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Abstract
Learning of Identity from Behavioral Biometrics for

Active Authentication

Lex Fridman

Advisor: Moshe Kam, PhD

Co-advisor: Steven Weber, PhD

In this work, we look into the problem of active authentication on desktop computers and mobile

devices. Active authentication is the process of continuously verifying a person’s identity based

on the cognitive, behavioral, and physical aspects of their interaction with the device. In this

work, we consider several representative modalities including keystroke dynamics, mouse movement,

application usage patterns, web browsing behavior, GPS location, and stylometry. We implement

a binary classifier for each modality and organize the classifiers as a parallel binary decision fusion

architecture. The decisions of each classifier are fed into a decision fusion center (DFC) which applies

the Chair-Varshney fusion rule to generate a global decision. The DFC minimizes the probability

of error using estimates of each local classifier’s false rejection rate (FAR) and false acceptance rate

(FRR). We test our approach on two large datasets of 67 desktop computer users and 200 mobile

device users. We are able to characterize the performance of the system with respect to intruder

detection time and to quantify the contribution of each modality to the overall performance.
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1. Introduction

The challenge of identity verification for the purpose of access control in distributed communica-

tion systems is the tradeoff between maximizing the probability of intruder detection, and minimizing

the cost for the legitimate user in time, distractions, and extra hardware and computer requirements.

In recent years, behavioral biometric systems have been explored extensively in addressing this chal-

lenge [6].

Behavioral biometric systems rely on computer interface devices such as the keyboard and mouse

that are already commonly available with most computers, and are thus low cost in terms of having

no extra equipment requirements. However, their performance in terms of detecting intruders, and

maintaining a low-distraction human-computer interaction (HCI) experience has been mixed [12],

showing error rates ranging from 0% [49] to 30% [50] depending on context, variability in task

selection, and various other dataset characteristics.

The bulk of biometric-based authentication work focused on verifying a user based on a static

set of data. This type of one-time authentication is not sufficiently applicable to a live multi-user

environment, where a person may leave the computer for an arbitrary period of time without logging

off. This context necessitates continuous authentication when a computer is in a non-idle state.

Validated access is important on two levels: (1) locally, to protect the offline data on the computer

being used, and (2) globally, to protect the data traveling on a secured distributed network of which

the computer is a part of. To represent a real-world scenario where such an authentication system

may be used, we created a simulated office environment in order to collect behavioral biometrics

associated with typical human-computer interaction (HCI) by an office worker over a typical work

week.

In this thesis, we consider two large real-world datasets. For the first dataset, we use the data

collected in an office environment, consider a representative selection of behavioral biometrics, and

show that through a process of fusing the individual decisions of classifiers based on those metrics,

we can achieve better performance than that of the best classifier from our classifier set. Due to

their heterogeneous nature, it stands to reason that a properly designed set of good classifiers would

outperform a single classifier which is “best” under specific circumstances. Moreover, given the low

cost of installing these application-level classifiers, this approach may prove to be a cost-effective

alternative to classifiers based on physiological biometrics [31]. We consider twelve classifiers, each
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falling in one of three biometrics categories: keystroke dynamics, mouse movement, and stylometry.

For the second dataset, we consider the problem of active authentication on mobile devices,

where the variety of available sensor data is much greater than on the desktop, but so is the variety

of behavioral profiles, device form factors, and environments in which the device is used. We study

four representative modalities of stylometry (text analysis), application usage patterns, web browsing

behavior, and physical location of the device. In the remainder of the paper these four modalities will

be referred to as text, app, web, and location, respectively. We consider the trade-off between

intruder detection time and detection error as measured by false accept rate (FAR) and false reject

rate (FRR). The analysis is performed on a dataset collected by the authors of 200 subjects using

their personal Android mobile device for a period of at least 30 days. To the best of our knowledge,

this dataset is the first of its kind studied in active authentication literature, due to its large size

[19], the duration of tracked activity [45], and the absence of restrictions on usage patterns and on

the form factor of the mobile device. The geographical colocation of the participants, in particular,

makes the dataset a good representation of an environment such as a closed-world organization where

the unauthorized user of a particular device will most likely come from inside the organization.

We propose to use decision fusion in order to integrate the classifier bank and make serial authen-

tication decisions. While we consider here specific twelve classifiers, the strength of our decision-level

approach is that additional classifiers can be added to the classifier bank without having to change

the basic fusion rule, and with only minimal performance information required about the added

classifiers. Moreover, it is easy to evaluate the marginal improvement of any added classifier to the

overall performance of the system.

We evaluate the multimodal continuous authentication system on two large real-world datasets.

We consider several parameters and metrics in presenting the system’s performance. First, we look

at the false acceptance rate (FAR) and the false rejection rate (FRR) when the decisions from each

of the twelve classifiers are combined in the decision fusion center (DFC). Second, we assess the

relative contribution of each individual classifier to the performance of the overall decision. Third,

we observe the tradeoff between the time to first authentication decision and the error rates.
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2. Related Work

2.1 Multimodal Biometric Systems

A defining problem of active authentication arises from the fact that a verification of identity

must be carried out continuously on a sample of classifier data that varies drastically with time. The

classification therefore has to be made based on a “window” of recent data, dismissing or heavily

discounting the value of older data outside that window. Depending on what task the user is engaged

in, some of the biometric classifiers may provide more data than others. For example, as the user

browses the web, the mouse-related classifiers will be actively flooded with data, while the keystroke

dynamics and stylometry classifiers may only get a few infrequent key press events. This motivates

the recent work on multimodal authentication systems where the decisions of multiple classifiers are

fused together [57]. In this way, the verification process is more robust to the dynamic mode of

real-time HCI. The current approaches to the fusion of classifiers center around max, min, median,

or majority vote combinations [38]. When neural networks are used as classifiers, an ensemble of

classifiers is constructed and fused based on different initialization of the neural network [18].

Several active authentication studies have utilized multimodal biometric systems but have all,

to the best of our knowledge: (1) considered a smaller pool of subjects, (2) have not characterized

the temporal performance of intruder detection, and (3) have shown overall significantly worse

performance than that achieved in our study. In particular, [23] have looked at similar classes of

biometrics: keyboard dynamics, mouse movement, and stylometry. They used different features and

classifiers, and did not propose a fusion scheme, but rather investigated each modality separately.

The overall performance achieved ranged approximately from error rates of 0.1 to 0.4, which are

significantly worse than the error rates achieved using the approach proposed in this thesis. Two

fusion methods and a rich portfolio of features similar to the ones in this thesis were considered in

[9] to achieve multi-modal authentication performance of 0.021 FAR and 0.024 FRR on a subject

pool of 31 users. These error rates are an order of magnitude worse than those achieved in our work,

and use a larger time window of 10 minutes.

Our approach in this thesis is to apply the Chair-Varshney optimal fusion rule [17] for the com-

bination of available multimodal decisions. Furthermore, we are motivated by the work in [7] that

greater reduction in error rates is achieved when the classifiers are distinctly different (i.e. using dif-
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ferent behavioral biometrics). The strength of the decision-level fusion approach is that an arbitrary

number of classifiers can be added without re-training the classifiers already in the system. This

modular design allows for multiple groups to contribute drastically different classification schemes,

each lowering the error rate of the global decision.

2.1.1 Mobile Active Authentication

With the rise of smartphone usage, active authentication on mobile devices has begun to be

studied in the last few years. The large number of available classifiers makes for a rich feature space

to explore. Ultimately, the question is the one that we ask in this thesis: what modality contributes

the most to a decision fusion system toward the goal of fast, accurate verification of identity? Most

of the studies focus on a single modality. For example, gait pattern was considered in [19] achieving

an EER of 0.201 (20.1%) for 51 subjects during two short sessions, where each subject was tasked

with walking down a hallway. Some studies have incorporated multiple modalities. For example,

keystroke dynamics, stylometry, and behavioral profiling were considered in [55] achieving an EER

of 0.033 (3.3%) from 30 simulated users. The data for these users was pieced together from different

datasets. To the best of our knowledge, the dataset that we collected and analyzed is unique in

all its key aspects: its size (200 subjects), its duration (30+ days), and the size of the portfolio of

modalities that were all tracked concurrently with a synchronized timestamp.

2.2 Keystroke Dynamics and Mouse Movement

Keystroke dynamics is one of the most extensively studied topics in behavioral biometrics [37].

The feature space that has been investigated ranges from the simple metrics of key press interval

[11] and dwell [26] times to multi-key features such as trigraph duration with an allowance for typing

errors [12]. Furthermore, a large amount of classification methods have been studied for mapping

these features into authentication decisions. Broadly, these approaches fall in one of two categories:

statistical methods [63] and neural networks [14], with the latter generally showing higher FAR and

FRR rates, but better able to train and make predictions on high-dimensional feature space.

While keyboard and mouse have been the dominant forms of HCI since the advent of the personal

computer, mouse movement dynamics has not received nearly as much attention in the biometrics

community in the last two decades as keystroke dynamics have. Most studies on mouse movement

were either inconclusive due to small number of users [52] or required an excessively large static
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corpus of mouse movement data to achieve good results [6], where an FAR and FRR of 0.0246 is

achieved from a testing window of 2000 mouse actions. The work in [68] drastically reduces the size

of the testing window to 20 mouse clicks. We base our selection of the three mouse metrics on their

work but with more emphasis on mouse movement and not the mouse button presses.

