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Data Mining and Predictive Modeling
of Biomolecular Network from

Biomedical Literature Databases
Xiaohua Hu and Daniel D. Wu

Abstract—In this paper, we present a novel approach Bio-IEDM (Biomedical Information Extraction and Data Mining) to integrate text

mining and predictive modeling to analyze biomolecular network from biomedical literature databases. Our method consists of two

phases. In phase 1, we discuss a semisupervised efficient learning approach to automatically extract biological relationships such as

protein-protein interaction, protein-gene interaction from the biomedical literature databases to construct the biomolecular network.

Our method automatically learns the patterns based on a few user seed tuples and then extracts new tuples from the biomedical

literature based on the discovered patterns. The derived biomolecular network forms a large scale-free network graph. In phase 2, we

present a novel clustering algorithm to analyze the biomolecular network graph to identify biologically meaningful subnetworks

(communities). The clustering algorithm considers the characteristics of the scale-free network graphs and is based on the local

density of the vertex and its neighborhood functions that can be used to find more meaningful clusters with different density level. The

experimental results indicate our approach is very effective in extracting biological knowledge from a huge collection of biomedical

literature. The integration of data mining and information extraction provides a promising direction for analyzing the biomolecular

network.

Index Terms—Biomolecular network, semisupervised learning, scale-free network, information extraction, biological complexes

(communities).

Ç

1 INTRODUCTION

DESPITE an influx of molecular data in the form of
sequences, structure, transcription profiles, etc., most

of the protein interaction information relevant to cell
biology research still exists strictly in the scientific litera-
ture, which is written in a natural language that computers
cannot easily manipulate. A huge portion of the scientific
literature (abstracts and/or articles) is collected in large
online digital libraries such as PubMed, which is now
estimated to contain more than 15 million abstracts.
However, retrieving and processing this information is
very difficult due to the lack of formal structure in the
natural-language narrative in those documents and the
huge size of the documents collected in the biomedical
literature databases. Automatically mining and extracting
information from biomedical text holds the promise of
easily consolidating large amounts of biological knowledge
in computer-accessible form. The development of reliable
literature data mining technologies to maximally exploit
data and information from this ever-expanding collection of
scientific literature so that domain experts can analyze this
information to form new hypotheses, conduct new experi-
ments, and enable new discovery is essential in cell biology
research.

A promising approach for making vast information

manageable and easily accessible is to develop an informa-

tion extraction (IE) system that automatically processes

these documents, extracts important biological knowledge

such as protein-protein interactions, functionality of the

genes, subcellular location of the protein, etc., and con-

solidates them into databases. This serves several purposes:

1) It consolidates data about a single organism or a single

class of entity (e.g., proteins, genes, etc.) in one place,

making them very helpful for bioinformatics research at

genomic scale in order to get a global view of that organism.

2) This process makes the information searchable and

manageable since these results are extracted in a structured

format. 3) The extracted knowledge can help researchers

generate plausible hypotheses or at least clarify and classify

biological knowledge so as to assist the user in generating

hypotheses. It can also alter the user’s perception of the

biological relationships in such a way as to stimulate new

experiments and methods. Some databases that accumulate

these biological relationships are DIP for protein-protein

interactions [47], KEGG for biological pathways [30], and

BIND for molecular interactions [2]. The biological knowl-

edge stored in these databases is almost entirely manually

assembled. However, it is becoming more and more

difficult for curators to keep up with the increasing volume

of literature. Thus, automatic methods are needed to speed

up this step of database construction. Integration of Web

mining, text mining, and information extraction provides a

promising direction to assist in the curation process to

construct such databases.
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On the other hand, mining the biomolecular network to
identify a community (subnetwork) has become a very hot
topic because communities are believed to play a central
role in the functional properties of complex networks [34].
Studying the community structure of biological networks is
of particular interest and challenging, given the enormous
number of genes and proteins and the complex nature of the
interactions among them. In the context of biological net-
works, communities might represent structural or functional
groupings and can be synonymous with molecular modules,
biochemical pathways, gene clusters, or protein complex.
Being able to identify the community structure in a biological
network hence could help us to better understand the
structure and dynamics of biological systems. Analysis of a
number of metabolic networks from different organisms has
revealed communities that relate to functional units in the
networks [24]. Communities of related genes have been
reported in a network of gene relationships as established by
cooccurrence of gene names in the published literature [45].
In our previous work, we developed a spectral-based
clustering method using local density and vertex neigh-
borhood to analyze the chromatin network [28], [27], [46].
Two recent works along this line of research are based on
the concept of network modularity introduced by Hartwell
et al. [20]. The works by [37], [40] both used computational
analyses to cluster the yeast protein-protein interaction
network and discovered that molecular modules are
densely connected with each other but sparsely connected
with the rest of the network.

In this paper, we present a novel approach, Bio-IEDM,
dealing with these two important issues in a unified method
simultaneously. Bio-IEDM consists of two phases: 1) con-
struction of the biomolecular network through information
extraction from the biomedical literature database and
2) mining the biomolecular network to identify biologically
meaningful subnetworks (communities). Bio-IEDM inte-
grates information extraction, text mining, and predictive
modeling to analyze a biomolecular network from biome-
dical literature databases.

