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EVALUATION OF THE LONG TERM IMPACTS OF AN INFILTRATION BMP 
 

Andrea L. Welker1, Matthew Gore2, and Robert Traver3

 
ABSTRACT 
 
The natural hydrologic cycle is severely disrupted by development because the water that used to 
infiltrate into the ground is now running off into nearby streams. The negative impact of 
development on streams includes increased stream bank erosion, pollutant levels, and decreased 
base flow. Best management practices (BMPs) are recommended by regulatory agencies because 
they can mitigate peak flow, provide treatment, and partially restore the natural hydrologic cycle. 
BMP is a broad term used to describe a host of structures and activities; they are classified as 
structural (e.g. infiltration basin) or non structural (e.g. street cleaning). While infiltration BMPs are 
gaining acceptance, there is a concern that infiltrating stormwater has solved one problem by 
improving stream quality, but has caused another by contaminating the groundwater. To date, there 
have not been many opportunities to study the long term effects of infiltration. However, two 85 to 
100 year old infiltration pits were discovered on the campus of Villanova University. Soil samples 
were collected from these pits and were tested for copper. Copper was selected based on the 
contaminants seen in the stormwater at other Villanova BMP sites. One of the pits has low 
infiltration rates and a plan to restore its infiltration capacity is described. This restored infiltration 
pit will serve as a permanent demonstration and research site, joining a collection of BMPs at 
Villanova University. 
 
 
1. INTRODUCTION 

Storm water runoff, flooding, and pollution elements associated with runoff have become increasing 
problems for urban areas throughout the United States (e.g. Schueler 1994; Schueler 1995; Schueler 
1997; Paul and Meyer 2001; and Wang et al. 2001, US EPA 2005). As properties throughout an 
urban area are developed and create more impervious surfaces, stormwater runoff and the elements 
associated with impervious surfaces (including fossil fuels, nitrates, phosphorous, and metals like 
copper) continue to raise threats to urban infrastructure (bridges, roads, buildings), groundwater, 
surface waters, wastewater treatment facilities. To combat this increasing problem, engineers are 
investing time, money and research in many concepts associated with Best Management Practices 
(BMPs). In the past, many urban developments used detention and retention basins. While these 
devices do decrease the peak flow allowed into a stream system, they do not decrease the total 
volume of runoff (Traver and Chadderton 1983; McCuen and Moglen 1998; and US EPA 2005). 
Thus, flash flooding, erosion, and pollutant transport are not well controlled by these devices.  
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Infiltration BMPs hold keys to solving the problems listed above for detention and retention 
basins. These devices decrease runoff and improve water quality, along with providing higher base 
flow in urban streams during dry weather. One such infiltration BMP is a seepage/infiltration pit. 
When properly installed and maintained, a seepage pit will divert significant portions of runoff into 
the soil via storage pits. By diverting runoff into the soil, seepage pits can recharge groundwater, 
augment low flows and preserve base flow in streams, protect local downstream biota, and help 
minimize erosion and flooding. Information on the long-term impacts of infiltration BMPs is rare as 
is information on how to restore functionality if adequate infiltration capacity is lost. Thus, the 
Villanova University seepage pits described in this paper provide a great opportunity for study due 
to their age. 
 
 
2. SITE HISTORY 
  
The seepage pits are located on the campus of Villanova University in Radnor Township, an eastern 
suburb of Philadelphia in South Eastern Pennsylvania. The site is located at the headwaters of Ithan 
Creek and Valley Run, which are part of the Darby Creek watershed. As such, the site has 
importance in maintaining healthy waters at the start of this urban watershed. Any contamination 
imposed at the headwaters will deteriorate the downstream waters of the watershed. 

An extensive review of all available university documentation was performed to determine the 
history of the pits. From this research we determined that the structures were built circa 1899 around 
the time Tolentine Hall, at the time called College Hall, was built. While investigating the location 
of pipes connected to the pits, bricks that had sustained fire damage were found. This provides 
confirmation that the construction of the pits preceded the fire that occurred in 1928.  

Originally, four pits existed in the area to collect and infiltrate storm water off of Tolentine 
Hall (building to the left in Figure 1) and St. Thomas Monastery (building to the right in Figure 1). 
We found through our investigations that two of the pits had been replaced by large box culverts and 
no longer function as seepage pits. Currently, all stormwater is being routed to these two box 
culverts. The locations of the two remaining pits are indicated by arrows on Figure 1. To facilitate 
our discussion, the pits have been named based on their proximity to the Monastery and Tolentine 
and will here in after be referred to as either the Monastery or Tolentine pits. 

