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Abstract 

Legionnaires’ Disease (LD), first reported in 1976, is an atypical pneumonia caused by bacteria of the 
genus Legionella, and most frequently by L. pneumophila (Lp).  Subsequent research on exposure to the 
organism employed various animal models, and with Quantitative Microbial Risk Assessment techniques, 
the animal model data may provide insights on human dose-response for LD. The present report focuses 
on the rationale for selection of the guinea pig model, comparison of the dose-response model results, 
comparison of projected low-dose responses for guinea pigs, and risk estimates for humans.  Based on 
both in vivo and in vitro comparisons, the guinea pig (Cavia porcellus) dose-response data were selected 
for modeling human risk.  We completed dose-response modeling for the β-Poisson (approximate and 
exact), exponential, probit, logistic and Weibull models for Lp inhalation mortality and infection (end point 
elevated body temperature) in guinea pigs.  For mechanistic reasons, including low-dose exposure 
probability, further work on human risk estimates for LD employed the exponential and β-Poisson models.  
With an exposure of 10 Colony Forming Units (retained dose), the QMRA model predicted a mild infection 
risk of 0.4 (as evaluated by seroprevalence) and a clinical severity LD case (e.g., hospitalization and 
supportive care) risk of 0.0009.  The calculated rates based on estimated human exposures for outbreaks 
used for the QMRA model validation are within an order of magnitude of the reported LD rates.  These 
validation results suggest the LD QMRA animal model selection, dose-response modeling, and extension 
to human risk projections were appropriate. 
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1. INTRODUCTION 

The first goal for developing the Quantitative Microbial Risk Assessment (QMRA) model for Legionnaires’ 

disease (LD) involved assembling and evaluating data to estimate human risk from animal model dose-

response information.  Next, since the information was sufficient to proceed, we develop the QMRA 

model and validating it by comparing calculated human LD risk estimates to reported LD outbreak rates.  

The LD QMRA model may have utility in estimating the health risk to people resulting from exposure to 

aqueous aerosols produced by sources such as cooling towers, whirlpool spas, showers, and other water 

sources that contain Legionella.  Prior reports suggest that the infective dose-response for LD has not 

been established and many factors need to be considered in understanding LD risks (1).  QMRA 

techniques provide the framework within which the analyses and linkages of the hazard and exposure 

data may be completed.  Figure 1 shows LD QMRA project in three parts, as divided for model 

development and publication.  The current manuscript focuses on Part I and covers primarily the animal 

model selection, dose-response modeling and initial considerations of human risk based on the animal 

dose-response data.  Parts II and III, covering exposure assessment for human exposures during three 

outbreaks reported in the literature, and evaluation of human risk projections, respectively, are reported in 

a dissertation (2) that is available as a PDF file, and in other manuscripts (3, 4).  Full details on the three 

parts are beyond the scope of a typical journal manuscript.  Thus, this current report focuses on the 

animal model selection, and summarizes supporting aspects from the exposure assessment and model 

evaluation.   

 

Bacterial exposures are quantal.  The common expression for bacterial quantities in dosing is in colony 

forming units (CFU) where each colony on a culture plate represents one viable (and culturable) organism 

and thus a measure of the number of bacteria.  In this manuscript, the low dose results will show what 

might be taken as a fractional CFU exposure, but this is not the correct interpretation.  For example, an 

exposure dose of 0.1 CFU means one person in ten would receive a dose of 1 CFU.   
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2. METHODS 

2.1. Animal Model Selection 

For Legionella pneumophila, available evidence suggests that, from the animal inhalation exposure 

models reported in the literature, guinea pigs (Cavia porcellus) are the most appropriate model choice for 

human risk extrapolation.  Table 1 summarizes in vivo Legionella inhalation data for the range of animal 

models.  Data from intraperitoneal injection, nasal or tracheal instillation studies were set aside as less 

relevant for an inhalation risk assessment.  The Lewis rat data shown in Table 1 do not resolve the rat as 

suitable or not suitable, but additional information (paragraph below) suggest the rat is relatively resistant 

and does not develop LD similar in severity and effect to that in humans.  Other species for which we 

found inhalation exposure data, summarized in Table 1, appear less susceptible to Legionella than do 

guinea pigs.  Table II provides a summary of the broader rationale for the guinea pig model selection and 

Table III provides an analysis of in vitro and mechanistic aspects for the broader range of animal model 

data.  The justification for the guinea pig model is largely from the in vitro data summarized in Table III.  

Uptake, survival, and growth rates for Lp appear more similar in human and guinea pig macrophage lines 

than between human and other species macrophages for which data were located.  Due to a lack of data 

for comparisons, this analysis currently neglects subsequent stages of cell-mediated and humoral 

immune system responses (5, 6).  As noted in Table III, published literature suggests that most mouse 

strains and other animal models evaluated are relatively resistant to Legionella infection.  Studies (7-9) 

showed the rat (Sprague-Dawley and Lewis strains) is a resistant model compared to guinea pigs, and 

found more similarities of LD in guinea pigs and humans that in the rat and humans.  Aerosol exposure 

data for Legionella and LD development in the rat model were limited (9) with respect to dose groups and 

dose determination, which limits utility for dose-response modeling in a QMRA project.  Given these 

reasons, the rat model was not considered further in the QMRA.  The limited non-human primate data (10, 

11) suggest relative resistance to LD, were not in a form for dose-response modeling, and thus were not 

considered further for the QMRA model development.  
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We did not apply risk assessment techniques to statistically explore the influence of different animal 

models’ on human risk projections (12).  The in vivo and in vitro data support the guinea pig selection, and 

in our opinion demonstrate that the other available animal models are less suitable.  Additionally, as 

shown in the subsequent LD QMRA validation, the guinea pig data appear to be satisfactory for predicting 

human risks.  

