

Machinima Filmmaking:

The Integration of Immersive Technology for Collaborative Machinima Filmmaking

A Thesis

Submitted to the Faculty

of

Drexel University

by

Jonnathan Mercado

in partial fulfillment of the

requirements for the degree

of

Master of Science in Digital Media

2016

ii

iii

© Copyright 2016

Jonnathan Mercado. All Rights Reserved

iv

Dedications

 Nine years ago, a group of people said, “You can’t do it, you are going to fail.” Upon hearing

such burdening words, a blockade of motivation emerged from within. The motivation to do one

thing, follow my dreams. I thought if I did what I loved and loved what I did, there was no way I

was going to fail. I believed in myself and turned all negativity into positive energy, persevering

through hardships. It was not until I was older that I realized, we all have to fail. How can one

succeed without knowledge of failure? The key to success is then not of accepting failure, but of

the courage and willpower to get back up after you fail. And so, I want to thank and dedicate this

body of work to the people who indirectly exploited my hidden potential, and to Yasmin

(mother), Edwin (father), Orlando (stepfather), Giovannie (brother), and Mayleen (sister), who

taught me “it’s ok to fail, just get back up.”

v

Acknowledgements

 I would like to first and foremost give thanks to my adviser and thesis committee members,

Theo. A. Artz, Glen Muschio, and Santiago Ontanon, for all the support and constructive

feedback, which has been instrumental in the culmination of my thesis. Ted, your passion for art

and broad knowledge base provided me with new creative outlets to explore. You encouraged me

to strive and reach beyond my initial vision, which has greatly facilitated my growth as an artist.

Glen, your articulate feedback and constant reminder to remain focused contributed profoundly to

my professional and personal growth. With your mentoring, I was able to set a work-life balance,

build self-confidence, and get some sleep. Santiago, although briefly communicated, your witty

anticipation and feedback regarding eye tracking influenced the design approach of my tool. With

your feedback, I was able to identify and compensate for problems arising while using eye

tracking as a virtual cinematography tool.

 I would also like to thank the Digital Media department for dedicating countless hours of

support, in-and-out of class. Also, a big thank you to my fellow graduates. Over the past two

years, we have spent wearisome hours struggling in our perspective areas within Digital Media.

Each and every one of you offered masterful insights, uniquely attributing to the final delivery of

my thesis. Now the time has come to showcase our labor, let’s triumph together while

committee’s in favor.

vi

Table of Contents

List of Figures .. viii

Abstract ... x

1. Introduction .. 1

2. Background .. 4

2.1 What is Machinima? .. 4

2.1.1 Video Capture Period of Development ... 5

2.1.2 Screen Capture Period of Development .. 6

2.2 Velvet Revolution: Transformation of Moving Images and its Impact on

Machinima .. 7

2.3 Machinima’s Fragmented Participatory Culture ... 9

2.4 Real-Time Engines for Machinima Production .. 10

2.5 Why Machinima Doesn’t Seem to Want to Grow Up? ... 14

2.6 Enriching Machinima with Modern Input Devices .. 15

2.6.1 Eye Tracking and Virtual Reality ... 18

3. System Design ... 21

3.1 System Requirements .. 21

3.2 System Architecture ... 23

3.2.1 Game Engine .. 23

3.2.2 Input Devices .. 25

3.2.3 Networking ... 30

3.2.4 System Rationales .. 30

3.3 Interaction Design .. 33

3.3.1 The Director ... 34

3.3.2 The Performer .. 45

4. Methodology ... 48

4.1 Approach .. 48

5. Results ... 52

5.1 Group Evaluations ... 52

5.2 External Observations and Analysis .. 59

6. Conclusion .. 62

6.1 Application and Contribution ... 62

6.1.1 Real-time Virtual Staging, Rehearsing, and Performance Capture 62

vii

6.1.2 To Move Forward, We Must First Think Back .. 63

6.1.3 Real-time Efficiency, Flexibility, and Safety.. 67

6.2 Known Limitations & Future Work .. 69

6.2.1 Eye Tracking .. 69

3.7.3 Real-time Capture and Editing ... 70

3.7.4 Collaboration .. 71

3.7.4 Future Development .. 71

6.3 End Remarks .. 75

Appendix A. .. 79

viii

List of Figures

2.1 Video Capture Period: Real-time Performance Capture and Archiving 5

2.2 Screen Capture Period: Machinima’s Post Production Tool Shift to 2D Compositing.......... 6

2.3 3D Compositing.. 7

2.4 The Sims 2... 9

2.5 The Movies.. 9

2.6 Unreal’s Open World Kite: Distant Virtual Camera Predator... 11

2.7 Unreal’s Open World Kite: Nearing Virtual Camera Predator... 11

2.8 Game Production Pipeline.. 12

2.9 Moviesandbox: The Ideal Machinima Studio... 14

2.10 Fusion of Tangle User Interfaces and Ubiquitous Technology.. 16

2.11 Eschaton: Darkening Twilight.. 17

2.12 Apartment Huntin’.. 17

2.13 Virtual Reality... 19

2.14 Assassin’s Creed: Rogue Eye Tracking Integration... 20

3.1 Unreal Engine 4: List of Game Templates.. 21

3.2 Networking Infrastructure: Monoscopic and Stereoscopic Output....................................... 22

3.3 Unreal Engine 4.. 23

3.4 Unreal’s Open World Kite.. 23

3.5 Hellblade... 24

3.6 Unreal Engine 4 Visual Scripting Editor: Blueprints... 24

3.7 Eye Tracking... 25

3.8 EyeX Engine Functionality... 26

3.9 EyeX Engine: Behavior API... 27

3.10 Xbox 360 Gamepad.. 29

3.11 Oculus Rift DK2... 29

3.12 Unreal Engine 4 Interface... 31

3.13 Director and Performer... 33

3.14 Camera Tracking... 34

3.15 Camera Tilting.. 35

3.16 Camera Panning.. 36

3.17 Camera Raising and Lowering.. 36

3.18 Target Locking.. 37

3.19 Camera Spawning... 38

3.20 Camera Functionality.. 39

3.21 Camera Cutting... 40

3.22 Camera Deleting... 41

3.23 Item Swapping.. 42

3.24 Light Manipulation... 43

3.25 Staging Actor.. 44

3.26 Performer Navigation.. 45

3.27 Performer Scene Interaction.. 46

5.1 Newcomers’ Collaboration Results.. 52

5.2 Newcomers’ Usability Results.. 53

5.3 Newcomers’ Intuitiveness Results.. 53

5.4 Artists’ and Programmers’ Collaboration Results.. 54

5.5 Artists’ and Programmers’ Usability Results.. 55

5.6 Artists’ and Programmers’ Intuitiveness Results.. 55

ix

5.7 Machinimators’ Collaboration Results... 56

5.8 Machinimators’ Usability Results... 57

5.9 Machinimators’ Intuitiveness Results... 58

5.10 All Groups’ Collaboration Results.. 59

5.11 All Groups’ Usability Results... 59

5.12 All Groups’ Intuitiveness Results... 60

x

Abstract

Machinima Filmmaking:

The Integration of Immersive Technology for Collaborative Machinima Filmmaking

Jonnathan Mercado

Advisor: Theo. A. Artz, Glen Muschio, and Santiago Ontanon

 This Digital Media MS project proposes to create a flexible, intuitive, and low-entry barrier

virtual cinematography tool that will enable participants engaged in human computer interaction

(HCI) activities to quickly stage, choreograph, rehearse, and capture performances in real-time.

Heretofore, Machinima developers have used limited forms of expressive input devices to

puppeteer characters and record in-game live performances, using a gamepad, keyboard, mouse,

and joystick to produce content. This has stagnated Machinima development because

machinimators have not embraced the current evolution of input devices to create, capture, and

edit content, thereby omitting game engine programming possibilities that could exploit new 3D

compositing techniques and alternatives to strengthen interactivity, collaboration, and efficiency

in cinematic pipelines. Our system, leveraging consumer-affordable hardware and software,

advances the development of Machinima production by providing a foundation for alternative

cinematic practices, to create a seamless form of human computer interaction and to positively

convince more people toward Machinima filmmaking. We propose to produce an Unreal Engine

4 system plugin which integrates virtual reality and eye tracking, via the Oculus Rift DK2 and

Tobii EyeX, respectively. The plugin will enable two people, in the roles of Director and

Performer, to navigate and interact within a virtual 3D space to productively affect collaborative

Machinima filmmaking.

1

1. Introduction

 Machinima is a hybrid medium building on traditions from cinematic productions, video

games, and live performance. In 1996, during Machinima’s “video capture” period of

development, pre and post-production tools used for creating, editing, storing, and displaying

narrative performances resided within the game engine. First Person Shooter (FPS) games

associated with this period include Quake, Doom, and Warcraft III. Video capture enabled a

player to record a performance in real-time by means of automated game engine scripts which

stored and replayed captured keyboard and mouse input. Players would then distribute their films

within the game archive to present their high-level performances to other players seeking to

improve their own skills. The distribution and accessibility of Machinima films during this period

were limited to players who owned a copy of the game. This narrowed the target audience

significantly; essentially limited to hard core gamers/owners only.

 In the next stage of development there was a shift from video capture to “screen capture,”

Machinima's post-production tools shifted to using out-of-game resources such as FRAPS, After

Effects, and Adobe Premier, thus enabling machinimators extended flexibility and ease of use to

capture, edit, arrange, and distribute game-recorded footage in various digital formats. This led to

a revolutionary shift that expanded participatory communities, production tools, and Machinima's

target audience. No longer was the accessibility of Machinima films constrained to gamers who

owned a copy of the game, but was now available to far wider audiences across the web; gamers

and non-gamers, alike. Red vs. Blue is one of the best known examples of this use of screen

capture as a mode of production.

 Over the past decade, however, Machinima has stagnated and failed to live up to the

expectation of becoming a mature distinct medium capable of revolutionizing new systems of

2

filmic production [17], [24]. Optimistic articles were written about video game engines offering

technological advancements that would dramatically change how cinematic films were created,

watched, shared, and experienced. Machinima was even regarded as an agent of change and a

distinct medium by institutions such as the American Museum of the Moving Image, the Film

Society of the Lincoln Center, and Sundance Film Institute [13]. Since Machinima is a hybrid

medium containing aspects of film, video games, and live performance traditions, it presents great

opportunities to explore novel ways of using human computer interface (HCI) to integrate

physical and digital spaces.

 However, a problem arises. While the visual quality and technical advances of game engines

and technology have significantly advanced, the use of these technological advances have been

stymied by HCI devices. A gamepad, keyboard, and mouse are examples of technologies still in

use after two decades of Machinima production, limiting methods to puppeteer characters and

record performances during runtime. Considering advancements of technology, researchers

ponder whether Machinima can benefit greatly from using a game engine as a production

environment and post production tool, using emerging input devices to interact, perform, and

capture live performances within a virtual space [20].

 Our system will reenergize the currently stymied development of Machinima. It introduces a

new platform whereby a Performer and Director interact and collaborate within a shared virtual

space. As we leverage consumer-affordable technology, we aim to create an intuitive, flexible,

modular, and affordable tool for filmmakers. The expectation is that such democratization of

filmmaking tools will positively affect more people involved in using a game engine as a

production environment and post production tool. To reinforce Machinima as a hybrid

revolutionary medium, we will facilitate new production methods and integrate eye tracking and

virtual reality as a means to exploit new in-game techniques and possibilities for collaborative

HCI. We use these two technologies to establish dramatic agency, which should influence future

3

designs of real-time collaborative interfaces, while providing new avenues for machinimators to

explore in producing Machinima films.

4

2. Background

2.1 What is Machinima?

Machinima is a vaguely defined medium which offers experimental possibilities to employ

digital interactive narratives for computer display. It has typically employed input devices such as

game pads, keyboards, mouse, head mounted displays, and eye tracking devices. The meaning

behind the craft of Machinima varies from player to player and person to person. However, a

widely accepted definition derives from The Academy of Machinima Arts and Sciences and the

Academy of Motion Picture Arts and Sciences which relatedly state, “The art of making animated

films within a real-time virtual 3D environment [13].” Considering that use of a game engine to

create a film is a common distinguishing factor between traditional filmmaking and Machinima,

perhaps it is wise to follow this viewpoint in order to provide Machinima a chance to be defined

as a distinct medium. After all, a central goal of Machinima is to achieve its independence as an

alternative filmmaking technique [23]. However, Paul Marino and Katherine Anna Kang disagree

with The Academy of Machinima Arts and Science’s definition of Machinima, and they classify

the medium as just another form of film production [17]. They are not wrong, but there is a

fundamental difference between tools used for film production (screen capture) and tools used in

film production using a real-time engine (code).

5

2.1.1 Video Capture Period of Development

 Machinima origins took the form of demo recording, allowing players to record their in-game

performance, archive it, and allow players with the same copy of the game to view archived

replays (see Fig 2.1). The target audiences were limited to those who owned the game, but varied

from those players seeking enjoyable viewing of in-game replays to those learning from highly

skilled players on how to improve their own gameplay skills [13]. First person shooter titles such

as Quake, Doom, and Warcraft III exemplify the origins of code-based Machinima production in

1996. What is meant by code-based is that game replays were not films, “rather they are

sequences of commands or scripts that tell the game engine what to do, by repeating the effects of

keyboard and mouse input in the

same sequence as executed by the

player when playing the game [11].”

In other words, Machinima during its

early development depended largely

on programming to analyze a player’s

input on the controller, replicate the

input in real-time, archive the

sequence of inputs using programming

scripts, and replaying the actual performance as if the player was re-performing it in-game. This

unique code-based functionality of recording a player’s digital performance in real-time was a

key ingredient within the origins of Machinima. Machinimators during this time period used the

software, coding, virtual space, and tools inside a real-time engine to perform and capture the

recording of an event from the perspective of the player.

