
Adaptive Game Input Using Knowledge of Player Capability:
Designing for Individuals with Different Abilities

A Thesis

Submitted to the Faculty

of

Drexel University

by

Robert C. Gray

in partial fulfillment of the

requirements for the degree

of

Master of Science in Digital Media

March 2018

© Copyright 2018
Robert C. Gray. All Rights Reserved.

For my wife, Megan, whose example inspired me to pursue research

iii

Acknowledgments

I would like to thank my advisor Dr. Paul Diefenbach, whose guidance and en-

couragement has empowered me to pursue this lifelong ambition. Your deep insight

and tireless commitment toward helping me formalize and synthesize this idea has

been instrumental in shaping this work.

I am also grateful for my advisor Dr. Jichen Zhu, whose mentorship and instruction

continues to shape my worldview and perspectives as a researcher. Your passion for

our field and dedication to your craft are an inspiration to me, and I am thankful

for how you have expanded my understanding of the practice of research and the

philosophy of science.

I would like to express my gratitude to Dr. Michael Wagner for his support and

advice as a member of my thesis committee, as well as Dr. Glen Muschio and Dr.

Stefan Rank for their excellent instruction and guidance throughout my journey.

My return to academia would not have been possible without the help of Timothy

J. Day, a great friend and colleague whose assistance and selflessness helped me

through challenges these past several years both in life and in study. For the same

reason, I extend my gratitude to Dr. Frank Lee, my first introduction to Drexel

University, who gave me a spot on his team and his projects and guided me toward

this path.

And finally, I would like to thank my family, Dr. Megan Gray along with Jackson

and Chase, who endured late nights and many other sacrifices to enable me to pursue

this dream. I hope to make you all proud.

iv

Table of Contents

LIST OF TABLES . vi
LIST OF FIGURES . vii
ABSTRACT .. viii
1. INTRODUCTION .. 1

1.1 Games as Therapy . 1
1.2 Motion Based Input . 2
1.3 Adaptive Games . 3

2. BACKGROUND.. 5
2.1 Active Video Games . 5
2.2 Commercial Exergames. 8
2.3 Therapy AVG Programming . 10
2.4 Accessibility and Individualization . 11

3. RELATED WORK .. 14
3.1 Psychological Flow. 15
3.2 Player Modeling. 15

3.2.1 Non-static Player Models . 17
3.3 Dynamic Difficulty Adjustment . 18
3.4 Basis for Dynamic Adaptation . 19

4. PROJECT DESIGN.. 24
4.1 System Overview . 25
4.2 System Requirements . 26

4.2.1 Motion Controller Programming . 27
4.2.2 Game Adaptation. 28
4.2.3 SUKI Requirements . 30

4.3 System Architecture . 30
4.3.1 Overview . 31
4.3.2 Input Resolutions . 32
4.3.3 Kinematic Elements . 34
4.3.4 SUKI Schema Components . 36
4.3.5 SUKI Schema Restrictions . 41
4.3.6 SUKI Schema Definition . 42

4.4 Player Modeling and Adaptation . 44
4.4.1 Overview . 44
4.4.2 Kinematic Profiles . 46
4.4.3 Adaptation System . 49

5. EVALUATION .. 53
5.1 Case Study 1: Constructing a Therapy AVG with SUKI 53

5.1.1 Developer Integration . 54
5.1.2 Schema Construction for Cerebral Palsy Therapy 57

5.2 Case Study 2: Re-purposing a Therapy AVG Provisioned with SUKI . . . 62
5.2.1 Schema Construction for Parkinson’s Disease Therapy 63

v

5.3 Case Study 3: Integrating SUKI into an Existing Therapy AVG 67
5.3.1 Code Integration . 69
5.3.2 Schema Design to Replicate Existing Gameplay 73
5.3.3 Leveraging SUKI for Alternate Play Modes . 75

6. CONCLUSION AND FUTURE WORK.. 78
6.1 Limitations and Future Work . 78
6.2 Implications and Application . 80

BIBLIOGRAPHY .. 81

vi

List of Tables

4.1 Node Metric + Input Resolution Schema Compatibility . 39

4.2 Node Metric + Input Resolution Operator Compatibility . 41

4.3 SUKI Schema JSON Fields . 43

vii

List of Figures

2.1 Research AVG Citadel Screenshot. 7

2.2 Research AVG Sense Thief Screenshot . 7

3.1 Dual Axis Mapping of Categories for Adaptation Basis . 22

4.1 SUKI System Overview . 26

4.2 Kinematic Input Binding in Space Run . 28

4.3 Movement Example in Space Run . 28

4.4 Sample Calibration Screen in Kollect . 29

4.5 Simplified Overview of the SUKI System Architecture . 31

4.6 Side Reach Example Schema . 45

4.7 Extended SUKI System Architecture . 46

4.8 Elbow Angle Example Schema . 48

4.9 Arm Raise Example Schema . 51

4.10 Leaning Constraint Example Schema . 51

5.1 Citadel Locked Lane Gameplay Screenshot. 54

5.2 Citadel Open Lane Gameplay Screenshot . 54

5.3 Kollect Avatar Screenshot. 68

5.4 Kollect Gameplay Screenshot . 68

5.5 SUKI Implementation of Traditional Kollect Controls. 74

5.6 SUKI Implementation of Kollect with Independent Arm Movement 74

viii

Abstract
Adaptive Game Input Using Knowledge of Player Capability: Designing for

Individuals with Different Abilities

Robert C. Gray
Advisors: Paul Diefenbach, Ph.D., Jichen Zhu, Ph.D.

The application of video games has been shown to be valuable in medical inter-

ventions, such as the use of Active Video Games (AVGs) in physical therapy. Because

patients requiring physical therapy present with both highly variable physical capabil-

ities and unique therapeutic goals, developers of rehabilitation intervention games face

the challenge of creating flexible games that they can individualize to each player’s

particular needs.

This thesis proposes an approach to this problem by identifying and addressing

two issues concerning therapy AVG game design. First, regarding the difficulties of

individualizing software, a particular complication in the development of AVGs for

therapy is the increased complexity of writing input routines based on human body

motion, which provides a much larger and more complex domain than traditional,

discrete-input game controllers.

Second, the primary difficulty in individualizing a therapy game experience to an

individual player is that developers must program software with static routines that

cannot be modified once compiled and released. Overcoming this aspect of software

development is a prime concern that adaptive games research aims to address.

The System for Unified Kinematic Input (SUKI) is a software library that ad-

dresses both of these concerns. SUKI enables games to adapt to players’ specific

therapeutic goals by mapping arbitrary human body movement input to game me-

chanics at runtime, allowing user-defined body motions to drive gameplay without

requiring any change to the software. Additionally, the SUKI library implements a

ix

dynamic profile system that alters the game’s configuration based on known physical

capabilities of the player and updates this profile based on the player’s demonstrated

ability during play.

Within the context of the study of adaptive games, the following research presents

the details of this approach and demonstrates the versatility and extensibility that it

can provide in adapting AVG games to meet individual player needs.

1

1. INTRODUCTION

The use of video games in medicine, and particularly the role of Active Video

Games (AVGs) in physical therapy interventions, holds great promise for the 38 mil-

lion individuals in the United States alone that have severe physical, cognitive, and

sensory disabilities or chronic conditions that result in functional limitations [12].

Recent studies have shown that leveraging games in movement therapy can lead to

patient-level outcomes that match or even outperform traditional therapy [50].

Whether playing traditional games for entertainment or those designed for therapy,

disabilities can impact player participation and enjoyment in varied ways. Such play-

ers may present with limited strength, flexibility, endurance, or control in movement

functions required for input in a motion-based game. Beyond the physical aspects

addressed by the game system in this research, other player traits such as working

memory capacity, spatial reasoning, and even more abstract qualities like player tem-

perament may be valuable focal points around which games can adapt during play.

Most importantly, if developers can empower games to better adapt to the unique

capabilities of their players, they may be able to provide better experiences beyond

this specific player population and to video game players in general.

1.1 Games as Therapy

Physical therapy is the central component for treatment systems in cases of chronic

neurological conditions such as cerebral palsy [9] and Parkinson’s disease [48], where

this care is traditionally administered under the supervision of a physical therapist.

These therapy sessions typically focus on specific exercises that promote motor ac-

tivity, which have been shown to prevent secondary impairments, facilitate neural

2

recovery, improve cognitive performance, and lead to improved mental and physical

health [21]. Therapists often prescribe a daily home regimen of exercises to main-

tain strength and mobility between sessions, which is where AVGs have significant

opportunity to improve therapeutic outcomes.

Using motion-based input systems, AVGs are games that interpret movement in

the player’s body and compare it to a motion expectation or apply it toward in-game

objectives. Cerebral palsy (CP) is often selected as a targeted disability in therapy

games research due to its relatively high occurrence and symptom diversity. However,

research has shown this method to be successful in treating an array of disabilities

including Parkinson’s disease [32, 63], cystic fibrosis [57, 38], multiple sclerosis [50, 35],

burn rehabilitation [59], and others [42, 66].

The ability to individualize care and provide specific goals can have a large effect

on the quality and effectiveness of physical therapy. For example, because some

disabilities like CP can vary widely in how they present symptomatically (concerning

both physical and cognitive impairment), there is not yet any specific therapy that can

apply broadly to every patient; therefore, management of patients requires frequent

readjustment [9]. In a small-sample study, Frankie et al. [30] also found individually

tailored physical therapy programs to yield more favorable results when treating youth

with CP. In the case of similar neuromotor disabilities, patients with traumatic brain

injury have shown significantly better improvements on manual dexterity tests when

they are given specific, difficult goals instead of general guidance [33].

1.2 Motion Based Input

From this, we understand that a key component of improving therapy games

is to empower them to provide more specialized and individualized experiences for

their users. A key element of this individualization is the way in which the game

3

system interprets body motion as input and applies the player’s intent toward game

objectives. Traditionally, specialized software routines accomplish this by watching

for pre-determined and anticipated movements (sometimes in the form of gestures)

and updating specific gameplay elements according to the detected movement.

Though straightforward and efficient, the specific mapping of gestures to gameplay

elements limits a single game’s potential to a specific therapy outcome and does not

effectively consider variance among patient capabilities. Games that use traditional

button-based input devices can profit from the convenience of easily remapping their

keys within and among devices (such as with a keyboard, mouse, or game controller).

Movement-based AVGs could greatly benefit from a similar affordance; however, the

domain of analog human movement is vastly larger than that of a discrete key-based

device.

1.3 Adaptive Games

Video games, more so than any other form of media to date, offer a unique affor-

dance to their audience in that they inherently possess an ability to alter themselves

in real time based on the knowledge of the viewer. Studies in the field of adaptive

games attempt to improve the play experience by changing the game environment and

mechanics in a way that is expected to align preferably with the individual player’s

preferences. However, current approaches focus primarily on high-level performance

metrics and the preferences and predilections of a player concerning games without

considering other important aspects (e.g., capabilities, behavioral tendencies, and

tolerances) of the player that may also greatly influence the quality of interaction.

Key to our investigation are the physical capabilities of the player and their in-

dividual therapeutic goals as prescribed by their therapist. Though various adaptive

games studies base their adaptation on player performance, in this research we are

4

concerned with how player capability might serve as a useful source of information for

an adaptive game system. To this end, we present a system that enables therapists

to individualize a single game toward a broad range of therapy goals among patients

of varying physical limitations without any need to change the game’s programming.

With this work we propose the design of a specialized software architecture called

the System for Unified Kinematic Input (SUKI) for decoupling the software tasks of

interpreting of body movement and managing game-specific input signals. Further,

we demonstrate how a player model unique to each patient can inform this abstraction

and provide an avenue for adaptive game design. In section two we will present an

overview of the problem domain and discuss the need for this kind of solution in

physical rehabilitation therapy AVGs. In section three we will review the current

literature on player models and adaptive games and discuss how we can leverage

the dynamic qualities of computer software along with knowledge of the player to

meet these needs. Section four will present an overview of the SUKI system as a

response to the needs and opportunities presented in previous sections and discuss

its requirements, architecture, and feature implementation. Section five will evaluate

the solution by exploring three case studies, where we will build a therapy AVG with

SUKI, use SUKI to adapt a game to a new therapy goal and patient population,

and finally retrofit an existing AVG with SUKI to expand its therapeutic potential.

Section six will present a discussion of our findings and suggestions for future work.

5

2. BACKGROUND

Addressing this problem domain requires that we examine how researchers and

therapists have adopted body motion games for therapy and the nature of the chal-

lenges that developers face when creating these games. The following is a brief

overview of the history and progress of AVG technology and a discussion of the

solutions available in the industry today. We also examine the special technical con-

siderations developers face when creating active video games, particularly for the

purpose of physical therapy. Finally, we discuss the primary need for accessibility

and individualization in creating effective AVG therapy experiences, where insight

from adaptive game theory may further enhance the effectiveness of these therapy

tools.

2.1 Active Video Games

The Active Video Game is a category of “games that require players’ body move-

ments for game play” [62]. Beyond the prerequisite use of a kinematic (human body

movement) sensor for player input, the term “active” usually implies that the game

is designed with some form of exercise goal in mind. Early examples of AVGs for

consumers include the Foot Craz for the Atari 2600 and the Family Trainer and

Power Pad peripherals for the Nintendo Entertainment System in the mid-1980s [8].

Around the same time, other projects like Autodesk’s Virtual Racquetball [16] and

RacerMate’s CompuTrainer [11] began adding gaming elements to existing exercise

equipment.

These early explorations were often limited to resolving complex body move-

ment to a single value that represented exercise output, where this value when then

6

leveraged as simplified player input in the game environment. Over the subsequent

decades, more sophisticated systems like the Nintendo Wii and its Wii Fit exercise

peripheral in 2007 [34] included balance boards and hand-held controllers with ac-

celerometers that could detect user motion at a high frequency with multiple degrees

of freedom. By enable more complex and multidimensional measurements of body

movement, modern AVGs can take advantage of a higher level of player expression

and incorporate more aspects of the player’s movement in the game play.

Following the November 2010 launch of Microsoft’s first-generation Kinect to pair

with its popular Xbox 360 console system, the consumer-affordable body motion

sensor device soon became the fastest-selling peripheral of all time [78]. A series of

home exercise and dance training games followed, along with the second version of

the sensor in late 2013 alongside Microsoft’s Xbox One console. Though Microsoft

eventually discontinued the product line as they transitioned the technology into the

Microsoft Hololens device [75], ongoing academic projects and hobbyist communities

continue to explore the potential for consumer affordable kinematic sensors in medical

and industrial applications.

The sensor technology developed by PrimeSense [25] and implemented in the

Kinect inspired a new industry of affordable, consumer-level kinematic sensors in

the years to follow, including the Orbbec Astra [58] and Leap Motion Controller

[74], both of which are employed in research exploring the potential of game-assisted

physical therapy (Figures 2.1 and 2.2). In particular, the physical rehabilitation

research and practitioner communities have found the devices to be appealing in

their promise because they provide the necessary link for combining physical motion

with the motivational power of video games.

7

Figure 2.1: Research AVG Citadel uses the Microsoft Kinect and Orbbec
Astra for upper-arm rehabilitation. Players in a seated or standing position
can raise either their left or right arm over their head to move the ship among
three lanes, collecting powerups and dodging obstacles.

Figure 2.2: Research AVG Sense Thief uses the Leap Motion Controller to
train fine motor skills. With a virtual hand matching the movements of the
patient’s real hand, players grab orbs from floating lily pads and place them
in the rotating flowers.

8

2.2 Commercial Exergames

The advancement in sophistication of movement sensors has led to a commen-

surate advancement in the affordances of AVG experiences. Evolving from a single

exertion metric to complex body motion input has reduced the necessity of external

equipment to guide motion and resolve the metric (e.g., a physical exercise bike that

governs a precise leg motion and submits the resulting RPM metric); similarly, this

evolution has enabled a more complicated relationship between movement and game-

play, leading to an industry of commercial exergames (a portmanteau of “exercise”

and “games”) for both entertainment and therapy.