One of the benefits of the mouse as behavioral biometric classifier is that it has a much simpler

physical structure than a keyboard. Therefore, it is less dependent on the type of mouse and the

environment in which the mouse is used. Keyboards, on the other hand, can vary drastically in

size, response, and layout, potentially providing different biometric profiles for the same user. The

simulated environment dataset we consider utilizes identical computer and working environment, so

in our case, this particular robustness benefit is not important to authentication based on this data.

2.3 Stylometry

Authorship attribution based on linguistic style, or Stylometry, is a well-researched field [8, 54, 34,

42, 59, 32]. The main domain it is applied on is written language – identifying an anonymous author

of a text by mining it for linguistic features. The theory behind stylometry is that everyone has a

unique linguistic style (“stylome” [66]) that can be quantified and measured in order to distinguish

between different authors. The feature space is potentially endless, with frequency measurements

or numeric evaluations based on features across different levels of the text, including function words

[47, 13], grammar [43], character n-grams [60] and more. Although stylometry has not been used

for active user authentication, its application to this sort of task brings higher level inspection into

the process, compared to other lower level biometrics like mouse movements or keyboard dynamics

[68, 10], discussed in the following sections.

The most common practice of stylometry is in supervised learning, where a classifier is trained

on texts of candidate authors, and used to attribute the stylistically closest candidate author to

unknown writings. In an unsupervised setting, a set of writings whose authorship is unknown are

classified into style-based clusters, each representing texts of some unique author.

In an active authentication setting, authorship verification is applied, where unknown text is

classified by a unary author-specific classifier. The text is attributed to an author if and only if it is

stylistically close enough to that author. Although pure verification is the ultimate goal, standard

authorship attribution as a closed-world problem is an easier (and sometimes sufficient) goal. In

either case, classifiers are trained in advance, and used for real-time classification of processed sliding
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windows of input keystrokes. If enough windows are recognized as an author other than the real

user, it should be considered as an intruder.

Another usage of stylometry is in author profiling [39, 8, 65, 27, 35] rather than recognition.

Writings are mined for linguistic features in order to identify characteristics of their author, like age,

gender, native language etc.

In a pure authorship attribution setting, where classification is done off-line, on complete texts

(rather than sequences of input keystrokes) and in a supervised setting where all candidate authors

are known, state-of-the-art stylometry techniques perform very well. For instance, at PAN-20121,

some methods achieved more than 80% accuracy on a set of 241 documents, sometimes with added

distractor authors.

In an active authentication setting, a few challenges arise. First, open-world stylometry is a much

harder problem, with a tendency to high false-negative (false reject) rates. The unmasking technique

[41] has been shown effective on a dataset of 21 books of 10 different 19th-century authors, obtaining

95.7% accuracy. However, the amount of data collected by sliding windows of sufficiently small

durations required for an efficient authentication system, along with the lack of quality coherent

literary writings make this method perform insufficiently for our goal. Second, the inconsistent

frequency nature of keyboard input along with the relatively large amount of data required for

good performance of stylometric techniques make a large portion of the input windows unusable for

learning writing style.

On the other hand, this type of setting allows some advantages in potential features and analysis

method. Since the raw data consists of all keystrokes, some linguistic and technical idiosyncratic

features can be extracted, like misspellings caught prior to being potentially auto-corrected and

vanished from the dataset, or patterns of deletions (selecting a sentence and hitting delete versus

repeatedly hitting backspace deleting character at-a-time). In addition, it is more intuitive in this

kind of setting to consider overlap between consecutive windows, resulting with a large dataset,

grounds for local voting based on a set of windows and control of the frequency in which decisions

are outputted by the system.

Stylometry has been extensively applied to the problems of authorship attribution, identification,

and verification. See [15] for a thorough summary of stylometric studies in each of these three

problem domains along with their study parameters and the resulting accuracy. These studies

traditionally use large sets of features (see Table II in [2]) in combination with support vector

1http://pan.webis.de
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machines (SVMs) that have proven to be effective in high dimensional feature space [46], even in cases

when the number of features exceeds the number of samples. Nevertheless, with these approaches,

often more than 500 words are required in order to achieve adequately low error rates [25]. This

makes them impractical for the application of real-time active authentication on mobile devices

where text data comes in short bursts. While the other three modalities are not well investigated

in the context of active authentication, this is not true for stylometry. Therefore, for this modality,

we don’t reinvent the wheel, and implement the n-gram analysis approach presented in [15] that has

been shown to work sufficiently well on short blocks of texts.

2.3.1 Web Browsing, Application Usage, Location

Web browsing, application usage, and location have not been studied extensively in the context

of active authentication. The following is a discussion of the few studies that we are aware of.

Web browsing behavior has been studied for the purpose of understanding user behavior, habits,

and interests [67]. Web browsing as a source for behavioral biometric data was considered in [5]

to achieve average identification FAR/FRR of 0.24 (24%) on a dataset of 14 desktop computer

users. Application usage was considered in [45], where cellphone data (from 2004) from the MIT

Reality Mining project [21] was used to achieve 0.1 (10%) EER based on a portfolio of metrics

including application usage, call patterns, and location. Application usage and movements patterns

have been studied as part of behavioral profiling in cellular networks [61, 28, 45]. However, these

approaches use position data of lower resolution in time and space than that provided by GPS on

smartphones. To the best of our knowledge, GPS traces have not been utilized in literature for

continuous authentication.
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3. Authentication on Desktop Computers

3.1 Overview

Using the data collected in an office environment, we consider a representative selection of be-

havioral biometrics, and show that through a process of fusing the individual decisions of sensors

based on those metrics, we can achieve better performance than that of the best sensor from our

sensor set. Due to their heterogeneous nature, it stands to reason that a properly designed set of

good sensors would outperform a single sensor which is “best” under specific circumstances. More-

over, given the low cost of installing these application-level sensors, this approach may prove to be a

cost-effective alternative to sensors based on physiological biometrics [31]. We consider twelve sen-

sors, each falling in one of three biometrics categories: keystroke dynamics, mouse movement, and

stylometry. We evaluate the multimodal continuous authentication system on this large real-world

dataset. We consider several parameters and metrics in presenting the system’s performance. First,

we look at the false acceptance rate (FAR) and the false rejection rate (FRR) when the decisions

from each of the twelve sensors are combined in the decision fusion center (DFC). Second, we assess

the relative contribution of each individual sensor to the performance of the overall decision. Third,

we observe the tradeoff between the time to first authentication decision and the error rates. Fourth,

we consider adversarial attacks on the system in the form of sensor “spoofing,” and show that the

system is robust to partial spoofing.

3.2 Dataset

The source of behavioral biometrics data we utilized for testing multi-modal fusion for the task

of active authentication comes from a simulated work environment. In particular, we put together

an office space, organized and supervised by a subset of the authors. We placed five desks in this

space with a laptop, mouse, and headphones on each desk. This equipment and supplies were chosen

to be representative of a standard office workplace. One of the important properties of this dataset

is that of uniformity. Due to the fact that the computers and input devices in the simulated office

environment were identical, the variation in behavioral biometrics data can be more confidently

attributed to variation in characteristics of the users.

During each of the sixteen weeks of the data collection we hired 5 temporary employees for 40
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hours of work. Each day they were assigned two tasks. The first was an open-ended blogging task,

where they were instructed to write blog-style articles related in some way to the city in which the

testing was carried out. This task was allocated 6 hours of the 8 hour workday. The second task

was less open-ended. Each employee was given a list of topic or web articles to write a summary of.

The articles were from a variety of reputable news sources, and were kept consistent between users

except for a few broken links due to the expired lifetime of the linked pages. This second task was

allocated 2 hours of the 8 hour workday.

Both tasks encouraged the workers to do extensive online research by using the web browser.

They were allowed to copy and paste content, but they were instructed that the final work they

produced was to be of their own authorship. As expected, the workers almost exclusively used two

applications: Microsoft Word 2010 for word processing and Internet Explorer for browsing the web.

While the tasks were specified and suggested a combination of online research and word process-

ing, the resulting behavior patterns were quite different. The productivity of workers, as measured

by the number of words typed, varied drastically. They were purposefully not graded nor encouraged

to be more productive, and therefore, tended to spend a large amount of their time browsing the

web like they would outside of work: pursuing various interests, writing emails, commenting and

chatting on Facebook and other social networks. In this way, the data we collected is representative

of broader computer use than simply writing a blog on a particular subject. Each subject’s interests

and concerns outside of work had significant impact on their interaction with the computer.

Some of the users did not show up for work on one or more days. There were also several days on

which the tracking software was shutdown prematurely for a user. Therefore, there were a few users

for who the amount of data collected was significantly lower than the median. Therefore, we only

used data from users who had over 54,000 seconds (15 hours) of active interaction with the computer.

Before filtering out users in this way, we removed idle period in the data stream, where “idle” is

defined as a period where neither the mouse nor keyboard were used for longer than 2 minutes. All

such periods were shrunk down to 2 minutes. Therefore, due to such a temporal compression of the

data, the 54,000 second threshold is based on active interaction with the computer. In this way we

reduced the number of users in the dataset under consideration in this work from 80 down to 67.

Three data files produced by two tracking applications. They contain the following data:

• Mouse movement, mouse click, and mouse scroll wheel events at a granularity of 5 milliseconds.