The rest of the paper is organized as follows: In Section 2,
we review the related work in biomedical information
extraction and mining, biomolecular network analysis. In
Section 3, we first present the architecture of BIO-IDEM, then
discuss the construction of the biomolecular network through
biomedical literature mining. We focus on the automatic
query learning method for selecting promising text files from
the text databases for extraction and the mutual reinforce-
ment approach for pattern extraction and tuple extraction.
Next, we present our novel algorithm, CommBuilder, to mine
the entire biomolecular network to identify the biological
relevant subnetwork (community) and the experimental
results on two large biomolecular networks: the yeast
interaction network and the chromatin network. We sum-
marize our major contributions in Section 4.

2 RELATED WORK

Biomedical literature mining from a biomedical database
(mainly PubMed) has attracted a lot of attention recently from
the information extraction, data mining, natural language
understanding (NLP), and bioinformatics community [22],

[19]. A lot of methods have been proposed and various
systems have been developed for extracting biological
knowledge from the biomedical literature, such as finding
protein or gene names [15], [41], protein-protein interac-
tions [5], [33], [12], [36], protein-gene interactions [9],
subcellular location of protein, functionality of gene, protein
synonyms [11], etc. For example, in their pioneering work in
biomedical literature mining, Fukuda et al. [15] rely on
special characteristics such as the occurrence of uppercase
letters, numerals, and special endings to pinpoint protein
names. Stapley and Benoit [41] extracted co-occurrences of
gene names from MEDLINE documents and used them to
predict their connections based on their joint and individual
occurrence statistics. Blaschke et al. [5] propose an NLP-
based approach to parse sentences in abstracts into
grammatical units and then analyze sentences discussing
interactions based on the frequency of individual words.
Because of the complexity and variety of the English
language, such an approach is inherently difficult. Ono
et al. [36] manually defined some regular expression
patterns to identify the protein-protein interactions. The
problem is that regular expression searches for abstracts
containing relevant words, such as “interact,” “bind,” etc.,
poorly discriminates true hits from abstracts using the
words in alternative senses and misses abstracts using
different language to describe the interactions. Their
method relies on a manually created “pattern” to the
biological relationship. This approach may introduce a lot
of “false positives” or “false negatives” and it is unable to
capture the new biological relationships not in those
“manual” patterns. Marcott et al. [33] proposed a Bayesian
approach based on the frequencies of discriminating words
found in the abstracts. They score Medline abstracts for
probability of discussing the topic of interest according to
the frequencies of discriminating words found in the
abstract. The highly likely abstracts are the sources for the
curators for further examination for entry into the data-
bases. Hahn et al. [18] developed the MEDSYNDIKATE
based on NLP techniques to extract knowledge from
medical reports. Although the approaches differ, they can
all be seen as examples of this process: First, select what will
be read, then identify important entities and relations
between those entities, and, finally, combine this new
information with other documents and other knowledge.
These systems, however, suffer from various weaknesses.
First, the templates these systems are supplied with allow
only factual information about particular, a prior chosen
entities (cell type, virus type, protein group, etc.) to be
assembled from the analyzed documents. Also, these
knowledge sources are considered to be entirely static.
Accordingly, when the focus of interest of a user shifts to a
topic not considered so far, new templates must be supplied
or existing ones must be updated manually.

Networks have been used to model many real-world
phenomena in bioinformatics to better understand the
phenomena and to guide experiments in order to predict
their biological behavior. It is very important to have a
model in order to provide good guidance for the experi-
ments. As a result, new techniques and models for
analyzing and modeling real-world networks have recently
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been introduced. Recently, empirical studies report that the
protein-protein interaction network [20], [34], like many
other network graphs generated either from the real world
or the manmade world such as the Internet, the WWW,
have scale-free properties [3], [34]. Scale-free networks have
been used to explain behaviors as diverse as those of power
grids, the stock market, and cancerous cells, as well as the
biomolecular network. Put simply, the nodes of a scale-free
network aren’t randomly or evenly connected. Scale-free
networks include many “very connected” nodes, hubs of
connectivity that shape the way the network operates. The
ratio of very connected nodes to the number of nodes in the
rest of the network remains constant as the network
changes in size. In a scale-free network, the nodes with
the largest numbers of links play an important role on the
dynamics of the system. The scale-free property reveals that
the number of incoming links and the outgoing links at a
given vertex have distributions that decay with the power
law tails [34]. It is essential to mine the network graph to
help understand the domain and the topology of the
network structure. For example, a local cluster in a
biological interaction network for proteins may represent
a biological complex [16], which is very important to help
understand the protein functionality.

