jersey (Table 3.7).  Average 

retention for growth was higher in Rhode Island than in NJ regarding LMR habitat for all 

marshes, and higher than Maurice River regarding LMC habitat (Table 3.7). 
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3.5 Discussion 

Ecosystem services furnished by ribbed mussels scale with population biomass which 

can vary widely among different marshes, and across the marsh landscape.  Filtration 

services also scale with the abundance and composition of seston, which can also vary 

widely across space and time.  Based on previous population studies (Bertness and 

Grosholz 1985; Stiven and Gardner 1992; Evgenidou and Valiela 2001; Franz 2001; Bilkovic 

2017), we expected to find high densities of ribbed mussels along the edge of the main tidal 

channel (LMR), and a decline with increasing elevation extending to high marsh (HM) 

habitat.  Densities of mussels along the small marsh creeks (LMC) were expected to be 

moderate.  This pattern was evident in the studied Rhode Island marsh, but not at three 

different locations in New Jersey (Table 3.7).  But among habitats, greater mussel biomass 

did not necessarily result in greater habitat-specific services, as services also scaled with 

percent area of each habitat. In Rhode Island, 66% of the mussel biomass was concentrated 

in the LMR habitat, but the bulk of the filtration services were actually concentrated in the 

LMC habitat which contained only 32% of the mussel biomass, but represented a greater 

portion of the total area (Table 3.7; Fig. 3.4b).  Additionally, mussel biomass in Rhode Island 

LMR and LMC habitats was 1.8 and 17.7 times greater on average than in their New Jersey 

counterparts, and although seston concentrations in Rhode Island were lower than in 

Delaware Bay, the resulting gross filtration by mussels was not significantly different 

between Rhode Island and Dividing Creek and Maurice River (Table 3.7; Appendix D). 

This indicates that the percentage of services provided by mussels are not solely driven 

by mussel biomass, they are also dependent on food availability.  Dennis Creek, provided 

significantly higher filtration services despite the low biomass relative to Rhode Island, 

primarily due to the high TSS availability (Table 3.7).  Among New Jersey marshes, Dividing 
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and Dennis Creeks had similar overall average mussel biomass (47.4±10.1 and 58.5±13.8 g 

DTW m-2 respectively; Table 3.7), but Dividing Creek only provided 53% of the filtration 

services of Dennis Creek because TSS and PN concentrations in Dividing Creek were only 

66% of those in Dennis Creek.   These data show the interactive nature between ribbed 

mussel biomass, food availability, and spatial population distributions in determining the 

total amount of seston captured by ribbed mussels across the marsh platform.  If filtration 

services were solely driven by mussel biomass, Rhode Island would have provided the 

highest quantity of services, and conversely, if food availability was the primary driver, 

gross filtration rate ranking among New Jersey marshes would have followed the TSS/PN 

patterns (Table 3.7) for gross TSS and PN removal.   

Seston filtration rates therefore represent the integration of the mussel’s physiological 

activity (i.e. clearance rates) and food availability.  Delaware Bay is a naturally turbid 

estuary having measured TSS concentrations in excess of those in other large American 

estuaries (Uncles and Smith 2005).  In this study, TSS ranged from 71.3±8.8 to 107±14 mg l-

1 in New Jersey marshes along Delaware Bay, compared with 13.1±2.3 mg l-1 in Rhode 

Island.  Hence, when clearing particles at similar rates, greater filtration rates were 

measured in New Jersey relative to Rhode Island.  Higher filtration rates do not necessarily 

equate with greater nutritional benefits to New Jersey mussels, however, due to the higher 

concentration of inorganic material (Table 3.7; Kreeger 2013) and high proportion of 

refractory organics in Delaware Bay (Kreeger 2013).  The inorganic content of suspended 

particles (seston) was between 83.3±0.5% and 85.9±0.3% in the New Jersey marshes, 

compared to 72.3±2.5% in marshes of Rhode Island. The higher organic content of Rhode 

Island seston could have also been more nutritionally available if comprised mainly of 

phytoplankton or benthic diatoms, compared with Delaware Bay marshes. As discussed by 

Kreeger and Newell (2000), the low quality of seston in Delaware Bay marshes forces 
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ribbed mussels to derive a portion of their carbon and nitrogen demands from the less 

nutritious detritus complex. 

Similar to other suspension-feeding bivalves, ribbed mussels represent a pelagic-

benthic coupling mechanism because they transfer material from the water column to the 

marsh surface.  Smith and Frey (1985) found that ribbed mussels can account for a large 

portion of annual sedimentation budget in Georgia salt marshes.  In New Jersey, if displaced 

uniformly across the platform per marsh, biodeposition of just the inorganic fraction of the 

filtered seston can contribute between 1.16±0.60 and 2.78±0.47 mm yr-1 to vertical salt 

marsh accretion, assuming no resuspension and export of the biodeposits (Table 3.7). This 

is not an inconsequential value considering that sea level rise (SLR) projections of ~4 mm 

yr-1 along the northeastern USA (Sallenger et al. 2012; Boon 2012) and the ability of salt 

marshes to keep pace is a major concern.  This range of potential vertical enhancement 

values represents a vertical contribution of between 29% and 70% of the rate of SLR.  

In Rhode Island, dense assemblages of ribbed mussels along both the LMR and LMC 

habitats were estimated to produce enough inorganic biodeposits to contribute 0.24±0.11 

and 0.57±0.13 mm yr-1 respectively (Table 3.7). These values represent a contribution of 

between 6% and 14% of an ~4mm yr-1 SLR rate, and a 17% to 40% contribution to the 

measured net mean elevation gain of 1.40mm yr-1 calculated from a network of RI surface 

elevation tables (Raposa et al. 2016). In NJ, the majority of biodeposition was calculated to 

occur in the LMC habitat where mussel density was greatest.  For example, in Dividing 

Creek, the LMC mussels were estimated to contribute 1.12±0.26 mm yr-1 and 2.34±0.42 mm 

yr-1 in the Dennis Creek LMC habitat.  These values show the potential contributions of 

dense assemblages of ribbed mussels to vertical marsh enhancement along low marsh 

habitats in New Jersey.  
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To calculate potential contributions to vertical marsh accretion, we assumed that 100% 

of the inorganic TSS was biodeposited in feces and pseudofeces. Resuspension and export of 

biodeposited materials was not considered here, and therefore may make the 

biodepositional estimates liberal in magnitude.   However, the exclusion of the organic 

components of feces and pseudofeces likely skewed the estimate to be conservative.  Any 

re-suspended biodeposits could also be re-filtered and re-deposited by mussels.  Additional 

study of the fate of biodeposits is needed to clarify these factors. 