Figure 2.1 Video Capture Period: Real-time Performance

Capture and Archiving

6

2.1.2 Screen Capture Period of Development

The release of Tritin’s Quad God in the year 2000 marked a transitional period for

Machinima, drastically reorienting its code-based attributes (video capture) to capture attributes

(screen capture). In other words, Machinima’s video capture was no longer edited through code,

but reliant on using non-linear editing programs (screen capture systems) such as FRAPS, Adobe

Premier, and Adobe After Effects (see Fig 2.2) [13]. It is important to note the transitional period

of Machinima did not occur immediately. Hugh Hancock of Strange Company (1997) and ILL

Clan (1999) were the first two companies to produce Machinima using out-of-game software

such as FRAPS. Although post-production tools used with their movies Eschaton: Darkening

Twilight and Apartment Huntin’ were not immediately accepted as common practice, the two

films managed to enter a new space for Machinima production, providing machinimators the

opportunity to explore new

forms of Machinima

practices not confined to in-

game software. The use of

non-linear editing software

such as After Effects and

Adobe Premier did not

become a common practice

until the release of Quad

God. After Effects and Adobe Premier offered convenient editing tools for moving images,

leading machinimators to incorporate this new out-of-game form of post-production.

Figure 2.2 Screen Capture Period: Machinima’s Post Production Tool

Shift to 2D Compositing

7

2.2 Velvet Revolution: Transformation of Moving Images and its Impact on Machinima

Machinima films owe much to the transformation of moving images during the rise of digital

media [24]. If not for the affordability and accessibility of mainstream media content, which

permitted many to participate, Machinima would have been limited to only gamers owning the

same copy of the game. Perhaps it is not coincidental that the birth of Machinima and rise of

Manovich’s “Velvet Revolution” which marked a shift away from time-based (temporal) to

composition-based (spatial) production occurred at the same time [23].

According to Manovich, the software package, “After Effects” ushered in the Velvet

Revolution with its ability to combine distinct media such as animation, typography, live action,

and graphic design all in a single, affordable, software environment [16]. Although content from

varying media met within a single space, it did not mean all content looked the same, but rather

the techniques employed were similar [15]. Before the Velvet Revolution, Manovich asserts

traditional lens-based recording offered little to no manipulability over the dimensions and fixed

visual content per frame [16]. The limitations of temporal space quickly became supplemented

with composition based production, the spatial dimension (see Fig 2.2). The reduction of software

and hardware costs and convenient integration of compositing led way to participatory practices

with independent artists, educators, and companies. Further, the flexibility of the After Effects

interface presented

opportunities for designers

to adjust canvas

dimensions, import

distinct media,

independently arrange and

access elements, apply

filters, and manage

transparency. The Figure 2.3 3D Compositing

8

rendered output was no longer dealing with time-based linear storytelling, but of the intentional

arrangement of visual elements in space. As convenient and original as the 2D compositing

period of development was, during the year 2000 3D compositing forms of production came to

fruition [16]. Skills, tools, and techniques originating from 2D compositing quickly translated

into 3D Cartesian coordinate space (see Fig 2.3). Notable advantages of 3D space deform,

animate, independently access 3D objects that were only imagined and objects mimicking reality,

cameras could be animated and manipulated to represent the three-dimensional structure of the

world with automatic perspective, and both 2D and 3D elements could meet and be presented

within 3D Cartesian space.

The new shift in production tools for Machinima was greatly influenced by the affordability,

accessibility, and manipulability of content offered during the Velvet Revolution. For Machinima,

recording in-game footage using non-linear editing programs offered machinimators the ability to

capture, edit, arrange, and distribute movies in digital format. The flexibility to distribute

Machinima films as digital video formats was a powerful transition, allowing access to diverse

audiences made up of gamers and non-gamers. However, Machinima moving toward a film

format (video capture to screen capture), as Nitsche illustrates, has introduced ramifications,

shifting the significance of Machinima from “the recording of the event (video capture) to the

recording of a viewpoint to the event (screen capture) [22].” What this means is the shift from

video capture to screen capture caused Machinima to lose its value of using a code-based replay

engine in post-production, forcing machinimators to repurpose the use of a real-time engine as

only a production environment, not utilizing all of the engines capabilities; that is not to say

Machinima was not successful during this period. In fact, Roster Teeth’s Red vs. Blue comedy

series ran between 2003 and 2007, summing up a total of one-hundred episodes; the series

exemplified the capabilities of this new mode of production. This shift, although introduced

technological shifts from using the game language (coding) to film language (screen capture) in

post-production, was accepted as the new norm.

9

2.3 Machinima’s Fragmented Participatory Culture

Following the production shift from video capture to screen capture, new titles such as The

Sims 2 (2004) and Lionhead’s The Movies (2005) accelerated the popularity of Machinima

filmmaking (see Fig. 2.4 and 2.5). The release of Sims 2 gave way to an increase of Machinima

productions, summing up a total of five thousand films between 1996 and 2005; three thousand

out of the five thousand films were created with The Sims 2 [13]. The Movies, on the other hand,

significantly increased the number of Machinima films produced, summing up to one-hundred

thousand in the span of a year (2005-2006). The Movies, however, was a game where the player’s

sole purpose is to create a movie in-game. Players were tasked with editing and arranging movie

clips within a game environment to produce a short film within three months (three months in-

game). Thus, the very essence of The Movies was centered on filmmaking in-game. This form of

production, however, raised concerns as to whether films for these games were in fact

Machinima. The reason being, games like The Sims 2 and The Movies made Machinima

production too easy, according to seasoned machinimators. Pre-2004 Machinima communities

and veteran machinimators “felt the essence of Machinima was to show prowess at pushing a

game engine beyond the limits intended by its developers [9].” This perspective, Kellan

illustrates, is from Machinima community leaders attempting to cling to core values of what was

once considered Machinima. In any case, the new production method of Machinima formed

Figure 2.4 The Sims 2 Figure 2.5 The Movies

10

newer communities, ranging from seasoned machinimators whose core values resided with using

all components of a real-time engine, to machinimators creating films using non-linear editing

programs and a real-time engine as a production tool.

2.4 Real-Time Engines for Machinima Production

 Speaking from various community perspectives on Machinima, there are advantages and

disadvantages of using a real-time engine as a production environment and post-production tool.

One advantage Salen articulates from using a real-time engine is the opportunity to elicit two

kinds of play. “They are, systematized objects, bound by the game’s interactive structure and

underlying code, but at the same time they are radically free, offering users a unique space in

which to perform and play with both narrative and representational codes [24].” Salen’s view on

this point refers to the visual representation and coding functionality of 3D objects inside a game

engine. An example illustrating the power of these two types of play is Unreal 4’s Open World

Kite demo. The purpose of the demo was to present the power of Unreal Engine 4, producing a

high quality real-time animation aimed to compete with pre-rendered animated films. More

specifically, the two kinds of play Salen illustrates emerge from the artificial intelligence

implemented for the herd of deer in Open World Kite. The deer not only visually appealed to

audiences, but their behavior and animation were influenced by code. To illustrate, the deer were

programmed to animate differently depending on the location of the virtual camera; the virtual

camera functioned as a virtual predator. If the virtual camera was far enough away from a herd of

deer, the deer would animate in a calm, natural way (see Fig. 2.6). If the camera came in close

proximity to the deer, the herd would animate scattering, finding other potential routes to flee

from the predator, meanwhile analyzing the existing environment to ensure they follow a path

that does not lead to falling off a cliff (see Fig. 2.7).

11

 To put the two kinds of play in simpler terms, a rock within a game engine can be viewed and

depicted as an ordinary lifeless rock, but fuse code with the rock and an expression emerges,

forming a variable the player is able to interact with, thereby creating the probability of expected

and unexpected variables to arise during filmmaking. The variable can further be accessed,

edited, and defined to perform a function. A function may include the rock turning into a rock

monster, breaking, or changing colors. Another advantage of using a real-time engine Kirschner

defines is the instant feedback a real-time engine provides. Instant feedback of the engine refers

to the real-time functionality allowing filmmakers, artists, and designers the ability to shift and

view creative decisions on the fly. The final image is therefore rendered at all times, even when

changes are made such as applying lens filters, adjusting intensity and color of lighting

conditions, and animating camera movements, among others. The flexibility and complexity of a

real-time game engine for developing Machinima films does not come without its disadvantages.

Kirschner conversely points out using a real-time engine requires computational compromises

that often limit the overall visual quality of a film, lagging behind visual quality produced with

pre-rendered animations [13]. Although the matter is subject for debate, as Unreal’s Open World

Kite demo proved a real-time engines visual prowess over pre-rendered content, disadvantages of

using a game engine are still in effect. In terms of computational compromises, designers must

strategically compress textures, approximate and reduce shadow resolutions, compress

animations, and be conscientious of scene memory limitations and performances. The reason for

Figure 2.6 Unreal’s Open World Kite: Distant

Virtual Camera Predator

Figure 2.7 Unreal’s Open World Kite: Nearing

Virtual Camera Predator

12

this is because the game engine calculates all resources such as lights, geometry, materials,

textures, animations, and coding in real-time. Placing hundreds of complex 3D objects with high

polygonal counts, dynamic lights calculating shadows based on moving objects, and high

resolution textures can lead to performance drop and memory peak. Thus, to achieve the visual

quality presented in Unreal’s Open World Kite demo, a designer must be knowledgeable in many

areas of production inside a game engine. This brings us to a second disadvantage of Machinima

production using a real-time engine, the steep learning curve required to produce content (see Fig.

2.8). Machinima is after all a medium developed from gamers, for gamers [9]. Consequently,

many gamers not familiar with asset creation pipeline will not be able to comprehend the

complexity involved with creating Machinima content, let alone develop it. Kirschner states the

process of generating content such as 3D models, animations, and textures for Machinima leads

to a very tedious pipeline. 3D models must first be created using an out-of-game resource such as

3ds Max, Maya, or Zbrush, among others; creating textures for game assets (3D models) require a

photo-imaging software such as Photoshop, and animations require complex rigging, skin weight

painting, and time-consuming key-framed animations (or motion capture data cleanup). Once all

the assets are completed they must be exported from their prospective software application and

Figure 2.8 Game Production Pipeline

13

into the real-time engine, where assets will undergo extensive editing in order to be usable. If

machinimators require a slight change in animation, they will have to endure the exporting and

importing process of external packages due to the limited manipulability and tools available

inside a real-time engine to tweak animations. Although the importing and exporting process may

seem time-consuming, the benefit of viewing and altering finalized content in real-time, when

compared to pre-rendered content, outweighs the time-consuming need to render complex scenes

that can span for minutes, hours, and even days [13]. Nevertheless, the steep learning curve

involved with producing original Machinima content is a lengthy process that requires

newcomers to learn a whole new range of skills with asset creation pipelines, which often

prevents machinimators from creating unique aesthetics and narratives. Because of the steep

learning curve, seasoned advocates question the effectiveness of using a game engine as a

platform for producing Machinima, and whether machinimators required new sets of tools and

software to generate Machinima content more easily.

2.4.1 The Ideal Machinima Studio

 A 3D game engine is specialized software designed to perform very specific tasks, game

related. Since Machinima is a moviemaking hybrid, Kirschner believes filmmaking tools would

greatly assist machinimators in designing, editing, and producing content. Kelland agrees, stating

new Machinima tools are beginning to surface that will simplify Machinima production [9]. The

ideal software would offer machinimators a “real-time approach of Machinima filmmaking in all

other aspects of 3D animation production [13]. Kirschner expands on the ideal software for

Machinima, stating machinimators require a rapid workflow for asset building, animation, camera

setup, character directing, and story scripting. An example of this Machinima tool is the real-time

3D application called Moviesandbox (see Fig. 2.9). In Moviesandbox machinimators are able to

14

quickly design, edit, and produce

Machinima. The simplistic GUI

interface and dedicated tools offer fast

prototyping methods for designing

props, characters, setting up lights,

camera movements, animating, and

storytelling. However, this method of

Machinima production gave rise to

yet another community, expanding

the underlying meaning and process of

generating Machinima films. The communities were then split amongst seasoned machinimators

whose core values of Machinima resided solely inside a video game engine for production and

post production, machinimators fusing a video game engine (production environment) and screen

capture (post-production) technology, and machinimators outsourcing to a dedicated Machinima

real-time engine for fast prototyping and production. Regardless of how and where Machinima

was created, the new medium found itself under-exceeding in its potential to alter how animation

and film were digitally made [23].

 2.5 Why Machinima Doesn’t Seem to Want to Grow Up?

 Paul Marino, one of Machinima’s seasoned advocates states “the promise of filmmaking

within a virtual space still needs to be fully realized [17].” Marino explains the visual quality and

technical advances of game engines and technology have drastically evolved, but the creativity

involved for producing stories within a game engine has not met its potential. Salen expands on

this point, stating Machinima productions lack a fundamental balance between code and visuals, a

valuable component to the origins of Machinima. Salen continues to emphasize that “Machinima

doesn’t seem to want to grow up, that game boys are still making silly little films about, well,

Figure 2.9 Moviesandbox: The Ideal Machinima Studio

15

game boys [13].” What Salen suggests is perhaps the time has arrived for Machinima to expand

its target audience appeal to include non-gamers seeking exploratory forms of storytelling

through Machinima, rather than exclusively targeting and developing for a narrow gaming

audience developing content from games, about games. After all, if there was one area

Machinima excelled in it would be promoting convergence culture, the way media is produced

and consumed simultaneously from the top down and bottom up [5]. Because Machinima

originated as an artistic medium targeting gamers, according to Kelland, developers have created

Machinima tools dedicated to gamers, offering simple integration, manipulation, and

implementation of content (i.e. Moviesandbox). Salen further explains the reason for developing

simpler tools for Machinima production is directly influenced by the steep learning curve

required to build films inside a game engine. Once the mode of production shift between video

capture and screen capture took place, however, Machinima was no longer viewed and shared

exclusively within gaming communities. The inclusion of participatory practices involving

gamers and non-gamers eventually impacted the way Machinima was produced, unintentionally

fragmenting various communities with their own distinct understanding of what constitutes

Machinima, and how films were produced.