Many graph-based clustering algorithms have been
developed to analyze the network graphs [37] to identify
communities or subnetworks (biological complexes).
Although there is no formal definition for the community
structure in a network, it often loosely refers to the
gathering of vertices into groups such that the connections
within groups are denser than between groups [17]. The
study of community structure in a network is not new. It is
closely related to the graph partitioning in graph theory and
computer science and the hierarchical clustering in sociol-
ogy [34]. However, recent years have witnessed intensive
activity in this field, partly due to the dramatic increase in
the scale of networks being studied. Many algorithms for
finding communities in networks have been proposed.
They can be roughly classified into two categories, divisive
and agglomerative. The divisive approach takes the route of
recursive removal of vertices (or edges) until the network is
separated into its components or communities, whereas the
agglomerative approach starts with isolated individual
vertices and joins together small communities. One im-
portant algorithm is proposed by Newman (the
GN algorithm) [34]. The GN algorithm is based on the
concept of betweenness, a quantitative measure of the
number of shortest paths passing through a given vertex (or
edge). The vertices (or edges) with the highest betweenness
are believed to play the most prominent role in connecting
different parts of a network. The GN algorithm detects
communities in a network by recursively removing these
high betweenness vertices (or edges). It has produced good
results and is well adopted by different authors in studies of
various networks [34], but has a major disadvantage, which is
its computational cost. For sparse networks with n vertices,
the GN algorithm is of Oðn3Þ time. Various alternative
algorithms have been proposed [35], [13], [44], attempting
to improve either the quality of the community structure or
the computational efficiency of finding communities.

3 THE ARCHITECTURE AND PRINCIPLE OF

BIO-IEDM

In this paper, we present a novel scalable, portable, and

robust extraction and mining system from biomedical

literature, Bio-IEDM (Biomedical Information Extraction

and Data Mining), as shown in Fig. 1. It integrates

information extraction and robust data mining to auto-

matically extract and mine biological relationships from a

huge collection of biomedical literature to help biologists in

functional bioinformatics research.
Bio-IEDM consists of two phases: Phase 1 (IE: Informa-

tion Extraction): Bio-IEDM extracts the protein-protein

interaction from the biomedical literature. These extracted

protein-protein interactions form a scale-free network graph

that has many distinct properties, such as the in-degrees

and out-degrees of the vertices following power laws. In

Phase 2 (DM: Data Mining), we apply a clustering method,

CommBuilder, to mine the protein-protein interaction net-

work. The clusters in the network graph represent some

potential protein complexes, which are instrumental to

biologists in the study of the protein functionality. The

details of Phases 1 and 2 are discussed in the sections below.

3.1 Construction of Biomolecular Network through
Biomedical Literature Data Mining

We develop a semisupervised efficient learning approach to

automatically extract biological knowledge from the biome-

dical literature databases to construct the biomolecular

network. “Semisupervised learning” refers to the use of both

labeled and unlabeled data for training. It contrasts super-

vised learning (data all labeled) or unsupervised learning

(data all unlabeled). Standard classifier training uses only

labeled data (feature/label pairs), not unlabeled data.

However, labeled data is often hard to get because they need

experienced human annotators, while unlabeled data may be

relatively easy to collect. The goal of semisupervised learning
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is to train better classifiers from both labeled and unlabeled
data [6].

Our method extracts biological knowledge from biome-
dical libraries and requires only a handful of training
examples from users. These examples are used as seed
tuples to generate extraction patterns that in turn result in
new tuples being extracted from the biomedical literature
database. It consists of the following steps (the number
below corresponds to the number in Fig. 1):

1. Starting with a set of user-provided seed tuples (the
seed tuples can be quite small), our system retrieves
a sample of documents from the biomedical digital
library. At the initial stage of the overall document
retrieval process, we have no information about the
documents that might be useful for the goal of
extraction. The only information we require about
the target relation is a set of user-provided seed
tuples, including the specification of the relation
attributes to be used for document retrieval. We
construct some simple queries by using the attribute
values of the initial seed tuples to extract document
samples of a predefined size using the search engine.

2. The tuple set induces a binary partition (a split) on
the documents: those that contain tuples or those
that do not contain any tuple from the relation. The
documents are thus labeled automatically as either
positive or negative examples, respectively. The
positive examples represent the documents that
contain at least one tuple. The negative examples
represent documents that contain no tuples.

3. We next apply data mining algorithms to derive
queries targeted to match—and retrieve—additional
documents similar to the positive examples.

4. Generate extraction patterns and extract new tuples
based on pattern matching.

5. Query the biomedical digital library using the
learned queries from Step 3 to retrieve a set of
promising documents form the databases. Then, we
go to Step 2. The whole procedure repeats until no
new tuples can be added in the relation or we reach
the preset limit of a maximal number of text files to
process.

The details of the key steps are discussed in the
subsequent sections

3.1.1 Learning Queries to Retrieve Potential Promising

Biomedical Documents

Previous approaches for addressing the high computational
cost of information extraction resorted to document filtering
to select the document that deserved further processing by
the information extraction system. This filtering technique

still requires scanning the complete database to consider
every document. Alternative approaches use keywords or
phrases as filter (which could be converted to queries) that
were manually crafted and tuned by the information
extraction system developers. In the biomedical and
bioinformatics domain, there exist research topics that
cannot be uniquely characterized by a set of key words
because relevant keywords are 1) also heavily used in other
contexts and 2) often omitted in relevant documents
because the context is clear to the target audience.
Information retrieval interfaces such as entrez/PubMed
produce either low precision or low recall in this case.