2.2. Dose-Response Data 

We conducted a literature search for published studies on inhalation studies for Legionella in animal 

models, with the emphasis on guinea pig data for the reasons outlined above.  Table IV lists reports that 

provide data potentially suitable for dose-response analyses.  Further review narrowed the list to the 

studies we selected for further evaluation.  The selected studies all used similar exposure methods to 

deliver 5 micrometer aerosol, provided verification of dosing, evaluated the dose retained in the animal 

lungs, and detailed the dose group sizes and responses.  Human exposure to Legionella results in a 

range of responses, from apparently silent development of antibodies to Legionella (seroconversion), to 

mild fever and recovery, to clinical severity illness requiring medical care, to mortality (13, 14).  Thus, data to 

evaluate mild infection as indicated by fever, and severe infection as indicated by animal mortality were 

both of interest.   

 

Infection has been likened to a battle between the adaptive bacteria’s mechanisms for survival and 

replication in a host organism, and the host organism’s antimicrobial defense mechanisms (14).  The range 

of effects then likely overlap, with subclinical infection indicating the stage where host defenses 

succeeded, but possibly would not have in a slightly more susceptible host or with more virulent bacteria, 

or other slight change.  Clinical infection may indicate a much more serious battle, usually requiring 

medical support, and mortality indicates the battle lost by the host.  Projections of subclinical infection risk 

may thus be informative supplements to the clinical infection and mortality risk estimates.  For mild 

infection dose-response modeling, one report (15) was available and suitable.  For mortality analyses, 

more reports were available, but following review, 4 were used in preliminary analyses (11, 16-18), with one 

(16) selected for more detailed projections.  
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2.3. Dose-Response Modeling 

Haas (19) described methods for quantitative microbial risk assessment and low dose risk modeling.  Haas 

et al. (20) subsequently further describe the derivation and application of dose response modeling for 

microbial data.  Two models – the exponential and β-Poisson derive from biological mechanistic 

considerations.  That is, the host must receive at least one organism and the microorganisms may 

undergo decay in viability or loss via host defense and risk does not exceed the probability of exposure to 

at least one microorganism.  The decay/defense may be represented by constants in the exponential 

model or by distributions (e.g., the beta distribution in the β-Poisson model).  Haas et al. (20) provides 

further discussion and justification for model selection.  Other commonly used dose-response models 

have empirical bases and these include the logistic, probit and Weibull models.  Figure 2 shows the 

equations for the models used.   

 

The commonly used β-Poisson model -  
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where P1 = the response at dose d and α and β represent model parameters - is based on an 

approximation that holds only when the value for β is >>1 and α is << β. (20-22)  Teunis (23) demonstrated 

that, at low doses, (even with alpha and beta values in the acceptable range), the approximate β-Poisson 

model predicts risk exceeding the probability of exposure, and that is not plausible.  However, the exact 

solution for the β-Poisson relationship is more computationally challenging.   

 

The dose-response modeling, except for the exact β-Poisson work, was done with Microsoft Excel®, 

using maximum likelihood techniques and the Excel feature Solver for numeric optimization.  The exact β-

Poisson model analyses were completed using Mathematica® software.  We tested the Excel Solver 

optimization convergence by rerunning the optimization with the parameters reset to either direction from 

the initial optimum set, but did experience inconsistencies in convergence with the data sets we used.  

The fit of the model to the data was judged satisfactory if the likelihood value was less than the critical Chi 
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square value, with the degrees of freedom equal to the number of dose groups minus the number of 

model parameters.  These fitting techniques and goodness of fit evaluation methods have been described 

elsewhere (20, 24).  We also graphically examined the low-dose projections of the models as part of the 

model evaluation.  We proceeded with the β-Poisson and exponential models due to their low-dose 

linearity with exposure probability and their mechanistic basis.  Given the subsequent findings of good 

agreement between projected risks and reported risks in our QMRA validation stage (4) as summarized 

the following section (2.4) of this current report, we did not conduct further work on the model selection for 

the LD QMRA.  Future research, however, could consider application of more structured model selection 

and comparison approaches (25). 

2.4 Human Exposure Assessment and LD QMRA Model Evaluation 

In order to evaluate the LD QMRA model, we needed information on human exposures and the related 

rates of LD.  Despite extensive searches, we did not locate reports where the exposures to Legionella 

were quantitatively evaluated at a time relevant to LD cases’ exposure.  We therefore developed and 

applied approaches for estimating Legionella exposures for a whirlpool spa related outbreak (26-29), and 

two natural hot springs spa outbreaks (30-32).  These were selected since the reports were relatively rich in 

details to support an exposure assessment compared to other published outbreak reports.  Further details 

on the selection and exposure assessment are provided elsewhere (2, 3).  Exposure estimates for the 

whirlpool spa outbreak used aerosol generation information, assumed Lp content in water (from published 

reports), estimated bacterial content of aerosol, time of workers in the building exposure zones, and two 

distance zones of workers from the whirlpool, using a two zone model.  The distribution of estimated 

exposures was then calculated via Monte Carlo simulation. 

 

Exposures for the two hot spring spa outbreaks were estimated from reported Legionella in water 

concentrations, water to air bacterial partitioning coefficient, and estimated time spent in hot spring 

environment.  The distributions of estimated exposures were generated via Monte Carlo simulation. 
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The respective exposure distributions were fed into the dose-response model using Monte Carlo 

simulation.  The resulting estimated risk distributions were then compared to the reported rates for the 

outbreaks (2, 4).   

 

2.5 Uncertainty Analyses 

Our LD QMRA project plan involved assembling and applying available information to estimate human 

risks and validate the findings.  A part of that plan included identifying where further work would reduce 

the uncertainties and improve the utility of the LD QMRA.  With the stochastic calculations and software 

used, sensitivity analyses are straightforward for those aspects.  Such sensitivity analyses, as commonly 

applied, cover the sources of variability and this may not reflect the sources of uncertainty.  Some data 

may be highly variable but quite reliable, and other data may show little variability but be rather 

speculative and a source of significant uncertainty.  For the LD QMRA, we provide primarily a qualitative 

analysis of the key uncertainties and their magnitude in this current report.  We reported the sensitivity 

analyses for the exposure assessment and validation stages elsewhere (2-4).  A more structured 

quantitative uncertainty analysis plan was not included in the completed research project’s scope.  