Though the Nintendo Wii has been a favored option in many therapy research

projects [3, 10, 26, 45, 67], many of the studies are limited to commercial off-the-

shelf (COTS) games with the hope that they align with the research and therapy

goals. Though feasibility test results are often positive, they are not necessarily op-

timal; some studies note that leveraging COTS games toward therapy can encourage

noneffective and undesired player movements, provide unfair or detrimental negative

feedback, and fail to expose the customization parameters necessary for the target

patient populations [1, 51, 64]. Even if an obvious and trivial change could assist ther-

apy goals, researchers employing COTS software are not given extensive opportunity

for customization. Due to the proprietary qualities of these games and the historically

more restrictive nature of development for consoles (i.e. requiring developer registra-

tion and specialized hardware), end-user development for more specific purposes is

often difficult even with requisite programming skill. In contrast, peripheral sensors

for common personal computer (PC) software (e.g. Kinect, Leap Motion) have wider

accessibility for focused research purposes.

For example, the Jintronix rehabilitation system [44] offers software based on the

Kinect that includes both therapy games and clinically verified assessments. The

9

software is proprietary and cannot be updated by end users, but it is still flexible in

allowing a high degree of customization, including real-time interaction between the

patient and a therapist operating at a separate console. However, the therapy games

offered by Jintronix, though derived from traditional therapy routines, do not provide

a way to map multiple motions to the same game experience.

Similarly, the VAST Rehab software suite [28] allows for real-time provider in-

teraction with the game environment, including increasing or decreasing difficulty

(e.g., number of enemies). Beyond many of its competitors, VAST Rehab also al-

lows for the mapping of different motions to the same game, offering a selection of

“control modes” in the form of movement patterns pre-written by the development

team. To support this extended selection of control modes, it also supports multiple

devices, including the Kinect, Leap Motion Controller, and specialized third-party

medical devices. However, though it allows the creation of therapist-defined packages

of combined control modes, end users are still limited to the activities defined by the

developers and are not empowered to link gameplay objectives to arbitrary patient

movements in the case where a new exercise is necessary.

Though not released as a commercial product, a notable tool for body movement

control of a PC is the Flexible Action and Articulated Skeleton Toolkit (FAAST)

project [70]. The FAAST project provides an input emulator for the player’s operating

system (OS) that generates traditional keyboard and mouse signals for the foreground

application based on gestures it detects via a PrimeSense sensor. An advantage of this

approach is its program-agnostic ability to interact with arbitrary software running

on that OS through this emulation. However, like the VAST Rehab system, the

gestures it can detect are limited to a pre-built “action lexicon” without an ability

for end users to descriptively define new gestures. The project proposes to eventually

add machine learning techniques for manually training custom gestures, but it does

10

not address the fact that not all therapeutic exercises are gesture-based. Finally, the

body movements detected by FAAST are reduced to emulated key presses and mouse

input, limiting the expressiveness of the input system and requiring OS mediation,

rather than being consumed directly by the game software.

2.3 Therapy AVG Programming

The creation of AVG games, in particular for therapy purposes, carries several

unique challenges not often encountered in typical game development. Beyond addi-

tional concerns in design and testing, developing for kinematic sensors can be more

complicated than developing for typical button-based control devices.

When a game is intended to use a kinematic sensor as an input device, the most

straightforward path to implementing the game is to integrate the Software Develop-

ment Kit (SDK) made available by the sensor’s creator (e.g., Microsoft). Using this

SDK, developers can search for specific body movement gestures or track targeted

body parts as reported by the sensor and monitor for predetermined motions that

they can then use to drive gameplay.

Unfortunately, this practice often solidifies the purpose of the game and thereby

defines the extent of its use; a player whose required therapy regimen does not involve

that specific movement will not need to play the game, nor is that patient likely to see

expected therapeutic outcomes from playing it. Changes in the targeted body part or

motion require the developer to rewrite the input routine and recompile (rebuild from

source code) the game, after which they must redistribute it to the players. Even if

source code were available to the player or therapist, specific knowledge would be

required for these end users to make the modifications themselves.

Additionally, where many therapeutic goals might be achieved through body mo-

tions detectable by a single sensor, the game’s therapeutic application is further en-

11

hanced by support for multiple sensor types. A minority of existing solutions, such

as the aforementioned VAST Rehab software, do provide support for multiple sen-

sors and select exercise equipment. For example, one patient’s therapy task can be

assigned a full body control mode detected by the Kinect, while another can be as-

signed a fine motor control mode using the Leap Motion Controller for the same game.

Though support for multiple devices will likely always need to be explicitly provided

by the framework developer, such solutions greatly increase the range of movements

that can be assigned to gameplay. Though examination of multiple device support is

beyond the scope of this research, SUKI currently supports the Microsoft Kinect and

Orbbec Astra and has been designed to easily extend to support additional devices.

Games are often time-consuming and expensive to create, so any practice that

developers can employ to make their games applicable to broader forms of therapy

enable them to render more return on their investment. Similarly, games can be costly

to purchase, so therapists are eager to find more ways to re-purpose existing games

for multiple patients and a broader set of therapeutic goals. Finally, a given patient

may like the gameplay experience of some games more than others, and therefore

players themselves would also likely benefit from an ability to adapt the games of

their choosing toward the particular therapies in which they are engaged.

2.4 Accessibility and Individualization

Beyond the need for more flexible input in the design of AVGs, accessibility and

player capability are primary concerns to AVG developers. More recently, the games

industry has begun to include consideration for player accessibility among their of-

ferings. However, aside from merely providing user interface (UI) options to support

a broader range of players (e.g., colorblind mode), there are scenarios in which the

gameplay itself should adapt to accommodate individuals, especially when the game’s

12

purpose is to provide therapy for those players.

To address this, physical therapy researchers are already investigating games that

can be adjusted for player capabilities in the physical space, calibrating gameplay

expectations to known player physical limits. For instance, Paul J. Diefenbach et al.

have designed systems that can take into account a player’s reaching distance and

joint flexion to prevent gameplay objectives that would be impossible for them [22].

However, there is a reason to believe that other factors might similarly improve player

enjoyment and engagement (and by extension improve AVG therapy effectiveness) if

game developers properly accounted for them.

The therapy AVG software offered by Doctor Kinetic [24] and Jintronix [44] include

an automated patient calibration phase prior to exercise, but this must be performed

manually on a regular basis in order for the system to adjust to changes in the player

over time. Additionally, the calibration must be performed outside of a regular session

prior to play; though the system can adjust itself to the patient’s needs, it does not

do so in real time during game play. In this way the software is highly configurable,

but not necessarily adaptive.

Physical therapy is employed as an intervention for many types of conditions and

disabilities [32, 38, 50, 59], and the patients targeted by these interventions present

with highly varied symptoms and needs [17, 42, 50]. We propose that the application

of serious game theory, particularly the techniques presented in the field of adaptive

games research, is specially positioned to assist in implementing optimal physical

therapy strategies. With such an approach, it is possible that methods previously

employed to improve gameplay experience can instead work to tailor therapy not

only to each player but to each player as they themselves change over time [55].

Though evaluating clinical efficacy is beyond the scope of this research, a mechanism

like SUKI is a needed component for researchers to conduct such investigations.

13

To this end, the following section explores fundamental theory behind adaptive

game techniques, including player modeling, dynamic difficulty adjustment, and a

proposed taxonomy for approaches to game adaptation. Through this discussion, we

will examine how a solution like SUKI can contribute to this field and potentially

provide a method for increasing accessibility and individualization in therapy AVGs.

14

3. RELATED WORK

A principle approach to maximizing enjoyment within a video game is to take ad-

vantage of the fact that games, unlike most other forms of media, provide experiences

that can adapt to new information in real time. Due to the natural involvement of

a computer in video games and the algorithmic nature of their interactive systems,

the game can “experience” the player at the same time the player is experiencing the

game. As Janet H. Murray explains, the addition of a computer element demands

a participatory response, and as a result, the relationship between the audience and

digital media artifacts should be viewed as reciprocal [56].

One could argue that this reciprocal relationship is continually realized merely

in the constant adjustment of the game environment based on player controls. As

a player directs an avatar through a virtual environment and manipulates artifacts

within the game, the software responds by accepting these instructions, altering state,

and offering affordances. Though explicit player instruction to the environment is a

valuable basis for adaptation [13], there remain opportunities for a game to adapt itself

at a broader and more fundamental level based on an understanding of the player

aside from the player’s conscious action. Games that attempt to infer information

about the player behind the controls and dynamically adjust to suit that player are

known as adaptive games.

Adaptive games can be informed by a player profile reflecting one of the several

theoretical models, or they can infer characteristics of the individual player through

a deeper analysis of that player’s in-game behavior. Because the general goal of

an adaptive game is to maximize player enjoyment and engagement, we will first

discuss the concept of flow [20], followed by a discussion of player modeling in games.

Following this, we will then discuss a typical implementation of adaptive gaming

15

called Dynamic Difficulty Adjustment (DDA) followed by an overview of the bases

for adaptation commonly seen in adaptive games research.

3.1 Psychological Flow

Psychologist Mihaly Csikszentmihalyi [20] presented the concept of psychological

flow in his landmark publication exploring how individuals achieve a sense of enjoy-

ment in various activities. As Csikszentmihalyi explains, fulfillment is most likely

achieved when a person engages in an activity that provides a challenge appropriate

to their ability. When the challenge of an activity exceeds one’s ability, the individual

might become frustrated; however, approaching a challenge that does not meet one’s

ability could cause boredom. According to Tracy Fullerton, this concept for games

implies that, to evoke happiness through continual achievement, the difficulty of an

experience should increase or decrease along with the player’s ability [31].

Not limited to merely a ratio of ability to challenge, the concept of flow also

addresses other aspects of activities. These include the suitability of a task toward

an individual’s existing skillset, the clarity and perceived achievability of goals, the

quality of incremental feedback yielded by the interaction, and the level of agency

the activity provides [20]. Maximizing the player’s sense of flow is key to maximizing

the incentive for the player to engage the game and enjoyment derived while playing

[31].

3.2 Player Modeling

Adaptive games often rely on player modeling, in which the game either draws

from an existing set of data on the player or builds an internal model of the player

at runtime or between play sessions [27] by observing behavior and discerning motive

and player preference. Player models aim to capture a definition of a player’s traits

16

and the underlying motivations of a player [37].

Conventional approaches to maximizing player enjoyment in a game, particularly

from the perspective of one designing games or offering games as a recommendation,

is to evaluate characteristics of the player and attempt to pair them with games that

exhibit qualities known to correlate well with those profile features. As exemplified

below, research along these lines aims to improve our models for defining player

profiles and establish stronger correlative evidence between an individual’s attributes

and notable aspects of gameplay.

A seminal work in the investigation of player types was presented by Richard

Bartle [6], in which he examined the motivations of players in Multi-User Dungeon

(MUD) games. Though primarily drawn from qualitative insight, his findings have

served as a fundamental reference in the field of game design often referred to as the

“Bartle Taxonomy.”

Interviewing and observing the written communication of a few dozen experienced

players of the genre, Bartle derived a model in which he separated gamers into four

distinct categories, each driven by a particular game activity. Achievers are players

focused on succeeding within the game’s parameters and definitions for success and

pride themselves in the commendations granted to them (publicly or privately) by

the game. Explorers are players enticed by the promise of new knowledge within and

about the game; they find enjoyment in possessing a deeper understanding of the

game’s breadth and depth, both concerning the game environment and the technol-

ogy that implements it. Socializers leverage the game as a medium through which

they can make interpersonal connections, and they assess their value in terms of the

relationships and political stature they hold among the other players in the game.

Killers delight in their ability to impose on others players and influence the game-

play experience of others (positively or negatively) with the affordances that a virtual

17

environment can provide.

As video games have evolved, so has the nature of the models we use to describe

player motivations. More recent studies into gamer motivation and identity by Nick

Yee [76, 77] have extended the work presented by Bartle. As part of his Daedalus

Project, Yee offered a more quantitative approach to validating his intuitive conclu-

sions via data collected from thousands of massively multiplayer online role-playing

game (MMORPG) players [76]. In doing so, Yee refined the model offered by Bartle

based on an exploratory factor analysis.

Aroutis N. Foster examined player models in the context of education science,

where analysis of children playing a simulation strategy game suggested a dual-axis

system for modeling learning styles [29]. In this model, he evaluates player learners

for the value they place in achieving in-game goals (Goal Seekers) or experiencing and

mastering the content (Explorers), which he then positions on an axis orthogonal to

their tendencies toward introversion or extroversion. Goal Seekers with lower socia-

bility are Achievers who pursue personal successes, while those with higher sociability

classify as Competitors driving for more visible successes compared to other players.

Explorers with less sociability are Comprehensive Explorers who desire a breadth of

game knowledge, while those with more sociability are Localized Explorers in pursuit

of depth in specialized knowledge. Studies like those by Justin H. Patterson have

explored the application and prediction of Foster’s model through examination of

gameplay metrics [61].

3.2.1 Non-static Player Models

Though researchers often approach player models with the assumption that they

convey constant and static characteristics regarding the player, recent research by

Josep Valls-Vargas et al. suggests that a player’s model may change or evolve in the

18

course of play [72]. Proposing a more flexible framework based on the Foster model

that evaluates player behavior within smaller temporal segments of a larger play

session, the study uses sequential machine learning techniques to predict these shifts.

One challenge presented and explored in this approach is the level of granularity

chosen in the analysis, where evaluating time segments that are too small or too large

reduce the accuracy of the analysis. Exploring the idea that player models should

not be viewed as static but possibly migratory as the player increases exposure to the

media and themselves change over time is a departure from earlier studies; even so,

it is of particular interest to our investigation of an activity intentionally designed to

promote change in the player.

3.3 Dynamic Difficulty Adjustment

Catering directly to the concept of flow, one of the most common approaches

to adaptive games research is exploring techniques for determining optimal game

difficulty. Jenova Chen [15] explored in his master’s thesis the use of a Dynamic

Difficulty Adjustment (DDA) system in an attempt to apply the concept of flow

toward a more engaging game experience. Chen’s work extends a line of inquiry that

includes the research of Robin Hunicke and Vernell Chapman before him, in which

they employed a DDA system to manipulate the economy of a game to grant or

restrict resources based on the player’s performance [39].

More recent studies have explored the difficulties of managing DDA systems in

multiplayer competitive games [60] and how psychological and sociological models

can help inform the game on how to offer the most compelling types of challenge

[36]. Justin Alexander et al. examined the impact of DDA systems on different

player types (namely, casual vs. experienced gamers) to discover several differences

between them. Among their findings were that casual players prefer easier modes than

19

experienced players regardless of their actual skill, experienced players are more likely

to accurately select their optimal difficulty level, and the enjoyment of experienced

players correlates with the challenge provided [2].

Adaptive games can also draw from physiological data, such as real-time biomet-

rics. Changchun Liu et al. [53] outfitted players with wearable sensors that measured

signals known to correspond to the players’ anxiety levels while playing a game pro-

visioned with a DDA system. Using this so-called “affect-based DDA,” as compared

in the study to a system based solely on gameplay performance, Liu et al. demon-

strated that this alternative approach to adaptive game design not only resulted in

a more satisfying and challenging game experience but also yielded greater overall

player performance.

3.4 Basis for Dynamic Adaptation

Beyond the above examples, there have been many explorations into adaptive

games that have targeted different aspects of the player or the player’s game expe-

rience to find the most useful target metric (or basis) for dynamic adaptation. The

following is a review of these categories of approaches along with examples:

Performance Player performance within the game system [5, 15, 39, 60, 68, 71].

Biometrics Physiological response (e.g., heart rate) [53].

Instruction Preference or direction given explicitly by the player [13].

Engagement Attempts to measure engagement or immersion metrics in situ, such

as through examining eye movement [43] or body language [73].

Personality Deriving measurements of the player in terms of a psychological or

sociological model [19, 36].

20

Preference Deriving player predilections through observation of choices made in

the game environment [4].