To yield a high recall at a reasonable precision, the
results of a broad information retrieval search have to be
filtered to remove irrelevant documents. We use automated
text categorization for this purpose. In the initial round, we
select a prespecified number of documents based on the
seed examples. For example, if our system is used for
extracting protein-protein interactions, the seed examples
are a set of protein name pairs, as shown in Table 1. So, we
can first select all of those documents in PubMed which
contain all of those protein names in the seed examples. If a
document does contain the seed examples in a single
sentence, we label it as a positive example; otherwise, it is
negative. These labeled documents are used in the later
stage by a data mining algorithm to learn the characteristics
of the documents. The learned rules are converted to a
query list in order to retrieve potentially promising
documents for IE in the next iteration. Starting from the
second round, we use the query list derived from the
learned rules to select potential interesting documents and
rely on all the available tuples for document classification.
The process is illustrated in Fig. 2.

Our approach automatically discovers the characteristics
of documents that are useful for extraction of a target
relation, starting with only a handful of user-provided
examples of tuples of the relation to extract. Using these
tuples as seeds, our system retrieves a sample of documents
from the database. By running the information extraction
system over the documents, we identify which documents
are useful for the extraction task at hand. Then, we apply
data mining techniques to learn queries that will tend to
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match additional useful documents. Given a set of useful
and useless documents as the training set, our goal now is
to generate queries that would retrieve many documents
that the IE system will find useful and few that IE will not
be able to use. The process consists of two stages: 1) convert
the positive and negative examples into an appropriate
representation for training and 2) run the data mining
algorithms on the training examples to generate a set of
rules and then convert the rules into an ordered list of
queries expected to retrieve new useful documents. In our
current implementation, we integrate three algorithms:
Ripple [10], CBA [32], and our own maximally generalized
decision rules DB-Deci [25]. We rank all of the rules based
on the Laplace measures and the top 10 percent of the rules
is converted into a query list [8]. Using Laplace measure,
many rules covering a few examples are eliminated as the
significance test believes their apparent high accuracy is
likely to be simply due to chance.

For example if a rule set is

Positive IF WORDS have protein AND binding,
Positive IF WORDS have cell and function,

then it can convert the rule set to a query list

Query 1: protein AND binding

Query 2: cell AND function

Unlike most other IR system which use a single term
selected with a statistically-based term weighting, we use a
data mining algorithm to extract rules from the documents
and then use the terms from the rules as the basic unit for
our query term.

3.2 Mutual Reinforcement Principle for Pattern
Generations and Tuple Extraction

A crucial step in the extraction process is the generation of

new patterns, which is accomplished by grouping the

occurrences of known patterns in documents that occur in

similar contexts. A good pattern should be selective but

have high coverage so that they do not generate many false

positives and can identify many new tuples. Most machine

learning methods and algorithms that have been developed

to automatically generate extraction patterns use special

training resources, such as texts annotated with domain-

specific tags (e.g., AutoSlog [38] and WHISK [39]). A key

limitation of using machine learning methods to induce

IE methods is the requirement of having high-quality

preclassified corpora in information extraction from a text

database. Creating a preclassified corpus entails a high

workload for domain experts and a corpus for a specific

domain cannot usually be directly transferred to other

domains, thus making portability a very challenging issue.

Another bottleneck of machine learning approaches to learn

patterns is that most learning algorithms rely on feature-

based representation of objects. That is, an object is

transformed into a collection of position-independent

features f1; f2; . . . ; fn, (fi can be an n-gram word in the

document), thereby producing an N-dimensional vector

(also known as bag-of-word representation). The limitation

of this representation is that, in many cases, data cannot be

easily expressed via features. For example, in most NLP

problems, feature-based representations produce inherently

local representations of objects as it is computationally

infeasible to generate features involving long-range depen-

dencies. Kernel methods [42], [48] and relational learning

are an attractive alternative to feature-based representa-

tions. One practical problem in applying kernel methods or

relational learning to IE in large text collection is their

speed. The two approaches are relatively slow compared to

feature classifiers, whose computation complexity may be

too high for practical purposes. The heart of our approach is

a mutual reinforcement technique that learns extraction

patterns from the tuples and then exploits the learned

extraction patterns to identify more tuples that belong to the

relation.
Our pattern representation uses Eliza-like patterns [43]

that can make use of limited syntactic and semantic
information. BIO-IEDM represents the context around the
related entities in the patterns in a flexible way that
produces patterns that are selective, yet have high coverage.

Definition 1. A pattern is a 5-tuple

hprefix; entity tag1; infix; entity tag2; suffixi;

where prefix, infix, and suffix are vectors associated

weights with the terms. Prefix is the part of sentence before

entity1, infix is the part of sentence between entity1 and

entity2, and suffix is the part of sentence after entity2.

For example, a protein-protein interaction pattern in

our approach is a tuple (or expression) consisting of two

protein names that correspond to some conventional way

of describing interaction. We can use these patterns to

characterize those sentences that capture this knowledge.