 2.6 Enriching Machinima with Modern Input Devices

 Machinima as a hybrid between cinematic production, games, live performance, and

puppeteering of 3D characters held high hopes for offering new systems of production that would

revolutionize film [23]. Even though Machinima has not revolutionized filmic productions, the

potential to inspire and facilitate change remains optimistic. Designers and researchers have been

searching for more efficient ways to integrate physical and digital spaces, an area in which

Machinima can make a contribution [13]. Mazalek suggests live performance and cinematic

production is the heart of Machinima [19].” Mazalek is not wrong, as live performance was seen

during the video capture era of Machinima, where players recorded in-game performance to show

16

off their abilities to other gamers seeking to improve their own skills. Cinematic production was

more prominent during the screen capture phase where machinimators used out-of-game

resources such as FRAPS, After Effects, and Adobe Premier to tell linear stories. Mazalek builds

on this point, suggesting that fusing tangible user interfaces (TUI) and ubiquitous computing

technology would enrich Machinima production (see Fig. 2.10).

 “From ubiquitous computing research, Machinima can derive the importance of

providing transparent technological tools, where the interface disappears in the face of

the task performed by its user. Machinima can also benefit from interfaces that make use

of human manual dexterity to provide expression in a virtual space and that offer

immediate feedback to our actions, two central notions of tangible computing [13].”

 Mazalek emphasizes the importance of using modern technology to tell unique Machinima

stories by means of live performance. Current forms of input devices such as gamepads,

keyboards, mice, and joysticks offer limited forms of expressive qualities for developers to

explore when creating Machinima [20]. Using technological tools (i.e. head mounted displays and

eye tracking devices) as input devices to interact with digital information from a physical

Figure 2.10 Fusion of Tangle User Interfaces and Ubiquitous Technology

17

environment, coupled with digital interactive storytelling inside a game engine will pave a new

avenue for machinimators to explore collaborative alternatives to create theatrical stories.

Although the success of this form of Machinima production cannot be empirically evaluated in its

current state, Mizuko believes “the promises and pitfalls of certain technological forms are

realized only through active and ongoing struggle over their creation, uptake, and revision [13].”

In other words, until someone attempts to break the barrier and fuses Machinima, coding, modern

technological interfaces, and live performance, no progress will be made to individualize

Machinima as a distinct medium.

 Hugh Hancock of Strange Company and ILL Clan were the first two companies to use

screen capture in Machinima production, marking an important point in Machinima history that

gave way to the development shift from video capture to screen capture (see Fig. 2.11 and 2.12).

Because Machinima builds on previous traditions including game design, film, live performance,

and puppeteering, it is only natural for designers to begin fusing modern technology from each

field. Fusing different technology, techniques, and expressions is nothing new in our society. As

Knobel point out our culture is an “endless remix of hybridization [10].” Knobel aims to point out

is, our culture is constantly mixing and remixing different media, whether in the form of

compiling different sound tracks, creating photo collages, and creative writing, among others. The

learning structure of school is an example of endless hybridization. If a student is required to

write a paper contrasting two author views and evaluating their views with your own words, there

Figure 2.11 Eschaton: Darkening Twilight

Figure 2.12 Apartment Huntin’

18

will be some form of personal evaluation to what has already been written. That being said, in

writing, an individual is in fact hybridizing pre-existing content and rephrasing the significance to

get the point across. This form of hybridization does not seem to be translating in Machinima.

The advancement of technology in varying disciplines over the past decade has questioned

whether Machinima has not matured because there is a significant technological lag.

Machinimators are still using traditional keyboard, mice, and game pads to puppeteer characters,

rather than using the portrayal of Machinima as a hybrid media to their advantage. Head mounted

displays and eye tracking technology are prime examples of technology that can be used for

Machinima productions which have not been explored. Although head mounted displays and eye

tracking devices are separate functional entities and individually experienced, they have shown

remarkable interaction capabilities introducing expressive viewing and ubiquitous computing

possibilities within virtual reality.

2.6.1 Eye Tracking and Virtual Reality

 Head mounted displays such as the Oculus Rift and eye tracking devices such as Tobii EyeX

are two technological innovations offering unique possibilities to produce Machinima content by

means of live performance. To add, head mounted displays and eye tracking satisfy two important

descriptors of virtual reality, leading to increased engagement and strong senses of presence, an

attribute Machinima can greatly benefit from. That is, vividness and interactivity [25]. Vividness

Seibert illustrates is how technology is able to convincingly simulate multiple senses at once.

Head mounted displays are an example of this device, engaging visual and auditory receptors (see

Fig. 2.13). To put it more vividly, Buczek describes virtual reality as a surrounding space that

sensually involves the viewer, where the camera movement is referred to as your own [2].

Wearing a head mounted display, this gesture can be unexpectedly intense and can even

physiologically affect a user’s sense of balance, commonly leading to what is termed simulation

sickness (i.e. cybersickness). Simulation sickness is classified as a subset of motion sickness

19

where users experience headaches, nausea, and in extreme cases tunnel vision. The causal

variables inducing simulation sickness is currently undergoing extensive research. However, the

drawback of simulation sickness elicited from head mounted displays did not halt its

transformation. The use of head mounted

displays spread to various disciplines

including education, human computer

interaction, medical simulations, army

simulations, 360 videos, museums,

augmented reality, video games, and

mobile technology. One example of

possible innovations deriving from the

ability to interactively view 360 degrees

inside a virtual space is Glen Kean’s Duet animation. The hand drawn sixty frame animation

depicts an unwinding story of a baby boy and baby girl taking gradual steps into a romantic

involvement into adulthood. Kean advantageously made use of the spatial dimension to tell a

story in 3D space, allowing viewers the freedom to at any time pursue their favorite character and

watch their story unfold by simply moving your head. Interactivity, the second descriptor of

virtual reality, refers to the extent a user is able to influence the virtual environment in which they

reside [25]. Influencing a virtual environment may come in the form of modifying an object

shape, activating scripted events, and moving virtual characters, among others. An example of

existing technology capable of influencing virtual environments is eye tracking. Eye tracking has

gradually evolved over the years, setting forth possibilities to construct responsive interfaces by

means of tracking eye movement. These attributes can further be independently accessed and

programmed accordingly, offering many interaction opportunities. Eye tracking technology,

similar to head mounted displays have led companies, designers, educators, artists, writers,

editors, and researchers to analyze eye tracking patterns in an attempt to understand why people

Figure 2.13 Virtual Reality

20

look at content and for how long. Heatmaps are a common form of eye tracking data collection, a

graphical data representing values based on varying intensity. This data can then assist companies

develop more appealing and accessible interface designs, define viewing patterns to strategically

place advertisements, develop a language for human computer interaction, experience more

immersive virtual reality experiences, and naturally enhance gameplay mechanics. Tobii EyeX

has already infiltrated AAA games, enhancing immersion and adding transparent layers of natural

control. Assassin’s Creed: Rogue is an example of AAA title which has incorporated eye tracking

technology to allow for more immersive, hands-free controls (see Fig. 2.14). Players would no

longer require joysticks to rotate the camera view. Using eye tracking systems, the game window

or frame from which the viewer sees the world from the characters’ perspective would

automatically adjust to the location of gaze, leading to greater immersion and more natural forms

navigation. Assassin’s Creed: Rogue players positively responded with this innovative and

unobtrusive form of gameplay. Although this new form of human computer interaction shows

great promise with future

interfaces, much research is

needed to determine a

suitable language for its uses

[18]. Gamers and

machinimators can certainly

expect eye tracking software

to greatly influence future

designs in storytelling and all

areas of human computer

interaction. Eye tracking is a powerful unobtrusive tool requiring proper fundamental integration

to improve in game performance and transparency within the virtual world, potentially leading to

greater levels of immersion.

Figure 2.14 Assassin’s Creed: Rogue Eye Tracking Integration

21

3. System Design

3.1 System Requirements

 Machinima in the past decade has relied on input devices with limited expressive qualities to

puppeteer characters and record in-game live performances, using a gamepad, keyboard, and

mouse to produce content [17], [24]. While the use of analog joysticks, buttons, and triggers are

fundamentally the most widely accepted practice for creating Machinima films the way we play

games, our system deviates from these practices. Instead, our system sheds light on Machinima’s

potential for anymation, by incorporating a seamless form of human-computer interaction for

real-time performance and capture (i.e. eye tracking), thereby expanding Machinima production

tools, techniques, and possibilities. Conveniently, Unreal Engine 4 and its active community

present the opportunity to marry previously distinct technologies, which made possible the

creation of this intuitive system.

 While the above outlines stagnated input devices habitually used in Machinima production,

our system perseveres from the constraint of using games as platforms for Machinima

filmmaking, which quickly become outdated. Instead, our system takes the form of a plugin

within Unreal Engine 4, which serves as a convenient jumping off point enabling users to select

from a list of prebuilt

mechanics to begin producing

Machinima (see Fig. 3.1). As

a plugin, our system can be

integrated, with a bit of

knowledge, into any

Machinima project at any

phase in production, (so long

as it is within the confines of Figure 3.1 Unreal Engine 4: List of Game Templates

22

Unreal Engine 4). As a plugin, our system strives to remedy Machinima’s constraint of using

games with dedicated game hardware, enabling our system to evolve with the Unreal community

by means of system updates. In doing so, a playground of possibility emerges, introducing

experimental opportunities that is applicable to producing and capturing scenarios for

cinematography, including scene development, artificial intelligence, shooting, choreographing,

directing, and collaboration.

 Our system exemplifies this experimental opportunity by providing a transparent, intuitive,

flexible, and collaborative user interface. However, to enable collaborative Machinima

production, a networking infrastructure using two Windows desktops is necessary in order to: (a)

enable multiple users to interact and collaborate within a shared, virtual space, and (b) optimally

render a stereoscopic output for the Oculus Rift DK2 head mounted display and monoscopic

output for the Tobii EyeX eye tracker (see Fig. 3.2). In regard to optimization, the Oculus Rift

DK2, unlike the eye tracker, requires a special render setting that duplicates the viewer’s in-game

camera at slightly different angles to create an impression of depth- stereo. This setting makes

possible the use of virtual reality within Unreal Engine 4, but does not come without its

drawback. Because Unreal Engine 4 calculates complex lighting, geometry, materials,

Figure 3.2 Networking Infrastructure: Monoscopic and Stereoscopic Output

23

animations, textures, and post-processing effects in real-time, a computer with strong graphical

processing power is required. Without a high performance graphics card, the Oculus Rift DK2

operator using our system can experience significant latency. With increased latency, users are

more susceptible to experience simulation sickness [25]. Add three game windows (two for

stereoscopic and one for monoscopic output) rendered simultaneously to a single computer, and

the system usability will decrease significantly, countering the system plugin’s intuitive design.

Thus, for maximum in-game performance for the Oculus Rift DK2 operator, two separate desktop

computers are used to maintain Oculus’s recommended 75 frames per second (FPS) playback.

3.2 System Architecture

 Leveraging Unreal Engine 4 with affordable modern input devices, it is possible to create a

collaborative real-time virtual cinematography tool. The culmination of game and production

technologies, which led to the development of our system, must be used synchronously to

effectively make use of its functionalities.

3.2.1 Game Engine

 The system plugin is reliant on using Epic Games’ Unreal Engine 4 version 4.10. Unreal

Engine 4 is a free, robust game engine contributing to pushing games such as Hellblade (view

Fig. 3.5) and cinematic content such as Open World Kite (view Fig.

3.4) to newer levels

of high visual

fidelity. The gap

between the quality

of game production

and cinematic production continue to narrow.

Figure 3.3 Unreal Engine 4

 Figure 3.4 Unreal’s Open World Kite

24

Unlike pre-rendered content, game engines provide many attributes, including real-time feedback

of iterative design, the benefit of seeing the final look at all times, and the ability to calculate

complex models, scenes, lighting,

animations, and textures in real-time.

In addition, Unreal has contributed to

five million dollars in Unreal Dev

Grants given to individuals and teams

to incentivize the production of better

content, tools, and learning materials

for the Unreal community, contains

1.5 million dedicated developers, provides extensive support, resources, and documentation, and

actively integrates third-party developer plugins with engine releases, which has contributed to

the successful culmination of our system. Unreal’s active involvement in pushing the game

engine’s limitations and encouraging participatory culture exemplify the validity of the engine’s

recurring extensibility, and thus why it is selected as the core development platform.

 In addition to the above outlined attributes of using Unreal Engine as the selected platform

for our system, the game engine is also selected because of its intuitive visual scripting node-

Figure 3.5 Hellblade

Figure 3.6 Unreal Engine 4 Visual Scripting Editor: Blueprints

25

based editor referred to as blueprints (view Fig. 3.6). The visual scripting editor is an alternative

programming method that enables users to program elements graphically using visual expressions

and symbols, rather than textually. Blueprint functionalities lower the technical learning curve for

programming, making it an ideal platform for Machinima newcomers who may not possess the

wider knowledge base required for programming using traditional text-based platforms such as

Microsoft Visual Studio. Since text-based syntax is less of a constraint in Unreal Engine 4,

newcomers are able to quickly learn, modify, and expand our system to cater their needs.

3.2.2 Input Devices

Eye Tracking

 Tobii EyeX’s eye tracker offers consumers, at an affordable price, natural human-computer

interaction capabilities using eye-gaze. The eye tracker, which is integrated into our system, uses

near-infrared light (NIR) to track eye movements and gaze point of the user (view Fig. 3.7). Its

EyeX Engine works similar to an Operating System extension, repeatedly reacting to a user’s

Figure 3.7 Eye Tracking

26

eyes, sending messages to the system, interpreting the data by mediating between multiple

applications, and together forms a built-in heuristic that streams and filters data to continually

determine the user’s location of gaze. In other words, the EyeX Controller calculates the user’s

gaze point coordinates, then the EyeX Engine receives and transforms the screen coordinates to

pixel coordinates on screen. To accurately transmit the eye-gaze coordinates, a brief calibration

setup is required. Then, users are able to experience the EyeX Engine API (view Fig. 3.8) within

Unreal Engine 4. The way in which the EyeX Engine API works with our system can be divided

into three categories: streams, states, and behaviors.