Demographic Presumptions based on player age, gender, nationality, or other pop-

ulation characteristics [14].

Archetype Placement of the player in a gamer archetype model, such as those

proposed by Bartle or Foster [61].

Behavior Assessment of player qualities from an analysis of in-game behavior

[27, 72].

A basis for dynamic adaptation not heavily represented in current literature is one

in which known qualities of the player’s capability (in our case, physical capability)

are leveraged to alter gameplay. For example, this research proposes that knowledge

of the player’s height, leg strength, and right elbow flexion could be used as input into

an AVG to provide a more optimal experience for an individual player. As another

example, consider a puzzle game that employs cognitive metrics such as the player’s

working memory capacity (i.e., via n-back tests) to alter the difficulty or nature of

the problems.

This approach is related but distinguished from the other categories listed above.

For example, physiological data regarding the player are similar to biometrics; how-

ever, by this definition, they refer to relatively immutable aspects of the player that

are determined a priori rather than at runtime. Similarly, demographic information

may in some cases correlate or potentially predict some capabilities, but they are not

measurements of the capability itself. Finally, a player’s capability profile may indeed

affect the player’s performance in a particular task within the game, but the metric

is regarding that source factor and not a measurement of resulting performance.

21

In examining the qualities of the target metrics above, we suggest that two key

aspects can categorize the metrics. The first is whether the metric can be measured

directly (“Empirical”) rather than inferred through theory (“Interpretive”). This di-

chotomy distinguishes dynamic adaptation approaches that can refer to an aspect

of the player as ground truth as opposed to those that rely on inference or sup-

plementary theory. The second is whether the metric is correlative and serves as a

presumed predictor of the player’s quality of interaction with the game (“Antecedent”)

rather than a measurement of actual engagement consequential to that interaction

(“Consequent”). This dichotomy distinguishes the adaptation approaches that rely

on assumptive correlations to player flow versus those that attempt to measure flow

itself.

The combination of these two spectrums on orthogonal axes can be visualized as

depicted in Fig 3.1. With the Empirical-Interpretive range along the horizontal and

the Antecedent-Consequent range on the vertical, we can see the groupings under

which each of the previously mentioned adaptation bases fall.

For example, a basis for adaptation founded on player biometric data is empiri-

cal, because it targets objective physiological data measured by instruments directly

monitoring the player. The study mentioned above by Liu et al. [53] evaluated invol-

untary physiological phenomena such as heartbeat and electrodermal activity to drive

a DDA system. This approach is in contrast to a more interpretive personality basis

approach such as that employed by Hawkins et al. [36], where players were evaluated

on a psychological scale regarding their willingness to take risks based on observations

of their decisions. Such a technique is tracking a phenomenon that is dependent on

a theoretical, psychological model.

Further, consider a game that adapts based on demographic knowledge of a player.

For example, a trivia game might use the age of the player to favor particular decades

22

Figure 3.1: A mapping of the bases of dynamic adaptation in games discussed in this
section, loosely positioned relative to the degree by which they satisfy the definitions
of the two quality axes. Note that in this proposed taxonomy, the categories are not
necessarily of equal area, and many may overlap. The approach targeted by SUKI
explores the use of known player capability (orange) as an empirical, antecedent basis
for adaptation.

when pulling questions regarding music. Like with biometric data, the demographic

attributes are nonsubjective, and like both biometric and personality traits, the target

metric is one anticipated to correlate to game enjoyment but is not a measurement

of that enjoyment itself.

In this way, all of the three aforementioned metric types qualify as antecedent

bases according to our definition. While the accessibility of trivia questions or a

particular stress response detected in the player may be known to correlate with the

player’s enjoyment, it is not directly targeting a measurement of flow state or its

indicative qualities such as attention, presence, immersion, or self-reported engage-

ment [43]. It is important to note that flow itself is a theoretical phenomenon and

cannot be observed directly, but we find distinction in whether the metric directly

targets the consequential engagement of gameplay or a proxy metric anticipating that

23

engagement.

For example, consider the approach of Jennett et al. [43], which uses specialized

cameras to track pupil movement and dilation in participants engaging in various

types of computing activity. They explored potential correlation between gaze trend

data (specifically, fixations per second) and a subsequent flow state questionnaire

in both immersive and non-immersive conditions to discover significant changes in

eye movement patterns as the player becomes immersed in the activity. Though not

directly employed toward dynamic gameplay at the time of that study, an adaptive

game could use such a metric as an example of an empirical, consequential basis for

real-time adaptation.

We derive from the above an opportunity to explore player capability as a basis

for dynamic adaptation. The relationship between games and their players is meant

to be reciprocal, and this is profoundly realized in the form of adaptive games that

can adjust in real time to match the needs of the individual player. Player models are

often the mechanism through which adaptive systems are implemented; however, we

understand that player traits should not be treated as immutable, but rather qualities

that can change over time. This is especially true in the case of physical capability in

therapy scenarios where the intent is precisely to modify player capability over time.

In the next section, we explore SUKI as an approach to dynamic adaptation based on

a mutable player model that can adjust the game’s interpretation of player movement

to better customize play experience to individual players.

24

4. PROJECT DESIGN

We understand from the present literature that flow is a key factor in maintaining

player engagement and motivation [31], and we also know that player engagement and

motivation are the key factors in driving successful patient outcomes in AVG therapy

games [65]. Further, in a study applying an experiential model to adaptive games,

Kristian Kiili states, “Bad usability decreases the likelihood of experiencing task based

flow because the player has to sacrifice attention and other cognitive resources to

inappropriate activity” [49]. Therefore, it follows that usability is a factor that may

ultimately influence patient outcomes in a therapy AVG.

Therapy AVGs are uniquely sensitive to this issue, where many of the patients play

the games to the benefit of precisely the same factors that might disrupt usability.

To create engaging and productive therapy games both in service to and in spite of a

player’s potential impairment, researchers and developers should seek solutions that

maximize accessibility, flexibility, and versatility in body motion input.

Therefore, we believe that beyond providing a solution to the practical problem

of improving the flexibility of motion-based input in games, the SUKI system can

serve as a useful test bed for examining adaptive game theory. In the previous sec-

tion, we discussed a multitude of ways in which adaptive games researchers have

constructed games that can adapt to player performance, biometric feedback, prefer-

ences, personality, behavior, and even demographic information. However, one area

not thoroughly covered in existing literature are games that adapt to the known or

discovered capabilities of the player. This research aims to not only propose a better

way for developers and researchers to design input routines for body motion-based

video games but also to examine the potential for player capability as a new basis for

adaptive games.

25

4.1 System Overview

The System for Unified Kinematic Input (SUKI) system aims to address two

fundamental challenges in body motion input programming and therapy AVG devel-

opment. The first is the inherent complexity of writing abstract routines for human

body controls due to the breadth of the domain. The second is the difficulty in de-

signing input processing methods flexible enough to address a broad range of player

physiology and therapy goals. In previous sections we examined the current ap-

proaches to game-based therapy through commercial exergames (e.g., the Nintendo

Wii Fit), therapy-specific AVGs (e.g., Jintronix, VAST Rehab, and Doctor Kinetic),

and general input emulation tools (e.g., FAAST). Though many of these offerings

provide partial solutions to the fundamental challenges presented, we do not yet have

a solution that addresses them all.

Specifically, we desire a system that leverages the full expression of kinematic

movement rather than a simple measurement of exercise output, allows for extensible

end-user configuration for how player movement drives gameplay without requiring

specific knowledge of computer programming, does not limit input configurations

to movements predetermined by the developers, enables these changes to be made

without the need of source code or recompiling the application, and can adapt its

input processing based on the demonstrated individual capability of the player.

SUKI is an input abstraction library that decouples the game’s interpretation of

input signals from the body motion data reported by the kinematic sensor, where

the two are linked by a user-defined text file loaded at runtime. This text file, writ-

ten in a JavaScript Object Notation (JSON) format, implements a schema that the

SUKI system uses to convert measurements of the player’s movement to values that

can be consumed by the game software at runtime. The games are provisioned at

development time with abstract input anchors through which it can read these values

26

Figure 4.1: Simplified Overview of SUKI. The kinematic data registered by the sensor
is not directly interpreted by the game engine as in traditional AVGs. Instead, the
game is provisioned with abstract input anchors, and these anchors are served values
at runtime according to player movement and the prescribed interpretation defined
in JSON schemas created by the end user. Schemas can be customized and loaded or
unloaded on demand to change how player movement drives gameplay.

from the SUKI system to drive gameplay. Demonstrated in later sections, the SUKI

schema design provides end users with a toolkit for defining custom movements based

on angles and distances between areas of the player’s body, aiming to be flexible and

expressive while not requiring specific programming knowledge or experience. There

are no limits to the number of JSON files that can be created by an end user, and they

can be loaded and unloaded from the game at any time to change the relationship

between player movement and gameplay on demand. An overview of this system is

illustrated in Figure 4.1.

4.2 System Requirements

The following discusses the design decisions and implementation of the SUKI

system, along with some areas of consideration that inspired and informed its devel-

opment and SUKI’s respective contribution to these areas. It concludes with a list of

requirements that guided the creation of the system.

27

4.2.1 Motion Controller Programming

Traditional game development, namely those that use typical button- or key-based

controls, have unique affordances concerning the programming of input routines. In

general, the task of writing for abstract input is straightforward, and tools and prac-

tices exist for provisioning a game to support an array of controls. Even without

developer intervention, operating systems provide system-level tools that enable play-

ers to remap commands to different keys or even different devices. These solutions

provide a substantial amount of flexibility to gaming, particularly for players who

may have intervening factors that prevent the use of a particular device or control

configuration.

However, similar conveniences do not exist for games that rely on human body

movement to convey user intent. Not only are the routines for detecting input fixed

to a greater degree, but the domain of expression in analog human movement is larger

and vastly more complex than that of a discrete-button controller or even a mouse and

keyboard. This issue presents additional complexity when faced with the challenge of

adapting a motion-based game for a player, whether attempting to remap the existing

controls or to change the therapeutic goal of the activity entirely.

For instance, consider a game in which a player steers a spaceship through an

asteroid belt (Figures 4.2 and 4.3). The game was originally written to track the

angle of the player’s outstretched arms and match the tilt of the arms to the roll of

the ship. However, what if a player with limited upper arm mobility wanted to play

the game? For example, how could we easily remap the controls to follow the left or

right lean of the player’s torso, such that it might be valuable as a posture or balance

control exercise for a player with Parkinson’s disease?

SUKI contributes to this area by providing a solution for achieving this capability

enjoyed by traditional games in a new modality. With SUKI, we can gain some of the

28

Figure 4.2: Input routines are mapped to
specific user input, such as the binding of
the ship’s roll in Space Run to the bank-
ing of the player’s arms to dodge the as-
teroids.

Figure 4.3: As the user banks to the left
in Space Run, the ship follows, but what
if a player with different therapeutic goals
wanted to play the game with alternative
movement?

same affordances in motion controller games that we currently enjoy in traditional

game development.

4.2.2 Game Adaptation

Beyond remapping input controls and re-purposing games for new therapeutic

use, another difference between traditional games and motion-based games is the

specificity of control. Except for the analog joystick or trigger component on modern

controllers, most button presses on a game controller register as a simple, singular

event delivered to the program. Keyboard strokes and mouse clicks similarly are either

pressed or released. However, movement of the human body is naturally analog, and

unlike with a controller, we cannot ensure that every player has the same scope of

input potential.

To provide better therapy, developers often provision AVG software with a variety

of customizable options and parameters, but even establishing parameters for gesture

detection and thresholds for movement assume that a set of pre-programmed input

29

Figure 4.4: An AVG setup screen where a therapist has calibrated
the game for a patient with limited use of their left arm. Game
activity will take place within the designated area on the right side of
the screen to keep gameplay engaging. With SUKI, this calibration
zone would not need manual adjustment; instead, it would develop
over time after observing the player.

routines exist to watch for those gestures and evaluate those thresholds (Fig 4.4). If

a player or therapist ever needed an adjustment the developers had not predicted,

they have no means by which they could make the necessary changes. What if the

input logic for the game existed outside the application in a way that was configurable

without requiring a modification to the game software itself?

Further, since this logic could be changed over time outside the game, what if

the software itself could make these changes over time as it began to understand the

needs of the player? Though SUKI input configuration files can be managed manually

by the therapists and players, our solution will also demonstrate the use of adaptive

game techniques to fine-tune the challenge of the activity based on a knowledge of

the player’s capabilities as recorded in their unique profile.

SUKI contributes to this area by providing a method for adapting a game’s input

30

requirements based on knowledge gained regarding the player both ahead of time and

during gameplay.

4.2.3 SUKI Requirements

When considering the requirements for a satisfactory solution to the AVG devel-

opment challenges discussed, our design aims to implement six key features:

1. Abstract Input: Enable developers to write input routines that are abstracted

and decoupled from the particular motion capture device or anticipated gesture.

2. No Recompiling: Enable therapists to modify the gameplay experience to-

ward customized therapeutic goals without any change to the game’s code.

3. Patient Individualization: Allow the input to be tuned or calibrated to meet

the physical capabilities of the individual patient.

4. Compound Metrics: A modular, flexible system that allows for the applica-

tion of multiple schemas at once.

5. Runtime Updates: Schemas can be updated at runtime to affect gameplay

immediately.

6. Ease of Integration: A portable, reusable software library that new and

existing AVG projects can easily import and integrate.

4.3 System Architecture

The following is an overview of the architecture of the SUKI framework from the

perspective of the developers who may implement it in their applications and the

users who may configure custom schemas to address their individual therapy goals.

31

Figure 4.5: Simplified Overview of SUKI System Architecture. Input Resolutions
(green) in the rightmost column are defined by developers and integrated into the
game. Kinematic elements (burgundy) in the left-most column filter body data from
multiple sensors to a unified format for system processing. The SUKI Schema in the
center column binds the two together and adds Operators (gold) that can manipulate
the data as it passes between the body motion data sensor and the game software.

4.3.1 Overview

The SUKI system consists of three primary components as illustrated in Figure

4.5. The first is a definition of Input Resolutions, a set of abstracted user signals

with which developers can provision their game in anticipation of integration with

motion-based inputs. The second is a codified collection of Kinematic Elements, an

organizational set of the information a program can expect to receive from a kinematic

device. The third is a set of flexible Operators, which describe the manipulations

that should be performed on the Kinematic Elements before they resolve into input

commands. The particular relationships among all components are defined by a SUKI

Schema (currently implemented as a JSON string), which can be loaded and unloaded

on demand to alter the game’s behavior concerning player input.

The following sections will discuss Input Resolutions, Kinematic Elements, and

SUKI Schema components (including Operators).

32

4.3.2 Input Resolutions

To determine how the modified signals from the kinematic sensors will resolve to

commands within the game, we must consider the fundamental categories of informa-

tion that users convey to computer systems to implement control and indicate their

intent to that system. To address this question, we seek to organize the types of

information that a typical game would require from a player, regardless of the device

or modality that facilitates that communication.

After reviewing input requirements from several AVGs and games in general, we

derived the following categories of input through which players register their direc-

tions to the software. All user intents (or Input Resolutions) supported by SUKI are

presented in the following list:

Inputs Conveying Timing & State Information:

Trigger A simple event that “fires” once and is immediately reset. A trigger does

not carry additional data but by its nature inherently conveys temporal

data concerning the moment in which it fired. An example of a trigger

input used in games is a command from the player for their avatar to jump

at a specific moment in time, perhaps by pressing a button at that same

moment.

Signal A trigger that is not necessarily reset after it fires, but must be explicitly

reset. A signal can be used to indicate a binary state (on or off) over

time and can also be regarded as a compound trigger (i.e., two signals that

indicate a change in state). An example of a signal may be a command

from the player for their avatar to sprint, perhaps instructed to begin with

a button press and end when the button is released.

33

Inputs Conveying Numerical Data & Value Information:

Range A value on a continuum between two bounds. SUKI normalizes range values

to a floating point value between zero and one (inclusive). An example of

a range may be the degree to which the player commands a virtual vehicle

to turn, perhaps as conveyed by the horizontal offset of an analog joystick.