 

3. RESULTS 

All the studies shown in Table IV, except two (10, 15) reported 100% infection in the lowest dose groups.  

The one study (10) may not have provided adequate follow-up time after dosing for infection to manifest in 

the lowest dose group; the report indicates follow-up was 2 to 3 days post exposure.  The data of Muller 

et al. (15) showed the guinea pig rectal temperature (an indicator of response to infection) in the lowest 

exposure group did not rise above baseline until day 6 post exposure, but was above baseline by day 3 

for a higher dose group.  For humans, the generally recognized incubation period is 2 to 10 days (13), but 

perhaps longer since one report listed cases at up to 19 days post exposure (28).  The medical literature 

on infectious diseases suggest that incubation periods for several diseases are longer at lower doses (14).   

The other data sets with 100% response for signs of infection in the low dose group are not as informative 

in dose-response modeling for infectivity.  However, those data are not inconsistent with Muller’s (15) 

8 of 47 



findings since the low dose groups and responses were in the range of Muller’s higher dose groups.  

Fitzgeorge (11) and Baskerville (10) estimated the guinea pig inhaled dose based on exposure period, 

inhalation rate (0.15 liters/minute) (33) and 50% retention of the aerosol (34).  Berendt (18) used the same 

approach and the same assumptions.  Fitzgeorge (11) comments (but did not publish the raw data) that the 

calculated dose corresponded well to viable counts recovered from lung macerates of guinea pigs 

sacrificed immediately following exposure.   

 

Using the data from Muller (15) led to estimates for the doses for 50% and 1% infection rates (ID50% and 

ID1%), as shown in Table V.  All models listed passed the goodness of fit test based on comparison of the 

likelihood ratio to the critical values of Chi square (Χ2) at the 95% level using methods as described 

previously (20, 24).  Table VI shows the goodness of fit results and parameter values for the models applied 

to the infectivity data.  None of the models gave a significantly improved fit according to the Chi square 

evaluation using the method described elsewhere (20, 24).  The approximate β-Poisson and exact β-

Poisson models gave the same results, with the approximate form then used in further work.  

 

For mortality , there is a wider selection of reported data available for consideration (9-11, 17, 18, 35, 36).  

However, not all of these data proved suitable for dose response analyses.  Aspects that limited their 

utility included: a) no responses other than 0 or 100%, b) non-monotonic responses, c) inadequate 

documentation of the number of animals or d) inadequate details on dosing.  For the study showing non-

monotonic response (37), the report was also difficult to decipher with certainty with respect to the dosing 

of the low dose, dose group sizes and responses.  However, interpreting the repost as well as possible, 

the model fits were not satisfactory.  The exponential model results were typical of the other model fits, 

with the likelihood ratio of 66 exceeding the critical Chi square of 7.8.  Thus, we focused on comparative 

analyses of those data sets listed in Table VII, with the data of Baskerville (16) selected for the subsequent 

risk projections and low dose extrapolation.  Table VII shows the projected LD50% and LD1% results, the 

fitted model parameters, and the model goodness of fit test results.  
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Combining the data sets listed in Table IV for analysis (by arraying the studies dose levels in numeric 

order, with the respective responses) led to results that did not satisfy the goodness-of-fit criteria.  Without 

further research, this combined data set approach did not seem prudent to pursue, since the studies 

involved differing bacterial strains as well as differing mixes of guinea pig strain, maturity and sex.  

 

3.1. Low Dose Extrapolation 

Low dose extrapolation is an important consideration in model selection.  Models may give similar results 

in the range of available data, yet the main interest often is at lower doses.  Then, the shape of the 

extrapolated curve has major impact.  For analysis of the Muller (15) infectivity data, the low dose 

predictions for the models considered follow in Table VIII and are shown in Figure 3.  The mortality risk 

projections shown in Table IX are based on the data of Baskerville (16), and are shown graphically in 

Figure 4..  Note that the results from the Exponential and β-Poisson models agree quite well, including for 

the low-dose projections.  At low doses, the logistic and probit models rapidly diverge from the other 

models and are notably sub-linear with dose.  On the mechanistic consideration that risk is limit by 

exposure probability, and with attenuation of dose either as a fixed value or as a distribution, the 

exponential and β-Poisson results seem to be the most appropriate for low dose risk predictions from 

these data sets.  This is in part based on our interest in evaluating the conjecture that risk at low dose for 

Legionella still relates to exposure probability.  The empirical models’ results are arguably less relevant 

than the more mechanistic models, and we therefore did not use the empirical model results further in our 

current LD QMRA work.  As reported elsewhere (2), the evaluation of the QMRA model demonstrates the 

exponential and β-Poisson projections fit reasonably with reported human risks.  

3.2. Interspecies Susceptibility to Legionella Infection 

A relevant question is - how well does the guinea pig model for Legionella apply to human risk 

projections?  The guinea pig model has been widely used for Lp inhalation studies and other animal 

model systems have also been studied.  No studies are known which offer direct comparative data on 

human versus other species response to Lp inhalation.  Different Legionella species and strains used by 

different investigators complicate animal model comparisons; virulence may differ by species and strain 
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(11, 38).  Following inhalation exposure, rats and mice showed relative resistance to Lp (10, 11, 16).  Rhesus 

monkey and marmosets develop symptoms of LD similar to those seen in guinea pigs (10, 16).  The 

monkeys and marmosets appeared to be somewhat more resistant to infection than were the guinea pigs 

(16), as the calculated inhaled dose for the monkeys was 6 ×106, and marmosets 5.5 × 105 CFU, with a 

milder course of disease, but at "relatively lower doses."  The marmosets (16) showed one of four 

moribund at sacrifice following a dose 4.5 × 105 CFU.  The guinea pig predicted 25% mortality (using the 

data of Baskerville (16)) is at 4.8 × 103 CFU.   Comparing these then shows a dose approximately 100 

times higher for an equivalent response in the marmosets, and this implies a marmoset resistance to 

mortality approximately 100 fold higher.  The Rhesus monkey data showed infection of 7 of 8 at 106 CFU, 

with no mortality by time of sacrifice.  The Muller (15) guinea pig infectivity data predicts 7 of 8 responding 

at 35 CFU, if Rhesus monkey sensitivity equals that of guinea pigs.  However, the limited Rhesus 

response data translates to an apparent sensitivity difference (compared to guinea pigs) of approximately 

3 × 104.  Review of comparative data for animal models and different bacteria suggests that a wide range 

of relative susceptibility may be expected.  For anthrax spores, which may include wild and weaponized 

materials, published LD50% results range from 4 × 103 for Cynomolgus monkeys to 3 × 106 for pigs (39-42).  