• Keystroke dynamics (include press, hold, release durations) for all keyboard keys including
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Metric Total Per User
Mouse move events 34,626,337 516,811
Mouse clicks 628,862 9,386
Scroll wheel events 404,531 4,397
Keystroke events 1,243,286 13,514

Table 3.1: Statistics on the 67-user subset of the biometric data contained in the dataset.

Figure 3.1: Each of the above subfigures is a visualization of aggregate mouse movement for one
of the 67 users on their first day. We are only presenting 14 of the 67 users. This heat map is
constructed by mapping the mouse movement data from the associated user to a 50 by 50 cell
square image. The brighter the intensity of the cell, the more visits are recorded in that area of
the screen. These figures visualize the intuition that there are distinct differences in the way each
individual user interacts with the computer via the mouse.

special keys at a granularity of 5 milliseconds.

• Mapping of keys pressed to the application in focus at the time of the keyboard’s use as input.

The granularity for this data is 1 second but by synchronizing with the data from the first two

streams, higher resolution timing information can be inferred.

Table 3.1 shows statistics on the biometric data in the corpus. The table contains data aggregated

over all 67 users. It also shows the average amount of data available per user. The keystroke events

include both the alpha-numeric keys and also the special keys such as shift, backspace, ctrl, alt,

etc. In counting the key presses and the mouse clicks for Table 3.1, we count just the down press

and not the release.

As an example of the variation in the dataset, Fig. 3.1 shows a heat map visualization of the

aggregate first-day mouse movements for 14 of the 67 users. It provides an intuition that the users

have unique behavioral profiles of interaction with the computer via the mouse to a degree that

distinct patterns emerge even in heat maps that aggregate a full day’s worth of data. Some users
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spend a lot of time on the scroll bar, some users focus their attention to the top left of the screen,

and some users frequently move their mouse big distances across the screen.

3.3 Behavioral Biometric Modalities

The sets of features we consider in this thesis are linguistic style (stylometry), mouse movement

patterns, and keystroke dynamics. We construct classifiers (or classifiers) from these features dif-

ferently depending on the feature. For keystroke dynamics and mouse movement features, each

individual feature is tracked by one classifier that uses a Naive Bayes classifier [58]. For stylometry,

the portfolio of features is combined into one classifier using support vector machines (SVMs) [16].

Each of these types of classifiers work differently in terms of required amount of input data, type of

collected data (mouse events, keystroke event) and performance.

We broadly categorize the classifiers in this thesis according to the degree of conscious cognitive

involvement measured by the classifiers. The distinction can be thought of as that between “how”

and “what”. We refer to the mouse movement and keystroke dynamics classifiers as “low-level”,

since they measure how we use the mouse and how we type. On the other hand, the website domain

frequency and stylometry classifiers are “high-level” because they track what we click on with the

mouse and what we type. Table 3.2 shows the twelve classifiers under consideration in this thesis.

The frequency listed is an upperbound on frequency that a classifier produces a classification. The

actual frequency depends on the time-based windows size that the classifiers is configured to use in

training and testing phases.

3.3.1 Keystroke Dynamics and Mouse Movement

HCI Features

3

www.bing.com 2418

www.google.com 2209
search.yahoo.com 1567

www.facebook.com 1054
dell.msn.com 740
www.pandora.com 702
en.wikipedia.org 620
www.youtube.com 533
disneyworld.disney.go.com 505
www.yahoo.com 453

Web domain visit frequency

Keystroke (and Mouse Button) Dynamics

Interval

Time

Press 
Time

Press “A” Release “A” Press  “B” Release “B”

Mouse Movement (from 2 or 3 points)

Curvature Angle

Curvature Distance

Direction

Distance

Click Path (from 10+ ending in mouse click)

Direct Line Distance

Relative Path Length

Figure 3.2: The keystroke dynamics metrics are computed from the time between the press and
release event and vice versa.
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Metric Frequency (Hz)
1. Key Press Duration 0.1295
2. Key Interval 0.1248
3. Mouse Curve Distance 1.0271
4. Mouse Curve Curvature 0.7153
5. Mouse Button Press Duration 0.0423
6. Mouse Click-Path Speed 0.0385
7. Mouse Click-Path Wandering 0.0385
8. Mouse Click-Path Angle 0.0385
9. Mouse Nonclick-Path Speed 0.0201
10. Mouse Nonclick-Path Wandering 0.0201
11. Mouse Nonclick-Path Angle 0.0201
12. Stylometry 0.1295

Table 3.2: The classifiers whose performance is investigated in this thesis. These include 1 stylometry,
2 keystroke, and 9 mouse classifiers. For each classifier, listed is the average frequency across all
67 users that an event associated with that classifier is observed during active interaction with the
computer.

For any change in the position of the mouse, the raw data received from the mouse tracker are

(1) the pixel coordinates of the new position and (2) the delay in milliseconds between the recording

of this new position and the previously recorded action. Usually that delay is 5 milliseconds, but

sometimes the sampling frequency degrades for short periods of time. This tuplet gives us the basic

data element based on which all the mouse movement metrics are computed (given an initial position

on the screen).

In this thesis, we consider nine mouse-based metrics as listed in Table 3.2, and illustrated in

Fig. 3.3. A “mouse curve” is an uninterrupted sequence of three mouse move events. A “mouse

path” is an uninterrupted sequence of mouse move events with other type of events before and after

it. A “click path” is a mouse path that ends in a mouse button click. Conversely, a “nonclick path”

is a mouse path that ends in an event other than a mouse button click. The mouse classifiers are

based on features of these sequences of mouse events.

We chose two of the simplest and most frequently occurring keystroke dynamics features as

illustrated in Fig. 3.2: (K1) the interval between the release of one key and the press of another

and (K2) the dwell time between the press of a key and its release. While the dwell time K2 is a

strictly positive number, the interval K1 can be negative if another key is pressed before a prior one

is released.
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HCI Features
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www.google.com 2209
search.yahoo.com 1567

www.facebook.com 1054
dell.msn.com 740
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www.youtube.com 533
disneyworld.disney.go.com 505
www.yahoo.com 453
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Figure 3.3: The mouse movement metrics are computed from a set of continuous move events (defined
by positions on the virtual screen). On the left are three points that define a “mouse curve” and
based on which the mouse curve distance and curvature metrics are computed. On the right are 3
or more points that define a “mouse path” and based on which the mouse path speed, angle, and
“wandering” metrics are based.

3.3.2 Stylometry

We chose the setting of closed-world stylometry: we developed classifiers trained on the closed

set of users. The classifier’s output is the author to which the text is attributed.

In the preprocessing phase, we parsed the keystrokes log files to produce a list of documents

consisting of overlapping windows for each user, with the following time-based sizes (in seconds):

10, 30, 60, 300, 600 and 1,200. For the first 3 settings we advanced the sliding window with steps of

10 seconds, and for the last 3 – steps of 60 seconds. The step size determines how often a decision

can be made by the classifier.

During preprocessing, only keystrokes were considered and all special keys were converted to

unique single-character placeholders. For instance BACKSPACE was converted to β and PRINTSCREEN

was converted to π. Any representable special keys like \t and \n were taken as is (i.e. tab and

newline, respectively).

The constructed feature set, denoted the AA feature set hereinafter, is a variation of the Writeprints [3]

feature set, which includes a vast range of linguistic features across different levels of text. A sum-

marized description of the features is presented in Table 3.3. By using a rich linguistic feature set

we hope to capture the user’s writing style. With the special-character placeholders, some features



14

capture aspects of the user’s style usually not found in standard authorship problem settings. For

instance, frequencies of backspaces and deletes provide some evaluation of the user’s typo-rate.

The features were extracted using the JStylo framework 1 [46], an open-source authorship at-

tribution platform. JStylo was chosen since it is equipped with fine feature definition capabilities.

Each feature is uniquely defined by a set of its own document preprocessing tools, one unique fea-

ture extractor (the core of the feature), feature postprocessing tools, and normalization/factoring

options. The features available in JStylo are either frequencies of a class of related features (e.g.,

frequencies of “a”, “b”, ..., “z” for the “letters” feature class) or some numeric evaluation of the

input document (e.g., average word length, or Yule’s Characteristic K). Its output is compatible

with the data mining and machine learning platform Weka [29], which we used for the classification

process.

Group Features
Lexical Avg. word-length

Characters
Most common character bigrams
Most common character trigrams
Percentage of letters
Percentage of uppercase letters
Percentage of digits
Digits
2-digit numbers
3-digit numbers
Word length distribution

Syntactic Function words
Part-of-speech (POS) tags
Most common POS bigrams
Most common POS trigrams

Content Words
Word bigrams
Word trigrams

Table 3.3: The AA feature set. Inspired by the Writeprints [3] feature set, includes features across
different levels of the text. Some features are normalized frequencies of feature classes; others are
numerical evaluations of the input text.

Two important processing procedures were applied in the feature extraction phase. First, every

word-based feature (e.g., the function words class, or different word-grams) was applied a tailor-made

1http://psal.cs.drexel.edu/
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preprocessing tool developed for this unique dataset, that applies the relevant special characters

on the text. For instance, the character sequence chββCchββhicago becomes Chicago, where

β represents backspace. Second, since the windows are determined by time and not amount of

collected data, normalization is crucial for all frequency-based features (which consist the majority

of the features).

For classification, we used sequential minimal optimization (SMO) support vector machines [51]

with polynomial kernel, available in Weka. Support vector machines are commonly used for author-

ship attribution [1, 40, 69] and known to achieve high performance and accuracy.