New Jersey PN concentrations (0.59±0.08 - 0.89±0.12 mg L-1, Table 3.7) were between 

13 and 20 times greater than in Rhode Island (0.12±0.01 mg L-1 in summer, Table 3.7), and 

were consistent with other values reported for New Jersey (Partnership for the Delaware 

Estuary 2014) and Rhode Island (Cary et al. 2017).  Although the total PN loads were higher 

in New Jersey, the percent organics were higher in Rhode Island indicating a richer food 

source (Table 3.7 =100-PIM).  Discussion of the fate of filtered nitrogen must take into 

account temporal differences regarding the rates of return, as the ultimate fates of the 

filtered materials may differ over different time scales. The time frame of interest for these 

data is the annual time frame as filtration services are scaled to annual rates.   

Bilkovic et al. (2017) show that in a salt marsh environment with ribbed mussels 

present, denitrification efficiency is large enough to produce net nitrogen removal (65.12% 

efficiency). Coupled with the strong relationship between ribbed mussel density and 

Spartina alterniflora production (Bertness 1984) and annual primary production and 

nutrient addition (Darby and Turner 2008), biodeposition of particulate nitrogen is likely to 

facilitate permanent nitrogen losses via denitrification, burial in peat, or otherwise bound in 

the food web.  Unlike ammonia excretion and gamete and byssal thread production which 

are quickly returned to the water column, the recycling of nitrogen used for somatic growth, 



65 
 

of either shell or soft tissue production, is slower by comparison.  Any nitrogen bound in 

buried peat or mussel shells can also be returned, but the time frame in which that occurs 

will be longer and spatially dependent on marsh-specific, or event-based, processes such as 

erosion and/or decomposition rates. 

Typically, the organic fraction of TSS decreases with increasing particulate matter, and 

as a result, net selection efficiency increases with organic content (Hawkins et al. 1996; 

Galimany 2013).  The differences in TSS and POM concentrations between New Jersey and 

Rhode Island marshes likely indicate a higher percentage absorption of PN in Rhode Island 

than in New Jersey marshes (71% and 50%, respectively; Table 3.2), but a potential overall 

lower net nitrogen retention.  In Rhode Island, 55% of filtered nitrogen was estimated to be 

returned to the water column through gamete and byssal thread production and NH3 

excretion, compared to 39% in New Jersey (Table 3.5).  Only 20% of the total PN filtered 

was assumed to be allocated for growth, and as a result the greater the portion absorbed, 

the greater the portion returned.  This indicates that that in areas of high food quantity and 

low food quality, ribbed mussels may be less efficient at using the ingested material, thereby 

leading to greater transfers from water column to benthos via rejected biodeposits.  Indeed, 

since this study assumed that post-ingestion nitrogen partitioning in ribbed mussels in New 

Jersey marshes was similar to mussels in Great Sippewissett marsh (Jordan and Valiela 

1982), it is plausible that even lower percent nitrogen filtered was absorbed (<50%) due to 

generally lower seston quality in Delaware Bay than in other estuaries.  Additionally, as 

mussel absorption efficiencies vary widely depending on seston composition (Kreeger and 

Newell 1996, 2001), the fate may also vary with seston character.  Further study of post-

ingestion nitrogen processing along TSS and nutrient enrichment gradients is warranted to 

investigate these relationships further. 
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The total mussel-mediated biodeposition varied between 57.1±29.3 and 138±23 kg ha-1 

yr-1 in New Jersey and 26.9±6.2 kg ha-1 yr-1 in Rhode Island (Table 3.7) when averaged over 

the entire marsh platform (higher loadings likely where mussels are most abundant).  

Previous studies have reported deterioration associated with shifts in belowground to 

above ground biomass ratios, impacting the vertical growth and stability of the marsh edge 

and platform in salt marshes experiencing high nitrogen loads (Valiela et al. 1976; Deegan 

et al. 2012; Wigand et al. 2014). These results have raised concerns regarding the 

enhancement of ribbed mussel populations (e.g. living shoreline projects) as vectors to 

transport nitrogen from the water column to the marsh, relationships between nutrients 

loading, vertical marsh building, and ribbed mussel density need more study.  Recent 

studies were unable to detect any impacts of fertilization on salt marsh elevation capital in 

Long Island Sound (Anisfeld and Hill 2012) or links between nitrogen availability and 

vegetation die-back (Bertness et al. 2014) or belowground biomass and accretion rates  

(Cary et al. 2017) in Narragansett Bay.  These results indicate that the link between nitrogen 

availability and elevation deficiencies in salt marshes may co-vary with a variety of other 

factors, and that the importance of ribbed mussel biodeposition in nutrient rich estuaries 

may have various positive and negative impacts to salt marsh resiliency. 

Comparison of the LMC habitats in New Jersey and Rhode Island show that these areas 

are capable of supporting similar levels of mussel biomass.  The largest discrepancy 

between regional populations was along the LMR habitat.    Marsh edge retreat rates greater 

than 1 meter per year and as high as 8 meters per year have been measured recently in 

Delaware Bay (Moody et al. 2011; Kreeger 2015), and more than 81% of random shoreline 

assessment points (Haaf et al. 2017) have recently been assessed as net eroding.  These high 

rates of edge erosion along the Delaware Bay marsh shorelines may in fact explain the 

lower mussel densities in New Jersey LMR sites since mussels may not have sufficient time 
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to recruit and grow along edges that are receding so quickly. For example, we reported that 

ribbed mussel biomass was 8.36, 19.12, and 343.70 times greater along the LMR habitat in 

Rhode Island than in Maurice River, Dividing Creek, and Dennis Creek respectively, and that 

biomass was one of the main drivers of filtration services.  The observation that Delaware 