Location A coordinate for a position in 2D or 3D space. A location can also be

regarded as a compound range (i.e., multiple range values in aggregate).

Like ranges, in SUKI all location axis values are normalized to floating

point values between zero and one (inclusive). An example of a location

input may be a command from the player to fire their weapon at an object

on the screen, perhaps communicated as a mouse click or a touch on the

screen at that object’s location.

This set of input resolutions attempts to be comprehensive to serve the player

control needs in a video game; however, additional categories may exist. For exam-

ple, one could argue that array information (e.g., a string representation of a voice

command or an audio stream produced by singing) could be used as input into a game

but could not be implemented using the categories above. Conversely, some of these

proposed counterexamples could be regarded as a compound or aggregated grouping

of the types listed above. Further examination and addition of one or more of these

fundamental types may enhance the coverage and applicability of this taxonomy.

By invoking these four input types, developers can declare input resolutions in

their software with unique names that register in the system and become available

by named reference. With a SUKI library built for the Unity game development

engine, developers will typically query for the values of their provisioned inputs in an

Update() or FixedUpdate() function called each time the graphics engine or physics

34

engine renders a new frame of the game. Listing 4.1 shows an example of what the

developer code might look like when querying the SUKI library for the values of

provisioned input anchors for each of the above types.

void Update () {

// cause the character to jump if triggered

if (Suki.GetTrigger("Jump")) {

mainCharacter.Jump();

}

// raise/lower shield depending on signal state

bool shouldRaise = Suki.GetSignal("ShieldUp");

if (shouldRaise && !shield.IsRaised) {

shield.Raise();

} else if (! shouldRaise && shield.IsRaised) {

shield.Lower();

}

// shoot fireball at speed queried from range input

if (Suki.GetTrigger("Shoot")) {

float firePower = Suki.GetRange("Firepower");

StartCoroutine(ShootFireball(firePower));

}

// move a pointer on the screen

Vector2 2Dtarget = Suki.GetLocation2D("Pointer");

pointer.transform.position = ScreenCoordinates (2 Dtarget);

// move light source to the 3D location

Vector3 3Dtarget = Suki.GetLocation3D("Light");

light.transform.position = WorldCoordinates (3 Dtarget);

}

Listing 4.1: Sample Code Referencing SUKI Input Resolutions

4.3.3 Kinematic Elements

Within the SUKI library, we use the term node to describe one of many pre-defined

locations on the body tracked by a motion input sensor. For example, the Microsoft

35

Kinect v2 tracks 25 individual nodes (called “joints” in the Kinect nomenclature) [54].

The player skeleton refers to the full set of all nodes reported by the sensor.

We use the term frame to describe a snapshot of the player’s kinematic data at a

particular moment in time. The frame contains information for the entire skeleton,

including positions and orientations of every defined node. Motion input devices

usually capture these frames at a constant rate. For example, the Microsoft Kinect

v2 processes frames at 30 Hz [52].

The following are the fundamental Kinematic Elements of the player skeleton on

which SUKI can perform measurements each frame:

Node Position A vector describing the position (x,y,z) of a node in 3D space.

For example, this might track the 3D coordinate location of the

player’s head.

Node Orientation A Euler angle describing the orientation of a node in 3D space.

For example, this might track the direction the player’s right

palm is facing.

Vector Between A vector describing the relative position (x,y,z) of one node to

another. For example, this might track the vector formed be-

tween a player’s hand positions in 3D space. From this value,

we can measure either the direction between the nodes or exam-

ine the scalar value (length) to determine the distance between

the two nodes.

Angle Between The angle formed between two nodes relative to a third node,

thereby forming a node triad. For example, a node triad may be

formed by the right shoulder and right wrist nodes with a con-

nection at the right elbow node. This measurement would cal-

36

culate the angle formed between the RightElbow Ô RightShoul-

der vector and the RightElbow Ô RightWrist vector, thereby

yielding the flexion of the player’s elbow. Though most often

constructed using nodes adjacent to each other on the skeleton,

SUKI supports node triads of any three arbitrary body nodes

(e.g., left hand and right hand positions relative the head) if

noted explicitly in the schema.

4.3.4 SUKI Schema Components

The Input Resolutions and the Kinematic Elements are brought together at run-

time by a SUKI Schema, which exists as a simple JSON string retrieved from a

database or read from a file located on disk alongside the compiled game binary. The

user specifies the file (or files, in the case that they deploy multiple schemas simulta-

neously) at runtime. Schema files can be edited, removed, and reloaded on demand,

enabling the player or therapist to customize as needed the way the engine interprets

input to the individual player’s physical capabilities and therapeutic goals.

As the schemas attempt to distill raw player skeleton data into signals of the

player’s intent, each one defines a discrete player movement that will potentially re-

solve into an input signal for the game. SUKI implements these movement definitions

as a collection of several attributes:

A) The number of nodes it observes (single or multiple)

B) The aspect or relationship of the node(s) it evaluates (position, orientation,

vector-between, etc.)

C) The type of Input Resolution it will target (range, etc.)

37

D) The metric of the aspect or relationship it will evaluate (magnitude, direction,

x-component, etc.)

E) The observed metric’s data type (i.e., vector, scalar)

Additionally, there are a few special considerations that we may have for particular

schemas, depending on their construction:

F) A preparatory adjustment required for the metric prior to evaluation (offsets,

scaling, etc.)

G) An action to be taken on the resulting value (signal setting, value normalization)

These attributes are further organized and expanded upon below to explain the

design of the SUKI schema structure.

A & B - Node Metric

The number of nodes we observe and the features of those nodes we are evaluating

are inextricably tied; therefore, we combine the A and B aspects listed above into a

compound metric called the Node Metric. The Node Metric, or the combination of

node count and characteristic of the node(s) measured, classifies every SUKI schema

into one of four categories:

Position - Vector describing position of a single node

Orientation - Vector describing orientation of a single node

VectorBetween - Vector describing relationship between two nodes

AngleBetween - Scalar value describing the angle in a node triad

38

C - Input Resolution

The second defining element of a schema is its Input Resolution, which determines

which fundamental input representation the schema will render in the application.

Though discussed earlier in Section 4.3.2, they are listed here again to emphasize the

type of data that they generate:

Trigger - An event with no additional data other than the time it was created

Signal - A boolean value indicating whether a state is active or inactive

Range - A floating point value between zero and one

Location2D - A 2-dimensional vector

Location3D - A 3-dimensional vector

A & B & C - Node Metric + Input Resolution

We further classify each schema by a joining of its Node Metric and its Input

Resolution. For example, a schema that raised a signal when the player’s right hand

was within 0.5 meters of his or her head would be a “VectorBetween Signal” schema.

A schema that fired an event whenever the player’s left palm faced upward would

be an “Orientation Trigger” schema. This categorization results in a total of 18

valid schema subtypes, with two of the potential permutations excluded because the

AngleBetween node metric yields a scalar and is not eligible for location resolutions.

Table 4.1 displays the Node Metric and Input Resolutions that may be combined to

form a valid schema.

39

Table 4.1: Node Metric + Input Resolution Schema Compatibility

Position Orientation
Vector
Between

Angle
Between

Trigger 4 4 4 4

Signal 4 4 4 4

Range 4 4 4 4

Location2D 4 4 4 7

Location3D 4 4 4 7

4 - Schema is possible
7 - Schema is not possible

D & E - Reduction

For every Node Metric + Input Resolution permutation, we must declare what

element or aspect of the node metric we want to observe and resolve to an input

intent. This decision will also require us to determine the data type of the resolution;

for example, a trigger or signal will expect a boolean (to fire in the former or to

indicate the current state in the latter), a range will require a floating point value,

and so on.

The schema’s Reduction operator is responsible for performing this conversion

from a vector-based schema to a scalar-based resolution. For example, consider a

game avatar with variable running speed that the therapist wishes would be faster

the further the player extends a leg to the side outward from his or her body. The

appropriate schema might monitor the vector between the player’s pelvis and right

foot nodes but would want to reduce the vector to just its ’x’ component before

yielding a range input value. Similarly, consider the laser gun on a spaceship that the

therapist wishes would only fire when the player rotates his or her left palm toward

the screen (and sensor). The schema might monitor the orientation of the player’s left

hand but would want to calculate the dot product between the hand’s orientation and

the forward vector k̂ to yield a scalar value indicating how closely they are aligned.

40

Note that schemas with location data resolutions cannot employ a reduction op-

erator because we do not want to reduce our node metric’s output vector to a scalar

value. Also, because the node metric for an AngleBetween schema is already a scalar,

it also cannot use a reduction operator.

F - Calculation

Before the reduction is applied, we can perform transformations on the node

metric’s vector using a Calculation operator, which could normalize or re-center a

vector, find a cross product, or scale the vector before other operators are meant to

process it. Calculations apply only to vector node metrics, so they are not available

on AngleBetween schemas. However, they are available (and optional) for all input

resolutions on all other schemas.

An example of a pre-reduction vector calculation would be subtracting a z-value

of four to re-center a position vector to four meters in front of the sensor. Another

example might be to calculate the cross product of a vector between two nodes and

the upward vector ĵ to isolate a patient’s limb movement within a physiological plane.

G - Conditionals & Bounds

Triggers and signals require a test (or Conditional operator) to determine whether

or not they should respectively fire or raise. Similarly, ranges must be normalized to

a value between zero and one using the extents defined in a Bounds operator. The

same applies to location (both 2D and 3D) resolutions so that their components lie

between zero and one.

An example of a conditional might be to fire a trigger if a distance between two

nodes drops below a threshold. A schema’s bounds field might call for normalization

of the angle of the elbow (e.g., bounded at 30-150 degrees) to a range value between

41

zero and one.

4.3.5 SUKI Schema Restrictions

The previous section discussed the information required by a schema to effectively

associate the input resolutions provisioned in the game by the developer with the

kinematic elements available via the body motion input device while providing the

flexible elements (operators) required to define adjustable relationships between them.

However, as noted, not every schema type can employ each of the four operators.

Table 4.2 notes which components are required, restricted, or optional with each Node

Metric + Input Resolution permutation.

Table 4.2: Node Metric + Input Resolution Operator Compatibility

Position Orientation
Vector
Between

Angle
Between

% t ? || % t ? || % t ? || % t ? ||
Trigger Q 4 4 7 Q 4 4 7 Q 4 4 7 7 7 4 7

Signal Q 4 4 7 Q 4 4 7 Q 4 4 7 7 7 4 7

Range Q 4 7 4 Q 4 7 4 Q 4 7 4 7 7 7 4

Location2D Q 7 7 4 Q 7 7 4 Q 7 7 4 7 7 7 4

Location3D Q 7 7 4 Q 7 7 4 Q 7 7 4 7 7 7 4

Component Type:
% Calculation - Converts a vector into another vector
t Reduction - Reduces a vector to a scalar
? Conditional - Evaluates a scalar to produce a boolean
|| Bounds - Normalizes a vector or scalar to the same type

Component Type:
4 - Schema must have this operator
7 - Schema cannot have this operator
Q - Schema can (but does not have to) have this operator

42

4.3.6 SUKI Schema Definition

Listing 4.2 contains the basic JSON definition for the SUKI Schema. As dis-

cussed later, some operator fields have additional sub-fields that engage the profile

and adaptation engine.

{

"name": "UniqueIdentifier",

"resolution": "ResolutionType",

"device": "DeviceName",

"metric": "MetricType",

"nodes": ["NodeName", ...],

"calculation": {

"operator": "VectorOperator",

"vector": {"x":0.0, "y":0.0, "z":0.0}

},

"reduction": {

"operator": "ReductionOperator",

"vector": {"x":0.0, "y":0.0, "z":0.0}

},

"condition": {

"operator": "ScalarOperator",

"scalar": 0.0,

"percentage": 0.8

},

"bounds": {

"low": 0.0,

"high": 0.0,

"extents": Boolean

}

}

Listing 4.2: SUKI Schema JSON Definition

Implemented as a simple text file, the elements of the SUKI schema are available

for modification by the end-user (player or therapist) and enable customization of the

43

Table 4.3: SUKI Schema JSON Fields

Name A string that will uniquely identify this schema at runtime.
Resolution The type of input resolution to which this named schema is tied.

“Trigger” - A single timed event.
“Signal” - A boolean indicating whether a state is active.
“Range” - A floating point value between 0 and 1.
“Location2D” - a 2D vector (x,y).
“Location3D” - A 3D vector (x,y,z).

Device The type of kinematic sensor.
“Kinect” - The Microsoft Kinect v2 sensor.
“Leap” - The Leap Motion Controller sensor.

Metric The metric from the kinematic device node(s) to evaluate.
“Position” - The location of a node in 3D space (vector).
“Orientation” - The orientation of a node (vector).
“VectorBetween” - The vector between two nodes (vector).
“AngleBetween” - The angle formed in a node triad (scalar).

Nodes One or more body nodes defined by the device (e.g., “Head”).
Calculation Performs a vector calculation on the initial metric.

“CrossProduct” - cross product against an operand vector.
“Add” - add to an operand vector.
“Multiply” - scale by an operand vector.

Reduction Reduces a vector value to a scalar.
“DotProduct” - dot product against an operand vector.
“X/Y/ZValue” - extract the vector component.

Condition If resolution is a trigger/signal, defines the value threshold.
“GreaterThan/Equal/LessThan” - compare value to a scalar.

Bounds If resolution is a range/location, defines the normalization.

gameplay experience without any change to the game software. Table 4.3 contains a

description of the elements and applicable values recognized by the system for each.

The developers set the name and resolution fields that associate the schema with

an input anchor they have provisioned in the software. The device, metric, and

nodes fields tie the schema to the kinematic elements established in the SUKI library

integrated by the developer within the game. What remains are the calculation,

reduction, condition, and bounds operators, which provide the additional flexibility

and expressiveness required to satisfy the large number of potential end-user scenarios.

44

4.4 Player Modeling and Adaptation

A flexible input system only partially solves the problem of individualizing game-

play experiences for every user according to their therapeutic goals. Among players

that may be seeking the same type of exercise, and therefore the same physical move-

ments tied to gameplay, there remains variance in their personal abilities to negotiate

and execute those movements that must be considered. This consideration consti-

tutes the other half of the problem we address for motion-based input control systems,

which not only struggle with providing flexibility in linking player motion to game-

play but are affected much more by variance in player physiology than traditional

computer input devices like a keyboard or game controller.

Therefore, in pursuit of maximizing flow and player motivation in AVGs, we inves-

tigate a player modeling strategy that engages the potential for SUKI’s adaptability

beyond its schema flexibility and the types of movements it can interpret. Turn-

ing our focus toward adaptive game systems and player capability as a basis for

dynamic adaptation, we explore how SUKI might incorporate knowledge of the indi-

vidual player in its measurements and analysis to provide a more individualized and

targeted experience.

4.4.1 Overview

Consider a schema that measures a player’s lateral reach and converts it into a

range value called “joystick” in a spaceship flying game to steer the ship, as illustrated

in Figure 4.6. To perform the range conversion, the schema requires a defined bounds

within which to normalize the distance the player was able to reach. Working with a

13-year-old adolescent girl with reduced upper body motility, the therapist sets this

bounds extent to 0.7 meters as an optimal and challenging range for that patient.

The patient plays the game, pulling her arm inward and pushing it out to the side

45

Figure 4.6: Example schema converting the player’s lateral reach into a range input
that controls the ship’s lateral movement.

while leaning to control the ship on screen.

Over time, the therapist may encounter two issues. The first is observed when the

therapy improves the patient’s balance and motility over time, enabling her to reach

farther than the original extent set in the schema. The second is encountered when

the therapist deploys the same schema for new patients with similar conditions and

therapeutic goals. One of the new patients is an exceptionally tall adult male and is

not challenged by the same distance setting, and the second is an adult female who

experienced trauma in her elbow and finds that normalizing the play range over 0.7

meters is far too challenging. In all cases, the therapist could manually update the

schema file, but an adaptive system based on knowledge of the player not only would

improve the schema’s usefulness across patients but would ensure that it provided an

optimal and challenging experience within-patient even as that individual patient’s

capabilities changed over time.