For every such protein pair tuple hp1; p2i, it finds

segments of text in the sentences where p1 and p2 occur

close to each other and analyzes the text that “connects”

p1 and p2 to generate patterns. For example, our

approach inspects the context surrounding chromatin

protein HP1 and HDAC4 in “HP1 interacts with HDAC4

in the two-hybrid system” to construct a pattern

f00 00; hProteini; 00interacts with;00hProteini; 00 00g. After gener-

ating a number of patterns from the initial seed examples,

our system scans the available sentences in search of a

segment of text that matches the patterns. As a result of this

process, it generates new tuples and uses them as the new

“seed” and starts the process all over again by searching for

these new tuples in the documents to identify new

promising patterns.
In order to learn these patterns from these sentences, we

use a sentence alignment method to group similar patterns
together and then learn each group separately for the
generalized patterns.

Definition 2. The MatchðTi; TjÞ between two 5-tuples

Ti ¼ hprefixi; tagi1; infixi; tagi2; suffixii

and

Tj ¼ hprefixj; tagj1; infixj; tagj2; suffixji
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is defined as

MatchðTi; TjÞ ¼Wprefix
�Simðprefixi; prefixjÞ

þWinfix
�Simðinfixi; infixjÞ

þWsuffix
�Simðsuffixi; suffixjÞ:

There are many methods or formulas available to

evaluate the similarity of two sentence segments such as

perfixi and prefixj, which are ordered lists of words,

numbers, and punctuation marks, etc. In our system, we

use a sentence alignment function similar to the sequence

alignment in bioinformatics as shown in (3.1). The

advantage of using sentence alignment for similarity

measurement is that it is flexible and can be implemented

efficiently based on dynamic programming. The same

idea is also used in comparing the similarity between

protein or DNA sequences. Given two sentence segments

X ¼ ðx1; x2; . . . ; xmÞ and Y ¼ ðy1; y2 . . . ; ynÞ, the similarity

score Simði; jÞ is defined as the score of the optimal

alignment between the initial segment from x1 to xi of X

and the initial segment from y1 to yj of Y .

ð00�00denotes a white space; Simði;0Þ ¼ 0;Simð0; jÞ ¼ 0Þ,

Simði; jÞ ¼ max

0;
Simði� 1; j� 1Þ þ fðxi; yjÞ
Simði� 1; jÞ þ fðxi; 00�00Þ
Simði; j� 1Þ þ fð00�00; yjÞ

8>><
>>:

9>>=
>>;
; ð3:1Þ

fðxi; yjÞ ¼ log
pðxi; yjÞ

pðxiÞ � pðyjÞ
; ð3:2Þ

where pðxiÞ denotes the appearance probability of word xi
and pðxi; yjÞ denotes the probability that xi and yj appear at

the same position in two text segments. For sentence

segment X with a length of m and Y with a length of n,

in total ðmþ 1Þ � ðnþ 1Þ scores will be calculated by

applying (3.1) recursively. Store the scores in a matrix as

S ¼ Simðxi; yiÞ. Through back-tracing in S, the optimal

local alignment can be searched.
After generating patterns, Bio-IEDM scans the text

collection to discover new tuples. Bio-IEDM first identifies

sentences that include a pair of entities. For a given text

segment, with an associated pair of entities E1 and E2, it

generates the 5-tuples

T ¼ hperfix; E1 tag1; infix; E2 tag2; suffixi:

A candidate tuple hE1; E2i is generated if there is a

pattern Tp such that MatchðT; TpÞ is greater than the

prespecified threshold. Each candidate tuple will then

have a number of patterns that helped generate it, each

with an associated degree of match. Our approach relies

on this information, together with score of the patterns

(the score reflects the selectivity of the patterns), to decide

what candidate tuples to actually add to the biological

relationship table that is being constructed. Below are

some sample extraction patterns generated from PubMed

for protein-protein interaction.

f00 00; hProteini; 00interacts with;00hProteini; 00 00g
f00 00; hProteini; 00binds to;00hProteini; 00 00g
f00Bind of;00hProteini; 00to;00hProteini; 00 00g
f00Complex of 00hProteini; 00and;00hProteini; 00 00g:

Our method represents the context around the proteins

in the patterns in a flexible way that produces patterns that

are selective, flexible, and have high coverage. As a result,

BIO-IEDM will ignore those minor grammar variations in

the sentences and focus on the important key phases in the

sentences.
Evaluation of Patterns and Tuples. Since there is no

human feedback about the extracted tuples and patterns in

this procedure, it is very important that the patterns and

tuples generated during the extraction process be evalu-

ated, bogus patterns be removed, and only highly selective

and confident tuples be used as seed examples in the next

iteration to ensure the high quality of patterns and tuples

generated in each step. This way, our system will be able to

eliminate unreliable tuples and patterns from further

consideration.
Generating good patterns is challenging. For example,

we may generate a pattern

f00 ;00hProteini; h00�00i; hProteinihInteractionig

from sentence “these data suggest that the histoneH3-

histoneH2b interaction is . . . .” This pattern will be matched

by any string that includes a protein followed by a hyphen,

followed by another protein followed by the word “inter-

action.” Estimating the confidence of the patterns so that we

don’t trust patterns that tend to generate wrong tuples is

one of the problems that we have to consider. The

confidence of the tuple is defined based on the selectivity

and the number of the patterns that generate it. Intuitively,

the confidence of a tuple will be high if it is generated by

many highly selective patterns and a highly selective

pattern tends to generate high confidence tuples This

philosophy is similar the extraction of patterns and relations

from the Web [7]. This idea is also similar to the concepts of

hub and authoritative pages in Web searching [31].
We use a metric originally proposed by Riloff to evaluate