Thus, selection of an appropriate animal model appears to be a key aspect of QMRA.  

 

Due largely to the findings shown in Tables II and III, the guinea pig data are presumed to apply directly 

to predict human risk.  The available data give no rationale to adjust for either greater or lesser sensitivity 

and our subsequent LD QMRA validation findings (2, 4) support this decision.  One of the studies cited in 

Table III of particular relevance (43) evaluated intracellular production of protease in isolated guinea pig 

and human alveolar macrophages and showed similar growth rates at similar dose levels, with similar 

protease production.  Within 24 hours following dosing of the cultures, Legionella counts increased by 2 

to 3 orders of magnitude in both species' macrophages.  This is relevant since Legionella are known to 

replicate in macrophages in vivo in both species, which is a key factor in the organism’s pathogenicity. 

3.3. Dose Scaling 

With a given dose of infectious organisms, does response to pathogens vary with animal model body 

mass or other body scale metric?  If so, perhaps dose scaling by body mass or inhalation volume or 
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another metric is appropriate.  However, we are not aware if dose scaling for inhalation pathogens is fully 

resolved as either appropriate or inappropriate for quantitative microbial risk assessments.  This aspect of 

QMRA has clear differences from radiation and chemical risk assessments where scaling is routinely 

addressed.  For chemicals, the received dose is the total ever available to cause toxicity.  However, 

pathogens have the potential to replicate in the host organism.  Thus, there is a much different aspect to 

consider in microbial risk assessment.  That aspect is the ability of the initial inoculum, possibly a single 

viable and virulent bacterium, to survive, multiply, and cause disease in the host.   

 

An intracellular pulmonary pathogen such as Lp must succeed in several (arguably) probability-based 

events to cause infection in a host species.  If these probability requirements are met to a sufficient 

frequency, then a certain probability of infection manifests.  Several of these probability based events are: 

viability and virulence of the particular Lp organisms, deposition of aerosol containing the Lp in the 

pulmonary tract, especially the alveolar region and uptake by a macrophage, replication of Lp in a 

compliant macrophage, and lysis of the host macrophage and infection of subsequent compliant 

macrophages (a “chain reaction”). 

 

For Legionella, the late stages of an unchecked infection include the release of toxins, proteases and 

associated inflammatory responses manifesting as clinical disease (14).  The total probability (given each 

event is independent) is the product of the individual events’ probabilities.  We suggest that this infection 

probability is not dependent on the total lung surface area or inhalation volume and thus does not scale 

with body weight, or lung volume.  The key aspect for LD is the number of organisms deposited and 

available for subsequent uptake by and replication in compliant alveolar macrophages.  Since we did not 

find data to the contrary, we see no reason at this time for major differences in the surface density 

(number per square centimeter of lung surface) of resident alveolar macrophages (AM) in guinea pigs, 

other animal models, and humans.  Data suggest approximately one resident AM per alveolus in humans 

(44).  Dose scaling for an intracellular pulmonary pathogen such as Legionella would appear, with this line 

of reasoning, to be inappropriate.  Our subsequent LD QMRA validation findings (2, 4) suggest this 

reasoning is appropriate.   
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3.4. Risk Projections for Humans 

Palm et al. (45) and Kliment (46) show similar deposition patterns in pulmonary regions for 5 micrometer 

particles in guinea pig versus human systems.  The animal model reports (see Table IV) did not provide 

analysis of the initial 5 micrometer aerosol deposition patterns in the animal pulmonary tracts.  Clearance 

half lives for insoluble particulates are on the order of days and longer for humans and it is of the same 

magnitude for guinea pigs (47, 48).  These clearance rates suggest negligible removal of the delivered dose 

for short-term (minutes to hours) exposures used in the aerosol dosing experiments.  For LD, deposition 

in the alveolar region is relevant (14), but given the scope of work for our total project and the animal data 

constraints, we did not further address potential differences in pulmonary tract deposition.   

 

Tables VIII and IX present the low dose projections for infection risk and mortality risk for the models 

tested, with Table VIII providing the projections for infectivity.  Note that the low-dose extrapolated risk is 

linear with dose for the exponential, approximate beta-Poisson and exact beta-Poisson models.  Thus, 

estimates of infection risk for humans from the exponential model are, for a risk of 1 case in 1000 so 

exposed, approximately 2 CFU and for a risk of 1 case in 106 so exposed, approximately 1 CFU inhaled 

by 1 person in 500.  The mortality projections from the exponential model indicate a risk of 1 case in 100 

exposed at 117 CFU retained dose, 1 in 1000 at approximately 12 CFU, and 1 in 10,000 risk at a retained 

dose of approximately 1 CFU.  These initial projections presume a virulent strain and human susceptibility 

equivalent to that of Guinea pigs.  These assumptions were tested in part three of our work, with the 

evaluation results summarized elsewhere (49) and reported in more detail in a subsequent manuscript (4).  

The findings are also currently available in a dissertation (2).  