The adaptation feature provided by SUKI addresses this problem. As illustrated

in Figure 4.7, this system consists of two components. The first is a persistent player

46

Figure 4.7: Extended SUKI System Architecture. The operators within the SUKI
schema provide flexibility in the input interpretation and a method for implementing
game adaptability. The kinematic profile tracks player capabilities persistently and
uses this data to set bounds and condition values in the schema appropriate for that
player. The adaptation system detects changes in player capability over the course
of play sessions and updates both the schema and the persistent player profile.

model that reflects the player’s capacity to perform a schema’s movement, and the

second is a monitoring system within the game that can detect changes in this capacity

and use this information to update the schema’s interpretation and the player’s model.

These components can influence the system via the operators in the SUKI schema

and are both explained in further detail in the sections below.

4.4.2 Kinematic Profiles

The SUKI kinematic profile differs from typical player models in that it does

not consider player preferences or predilections [6, 77, 76], nor does it examine a

player’s motivation [29]. However, keeping in line with Heeter’s broader definition for

player models [37] we examine player traits, specifically those related to the player’s

anticipated capacity to perform the movement defined by a schema. Fully realized,

we might someday take direct measurements of the player’s joint flexion, reflexes,

fine motor accuracy, and other determinants of capability that we can use to derive

47

an estimate for player capacity in the schema’s defined movement. However, in its

current implementation, we track the player’s extents relating to the minimum and

maximum values demonstrated or achieved for a schema-specific movement.

Therefore, capability profiles are currently unique for each player and schema com-

bination; they are not at the moment a generalizable piece of information regarding

the player, but by their nature are specific to the domain of the schema. Consider a

scenario following from the side-reach example above in which a therapist works with

multiple patients partaking in elbow flexion rehabilitation. The therapist creates the

schema illustrated in Figure 4.8, where instead of measuring lateral reach, patients

will change the angle of their left elbows (in this case independent of arm orientation),

where joint extension will push the ship left, and flexion will pull the ship right.

Understanding both that different patients will have varying elbow flexion and that

this capability will ideally improve in each patient over time, the therapist chooses to

reference kinematic profile values instead of literal values to define the bounds within

the schema. From observations made by SUKI during during play, the profile for an

adolescent female trauma rehabilitation patient knows that she can currently extend

her elbow to 132 degrees and can flex to 33 degrees. These values become the target

range for the angle normalization, where the patient can play the game and engage in

therapy until her capable range increases. A second patient demonstrates a maximum

extension of only 104 degrees, but the unique kinematic profile associated with that

patient will provide SUKI with an appropriately reduced normalization range.

In the current implementation, player profiles are stored in a database and re-

trieved via authenticated endpoints securely and remotely at the start of each play

session. Persistence of the profile data in a remote server enables the profiles to be

accessed and applied to any session the patient plays, regardless of location (e.g.,

at the clinic or in the home). This implementation is additionally valuable when we

48

Figure 4.8: Sample schema measuring the angle of the left elbow as a range to steer a
spaceship. Instead of defining normalization bounds as literals, the schema references
extents, which will substitute the player’s personal values in the runtime calculation.
Note the use of the “reverse” flag in this schema used on the left side, where a large
angle value will resolve to a small range input to the game (i.e., move the ship left),
and vice versa.

consider how existing profiles for one schema might inform expectations for additional

schemas and even apply across games when engaging in a new activity.

Though this is a topic intended for future work, the idea of existing extents in-

forming future schema values is partially realized in the fact that schemas define a

distinct player motion that is applicable anywhere in a game where there exists an

input resolution of the same type. For example, the schema for normalized left el-

bow flexion targets a range input called “joystick” in Figure 4.8. However, in another

game where a range input is meant to drive the force of a golf swing or the speed of a

running avatar, the same schema could be applied by simply updating the name field

to that provisioned by the developers for that input anchor. In this way, schemas can

apply across games to link the same player motion to new gameplay mechanics, and

the individual player profile will similarly transfer to the new game as well.

49

4.4.3 Adaptation System

The SUKI adaptation system differs from traditional DDA systems in that it does

not examine player’s performance relative to game objectives as a basis for adaptation.

Additionally, it does not examine interpretive metrics regarding flow state or measure

theoretical traits of the player such as personality-based approaches. Instead, SUKI

uses empirical, antecedent metrics regarding player capability as a proxy measurement

for challenge and engagement, anticipating that aligning player ability to the challenge

of the game will increase the likelihood for an optimal player experience [20].

Though therapy AVGs aim to leverage the intrinsically motivating element of

games toward therapy and consequently have an incentive to maximize player mo-

tivation and engagement within the game, the underlying goal of a therapy AVG is

ultimately to provide effective therapy. Therefore, we believe an adaptation system

that uses player capability as its basis is, in this case, more appropriate than one

that merely observes in-game performance or behavior that is both limited to the

domain of the game and a consequence of the interaction (rather than a predictor for

that interaction). This decision also shares a foundation in therapy science, where

we understand that therapeutic goals are optimally pursued by continuously tailor-

ing therapy to the changing condition of a patient, especially in the case of chronic

disabilities [55].

To that end, while player profiles provide flexibility in managing schemas and

applying them to patient sessions, they would be limited if not provided the means

to adapt to changing player capability. Therefore, we have included in the SUKI

framework a component that monitors the player’s demonstrated movement capability

within the context of a schema to update the game and the persistent kinematic

profile in real time as new physical movement extents are demonstrated to have been

achieved by the player.

50

Consider the examples illustrated in Figures 4.9 and 4.10, where a therapist work-

ing with an elderly male patient with Parkinson’s disease wishes to focus on upper

body movement and posture simultaneously. In a game where the developer has pro-

vided a trigger input to fire the ship’s main cannon, as a best practice they have also

provided an optional signal input as a constraint that locks the cannon if a kinematic

condition is not met. The therapist deploys two schemas concurrently: a trigger based

on the patient raising his right arm above his head and a signal based on the player

standing up straight without hunching forward or leaning to the side.

In the first schema, a trigger input fires when the player reaches his right hand

above his head beyond a threshold determined by his kinematic profile (80% of demon-

strated maximum). The second schema, used as a constraint, activates a signal input

only when the patient is standing up straight. The use of the dot product reduction

against the upward vector ĵ allows this constraint to function whether the player is

leaning forward, back, or to either side. The software is programmed to trigger a

notification and gameplay penalties unique to the game when the constraint is not

satisfied (i.e., the constraint signal is not active); in this case, the ship’s cannon will

not fire regardless of the right hand’s position. With explanation from their therapist

regarding the nature of the schema, this compels the player to maintain an upright

posture throughout the session while engaging in other directed movements.

As in the previous section, the first schema makes use of the extent reference

when setting the threshold condition for the trigger input. By default, this would

establish the trigger to only fire when the player exceeds their previously demonstrated

maximum value for vertical reach. However, to promote more achievable gameplay

goals, the therapist has engaged an optional field in the schema available to the

condition operator that sets the threshold to 80% of the maximum extent recorded

in the player’s kinematic profile.

51

Figure 4.9: Two schemas are deployed concurrently in a session with a patient with
Parkinson’s disease. The first schema fires a trigger input within the game whenever
the player raises their right arm above their head over a variable threshold (80%) of
the player’s previously demonstrated capability.

Figure 4.10: An additional schema establishes a constraint to ensure that the player
maintains correct posture while performing other motions. If the player fails to main-
tain proper posture, the game will alert the player and engage game-specific restric-
tions or penalties to encourage the player to correct the constraint.

52

As the player improves, new extents will be reached, thereby increasing the height

at which this condition will fire the trigger. The SUKI adaptation system evaluates

the resulting value from every schema calculation throughout the play session, and if

the player achieves a new extent, that value will be updated in the current session as

well as sent to the database for recording in the player’s persistent kinematic profile.

When the player starts a new session in the future, this updated value will serve as

the starting benchmark for evaluating the trigger condition.

Some conditions for which individuals receive therapy are progressive, and it is

reasonable that over time capability may not improve but instead decline. Over the

long term, this may apply to certain traits even in players without any particular

disability. In the current implementation, the kinematic profile for each player begins

without assumption and determines its values through observation of the player;

therefore, a reset of the kinematic profile for a player experiencing a reduction in

capability serves as an effective solution at present. Currently, therapists can perform

this operation through an administration tool that interfaces with the database. In

the future, the adaptation system may even be capable of detecting these regression

trends over time and modify player expectations automatically.

Together, the persistent kinematic profile and adaptation system enable flexible

schemas that support multiple users without the need to change the schema. They

not only facilitate the tailoring of gameplay experience to every individual player,

but they will continue to update that experience to match the player’s capability

as they achieve new therapeutic goals. Finally, with the ability to reuse schemas

across games, this profile will be activated whenever the player engages this exercise

movement, regardless of the particular game they are playing.

53

5. EVALUATION

We present the effectiveness of SUKI in the discussion of three case studies, which

serve as an evaluation of the solution to fulfill the contribution aims and address the

problems proposed at the beginning of this document. The first case study is an

example of using SUKI to construct a shoulder movement therapy AVG for patients

with cerebral palsy (CP). The second is one in which that same game is re-purposed

via the SUKI system toward an alternate therapy for an entirely different patient

group. The third is one in which an existing therapy AVG developed traditionally

with hard-coded input routines is retrofitted with SUKI and schema-based, adaptive

input functionality to explore SUKI’s potential for enhancing existing games.

In examining the case studies and the examples previously illustrated, we eval-

uate our solution based on the requirements outlined in Section 4.2 and explicitly

enumerated in Section 4.2.3 that we derived from our investigation of the problem

space. Specifically, the first two case studies will demonstrate SUKI’s capacity for

providing a system that enables (1) Abstract Input with (2) No Recompiling that

allows (3) Patient Individualization with support for (4) Compound Metrics that can

be (5) Updated at Runtime. While these two cases will also demonstrate the (6) Ease

of Integration into a game at design time, the third case study will further demon-

strate the ease of integrating SUKI into an application that has already completed

its development.

5.1 Case Study 1: Constructing a Therapy AVG with SUKI

As demonstrated in a few of the design examples, SUKI was selected for implemen-

tation in the AVG therapy game Citadel, a futuristic “endless runner” in which players

54

Figure 5.1: In Citadel, the player guides
a hovering spaceship along a three-lane
track. In this scenario, the ship is “locked”
to one of the three lanes, where the player
must move discretely among them.

Figure 5.2: Players move to hit the green
blocks for points and dodge the red blocks
that halt the ship’s progress. In this sce-
nario, the ship is controlled in an analog
fashion and is not locked to a lane.

guide a spaceship forward down a three-lane track, dodging obstacles and picking up

power-ups (Figures 5.1 and 5.2). Designed for patients with CP, the Kinect-based ex-

ercise game encourages the use of the upper body to promote strength and movement

planning.

5.1.1 Developer Integration

The primary control objective in Citadel is the movement of the ship left and right

while it is automatically propelled forward down the track. To allow for maximum

flexibility, we provisioned three movement modes within the game. The first mode

treats each lane as a discrete position, where the player can input a “Placement” range

value to indicate which of the three lanes they want the ship to fly in (i.e., 0.0-0.33,

0.33-0.67, 0.67-1.0). The second also views the track as three discrete lanes, where it

moves between any two of them when receiving a “MoveLeft” or “MoveRight” signal

input. The third considers the full track as an open field where the player can move

in a more analog fashion anywhere they please (though the green and red blocks will

still be generated to align with one of the three lanes). In this last case, the game

55

reads a range value called “Joystick” and will move the player left and right according

to the value’s distance from the center (i.e., <0.4 to move left, >0.6 to move right,

with a 20% “dead zone” in the center). To implement these movement modes, the

developers include the code from Listing 5.1 in their main game loop.

if (suki.RangeExists("Placement")) {

// range value to define three placement lanes

float range = suki.GetRange("Placement");

float leftMoveX = .33f;

float rightMoveX = .66f;

// move to L/M/R depending on the range value

if (range < leftMoveX) {

MoveToLane(Position.Left);

} else if (range > rightMoveX) {

MoveToLane(Position.Right);

} else {

MoveToLane(Position.Middle);

}

} else if (suki.SignalExists("MoveLeft") &&

suki.SignalExists("MoveRight")) {

// pair of trigger values to move left or right

bool moveLeft = suki.GetSignal("MoveLeft");

bool moveRight = suki.GetSignal("MoveRight");

// add a cooldown to the signals

timeSinceLastLaneMove += Time.deltaTime;

// if there is a distinct direction signal active

if ((! moveLeft && !moveRight) || (moveLeft && moveRight) ||

(timeSinceLastLaneMove < LaneCooldown)) {

return;

} else if (moveLeft) {

if (position == Position.Middle) {

MoveToLane(Position.Left);

} else if (position == Position.Right) {

MoveToLane(Position.Middle);

}

} else if (moveRight) {

56

if (position == Position.Middle) {

MoveToLane(Position.Right);

} else if (position == Position.Left) {

MoveToLane(Position.Middle);

}

}

timeSinceLastLaneMove = 0f;

} else if (suki.RangeExists("Joystick")) {

// range value as a joystick to move left and right

float range = suki.GetRange("Joystick");

// map 0 to 1 -> -1 to +1 with a deadzone (%) in the center

float xPercent = Suki.Utilities.Map(range , -1, 1, Deadzone);

// apply the left/right force to the ship

float hForce = -xPercent * MoveFactor;

ship.AddForce(new Vector3(hForce , 0f, 0f));

}

Listing 5.1: Sample Citadel movement code excerpt referencing SUKI inputs

With the above code in place, the developer has created four named input an-

chors (i.e., “Placement”, “MoveLeft”, “MoveRight”, and “Joystick”) that, with the

“MoveLeft” and “MoveRight” combined, correspond to the three movement modes

discussed above. These anchors can be referenced by a SUKI schema to provide spe-

cific information for how that input will be collected and responded to within the

game. In this way, the input is abstracted and allowed to be defined by the external

schema without any need to recompile the software.

As a best practice, the developer also includes a constraint input, so that users can

optionally specify a movement or posture requirement the player must satisfy during

gameplay. If the player’s positioning in any frame does not satisfy the constraint, the

game should implement a consequence with feedback (e.g., a UI or gameplay change).

In this case, the developer changes the ship’s color and disables movement of the ship

if the constraint signal exists and is not active, placing the code from Listing 5.2

57

before the input interpretation code to exit the function early.

// only continue if defined constraints are met

if (suki.SignalExists("Constraint")) {

if (!suki.GetSignal("Constraint")) {

// change the ship 's color to indicate error

shipRenderer.material.SetColor("_EmissionColor", error);

return;

}

// change the ship 's color back to normal

shipRenderer.material.SetColor("_EmissionColor", normal);

}

Listing 5.2: Sample Citadel constraint code referencing SUKI inputs

With the SUKI library included in the project and these code statements in place,

the developers can compile the software and begin constructing SUKI schemas that

target the abstract input anchors provisioned in their code. As a best practice, the

developer should also include documentation of these input anchors for end-users who

wish to construct custom schemas.

5.1.2 Schema Construction for Cerebral Palsy Therapy

To effectively deploy Citadel in therapy sessions with patients with CP, we con-

sulted CP rehabilitation experts at the Drexel College of Nursing and Health Profes-

sionals (CNHP) for movements frequently prescribed in their therapy treatments for

upper body motility. As with many neuromuscular conditions, the reported therapy

treatments often target Activities of Daily Living (ADL). ADL behaviors are a set

of “meaningful activities that incorporate specific functional movements” [1] that re-

flect those a person would be expected to perform routinely in the course of self-care,

including grooming, bathing, self-feeding, and so on.

The traditional set of ADL behaviors [47] along with the broader Instrumental

58

Activities of Daily Living (IADL) [69] are often referenced as named tasks and sub-

tasks such as Bring Oil to Pan, Bring Second Slice to Toaster, and Put Pan in Sink.