 Streams: Streams contain smoothly filtered eye gaze data that is transformed into a dedicated

coordinate system. That is, gaze point, eye positions, and fixations. Gaze point is the place on

Figure 3.8 EyeX Engine Functionality

27

screen where the user’s eyes are looking at, eye positions are the location of the user’s eyes (in

millimeters) relative to the distance of the physical eye tracker, and fixations are locations where

a user’s eye linger to focus (view Fig. 3.8).

 States: States track the current state of the EyeX system. In other words, it tracks the dynamic

state of the user. These are, user presence and gaze tracking. User presence tracks to see if a user

is in front of the eye tracker or not, and gaze tracking relates to whether a user’s gaze is being

tracked (view Fig. 3.8).

 Behaviors: Behaviors relate to more complex types of interactions, such as scrolling and

clicking on a screen. Interaction behaviors in this scenario require either mapped activation

regions on screen or supplement the activation region with another form of input (i.e. button on a

gamepad, keyboard, mouse, and so on) to confirm interaction (view Fig. 3.9).

Figure 3.9 EyeX Engine: Behavior API

28

 What isolates Tobii EyeX from the consumer market is two-fold: (a) the eye tracker is the

first of its kind to be used in games such as Assassin’s Creed Rogue and The Division, among

others, (b) and the eye tracker provides a readily accessible third-party plugin for use within

Unreal Engine 4, enabling users to experiment with its unique interaction capabilities. For

example, eye tracking is being used in The Division as a way to aim and shoot a weapon in the

direction of gaze. In Assassin’s Creed: Rogue, the eye tracker is used as a way to move the

character’s camera viewpoint to the location of gaze, highlight virtual objects, reveal information,

and so on. Because such an eye tracking system is relatively new, there is a growing body of

research as to its potential application, and so this technology is selected as central for

experimentation as a virtual cinematography tool.

Gamepad

 Eye tracking will work in tandem with a wired twin-stick Xbox 360 gamepad (see Fig. 3.10)

for greater precision of interactions. As mentioned above regarding Tobii’s EyeX Engine’s API,

complex interaction behaviors such as clicking and scrolling for eye tracking require either an

activation region or an activation region supplemented with an input device to confirm an

interaction. For our system, initial explorations exclusively used eye tracking with activation

regions to interact with the virtual environment. This method of interaction introduced significant

hardships, enabling users to - at all times- interact with their surrounding virtual space,

intentionally and unintentionally. This does not make for an intuitive system. Assuming the user

is gazing in a particular location on screen does not imply the need for interaction. As a result,

activation regions are modified to include the most widely accepted input device in Machinima

production, a gamepad (Xbox 360 controller).

29

 Gamepads enable sophisticated control via analog stick, buttons, and pressured triggers. They

provide a natural user interface that is widely supported in

games. Yet, with analog inputs comes a great burden. There

are only so many buttons that can perform only so many

functions. However, that is not the case within our system.

The gamepad works in tandem with eye tracking, which

increases the limited number of functionalities each button is able to perform. Reason being, the

functionality of each button is driven by what the user is gazing toward, opening up fertile ground

for interaction possibilities from analog input devices.

Oculus Rift DK2

 The Oculus Rift DK2 (see Fig. 3.11) is an affordable head mounted display compatible with

Unreal Engine 4. It is important to note the Oculus Rift DK2 will undoubtedly serve a greater

purpose in future work of real-time animation capture and editing. In the system plugin’s current

state, the Oculus Rift DK2 serves as proof that the integration between these two distinct

technologies is possible within Unreal Engine 4.

 At the time of this writing, Unreal Engine 4 contains a prebuilt plugin enabling the use of

Oculus Rift DK2 head mounted display to be functional and its parameters editable. The Oculus

Rift DK2 requires SDK and Runtime 0.4.0 to be installed for compatibility with our system

(Unreal version 4.10.4). In doing so, upon loading the

game build, a stereoscopic display immediately takes

effect. While operating the Oculus Rift DK2, the positional

tracker camera, supplemented with the head mounted

display, tracks the position of the Oculus Rift in physical

Figure 3.10 Xbox 360 Gamepad

Figure 3.11 Oculus Rift DK2

30

space and translates any head movements performed by the operator into the virtual space.

3.2.3 Networking

 Our system relies on networking to establish collaborative play and bridge the Oculus Rift

DK2 and Tobii EyeX eye tracking. Tobii released a plugin for the eye tracker to work in

conjunction with Unreal Engine 4 titled EyeXforUE4. The plugin is used in our system across a

server via UE4’s server framework. Using EyeXforUE4, the eye tracker, after calibration, streams

across a server via IP connection.

 Oculus Rift DK2 also has an SDK and plugin that is integrated with Unreal Engine 4’s server

framework via IP connection. This makes possible the rendered output of stereoscopic and

monoscopic displays within a shared virtual space.

3.2.4 System Rationales

 The above articulates hardware and software which make up the backbone of our system

plugin. Through a build of the game, two or more users are able to connect via network and

collaboratively produce Machinima.

 Our system design, in its prototype state, is limited to two roles, the Director and Performer.

The selected roles are a result of carefully thought out functionalities that would best showcase

our system’s usability; by no means are these two roles the limitations and capabilities of our

system. In fact, more than two operators are able to collaborate within the same virtual space,

whether undertaking the Director or Performer role. Because Machinima production is a

collaborative effort, our system offers a readily accessible collaborative platform whereby team

members, whose locations may vary from local to distant, can establish choreography over a

network (see Fig. 3.2).

31

 Upon running a standalone build of the game, a scene populated with custom pre-made

assets are loaded for rapid prototyping. Custom assets are made to provide machinimators a

readily accessible filmmaking environment for Machinima production. Although the custom

scene is pre-designed, users of our system have access to every visual component; meaning,

machinimators have the ability to edit the scene- add custom assets, rearrange the scene elements,

alter the visual aesthetic, change lighting- to cater their needs during production (view Fig. 3.12).

 Developing a democratized, affordable, collaborative, intuitive, and low-entry barrier system

are core features of our plugin. In the interest of democratization, our system plugin is distributed

as open source, and is integrated within a robust game engine that is free to use. What this means

is, our system is designed in such a way that consumers can employ personal computers as

platforms for creation of game-generated cinema. And because the hardware and software used in

our system is affordable and accessible, users have the opportunity to individually or

collaboratively produce sophisticated cinematic productions from the comfort of their own

homes, with only a fraction of the cost when compared to equipment used in high end cinema

productions. For low-entry barrier, our system focuses on establishing collaborative interactions

and basic camera motions during runtime. Efforts are made to limit the need to exit the game

Figure 3.12 Unreal Engine 4 Interface

32

engine, which would require newcomers to learn how to navigate within Unreal’s content-rich

user interface (view Fig. 3.12). Instead, our system is designed to be used during runtime in order

to focus what is important, that is real-time directing, rehearsing, and performance capture.

Although the system is designed as plug-and-play, the nature of the system as a plugin adds the

flexibility and modularity to customize and expand its functionality, tweak settings based on user

preferences, and integrate distinct technologies (i.e. eye tracking, virtual reality, Perception

Neuron’s real-time motion capture solution).

 As a plug-and-play system, our plugin offers a highly accessible jumping off point for

consumers to begin creating animated films, untethered to the tediousness of learning complex

3D application workflows and non-linear editing programs. Although this system, in its current

state, temporarily imposes limitations to the types of narratives and visuals, its function serves to

provide an alternative means for real-time animated film production, using a game engine as a

filmmaking platform for production and post production- a key component of Machinima’s

origin.

33

3.3 Interaction Design

 As outlined above, the featured roles in our system include the Director and Performer (view

Fig. 3.13). The Director operates an invisible floating camera and uses gamepad to navigate

within the virtual space. Using the Tobii EyeX eye tracker (recognized by EyeX Engine’s API

and accuracy registered by completing a simple calibration step), the Director is able to trigger

in-game events using eye gaze; the Director also vocally choreographs performances in real-time.

In contrast, the Performer puppeteers an avatar that is visible in-game, using a gamepad and

Oculus Rift DK2. The sole purpose of the Performer is to perform in-game. For the Oculus Rift

DK2, no calibration is required; although, the user must position the head mounted display

approximately five feet away from the supplemented positional tracker for maximum positional

accuracy. In regard to gamepads, both the Director and Performer use the gamepad controller,

which contain pre-defined mechanics. The mechanics differ from Performer to Director, meaning

the Director is able to possess director-related mechanics, including creating/cutting to/deleting

cameras, performing camera related motions, target lock-on, collaborative item swapping,

staging, and light manipulation. The Performer, on the other hand, has performance related

functions to puppeteer an avatar, including walking, running, jumping, and opening a door. The

following section details the interaction design for both the Director and Performer.

Figure 3.13 Director and Performer

34

3.3.1 The Director

 Due to the system’s usability as a virtual cinematography tool, camera functionalities are

emphasized to showcase eye tracking possibilities and uses within a collaborative virtual

filmmaking environment. The following section overviews the core mechanics of the Director:

camera navigation, target locking, camera spawn/possess/delete, collaborative item swapping,

lighting manipulation, and staging.

Camera Navigation

 For intuitive Machinima filmmaking to be both effective and efficient, flexibility of camera

navigation is required in order to maintain constant view of the focal point. Thus, in our system,

the Director is able to maneuver freely within a virtual space (see Fig. 3.14). By tilting the left

analog joystick on the gamepad, the Director is able to move the virtual camera’s position in 3D

Cartesian space (i.e. tilting the joystick forward will move the virtual camera forward). The

further the joystick is tilted, the faster the camera moves. To compensate for newcomers who may

not possess the experience and dexterity of using a gamepad to dynamically center the camera’s

Figure 3.14 Camera Tracking

35

viewpoint during active performances, gradual movement interpolations are implemented. What

this means is, the act of pressing forward on the joystick does not translate immediately to the

virtual camera; the result is gradual acceleration when tilting the joystick in any direction, and

gradual deceleration when the joystick abruptly defaults to its upright position. Without this

mechanic, jittery camera movement are certain to ensue. This mechanic remedies the possibility

of sharp, unnatural camera movements, more forgiving to new users.

 In addition, tilting the right joystick, the Director is able to tilt (view Fig. 3.15) and pan (view

Fig. 3.16) the virtual camera. As with the left joystick, the further the joystick is tilted in a

particular direction, the more intense the action is. Again, because newcomers may not have

enough experience using gamepad controllers for virtual cinematography, a target lock is

implemented (view target lock-on section below) to reduce the chances of tearing- which can

occur when inexperienced operators pan a virtual camera too fast.

Figure 3.15 Camera Tilting

36

 In addition to moving, tilting, and panning the camera, a crane shot mechanic is implemented

for navigational flexibility (see Fig. 3.17). Currently, with the use of the left joystick controller,

the Director is able only to move the camera forward, backward, left, and right relative to its

forward vector. To raise the camera, the Director has to use the right joystick to orient the camera

at an upward angle, then tilt the left joystick forward. Such manual control convolutions do not

make for an intuitive system. To supplement that constraint, the left and right triggers on the

gamepad are used to raise and lower the camera. As with the left and right joysticks, the further

Figure 3.16 Camera Panning

Figure 3.17 Camera Raising and Lowering

37

the triggers are pressed, the more aggressive the action is. Holding the right trigger on the

gamepad raises the camera, while holding the left trigger lowers the camera. The left and right

triggers can also be used simultaneously with all other navigation functions for more natural,

intuitive control.

Target locking

 Apart from navigating using the gamepad joysticks and triggers, the Director is able to target-

lock on the Performer (see Fig. 3.18). In the event of dynamic scenes where the Director is

required to actively use the gamepad joysticks and triggers to maintain focal view of the

Performer, for experienced machinimators it may be easy. However, for newcomers it can be

hard to adapt since they lack a familiar dexterity. To make the system a bit more accessible, the

Director in our system can opt out of manually orienting the camera toward the performer by

simply pressing the left bumper on the gamepad. Upon pressing the left bumper, the camera

orientation (forward vector) gradually interpolates toward the performers position, maintaining a

centered camera view on the performer. While locked-on, the performer is able to use other

navigation functions to freely navigate. And because the orientation of the camera interpolates

Figure 3.18 Target Locking

38

toward the position of the performer every frame, any sudden movements by the performer- such

as jumping, abruptly changing directions, and so on- will translate smoothly. As with gradual

acceleration and deceleration, this function remedies the issue involved with sharp, mechanical,

unnatural camera motions.

Camera Spawn/Possess/Delete

 Typically, in Machinima production, to achieve multiple takes of a scene, a single camera is

used. The performance is recorded in either one or multiple takes, and then in post-production

work the take is split into various cuts. In contrast, some Machinima workflows involve placing a

virtual camera in the scene, running a build of the game to get a view of where the camera is

facing, exiting the engine to make the necessary adjustments for an acceptable angle, key framing

the camera movement to match the performance, and so on. This tedious process continues with

as many cameras as needed in order to capture the entire performance. For even more

sophisticated performances, multiple cameras are programmed to activate- or cut- after a

triggered event, typically based on an avatar’s location within the virtual space. That being said,

the process to which camera cuts are established within a real-time engine can be tedious, thereby

calling a need for an intuitive system.