Finally, the data was analyzed with the stylometry classifiers using a varying threshold for

minimum characters-per-window to consider, spanning from 100 to 1000 with steps of 100. For

every threshold set, all windows with less than that amount of characters were thrown away, and for

those windows the classifier output was “no decision”. The different thresholds allow us to assess

the tradeoff in the classifier’s performance in terms of accuracy and availability: as the threshold

increases, the window is richer with data and will potentially be classified with higher accuracy, but

the portion of total windows that pass the threshold decreases, making the classifier less available.

Fig. 3.4 illustrates the average percentage of usable windows, after removing all those that do not

pass the minimum characters-per-window threshold.

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000A
va

ila
b

le
 w

in
d

o
w

s 
o

u
t 

o
f 

to
ta

l (
%

) 

Minimum characters per window 

10

30

60

300

600

1200

Window Size 
(Seconds) 

Figure 3.4: Percentage of remaining windows out of the total windows after filtering by the minimum
characters-per-window threshold.
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3.4 Decision Fusion

The motivation for the use of multiple classifiers to detect an event is to harness the power of

the classifiers to provide an accurate assessment of a studied phenomenon, which a single classifier

may not be able to provide. In centralized architectures, raw data from all classifiers monitoring the

same space are communicated to a central point for integration, the fusion center. However quite

often the use of a centralized architecture is not desirable or practical. The factor weighing against

centralization is the need to transfer large volumes of data between local detector and fusion center.

Another is the fact that in many systems specialized local detectors already exist, and it is more

convenient to fuse their decisions rather than re-create the detection algorithms at the fusion center.

In the distributed architectures, some processing of data is performed at each classifier, and the

resulting information is sent out from each classifier to a central processor for subsequent processing

and final decision making. On most scenarios significant reduction in required bandwidth for data

transfer and modularity are the main advantages of this approach. The price is sub-optimality of

the decision /detection scheme.

Decision fusion with distributed classifiers is described by Tenney and Sandell in [62] who studied

a parallel decision architecture. As described in [36], the system comprises of n local detectors, each

making a decision about a binary hypothesis (H0, H1), and a decision fusion center (DFC) that uses

these local decisions {u1, u2, ..., un} for a global decision about the hypothesis. The ith detector

collects K observations before it makes its decision, ui. The decision is ui = 1 if the detector decides

in favor of H1 (decision D1), and ui = −1 if it decides in favor of H0(decision D0). The DFC collects

the n decisions of the local detectors through ideal communication channels and uses them in order

to decide in favor of H0(u = −1) or in favor of H1(u = 1). Fig. 3.5 shows the architecture and

the associated symbols. Tenney and Sandell [62] and Reibman and Nolte [53] studied the design

of the local detectors and the DFC with respect to a Bayesian cost, assuming the observations are

independent conditioned on the hypothesis. The ensuing formulation derived the local and DFC

decision rules to be used by the system components for optimizing the system-wide cost. The

resulting design requires the use of likelihood ratio tests by the decision makers (local detectors and

DFC) in the system. However the thresholds used by these tests require the solution of a set of

nonlinear coupled differential equations. In other words, the design of the local decision makers

and the DFC are co-dependent. In most scenarios the resulting complexity renders the quest for an

optimal design impractical.
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Chair and Varshney in [17] developed the optimal fusion rule when the local detectors are fixed

and local observations are statistically independent conditioned on the hypothesis. Data Fusion

Center is optimal with respect to a Bayesian cost, given the performance characteristics of the local

fixed decision makers. The result is a suboptimal (since local detectors are fixed) but computationally

efficient and scalable design. In this study we use the Chair-Varshney formulation. As described in

[36], the Bayesian risk β(k)(C00, C01, C10, C11) is defined for the kth decision maker in the system as

β(k)(C00, C01, C10, C11) = C
(k)
00 Pr(H0, D0) + C

(k)
10 Pr(H0, D1)

+C
(k)
01 Pr(H1, D0) + C

(k)
11 Pr(H1, D1) (3.1)

where C
(k)
00 , C

(k)
01 , C

(k)
10 , C

(k)
11 are the prespecified cost coefficients of the kth decision maker for each

combination of hypothesis and detector decision: C
(k)
ij is the cost incurred when the kth decision

maker decides Di when Hj is true. For the cost combination C
(k)
00 = C

(k)
11 = 0 and C

(k)
01 = C

(k)
10 = 1,

the Bayesian cost becomes the probability of error. We consider a suboptimal system where each

detector k = 1, 2, ..., n minimizes locally a Bayesian risk β(k) and the DFC (k = 0) is optimal with

respect to β(0), given the local detector design. In the subsequent work, we assume β(k) = β(0),

k = 1, 2, ..., n (all local detectors minimize the same Bayesian risk) and the superscript k is therefore

omitted. Specifically we use throughout the thesis

C
(k)
00 = C

(k)
11 = 0, k = 1, 2, ..., n

C
(k)
10 = C

(k)
01 = 1, k = 1, 2, ..., n (3.2)

namely the local detectors and the DFC each minimizes the probability of error.

3.4.1 Fusion Rule

The parallel distributed fusion scheme (see Fig. 3.5) allows each classifier to observe an event,

minimize the local risk and make a local decision over the set of hypothesis, based on only its own

observations. Each classifier sends out a decision of the form:

ui =


1, if H1 is decided

−1, if H0 is decided

(3.3)

The fusion center combines these local decisions by minimizing the global Bayes’ risk. The
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Figure 3.5: Architecture for the fusion of decentralized detectors.

optimum decision rule performs the following likelihood ratio test

P (u1, ..., un|H1)

P (u1, ..., un|H0)

H1

≷
H0

P0(C10 − C00)

P1(C01 − C11)
= τ (3.4)

where the a priori probabilities of the binary hypotheses H1 and H0 are P1 and P0 respectively

and Cij are the costs as defined previously. For costs as defined in (3.2), the Bayes’ risk becomes

total probability of error and the right hand side of (3.4) becomes P0

P1
. In this case the general fusion

rule proposed in [17] is

f(u1, ..., un) =


1, if a0 +

∑n
i=0 aiui > 0

−1, otherwise

(3.5)

with PM
i , PF

i representing the False Rejection Rate (FRR) and False Acceptance Rate (FAR) of the

ith classifier respectively. The optimum weights minimizing the global probability of error are given

by

a0 = log
P1

P0
(3.6)

ai =


log

1−PM
i

PF
i

, if ui = 1

log
1−PF

i

PM
i

, if ui = −1

(3.7)

Kam et al. in [36] developed expressions for the the global performance (global FAR and FRR)

of the distributed system described above. Exact expressions for global error rates are given in [36].
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The threshold in (3.4) requires knowledge of the a priori probabilities of the hypotheses. In

practice, these probabilities are not available, and the threshold τ is determined using different

considerations (such as fixing the probability of false alarm of the DFC).

3.4.2 Extendable Fusion Framework

As is explain in §3.4.1, the performance of the fused global detector improves as the number of

local classifiers increases. Furthermore, it is shown in [7] that fusion of classifiers trained on distinct

feature sets leads to greatest reduction in system error. In our context, the ideal active authentication

system gathers input from as many different behavioral biometric classifiers as possible. In designing

the fusion system one of our goals was to provide a straightforward way of adding classifiers to the

system without having to change algorithms and with simple and uniform characterization of each

classifier. In fact our formulation requires only that the FAR and FRR be supplied, so that they

can be incorporated in (4.5) and (4.6).

3.5 Results

3.5.1 Training, Characterization, Testing

The data of each of the 67 users’ active interaction with the computer was divided into 5 equal-

size folds (each containing 20% time span of the full set). We performed training of each classifier

on the first three folds (60%). We then tested their performance on the fourth fold. This phase is

referred to as “characterization”, because its sole purpose is to form estimates of FAR and FRR for

use by the fusion algorithm. We then tested the performance of the classifiers, individually and as

part of the fusion system, on the fifth fold. This phase is referred to as “testing” since this is the

part that is used for evaluation the performance of the individual classifiers and the fusion system.

The three phases of training, characterization, and testing as they relate to the data folds are shown

in Fig. 4.4.

• Training on folds 1, 2, 3. Characterization on fold 4. Testing on fold 5.

• Training on folds 2, 3, 4. Characterization on fold 5. Testing on fold 1.

• Training on folds 3, 4, 5. Characterization on fold 1. Testing on fold 2.

• Training on folds 4, 5, 1. Characterization on fold 2. Testing on fold 3.
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• Training on folds 5, 1, 2. Characterization on fold 3. Testing on fold 4.

Sensor Performance:
Training, Characterization, Testing

5

Methodology

60% of user 1 dataUser 1

We train, characterize, and test the binary classifier for User 1 on two classes:
1. User  1
2. Users 2 through 67

20% of user 1 20% of user 1

Training Characterization Testing

60% of user 2 dataUser 2 20% of user 2 20% of user 2

Training Characterization Testing

60% of user 3 dataUser 3 20% of user 3 20% of user 3

60% of user 67 dataUser 67 20% of user 67 20% of user 67

… … … …

Class 1: Accept

Class 2: Reject

Figure 3.6: The three phases of processing the data to determine the individual performance of each
classifiers and the performance of the fusion system that combines some subset of these classifiers.