The pits are below ground located on the hill side that descends off the driveway in front of 
Tolentine Hall and the Monastery and onto the open field between the aforementioned buildings and 
Lancaster Avenue (US. 30). Figure 2 shows a top view of the site.  

As we began our investigation of this site we discovered that a sewage line from Tolentine 
Hall had been mistakenly connected to the Monastery pit. Our evidence suggests this mistake 
occurred at the time of construction for the driveway in front of Tolentine in the 1960’s. The sewer 
line was disconnected approximately 8 months prior to the research project beginning. Due to the 
connection of a sewer line to the pits, an investigation into the bacterial counts was performed.  

Both of the remaining pits were constructed in a similar fashion. The pits are brick cylinders 
with sandy bottoms. The stability of these brick lined walls is a concern that will need to be 
addressed as we consider restoring functionality to the pits. The Monastery pit is approximately 4 m 
deep and the Tolentine pit is approximately 1.5 m deep. Both pits are estimated to be 2 m in 
diameter. Due to safety concerns no one has entered the pits at this point.  

A pipe camera was used to map the locations of the pipes connected to the pits. We found an 
extensive set of terracotta pipes that extend to and from the pits. The two pits in the research project 
have connected outlets that release overflow into the large grass field in front of Tolentine that runs 
along Lancaster Avenue. 
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Figure 1 Photograph of the Site Facing North from Lancaster Avenue 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Top View of Site 
 
 
3. TESTING AND METHODS 
 
A drilling contractor, SITE-Blauvelt, was hired to drill test borings at the site. This drilling program 
required a great deal of coordination because the drillers would be on the front lawn of Villanova, 
which is a national arboretum, and because of the close proximity of the Monastery pit to a rare 
Dawn Redwood. Three borings were drilled: one in each of the pits and one control boring in 
between the two pits (dubbed the “null” boring). The borings went to a depth of 6 m or bedrock. 
Split spoon samples were obtained and the blow counts were recorded. Samples were taken at 15, 
30, 46, 61, 76, 91, and 183 cm for testing of bacteria and copper concentration. 

Research performed on a more recent infiltration BMP on Villanova’s campus indicated that 
copper would be the constituent of most concern (Kwiatkowski, et al. 2006). The elevated copper 
concentrations are a result of the copper from the sheathing beneath the slate roofs, gutters, and 
downspouts. Other researchers have found a first flush effect from copper (e.g. Forster 1996 and 
Zobrist, et al. 2000); however, once infiltrated, the copper present in the roof runoff is removed 
through the process of adsorption (Mason, et al., 1999; Blaszczyk, 1997; and Mikkelsen, et al., 
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1996). The bacterium testing was performed because of the mistakenly connected sewage line 
described previously. 

 
3.1 Bacteria Testing 
 
The bacteria testing performed was a variation of the membrane filtration method in Standard 
Methods for the Examination of Water and Wastewater, Section 9222. A known weight of sample 
was extracted with sterile phosphate buffer.  A specific volume of the extracted buffer was then 
passed through a millipore filter unit.  The filter was placed on the m-coli blue agar and incubated at 
the temperature specified by the manufacturer.  The plates were incubated for at least a week, and 
often longer, because the colonies were very slow to grow. 
 We were not concerned about extraction efficiency or absolute numbers of bacteria in each 
sample. The goal of the tests was to show relative differences in bacterial growth between samples 
obtained from the null site and the two pits. Specifically, we wanted to compare the total coliform 
and e-coli counts.  
 
3.2 Chemical Testing 
 
To determine the levels of copper in the soil in each pit, the samples taken at 15, 30, 46, 61, 76, 91, 
and 183 cm were tested using the DTPA extraction solution method. Ten g of soil from each depth 
were placed in a 50 mL Erlenmeyer flask. Twenty mL of DTPA extracting solution was added and 
each sample was shaken at 180 rpm for 2 hours. The samples were removed from the shaker and the 
solution was filtered through Whatman 42 filter paper. The resulting extracted liquid was tested 
using a graphite furnace and/or flame AA, depending on initial results from the graphite furnace. 
Blanks for these tests consisted of DTPA, not water. 
 Along with the copper testing, the pH and cation exchange capacity were also tested. Cation 
exchange capacity (CEC) was performed using ammonium acetate procedure described by Chapman 
(1965). Currently, soil samples are being tested to determine total carbon and total phosphorus.  
   