Bay marsh edges are rapidly eroding, combined with this study’s dearth of mussel biomass 

along LMR habitats in the New Jersey marshes, suggests that mussel-delivered ecosystem 

services are in decline in marshes bordering Delaware Bay.  Scaling vertical enhancement 

and net PN removal services along the river in New Jersey marshes to their potential under 

similar ribbed mussel biomass as Rhode Island, the current average vertical enhancement 

potential along rivers would increase from 0.06 to 1.05mm yr-1, and net PN removal would 

increase from 3.54 to 62.3 kg ha-1 yr-1.  Summed across marshes, New Jersey would net an 

increase of 176.11 kg ha-1 yr-1 PN removal at mussel densities equal to those measured 

along the rivers in Rhode Island. 
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Figure 3.1  Feeding models of the ribbed mussel (Geukensia demissa).  a) 
Generalized model highlighting the three fundamental stages of particle 
filtration: 1. Seston filtration where particles are siphoned and trapped by the 
animal; 2. Sorting at the gills and labial palps where particles are either 
selected for ingestion or rejected as pseudofeces; and 3. Ingestion of selected 
particles into the gut to either be digested and absorbed or biodeposited as 
feces.  b) The fate of ingested nitrogen as modeled by i) Jordan and Valiela, 
(1982) under 50% absorption efficiency, and ii) as modeled by using 
Galimany et al. (2013) under 71% absorption efficiency assuming equal fate 
partitioning percentages as Jordan and Valiela (1982) for the absorbed 
nitrogen.  In B, green box and arrow indicate a long-term removal from the 
water column, and the red arrows indicate a short-term return. 
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Figure 3.2  Marsh and site locations of the four study marshes. A:  Location 
of study marshes in the NJ; B: Location of study marsh in RI; C-F: location 
of replicate study sites in each representative study marsh; G: schematic 
of transect and sample plot layout within each study site per marsh. 
Numbers in maps C-F denote the sites within marshes. In schematic F, 
grey boxes represent destructive plots where ribbed mussel lip counts 
and dig out occurred.  White boxes indicate non-destructive plots where 
only ribbed mussel lip counts occurred. 
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Figure 3.3  Boxplots of the difference in ribbed mussel biomass (gDTW m-2) 
between marshes per habitat type: a) high marsh (HM); b) low marsh creek 
(LMC); c) low marsh river (LMR); and d) low marsh river in New Jersey 
Marshes only (NJ LMR).  Lower and upper extents of each box represent the 
25th and 75th percentiles respectively. The dark line within each box 
represents the 50th percentile.  Whiskers display the range of data and 
outliers are represented as open circles.  Asterisks denote significant 
differences among marshes per habitat type as per results of a Dunn post-hoc 
analysis. DC=Dividing Creek; DN=Dennis Creek; MR=Maurice River; RI= 
Rhode Island. 
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Figure 3.4  Means± standard error Inundation Time and Elevation (a), and 
Percent Area (b) by habitat within marshes. DC=Dividing Creek; DN=Dennis 
Creek; MR=Maurice River; RI=Rhode Island.  RI* indicates that the inundation 
time was not directly measured with water level loggers, but calculated using 
NJ elevations and inundation times. 
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Chapter 4: Implications of Habitat Loss and Declining Ribbed Mussel 

(Geukensia demissa) Ecosystem Services  

 

4.1 Abstract 

Bivalve shellfish provide a variety of ecosystem services which scale with population 

densities and distributions.  In Atlantic US salt marshes, ribbed mussels are the functionally 

dominant animal, facilitating nutrient cycling, vertical accretion, and salt marsh structural 

integrity.  Ribbed mussel populations are denser in low marsh habitat along intertidal 

channels and creeks.  In areas where these populations are underrepresented compared to 

reference conditions, mussel-mediated ecosystem services are suboptimal.  To evaluate 

whether ribbed mussel ecosystem services along the low marsh fringe in New Jersey were 

representative of their service potential, regional population and physiological data were 

compared among three marshes in New Jersey and one in Rhode Island. 

Although creek habitats in New Jersey and Rhode Island marshes were able to support 

similar populations of ribbed mussels, mussel population densities were largely suppressed 

along the marsh shoreline in New Jersey relative to Rhode Island.  Marsh shorelines in New 

Jersey have been eroding approximately an order of magnitude faster than in Rhode Island, 

likely preventing mussel recruitment and population establishment in New Jersey marshes.  

Ribbed mussel population enhancements, such as might be achieved using living shoreline 

tactics, are estimated to boost particulate nitrogen removal between 376% and 1,616% if 

ribbed mussel biomass density can be increased to levels currently measured either in New 

Jersey creeks or along the marsh shoreline in Rhode Island, respectively.  Additionally, since 

the benefits of mussel filtration for water quality (e.g. particulate nitrogen filtration) also 

scale with spatial seston composition, the location of ribbed mussel enhancement projects 
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can also be an important factor regarding the magnitude of the resulting ecosystem 

services. 

4.2 Introduction 

Bivalve shellfish provide a number of valuable ecosystem services including: food 

provisioning; nutrient cycling (Jordan and Valiela 1982; Newell et al. 2002); shoreline 

protection (Bertness 1984; Scyphers et al. 2011); and recreation and tourism (Beaumont et 

al. 2007).  As spatially aggregated animals, the magnitude of their provisional goods and 

services is spatially dependent on population density. Efforts aimed at augmenting 

populations of important species therefore typically target the most suitable habitats where 

animal densities are greatest. Historically in the Delaware Estuary, the eastern oyster 

(Crassostrea virginica) has been the primary focus of shellfish restoration efforts.  Oyster 

reefs provide habitat for a variety of finfish and invertebrates (Coen et al. 2009), while also 

contributing greatly to local economies (Murry and Hudson 2013).  Research since the mid-

1970s has shown that ribbed mussels can provide many of the same ecosystem services as 

oysters without being constrained by regulatory restrictions imposed upon species 

available for commercial harvest (Jordan and Valiela 1982; Newell et al. 2002; Galimany et 

al. 2013; Bilkovic et al. 2017).  For certain ecosystem services, such as bacteria filtration, 

ribbed mussels are reported to be superior to oysters (Langdon and Newell 1990; Kreeger 

and Newell 1996). 

As the functional dominant animal of eastern US salt marshes (Kuenzler 1961; Lent 

1969; Jordan and Valiela 1982), ribbed mussels remove suspended particulate matter from 

the water column, facilitating marsh accretion and nutrient sequestration (Chapter 3), 

helping to maintain water quality.  Additionally, dense aggregations of ribbed mussels 

provide structural integrity to the edge of salt marsh habitats by binding sediments through 
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attachment to vegetation roots and rhizomes with their byssal thread complexes (Bertness 

1984).  Ribbed mussels are principally found along the low marsh fringe of salt marsh 

environments, along the waterward edge of the primary and intra-marsh drainage 

networks, and although ribbed mussels are found across the high marsh platform, these 

populations are significantly lower than their low marsh counterparts (Kuenzler 1961, 

Bertness 1984, Franz 2001).  As these edge environments are typically considered ribbed 

mussel “hot spots”, they also represent areas of concentrated mussel-mediated ecosystem 

services. Given the substantial ecosystem services contributed by ribbed mussels, 

protection and restoration strategies aimed at optimizing mussel population biomass 

should be given consideration by natural resource managers and restoration practitioners 

who are focused on protecting water quality and coastal wetlands.  It is important to note 

that ribbed mussel enhancement should not be considered a direct replacement for oyster 

restoration, as they occupy different, but sometimes overlapping, niches. 