extraction pattern Pi generated by the Autoslog-TS [38] in

the information extraction system and define score ðPiÞ as

ScoreðPiÞ ¼ Fi=Ni
� logðFiÞ; ð3:3Þ

where Fi is the number of unique tuples among the

extractions produced by Pi and Ni is the total number of

unique tuples that Pi extracted. This metric can identify not

only the most reliable extraction patterns but also patterns

that will frequently extract relevant information (even if

irrelevant information will also be extracted).
For each tuple Tj, we store the set of patterns that

produce it, together with the measure of similarity between

the context in which the tuple occurred and the matching

pattern. Consider a candidate tuple Tj and the set of

patterns P ¼ fPig that were used to generate Tj. The

confidence of an extracted tuple Tj is evaluated as
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ConfðTjÞ ¼ 1�
Ym
k¼1

ð1� scoreðPiÞ �MatchðTjÞÞ; ð3:4Þ

where m is the number of patterns to generate Tj.
Thus, in the formulas above, ConfðPiÞ is not simply the

count of the relevant tuples, but is rather their cumulative
relevance. The two formulas, (3.3) and (3.4), capture the
mutual dependency of patterns and tuples. This recompu-
tation and growth of precision and relevance scores is at the
heart of the procedure.

After determining the confidence of the candidate tuples
using the definition above, our method discards all tuples
with low confidence because these low quality tuples could
add noise into the pattern generation process, which would
in turn introduce more invalid tuples, degrading the
performance of the system (in our experiment, the con-
fidence threshold value is set to 0.7). For illustration
purposes, Table 2 lists four representative patterns that
our system extracted from the document collection.

3.2.1 Experiments

The goal of our system is to extract as much valid biological
knowledge as possible from the huge collection of biome-
dical literature and to combine them into a database. We

realize that a biological relationship may appear in multiple
times in various documents, but we do not need to capture
every instance of such relationships. Instead, as long as we
capture one tuple of such a relationship, we will consider
our system to be successful for that relationship. Evaluating
the precision and recall of our BIO-IEDM system is very
difficult because of the large collection of the documents
involved. It is possible to manually inspect them and
calculate the precision and recall for small biomedical
documents sets. Unfortunately, this evaluation approach
does not scale and becomes infeasible for a large collection
of literature such as PubMed. Developing accurate evalua-
tion metrics for this task is one of our future research plans.
In this study, we conducted two experiments. One is to
simulate the biologist manually creating a set of key word
filters to select the documents which are relevant to protein
interaction and then run the information extraction proce-
dure on these documents to extract the protein-protein
interaction pair (PPI). Nowadays, this is the approach used
by the users of Medline. However, information retrieval in
such databases can become very time-consuming because
searchers that are likely to identify much relevant informa-
tion also find many irrelevant documents. For example, a
text query for “protein interaction” of the Medline database
retrieves 196,960 documents (in January 2006). In this study,
we use 1,600 human chromatin protein names provided by
domain expert Professor Lechner from the Biological
Science and Technology Department at Drexel University.
Synonyms are derived from LocusLink and nucleotide
databases maintained by NCBI. The total number of protein
names is around 7,000. The key word list is manually
constructed with the help of Prof. Lechner. The result is
shown in Table 3. In our second experiment, we start with
10 pairs of protein-protein interaction pairs and use
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Bio-IEDM to automatically construct queries and use the
learned queries to retrieve documents from PubMed. In
each iteration, we set the maximum document size to 10k
for each iteration, starting with 50,000 documents and
stopping at 500,000 documents when the number of new
tuples added is very small (10 in our experiment). We
repeat the experiments five times with different seed-pairs
and take the average number of documents as the results, as
shown in Table 4. We repeat the same procedure for the
yeas gene interaction (because of space limitations, the
search result of the yeast interaction network is omitted).
The two biological relationship networks, chromatin net-
work and yeast interaction network, extracted by our
system Bio-IEDM are furthered analyzed using data mining
algorithm CommBuilder to find potential biological com-
plexes, as described in Section 3.2.

It is obvious that Bio-IEDM has a significant performance
advantage over the key word-based approach. IBIO-IEDM
only examined 500 K abstracts from PubMed to extract
9,183 distinct chromatin protein-protein interaction pairs,
while the key word-based approach examined 1.4 million
abstracts from PubMed to extract 9,980 distinct chromatin
protein-protein interaction pairs. The result from Bio-IEDM
has an overlap of 92 percent with the total protein-protein
interaction pairs from the key word-based approach, while
Bio-IEDM only searched around 1/3 of the total abstracts
used in the key word-based approach.

3.3 Mining the Scale-Free Protein-Protein
Interaction Network

In this paper, we address a basic question about the
community structure in protein-protein interaction net-
work, i.e., what community does a given protein (or
proteins) belong to. Due to the complexity and modularity
of biological networks, it is more feasible computationally
to study a community containing a few dozen proteins of
interest. Hashimoto et al. [21] have used a similar approach
to growing genetic regulatory networks from seed genes.
Their work is based on probabilistic Boolean networks and
subnetworks are constructed in the context of a directed
graph using both the coefficient of determination and the
Boolean function influence among genes. A similar
approach is also taken by Flake et al. [14] to find highly
topically related communities on the Web based on the self-
organization of the network structure and on a maximum
flow method. Our approach, however, takes full advantage
of the underlying topological properties of the networks.