3.5. Summary of Outbreak Exposure Assessment and Risk Comparisons 

For the whirlpool spa, the predicted zone 1 exposures as retained dose were a mean of 10 CFU with a 

95% range 1.3 to 34, and the predicted zone 2 exposures as retained dose were a mean of 7 CFU with a 

95% range 1.3 to 19.  For the two hot springs spa outbreaks, the predicted exposures were for the one 
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outbreak a mean 47 CFU with a 95% range 24 to 84 and for the other a mean of 2.3 CFU with a 95% 

range of 1.1 to 4.1. 

 

These corresponding air concentration estimates (that led to the retained dose values given in the 

paragraph above) are in the general range of air concentrations reported (2 to 190 CFU/m3) for 

Legionella concentrations in air near showers and aerated faucets supplied by Legionella contaminated 

water (50-53), as summarized previously (3).  Note that these cited air concentrations did not tie to cases’ 

actual exposure and were not contemporaneous to outbreak exposures and subsequent disease 

development.   

 

The respective exposure distributions were fed into the dose-response model using Monte Carlo 

simulation.  The resulting estimated risk distributions were then compared to the reported rates for the 

outbreaks.  The confidence intervals of the predicted risks generally overlap the confidence intervals on 

the reported rates of LD, or miss by less than 10× (2, 4).  This suggests that the model is generally valid, for 

the animal model selection, the dose-response model application, and the a priori decision on no dose 

scaling and no intra-species adjustments. 

3.6. Uncertainty Analyses 

As mentioned earlier, our original project plans and work scope did not include a comprehensive 

quantitative uncertainty analysis.  To a large degree, the QMRA validation results suggest that a more 

extensive uncertainty analysis might not be a reasonable research priority at present.  The qualitative 

uncertainty analysis and sensitivity analyses completed and summarized may give sufficient insights on 

the current strengths and limitations, and show where additional research would be most productive in 

improving the LD QMRA.  Table XI summarizes the factors used in the QMRA project, largely following 

the flow shown in Figure 1.  The table provides an analysis of the major uncertainties in the LD QMRA 

model, but with generally qualitative ranges for the impact. 

 

4. DISCUSSION 
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The prevalence of Legionnaires’ disease in humans is considerable, even according to incomplete data 

due to probable underreporting (54).  Legionella bacteria often colonize and can amplify in various aqueous 

systems, including the circulating water in cooling towers, whirlpool spas, natural hot springs, and hot 

water distribution systems.  Aerosols from a broad range of Lp contaminated systems have been 

implicated as the sources in outbreaks and sporadic cases of Legionnaires’ Disease.  Estimates of 

human mortality following infection vary, but often are in the range of 10 to 15 % (13).  Given the 

prevalence of aqueous aerosol systems, Lp contamination of them represents significant potential for 

infection and subsequent morbidity and mortality.  The currently reported work suggest that Lp has the 

potential for significant low dose infectivity in guinea pigs, and by using risk assessment techniques the 

guinea pig data may be extended to estimate the LD risk to humans following inhalation exposure.  

4.1. Strengths of the Current Study 

The dose response modeling demonstrates a good fit of the models to key data sets.  There is also a 

consistency between the models in the range of observations, but divergence by the empirical models for 

low dose extrapolation.   

 

The available in vivo and in vitro data reviewed suggest that the guinea pig model is the most appropriate 

one of those available for human risk projections. 

 

The subsequent LD QMRA evaluation results show good agreement between predicted and reported 

rates of disease.  The suggests both the animal model selection and the dose-response models used 

were appropriate, as were the a priori decisions on no dose scaling and no inter-species sensitivity 

adjustments.   

4.2. Limitations of This Work 

1.  Limited data for dose-response modeling on infectivity.  Infection is a key concern as it indicates the 

initial immune response to a replicating bacterial strain, yet only one report had data suitable for dose-

response modeling on infectivity.  The data used for the infectivity dose-response modeling (15) compares 
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reasonably with other low dose studies on guinea pigs, and this gives some additional confidence to the 

guinea pig infectivity dose-response analysis.  Since the QMRA results for sub-clinical infectivity fit well 

with reported rates, the limited data appear adequate.   

2.  Broad applicability to humans.  Legionella are adaptive organisms, with multiple virulent species in the 

genus, and multiple strains within specific species.  Virulent Legionella exhibit a variety of mechanisms for 

intracellular growth (55) which interact in possibly different ways with different animals and man.  The 

current state of knowledge for Legionella is extensive and growing, but the comparative immunology may 

not give inarguable proof that a particular animal model as the ideal choice as a human surrogate.  The 

comparative data on macrophages for humans and guinea pigs is important, but the subsequent stages 

of immune system response undoubtedly are also important, and so additional immune responses need 

further consideration in the LD QMRA.  Our work on the LD QMRA model validation as summarized in 

results, and reported elsewhere (2, 4) substantially augments and substantiates the in vitro and in vivo data 

that suggests the guinea pig data provide an adequate base from which to estimate human LD risks.  

4.3. Work Remaining 

1.  There are recognized risk factors (56-60) that lead to a range of human intra-species sensitivity.  Known 

main factors include age, gender, smoking status, obesity, recent prior infections to other organisms, and 

immune system competence.  Further research would be needed to resolve the impact of these risk-

modifying factors. 

2.  Many other factors need to be considered in a full assessment of human risk following Legionella 

exposure.  One issue is the transport and retention of virulence in aerosol form.  In aerosols, Legionella 

may retain viability longer than ability to grow in standard culture (61).  A recent study showed, for a fresh 

aerosol in a chamber, liquid impinger sample collection and FISH determination gave several orders of 

magnitude higher counts than did filter collection and analysis by culture (62).  The existing data using 

culture to evaluate Legionella survival in aerosols (63-65) may have significant limitations, and additional 

research on Legionella viability in aerosols is needed.  Another issue is the relative virulence of 

Legionella, by strain, species and by growth stage or niche adaptation.  The ecologic adaptation aspects 

also include consideration of virulence shifts in Legionella with adaptation to intracellular growth in 
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protozoa, and the role of protozoan vesicles containing Legionella in aerosol dispersal, viability and 

infectivity.  This list is illustrative of on-going research needs for a LD QMRA and may not be 

comprehensive.  