In the Delaware Estuary, current rates of coastal wetland loss have been measured to be 

approximately an acre per day (Kreeger et al. 2010; TREB 2012, 2017), and a variety of new 

tactics are emerging for stemming this retreat, such as various living shoreline methods, 

thin layer sediment enhancement, and hydrological repairs. As many of these tactics 

intersect with ribbed mussel habitat, there is opportunity to pair coastal restoration 

strategies with ribbed mussel population enhancement efforts to maximize shellfish 

mediated ecosystem services in areas receiving restoration efforts.  Since ribbed mussel 

populations are not distributed evenly across the salt marsh landscape (Bertness and 

Grosholz 1985, Nielsen and Franz 1994, Franz 2001), comparing the spatial distributions of 

ribbed mussel populations in stable (e.g. non-eroding) reference marshes to those in 

marshes that are currently experiencing degradation and/or erosion can pinpoint places 

where mussel-delivered services might be improved, such as by increasing habitat 
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suitability and hence mussel population biomass.   In this study we compared ribbed mussel 

populations across two regions, Delaware Bay, New Jersey and Narragansett Bay, Rhode 

Island, to characterize the spatial distributions of marsh-specific services and to evaluate 

whether those services were representative of other locations.  

4.3 Methods 

4.3.1 Site Selection and Habitat Delineation 

To investigate the implications of ribbed mussel habitat loss on mussel-mediated 

ecosystem services, four representative salt marshes having different rates of edge erosion 

were selected for study.  In New Jersey, Dividing Creek (DC), Dennis Creek (DN), and 

Maurice River (MR), and in Rhode Island, Coggeshall Cove (RI) located on Prudence Island 

in Narragansett Bay have been the location of multiple research efforts (Fig. 4.1 a-f).  All 

marshes were considered representative of their respective regions based on long-term 

monitoring data from Mid-Atlantic Coastal Wetland Assessment (MACWA) in New Jersey 

(Partnership for the Delaware Estuary 2014) and the Environmental Protection Agency 

Office of Research and Development Atlantic Ecology Division in Rhode Island (Martina 

Chintala, personal communication, 2012).  Three study sites containing locally 

representative ribbed mussel populations along the marsh shoreline were selected per 

marsh.  Due to the shorter length of the primary channels in the RI marsh, the three sites 

were located along two primary channels sharing a similar observable ribbed mussel 

densities.  Within each site, three habitats of interest were delineated by vegetation cover 

and proximity to the nearest drainage channel: low marsh river; low marsh creek; and high 

marsh.   

Low marsh river (LMR) habitat was located along the primary tidal channel of each 

marsh that drained into either Delaware Bay (NJ) or Narragansett Bay (RI), characterized 
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by a 1-2m band of tall form Spartina alterniflora along the contiguous vegetated marsh 

edge. Low marsh creek (LMC) habitat was located along smaller, intra-marsh channels that 

drained fully at low tide and flowed into the primary marsh channel along which the LMR 

habitat was located.  This habitat was also comprised of a monoculture of tall form Spartina 

alterniflora in a 2-4m band that was bisected by the intra-marsh creek.  High marsh (HM) 

habitat was located on the marsh platform between the LMR and LMC habitats and was 

comprised of populations of a variety of vegetation types that can exist in areas of lesser 

tidal inundation such as: S. alterniflora short-form; Spartina patens; Distichlis spicata, 

and/or Salicornia spp.  At each site, three transects oriented perpendicular to the primary 

channel were placed so that they interested each of the three habitats, within which 

sampling plots were fixed (Fig. 4.1g). 

4.3.2 Percent Habitat Area 

For each site, the area of each habitat type was calculated as the percent area of each 

habitat within a 300m buffer of the center transect, without crossing the primary channel as 

delineated using ArcGIS 10.2.  IKONOS 2014 digital imagery (0.82m black and white, 3.28m 

multispectral resolution). Low Marsh River and LMC habitats were delinated a 2m band 

along the primary and secondary channel edges based on average widths reported for tall 

form S. alterniflora low marsh fringe (Deegan et al. 2012; Partnership for the Delaware 

Estuary 2014).  The area between digitized paired inter-marsh creek edges was considered 

open water and was excised from the total area of the site.  By subtraction, the remaining 

area not classified as LMR or LMC was classified as HM habitat. The relative percentage of 

space occupied by each habitat was considered the percent habitat area. 
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4.3.4 Ribbed Mussel Biomass 

In each sampling plot per habitat per site, per marsh, all ribbed mussels were counted, 

and a subset (up to n=25) were measured.  Shell length to dry tissue weight relationships 

were used to estimate the dry tissue weight of the sub-sample of measured mussels, the 

average of which was multiplied by the total population count for each plot.  For full details 

regarding biomass estimations, see chapter 3. 

4.3.5 Filtration of Total Suspended Solids and Particulate Nitrogen 

Clearance (water processing) rates (l hr-1 gDTW-1) from seasonal physiological 

experiments conducted Fall 2012, Spring 2013, and Summer 2013  per marsh per habitat 

using natural seston diets were multiplied by seston total suspended solid (TSS) and 

particulate nitrogen (PN) concentrations (mg l-1)  to calculate seasonal gross TSS and PN 

filtration rates (mg hr-1 gDTW-1), as reported in chapter 2.  Annual habitat-specific filtration 

rates were calculated for each habitat (n=3) per site (n=3 per marsh) by averaging the 

seasonal clearance rates (with the addition of an equal number of “filtration rate=0” 

observations to account for winter inactivity) and multiplying by the average annual TSS 

and PN concentrations (n=6 season-1 marsh-1). Rhode Island data included measured 

summer filtration rates and spring and fall estimations based a seasonal scaling values in 