Figure 3.19 Camera Spawning

39

 Our unique system addresses this tedious workflow of having to repeatedly enter and exit the

game engine to add cameras, see the result of minor actions such as rotating, positioning, and key

framing, or program multiple camera functionalities. With our system, the Director is able to

spawn up to five cameras in the environment by pressing the right bumper on the gamepad

controller (see Fig. 3.19). By default, the camera in use is set to a value of one (maximum value

of five). Each camera that is spawned is contingent on the current value, so a value of two is

associated with camera two, and so on (see Fig. 3.20). To add values, the Director must press up

on the directional pad. To subtract values, the Director must press down on the directional pad.

This method of spawning cameras enables the Director to have independent control of each

camera. When a camera is spawned, it is oriented and positioned precisely where the Director is

located and looking when the right bumper is pressed. To reposition a camera, the Director can

either delete and re-spawn the camera, or press the right bumper. This function remedies the need

to exit the game engine to see what is in the camera’s viewpoint, because what is in focal view is

based on where the Director is positioned and facing before a new camera is created. This

facilitates quick and painless set up of desired shots and angles.

Figure 3.20 Camera Functionality

40

 In addition to spawning five cameras, a unique attribute is offered to ease the technical hurdle

of cutting between shots (cameras). There are two ways: (a) Using eye tracking with a gamepad,

and (b) pressing the back button on the gamepad (see Fig. 3.21). It is important to note that the

Director is able to take control of the any of the five cameras, so long as they exist (previously

spawned) in-game. In relation to the first method, the EyeX Engine API is programmable in

Unreal Engine 4, which allows us to track where the user is gazing on screen. As the user gazes in

a particular direction, we can specify the types of interactions that follow. In our system, to

straight cut between cameras, the Director must gaze toward the visible camera and press the

bottom face button on the controller. Immediately the Director is positioned and oriented to the

gazed upon camera view (similar to staging mechanic below); and has the ability to freely

maneuver within the virtual space. At any point in time, the Director can re-take control of any

cameras by performing the same function as outlined above. In relation to the second method, the

Director must press the back button on the gamepad to cut to a camera. With this method, the

Director only cuts to the camera associated with the current value (one to five). If the value is set

to four when the back button is pressed, the Director is positioned to the location and orientation

of the fourth camera- so long as it exists. This mechanic removes the need to exit the game engine

Figure 3.21 Camera Cutting

41

to program straight cuts and the need to split long sequences using nonlinear editing programs

such as After Effects. Uniquely, cutting between camera’s in real-time offers a distinct attribute

that includes basic post-production work during real-time production.

 With the advent of spawning and cutting between cameras, our system offers yet another

intuitive feature. As with spawning cameras, the Director is able to affect the deletion of a camera

by gazing toward it and pressing the left face button (see Fig. 3.22). This functionality offers an

iterative workflow, allowing the Director to position and reposition cameras as many times as

needed. With enough experience, Directors can spawn, reposition, and delete multiple cameras in

one sequence, offering a unique playground for real-time performance capture.

Collaborative Item Swapping

 Machinima films are typically made in teams with people holding various roles, be it director,

lighting artist, camera operator, and editor. Because collaboration is a crucial component for

production in cinematography, our system, as proof of concept, provides a basic collaborative

structure unique to Machinima production.

Figure 3.22 Camera Deleting

42

 In our system, the Director is able to rapidly assist the Performer during a performance by

swapping in equipment. Because our system is in its prototype stage, a flashlight is selected as the

only piece of auxiliary equipment, used to exemplify a new form of collaborative interaction. A

flashlight is selected because it contains built-in functionality for the Performer to augment

movement throughout the game space (view Item Possession section below for additional

details). To gift the flashlight, the Director must gaze in the direction of the Performer and press

the bottom face button on the gamepad (see Fig. 3.23). Instantly, the Performer will have access

to equipping and interacting with the flashlight.

 The purpose for this item swapping interaction derives from the limited functionality of a

gamepad. In our system, the Performer uses a gamepad to puppeteer the avatar in-game. If the

Performer was also responsible for selecting and equipping items, problems would ensue. Reason

being, there are only so many combinations to select and equip items using a gamepad before a

complicated user interface is required. More to the point, sorting through the user interface while

the performance is active will disrupt the flow, causing unwanted ripples that would require

additional editing using non-linear editing programs. Thus, the Director is selected for the role,

removing the cluttering UI component for the Performer. In turn, this mechanic forms a powerful

Figure 3.23 Item Swapping

43

interdependent relationship between Director and Performer, a unique collaborative attribute

exclusive to real-time production.

Lighting Manipulation

 Lighting is an important component to theatrical design, harnessing a power that influence

how viewers see and respond to unfolding narratives. More so, they function to effectively create

an emotional impact. As a result, our system enables the Director to, in real-time, adjust lighting

attributes, including intensity and attenuation (see Fig. 3.24). To manipulate the light intensity,

the Director must gaze in the direction of the light source by either holding up or down using the

directional pad. Holding up gradually increase the light intensity, while holding down decreases

the intensity. To control the light’s attenuation, the Director must gaze toward the light source

and hold either left or right on the directional pad. Holding left tapers the light attenuation, while

holding right widens the light attenuation. In addition, while gazing in the direction of the light

source, the Director is able to toggle the light on and off by pressing the left face button on the

gamepad.

Figure 3.24 Light Manipulation

44

Staging

 Staging is an important process during filmmaking that spans from designing, selecting

modifying, adapting, and blocking out performance spaces, structures, and performers. In our

system, a basic staging mechanic is implemented for the Director to quickly set the default stage

for performances (see Fig. 3.25). Pressing the right face button on the gamepad spawns a staging

object, providing a visual indicator of where the director will be positioned and oriented when

activating the default stage; spawning the staging sphere stores the Director’s position and

orientation in 3D space. Upon the Director pressing the back button on the gamepad, the default

stage mechanic activates, relocating the Director to the location of the staging sphere. This

mechanic is exclusive to real-time production, providing machinimators a fast, consistent, and

convenient method for capturing iterative rehearsals.

Figure 3.25 Staging Actor

45

3.3.2 The Performer

 The Performer, in contrast to the Director, control system contains limited functionality and

is a temporary solution for the grander vision of real-time animation capture and editing. Thus,

the following section briefly overviews the performer’s mechanics: navigation, item possession,

and scene interaction.

Navigation

 In Machinima production, a gamepad is used to puppeteer avatars in-game. Our system builds

on this tradition, enabling the Performer to use a gamepad as a steering device to drive character

movements. By tilting the left joystick, the Performer has the ability to move the virtual avatar

(see Fig. 3.26). Using the right joystick, the Performer can rotate the first-person camera view

(see Fig. 3.26). Similar to the camera navigation functionality for the Director, the further a

joystick is tilted, the more aggressive the action is. Rotation of the avatar can also be achieved by

rotating the head, since the Oculus Rift DK2 translates any head movements to a virtual avatar.

 In addition to moving and rotating the first-person view, users are able to use the gamepad to

make the avatar jump and run. To cause the avatar to jump, the Performer must press the bottom

face button on the gamepad (see Fig. 3.26). To cause the avatar run, the Performer must press and

Figure 3.26 Performer Navigation

46

hold the left trigger. (see Fig. 3.26). These navigation functions are standard in Machinima

production in order to effectively puppeteer a virtual avatar using a gamepad controller. In future

work, the avatar movement will be driven in real-time by a synthespian actor using motion

capture technology. In doing so, machinimators will have the ability to capture performances, in

real-time, of virtual avatars effectively portraying bodily, facial, and emotional expression.

Item Possession

 Aforementioned in the Director’s Collaborative Item Swapping Mechanic, the Director is

able to quickly assist the Performer during a performance by swapping in a flashlight (view Fig.

3.23). Upon access to the given flashlight, the Performer has the ability to toggle the flashlight on

and off by pressing up on the directional pad. This mechanic, although limited to one item, serves

to exemplify a collaborative possibility between Director and Performer. For additional

information of its forthcoming application, navigate to Future Work section below.

Scene Interaction

 A component of Machinima filmmaking is the ability for Performers to interact with their

surrounding virtual environment. Our system, in its prototype state, contains a basic custom scene

for the Performer to explore using a gamepad and head mounted display. Within the scene is a

log cabin, trees, and basic furniture. Gameplay begins by spawning the Performer within the log

cabin. At any point in time, the Performer is able to interact with a door, which opens upon

Figure 3.27 Performer Scene Interaction

47

collision (see Fig. 3.27). Upon opening the door, the Performer has access to the outside world,

where the user can roam freely.

48

4. Methodology

 The following investigates the exploration of producing an Unreal Engine 4 system plugin

integrating eye tracking and virtual reality for collaborative Machinima filmmaking. Our system

exploits new in-game techniques and possibilities for machinimation scene capture, emphasizing

the use of eye tracking as a virtual cinematography tool to increase interactivity and intuitiveness.

And because Machinima is a complex medium with diverse participatory cultures, our system

offers a low-entrance barrier with a modular and flexible component, enabling machinimators of

all skill levels to quickly and easily establish basic camera motions and collaborative interactions.

Although there is no single-purpose solution for making Machinima more accessible to

newcomers, our system – in its prototypical form- is a step in that direction. It serves as a

precursor to the larger idea of using game engines as production environments and post

production tools for real-time virtual production, choreographing, directing, and editing. In this

chapter, we will discuss the user study design, system’s architecture, explore its interaction

design, dive into its practical applications, overview its limitations, and close with future

development.

4.1 Approach

 Playtesting is a process to gain insight as to whether a game, system, or application is

achieving the desired vision for participants to experience. It is the designer who must advocate

for participants and at all times keep them in mind during the process. Throughout the

development of our system, 15 informal playtesting sessions were held, which were used to: (1)

inform the design of the system, (2) address problems arising, (3) determine the system’s

usability, and (4) evaluate its ease of use. Revisions to the system were addressed throughout its

development after every two rounds of play (each round includes two people); if the majority of

49

focus groups disliked a feature, it would either be removed or improved based on iterative

feedback.

 Playtesters were recruited from Drexel University and NYU’s Game Center during Playtest

Thursdays. Playtest Thursday is a weekly NYU event where developers gather to receive

feedback for their prototype games (of various sorts) and technology, among other things. This

event gave us the accessibility and flexibility to recruit people with various backgrounds, since

the event was open to the public. For recruitment, flyers were made detailing playtesting dates,

which were posted around campus such as the Recreational Center, Hagerty Library, Center City

Library, Hahnemann Hospital, the Science Center, Stiles Hall dorm rooms, and NYU. The

majority of playtests were hosted at home and at NYU’s Game Center.

 Group demographics included undergraduate and graduate students ages 18 and up. Targeted

individuals were split in three categories: (a) newcomers to virtual cinematography, (b)

artists/programmers of varying skill levels, and (3) people with experience producing at least one

Machinima film. Newcomers were considered participants with little to no experience using eye

tracking, virtual reality, creating animated films, and playing games using a gamepad; little,

meaning less than an hour or so of exposure per week to the aforementioned categorical

conditions. Artists and programmers included participants that were technologically savvy,

possessing knowledge of playing and creating games. Artists and programmers in this category

ranged from beginners with less than a year of experience, to industry veterans with fifteen-plus

years of game production involvement. Experienced machinimators were classified as individuals

with at least one publically distributed Machinima film - whether distributed via YouTube,

Vimeo, or Netflix, among others; the tools and techniques employed in Machinima production, so

long as they fit within the confines of real-time filmmaking, did not influence the validity of

machinimator’s experience. Valid forms of techniques to produce Machinima included, but are

not limited to: (1) Using games for production and post-production, (2) using gamepads to

puppeteer avatars, (2) using games as a production environment and non-linear editing programs

50

to edit and distribute content, and (3) using dedicated Machinima software such as

Moviesandbox. With these three focus groups, we were able to evaluate our system in varying

perspectives, including how it is used by veterans as a virtual cinematography tool, the

accessibility and ease of use, and the usability for collaborative performance capture.

 For each playtest session, two players were needed (one person as the Performer and one

person as the Director). Players selected for collaborative playtesting were required to have

similar, if not identical, background and experience producing Machinima, playing games, and

creating games. In other words, newcomers playtested with newcomers, machinimators with

machinimators, and artists/programmers with artists/programmers. This method of playtesting

was very important, because it ensured the feedback received was exclusive to each group

demographic. In so doing, we were able to observe, document, and receive feedback of how our

system is used from people with different backgrounds, which have varying expectations of what

constitutes virtual cinematography. Because our system is an alternative filmmaking practice that

strays from traditional cinematography practices, it was essential to evaluate our system from

different perspectives. Newcomers with marginal knowledge of playing games and creating

Machinima were selected because they lacked knowledge of tried-and-true traditional cinema

language and methods. This enabled them to provide fresh feedback of its usability from a

consumer’s perception, not a conditioned, biased cinematographer. Artists and programmers were

selected to provide a more technical standpoint of how our system functionality can be improved

and expanded upon. Machinimators were selected with the goal to gain insight of filmmaking

techniques they have discovered while using games as filmmaking platforms. Further, they we

were selected in order for us to observe and evaluate their strategies to exploit our alternative

filmmaking tool, and how it fits in with their conditioned methods of producing Machinima.

 The focus groups, upon arriving, were prefaced with the following: “Thank you for coming,

today you will use a real-time virtual cinematography tool by which a performer and director

collaborate within a shared virtual space to produce Machinima. Please use the existing tool, in

51

any way you like, to produce Machinima. If you have any questions regarding functionality, ask

away. There will be a discussion of the experience following the play session.”

 Upon articulating the introduction, playtesters were asked if they have any questions before

the play session begins. If so, questions were answered, then the play session begins. All playtest

sessions were timed using a stopwatch, lasting fifteen minutes; each participants, after eight to ten

minutes of playtesting, were asked to swap roles. During the play session, participants were asked

to think out loud, so uncertainties presented with their choices are heard, naturally. For example,

hearing participants say “I think we can destroy that, maybe not,” helped identify components of

the system needing improvement, an important element that was brought up during the discussion

of the game experience. Throughout the play session, data from participants was collected,

including their collaborative tendencies, interaction, adaptability, leadership, strategy,

performance, and reaction. Intervention during the play session was avoided at all costs, unless

the participants were stuck during gameplay or have been quiet for an extended period of time.