3.3.1 The Algorithm CommBuilder

We intuitively model the protein-protein interaction net-
work as an undirected graph, G ¼ ðV ;EÞ, where vertices V
represent proteins and edges E represent interactions
between pairs of proteins. The graphs we use in this paper
are unweighted and simple—meaning no self-loops or
parallel edges.

For a subgraph G0 � G and a vertex i belonging to G0, we
define the in-community degree for vertex i, kini ðG0Þ, to be
the number of edges connecting vertex i to other vertices
belonging to G0 and the out-community degree, kouti ðG0Þ, to
be the number of edges connecting vertex i to other vertices
that are in G but not in G0. We adopt the quantitative
definitions of community defined by [37], i.e., the subgraph
G0 is a community in a strong sense if kini ðG0Þ > kouti ðG0Þ for
each vertex i in G0 and in a weak sense if the sum of all
degrees within G0 is greater than the sum of all degrees
from G0 to the rest of the graph.

The algorithm, called CommBuilder, accepts the seed
protein s, gets the neighbors of s, finds the core of the
community to build, and expands the core to find the
eventual community. The two major components of
CommBuilder are FindCore and ExpandCore. Basically, Find
Core performs a naive search for maximum clique from the
neighborhood of the seed protein by recursively removing
vertices with the lowest in-community degree until all
vertices in the core set have the same in-community degree.

The algorithm performs a breadth first expansion in the
core expanding step. It first builds a candidate set contain-
ing the core and all vertices adjacent to each vertex in the
core (Step 16). It then adds to the core a vertex that either
meets the quantitative definition of community in a strong
sense or the fraction of in-community degree over a relaxed
affinity threshold f of the size of the core (Step 21). The
affinity threshold is 1 when the candidate vertex connects to
each of vertices in the core set. This threshold provides
flexibility when expanding the core because it is too strict,
requiring every expanding vertex to be a strong sense
community member.

The FindCore is a heuristic search for a maximum
complete subgraph in the neighborhood N of seed s. Let
K be the size of N , then the worst-case running time of
FindCore is OðK2Þ. The ExpandCore part costs, in the worst
case, approximately jV j þ jEj þ overhead. jV j accounts for
the expanding of the core, at most all vertices in V , minus
what are already in the core, would be included. jEj
accounts for calculating the in and out-degrees for the
candidate vertices that are not in the core but in the
neighborhood of the core. The overhead is caused by
recalculating the in and out-degrees of neighboring vertices
every time the FindCore is recursively called. The number of
these vertices is dependent on the size of the community we
are building and the connectivity of the community to the
rest of the network, but not the overall size of the network.
For biological networks, the graphs we deal with are mostly
sparse and small world, therefore, the running time of our
algorithm will be close to linear.

Algorithm 1 CommBuilder(G, s, f)

1: GðV ;EÞ is the input graph with vertex setV and edge setE.

2: s is the seed vertex, f is the affinity threshold.

3: N  fAdjacency list of sg [ fsg
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4: C  FindCoreðNÞ
5: C0  ExpandCoreðC; fÞ
6: return C0

7: FindCoreðNÞ
8: for each v 2 N
9: calculate kinv ðNÞ
10: end for

11: Kmin  minfkinv ðNÞ; v 2 Ng
12: Kmax  maxfkinv ðNÞ; v 2 Ng
13: if Kmin ¼ Kmax then return N

14: else return FindCoreðN � fvg; kinv ðNÞ ¼ KminÞ

15:ExpandCoreðC; fÞ
16: D [ðv;wÞ2E;v2C;w 62Cfv; wg
17: C0  C

18: for each t 2 D and t 62 C
19: calculate kint ðDÞ
20: calculate koutt ðDÞ
21: if kint ðDÞ > koutt ðDÞ or kint ðDÞ=jDj > f then

C0  C0 [ ftg
22: end for

23: if C0 ¼ C then return C

24: else return ExpandCoreðC0; fÞ

3.3.2 Experiment Results

To test our algorithm, we apply it to two biomolecular
networks: 1) the yeast interaction network and 2) the
chromatin protein interaction network.

Yeast Interaction Network. Because there is no alter-
native approach to our method, we decided to compare the
performance of our algorithm to the work on predicting
protein complex membership by Asthana et al. [1]. Asthana
et al. reported the results of queries with four complexes
using probabilistic network reliability (we will refer to their
work as the PNR method in the following discussion). Four
communities are identified by CommBuilder using one
protein as a seed from each of the query complexes used
by the PNR method. The seed protein is selected randomly
from the “core” protein set. The figures for visualizing the
identified communities are created using Pajek [4]. The
community figures are extracted from the network we build
using the above-mentioned data set with out-of-community

connections omitted. The proteins in each community are
annotated with a brief description obtained from the MIPS
complex catalogue database. As a comparison, we use
Complexpander, an implementation of the PNR method [1]
and available at http://llama.med.harvard.edu/Software.
html, to predict cocomplex using the core protein set that
contains the same seed protein used by CommBuilder. For all
of our queries when using Complexpander, we select the
option of using the MIPS complex catalogue database. We
record the ranking of the members in our identified
communities that also appear in the cocomplex candidate
list predicted by Complexpander. Two communities are
discussed below due to space limitations.