New Jersey (see chapter 3 for details).  These site and habitat-specific filtration rates were 

multiplied by the average measured ribbed mussel biomass, the percent area of each 

habitat, and the average hours per day inundation (collected through the deployment of 

water level loggers, see chapter 3) to calculate the marsh-wide gross TSS and PN filtration 

for each habitat per marsh (n=3 habitat values per marsh) which were subsequently 

evaluated by region.  Full details of the above methods are available in chapter 3. 
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4.3.6 Lateral Marsh Movement 

Lateral marsh movement (i.e. erosion and accretion) was calculated from data collected 

by the Partnership for the Delaware Estuary for New Jersey marshes (Haaf et al. 2017) and 

by the Rhode Island Coastal Restoration Council for Rhode Island marshes 

(http://www.crmc.ri.gov/maps/maps_shorechange.html) from the years 1970-2014 and 

1939-2003, respectively.  Both data sets were generated using the USGS Digital Shoreline 

Analysis Software (DSAS) through an ArcGIS interface, by calculating the lateral change in 

shoreline position between the start and end years reported as an end-point rate (EPR) ± 

standard error in the DSAS output.  Negative values indicate landward movement (i.e. 

erosion) and positive values waterward movement (i.e. accretion).  

4.3.7 Statistical Analyses 

Marsh-level data were checked for normality and homogeneity of the variance.  Metrics 

that followed a normal distributions were analyzed using a linear mixed effects model able 

to handle unbalanced designs (nlme package, Pinheiro et al. 2017). Marsh and site were 

treated as random effects and habitat was considered a fixed effect.  Metrics that followed 

non-normal distributions were evaluated using a Kruskal-Wallis test to evaluate differences 

among marshes.  Tests between factors with similar distributions were interpreted as 

testing for a difference among medians, while tests between factors of varying distributions 

were interpreted as testing for dominance between distributions.  Non-parametric post-hoc 

analysis following a rejection of a Kruskal-Wallis were conducted using a Dunn’s test of 

multiple comparisons using rank sums (Dunn 1964) with a Bonferroni correction to 

minimize type-I error (dunn.test package, Dinno and Dinno 2017).  Both Kruskal-Wallis and 

Dunn’s test are appropriate for non-normal and unbalanced data sets (e.g. unbalanced 

comparisons among regions).  All statistical calculations were conducted using R 3.0.3 open 

source statistical software. 

http://www.crmc.ri.gov/maps/maps_shorechange.html
http://www.crmc.ri.gov/maps/maps_shorechange.html
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4.4 Results 

4.4.1 Percent Habitat Area 

The relative proportion of marsh occupied by the three habitats (i.e. percent habitat 

area) did not significantly differ among the four study marshes (HM p>0.3; LMC p>0.3; LMR 

p>0.1).  High marsh habitat dominated percent area similarly among the four marshes 

(p>0.09, mean 71±>1%), however percent area of LMR and LMC habitats differed among 

some marshes (p< 0.03 for both).  Rhode Island had a greater percent area of LMR habitat 

than Maurice River (Dunn test, p<0.04, 3.00±0.00% and 8.00±0.03% respectively), but 

Maurice River contained a greater percent area of LMC habitat relative to Dividing Creek 

(p<0.01, 29±0>1% and 16±>1%).  All other pair-wise comparisons showed no significant 

differences.  Regionally, HM and LMC percent area were not significantly different between 

New Jersey and Rhode Island (p>0.22 and p>0.44 respectively), but Rhode Island had 

significantly more LMR habitat than New Jersey (p<0.03, Table 4.1). 

 

4.4.2 Ribbed Mussel Biomass 

 

Across regions, ribbed mussel biomass averages were similar in the high marsh and 

creek habitats, but differed by an order of magnitude along rivers (Table 4.1).  Data 

distributions differed by marsh in the LMR (Levene test: p<0.001) and LMC (Levene test: 

p<0.02) habitats, but were similar in the HM (Levene test: p>0.85).  Kruskal –Wallis tests 

indicated no significant differences among marshes in high marsh areas (p>0.09), but 

indicated significant differences among marshes in the LMC and LMR habitats (p< 0.001 for 

both tests).  Dunn post-hoc analysis indicated that the LMC habitat in the Maurice River had 

a significantly different distribution than all other marshes (p<0.001, median=15 gDTW m-
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2), while there was no evidence to support differences among the other marshes (p<0.9 for 

all other pair-wise comparisons; medians: Dividing Creek=91 gDTW m-2, Dennis Creek=129 

gDTW m-2, and Rhode Island=134 gDTW m-2).  Post-hoc analysis showed that the Rhode 

Island marsh had a significantly greater density of LMR habitat than all New Jersey marshes 

(p<0.001, median=367 gDTW m-2), which when analyzed independently, showed no 

evidence of distributional differences (p<0.49 for all pair-wise comparisons; New Jersey 

LMR median= 0.07 gDTW m-2).    

4.4.3 Filtration of Total Suspended Solids and Particulate Nitrogen 

TSS filtration averaged 22.4±1.9 mg hr-1 gDTW-1 in New Jersey and 0.2±0.0 mg hr-1 

gDTW-1 in Rhode Island.  Filtration of PN averaged 7.23±1.22 mg hr-1 gDTW-1 in New Jersey 

and 0.06±0.01 mg hr-1 gDTW-1 in Rhode Island. Means ± se of gross TSS and PN services 

from seasonal physiological experiments per region per habitat are reported in Table 4.1.  

As gross particle filtration is largely dependent on seston quantity and quality, which was 

significantly lower in the Rhode Island marsh relative to New Jersey marshes (Chapter 3), 

no statistical comparisons of gross particle filtration were made among regions.  Instead, 

comparison of the geospatial distribution of the percent of services across the salt marsh 

landscape was employed.  In Rhode Island and New Jersey, percent of gross filtration 

services was highest along creeks (Table 1; 69% and 74% respectively), but differed in 

regards to the order of percent services provided services provided by the LMR and HM 

habitats.  In Rhode Island, the LMR habitat provided a greater percentage of services (28%) 

than the HM habitat (3%), while in NJ the HM habitat provided a greater percentage of 

services (22%) than the LMR habitat (3%) habitat (Table 4.1).  
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4.4.4 Lateral Marsh Movement 

New Jersey marshes had erosion rates between 4-7 times greater than Rhode Island 

(Fig. 4.2 & Table 4.2).  Distributions of lateral marsh movement were similar in Dividing and 

Dennis Creeks (p>0.4), but Maurice River (p<0.004) and Rhode Island (p<0.001) differed 

from all other marshes (Fig. 4.3).  Maurice River had the largest median erosion rates, while 

Rhode Island had the smallest (Table 4.2).  