 When the play session phase is complete the discussion of the game experience commences,

lasting approximately ten minutes. Participants were informally interviewed together to discuss

and evaluate the system’s collaborative attributes, usability, and intuitiveness. When the

discussion of the play experience is completed, the playtesting session ends.

52

5. Results

 As outlined in Approach, a series of informal playtests were hosted to get a general consensus

of where our system stands as an alternative filmmaking tool. Targeted groups included

newcomers to virtual cinematography, artists/programmers of varying skill levels, and people

with experience producing Machinima. With these three focus groups, we were able to evaluate

our system from varying perspectives, which was used to: (a) inform the design of the system (b)

and evaluate the system’s collaborative attributes, usability, and intuitiveness.

 The following section details, individually, each group’s evaluation of the system’s

collaborative attributes, usability, and intuitiveness. We then close with external observations and

analysis of the results.

5.1 Group Evaluations

5.1.1 Newcomers

Collaboration

 Newcomers

Performed as Expected 7

Did Not Perform as Expected 2

% Performed as Expected 78%

% Did Not Perform as Expected 22%

 Nine of thirty participants were newcomers to Machinima. 78% of them believed our

system adequately embraced collaborative interactions, stating “If users used the tool correctly,

they would quickly realize collaboration was essential in order to capture the desired take.”

Although, concern was expressed regarding the prototype’s limitation of Performer-to-Director

Figure 5.1 Newcomers’ Collaboration Results

53

interactions. Meanwhile, 22% disagreed of the system’s usability as a collaborative platform.

According to their evaluation, “In the prototypes current state, the Performer lacks the mechanics

to enable collaborative play.”

Usability

 Newcomers

Performed as Expected 3

Did Not Perform as Expected 6

% Performed as Expected 33%

% Did Not Perform as Expected 67%

 For the usability of our system, 33% used it as a virtual cinematography tool. With these

individuals, they were able to instantly grasp the system and use the Director and Performer

functions to rehearse and mock-capture performances. However, 67% did not use the system as

intended. These individuals simply explored the environment admiring the visuals, using the

play-space as a game-space.

Intuitiveness

 Newcomers

Performed as Expected 4

Did Not Perform as Expected 5

% Performed as Expected 44%

% Did Not Perform as Expected 56%

 For the system’s intuitiveness, 44% agreed to its ease of use. Evaluations suggest eye

tracking was an easy method to interact with the interface in-game. Further, the target lock-on

Figure 5.2 Newcomers’ Usability Results

Figure 5.3 Newcomers’ Intuitiveness Results

54

served convenient for non-gamers to keep the performer in camera focus. In contrast, 56%

believed the system was not intuitive. Some expressed their frustration using a gamepad to

maneuver a camera, while others experienced difficulty learning and performing the mechanics.

Common feedback attributed to the system’s lack of intuitiveness derived from the absence of a

tutorial, legends screen, and frequent eye tracking recalibration.

5.1.2 Artists and Programmers

Collaboration

 Artists and

Programmers

Performed as Expected 6

Did Not Perform as Expected 4

% Performed as Expected 60%

% Did Not Perform as Expected 40%

 Ten of thirty participants were made up of artists and programmers exhibiting knowledge in

game production pipelines. 60% of artists and programmers expressed positive attitudes toward

the system’s collaborative attributes. This group was particularly keen on working together to

stage scenes. Feedback received suggests collaboration is naturally tethered to the system’s

design, even though the Performer can’t see the Director. In contrast, 40% of participants

neglected to engage in collaborative play, stating the Performer is limited to opening doors,

walking, running, and jumping. They further added, the Performer’s pre-made animations are a

Figure 5.4 Artists’ and Programmers’ Collaboration Results

55

significant constraint. They believe no one will express empathy for a character if the only

emotional expression exhibited is robotically uncanny.

Usability

 Artists and

Programmers

Performed as Expected 4

Did Not Perform as Expected 6

% Performed as Expected 40%

% Did Not Perform as Expected 60%

 In regard to the system’s usability, 40% approved of its use as a virtual cinematography

tool. Evaluations suggest the tool is unique, possessing great potential that can get the Machinima

community involved. Further, they mentioned the system, in its current state, is a convenient

jumping off point for blocking out shots and basic previsualization work. Dissimilarity, 60% of

participants rejected the system’s use as a virtual cinematography tool. Evaluations received

suggest the Performer was not usable due to the lack of meaningful functionality. Similar to

newcomers, a common trend was using the system as a game-space, not a real-time filmmaking

tool.

Intuitiveness

 Artists and

Programmers

Performed as Expected 6

Did Not Perform as Expected 4

% Performed as Expected 60%

% Did Not Perform as Expected 40%

Figure 5.5 Artists’ and Programmers’ Usability Results

Figure 5.6 Artists’ and Programmers’ Intuitiveness Results

56

 As for the system’s intuitiveness, 60% of participants were able to quickly learn and adapt to

the control systems. Participants expressed interest in using our tool in their own project, stating

our system is an ideal solution for their shooting scenarios. According to other evaluations,

participants expressed satisfaction with the eye tracking control setup; that is, to interact with an

object, the user must look toward it, then press a button on the gamepad. Participants also suggest

our tool is easy to use, offering a natural, unobtrusive, and intuitive method for interacting within

a virtual space. In opposition, 40% of participants experienced difficulty getting used to the

control systems. Common reasons included the absence of a tutorial screen, having to repeatedly

recalibrate the eye tracker, and the time consuming efforts that would be needed to add custom

characters. Other feedback received touched base with eye tracking’s sparing use. In other words,

participants did not seem in favor of supplementing eye tracking with a gamepad, they would

rather see eye tracking being used more exclusively.

5.1.3 Machinimators

Collaboration

 Machinimators

Performed as Expected 9

Did Not Perform as Expected 2

% Performed as Expected 82%

% Did Not Perform as Expected 18%

 Eleven out of thirty participants were experienced machinimators from New York City

(NYC). 82% attributed to collaboration coming natural to them while using our system. Feedback

received suggests the Performer does not need to interact with the Director in-game to be a

Figure 5.7 Machinimators’ Collaboration Results

57

collaborative experience. They continued, advocating the relationship between Director and

Performer should remain transparent in-game. Because the Director role in our system serves as

the “director” and camera operator, the Performer should be primarily focused on how and where

to perform (in other cases, the addition of who to perform with); Performer-to-Director

interactions should not translate in-game, it should be established vocally during rehearsal.

Contrarily, 18% of experienced machinimators were not convinced of the system’s collaborative

capabilities. Collectively, this group conveyed their distaste for the Performer’s limited

interactions. Common feedback was the need for the Performer to see the Director. In doing so,

the Director would be able to quickly guide the Performer, establishing clear parameters as to

where the Performer should be positioned during each take, path of travel, and where triggered

events will occur.

 Usability

 Machinimators

Performed as Expected 9

Did Not Perform as Expected 2

% Performed as Expected 82%

% Did Not Perform as Expected 18%

 On behalf of the system’s usability, 82% were optimistic of its applicability. Each participant

used the system as intended, staging and directing performances in real-time. Positive feedback

was attributed to spawning and cutting between cameras, they thought “it was a clever way to

include post production work during production.” In opposition, 18% experienced difficulty using

the system as a virtual cinematography tool. More specifically, feedback received dealt with

concerns as to how machinimators would edit performances (using nonlinear editing programs)

which already have camera cuts integrated. The ability to record a full-fledged sequence offers

Figure 5.8 Machinimators’ Usability Results

58

the flexibility for machinimators to split, extend, and/or shorten the duration of sequences (or

clips). If performances are captured with camera cuts already integrated, there is less flexibility to

manipulate sequences using non-linear editing programs.

Intuitiveness

 Machinimators

Performed as Expected 8

Did Not Perform as Expected 3

% Performed as Expected 73%

% Did Not Perform as Expected 27%

 Relating to the system’s intuitiveness, 73% of participants handled the system with ease.

According to feedback, “The target lock-on felt natural and appealing. The fact that it smoothly

trails behind the target was a convenient method to maintain the performer in camera focus.”

Other constructive comments included eye tracking’s fast and intuitive response to interacting

with the interface, as well as the convenience of operating lights in real-time. In contrast, 27% of

experienced machinimators struggled to use the system. Their evaluation suggests the absence of

a tutorial and/or HUD screen makes it difficult to use the system. According to this group,

because the gamepad’s functionality changes based on a user’s gaze, it can be difficult to

anticipate the interaction that ensues.

Figure 5.9 Machinimators’ Intuitiveness Results

59

5.2 External Observations and Analysis

Collaboration

 Performed as Expected Did Not Perform as Expected

Collaboration 22 8

Total Percentage 73% 27%

 To this point, we were able to receive feedback of the system’s collaborative attributes,

usability, and intuitiveness. Upon evaluating feedback and responses from all group participants,

an average of 73% agreed collaboration was embraced and effectively used in our system. 27%

did not align with the system’s usability as a collaborative platform. Interestingly, we were able

to see significant commonalities apropos of newcomers and advanced machinimators tackling

collaborative play. All three groups were quick to work together and mock-capture performances.

A significant pattern emerged: the participant taking the role of Director had a tendency to

authoritatively direct performances, frequently telling the Performer what to do, where to go, and

how fast to perform an action. Interestingly, rather than Director and Performer cooperating in

unison, the collaboration seemed to be one-sided, with the Director holding the alpha role.

Because of this, 27% of participants believed collaboration was limited, if existent. To them,

verbally communicating was not a sufficient form of collaboration.

 Usability

 Performed as Expected Did Not Perform as Expected

Usability 16 14

Total Percentage 53% 47%

Figure 5.10 All Groups’ Collaboration Results

Figure 5.11 All Groups’ Usability Results

60

 As for the usability, an average of 53% across all groups used the system as a virtual

cinematography tool, while 47% did not. A common trend was apparent between newcomers,

artists/programmers, and advanced machinimators. The less experience with game production

pipelines and producing Machinima, the less likely participants were to use the system as a

filmmaking tool. During playtests, newcomers showcased confusion as to the purpose of camera

spawning, swapping, staging, and target lock-on. Whether their lack of experience in producing

animated films attributes to the confusion of what controls are needed is unclear. Nevertheless,

newcomers often struggled with the system’s usability as a virtual cinematography tool.

Experienced machinimators, on the other hand, were apt in using all the system’s functionality,

quickly making use of camera swapping, and target lock-on to cater their needs during mock-

rehearsals needs.

Intuitiveness

 Performed as Expected Did Not Perform as Expected

Intuitiveness 18 12

Total Percentage 60% 40%

 Toward the system’s intuitiveness, 60% of all participants approved of its ease of use, while

40% did not. During playtests, newcomers struggled to gain traction on how to use the system,

often giving up and exploring the virtual space before experiencing the system’s full-fledge

functionalities. More significant was the difficulty newcomers experienced using a gamepad to

puppeteer characters; most newcomers testing our system did not play games extensively, and so

looking down on the gamepad to press the appropriate button was a recurring action. Further,

newcomers exhibited quirky motions while using a joystick to navigate, frequently stating it was

difficult for them to pilot the joystick using their thumbs. On the other hand, similar to

newcomers, machinimators experienced difficulty in understanding and using the control systems

Figure 5.12 All Groups’ Intuitiveness Results

61

at first. The absence of a tutorial and help screen was frequently regarded as the perpetrator.

Nonetheless, once familiar with the control systems, machinimators were able to quickly stage

scenes and use camera swapping techniques during mock-performances.

62

6. Conclusion

6.1 Application and Contribution

 Our system is a virtual cinematography tool by which a Performer and Director collaborate

within a shared virtual space. By leveraging consumer affordable technology, we aim to create an

intuitive, flexible, modular, and low-entry barrier system for filmmakers, regardless of

experience. Our tool is democratized in such a way that people, with their own personal

computers, can begin creating their very own cinematic films entirely within a virtual

environment. Further, our system strives to use a real-time engine as a production environment

and post production tool, a characteristic of Machinima’s origin that distinguishes itself from

traditional cinematography practices. In doing so, we present fertile ground for programming

possibilities whereby distinct technologies, synthespians, and artificial intelligence can mutually

cooperate within a shared virtual space.

 In the next section, we explore our system’s potential application as a plugin, including basic

staging, rehearsing, and performance capture. We then articulate how our system contributes to

enriching Machinima, which differentiates itself from existing cinematography solutions. Finally,

we close with how our system’s real-time collaborative structure can be applied to various fields-

outside the realm of games- in order to achieve greater efficacy, flexibility, and even safety.

6.1.1 Real-time Virtual Staging, Rehearsing, and Performance Capture

 Our system is an easy to use virtual filmmaking alternative that enables users to quickly

stage, choreograph, rehearse, and capture performances, in real-time. The following articulates

the intended process by which amateurs and experienced cinematographers can go about using

our system to compose their desired scenes.

 Users begin by loading either Unreal Engine 4 editor or running a pre-baked build of the

game. Upon calibrating the eye tracker, connecting the gamepads, and connecting the Oculus Rift

63

DK2, users are able to adjust the scene’s lighting conditions, add and manipulate cameras, stage

the scene, and choreograph performances, iteratively. If the tool is loaded within Unreal Engine 4

editor, users are able to manipulate the scene, add assets, customize character functionalities, and

so on to cater the needs of the shot.

 Once satisfied with the scene layout, the Director and Performer can utilize their gamepads

to freely navigate within the scene. The Director at this time can place, delete, and move cameras

to achieve desired camera angles for each take; this permits the Director to compose and frame

shots real-time. When the camera is framed to the Director’s satisfaction, a staging actor is

spawned. The staging actor is used as a quick way for the Director and Performer to revert back

to their starting positions for iterative performance capture. Upon placing a retrievable camera

and staging actor, the Director is able to perform multiple dynamic actions/cuts in one sequence.