Because many of these routine movements rely heavily on the patient’s shoulder

flexion and range of motion, arm movement is a prime consideration for many therapy

routines [1].

To implement these movements as input into Citadel, we created three sets of

schemas to respectively address each of our three movement modes provisioned within

the game. A therapist would not deploy all of these schema sets at once but rather

would choose among these options depending on the intended exercise and therapy

goals.

{

"name": "Placement",

"resolution": "Range",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["RightShoulder", "RightHand"],

"reduction": { "operator": "XValue" },

"bounds": { "extents": true }

}

Listing 5.3: SUKI schema for driving the “Placement” input via shoulder abduction

The first schema (Listing 5.3) reads the player’s movement for the first exercise

pattern (shoulder adduction and abduction) in the right shoulder to drive the the

“placement” input mode provisioned within the game. It does so by reading the

horizontal distance between the right hand and the right shoulder (relative to the

sensor’s camera space) to render a range value. Using extents to track the furthest

distance achieved by the player, this schema will render a number between zero and

one conveying the distance the player is currently reaching to the right bounded

between their right shoulder and that extent. Extending the arm straight out will

59

move the ship to the right lane, lowering the arm down will move the ship to the left

lane, and holding the arm out at a central angle will place the ship in the center lane.

The supervision of a therapist could ensure that the patient is maintaining proper

form and secondary movement objectives while engaging the motion. Optionally,

SUKI could also be configured to enforce that form within the game via the constraint

signal. For example, a separate schema could be set to monitor the upright posture

of the player and fire the constraint signal if the player leans too far while extending,

as illustrated previously in Fig. 4.10.

The above scenario could also be implemented as an AngleBetween schema that

monitored the angle formed in the node triad of the RightHand, RightShoulder, and

HipCenter nodes. This alternative schema could also pair with a constraint schema

that ensured the normal vector of that triad was within a threshold of the forward

vector k̂ using a cross product calculation and a dot product reduction, thereby only

registering the player’s arm movement when performed in the proper physiological

plane.

The second schema set (Listings 5.4 and 5.5) reads the player’s movement for the

second exercise pattern (shoulder flexion and extension) on both the left and right

arms to respectively drive the “MoveLeft” and “MoveRight” inputs within the game.

They do so by reading the vertical distance between the hand and the shoulder, the

maximum of which the player can achieve only by raising the hand high over the

head.

60

{

"name": "MoveLeft",

"resolution": "Signal",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["LeftShoulder", "LeftHand"],

"reduction": { "operator": "YValue" },

"condition": { "operator": "GreaterThan", "percentage": 0.8 }

}

Listing 5.4: SUKI schema for driving the “MoveLeft” input via left shoulder flexion
and extension

{

"name": "MoveRight",

"resolution": "Signal",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["RightShoulder", "RightHand"],

"reduction": { "operator": "YValue" },

"condition": { "operator": "GreaterThan", "percentage": 0.8 }

}

Listing 5.5: SUKI schema for driving the “MoveRight” input via right shoulder flexion
and extension

Once again, therapist oversight can ensure proper form (e.g., perhaps preferring

a stretch of the arm forward and up rather than to the side), many aspects of which

an optional constraint schema could also enforce within the game. Note that this

scenario is an example of multiple schemas deployed simultaneously, creating a com-

pound metric; by loading multiple schemas, separate kinematic data relating to the

movement of the right and left arms can be interpreted independently to drive the

gameplay.

This independence of input is crucial in the case of therapy, where a patient may

61

have reduced motility in one arm compared to the other. By referencing extents (i.e.,

“percentage”) in the condition, these schemas will enable the players to move the ship

right or left whenever they raise their respective arm above 80% of their previously

demonstrated maximum for that arm. As a common consideration in some therapy

scenarios, a player with reduced motility in one arm will not need to raise that arm

as high as the other to achieve the same movement in the game.

The third schema (Listing 5.6) reads the player’s movement for the third movement

mode (horizontal shoulder adduction and abduction) in the left arm to target the

“Joystick” input anchor. It does so by examining the horizontal distance between the

left hand and the left shoulder of the player. As the player moves the left outstretched

arm sideways across and in front of the body, this will render a series of values that

will normalize to a range between zero and one. Placing the arm near the center of

that range will keep the ship stationary while moving it left or right will guide the

ship left and right at a speed corresponding to the distance of the player’s hand from

that center point of the demonstrated capability range.

{

"name": "Joystick",

"resolution": "Range",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["LeftShoulder", "LeftHand"],

"reduction": { "operator": "XValue" },

"bounds": { "extents": true }

}

Listing 5.6: SUKI schema for driving the “Joystick” input via horizontal shoulder
adduction and abduction

Note that this schema is similar to the schema presented earlier in Listing 5.3,

where it similarly could be replaced with an AngleBetween schema that monitored

62

the angle formed between the chest and the left arm. Similarly, this schema could pair

with a constraint that ensured the normal of the node triad was within a threshold of

the upward vector ĵ. Optimally, therapist oversight would also ensure proper ancillary

form requirements while the game provided the motivation to engage in the therapy.

For convenience, we constructed a simple UI in the game to allow loading and

unloading schema files from disk. Using this UI, a therapist can add or remove these

three scenario sets on demand from within the game, allowing a patient to engage in

multiple therapy exercises within a single application launch. Following our addition

of these CP therapy schemas, Citadel is currently undergoing research within Drexel

CNHP for its potential efficacy as a CP rehabilitation therapy tool.

In this case study, we examined SUKI’s ability to provide a system for abstracted

input via named anchors in the game’s input routines, which allowed for updating

the mapping between player body movement and gameplay at runtime without a

need to recompile the game binary. We demonstrated the use of schemas to target

players seeking different exercises for therapy and the use of extents to individualize

that therapy for varying patient capabilities. We confirmed support for multiple

schemas operating at once and explored the steps necessary to integrate SUKI when

constructing a therapy AVG.

5.2 Case Study 2: Re-purposing a Therapy AVG Provisioned with SUKI

After completing and deploying Citadel for patient testing with our consultant CP

therapy rehabilitation specialists, we again consulted with therapists at the University

of Pennsylvania who specialized in rehabilitation for another disability with a different

patient population – namely Parkinson’s disease (PD). In this second case study, we

examine the potential and suitability for adapting AVGs provisioned with the SUKI

library toward multiple therapeutic goals and patient needs.

63

5.2.1 Schema Construction for Parkinson’s Disease Therapy

Patients affected by PD present with an array of symptoms, including tremor,

slowed movement (bradykinesia), rigidity, stooped posture (camptocormia), delayed

postural responses (resulting in an increased risk of falling), cognitive impairment,

and others [23, 41]. Like CP, a frequent treatment for PD is physical rehabilita-

tion therapy, which does not aim to affect the process of the disability directly but

rather improve function by encouraging compensatory activities that promote in-

creased strength and control in the same aspects that have been diminished by the

disability [48].

Though its distinctive tremor is perhaps the most well-known symptom of PD,

camptocormia is often the most prominent symptom at the time of diagnosis [23].

Because a person’s stance can contribute to their overall posture, it is debated whether

the balance issues resulting from poor postural responses are an epiphenomenon that

manifests as a consequence of the typical parkinsonian posture [7] (cf. Jacobs et al.,

2005 [40]). Nonetheless, posture, balance, and reaching exercises are considered core

areas for physical therapy in PD treatments [48].

Under the direction of our experts, we implemented a set of schemas that mapped

the movements from several PD exercise routines toward Citadel’s gameplay objec-

tives. With the camptocormia condition in mind, of particular importance was a

requirement that the patients perform the movements with a straightened, upright

posture. Therefore, we created a constraint schema (Listing 5.7) that would ensure

the patients do not curve their backs forward as they may be naturally prone to do.

The schema implements the constraint by measuring the z-axis component of the po-

sition of the player’s head relative to that of their pelvis, verifying that the difference

does not exceed a reasonable threshold in the forward direction. In our case, we are

not concerned with side leaning, and it may even be encouraged in some routines.

64

{

"name": "Constraint",

"resolution": "Signal",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["HipCenter", "Head"],

"reduction": { "operator": "ZValue" },

"condition": { "operator": "LessThan", "scalar": 0.2 }

}

Listing 5.7: SUKI schema for a straight posture constraint

With the compensatory posture component in place, our next task was to map

additional therapy exercise movements to the named anchors provisioned within the

game. Like therapy for CP patients, PD physical therapy often targets ADL func-

tion, which rehabilitation programs that combine activity-related exercises have been

shown to improve [48].

Many patients with PD exhibit abnormal postural responses in the lower body

to regulate balance, which interrupts the patient’s ability to respond effectively to a

center of gravity displacement [7]. Therefore, exercises were presented that focus on

balance during changes in center of gravity. We created the schemas in Listings 5.8

and 5.9 to implement these movements as gameplay input in Citadel.

{

"name": "Placement",

"resolution": "Range",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["LeftFoot", "HipCenter"],

"reduction": { "operator": "XValue" },

"bounds": { "extents": true }

}

Listing 5.8: SUKI schema for hip shifting

65

Under the supervision of the therapist, the patient stands with feet planted at

shoulder width. While maintaining a straight back, the patient is then encouraged

to shift his or her hips left and right without moving either foot. With a focus on

hip movement, the head and torso may even remain stationary but are allowed to

translate with the player’s hips if desired. SUKI will monitor the difference between

the horizontal location of the player’s foot and the center of the pelvis, converting

the current value within the maximum demonstrated extents to a range value for the

“Placement” anchor. With the player’s center of gravity balanced between the feet,

the ship will move to or remain in the center lane, where shifting the center of gravity

toward the left or right foot will move the ship to the corresponding lane.

{

"name": "Joystick",

"resolution": "Range",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["HipCenter", "Head"],

"reduction": { "operator": "XValue" },

"bounds": { "extents": true }

}

Listing 5.9: SUKI schema for leaning torso

In the leaning torso scenario presented in Listing 5.9, the range value is derived

from the difference in horizontal position between the player’s head and pelvis center.

As the player leans sideways left and right, an extent range will develop within which

the patient can guide the ship using his or her upper body as a virtual joystick. For

variety in gameplay, the “Joystick” input anchor is targeted to allow the player to

move freely among the lanes.

Additional PD exercises employed by our experts focus on the opposed objectives

of extending reach and maintaining balance. One such exercise is a cross-over reach,

66

where players are encouraged to stretch an arm forward across the body and out to

the opposite side of that arm’s shoulder. We created the schemas in Listings 5.10 and

5.11 to implement this movement for both arms.

{

"name": "MoveRight",

"resolution": "Signal",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["HipCenter", "LeftHand"],

"reduction": { "operator": "XValue" },

"condition": { "operator": "GreaterThan", "percentage": 0.8 }

}

Listing 5.10: SUKI schema for left arm crossover

{

"name": "MoveLeft",

"resolution": "Signal",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["HipCenter", "RightHand"],

"reduction": { "operator": "XValue" },

"condition": { "operator": "GreaterThan", "percentage": 0.8,

"reverse": true }

}

Listing 5.11: SUKI schema for right arm crossover

While keeping an upright posture via the constraint in Listing 5.7, the player

is encouraged to reach the left arm across the body and out to the right to move

the ship right. Similarly, reaching the right arm across the body and out to the

left will move the ship left. Under the supervision of the therapist, twisting of the

upper body is also encouraged to add additional balance consideration and maximize

reach distance. In this way, the schemas differ from the approach in the CP scenario

67

depicted in Listing 5.6, where here the distance is measured from a central location

within the body instead of the shoulder. Where the CP exercise intended to isolate

horizontal abduction and adduction of the shoulder, these PD scenarios are meant to

actively promote leaning in the upper body.

In both cases, the corresponding signal input triggers only when the player achieves

a percentage of the previously observed extent. Note that the schema monitoring the

right arm uses the “reverse” flag to mirror the calculations for the left side, similar to

the schema presented earlier in Figure 4.8.

As with the CP therapy schemas, these three scenario sets can be added or removed

on demand from within the game, allowing a patient to engage in multiple exercise

routines without restarting the application. Following our addition of these schemas,

PD specialists at the University of Pennsylvania are now also conducting research

with Citadel to assess its potential efficacy as a PD rehabilitation therapy tool.

In this case study, we explored the potential for SUKI to enable a single application

to target multiple disabilities and therapeutic goals. The next test case examines the

process of adding SUKI to an existing therapy game and the potential it may have

to improve or extend the functionality of that game.

5.3 Case Study 3: Integrating SUKI into an Existing Therapy AVG

After implementing a game with the SUKI system and demonstrating its ability

to adapt an AVG’s therapeutic purpose without any change to the game itself, we

then set out to integrate SUKI into an existing AVG constructed with traditional

input routines based on direct kinematic sensor data. In doing so, we explore both

its ease of integration and its potential for extending existing therapy games.

Kollect is a Kinect-based AVG therapy game for adolescents with CP designed

to promote health and functional mobility in arms and legs. Though its objectives

68

Figure 5.3: In Kollect, players are repre-
sented as avatars on the screen that mirror
their movements in real life. Markers at-
tached to the avatar hands and feet will
interact with items on screen.

Figure 5.4: Over several rounds, a set of
objects will spawn that players will at-
tempt to collect for points. Players move
their arms and legs to collect the target
objects while avoiding the red hazards.

do promote strength and movement planning, the primary metric for the game is

patient heart rate, encouraging a more active and frenetic play style over a methodical

approach.

In Kollect, an avatar representing the patient stands or sits in the center of the

screen, where movements of the avatar directly mirror the movement of the player as

detected by a Kinect sensor. Within the game, floating markers attach to the locations

of the avatar’s hands and feet; though the markers are locked in the xy-plane within

the game, they can move around the screen as a result of the player moving his or

her hands and feet and driving the same movement in the avatar representation.

Each round, a set of objects will spawn and float around the avatar. The player can

“collect” these objects by making contact with them via the markers. In some game

modes, hazard objects also spawn as a way to generate an additional challenge and

encourage more careful movement planning; the player must attempt to collect all of

the target objects while avoiding the hazard objects to maximize the resulting final

score (Figures 5.3 and 5.4).

One limitation of Kollect’s original input routines rests in the fact that the markers

69

adhere to the avatar’s hands and feet in the center of the screen, restricting the game

from taking advantage of the full horizontal screen space. Additionally, if the patient

has asymmetric capabilities for flexion and reach, it is possible to spawn objects that

may not be reachable on a particular side. Kollect currently manages both concerns

with a manual calibration square defined before the game starts, in which the user

designates the areas in which objects may spawn. However, with an implementation

using SUKI, this manual calibration may no longer be necessary.

5.3.1 Code Integration

Integrating SUKI into Kollect involved adding the library to the project and

updating the input code in the main game loop. Written in the Unity game engine,

Kollect manages the hand and foot marker locations using a custom game object with

an input script and four child objects representing the four markers within the scene.

Our programming task was to update this input script to manipulate the position

of the four markers according to SUKI input data, rather than avatar body position

derived directly from the Kinect sensor.

With the world space origin near the center of the scene camera, the four markers

usually cover separate zones within the screen. For example, the right arm is intended

to be used to collect objects that appear in the upper right quadrant, and the left

foot is meant to be used to collect objects that spawn in the lower left quadrant.

Therefore, we decided to bound the movement of the markers to specific areas of the

screen to enforce this play style. This design was accomplished by pre-calculating

screen rectangles for each zone in the script’s Awake() function, as shown in Listing

5.12.