4.5 Discussion 

Low marsh habitats along primary tidal channels and marsh creeks typically have 

higher mussel densities and longer submersion times relative to the high marsh (Bertness 

1984, Bertnees and Grosholtz 1985; Franz 1999).  Therefore, these represent areas of 

higher concentrations of mussel-mediated services, relative to the high marsh platform that 

comprises the greatest area (Table 4.1).  When mussel biomass density is compromised 

along the LMR and LMC habitats, the resulting loss of services can therefore have a major 

impact on the marsh-wide provisioning of mussel-delivered benefits.   

The Rhode Island marsh had dense ribbed mussel aggregations along both the LMR and 

LMC habitats (Table 4.1), providing an example of the potential for ribbed mussel biomass 

in multiple low marsh habitats.  Dividing Creek, Dennis Creek, and Rhode Island marshes 

had similar ribbed mussel biomass in the LMC habitat, indicating that New Jersey marsh 

creeks and high marsh are capable of supporting ribbed mussel biomass at a similar levels 

as the Rhode Island marsh (Fig. 4.3).  The significant difference in mussel biomass along the 

LMR habitat between New Jersey and Rhode Island marshes (Table 4.1) suggests that 

mussel densities along marsh shorelines in New Jersey are comparatively lowernthan in 

Rhode Island, which serves as a reference.  
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New Jersey marshes had shoreline erosion rates 4-7 times greater than Rhode Island, 

and vastly lower mussel density along the marsh shoreline (Table 4.1).  These data do not 

account for potential increases in erosion rates along the Rhode Island marsh between 2004 

and 2014 or positional differences, and were calculated using a much smaller data set 

(Table 4.2) relative to the New Jersey marshes.  Nevertheless, the Rhode Island marsh can 

still serve as an example of the mussel biomass potential along the LMR habitat. The 

mussel-dense LMR habitat in Rhode Island provided 28% of the marsh-wide filtration 

services despite comprising only 7% of the total marsh area. In contrast, mussel services 

along the shoreline in New Jersey marshes were only 3% in 3% of the marsh area (Table 

4.1).   

The spatial patterns of mussel population density in the more stable Rhode Island 

marsh provide a reference against which to evaluate the effects of marsh erosion on mussel-

delivered services in New Jersey.  In New Jersey, LMR habitat contained the lowest ribbed 

mussel biomass, and combined with the small percent area, resulted in a very low relative 

percentage of filtration services (3%; Table 4.1) compared to LMR habitat in Rhode Island 

(28%; Table 4.1).  As a result of the lower percent of services along the shorelines in NJ, the 

relative percent of marsh-wide services in creeks and HM were greater (Table 4.1).  This 

shift of services to a low mussel biomass areas indicates an overall reduction in services 

across the landscape. 

Comparing the ratio of ribbed filtration capacity among low marsh habitats (i.e. 

LMR:LMC), we find that the Rhode Island LMR habitat was able to provide ~41% of the 

services found in the LMC habitat, while only ~4%  of the services provided in New Jersey 

LMC habitat were provided along the LMR.  It is important to note that magnitude of gross 

filtration services is dependent on the food availability at each marsh (i.e. TSS 
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concentrations), and that the New Jersey marshes had much higher concentrations relative 

to the Rhode Island marsh (Chapter 3), and therefore the magnitude of a single percent 

differs greatly among regions. For example, 1% of the gross TSS filtration services was 

almost double in New Jersey (215 kg ha-1 yr -1) relative to Rhode Island (115 kg ha-1 yr-1; 

Table 4.1) marshes.  Bilkovic et al. (2017) showed the potential loss of ribbed mussel 

ecosystem services along the main channels of the York River in the Chesapeake Bay, MD, 

based on projected erosion rates, and estimated a 15% reduction in current filtration 

potential. In the New Jersey marshes, filtration services along the LMR may have already 

been lost.  This suggests that strategies might be used to enhance populations and their 

services.   

As ribbed mussel services along marsh shorelines in Delaware Bay have likely been 

reduced from historic levels due to shoreline erosion, tactics that stabilize erosion and 

enhance shoreline habitats (e.g., living shorelines) represent opportunities to integrate 

mussel-mediated services with restoration strategies.  In Delaware Bay, natural and nature-

based techniques are increasingly being used to achieve shoreline stabilization and water 

quality improvement, via enhanced shellfish populations and associated pollutant filtration.  

In this study, the mean mussel biomass along the LMR habitat in New Jersey was measured 

to be 21 gDTW m-2 (Table 4.3) and the annual filtration rates were measured at 22.4 and 

0.2mg hr-1 gDTW-1 for TSS and PN, respectively (Table 4.3).  At these values, the long-term 

“net” removal of PN (i.e. deposition and incorporation somatic tissue) was estimated to be 

60% of gross filtered nitrogen in New Jersey marshes (Chapter 3).  Under current 

conditions, a 100m length of untreated shoreline (1m wide) along New Jersey marshes is 

therefore estimated to provide a net removal of PN of 1.10 kg ha-1 yr-1 (Table 4.3).  If ribbed 

mussel biomass along this shoreline was enhanced to be similar to that in typical New 

Jersey tidal creeks, net PN removal is estimated to be increased by 385% to 5.36 kg ha-1 yr-1.  
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Further, if ribbed mussel density along the untreated New Jersey shoreline was enhanced to 

be similar to marsh shorelines (LMR habitats) in the Rhode Island “reference” marsh, net 

PN is estimated to be 19.5 kg ha-1 yr-1, an increase of 1,666% (Table 4.3).   

Although shoreline enhancement tactics have the potential to boost or restore mussel 

populations along New Jersey marsh shorelines, resulting in greater ecosystem services, 

widespread implementation is currently limited.  The current lack of commercially available 

ribbed mussel seed requires that either natural recruitment and/or translocation of existing 

mussel populations are employed for populating a living shorelines.  

Data presented here show that New Jersey marshes have the potential to support 

mussel populations similar to marshes in Rhode Island in the HM and LMC habitats. In New 

Jersey, high rates of erosion may be responsible for the low mussel biomass along the LMR 

habitat relative to LMC habitat, and this discrepancy in biomass has resulted in a shift of the 

concentration of mussel-mediated ecosystem services from potentially high mussel density 

edge habitats, to the low mussel density high marsh platform (Table 4.1).  Although net PN 

removal is estimated to be higher in New Jersey than in Rhode Island marshes (Table 4.4), 

this is likely due to the greater PN availability in New Jersey compensating for the low PN 

and larger mussel populations along the marsh shoreline in Rhode Island (Tables 4.1 & 4.4).  