 Using the gamepad, the Director has access to various dynamic camera functions to aid

during performance capture, including tracking, panning, tilting, raising, lowering, and target

locking. After performances are fluently enacted, cinematographers can record their performances

as many times as needed using their preferred screen capture software. In the prototype’s current

state, performance capture is not addressed; although, future development will address recording

performances in demo format, an unusually opportunistic functionality genetic to real-time game

spaces.

6.1.2 To Move Forward, We Must First Think Back

 To move forward in enriching Machinima as a distinct medium, we must first think back to its

origins. Aforementioned in the Background section, Machinima’s origins can be traced to the

Video Capture Period of Development, wherein gaming performances were captured in demo

format. The tools used for creating, editing, storing, and displaying narrative performances

resided exclusively within the game engine. This meant machinimators used a game engine as a

production environment and post production tool. However, with the release of Tritin’s Quad

64

God, new post-production techniques emerged, which introduced ramifications that shifted the

significance of Machinima. Machinima then no longer became exclusive to machinimators using

the game engine as a production environment and post-production tool. Instead, the arrival of new

post-production techniques- using non-linear editing programs and screen capture software-

encouraged machinimators to experiment with new methods of producing Machinima. In so

doing, the game engine was repurposed by machinimators as only a production environment,

thereby omitting all of the game engines capabilities as a post-production tool. While this shift

expanded participatory practices and offered machinimators a convenient and flexible way to

edit, arrange, and distribute films in various digital format, it was no more than 2D post-

production techniques borrowed from cinematic practices. The belief that this shift was the first

evolutionary step toward Machinima revolutionizing new systems of filmic production was

nothing more than Machinima mimicking the film language, particularly in post-production. And

therein was the problem. Machinima was birthed within a 3D compositing space, so why is its

three-dimensionality being degraded to 2D just to compensate for cinematography’s need for

non-linear editing, which is a 2D compositing space? If you recall, according to Manovich:

“Before the Velvet Revolution, traditional lens-based recording offered little to no

manipulability over the dimensions and fixed visual content per frame. The limitations of

temporal space quickly became supplemented with composition based production, the

spatial dimension. The reduction of software and hardware costs and convenient

integration of compositing led way to participatory practices with independent artists,

educators, and companies. Further, the flexibility of the After Effects interface presented

opportunities for designers to adjust canvas dimensions, import distinct media,

independently arrange and access elements, apply filters, and manage transparency. The

rendered output was no longer dealing with time-based linear storytelling, but of the

intentional arrangement of visual elements in space. As convenient and original as the 2D

compositing period of development was, during the year 2000 3D compositing forms of

65

production came to fruition [16]. Skills, tools, and techniques originating from 2D

compositing quickly translated into 3D Cartesian coordinate space.”

 If the skills, tools, and techniques originating from 2D compositing have truly translated into

3D compositing, why has real-time production within a 3D compositing space been limited to

previsualization work for films and performance capture for Machinima? More to the point, what

is it about 3D compositing spaces that fails, or lacks thereof, to uphold a firm foundation for its

use as a production environment and post-production tool? The answer to these questions is not

readily clear, but it may be safe to assume developers are beginning to exploit real-time

possibilities that exist in the realm of 3D compositing. For instance, the Unreal team recently

announced the release of Sequencer, an in-game cinematic tool developed by Ninja Theory.

 Sequencer is a real-time collaborative production and editing solution that is based on

traditional shot-based workflows, but in 3D space. Unlike 2D compositing shot-based workflows,

Sequencer:

“Let’s users scrub through three-dimensional scenes as if they were shots in a movie

editing program like Final Cut Pro. Even as Sulua's character stood frozen in place,

dynamic animated effects like wind and fire continued as the editor played with camera

angles. Sequencer makes it trivial to copy shots and add new elements, swapping them in

and out to see how the different "takes" look in quick iteration. The shot-based workflow

should also allow multiple people to collaborate on scenes easily, Epic said.”

 Sequencer enables the director to have iterative control over scenes, including lighting,

cameras, and VFX. Further, users can select from a variety of physically based cameras, use an

object picker for animating depth of field, key frame cameras, edit and arrange shots in real-time,

customize camera attributes such as adding camera shakes after the camera is animated, record

and overlay various demo performances, add VFX to any scene at any moment in time (which

allow for creative decisions to be made on the fly), and much more. And because production is

driven in real-time, there is no need for green screens. Rather, the performance is tuned based on

66

the scene they inhabit, which adds an additional layer of realism; performers are now able to act

upon on where they are and what they see, not where they are perceived to be and conditioned to

see. The significance of the tool spans beyond the end goal of previsualization, and although its

application is vaguely unclear, it provides a platform by which anyone can create sophisticated

productions entirely within a virtual space, using virtual humans.

 Sequencer has made a significant leap toward exploiting real-time production techniques and

possibilities, but just because the tool has incorporated many of 2D compositing’s shot-based film

techniques into a real-time 3D space, it does not mean the 3D compositing space has truly

evolved. As with Machinima seemingly evolving because it borrowed techniques from the film

language, the real-time 3D compositing space is following a similar path. What the 3D

compositing space requires are new design solutions The process by which camera motions are

created and custom avatars are animated in real-time are still too complex, requiring a steep

learning curve to effectively make use of Sequencer. This is where our system fits in, a unique,

easy to use alternative by which people can collaborate to easily and affordably direct, stage, and

perform within a shared virtual space.

 Our system, in its current prototype, is an alternative filmmaking tool for the production of

real-time filmmaking. Unlike traditional cinematic practices whereby sequences are taken into 2D

compositing programs for final editing, our system reserves the use of a game engine as a

production environment and post-production tool, similar to Sequencer. And unlike Sequencer,

our system is designed for anyone, regardless of cinematic production experienced, to quickly,

easily, and intuitively stage scenes, direct performances, and perform rehearsals, in real-time.

Upon implementing our system, an unexpected turn of events occurred. To illustrate, the Director

in our system initially served to direct performances, but what does that mean? One thing is to

understand the director role, another is to translate its significance within a virtual space. The

question became, “How and what mechanics would be needed for the director to have complete

control over the virtual space, including directing performances, setting up camera shots, staging

67

scenes, producing camera motions, manipulating lighting conditions, collaboratively interacting

with the performer, and in sum have significant impact on the overall cinematic delivery?” The

answer to that question is exemplified in our system, where the Director is required to take on

multiple roles in order to satisfy the aforementioned duties. These roles include: the

choreographer, camera operator, and game master. As a choreographer, the Director was able to

collaboratively direct and rehearse performances, in real-time. As the camera operator, the

Director was able to select and establish appropriate camera angles for each given shot, actively

performing to capture performances, using various camera navigation techniques for smooth,

natural movement/transitions. As game master, a unique role exclusive to games, the Director is

able to create, control, and enforce anything that exists within the virtual space, in real-time- from

light manipulation to performance capture. The unique functionality of the Director serving three

completely different roles showcases how the role of director can quickly evolve and/or translate

when a real-time play space is involved. The ability to composite, frame shots, establish camera

cuts, perform crane shots, arc shots, and use real-time technology to drive believable animations

just scratches the surface for what is possible when real-time engines are used in production and

post-production. And although real-time camera cutting may not seem like an efficient way to

edit sequences in shot-based workflows, it does not signify it’s incorrect; rather, it is an

exploratory alternative to production showcasing real-time collaborative techniques and

possibilities, which is not bound by 2D compositing practices.

6.1.3 Real-time Efficiency, Flexibility, and Safety

 Our system’s contribution is primarily focused on real-time virtual filmmaking practices, but

is not limited to cinematography. The real-time collaborative interactivity our system builds from

is applicable to other distinct fields and personnel, including the military, athletes, construction,

the handicapped, entertainment businesses.

68

 To illustrate, for military personnel, our system can help tailor breach training and bomb

disarming exercises, whereby soldiers learn to collaborate, communicate, and make decisions in a

variety of circumstances, places, and obstacles; and because these interactions would take place

within a virtual space, it provides a safe working environment to help condition military

personnel to respond appropriately in the case of life-threatening situations. In addition,

performances within a virtual space can help improve an athlete's performance. For example, in

the case where an athlete is honing his technique for a 100-meter hurdle race, if his performance

is captured while wearing motion capture technology, coaches will have the ability to view the

actual performance within a virtual space. The advantages of this is, coaches will be able to

pinpoint, using a variety of virtual cameras that represent the three dimensional structure of the

world, when and where the athlete’s form can be improved. And because the performance is data

that is accessible within the virtual space, coaches can tune the existing performance to show,

visually side by side, how and at what point the athlete’s motion diverts from an optimal

sequence. Construction can also benefit from the real-time feedback of virtual environments and

collaborative play. With the advent of 3D scanning and photogrammetry, our physical spaces can

be replicated accurately within a virtual space. Upon replicating the physical space into a real-

time virtual space, construction workers can wear motion capture technology to have their

physical location translated within the virtual space. And because their location is captured within

an exact replica of their physical working conditions, everyone’s position can be pinpointed at all

times; this would come in handy in the case of a working accident, detailing when, how, and

where to search for the injured or missing individual. Our system further contributes people who

are handicapped, particular with motor trauma. Because our system uses eye tracking, with a bit

of tweaking, it can provide a unique platform for the disabled to perform human computer

interactions; no longer are they limited to the boundaries of analog input. Lastly, entertainment

businesses can benefit from our system by uniting working conditions within a real-time, shared

virtual space. In this scenario, all employees have their very own physical and virtual working

69

space. However, at any given time, the supervisor can enter your virtual space, with

authentication, to follow up on the status of a given assignment, provide constructive criticism,

and even direct your virtual space to other virtual spaces for rapid, iterative, and collaborative

productivity. This real-time interaction and collaboration can provide an efficient platform by

which supervisors and art directors can see what you are working on, while you are working.

Even more, because the shared virtual space is networked, multiple individuals can enter and

work together within a grander virtual space, providing everyone with a visual representation of

the final delivery, at all times.

 As articulated above, our system can be tailored a number of applications, fields, and

personnel. Its unique structure presents a firm foundation for experimental avenues, offering

unique possibilities to design, collaborate, interact, present, and showcase within a real-time 3D

compositing space.

6.2 Known Limitations & Future Work

 Our system, in prototype form, demonstrates an alternative filmmaking platform within a

real-time 3D space. While the above outlines the system’s current capabilities as a virtual

cinematography tool, by no means does it showcase all its possibilities. There are, however,

existing limitations and constraints regarding our system and the input devices used.

 In this section, we will discuss our system’s constraints and limitations regarding eye

tracking, real-time performance capture, editing, and collaboration. We close with future

development.

6.2.1 Eye Tracking

 Some of the more cumbersome constraints encountered dealt with the current technological

state of the Tobii EyeX eye tracker. For instance, the eye tracker was unable to take into account

70

a person’s positional offset after calibration. This limitation is quite tedious as it typically results

in having to repeatedly calibrate to compensate for accidental positional offsets. And because a

dedicated stand is not supplemented with the eye tracker to increase its stability, recalibrating

becomes a more persistent hindrance.

 A further constraint was with the eye tracker’s inability to differentiate between left and right

eye. Although this may not seem like a significant limitation, it did present challenges that limited

its usability. Reason being, there are only so many ways to interact with an interface using our

eyes- closing eyes, gazing, and fixating. Because Tobii’s API excluded left and right eye

interactions, a gamepad was necessary to supplement for eye tracking’s limited functionalities.

 Another limitation was the eye tracker’s tracking distance. For optimal performance,

participants were required to maintain a fixed distance between one to four feet from the eye

tracker. Diverting from these distances after calibration resulted in frequent loss of eye gaze.

Lastly, because the eye tracker relies on pupil reflectance to track the position of the eye’s,

ambient lighting was required in order to maintain consistent eye capture.

3.7.3 Real-time Capture and Editing

 With every Unreal Engine 4 update comes expansion of tools, greater optimization, handling

of graphical processes, and bug fixes. Consequently, our version of Unreal Engine 4 (4.10.4)

contains a demo record and playback bug, which is a handy tool whereby Directors can capture,

store, and replay performances. Currently, our system is able to capture performances in real-time

from the perspective of the player, but offers no way to edit and output the sequence from within

the game engine. To capture and edit performances, machinimators will have to endure capturing

the performance using screen capture software (i.e. Fraps), then using a 2D compositing program

(i.e. After Effects) to edit the sequence.

71

 With the release of Unreal Engine 4.12, the aforementioned cinematic tool - Sequencer - will

be readily available. However, Tobii’s Unreal Engine plugin is lagging behind two major Unreal

Engine releases, preventing our system from making use of Sequencer’s 3D compositing shot-

based workflow to capture, edit, and output performances.

3.7.4 Collaboration

 In its prototype form, our system contains several collaborative limitations. One being, the

Performer cannot see the Director, nor the spawned cameras in-game. This constraint isolates the

Performer from the Director, which is an important interpersonal relationship required when

choreographing and rehearsing performances. Although it is not necessary for the Performer to

see the Director, it can increase clarity of commands. An example case scenario is: “Ok, do you

see where I am? You need to look in this direction upon exiting the cabin. I will cut to a camera

close-up, and when you hear the sound of a gun, I need you move to immediately move in this

direction, then briefly look down in shock and awe.”

 Another limitation deals with how communication is established. Our system does not

address sound input/output through networked play. This means either: (a) the Performer and

Director will have to remain in close physical proximity to communicate, (b) or the Director and

Performer will have to rely on voice call services such as Skype or TeamSpeak (among others) to

communicate and collaboratively produce Machinima.