 
4. RESULTS 
 
The soils in the vicinity of the pits consist of silty sands (SM according to the Unified Soil 
Classification System). Encountering bricks buried near the pit is common due to the dumping of 
bricks after the 1923 fire in Tolentine Hall. Standard Penetration Testing at the time of drilling 
yielded blow counts of 6-15 with the blow count increasing with depth. Increasing blow counts are 
correlated to increasing densities, and thus decreasing infiltration rates. The Monastery pit also 
contained a high amount of organic matter caused by the sewer line being connected in the past. We 
believe that this organic matter has formed a mat that has decreased the infiltration rate.  

For the bacteria testing, it was found that there were counts of e-coli in the soil, but nothing of 
major concern. For most of the depths tested, the counts for coliforms were much greater than e-coli 
counts (Table 1). In addition, to obtain any readings at all, the samples were concentrated, thus the 
values in the table are for comparison purposed only. At first glance, the coliform counts may appear 
high; however, many bacteria that are naturally found in soils can create false positives for this test. 
Because similar numbers of total coliforms were found for all the borings, including the null boring, 
it is presumed that the bacterial found in soil is naturally occurring. 
 The results of the copper testing are presented in Figure 3. The copper concentrations peak at a 
depth of 46 cm with a maximum value of 364 ppm. Although we did detect elevated levels of 
copper in the soil beneath the pits as compared to the null site, these levels are still well below the 
maximum levels acceptable to the PA DEP for residential soils. The PA DEP limits copper 
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concentrations for residential fill to 8200 ppm (PA DEP 2000). The copper found in the soils were a 
result of copper coming off of the roof. The increase in copper concentrations found in the soils, 
while not alarming, is a factor that must be considered by BMP designers. 
 The CEC and pH levels are displayed in Table 2. These results show that the soil does not have 
any peculiar CEC and/or pH levels that would indicate the soil has a higher or lower tendency to 
hold onto copper particles. 
 

Table 1 Bacteria Counts at 15 cm of depth 
 

 Coliform e-coli Total bacteria 
Monastery 150 7 157 
Tolentine 212 11 224 

Null 147 0 147 
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Figure 3 Copper Concentrations versus Depth 

 
 

Table 2 Cation Exchange Capacity (CEC) and pH  
 

CEC (meq/100 g)  
Depth (cm) Tolentine Monastery Null 

15 17.1 20.8 13.3 
76 16.1 17.0 13.3 
183 15.4 9.3 12.0 

pH 
 5.7 6.2 6.0 

 
 
5. RESTORATION PLANS 
 
The next step in this project is to restore functionality to the pits. The Monastery Pit is the easiest pit 
to reconnect to existing storm sewers. Unfortunately, the infiltration capacity of this pit is quite poor 
at 5 cm/day. We attribute this reduction in infiltration capacity to the bacteria mat from the sewage. 
Consequently, we have developed a plan to install four prefabricated earthquake drains to a depth of 
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3.5 m. These drains are composed of an inner plastic core wrapped by a nonwoven geotextile. They 
are called earthquake drains because they are used to reduce excess pore water pressures that are 
created during earthquakes and have not been used for this purpose to date. The Tolentine pit 
displays excellent infiltration capacity and we are still exploring opportunities to reconnect it. 
 
 
6. CONCLUSIONS 
 
Two infiltration pits on the campus of Villanova University that were at least 85 years old were 
studied. The pits provided a unique opportunity to ascertain the impact of an infiltration BMP over 
many years of service. After many years of accepting stormwater runoff from the roofs of Tolentine 
Hall and the Monastery, the soil in the pits displayed increased levels of copper as compared to the 
soil where the rooftop runoff was not directed. However, the elevated levels of copper were far 
below the threshold used by the PA DEP to describe fill acceptable for residential uses where direct 
contact is expected. 
 The infiltration rates of the two pits varied dramatically. The Monastery pit’s infiltration 
capacity is inadequate and we are currently in the process of installing a geosynthetic product to 
restore its infiltration capacity. We are hopeful that the Tolentine pit, which has excellent infiltration 
capacity, will be reconnected to the storm sewer system in the near future.  
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