The common evaluation method used with each classifier for data fusion was measuring the aver-

aged error rates across five experiments; In each experiment, data of 3 folds was taken for training,

1 fold for characterization, and 1 for testing. The FAR and FRR computed during characterization

were taken as input for the fusion system as a measurement of the expected performance of the

classifiers. Therefore each experiment consisted of three phases: 1) train the classifier(s) using the

training set, 2) determine FAR and FRR based on the training set, and 3) classify the windows in

the test set.

Unless otherwise specified, the experiments we ran were using the fusion system on the full 67

user set with the 2 keystroke dynamics classifiers, 9 mouse classifiers, and the stylometry classifier.

3.5.2 Contribution of Individual Classifiers

For each low-level classifier, we used the Naive Bayes classifier [33] for mapping from the feature

space to the decision space. For the stylometry classifier, we used an SVM as described in §3.3. In

the training phase for low-level classifiers, the empirical distribution for feature probabilities were

constructed from the frequency of each feature in the training segment of each user’s data. Two

such histograms were constructed for each user j. The first histogram was constructed from the
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training segment of the data of that user. The second histogram was constructed from all the

training segments of the other users. These two histograms are the empirical feature distributions

associated with each user.

In the characterization and testing phases, for each user and each metric, the Naive Bayes

Classifier considered a collection of events Ω = {xt|Tcurrent−T (xt) ≤ ω} where ω is a fixed window

size in seconds, T (xt) is the timestamp of event xt, and Tcurrent is the current timestamp. The

maximum a posteriori (MAP) rule was then used to pick the most likely hypothesis:

H∗ = argmax
i∈{0,1}

P (Hi)
∏
xt∈Ω

P (xt|Hi), (3.8)

where H1 is the “authentic” class, H0 is the “non-authentic” class, as discussed in §4.3.2, and H∗

is the most likely class associated with the observed biometric data. Unless otherwise stated we

assume P (H0) = P (H1) = 0.5. The feature probability P (xt|Hi) is estimated by a non-parametric

distribution formed in the training phase.

Fig. 4.5 shows the FAR and FRR rates respectively for the 11 keystroke and mouse movement

classifiers. For all four figures, the performance is averaged over 67 users and characterized with

respect to the time-window size used by each of the classifiers. Any data older than the duration of

the window is discarded. The classifier only provides a decision when the time-window includes a

minimum amount of events. For both mouse and keyboard that threshold was set to 5 events. As the

size of the decision window increases, the FAR and FRR rates generally decrease for all classifiers.

The performance of the individual classifiers varies from error rates as low as 0.01 to above 0.3.

The absolute performance of the fusion system is presented §3.5.3, but first we look at the

contribution of each of the 11 low level classifiers of keystroke dynamics and mouse movement to the

overall performance of the fusion system. We measure this relative contribution Ci by evaluating

the performance of the system with and without the classifier, and computing the contribution by:

Ci =
Ei − E
Ei

(3.9)

where E is the error rate computed by averaging FAR and FRR of the fusion system using the full

portfolio of 11 low-level classifiers, Ei is the error rate of the fusion system using all but the i-th

classifier, and Ci is the relative contribution of the i-th classifier as shown in Fig. 4.8.

Classifiers based on the features of mouse curve distance, mouse curve curvature, key press

duration, and key interval contributed the most to the fused decision. This can be explained by



22

the fact that these four metrics are also those that appear with the highest frequency. Therefore,

while their error rates individually are not always the lowest, the frequency of their “firing” makes

up for a higher error rate when backed by the portfolio of the other classifiers. On a time scale

of 60 to 120 seconds where the low-level classifiers excel, the stylometry classifier performed poorly

and contributed almost zero to the overall decision, and thus was not included in the figure. The

stylometry classifier begins contributing considerably on a longer time scale of 10 to 30 minutes.

3.5.3 Time to First Decision

Two conflicting metrics of an active authentication system are response-time and performance.

The less the system waits before making an authentication decision, the higher the expected rate of

error. As more keystroke and mouse events trickle in, the system can refine its classification decision

from an initial “neutral” stance of FAR = FRR = 0.5. In Fig. 3.11, we show the tradeoff between

the decision time and performance.

The “time to first decision” is the time between the first keyboard or mouse event and the first

decision produced by the fusion system. This metric can be thought of as “decision window size”.

Events older than the time range covered by the time-window are disregarded in the fused decision.

As describe in §3.5.2 when a decision window contains less than 5 events, no decision is produced

by the fusion system.

As the size of the decision window increases, the performance of the system improves, dropping

below 0.01 FAR and FRR in 30 seconds as shown in Fig. 3.11. These plots also compare the

performance of the fusion system on a 10 user subset and the full 67 user dataset. Performance

degrades but not significantly and gives promise to the scalability of the system in the closed world

environment.

When the user of the system changes, a decision window will contain a mix of events from two

different users. In Fig. 3.12 the second user is an “intruder”. The decision value “+1” corresponds

to a valid user. The decision value “-1” corresponds to an intruder. The figure shows the real-time

detection of an intruder based on two different decision windows of 10 seconds and 100 seconds. The

complete detection period in this case is approximately equal to twice the decision window because

both the individual classifiers and the fusion system are using the same size window. For example,

for a 100 second window, it is not until 100 seconds after the intruder enters that classifiers are

operating purely on the data received from the intruder and not on the previous user. It’s not until

200 seconds after the intruder enters that the fusion system integrates classifier data based purely
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on the intruder interaction with the computer.

3.5.4 Robustness to Partial Spoofing

“Partial spoofing” is the successful mimicking of a valid user by an adversary on a subset of

classifiers contributing to the fused decision. The result is that the spoofed classifiers incorrectly

classify the current user as the valid user. We emulate this form of perfect spoofing by feeding

valid user data to the classifiers marked as “spoofed”. Fig. 3.13 shows how the performance of the

system degrades with an increasing number of spoofed classifiers, in order from highest-contributing

to lowest as shown in Fig. 4.8. In other words, mouse curve distance was spoofed first, mouse curve

curvature was spoofed second, and so on. The performance of the partially-spoofed fusion system

is evaluated using the FAR metric, since what is being measured is the rate at which the system

incorrectly identifies an intruder as a valid user. The same classifiers and fusion system described

in §3.5.3 were used to generate the results in this section.

3.5.5 Closed World Versus Open World

The behavioral biometrics dataset considered in this thesis is constrained in that all the users

were performing a similar task for a similar period of time on exactly the same desk, keyboard,

mouse, and computer. This removed variability in the office environment as a factor in the biometric

footprint of each user. Furthermore, we used the critical assumption of a “closed world”: no one

other than the 67 users in the dataset will never seek to use the computers under the protection

of our authentication system. In other words, every user in the system contributed a significant

amount of biometric data to the training process.

Naturally, the question arises how well the system performs when a 68’th user is injected in the

system, without participating in the training. While we can’t answer that exact question, we can

do so for a subset of the data by removing some of the users from the training but still using them

in the testing group. More precisely, we run the following experiment:

• Train on m users.

• Test on the same m users. The results of this testing phase are labeled “Closed: m users”.

• Test on 2m users, m of which were part of the training set. The results of this testing phase

are labeled “Open: m users”.
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The above process is repeated 10 times for random selections of 2m users to generate two curves

in Fig. 3.14. The figure contains performance results for m = 10 and m = 25. The error rates

increase significantly with the introduction of users who were not part of the training process. So

while Fig. 3.11 indicates promise that the system is scalable under the closed world constraint,

Fig. 3.14 indicates that the system is likely no longer scalable when this constraint is removed and

user from outside the training environment are allowed to interact with the computers.
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Figure 3.7: FAR and FRR performance of 5 of 11 keystroke dynamics and mouse movement classi-
fiers. Note that the range of the plots for this set of classifiers is shorter (300 seconds) than for the
set of classifiers in Fig. 3.8.



26

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 180 360 540 720 900 1080 1260 1440 1620 1800

Fa
ls

e 
A

cc
ep

t R
at

e 
(F

A
R

)

Time to First Decision (sec)

Mouse Click Path Speed
Mouse Click Path Wandering

Mouse Click Path Angle
Mouse Nonclick Path Speed

Mouse Nonclick Path Wandering
Mouse Nonclick Path Angle

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 180 360 540 720 900 1080 1260 1440 1620 1800

Fa
ls

e 
R
ej
ec
t R

at
e 

(F
R

R
)

Time to First Decision (sec)

Mouse Click Path Speed
Mouse Click Path Wandering

Mouse Click Path Angle
Mouse Nonclick Path Speed

Mouse Nonclick Path Wandering
Mouse Nonclick Path Angle

Figure 3.8: FAR and FRR performance of 5 of 11 keystroke dynamics and mouse movement classi-
fiers. Note that the range of the plots for this set of classifiers is longer (1800 seconds) than for the
set of classifiers in Fig. 4.5.
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Figure 3.12: Visualization of the real-time detection of an intruder averaged over 10,000 random
samples of data from the 67 user dataset. A decision value of 1 indicates that the system believe the
user to be authentic, and -1 otherwise. Due to the low error rates of the fusion system, an intruder
is successfully detected even with small time-window of 10 seconds.
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4. Authentication on Mobile Devices

4.1 Overview

According to a 2013 Pew Internet Project study of 2076 people [20], 91% of American adults

own a cellphone. Increasingly, people are using their phones to access and store sensitive data. The

same study found that 81% of cellphone owners use their mobile device for texting, 52% use it for

email, 49% use it for maps (enabling location services), and 29% use it for online banking. And yet,

securing the data is often not taken seriously because of an inaccurate estimation of risk as discussed

in [22]. In particular, several studies have shown that a large percentage of smartphone owners do

not lock their phone: 57% in [30], 33% in [64], 39% in [22], and 48% in this study.