3.7.4 Future Development

 Our system is a flexible tool that upholds a firm foundation for expansion and

experimentation. As a result, our system can be expanded upon to include the following:

MachinaRoles: Currently, our system supports two roles, Director and Performer. Each of these

roles have specialized functions relating to their duties during film production. However, future

72

development will address adding other specialized roles (MachinaRoles), including scriptwriters,

lighting artists, special effects artists, set dressers, sound technicians, post production editors,

animators, synthespians, texture artists, and so on. These specialized roles can even extend

beyond traditional film roles by incorporating the game space. For example, various roles can

include a Game Master that controls the rules of the game, a role involving spawning and

manipulating artificial intelligence during a performance, an optimizer that is able to use eye

tracking and another input devices to maintain optimal computer performance; optimizer’s

location in-game can attribute to a change in levels of detail for mesh optimization, reduction of

shadow quality if camera’s are out of proximity, texture de-resolution, discarding animations out

of focal view, and so on. Our system can be expanded upon to include all of the aforementioned

roles within a shared virtual space. And because Machinima is traditionally made within game

engines, which run on software, there exists almost limitless flexibility in what roles can be

integrated to inhabit and influence the real-time virtual space.

MachinaMarkers: As aforementioned, “Because production is driven in real-time, there is no

need for green screens. Rather, the performance is tuned based on the scene they inhabit, which

adds an additional layer of realism; performers are now able to act upon on where they are and

what they see, not where they are perceived to be and conditioned to see.” Building on this point,

our system seeks to exploit a new method by which performances can be collaboratively

choreographed, in real-time.

 MachinaMarkers exemplifies this potential solution, which will serve as a guide to assist

performers flawlessly execute a sequence of actions within a pre-scripted virtual space.

MachinaMarkers will be symbols only visible to Performers during a performance, which can be

toggled off at any point in time. Each MachinaMarker will serve a purpose. We consider the

following types of MachinaMarkers:

73

Event Marker: A marker that performers must reach in order to trigger the next film sequence

and/or end take. Upon in-game collision with this marker, pre-scripted events are triggered,

be it explosions, particles, spawning artificial intelligence which leads to an action scene,

lights turning off, jets flying by, activating pre-scripted dialogue, activating timed markers,

execute markers, and so on.

Pathway Marker: A marker that visually guides the performer where to move next, be it

running, walking, running, crawling, taking cover, and so on. This marker ensures the

performer is performing and following the intended path laid out by the director.

Execute Marker: A collaborative marker detailing when performers should execute an action.

Types of actions include interrupting a dialogue, storming into a room, arming a missile,

dodging a bullet, and so on.

Emotional Marker: A marker that reminds performers when and how intensely they should

express emotion. This can serve beneficial as director and performers are transparently and

actively communicating during the performance.

Timed Marker: This marker gives a visual representation of when a performer should execute

an action, end an action, reach a destination, or respond to an action.

Action/Take Marker: This marker communicates to performers when a take begins and when

it ends.

Wing It Marker: A marker giving performers the freedom to execute actions at will during a

performance.

MachinaMarkers may be designed for rehearsals to give performers a greater sense of what they

should be doing, how, when, and where. Because performers inhabit a virtual space (and not the

74

other way around), a new language may be appropriate to effectively make use of real-time game

spaces.

Camera Eye Gaze Depth of Field: Future development may incorporate depth of field based on

a user’s location of gaze. This can be used to drive attention to focal points in a take, a technique

often employed to guide the viewer’s attention.

Sophisticated Restaging Mechanic: In traditional film practices, several takes of the same

performance is often necessary to achieve the envisioned sequence. Action scenes, in particular,

where objects and furniture break require cleanup crews to reset the stage. In our system,

performances reside within a virtual space. What this means is, with this mechanic, an action

scene within a virtual space can be restaged with a simple press of a button. With this planned

staging mechanic, the entire virtual world will be reset, including animations, lighting, actors,

camera positions, and so on. This provides a convenient way to capture iterative performances.

Demo Capture and Real-Time Scene Manipulation: Planned future work is to capture

performances in demo format. In so doing, performances can be stored, accessed, manipulated,

and overlaid with other demo performances. This proves useful because performances captured in

demo format retain their 3D representation. This means stored performances can be recaptured at

any time using a variety of camera angles, camera movement techniques, lighting conditions,

environments, and so on without having to retake a performance.

Real-Time Virtual Collaborative Production: Another planned addition to our system is to

converge cinematic production into a collaborative, shared networked space. In this scenario, the

entire workforce will be interconnected virtually by means of digital workspaces, working in

unison using a single Git repository throughout production. This means the final output of the

project will visible at all times during production. Further, because the entire workforce shares a

75

networked space, directors and producers can digitally infiltrate any department workspace to see

their progression and provide iterative feedback, all while production is active.

Perception Neuron and Sequencer Integration: Real-time animation is a unique hybrid that has

infiltrated cinematic production, showing great promise of future endeavors. As a result, for

future development, the Perception Neuron Mocap will be integrated with Sequencer. Perception

Neuron is a real-time motion capture solution that translates human body movements to a virtual

avatar, in real-time. By coupling this technology with Unreal’s Sequencer, performances can be

captured and manipulated in a variety of ways; this includes adjusting animation playback speed

(or specific actions), splitting animation sequences, creating blend-able morph targets, and export

real-time captured animations into 3D software application packages for additional editing,

among others.

6.3 End Remarks

 Over the past few years, game engines have made a tremendous impact in the film industry,

particularly in previsualization studies. Attention has been directed to their affordability, technical

quality, and scalability in cinematic pipelines. As a result, game engines have been regarded as

“posing a potential threat to the tried and true methods of the movie industry [11].” Whether these

claims will come to fruition is up for debate, but it is clear game engines possess fertile ground to

speed production workflows, offering untapped possibilities for 3D compositing.

 In the creation of our system, we aimed to demonstrate these untapped possibilities and to

exploit new collaborative in-game interaction techniques and possibilities for machinimation

scene capture. By leveraging consumer affordable technology, we were able to develop a flexible,

modular, and low barrier entry platform with fresh control mechanisms that exemplify cinematic

production alternatives within a real-time virtual 3D space. We draw upon the idea of

democratizing cinematic production, offering an affordable method by which amateurs and small

76

production teams can produce passive, exploratory, and interactive viewing content from the

comfort of their own homes. Our goal in this thesis is to involve more people in using a real-time

engine as a media production environment and post production tool, a characteristic of

Machinima’s origin that distinguishes itself from traditional cinematography practices. In so

doing, we aim to exploit a playground of programming possibilities whereby synthespians and

artificial intelligence can mutually cooperate within a shared virtual space.

 With the advent of 360-degree video recording, playback, and viewing, new production

methods and techniques are shaping film. The reason for this is, with 360-degree cinematic

content, the director loses control of what viewers see, struggling to direct the audience’s

attention in a space where they form their own stories. In the same way 360 degree immersive

films call for new production and compositional techniques to guide the viewing experience, real-

time 3D spaces require a new language. In virtual filmmaking, camera movement lags, cue

delays, uncanny artificial intelligence, and other forms of perceived mistakes not only form the

composition, but offer clear direction of gaps in knowledge, which can lead to innovative

solutions that will push real-time production to its promise of revolutionizing new systems of

filmic production. In relation to our system, we do not aim to replicate the tried and true methods

of the film language. Rather, Directors and Performers are encouraged to experiment with what

is possible within a real-time virtual 3D pace, using the structure of games to influence the film

language- whether experimenting with different shot compositions, integrating distinct

technology, restaging a destroyed scene with a press of a button, integrate artificial intelligence

that behaves differently in each performance sequence, involve multiple camera operators with

distinct collaborative roles (i.e. MachinaRoles), capture and edit demo performances, and so on.

In the end, if we don’t exploit the opportunities presented with real-time 3D spaces, we may miss

out on technological advancement that can change the way we create, view, and experience films.

“The promises and pitfalls of certain technological forms are realized only through active and

ongoing struggle over their creation, uptake, and revision [13].”

77

References

[1] J. D. Bolter and R. A. Grusin, Remediation understanding new media, 1st Edition ed.:

The MIT Press, 2000.

[2] I. Buczek, "The aesthetic of immersion in the immersive dome environment (IDE):

Stepping between the real and the virtual worlds for further self-constitution?,"

Technoetic Arts, vol. 10, pp. 3-10, 2012.

[3] F. R. Dellario, "The Future of Machinima as a Professional Animation Resource and its

Growth as Real-Time Animation in Virtual Worlds," Journal of Visual Culture, vol. 10,

pp. 89-92, 2011.

[4] T. Fullerton, Game Design Workshop: A Playcentric Approach to Creating Innovative

Games: Taylor & Francis, 2008.

[5] H. Jenkins, Convergence culture: where old and new media collide. New York U6 -

eBook: New York University Press, 2006.

[6] H. Jenkins, S. Ford, and J. Green, Spreadable Media : Creating Value and Meaning in a

Networked Culture. New York: NYU Press, 2013.

[7] J. J. Jerald, "Scene-motion- and latency-perception thresholds for head-mounted

displays," Dissertation/Thesis, ProQuest, UMI Dissertations Publishing, 2009.

[8] P. Johnson and D. Pettit, Machinima: the art and practice of virtual filmmaking.

Jefferson, N.C: McFarland & Company, Inc., Publishers, 2012.

[9] M. Kelland, D. Morris, and D. Lloyd, Machinima: Making Animated Movies in 3D

Virtual Environments: Ilex, 2005.

[10] M. Knobel and C. Lankshear, "Remix: The Art and Craft of Endless Hybridization,"

Journal of Adolescent & Adult Literacy, vol. 52, pp. 22-33, 2008.

[11] H. Lowood, "High-performance play: The making of machinima," Journal of Media

Practice, vol. 7, p. 25, 2006.

[12] H. Lowood, "Found technology: Players as innovators in the making of Machinima,"

Digital Media, 2008.

[13] H. Lowood, M. Nitsche, and I. ebrary, The machinima reader. Cambridge, Mass: MIT

Press, 2011.

[14] L. Manovich, The language of new media. Cambridge, Mass: MIT Press, 2001.

[15] L. Manovich, "Image Future," Animation, vol. 1, pp. 25-44, 2006.

[16] L. Manovich, Software Takes Command: Bloomsbury Academic, 2013.

[17] P. Marino, 3D Game-based Filmmaking: The Art of Machinima: Paraglyph Press, 2004.

[18] N. H. Mat Zain, F. H. Abdul Razak, A. Jaafar, and M. F. Zulkipli, "Eye Tracking in

Educational Games Environment: Evaluating User Interface Design through Eye

Tracking Patterns." vol. 7067, ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,

pp. 64-73.

[19] A. Mazalek and G. Davenport, "A tangible platform for documenting experiences and

sharing multimedia stories," presented at the Proceedings of the 2003 ACM SIGMM

workshop on Experiential telepresence, Berkeley, California, 2003.

[20] A. Mazalek and M. Nitsche, "Tangible interfaces for real-time 3D virtual environments,"

presented at the Proceedings of the international conference on Advances in computer

entertainment technology, Salzburg, Austria, 2007.

[21] M. S. Meadows, Pause & Effect: The Art of Interactive Narrative: Pearson Education,

2002.

[22] M. Nitsche, "A Look Back at Machinima's Potential," JOURNAL OF VISUAL

CULTURE, vol. 10, pp. 13-18, 2011.

[23] K. Salen, "Arrested Development: Why Machinima Can’t (or Shouldn’t) Grow Up," ed:

The MIT Press, 2011.

78

[24] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamentals: The MIT

Press, 2003.

[25] J. Seibert, "An Exploratory Study on Virtual Reality Head Mounted Displays and Their

Impact on Player Presence," Dissertation/Thesis, ProQuest, UMI Dissertations

Publishing, 2014.

[26] G. J. Winters, J. Zhu, A. Drexel University. College of Media, and Design, "Developing

Visual Narrative: Designing Structural Composition Principles to Guide Player's

Attention in Adventure Games," Dissertation/Thesis, 2013.

79

Appendix A.

Definition of Terms

Asymmetrical Gameplay: When two players have separate experiences as they play a video game

together. For instance, while the player wearing a head mounted display may see an ordinary

painting on a wall, the display for the other player may reveal a safe requiring interaction in order

to proceed through the narrative.

Blueprints: A visual scripting node-based interface in Unreal Engine 4 used to create gameplay

elements.

Digital Interactive Narrative: A form of storytelling allowing users to influence the unfolding

path of a narrative. Unlike a linear story experience where users passively view a sequence of

events, a digital interactive narrative requires users to actively participate by spatially navigating

in a game environment in order to progress through the story.

Distinct technologies: The mechanical and functional differences between a head mounted

display and eye tracking system. A head mounted display is designed to be worn and experienced

by a single individual, while the eye tracking system offers the flexibility for participation with

multiple individuals.

Eye Tracking: A device used to measure eye position, movement, gaze, and pupil size in real-

time. An eye tracking device will be used as an input device to spatially navigate inside a 3D

virtual environment.

FRAPS: A real-time screen capture application released in 1999, enabled players to record

gameplay outside the game engine.

80

Head Mounted Display: Piece of hardware that can be placed over a user’s eyes, placing the

viewer in a virtual 3D environment.

Immersive: The ability for two participants to actively collaborate using distinct technology

while- both physically present but one telepresent- maintaining high involvement, focus, and

transparency during gameplay.

Limited Ocular Impairment: People who are able to clearly distinguish between objects and

colors two to three feet from a computer screen.

Machinima: In this paper I use The Academy of Machinima Arts and The Academy of Motion

Picture Arts and Sciences definition of Machinima that is, “the art of making animated films

within a real-time virtual 3D environment.”

Machinimators: Any creator of Machinima content.

Machinimation: The process of recording animation in-game, in real-time.

Participatory experience: The act of collaboration between two participants using distinct

technology to successfully unfold a digital interactive narrative.

Synthespian: An actor wearing motion and facial capture technology to drive a computer-

generated three-dimensional human character, designed to simulate a lifelike performance on

film.

Tangible User Interface (TUI): A transparent controller interface that allows a person to use

human manual dexterity to directly interact with a real-time game engine from their physical

environment.

Telepresent: The sensation of “actually” being there in a virtual 3D environment.