70

// get the rect of the screen in world space

Vector3 botLeft = Camera.main.ViewportToWorldPoint(new

Vector3(0, 0, mainCam.nearClipPlane));

Vector3 topRight = Camera.main.ViewportToWorldPoint(new

Vector3(1, 1, mainCam.nearClipPlane));

// determine the widths and heights of the active zones

float width = topRight.x;

float hHeight = topRight.y;

float fHeight = -botLeft.y;

// assign the rectangles for active zones of the markers

rects = new Dictionary <Transform , Rect >();

// Rect is (x,y,w,h) with (0,0) in bottom left corner

rects.Add(lh, new Rect(botLeft.x, 0f, width , hHeight));

rects.Add(rh, new Rect(0f, 0f, width , hHeight));

rects.Add(lf, new Rect(botLeft.x, botLeft.y, width , fHeight));

rects.Add(rf, new Rect(0f, botLeft.y, width , fHeight));

// add a rectangle that encompasses the entire screen

rects.Add(this.transform ,

new Rect(0f, 0f, 2 * width , hHeight + fHeight));

Listing 5.12: Sample Kollect code excerpt for screen segmenting

With definitions for the four zones, our Update() function establishes four Loca-

tion2D input anchors to move each marker within its respective zone. Additionally,

as a best practice, we include a check for a constraint with a UI cue that changes

the colors of the hand and foot markers so that a therapist may optionally add one.

With a set of class variables, constants, and references to the four child objects (via

their Transform components), the input code for Kollect using SUKI inputs is shown

in Listing 5.13.

71

// check for constraint

if (suki.SignalExists("Constraint")) {

if (!suki.GetSignal("Constraint")) {

ChangeMarkerColors(error);

return;

}

ChangeMarkerColors(normal);

}

...

// mode 1: move each marker within its respective zone

if (suki.Location2DExists("LeftHand")) {

rect = rects[lh];

pos = suki.GetLocation2D("LeftHand");

newPos.x = -pos.x * (rect.width) + rect.xMax;

newPos.y = pos.y * (rect.height) + rect.yMin;

lh.position = Vector3.Lerp(lh.position , newPos , 1f);

}

if (suki.Location2DExists("RightHand")) {

rect = rects[rh];

pos = suki.GetLocation2D("RightHand");

newPos.x = pos.x * (rect.width) + rect.xMin;

newPos.y = pos.y * (rect.height) + rect.yMin;

rh.position = Vector3.Lerp(rh.position , newPos , 1f);

}

if (suki.Location2DExists("LeftFoot")) {

rect = rects[lf];

pos = suki.GetLocation2D("LeftFoot");

newPos.x = -pos.x * (rect.width) + rect.xMax;

newPos.y = pos.y * (rect.height) + rect.yMin;

lf.position = Vector3.Lerp(lf.position , newPos , 1f);

}

if (suki.Location2DExists("RightFoot")) {

rect = rects[rf];

pos = suki.GetLocation2D("RightFoot");

newPos.x = pos.x * (rect.width) + rect.xMin;

newPos.y = pos.y * (rect.height) + rect.yMin;

rf.position = Vector3.Lerp(rf.position , newPos , 1f);

}

Listing 5.13: Sample Kollect movement code excerpt referencing SUKI inputs

72

With schemas to drive the named Location2D inputs based on the player’s hands

and feet in real world space, the above implements the movement objectives originally

presented in the game. However, to take advantage of SUKI’s flexibility, we implement

a few more movement modes based on additional input anchors following this code,

as shown in Listing 5.14.

// mode 2: single marker with coverage for the entire screen

if (suki.Location2DExists("Joystick")) {

rect = rects[this.transform];

pos = suki.GetLocation2D("Joystick");

newPos.x = pos.x * (rect.width) + rect.xMin;

newPos.y = pos.y * (rect.height) + rect.yMin;

rh.position = Vector3.Lerp(rh.position , newPos , 1f);

}

// mode 3: single marker driven by two range inputs

if (suki.RangeExists("JoystickX")) {

range = suki.GetRange("JoystickX");

// map 0 to 1 -> -1 to +1 with a deadzone (%) in the center

float percent = Suki.Utilities.Map(range , -1, 1, Deadzone);

newPos.x += percent * MoveFactor;

rh.position = Vector3.Lerp(rh.position , newPos , 1f);

}

if (suki.RangeExists("JoystickY")) {

range = suki.GetRange("JoystickY");

// map 0 to 1 -> -1 to +1 with a deadzone (%) in the center

float percent = Suki.Utilities.Map(range , -1, 1, Deadzone);

newPos.y += percent * MoveFactor;

rh.position = Vector3.Lerp(rh.position , newPos , 1f);

}

Listing 5.14: Code excerpt for additional Kollect movement modes

In this way, we have set up three modes for movement. In the first set, we

replicate the original gameplay by using four separate input anchors that enable each

hand and foot icon to follow the player’s movement of the corresponding body part.

73

In the second, a single Location2D input will act like a joystick, driving relative

movement of a single marker that is navigated around the screen to collect objects.

In the third, two range inputs also guide a single marker but isolate the magnitude of

the movement between the horizontal and vertical axes. To support different therapy

scenarios, an existing game parameter available in the settings determines which (if

any) of the markers are active. In either of the last two input modes, the therapist

should disable the unused markers for the left hand and both feet.

5.3.2 Schema Design to Replicate Existing Gameplay

Our first provisioned input mode requires four schemas to drive the Location2D

inputs “LeftHand,” “RightHand,” “LeftFoot,” and “RightFoot” based on the location of

the respective body part of the player in real life. To do so, we make use of a Position

node metric that tracks the player’s hands and feet, as demonstrated in Listings 5.15

and 5.16.

For brevity, only schemas for the right hand and left foot are shown, but similar

schemas were also created to map input from the left hand and right foot as well.

These four schemas together recreate the original input configuration for the game

with a few improvements (Figs 5.5 and 5.6). First, because SUKI is considering the

relative position of each body part within its observed extents and mapping them to

an area of the screen, the entirety of the display can be used for gameplay. Second,

because the extents for each body part are independent, the game will adapt to each

body part according to the patient’s capability. With these two improvements, the

manual calibration square is no longer required, but may still be used if the therapist

desires to control the locations of object spawns.

74

{

"name": "RightHand",

"resolution": "Location2D",

"device": "Kinect",

"metric": "Position",

"nodes": ["RightHand"],

"bounds": { "extents": true }

}

Listing 5.15: SUKI schema for Kollect right hand motion control

{

"name": "LeftFoot",

"resolution": "Location2D",

"device": "Kinect",

"metric": "Position",

"nodes": ["LeftFoot"],

"bounds": { "extents": true , "reverse": true }

}

Listing 5.16: SUKI schema for Kollect left foot motion control

Figure 5.5: In the SUKI implementation
of Kollect’s controls, the player’s hand
and foot movements within their extents
will map to the full size of the correspond-
ing quadrant on screen and are no longer
bound to the avatar.

Figure 5.6: A patient with asymmetric
arm movement capability will leverage in-
dependent extents. Note the mirrored
right arm’s limited horizontal extension
moves the corresponding hand marker all
the way to the edge of the screen.

75

5.3.3 Leveraging SUKI for Alternate Play Modes

With SUKI now implemented for the traditional Kollect gameplay, we take ad-

vantage of the additional input anchors to explore alternative play modes. In this

example, the new exercises have not been designed to target a particular condition

under the guidance of a rehabilitation expert but were constructed as a thought ex-

periment to demonstrate the opportunities available in a game built with SUKI.

Where the current primary objective of Kollect is to increase movement and cardio

output, there may be an opportunity to design a mode that focuses more on movement

planning. For this mode, demonstrated in Listing 5.17, we target the “Joystick” input

anchor that reads the player’s right hand as a “virtual mouse” to guide a single

marker around the screen. Moving the right hand up and down will move the marker

up and down at a speed relative to the current vertical position between the player’s

demonstrated extents. Similarly, moving the right hand laterally in front of the body

will move the marker sideways on the screen. In this mode, the player should attempt

to carefully guide the marker to pick up target objects while remaining careful to avoid

hazards.

{

"name": "Joystick",

"resolution": "Location2D",

"device": "Kinect",

"metric": "Position",

"nodes": ["RightHand"],

"bounds": { "extents": true }

}

Listing 5.17: Schema for driving the “Joystick” input from right hand movement

As a second alternative movement mode, we target the isolated “JoystickX” and

“JoystickY” input anchors, where the magnitudes derive from independent range in-

76

puts. Considering our previous exploration into balance exercises, we designed a set

of schemas that would enable players to use their upper bodies as virtual joysticks to

guide the single marker on the screen. In this scenario, implemented in Listings 5.18

and Listing 5.19, leaning the upper body forward and backward at the hips would

guide the marker up and down, and tilting side to side at the hips would guide the

marker left and right.

{

"name": "JoystickX",

"resolution": "Range",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["HipCenter", "Head"],

"reduction": { "operator": "XValue" },

"bounds": { "extents": true }

}

Listing 5.18: Schema for driving horizontal marker movement via sideways lean

{

"name": "JoystickY",

"resolution": "Range",

"device": "Kinect",

"metric": "VectorBetween",

"nodes": ["HipCenter", "Head"],

"reduction": { "operator": "ZValue" }

"bounds": { "extents": true }

}

Listing 5.19: Schema for driving vertical marker movement via forward lean

Whether or not these movement scenarios would be useful in AVG therapy for

a particular patient and disability would be for a therapist to determine, but these

examples serve to demonstrate the ability for SUKI to extend the potential of an

77

AVG to support more varied exercise opportunities without recompilation than those

created with traditional programming methods for body motion input. Additionally,

these schemas serve as an example of what end-user therapists would be free to

create on their own to suit their needs for a particular patient or exercise routine. As

demonstrated, this functionality enables the therapist to modify a very fundamental

aspect of the game without requiring any modification to the software.

In this case study, we have examined another aspect of SUKI’s potential ease of

integration – namely, the steps necessary to integrate it into a completed game to both

replicate the existing input functionality and extend it to support other modes of play.

In doing so, we have examined SUKI’s suitability as a modular library independent

from its initial game and confirmed its requirements in a separate environment.

78

6. CONCLUSION AND FUTURE WORK

The focus of our research was to design a flexible and adaptive system for inter-

preting human body input to ease development and enhance the capability of AVGs

for therapy. In doing so, we aimed to examine a system that could leverage player

capability as a basis for dynamic adaptation. In pursuit of this goal, we developed

the System for Unified Kinematic Input (SUKI), a software library that provides an

abstraction for input routines within game environments and an adaptation system

that can individualize gameplay. With oversight from therapy researchers for multi-

ple neuromuscular conditions, we examined the capability for SUKI to create flexible

input configurations for games and adjust its measurements to patients without a

need for manual calibration.

Just as the sophistication of human motion input devices has enabled more ad-

vanced integration between player motion and AVG gameplay, we believe that lever-

aging more intelligent game systems will unlock future enhancement to the capability,

usefulness, and ultimately the efficacy of AVG-based therapies. However, work re-

mains both to extend this investigation and validate its effect in real-world scenarios.

6.1 Limitations and Future Work

The current implementation of SUKI extents is fairly simple and serves as a

demonstration of the concept. Though it implements a player model, SUKI extents

currently only leverage a single dimension for each movement. More complex extents

and more sophisticated artificial intelligence techniques (such as machine learning)

might be incorporated to more effectively assess player movement limitations and

provide a more sophisticated basis for adaptation.

79

Concerning meeting the individual therapy needs of the user, SUKI can make

AVGs more adaptable, but not necessarily as adaptive as they could be. Because the

extents measured for a player are only applicable within the context of the particular

schema, the system can only adapt with respect to that schema. Moving forward, a

more sophisticated system could derive an expectation of movement built from knowl-

edge of the physiology and condition of the player rather than demonstrated ability.

Additionally, profiles based on body measurement could aim to predict capability in

a given motion, rather than assessing movement limits empirically.

Though JSON enables flexibility and expressiveness in creating SUKI schemas, a

more accessible end user solution may benefit from a robust UI for crafting schemas.

A future version of SUKI may be able to construct a schema automatically after

watching the player or therapist demonstrate the movement they desire to perform

in the therapy. Additionally, extents measured in one schema may be applicable

to others, especially if they are built on a similar motion; carrying over knowledge

across schemas might help the system better anticipate player capability in multiple

scenarios.

The SUKI architecture and schema definition were designed to support multiple

kinematic devices, and the initial version of SUKI implements support for the Mi-

crosoft Kinect (v2) and Orbbec Astra sensors. Future work could expand this to

support additional sensors with the necessary SDK integration that would grant an

even more device-agnostic view of player kinematic data. Additionally, the current

SUKI design offers a curated set of node metrics, input resolutions, and calculation

and reduction operators described in Section 4.3.4. This design is also open to exten-

sion as developers explore more complex movements, find need for additional input

anchor data types, or desire more pre-processing options for kinematic sensor data.

This research presents a software system that aids in the design of motion-based

80

video games, but it emphasizes an application in AVG therapy experiences. Fu-

ture work, including studies that our clinical partners are currently conducting with

promising preliminary results, should evaluate SUKI-enabled games for their thera-

peutic efficacy. These studies can also examine whether adaptive input can improve

long-term therapy metrics, such as retention, adherence, and patient outcomes.

Finally, beyond the therapy application emphasized in this work, SUKI should be

evaluated for its potential benefits to non-therapy AVGs and broader player popula-

tions. Studies might explore player attitudes toward capability-based dynamic games

and user engagement in entertainment AVGs built with SUKI. This may also include

developer studies that examine the proposed improvements to software flexibility and

reduced burden of development.

6.2 Implications and Application

Beyond the proposed tangible benefits of easier AVG development and extended

breadth of usability that SUKI can provide a therapy AVG, the most exciting benefit is

that of using player capability as a basis for dynamic adaptation. Further exploration

can be pursued among multiple paths from this research.

Beyond Body Movement. SUKI currently focuses only on musculoskeletal

physical ability, such as movement planning and range of motion. Other aspects of

player physical capability, such as visual acuity, reflex time, or dexterity might provide

more interesting or appropriate bases for adaptation, depending on the nature of the

game it is augmenting. For example, a console first-person shooter could intelligently

adapt to a player’s thumb dexterity by automatically increasing or decreasing dead

zone and sensitivity on the analog joystick, dynamically adjusting the degree of aim

assistance, or modifying the timescale of the environment.

Beyond Physical Traits. Not limited to physical capability, other aspects of

81

individual difference among players (e.g., cognitive, temperamental, lifestyle) might

serve as viable bases for adaptation. These might include qualities of the player such

as memory, spatial reasoning, patience, or even current fatigue level. For example, a

puzzle game might consider a player’s working memory (WM), such as their score in

a WM span test [18, 46], to provide more intensive scaffolding or to inform its hint

system. Similarly, an action adventure game with DDA capabilities could modify its

difficulty curve based on its understanding of the player’s temperament or tolerances

(e.g., patience and persistence).

Beyond Input. SUKI in its current form offers dynamic adaptation in the way

a game processes and interprets input. Though of particular importance in the case

of AVGs, this limits the potential scope of effect of the dynamic adaption to the

portions of the game experience that address direct player interaction. This is the

most natural place to begin exploring capability-based adaptation, but future work

may explore the potential to adjust elements of the gameplay mechanics or virtual

environment.

82

Bibliography

[1] R. J. Adams, M. D. Lichter, E. T. Krepkovich, A. Ellington, M. White, and P. T.
Diamond. Assessing upper extremity motor function in practice of virtual activ-
ities of daily living. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 23(2):287–296, 2015.

[2] J. T. Alexander, J. Sear, and A. Oikonomou. An investigation of the effects
of game difficulty on player enjoyment. Entertainment Computing, 4(1):53–62,
2013.

[3] A. A. AlSaif and S. Alsenany. Effects of interactive games on motor performance
in children with spastic cerebral palsy. J Phys Ther Sci, 27(6):2001–3, 2015.

[4] S. C. J. Bakkes, P. H. M. Spronck, and H. Jaap van den Herik. Opponent
modelling for case-based adaptive game AI. Entertainment Computing, 1(1):
27–37, 2009.

[5] A. Baldwin, D. Johnson, and P. A. Wyeth. The effect of multiplayer dynamic
difficulty adjustment on the player experience of video games. In Proceedings of
the extended abstracts of the 32nd annual ACM conference on Human factors in
computing systems, pages 1489–1494. ACM, 2014.