Active authentication is an approach of monitoring the behavioral biometric characteristics of

a user’s interaction with the device for the purpose of securing the phone when the point-of-entry

locking mechanism fails or is absent. In recent years, continuous authentication has been explored

extensively on desktop computers, based either on a single biometric modality like mouse movement

[56] or a fusion of multiple modalities like keyboard dynamics, mouse movement, web browsing,

and stylometry [24]. Unlike physical biometric devices like fingerprint scanners or iris scanners,

these systems rely on computer interface hardware like the keyboard and mouse that are already

commonly available with most computers.

In this section, we consider the problem of active authentication on mobile devices, where the

variety of available classifier data is much greater than on the desktop, but so is the variety of

behavioral profiles, device form factors, and environments in which the device is used. We study

four representative modalities of stylometry (text analysis), application usage patterns, web browsing

behavior, and physical location of the device. In the remainder of the thesis these four modalities will

be referred to as text, app, web, and location, respectively. We consider the trade-off between

intruder detection time and detection error as measured by false accept rate (FAR) and false reject

rate (FRR). The analysis is performed on a dataset collected by the authors of 200 subjects using

their personal Android mobile device for a period of at least 30 days. To the best of our knowledge,

this dataset is the first of its kind studied in active authentication literature, due to its large size

[19], the duration of tracked activity [45], and the absence of restrictions on usage patterns and on

the form factor of the mobile device. The geographical colocation of the participants, in particular,
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makes the dataset a good representation of an environment such as a closed-world organization where

the unauthorized user of a particular device will most likely come from inside the organization.

We propose to use decision fusion in order to asynchronously integrate the four modalities and

make serial authentication decisions. While we consider here a specific set of binary classifiers, the

strength of our decision-level approach is that additional classifiers can be added without having

to change the basic fusion rule. Moreover, it is easy to evaluate the marginal improvement of any

added classifier to the overall performance of the system. We evaluate the multimodal continuous

authentication system by characterizing the error rates of local classifier decisions, fused global

decisions, and the contribution of each local classifier to the fused decision. The novel aspects of

our work include the scope of the dataset, the particular portfolio of behavioral biometrics in the

context of mobile devices, and the extent of temporal performance analysis.

4.2 Dataset

The dataset used in this work contains behavioral biometrics data for 200 subjects. The collection

of the data was carried out by the authors over a period of 5 months. The requirements of the study

were that each subject was a student or employee of Drexel University and was an owner and an

active user of an Android smartphone or tablet. The number of subjects with each major Android

version and associated API level are listed in Table 4.1. Nexus 5 was the most popular device with

10 subjects using it. Samsung Galaxy S5 was the second most popular device with 6 subjects using

it.

Android Version API Level Subjects
4.4 19 143
4.1 16 16
4.3 18 15
4.2 17 9
4.0.4 15 5
2.3.6 10 4
4.0.3 15 3
2.3.5 10 3
2.2 8 2

Table 4.1: The Android version and API level of the 200 devices that were part of the study.

A tracking application was installed on each subject’s device and operated for a period of at least
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30 days until the subject came in to approve the collected data and get the tracking application

uninstalled from their device. The following data modalities were tracked with 1-second resolution:

• Text typed via soft keyboard.

• Apps visited.

• Websites visited.

• Location (based on GPS or WiFi).

The key characteristics of this dataset are its large size (200 users), the duration of tracked

activity (30+ days), and the geographical colocation of its participants in the Philadelphia area.

Moreover, we did not place any restrictions on usage patterns, on the type of Android device, and

on the Android OS version (see Table 4.1).

There were several challenges encountered in the collection of the data. The biggest problem was

battery drain. Due to the long duration of the study, we could not enable modalities whose tracking

proved to be significantly draining of battery power. These modalities include front-facing video for

eye tracking and face recognition, gyroscope, accelerometer, and touch gestures. Moreover, we had

to reduce GPS sampling frequency to once per minute on most of the devices.

Event Frequency
Text 23,254,478
App 927,433
Web 210,322
Location 143,875

Table 4.2: The number of events in the dataset associated with each of the four modalities considered
in this thesis. A text event refers to a single character entered on the soft keyboard. An app events
refers to a new app receiving focus. A web event refers to a new url entered in the url box. A
location event refers to a new sample of the device location either from GPS or WiFi.

Table 4.2 shows statistics on each of the four investigated modalities in the corpus. The table

contains data aggregated over all 200 users. The “frequency” here is a count of the number of

instances of an action associated with that modality. As stated previously, the four modalities will

be referred to as text, app, web, and “location.” For text, the action is a single keystroke on the

soft keyboard. For app, the action is opening or bringing focus to a new app. For web, the action
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is visiting a new website. For location, no explicitly action is taken by the user. Rather, location

is sampled regularly at intervals of 1 minute when GPS is enabled. As Table 4.2 suggests, text

events fire 1-2 orders of magnitude more frequently than the other three.
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Figure 4.1: The duration of time (in hours) that each of the 200 users actively interacted with their
device..

The data for each user is processed to remove idle periods when the device is not active. The

threshold for what is considered an idle period is 5 minutes. For example, if the time between event

A and event B is 20 minutes, with no other events in between, this 20 minutes is compressed down

to 5 minutes. The date and time of the event are not changed but the timestamp used in dividing

the dataset for training and testing (see §4.4.1) is updated to reflect the new time between event A

and event B. This compression of idle times is performed in order to regularize periods of activity for

cross validation that utilizes time-based windows as described in §4.4.1. The resulting compressed

timestamps are referred to as “active interaction”. Fig. 4.1 shows the duration (in hours) of active

interaction for each of the 200 users ordered from least to most active.

Table 4.3 shows three top-20 lists: (1) the top-20 apps based on the amount of text that was
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(a)

App Name Keys Per App
com.android.sms 5,617,297
com.android.mms 5,552,079
com.whatsapp 4,055,622
com.facebook.orca 1,252,456
com.google.android.talk 1,147,295
com.infraware.polarisviewer4 990,319
com.android.chrome 417,165
com.facebook.katana 405,267
com.snapchat.android 377,840
com.google.android.gm 271,570
com.htc.sense.mms 238,300
com.tencent.mm 221,461
com.motorola.messaging 203,649
com.android.calculator2 167,435
com.verizon.messaging.vzmsgs 137,339
com.groupme.android 134,896
com.handcent.nextsms 123,065
com.jb.gosms 118,316
com.sonyericsson.conversations 114,219
com.twitter.android 92,605

(b)

App Name Visits
TouchWiz home 101,151
WhatsApp 64,038
Messaging 60,015
Launcher 39,113
Facebook 38,591
Google Search 32,947
Chrome 32,032
Snapchat 23,481
System UI 22,772
Phone 19,396
Gmail 19,329
Messages 19,154
Contacts 18,668
Hangouts 17,209
Home 16,775
HTC Sense 16,325
YouTube 14,552
Xperia Home 13,639
Instagram 13,146
Settings 12,675

(c)

Website Domain Visits
www.google.com 19,004
m.facebook.com 9,300
www.reddit.com 4,348
forums.huaren.us 3,093
learn.dcollege.net 2,133
en.m.wikipedia.org 1,825
mail.drexel.edu 1,520
one.drexel.edu 1,472
login.drexel.edu 1,462
likes.com 1,361
mail.google.com 1,292
i.imgur.com 1,132
www.amazon.com 1,079
netcontrol.irt.drexel.edu 1,049
www.facebook.com 903
banner.drexel.edu 902
m.hupu.com 824
t.co 801
duapp2.drexel.edu 786
m.ign.com 725

Table 4.3: Top 20 apps ordered by text entry and visit frequency and top 20 websites ordered by visit
frequency. These tables are provided to give insight into the structure and content of the dataset.
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typed inside each app, (2) the top-20 apps based on the number of times they received focused, and

(3) the top-20 website domains based on the number of times a website associated with that domain

was visited. These are aggregate measures across the dataset intended to provide an intuition about

its structure and content, but the top-20 list is the same as that used for the the classifier model

based on the web and app features in §4.3.

Figure 4.2: An aggregate heatmap showing a selection from the dataset of GPS locations in the
Philadelphia area.

Fig. 4.2 shows a heat map visualization of a selection from the dataset of GPS locations in the

Philadelphia area. The subjects in the study resided in Philadelphia but traveled all over United

States and the world. There are two key characteristics of the GPS location data. First, it is

relatively unique to each individual even for people living in the same area of a city. Second, outside

of occasional travel, it does not vary significantly from day to day. Human beings are creatures of

habit, and in as much as location is a measure of habit, this idea is confirmed by the location data

of the majority of the subjects in the study.



37

4.3 Classification and Decision Fusion

4.3.1 Features and Classifiers

The four distinct biometric modalities considered in our analysis are (1) text entered via soft

keyboard, (2) applications used, (3) websites visited, and (4) physical location of the device as

determined from GPS (when outdoors) or WiFi (when indoors). We refer to these four modalities

as text, app, web, and location, respectively. In this section we discuss the features that were

extracted from the raw data of each modality, and the classifiers that were used to map these features

into binary decision space.