3.  The uncertainty analysis and the sensitivity analyses completed have identified areas for further 

research to reduce total model uncertainties.  The validation suggests the LD QMRA model predicted 

risks are within an order of magnitude of reported outbreak rates, but this is based on estimated 

exposures using data with significant (order of magnitude) uncertainty.  Thus, investigations to reduce the 

uncertainty in the exposure assessments and the subsequent validation’s adequacy remain to be 

completed.  A full quantitative uncertainty analysis is an area for future work, but is not likely to shift the 

currently identified research areas.   
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Table I.  In Vivo Legionella pneumophila comparisons 
All by inhalation, as retained dose in lungs 
Species LD50%  (CFU) 
Guinea pig 8,000 – 17,000 (11, 16, 17) 
Porton mice >25,000 (16) 
Lewis rats >1200 (8) 
Marmosets 450,000 (16)  
Rhesus & Cynomolgus monkeys >1,000,000 (16) 
 
A Colony Forming Units (CFU) from microbial culture represents a culturable bacterium, so CFU represents the count of culturable 
bacteria, but assumes each counted colony grew from a single organism.  
Data on infectious dose (e.g., ID50%) in different species are too sparse for a comparison table.   
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Table II.  Summary of the Basis for Guinea Pigs as the Preferred Model for Human Risk Prediction 
The details supporting this summary table are provided in Table III and in the text discussion.   

Factor Comments and References 

Similarity in Nature and 
Course of Disease Development of fever, subsequent pneumonia, and mortality (10) 

Respirable Aerosol 
Deposition and Retention 

Both species show approximately 50% deposition of respirable range aerosols in the pulmonary tract, 
with similar fractional regional deposition. (45, 46) 

Alveolar Macrophage 
Uptake and Replication 

The in vitro rate of uptake is similar in both species.  The in vitro replication fraction and rate of 
replication is similar in both species. (43, 44, 66) 

Alveolar Macrophage 
Bactericidal Mechanism 
Responses 

The reactive oxygen mechanism is subverted in both species. (67-70) 
The reactive nitrogen species mechanism takes induction in both species, and is more strongly resident 
in more Legionella resistant animal species for which such data are available, such as rats and most 
mouse strains. (71-74) 
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Table III.  In Vitro Endpoint and Mechanistic Comparisons for Legionella pneumophila 

Mechanism or Endpoint Discussion 

Macrophage Reactive 
Oxygen Intermediates 
and Oxidative Burst 

Guinea pigs – subverted by Legionella as the usual fusion with lysozomes and oxidative burst does not 
occur (67) in guinea pig peritoneal macrophages (75) 
Humans – the mechanism is subverted by Legionella (43) (68) (69) (70) 
Pigtail monkeys – the mechanism is remains operative (76) 

Macrophage Reactive 
Nitrogen Intermediates 

Guinea pigs – minimal production (71) 
Humans – minimal production (72) and minimal bactericidal role (73) in monocytes and slow (days) 
induction (74) 
Murine – production varies by strain of mouse, and correlates with observed virulence (71) 
Non-human primates – not known (information not located for Lp), active for simian infection with 
Simian Immunovirus (77) 

Fraction of bacterial dose 
surviving macrophage 
phagocytosis and 
replicating 

Guinea pigs – most survive (>90%) post phagocytosis (43) 
Human – most survive (90% to 100%) post phagocytosis (66) and replicate 3 to 5 log in 2 to 3 days (44) (66) 
Mice – Most inbredmouse stains are resistant to L. pneumophila. (76, 78-80).  
Rat – apparently resistant to Legionella replication and survival (81, 82) 
Pigtail monkeys - showed low phagocytosis, approximately 1% of the inoculum, (83) with 2.5% to 5% 
survival (76, 83) post phagocytosis.  The surviving fraction replicates 2 log in 4 days (83) 
Cynomolgus monkeys - at high bacteria to macrophage ratio (100:1) demonstrate slow uptake (5% of 
cells at 3 hours) but significant intracellular growth of the surviving fraction (67, 84) 
Similarities in survival, growth rates and protease production in guinea pig and human alveolar 
macrophages in vitro and human virulence well-modeled in guinea pig (68) 
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Table IV.  Comparison of Infectivity Data from Inhalation Exposure Studies of Guinea Pigs 

Study Dose (CFU) Finding 

Muller (15) 12 Estimated 50% infection 

Twisk-Meijssen (37) 4* to 12* 100% with fever by day 7 

Berendt (18) 129 All (16 of 16) developed fever 

Breiman (17) 200 100% developed fever 

Fitzgeorge (11) 200 10/10 had fever by days 3 to 4 

Baskerville (16) 
2400 

200 

12/12 developed fever 

0% with fever** 

Meenhorst (35) 2500 8/8 developed fever 

Jepras (38) 8000 100% at days 2 to 6 developed fever 

Davis (9) 12000 100% had symptoms of illness 

*Estimated from retention in higher dose groups.  **At 2 to 3 days post exposure, length of follow-up not clear 
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Table V.  Predicted Infectious Dose-Response, with 95% Interval for the Response (as % 

Response) 

 

Model ID50% CFU ID1% CFU 

Exponential 11.7 (28 –78) 0.17 (0.5 – 2) 

Approximate beta-Poisson 11.5 (30 – 80) 0.17 (0.5 – 4.1) 

Exact beta-Poisson* 11.5 0.17 

Weibull 11.6 (22 – 76) 0.17 (0.02 – 12) 

Probit 9.2 (23 – 75) 0.90 (0 – 18) 

Logistic 8.7 (20 – 80) 0.64 (0.01 – 15) 

* confidence intervals not calculated.  Data of Muller (15). 
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TABLE VI.  Model Goodness of Fit and Parameter Values 

Mullet et al. (15) Guinea pig infectivity data 

Model Goodness of Fit and  
[Critical Chi Square]

Parameter Values

Approximate beta-Poisson* 0.58 
[5.9] 

β 1700 
α 102 

Exponential 0.58 
[7.8] 

r 0.06 

Weibull 0.58 
[5.9] 

q1 0.06 
q2  1.0 

Probit 0.30 
[5.9] 

q1 9.2 
q2 1.0 

Logistic 1.5 
[5.9] 

q1 3.8 
q2 1.76 

 
* The exact and approximate beta-Poisson results were equivalent to 2 significant figures. 
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Table VII.  Estimated Lethal Doses in Guinea Pigs, as CFU Retained in Lungs, with Fitted Model 

Parameters and Model Goodness of Fit Statistics. 