But, Rhode Island mussels were able to remove between 25% and 58% of the PN of New 

Jersey marshes while having only between 13% and 20% of the PN concentration (mg l-1) 

available to filter (Table 4.4), likely due to the enhanced mussel populations along the 

shorelines. 

By identifying where ribbed mussel ecosystem services are currently located and where 

they may be lacking, natural resource managers can employ a two-fold management 

approach of conservation and enhancement to maximize local services.  Identification of 
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current resource hot-spots (i.e. along small marsh creeks in New Jersey) will allow for the 

targeted conservation of services through either the stabilization of compromised habitat 

and/or the protection of existing stable habitat.  Further, the location of suitable habitat 

areas where services are currently underrepresented (i.e. marsh shorelines in New Jersey), 

can guide geospatial selection of high priority areas for habitat enhancement.  
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Figure 4.1  Marsh and site locations of the four study marshes. A:  Location of study 
marshes in the NJ; B: Location of study marsh in RI; C-F: location of replicate study 
sites in each representative study marsh; G: schematic of transect and sample plot 
layout within each study site per marsh. Numbers in maps C-F denote the sites 
within marshes. In schematic G, grey boxes represent destructive plots where ribbed 
mussel lip counts and dig out occurred.  White boxes indicate non-destructive plots 
where only ribbed mussel lip counts occurred. 
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Figure 4.2  Histogram of lateral mash movement rates per marsh. Black vertical line 
indicates no net movement.  Histogram bars to the left of the line (negative values) 
indicate landward movement of the marsh edge, and bars to the right of the line 
(positive values) indicate waterward movement of the marsh edge.  The marsh for 
which each histogram displays values is noted above the bars. 
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Figure 4.3  Boxplots of lateral marsh movement (m yr-1) per marsh.  Lower and 
upper extents of each box represent the 25th and 75th percentiles respectively. The 
dark line within each box represents the 50th percentile.  Whiskers display the range 
of data and outliers are represented as open circles.  Asterisks denote significant 
differences among marshes per habitat type as per results of a Dunn post-hoc 
analysis. DC=Dividing Creek; DN=Dennis Creek; MR=Maurice River; RI= Rhode 
Island. 
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Chapter 5: Conclusion 

Natural infrastructure is increasingly being valued for the ecosystem services that it 

provides to society. For example, shellfish reefs and coastal wetlands help to filter 

pollutants, sequester carbon, and buffer coastlines from storms, as well as supporting 

habitat for fish, shellfish and wildlife species needed for fisheries and ecotourism. Elements 

of natural infrastructure that remove or transform sizeable quantities of total suspended 

solids and associated nutrients promote pelagic-benthic coupling and therefore need to be 

understood to model and manage water quality.  For these reasons, the restoration of 

bivalve shellfish is increasingly motivated by the benefits to water quality. However, these 

restoration tactics have rarely been applied to non-commercial native species such as the 

ribbed mussel, Geukensia demissa, and have historically focused on commercial species (e.g. 

oysters, clams).  

 

Due to their typically robust population size, ribbed mussels have the potential to 

enhance coastal water quality through the filtration of TSS and associated particulate 

nitrogen in Atlantic coastal estuaries that have significant salt marsh acreage, which is the 

preferred habitat for G. demissa. Estimation of pollutant filtration by ribbed mussels 

requires knowledge of seasonal and spatial variation in key physiological rates associated 

with suspension feeding processes, as well as data on their population size and biomass, 

and seston composition.  Results from this study show however that basic particle clearance 

rates were generally consistent among ribbed mussels living in different salt marsh settings 

ranging from small tidal creeks (LMC), to large river edges (LMR), and onto the high marsh 

platform.  Clearance rates (l hr-1 gDTW-1) were typically maximized, constrained mainly by 

seasonal temperature, displaying little variation across space.  The temporal variability 
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highlights the need for seasonal measurements of water processing rates when calculating 

annual water processing and seston filtration.  

In addition, filtration of particles is governed by both clearance rates and the actual 

availability and composition of seston (mg l-1), which can vary widely across space and time.  

Therefore, to estimate local filtration capacity per animal (mg hr-1 gDTW-1), clearance rates 

measured under similar annual temperature regimes may be sufficient, but data regarding 

the spatial and temporal variability of seston is required.  For spatial modeling of gross 

seston capture by populations of mussels, models must also consider the variability of 

mussel population demographics and available feeding time within and among marshes.  In 

this study, for example, annual clearance rates were measured to be between 0.20 and 0.34 

(l hr-1 gDTW-1) with the lowest measured values (winter was estimated to be negligible) in 

fall (7-8°C; 0.02 to 0.06 l hr-1 gDTW-1) and highest values in the summer (20-25°C; 0.51 to 

0.71 l hr-1 gDTW-1).  Seston values ranged between 38.51 and 170.63 mg l-1 across marshes 

and seasons in New Jersey and averaged 13.1 mg l-1 in the summer in Rhode Island. 

  

At a landscape level, ribbed mussels were shown to provide a gross removal of TSS 

between 3,834 and 11,119 kg ha-1 yr-1 and between 30.93 and 92.48 kg ha-1 yr-1 of PN.  

Applying peer-reviewed models regarding the fate of the filtered materials, ribbed mussel 

populations in New Jersey and Rhode Island marshes were found to make contributions to 

vertical marsh enhancement and water quality improvement based on their collective 

filtration, deposition, and net removal of PN.  If uniformly distributed across the marsh 

surface, inorganic biodeposits from ribbed mussels were calculated to contribute between 

0.39 and 0.93 mm yr-1 in New Jersey and 0.28 mm yr-1 in Rhode Island to vertical salt marsh 

accretion, representing a contribution of between 9.8% and 23.3% and 7.0% of a 4mm yr-1 

rate of sea level rise, respectively.   
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Net nitrogen removal through biodeposition and somatic growth was estimated to 

remove between 68.5 and 166 kg ha-1 yr-1 in New Jersey and 39.9 kg ha-1 yr-1 in Rhode 