A binary classifier is constructed for each of the 200 users and 4 modalities. In total, there are

800 classifiers, each producing either a probability that a user is valid P (H1) (or a binary decision

of 0 (invalid) or 1 (valid). The first class (H1) for each classifier is trained on the valid user’s data

and the second class (H0) is trained on the other 199 users’ data. The training process is described

in more detail in §4.4.1. For app, web, and location, the classifier takes a single instance of the

event and produces a probability. For multiple events of the same modality, the set of probabilities

is fused across time using maximum likelihood:

H∗ = argmax
i∈{0,1}

∏
xt∈Ω

P (xt|Hi), (4.1)

where Ω = {xt|Tcurrent − T (xt) ≤ ω}, ω is a fixed window size in seconds, T (xt) is the timestamp

of event xt, and Tcurrent is the current timestamp. The process of fusing classifier scores across

time is illustrated in Fig. 4.3.

Text

As Table 4.2a indicates, the apps into which text was entered on mobile devices varied, but

the activity in majority of the cases was communication via SMS, MMS, WhatsApp, Facebook,

Google Hangouts, and other chat apps. Therefore, text events fired in short bursts. The tracking

application captured the keys that were touched on the keyboard and not the autocorrected result.

Therefore, the majority of the typed messages had a lot of misspellings and words that were erased

in the final submitted message. In the case of SMS, we also were able to record the submitted result.

For example, an SMS text that was submitted as “Sorry couldn’t call back.” had associated

with it the following recorded keystrokes: “Sprry coyld cpuldn’t vsll back.” Classification
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based on the actual typed keys in principle is a better representation of the person’s linguistic

style. It captures unique typing idiosyncrasies that autocorrect can conceal. As discussed in §2, we

implemented a one-feature n-gram classifier from [15] that has been shown to work well on short

messages. It works by analyzing the presence or absence of n-grams with respect to the training set.

App and Web

The app and web classifier models we construct are identical in their structure. For the app

modality we use the app name as the unique identifier and count the number of times a user visits

each app in the training set. For the web modality we use the domain of the URL as the unique

identifier and count the number of times a user visits each domain in the training set. Note that, for

example, “m.facebook.com” is a considered a different domain than “www.facebook.com” because

the subdomain is different. In this section we refer to the app name and the web domain as an

“entity”. Table 4.2b and Table 4.2c show the top entities aggregated across all 200 users for app

and web respectively.

For each user, the classification model for the valid class is constructed by determining the top

20 entities visited by that user in the training set. The quantity of visits is then normalized so that

the 20 frequency values sum to 1. The classification model for the invalid class is constructed by

counting the number of visit by the other 199 users to those same 20 domains, such that for each

of those domains we now have a probability that a valid user visits it and an invalid user visits it.

The evaluation for each user given the two empirical distributions is performed by the maximum

likelihood product in (4.1). Entities that do not appear in the top 20 are considered outliers and

are ignored in this classifier.

Location

Location is specified as a pair of values: latitude and longitude. Classification is performed using

support vector machines (SVMs) [4] with the radial basis function (RBF) as the kernel function. The

SVM produces a classification score for each pair of latitude and longitude. This score is calibrated

to form a probability using Platt scaling [48] which requires an extra logistic regression on the SVM

scores via an additional cross-validation on the training data. All of the code in this thesis is written

by the authors except for the SVM classifier. Since the authentication system is written in C++,

we used the Shark 3.0 machine learning library for the SVM implementation.
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4.3.2 Decision Fusion

2

Time

text

Start of 
Activity

text text text text text

app app

web web
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C2
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C4
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{−1,1}
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Figure 4.3: The fusion architecture across time and across classifiers. The text, app, web, and
location boxes indicate a firing of a single event associated with each of those modalities. Multiple
classifier scores from the same modality are fused via (4.1) to produce a single local binary decision.
Local binary decisions from each of the four modalities are fused via (4.4) to produce a single global
binary decision.

Decision fusion with distributed classifiers is described by Tenney and Sandell in [62] who studied

a parallel decision architecture. As described in [36], the system comprises of n local detectors, each

making a decision about a binary hypothesis (H0, H1), and a decision fusion center (DFC) that uses

these local decisions {u1, u2, ..., un} for a global decision about the hypothesis. The ith detector

collects K observations before it makes its decision, ui. The decision is ui = 1 if the detector decides

in favor of H1 and ui = −1 if it decides in favor of H0. The DFC collects the n decisions of the

local detectors and uses them in order to decide in favor of H0(u = −1) or in favor of H1(u = 1).

Tenney and Sandell [62] and Reibman and Nolte [53] studied the design of the local detectors and

the DFC with respect to a Bayesian cost, assuming the observations are independent conditioned on

the hypothesis. The ensuing formulation derived the local and DFC decision rules to be used by the

system components for optimizing the system-wide cost. The resulting design requires the use of

likelihood ratio tests by the decision makers (local detectors and DFC) in the system. However the

thresholds used by these tests require the solution of a set of nonlinear coupled differential equations.

In other words, the design of the local decision makers and the DFC are co-dependent. In most

scenarios the resulting complexity renders the quest for an optimal design impractical.

Chair and Varshney in [17] developed the optimal fusion rule when the local detectors are fixed

and local observations are statistically independent conditioned on the hypothesis. Data Fusion
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Center is optimal given the performance characteristics of the local fixed decision makers. The

result is a suboptimal (since local detectors are fixed) but computationally efficient and scalable

design. In this study we use the Chair-Varshney formulation. The parallel distributed fusion scheme

(see Fig. 4.3) allows each classifier to observe an event, minimize the local risk and make a local

decision over the set of hypothesis, based on only its own observations. Each classifier sends out a

decision of the form:

ui =


1, if H1 is decided

−1, if H0 is decided

(4.2)

The fusion center combines these local decisions by minimizing the global Bayes’ risk. The

optimum decision rule performs the following likelihood ratio test

P (u1, ..., un|H1)

P (u1, ..., un|H0)

H1

≷
H0

P0

P1
= τ (4.3)

where the a priori probabilities of the binary hypotheses H1 and H0 are P1 and P0 respectively. In

this case the general fusion rule proposed in [17] is

f(u1, ..., un) =


1, if a0 +

∑n
i=0 aiui > 0

−1, otherwise

(4.4)

with PM
i , PF

i representing the False Rejection Rate (FRR) and False Acceptance Rate (FAR) of the

ith classifier respectively. The optimum weights minimizing the global probability of error are given

by

a0 = log
P1

P0
(4.5)

ai =


log

1−PM
i

PF
i

, if ui = 1

log
1−PF

i

PM
i

, if ui = −1

(4.6)

The threshold in (4.3) requires knowledge of the a priori probabilities of the hypotheses. In

practice, these probabilities are not available, and the threshold τ is determined using different

considerations such as fixing the probability of false alarm or false rejection as is done in §4.4.3.
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4.4 Results

4.4.1 Training, Characterization, Testing

The data of each of the 200 users’ active interaction with the mobile device was divided into

5 equal-size folds (each containing 20% time span of the full set). We performed training of each

classifier on the first three folds (60%). We then tested their performance on the fourth fold. This

phase is referred to as “characterization”, because its sole purpose is to form estimates of FAR and

FRR for use by the fusion algorithm. We then tested the performance of the classifiers, individually

and as part of the fusion system, on the fifth fold. This phase is referred to as “testing” since this

is the part that is used for evaluation the performance of the individual classifiers and the fusion

system. The three phases of training, characterization, and testing as they relate to the data folds

are shown in Fig. 4.4.

• Training on folds 1, 2, 3.

Characterization on fold 4.

Testing on fold 5.

• Training on folds 2, 3, 4.

Characterization on fold 5.

Testing on fold 1.

• Training on folds 3, 4, 5.

Characterization on fold 1.

Testing on fold 2.

• Training on folds 4, 5, 1.

Characterization on fold 2.

Testing on fold 3.

• Training on folds 5, 1, 2.

Characterization on fold 3.

Testing on fold 4.

The common evaluation method used with each classifier for data fusion was measuring the aver-

aged error rates across five experiments; In each experiment, data of 3 folds was taken for training,

1 fold for characterization, and 1 for testing. The FAR and FRR computed during characterization
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Sensor Performance:
Training, Characterization, Testing

5

Methodology

60% of user 1 dataUser 1

We train, characterize, and test the binary classifier for User 1 on two classes:
1. User  1
2. Users 2 through 67

20% of user 1 20% of user 1

Training Characterization Testing

60% of user 2 dataUser 2 20% of user 2 20% of user 2

Training Characterization Testing

60% of user 3 dataUser 3 20% of user 3 20% of user 3

60% of user 67 dataUser 67 20% of user 67 20% of user 67

… … … …

Class 1: Accept

Class 2: Reject

Figure 4.4: The three phases of processing the data to determine the individual performance of each
classifiers and the performance of the fusion system that combines some subset of these classifiers.

were taken as input for the fusion system as a measurement of the expected performance of the

classifiers. Therefore each experiment consisted of three phases: 1) train the classifier(s) using the

training set, 2) determine FAR and FRR based on the training set, and 3) classify the windows in

the test set.

4.4.2 Performance: Individual Classifiers

The conflicting objectives of an active authentication system are of response-time and perfor-

mance. The less the system waits before making an authentication decision, the higher the expected

rate of error. As more behavioral biometric data trickles in, the system can, on average, make a

classification decision with greater certainty.