Data Source and Model LD50%  LD1%  Fitted Model Parameters 
Goodness of Fit  

Likelihood (Critical Χ2) 

*Baskerville (16) Exponential 

    Approximate beta-Poisson 

    Weibull 

     Probit 

     Logistic   

8,000 

7,500 

8,500 

3,200 

3,200 

117 

116 

270 

2,000 

1900 

r = 8.7× 10-5 

β = 5.2 × 1010 ,  α = 4.8 × 106 

q1 = 2.3 × 10-6 , q2 = 1.4 

q1 = 3.19 × 103 , q2 = 2.1 × 10-1 

q1 = 6.89 × 101 , q2 = 8.5 

2.45  (7.81) 

2.47 (5.99) 

0.303 (5.99) 

0.000 (5.99) 

0.000 (5.99) 

*Fitzgeorge (11) Exponential 

    Approximate beta-Poisson 

10,700  

11,600 

140 

170 

r = 6.47× 10-5 

β = 1.8 × 1012 ,  α = 1.1 × 108 

2.34 (7.81) 

2.37 (5.99) 

**Breiman (17) Exponential 

    Approximate beta-Poisson 

16,900 

16,600 

247 

243 

r = 4.11 × 10-5 

β = 3.9 × 1010 ,  α = 1.5 × 106 

5.78 (7.81) 

5.78 (9.49) 

*Berendt (18) Exponential 

    Approximate beta-Poisson 

108,000 

107,000 

1580 

1570 

r = 6.4× 10-6 

β = 9.8 × 1010 ,  α = 6.3  × 105 

6.42 (7.81) 

6.42*** (5.99) 

* Estimated retained dose in animal lungs, ** Assay of retained dose in animal lungs,  *** Not a satisfactory fit. 
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Table VIII.  Summary of Guinea Pig Low Dose Infection Risk Predictions (as % Response)  Modeled on 

Data of Muller et al. (15).  

MODEL 
Dose 

CFU Exponential 
beta-Poisson 

(Approximate)
Weibull Probit Logistic 

10 45 45 45 53 56 

1 6.0 5.9 5.8 1.4 2.7 

10-1 6.0 × 10-1 6.1 × 10-1 5.9 × 10-1 3.7 × 10-4 3.9 × 10-2 

10-2 6.0 × 10-2 6.1 × 10-2 5.9 × 10-2 6.6 × 10-10 6.7 × 10-4 

10-3 6.0 × 10-3 6.1 × 10-3 5.9 × 10-3 0 1.2 × 10-5 

10-4 6.0 × 10-5 6.1 × 10-4 5.9 × 10-4 0 2.0 × 10-7 

10-5 6.0 × 10-5 6.1 × 10-5 5.9 × 10-5 0 3.6 × 10-9 

10-6 6.0 × 10-6 6.1 × 10-6 5.9 × 10-6 0 1.1 × 10-12 
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Table IX.  Summary of Guinea Pig Low Dose Mortality Risk Predictions (as % Response) 

Modeled on the data of Baskerville et al. (10) 

Model 
Dose  

CFU Exponential 
beta-Poisson 

(Approximate)
Weibull Probit Logistic 

104 58 58 56 100 100 

103 8.3 8.3 2.8 100 100 

102 8.7 × 10-1 8.7 × 10-1 9.7 × 10-2 1.66 × 10-6 5.12 × 10-3 

101 8.7 × 10-2 8.7 × 10-2 3.32 × 10-3 2.22 × 10-59 1.46 × 10-11 

100 8.7 × 10-3 8.7 × 10-3 1.14 × 10-4 0 4.16 × 10-20 

10-1 8.7 × 10-4 8.7 × 10-4 3.89 × 10-6 0 1.19 × 10-28 

10-2 8.7 × 10-5 8.7 × 10-5 1.33 × 10-7 0 3.38 × 10-37 

10-3 8.7 × 10-6 8.7 × 10-6 4.55 × 10-9 0 9.63 × 10-46 
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Table X.  Projections of Inhalation Risk to Humans for Exponential and beta-Poisson Models.  

Data Source and 

Model 

Infectious Dose 50% 

(95% interval % response) 

Infectious Dose 1% 

(95% interval % response) 

Muller (15) 

    Exponential 

    beta-Poisson 

 

11.7 (28% - 78%) 

11.5 (30% - 80%) 

 

0.17 (0.5% - 2%) 

0.17 (0.5% - 4%) 

Data Source and 

Model 

Lethal Dose 50% 

(95% interval % response) 

Lethal Dose 1% 

(95% interval % response) 

Baskerville (10) 

    Exponential 

    beta-Poisson 

 

8 × 103 (21% – 89%) 

8 × 103 (23% – 85%) 

 

115 (0.33% – 3.1%) 

115 (0.30% - 2.7%) 

A dose of 0.17 CFU means 17 persons in 100 would receive on average one 1 CFU.   



Table XI. LD QMRA Uncertainty Analysis 

Project Phase & 

Factors 

Extent of Uncertainty and Discussion 

Dose-Response (DR) 

Modeling  

 

1. Animal model selection Different animal models show several orders of magnitude difference in LD sensitivity.  The guinea pig (GP) 

model is the most sensitive, and thus is a conservative choice (that is, is least likely to under-estimate 

human risk).  The QMRA validation results suggest the GP model was an appropriate choice since 

predicted risks compared well to reported risks.  Use of less sensitive animal data could have given several 

orders of magnitude under prediction of human risk.  