[6] R. Bartle. Hearts, clubs, diamonds, spades: Players who suit MUDs. Journal of
MUD research, 1(1):19, 1996.

[7] B. R. Bloem, D. J. Beckley, and J. G. van Dijk. Are automatic postural responses
in patients with Parkinson’s disease abnormal due to their stooped posture?
Experimental brain research, 124(4):481–488, 1999.

[8] I. Bogost. The rhetoric of exergaming. In Proceedings of the Digital Arts and
Cultures (DAC), 2005.

[9] B. Bonnechere, B. Jansen, L. Omelina, M. Degelaen, V. Wermenbol, M. Rooze,
and S. Van Sint Jan. Can serious games be incorporated with conventional
treatment of children with cerebral palsy? A review. Res Dev Disabil, 35(8):
1899–913, 2014.

[10] K. J. Bower, R. A. Clark, J. L. McGinley, C. L. Martin, and K. J. Miller.
Clinical feasibility of the nintendo wii for balance training post-stroke: a phase

83

II randomized controlled trial in an inpatient setting. Clinical rehabilitation, 28
(9):912–923, 2014.

[11] G. Branwyn and G. Clabaugh. Computerscan: Working out with your computer.
The Futurist, 23(1), Jan 1989.

[12] M. W. Brault, U. S. Economics, and S. A. U. C. Bureau. Americans with disabil-
ities, 2010: Household economic studies. Current population reports. U.S. Dept.
of Commerce, Economics and Statistics Administration, U.S. Census Bureau,
Washington, D.C., 2012.

[13] D. Charles and M. Black. Dynamic player modeling: A framework for player-
centered digital games. In Proceedings of the International Conference on Com-
puter Games: Artificial Intelligence, Design and Education, pages 29–35, 2004.

[14] D. Charles, A. Kerr, M. McNeill, M. McAlister, M. Black, J. Kcklich, A. Moore,
and K. Stringer. Player-centred game design: Player modelling and adaptive
digital games. In Proceedings of the Digital Games Research Conference, volume
285, page 00100, 2005.

[15] J. Chen. Flow in games. Master’s thesis, Univ. Southern California, 2006.

[16] N. R. Cherabuddi. Exergaming: Video games as a form of exercise. Brown
University. Department of Computer Science, 2011.

[17] J. H. Choi, E. Y. Han, B. R. Kim, S. M. Kim, S. H. Im, S. Y. Lee, and C. W.
Hyun. Effectiveness of commercial gaming-based virtual reality movement ther-
apy on functional recovery of upper extremity in subacute stroke patients. Ann
Rehabil Med, 38(4):485–93, 2014.

[18] A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and
R. W. Engle. Working memory span tasks: A methodological review and user’s
guide. Psychonomic Bulletin & Review, 12(5):769–786, 2005.

[19] B. Cowley and D. Charles. Behavlets: A method for practical player modelling
using psychology-based player traits and domain specific features. User Modeling
and User-Adapted Interaction, 26(2-3):257–306, 2016.

[20] M. Csikszentmihalyi. Flow: The psychology of optimal experience. Harper &
Row, 1990.

[21] D. L. Damiano. Activity, activity, activity: Rethinking our physical therapy
approach to cerebral palsy. Phys Ther, 86(11):1534–40, 2006.

[22] P. J. Diefenbach, R. C. Gray, T. J. Day, and M. E. O’Neil, Patient Data Vi-
sualization, Configuration of Therapy Parameters from a Remote Device, and
Dynamic Constraints, United States, Patent: 62/333,142, 2016.

84

[23] R. Djaldetti, R. Mosberg-Galili, H. Sroka, D. Merims, and E. Melamed. Camp-
tocormia (bent spine) in patients with Parkinson’s disease - characterization and
possible pathogenesis of an unusual phenomenon. Movement Disorders, 14(3):
443–447, 1999.

[24] Doctor Kinetic BV, Doctor Kinetic: Functional Rehabilitation in Virtual Reality,
2016. Available: http://doctorkinetic.com, Accessed: November 10, 2016.

[25] T. Dutta. Evaluation of the kinect sensor for 3-D kinematic measurement in the
workplace. Applied Ergonomics, 43(4):645–649, 2012.

[26] J.-F. Esculier, J. Vaudrin, P. Bériault, K. Gagnon, and L. E. Tremblay. Home-
based balance training programme using Wii Fit with balance board for Parkin-
son’s disease: A pilot study. Journal of Rehabilitation Medicine, 44(2):144–150,
2012.

[27] G. M. Farouk, I. F. Moawad, and M. Aref. Generic opponent modelling approach
for real time strategy games. In Computer Engineering and Systems (ICCES)
2013 8th International Conference, pages 21–27. IEEE, 2013.

[28] Fitness Gaming Group Ltd., VAST Rehab: Rehabilitation with Biofeedback, 2016.
Available: http://vast.rehab, Accessed: November 10, 2016.

[29] A. N. Foster. Gaming their way: Learning in simulation strategy video games?
PhD thesis, Michigan State University, 2009.

[30] I. Franki, C. Van den Broeck, J. De Cat, W. Tijhuis, G. Molenaers, G. Van-
derstraeten, and K. Desloovere. A randomized, single-blind cross-over design
evaluating the effectiveness of an individually defined, targeted physical therapy
approach in treatment of children with cerebral palsy. Clinical Rehabilitation, 28
(10):1039–52, 2014.

[31] T. Fullerton. Game design workshop: A playcentric approach to creating inno-
vative games. CRC press, 2014. ISBN 1482217171.

[32] B. Galna, D. Jackson, G. Schofield, R. McNaney, M. Webster, G. Barry,
D. Mhiripiri, M. Balaam, P. Olivier, and L. Rochester. Retraining function
in people with Parkinson’s disease using the Microsoft Kinect: Game design and
pilot testing. J Neuroeng Rehabil, 11:60, 2014.

[33] S. Gauggel and S. Fischer. The effect of goal setting on motor performance and
motor learning in brain-damaged patients. Neuropsychological Rehabilitation, 11
(1):33–44, 2001.

[34] L. E. F. Graves, N. D. Ridgers, K. Williams, G. Stratton, G. Atkinson, and N. T.
Cable. The physiological cost and enjoyment of Wii Fit in adolescents, young
adults, and older adults. Journal of Physical Activity & Health, 7(3):393–401,
2010.

85

[35] R. O. Gutierrez, F. Galan Del Rio, R. Cano de la Cuerda, I. M. Alguacil Diego,
R. A. Gonzalez, and J. C. Page. A telerehabilitation program by virtual reality-
video games improves balance and postural control in multiple sclerosis patients.
NeuroRehabilitation, 33(4):545–54, 2013.

[36] G. Hawkins, K. Nesbitt, and S. Brown. Dynamic difficulty balancing for cautious
players and risk takers. International Journal of Computer Games Technology,
2012:3, 2012.

[37] C. Heeter. Play styles and learning, pages 826–846. IGI Global, Hershey, PA,
2009.

[38] H. Holmes, J. Wood, S. Jenkins, P. Winship, D. Lunt, S. Bostock, and K. Hill.
Xbox Kinect represents high intensity exercise for adults with cystic fibrosis. J
Cyst Fibros, 12(6):604–8, 2013.

[39] R. Hunicke. The case for dynamic difficulty adjustment in games. In Proceedings
of the 2005 ACM SIGCHI International Conference on Advances in computer
entertainment technology, pages 429–433. ACM, 2005.

[40] J. V. Jacobs, D. M. Dimitrova, J. G. Nutt, and F. B. Horak. Can stooped posture
explain multidirectional postural instability in patients with Parkinson’s disease?
Experimental brain research, 166(1):78–88, 2005.

[41] J. Jankovic. Parkinson’s disease: Clinical features and diagnosis. Journal of
Neurology, Neurosurgery & Psychiatry, 79(4):368–376, 2008.

[42] D. Jelsma, R. H. Geuze, R. Mombarg, and B. C. Smits-Engelsman. The impact
of Wii Fit intervention on dynamic balance control in children with probable
developmental coordination disorder and balance problems. Hum Mov Sci, 33:
404–18, 2014.

[43] C. Jennett, A. L. Cox, P. Cairns, S. Dhoparee, A. Epps, T. Tijs, and A. Walton.
Measuring and defining the experience of immersion in games. International
Journal of Human-Computer Studies, 66(9):641–661, 2008.

[44] Jintronix, Inc., Jintronix: Sense your Progress, 2016. Available: http://www.
jintronix.com/, Accessed: November 10, 2016.

[45] L. Y. Joo, T. S. Yin, D. Xu, E. Thia, P. F. Chia, C. W. K. Kuah, and K. K. He.
A feasibility study using interactive commercial off-the-shelf computer gaming
in upper limb rehabilitation in patients after stroke. Journal of rehabilitation
medicine, 42(5):437–441, 2010.

[46] M. J. Kane and R. W. Engle. The role of prefrontal cortex in working-memory
capacity, executive attention, and general fluid intelligence: An individual-
differences perspective. Psychonomic Bulletin & Review, 9(4):637–671, 2002.

86

[47] S. Katz, A. B. Ford, R. W. Moskowitz, B. A. Jackson, and M. W. Jaffe. Studies
of illness in the aged: The index of ADL: A standardized measure of biological
and psychosocial function. Jama, 185(12):914–919, 1963.

[48] S. H. Keus, B. R. Bloem, E. J. Hendriks, A. B. Bredero-Cohen, and M. Munneke.
Evidence-based analysis of physical therapy in Parkinson’s disease with recom-
mendations for practice and research. Movement disorders, 22(4):451–460, 2007.

[49] K. Kiili. Digital game-based learning: Towards an experiential gaming model.
The Internet and Higher Education, 8(1):13–24, 2005.

[50] A. Kramer, C. Dettmers, and M. Gruber. Exergaming with additional postural
demands improves balance and gait in patients with multiple sclerosis as much as
conventional balance training and leads to high adherence to home-based balance
training. Arch Phys Med Rehabil, 95(10):1803–9, 2014.

[51] M. F. Levin, P. L. Weiss, and E. A. Keshner. Emergence of virtual reality as
a tool for upper limb rehabilitation: Incorporation of motor control and motor
learning principles. Physical therapy, 95(3):415, 2015.

[52] D. Liebling and M. R. Morris. Kinected browser: Depth camera interaction for
the web. In Proceedings of the 2012 ACM international conference on Interactive
tabletops and surfaces, pages 105–108. ACM, 2012. ISBN 1450312098.

[53] C. Liu, P. Agrawal, N. Sarkar, and C. Shuo. Dynamic difficulty adjustment in
computer games through real-time anxiety-based affective feedback. Interna-
tional Journal of Human-Computer Interaction, 25(6):506–529, 2009.

[54] Microsoft Corporation, Kinect for Windows human interface guidelines v2.0,
2014. Available: https://go.microsoft.com/fwlink/p/?LinkID=403900, Ac-
cessed: February 27, 2016.

[55] M. E. Morris. Movement disorders in people with Parkinson disease: A model
for physical therapy. Physical therapy, 80(6):578, 2000.

[56] J. H. Murray. Inventing the medium: Principles of interaction design as a cultural
practice. Mit Press, 2011.

[57] C. O’Donovan, P. Greally, G. Canny, P. McNally, and J. Hussey. Active video
games as an exercise tool for children with cystic fibrosis. J Cyst Fibros, 13(3):
341–6, 2014.

[58] Orbbec 3D Tech. Intl. Inc., Orbecc - Intelligent computing for everyone every-
where, 2017. Available: hhttps://orbbec3d.com/, Accessed: January 10, 2017.

[59] I. Parry, C. Carbullido, J. Kawada, A. Bagley, S. Sen, D. Greenhalgh, and
T. Palmieri. Keeping up with video game technology: Objective analysis of

87

Xbox Kinect and PlayStation 3 Move for use in burn rehabilitation. Burns, 40
(5):852–9, 2014.

[60] V. M. Á. Pato and C. Delgado-Mata. Dynamic difficulty adjusting strategy for
a two-player video game. Procedia Technology, 7:315–321, 2013.

[61] J. H. Patterson. Avian: Game design and player metrics for player modeling in
educational games. Master’s thesis, Drexel University, 2014.

[62] W. Peng, J. C. Crouse, and J.-H. Lin. Using active video games for physical
activity promotion: A systematic review of the current state of research. Health
Education & Behavior, 40(2):171–192, 2013.

[63] J. E. Pompeu, F. A. Mendes, K. G. Silva, A. M. Lobo, P. Oliveira Tde, A. P.
Zomignani, and M. E. Piemonte. Effect of Nintendo Wii-based motor and cog-
nitive training on activities of daily living in patients with Parkinson’s disease:
A randomised clinical trial. Physiotherapy, 98(3):196–204, 2012.

[64] S. Radtka, R. Hone, C. Brown, J. Mastick, M. E. Melnick, and G. A. Dowling.
Feasibility of computer-based videogame therapy for children with cerebral palsy.
Games Health J, 2(4):222–228, 2013.

[65] M. Robert, L. Ballaz, R. Hart, and M. Lemay. Exercise intensity levels in children
with cerebral palsy while playing with an active video game console. Phys Ther,
93(8):1084–91, 2013.

[66] Y. Salem, S. J. Gropack, D. Coffin, and E. M. Godwin. Effectiveness of a low-
cost virtual reality system for children with developmental delay: A preliminary
randomised single-blind controlled trial. Physiotherapy, 98(3):189–95, 2012.

[67] G. Saposnik, R. Teasell, M. Mamdani, J. Hall, W. McIlroy, D. Cheung, K. E.
Thorpe, L. G. Cohen, M. Bayley, and f. t. S. O. R. C. W. Group. Effectiveness
of virtual reality using wii gaming technology in stroke rehabilitation: A pilot
randomized clinical trial and proof of principle. Stroke, 41(7):1477–1484, 2010.

[68] M. P. Silva, V. d. N. Silva, and L. Chaimowicz. Dynamic difficulty adjustment
on MOBA games. Entertainment Computing, 18:103–123, 2017.

[69] W. D. Spector, S. Katz, J. B. Murphy, and J. P. Fulton. The hierarchical re-
lationship between activities of daily living and instrumental activities of daily
living. Journal of chronic diseases, 40(6):481–489, 1987.

[70] E. A. Suma, B. Lange, A. S. Rizzo, D. M. Krum, and M. Bolas. FAAST: The
flexible action and articulated skeleton toolkit. In Virtual Reality Conference
(VR), 2011 IEEE, pages 247–248. IEEE, 2011. ISBN 1457700387.

[71] S.-W. Um, T.-Y. Kim, and J.-S. Choi. Dynamic difficulty controlling game
system. IEEE transactions on consumer electronics, 53(2):812–818, 2007.

88

[72] J. Valls-Vargas, S. Ontañón, and J. Zhu. Exploring player trace segmentation for
dynamic play style prediction. In Eleventh Artificial Intelligence and Interactive
Digital Entertainment Conference, 2015.

[73] W. M. van den Hoogen, W. A. IJsselsteijn, and Y. A. de Kort. Exploring be-
havioral expressions of player experience in digital games. In Proceedings of the
workshop on Facial and Bodily Expression for Control and Adaptation of Games
ECAG, volume 2008, pages 11–19, 2008.

[74] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler. Analysis of the accuracy
and robustness of the Leap Motion Controller. Sensors (Basel), 13(5):6380–93,
2013.

[75] Mark Wilson, Exclusive: Microsoft has stopped manufacturing the
Kinect, 2017. Available: https://www.fastcodesign.com/90147868/
exclusive-microsoft-has-stopped-manufacturing-the-kinect, Accessed:
October 25, 2017.

[76] N. Yee. The demographics, motivations, and derived experiences of users of
massively multi-user online graphical environments. Presence: Teleoperators and
virtual environments, 15(3):309–329, 2006.

[77] N. Yee. The labor of fun how video games blur the boundaries of work and play.
Games and Culture, 1(1):68–71, 2006.

[78] Z. Zhengyou. Microsoft Kinect sensor and its effect. MultiMedia, IEEE, 19(2):
4–10, 2012.