This pattern of decreased error rates with an increased decision window can be observed in

Fig. 4.5 that shows (for 10 different time windows) the FAR and FRR of the 4 classifiers averaged

over the 200 users with the error bars indicating the standard deviation. The “testing fold” (see

§4.4.1) is used for computing these error rates. The “characterization fold” does not affect these

results, but is used only for FAR/FRR estimation required by the decision fusion center in §4.4.3.

The “time before decision” is the time between the first event indicating activity and the first

decision produced by the fusion system. This metric can be thought of as “decision window size”.

Events older than the time range covered by the time-window are disregarded in the classification.

If no event associated with the modality under consideration fires in a specific time window, no error
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is added to the average.

Event Firing Rate (per hour)
Text 557.8
App 23.2
Web 5.6
Location 3.5

Table 4.4: The rates at which an event associated with each modality “fires” per hour. On average,
GPS location is provided only 3.5 times an hour.

There are two notable observations about the FAR/FRR plots in Fig. 4.5. First, the location

modality provides the lowest error rates even though on average across the dataset it fires only 3.5

times an hour as shown in Table 4.4. This means that classification on a single GPS coordinate is

sufficient to correctly verify the user with an FAR of under 0.1 and an FRR of under 0.05. Second,

the text modality converges to an FAR of 0.16 and an FRR of 0.11 after 30 minutes which is one

of the worse performers of the four modalities, even though it fires 557.8 times an hour on average.

At the 30 minute mark, that firing rate equates to an average text block size of 279 characters. An

FAR/FRR of 0.16/0.11 with 279 characters blocks improves on the error rates achieved in [15] with

500 character blocks which in turn improved on the errors rates achieved in prior work for blocks of

small text (see [15] for a full reference list on short-text stylometric analysis).

4.4.3 Performance: Decision Fusion

The events associated with each of the 4 modalities fire at very different rates as shown in

Table 4.4. Moreover, text events fire in bursts, while the location events fire at regularly spaced

intervals when GPS signal is available. The app and web events fire at varying degrees of burstiness

depending on the user. Fig. 4.6 shows the distribution of the number of events that fire within each

of the time windows. An important takeaway from these distributions is that most events come in

bursts followed by periods of inactivity. This results in the counterintuitive fact that the 1 minute,

10 minute, and 30 minute windows have a similar distribution on the number of events that fire

within them. This is why the decrease in error rates attained from waiting longer for a decision is

not as significant as might be expected.

Asynchronous fusion of classification of events from each of the four modalities is robust to



44

the irregular rates at which events fire. The decision fusion rule in (4.4) utilizes all the available

biometric data, weighing each classifier according to its prior performance. Fig. 4.7 shows the receiver

operating characteristic (ROC) curve trading off between FAR and FRR by varying the threshold

parameter τ in (4.3).

As the size of the decision window increases, the performance of the fusion system improves,

dropping from an equal error rate (EER) of 0.05 using the 1 minute window to below 0.01 EER

using the 30 minute window.

4.4.4 Contribution of Local Classifiers to Global Decision

The performance of the fusion system that utilizes all four modalities of text, app, web, and

location is described in the previous section. Besides this, we are able to use the fusion system to

characterize the contribution of each of the local classifiers to the global decision. This is the central

question we consider in the thesis: what biometric modality is most helpful in verifying a person’s

identity under a constraint of a specific time window before the verification decision must be made?

We measure the contribution Ci of each of the four classifiers by evaluating the performance of the

system with and without the classifier, and computing the contribution by:

Ci =
Ei − E
E

(4.7)

where E is the error rate computed by averaging FAR and FRR of the fusion system using the full

portfolio of 4 classifiers, Ei is the error rate of the fusion system using all but the i-th classifier,

and Ci is the relative contribution of the i-th classifier as shown in Fig. 4.8. We consider the

contribution of each classifier under three time windows of 1 minute, 10 minutes, and 30 minutes.

Location contributes the most in all three cases, with the second biggest contributor being web

browsing. Text contributes the least for the small window of 1 minute, but improve for the large

windows. App usage is the least predictable contributor.

4.5 Conclusion

In this work, we proposed a parallel binary decision-level fusion architecture for classifiers based

on four biometric modalities: text, application usage, web browsing, and location. Using this fusion

method we addressed the problem of active authentication and characterized its performance on a

real-world dataset of 200 subjects, each using their personal Android mobile device for a period of
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at least 30 days. The authentication system achieved an equal error rate (ERR) of 0.05 (5%) after

1 minute of user interaction with the device, and an EER of 0.01 (1%) after 30 minutes. We showed

the performance of each individual classifier and its contribution to the fused global decision. The

location-based classifier, while having the lowest firing rate, contributes the most to the performance

of the fusion system.
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Figure 4.5: FAR and FRR performance of the individual classifiers associated with each of the four
modalities. Each bar represent the average error rate for a given module and time window. Each of
the 200 users has 2 classifiers for each modality, so each bar provides a value that was averaged over
200 individual error rates. The error bar indicate the standard deviation across these 200 values.
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Figure 4.6: The distribution of the number of events that fire within a given time window. This
is a long tail distribution as non-zero probabilities of event frequencies above 13 extend to over
100. These outliers are excluded from this histogram plot in order to highlight the high-probability
frequencies. Time windows in which no events fire are not included in this plot.
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5. Conclusion

We propose a parallel binary detection decision fusion architecture for a representative collection

of behavioral biometric classifiers: keystroke dynamics, mouse movement, and stylometry. Using this

fusion method we address the problem of active authentication and characterize its performance on a

dataset from a real-world office environment. We consider several applications for this authentication

system, with a particular focus on secure distributed communication, because the training of the

classifiers requires biometric data from multiple users on the network: the “legitimate” user at each

computer under inspection and the “illegitimate” users who may try to use a computer they are not

authorized to access.

The application of the Chair-Varshney fusion algorithm to the problem of multi-modal authen-

tication and the use of high-level classifiers based on stylometry are novel in the continuous authen-

tication context, and show promising performance in terms of low false acceptance rate (FAR) and

low false rejection rate (FRR). We observe the tradeoff between detection time and error rate, and

show that error rates of less than 0.01 can be achieved in under 60 seconds of active computer use.

We also demonstrate that the system is robust to partial spoofing of the classifiers.

We also evaluated the fusion system on a mobile dataset of 200 subjects, each using their personal

Android mobile device for a period of at least 30 days. The authentication system achieved an equal

error rate (ERR) of 0.05 (5%) after 1 minute of user interaction with the device, and an EER

of 0.01 (1%) after 30 minutes. We showed the performance of each individual classifier and its

contribution to the fused global decision. The location-based classifier, while having the lowest

firing rate, contributes the most to the performance of the fusion system.

We consider several directions for future work. First, we aim to examine a wider variety and

combination of metrics, based on keystrokes, mouse events and any application data that can be

monitored and collected (e.g. web browsing behavior). These may include the classifiers presented

in this thesis, in different application scopes. For instance, since different domains may require

specific features to capture unique characteristics of those domains, we can use several custom-made

stylometric metrics for word processors, mail clients, short-message domains (e.g. instant messaging,

Twitter [44], Facebook) etc. In addition, novel metrics can be developed that use a combination of

input types. For instance, it may be useful to examine periods of dual mouse and keyboard usage

(e.g. selecting text with the mouse and using keyboard shortcuts to rearrange it) and parameterize
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the synchronization between them.

Each of the classifiers considered have a set of parameters that control their behavior and resulting

performance. We intend to further explore the effect of changing these parameters, e.g., size of the

training set. An important variable to examine is time-based vs. data-based windows; as opposed to

time-based windows (used for this thesis), data-based windows mean that each classifier generates a

decision when enough of the data it is based on is aggregated, resulting with asynchronous decision

making. On top of this approach, parameters of individual classifier data thresholds and maximum

window time can be set and tested compared to fixed, synchronous time-based windows.

Moreover, the current implementation of the system is designed for post-mortem analysis and

classification, based on per-user decision comma-separated values (CSV) files generated by each of

the classifiers. For future implementation improvements we propose upgrading to live data collec-

tion and analysis, as expected to perform in real settings. We propose using relational databases to

store: 1) directly-collected metrics, like mouse events, keystrokes, web browsing statistics, clipboard

content and any potential usable application data, and 2) decisions from any participating classi-

fiers generated on-the-fly. Since collecting raw data involves security and privacy risks, it may be

considered to collect only parsed, extracted vectors of information generated by the participating

classifiers. For instance, instead of storing the sequence of keystrokes for a particular window, only

the vector of statistics extracted from that sequence will be stored, for each classifier that uses this

information. The disadvantages are that post-mortem analysis cannot be applied using potential

new classifiers/configurations, as the raw data will not be available. The clear advantage is that

the sensitivity of the stored information is reduced. In either case, all databases should be stored

in a secure encrypted storage, and managed carefully when processed to discourage information

leakage. The implementation improvement suggested above can also allow convenient remote access

by centralized authentication systems, configured with different sets of classifiers.

Finally, the usability of the system is determined by its ability to detect intruders, but more im-

portantly, raise false alarms as little as possible. Surely a system that prompts the user for password

frequently due to misclassification as an intruder has severe usability issues, let alone annoying.

Therefore adding support for user-defined target FRR and FAR thresholds (given classifiers that

can hold up to to them) is an important setting of the system, to allow the ability to determine the

minimum performance the system is expected to work with.
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