2. DR data set selection The comparison of multiple GP data sets from lethality studies shows a broad range, probably due to 

differences in Legionella strain virulence expression.  Table VII compares the projections from the multiple 

GP data sets.  The data demonstrating the most virulence were selected as a conservative choice.  Most 

other data were within a factor of 2, with one higher set.  The QMRA validation results suggest the data set 

selections were appropriate. 

3. DR model selection For several models, the low-dose extrapolations diverged from exposure probability below the experimental 

range.  The QMRA validation results suggest the β-Poisson and exponential models were the appropriate 

choices.  The probit and logistic results diverged the most, and if used, could have under-predicted risks by 
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several orders of magnitude or predicted no risk whatsoever at low dose.  

4. Dose scaling, inter-species 

adjustments 

Adjustments for these are often applied in chemical risk assessment.  Our QMRA findings suggest the 

mechanistic arguments against dose scaling are valid.  Given the GP model selection basis, and the QMRA 

results, interspecies adjustments also appear unnecessary.  The typical order of magnitude (10 x) factor for 

animal to human extrapolation commonly used in chemical risk assessment practice would have inflated 

the human LD risks inappropriately. 

LD Outbreak Exposure 

Assessment – 

Whirlpool Spa* 

 

1. Water concentration estimates  No measurements were available in outbreak reports.  The value used came from other whirlpool spa 

outbreak investigations that lacked other detail for exposure estimation.  This value used is in a credible 

range but could be in error by an order of magnitude.  A ten-fold change equates to a ten-fold change in 

exposure estimates and in risk estimates.   

2. Air concentration estimates The building ventilation rate used is from design guides since this was not available from reports.  Other 

parameters came from investigation reports.  Comparison to other reports Legionella in air near 

contaminated sources (see section 3.5) suggest the results are of a reasonable order of magnitude.  A ten-

fold change equates to a ten-fold change in risk estimates.  

3. Exposure zones, distances The zone information came from investigation reports and is not a source of uncertainty, except for time 
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and distance patterns within a zone, which are not known.  The sensitivity analyses (3) suggest this is not a 

lead source of variability. 

4. Time in exposure zone The work hours were reported as a mean and standard deviation for all workers.  This parameter was a 

source of variability, but is not a significant contributor to uncertainty. 

5. Inhalation rate The inhalation rate distribution (2, 3, 85)was a major contributor to dose model variability but not to uncertainty. 

LD Outbreak Exposure 

Assessment – Hot 

Springs Spas* 

 

1. Water content of Legionella, 

CFU/L 

Outbreak investigation reports provided these data, which were obtained toward the end of the outbreak 

exposure period.  There are no data showing if or how the water content changed over time.  The actual 

concentration may have varied by an order of magnitude, which would alter predicted exposures and 

calculated LD rates similarly.   

2. Water-to-air partitioning 

coefficient 

This is a significant uncertainty.  The partitioning coefficient used derived from endotoxins in air and water 

in a swimming pool environment.  An order of magnitude error would contribute an order of magnitude error 

in the resulting exposure and risk estimates.  This parameter nevertheless led to risk estimates that aligned 

well with reported LD rates. 

3. Time exposed This is a significant source of uncertainty.  Actual case time exposed was not available, and we assumed a 

single visit for all, with a typical duration.  The duration is unlikely to be an order of magnitude higher or 
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lower, but multiple spa visits are possible for some of the spa users.  

4. Inhalation rate The inhalation rate distribution (2, 3, 85) was a major contributor to dose model variability but not to 

uncertainty.  

LD QMRA Validation**  

1. Whirlpool spa reported disease 

rates 

The rates are base on well-documented reports, with reliable data for both the numerator and denominator 

for the rate.  These data do not contribute significantly to uncertainty. 

2. Hot springs spa reported disease 

rates 

The numerator (number of cases) for the reported risk may be more reliable than the denominator (number 

at risk via exposure).  The number exposed is still arguably within a order of magnitude, with little likelihood 

of being higher, but potential for lower values, which would increase the reported rates of disease. 

3.  QMRA model predicted disease 

rates  

Both the dose-response model extrapolation to humans and the estimated exposures for the outbreaks 

directly influence the uncertainty of the predicted risks.  The uncertainties in the total LD QMRA model 

validation may rest more on the exposure portions than on the dose-response modeling.  Further research 

to reduce the exposure uncertainties should be the most productive next stage for this LD QMRA model’s 

development. 

* for additional details, see Armstrong 2005, Armstrong and Haas 2007 

** for additional details, see Armstrong 2005, Armstrong and Haas In Press 
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FIGURES 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  QMRA Plan. Information from the animal model selection and dose-response assessment and the exposure 
assessment converges at the predicted human dose-response stage and flows to the risk assessment and validation 
stage.   
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And where:  P1(d) = the predicted response at a given dose d 
  r = a parameter for the exponential model 
  β = the beta parameter of the beta-Poisson models 
  α = the alpha parameter of the beta-Poisson models 
  1F1 = the Kummer confluent hypergeometric function 
  q1, q2 = parameters of the Weibull, Logistic, or Probit models 
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Figure 2.  Dose-Response Model Equation List 
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Comparison of Low Dose Extrapolation for Infectivity
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Figure 3.  Comparison of the models’ low dose extrapolation results for infection.  
Note that the Exponential, Approximate beta-Poisson and Weibull model results 
overlap, and are linear with dose.  The probit and logistic models begin to fall 
below the dose probability.  Based on the data of Muller et al. (15). 
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Comparison of Low Dose Extrapolation for Lethality
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Figure 4.  Comparison of the models’ low dose extrapolation results for mortality.  
The exponential and beta-Poisson model results overlap.  The logistic and probit 
model results rapidly diverge from the exposure probability and from the other 
models.  Data from Baskerville et al. (10) 
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