Island. On a hectare-to-hectare basis, aquaculture oyster models from Chesapeake Bay have 

estimated net nitrogen removal per farm to be ~331 kg ha-1 per unit time as a result of 

commercial oyster harvest (1-2 years; Higgens et al. 2011).  This estimate assumes 226 

oysters m-2, a density much greater than the New Jersey mussel populations evaluated in 

this study.  But, the marsh-wide net PN removal estimated for Dennis Creek, which had the 

highest mussel density of all New Jersey marshes, averaged 166 kg ha-1 yr-1, which was 

similar assuming that the time to harvest for the oysters was 2 years.  Additionally, high 

density mussel farming has also been shown to remove large quantities of nitrogen (544 kg 

ha-1 yr-1, Petersen et al. 2014), but the mussel density requirements for extraction of this 

magnitude are typically higher than observed in natural marshes.  Galimany et al. (2017) 

estimated that raft-based bioextration efforts using ribbed mussels in the Hudson River, NY 

could remove ~62.6 kg of nitrogen per season (March-November), a value similar to the per 

hectare values estimated in this study, which contain a similar amount of mussel biomass as 

the bioextratction estimate.  Although bioextraction will likely be a valuable tool for 

mitigating water quality where shellfish are available and able to be “harvested”, techniques 

to develop high density mussel culture systems for extraction are not fully developed.  It is 

important to remember that salt marsh mussel populations are not harvested but still 

provide similar services year after year, whereas bioextraction efforts depend on harvesting 

and replenishing mussels, and must be maintained over time. 

The approach taken in this study paired physiologically-based measurements under 

simulated field conditions with field assessments of mussel densities and seston loads.  The 

actual contributions of mussel feeding processes to vertical accretion and PN sequestration 
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in situ will depend on many other factors that were not studied here.  For example, portions 

of the water that are filtered might be (re)filtered by the same or adjacent mussels, 

biodeposits could be resuspended and exported, and/or the fate of filtered matter such as 

nitrogen may vary with mussel nutritional status and seston quality.  Conversely, the 

hydrodynamics of salt marshes are complex, and some of the TSS flushing the marsh might 

not be accessible to mussel filtration.  More study will be needed to deduce actual cause-

effect relationships between mussels and “levee-building” services, as well as the other 

purported ecosystem services associated with water quality enhancement.  

As filtration services by ribbed mussels scale with biomass and food availability, 

hotspots of services in Rhode Island were located along creeks and rivers where mussel 

densities were highest and feeding times were maximized.  Although ribbed mussel 

populations were similar in New Jersey and Rhode Island HM and LMC habitats, they 

significantly differed along LMR habitats.  As a result, gross filtration rates in New Jersey 

along LMR habitats were only 11% of their Rhode Island counterparts. The evaluation of 

lateral marsh movement along the LMR habitats per marsh showed median erosion rates of 

32 and 6cm yr-1 in New Jersey and Rhode Island, respectively.  These data indicate that 

rapid marsh edge loss in New Jersey may be compromising LMR habitat to a greater extent 

than in the Rhode Island marsh.  The unstable nature of this low marsh region in New Jersey 

could be a contributing factor to the low population densities in this habitat.  As a result, 

mussel mediated ecosystem services along both main river edge habitats (i.e. LMR and 

LMC) in New Jersey comprised only 77% of the filtration services and has shifted the 

relative percentages of spatial services in NJ into areas of low mussel density.  Whereas in 

Rhode Island, the low marsh areas provided 97% of the services, with only 3% of the 

services from the vast expanses on low mussel density HM areas.  As exemplified by Rhode 
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Island marshes, areas of high mussel density were capable of supporting high levels of 

filtration services.  In New Jersey, low marsh habitats were shown to support similar 

populations of ribbed mussels and their associated ecosystem services as Rhode Island in 

the marsh interior (HM and LMC); however, in highly eroding areas along the primary tidal 

channels, the populations were significantly lower.   

A two-fold strategy is suggested to maximize ribbed mussel-mediated ecosystem 

services in salt marsh habitats: 1) conserve areas of currently high ecosystem service value 

(e.g. small tidal creeks in New Jersey, marsh shorelines in Rhode Island); and 2) enhance 

areas where the habitat suitability has become compromised resulting in reduced 

ecosystem services (e.g. marsh shorelines in New Jersey).  If habitat instability is 

undermining the long-term potential for mussel-mediated ecosystem services along New 

Jersey LMR habitat, natural and nature-based infrastructure practices that sustain or 

enhance ribbed mussels may promote both shoreline stabilization and ater quality 

improvements.  Ribbed mussels are capable of filtering large quantities of TSS and PN, and 

since 44%-60% is removed as a result of biodeposition and somatic growth, mussels can 

clearly promote water clarity and quality.  The methods provided in this dissertation can 

guide managers in identifying and calculating marsh-specific distributions of ribbed 

mussels and their ecosystem service contributions, which will provide direction regarding 

the spatial selection of areas appropriate for conservation and enhancement.  Implementing 

measures to sustain current ribbed mussel populations where they exist, and to 

restore/enhance areas where they appear to have been lost, will promote service 

maximization by this functional dominant marsh consumer. 
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Appendix A: Seasonal Clearance Rates per Habitat per Marsh 
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Appendix B: Correlations between Clearance Rates and Seston Metrics 

 

 

Correlations between seasonal mean clearance rate (l hr -1 gram dry tissue weight-

1) and mean values of seston metrics among marshes (n=3 fall and spring; n=4 in 
summer).  CR= clearance rate; TSS = total suspended solids; POM = Particulate 
Organic Matter; %Org = Percent Organics; C:N = carbon nitrogen ratio; PN = 
particulate nitrogen. 
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Appendix C: Correlations between Filtration Rates and Seston Metrics 

 

 

Correlations between seasonal mean filtration rate (l hr -1 gram dry tissue weight-1) 
and mean values of seston metrics among marshes (n=3 fall and spring; n=4 in 
summer.  FR= filtration rate; POM = Particulate Organic Matter; %Org = Percent 
Organics; C:N = carbon nitrogen ratio; PN = particulate nitrogen. 
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Appendix D: P-values for Paired Marsh Metrics 
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Appendix E: Annual Site and Habitat-Specific Filtration Services 

 

 

Annual site and habitat-specific total suspended solid (TSS) and particulate 

nitrogen (PN) filtration services per habitat per site per marsh. Included are all 

values used for calculations: annual TSS and PN filtration rate, ribbed mussel 

immersion time, ribbed mussel biomass, and percent area of each habitat type.  

DC=Dividing Creek; DN=Dennis Creek; MR=Maurice River; RI=Rhode Island.    Sites 

refer to the sub-areas studied per marsh: 1 was close to mouth; 2 was near first 

meander; and 3 was at the upper extent of representative mussel presence. 
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