The first community is discovered using NOT3 as the
seed (Fig. 3). NOT3 is a known component protein of the
CCR4-NOT complex, which is a global regulator of gene
expression and involved in such functions as transcription
regulation and DNA damage responses. The MIPS complex
catalogue lists five proteins for NOT complex and 13 pro-
teins (including the five NOT complex proteins) for the
CCR4 complex. The NOT community identified is com-
posed of 40 members, as shown in Table 5. All five NOT
complex proteins listed in MIPS and 11 of the 13 CCR4
complex proteins are members of the community (the two
missing CCR4 proteins may result from their low con-
nectivity to the core). POL1, POL2, PRI1, and PRI2 are
members of the DNA polymerase alpha (I)-primase com-
plex, as listed in MIPS. RVB1, PIL1, UBR1, and STI1 have
been grouped together with CCR4, CDC39, CDC36, and
POP2 by systematic analysis [23]. The community also
contains 20 out of 26 proteins of a complex that probably is
involved in transcription and DNA/chromatin structure
maintenance [16].

The second community is identified by using RFC2 as
the seed (Fig. 4). RFC2 is a component of the RFC
(replication factor C) complex, the “clamp loader,” which
plays an essential role in DNA replication and DNA
repair. The community identified by our algorithm has
17 members. All five proteins of RFC complex listed in
the MIPS complex catalogue database are members of this
community, as shown in Table 6. All but one member in
this community are in the functional category of DNA
recombination and DNA repair or cell cycle checkpoints
according to MIPS. This community also includes the top
eight ranked proteins predicted by Complexpander.
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Chromatin Protein Interaction Network. The chromatin
network forms a large scale-free network with 1,600 nodes
(chromatin proteins) and 9,980 edges (to represent the
protein-protein interaction of these proteins. Since there is
no curated database related to the chromatin biological
complexes identified by our methods. We rely on our
domain expert Professor Lechner of the Biological Science
and Technology Department at Drexel University to verify
the biological meanings of those complexes. Most of the
complexes have a nice agreement with the domain experts’
knowledge. Fig. 5 shows two samples of the chromatin
complexes.

4 CONCLUSION

In this paper, we present a novel unified method Bio-IEDM
to extract biological knowledge from biomedical literature
and identify potential biological meaningful communities
from the derived biomolecular networks. Our method is
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TABLE 5
The CCR4-Not Community

Proteins belonging to the CCR4-Not complex listed in MIPS are indicated by ð�Þ and proteins considered to be involved in transcription and DNA/
chromatin structure maintenance are indicated by ðyÞ.



efficient enough to work in large online biomedical
literature databases and flexible enough to be applied in
very complicated domains with little human intervention.
Our system, BIO-IEDM, can be used to extract many binary
relationships such as protein-protein interaction, cell signal-
ing, or protein-DNA interactions from a large collection of
text files once the name dictionary of the studied object is
provided and is a very useful tool for functional bioinfor-
matics. The biological complexes will help uncover hidden
relationships and complexes governing genomic opera-
tions. The contributions of our research approach are as
follows:

. Automatic query generation for effective retrieval

from large biomedical literature. We introduce a
novel automatic query-based technique to identify

Web documents that are promising for the extraction

of relations from text while assuming only a minimal

search interface to the biomedical literature data-

bases. It automatically discovers the characteristics

of documents that are useful for extraction of a target

relation and generates queries in each iteration to

select potentially useful documents from the text

databases.
. Dual reinforcement information extraction for pattern

generation and tuple extraction. The whole procedure
is unsupervised, with no human intervention except
for a few seed tuples provided by the user in the very
beginning. Also, it introduces a strategy for evaluating
the quality of the patterns and the tuples that are
generated in each iteration of the extraction process.
Only those tuples and patterns that are regarded as
being “sufficiently reliable” will be kept by it for the
following iteration of the system. These new strategies
for generation and filtering of patterns and tuples
improve the quality of the extracted tuples and
patterns significantly.

. Our approach scales very well in huge collections in
the biomedical literature databases because it does
not need to scan every document. Since the only
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TABLE 6
The RFC Community

Proteins belonging to the RFC complex listed in MIPS are indicated by ð�Þ and proteins listed in the functional category of DNA recombination and
DNA repair or cell cycle checkpoints by MIPS are indicated by ðyÞ.

Fig. 5. Two chromatin complexes.



domain-dependent component in our approach is
the initial seed tuples, our system is easy to port to a
new domain.

. Unlike other learning-based methods, which require
parsing as the prerequisite in order to build a
classification models, our approach works directly
on the plain-text representation and needs much less
manual intervention, without the laborious text
preprocessing work.

. Our novel data mining algorithm provides an
efficient way to detect a protein community from a
seed. Experimental results have shown clear struc-
tural and functional relationships among members
of the discovered community.
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