

Introduction

- This work proposes a method for automatic categorization of music into different genre labels in a large music data set.
- are:
- or high-level audio keywords.
- feature vectors into music genres.
- large data set.

Automatic Classification of Digital Music by Genre

Kamelia Aryafar Ali Shokoufandeh

Department of Computer Science, Drexel University, Philadelphia, PA, USA

Technical Terms

- ▶ Set of features $\{f_1, ..., f_\ell\}$
- ► Code-book of features $\mathcal{D} = \{\delta_1, ..., \delta_k\}$
- ▶ Set of audio signals in the data set $C = \langle (f_1, w_1), ..., (f_\ell, w_\ell) \rangle$ where $\mathcal{C} = \{C_1, ..., C_M\}$
- ► $M \times k$ ESA matrix $\mathcal{E}_{\mathcal{C},\mathcal{D}}$, where:
- ▷ $tf(C, x) = \frac{\sum_{i=1}^{\ell} w_i \times d(f_i, x)}{\sum_{i=1}^{\ell} w_i}$ is the term frequency.
- ▷ $idf_{\delta} = \log \frac{M}{\sum_{i=1}^{M} \chi(\delta, C_i)}$ is the inverse document frequency.
- \triangleright *tfidf*(C, δ) = *tf*(C, δ) × *idf* $_{\delta}$.
- $\triangleright \mathcal{E}_{\mathcal{C},\mathcal{D}}[i,j] = tfidf(C_i,\delta_j).$
- Set of t ordered pairs $\mathcal{T} = \{(A_1, L_1), ..., (A_t, L_t)\}$ of audio sequences, A_i , and their corresponding genre labels, L_i

Concept-based Representation

- For a given audio sequence A, Algorithm 1 computes the ESA vector for
- ► This is accomplished by computing the MFCC features of A and aggregating the ESA vectors corresponding to the best matching codewords in *D*.

Algorithm: ESAENCODING $(A, \mathcal{D}, \mathcal{E})$ **INPUT**: A: INPUT AUDIO, \mathcal{D} : CODE-BOOK, \mathcal{E} : ESA MATRIX **RESULT:** $\mathcal{E}(A)$: **ESA**-REPRESENTATION OF A $\{f_1, \dots, f_\ell\} \leftarrow \mathbf{MFCC}(A);$ $\mathcal{E}(A) \leftarrow \bar{\mathbf{0}};$ FOREACH $f \in \{f_1, ..., f_\ell\}$ DO $\delta^* = \max_{\delta \in \mathcal{D}} d(f, \delta);$ $\mathcal{E}(A) = \mathcal{E}(A) + \mathcal{E}(\delta^*);$ END RETURN $\mathcal{E}(A)$ **ALGORITHM 1:** CONSTRUCTION OF THE ESA VECTOR OF AN AUDIO SE-QUENCE.

 \triangleright $\mathcal{E}(A)$ is the concept-based representation of audio sequence A.

Genre Classification

Training:

- ▷ A set of t ordered pairs $\mathcal{T} = \{(A_1, L_1), ..., (A_t, L_t)\}$ of audio sequences, A_i , and their corresponding genre labels, L_i form the training data set.
- ▷ We form the set $\mathcal{E}(\mathcal{T}) = \{(\mathcal{E}(A_1), L_1), ..., (\mathcal{E}(A_t), L_t)\}, \text{ where } \mathcal{E}(A_i) \text{ is the }$ ESA encoding of $(A_i, \mathcal{D}, \mathcal{E}), i = 1, ..., t$.
- \triangleright The set $\mathcal{E}(\mathcal{T})$ of (ESA-vector, label) pairs will be provided as the training data to a supervised classifier algorithm.
- The set of hyperplanes that define the gaps between genres, are the outcome of the training on $\mathcal{E}(\mathcal{T})$.
- Support vector machine (SVM) and k-nearest neighbors (k-NN) are used to build a model that assigns samples to their genre categories.
- ► Testing:
- \triangleright For an audio query element q we form $\mathcal{E}(q)$, the ESA representation of
- \triangleright The classifier, trained on set $\mathcal{E}(\mathcal{T})$, is used to estimate the genre label L_q simply by determining to which side of the genre cell (defined by the set of decision planes and genre gaps) they belong.

Samples Genre 145 alternative 120 blues electronic 113 folk-country 222 funk soul/R&B 47 319 jazz 116 pop rap/hip-hop 300 504

lethod	AM	TSPS	ESA	
			<i>k</i> : 1000	<i>k</i> : 5000
landom	22.39	21.68	29.51	25.40
k-NN	35.83	47.40	48.59	51.88
SVM	40.81	51.81	53.76	57.81