

College of Engineering

Drexel E-Repository and Archive (iDEA)

http://idea.library.drexel.edu/

Drexel University Libraries
www.library.drexel.edu

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may
reproduce (print, download or make copies) the Material without prior permission. All copies must include any
copyright notice originally included with the Material. You must seek permission from the authors or copyright
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The
responsibility for making an independent legal assessment and securing any necessary permission rests with persons
desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190331143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.drexel.edu
http://idea.library.drexel.edu/
www.library.drexel.edu
mailto:archives@drexel.edu
http://www.drexel.edu/coe/

On Computing the Canonical Features of Software Systems

Jay Kothari, Trip Denton, Spiros Mancoridis, Ali Shokoufandeh
Department of Computer Science

Drexel University
3141 Chestnut Street, Philadelphia, PA 19104, USA
{jhk39, tdenton, spiros, ashokouf }@cs.drexel.edu

Abstract

Software applications typically have many features that
vary in their similarity. We define a measurement of sim-
ilarity between pairs of features based on their underly-
ing implementations and use this measurement to com-
pute a set of canonical features. The Canonical Features
Set (CFS) consists of a small number of features that are
as dissimilar as possible to each other, yet are most rep-
resentative of the features that are not in the CFS. The
members of the CFS are distinguishing features and un-
derstanding their implementation provides the engineer
with an overview of the system undergoing scrutiny. The
members of the CFS can also be used as cluster centroids
to partition the entire set of features. Partitioning the set
of features can simplify the understanding of large and
complex software systems. Additionally, when a specific
feature must undergo maintenance, it is helpful to know
which features are most closely related to it. We demon-
strate the utility of our method through the analysis of the
Jext, Firefox, and Gaim software systems.

1 Introduction

One way of understanding a software system is to iden-
tify and comprehend its features and the code that im-
plements those features. For complex applications the
number of features may be significant, and indeed over-
whelming. The implication is that in order to under-
stand a software system, all of its features must be un-
derstood. However, it is likely that there are similari-
ties between features. Therefore, understanding one fea-

ture assists in understanding similar features. For exam-
ple, consider an application with the following features: “
Search,” “ Save,” and “ Save As”. One expects
the “ Save” and “ Save As” features to be more simi-
lar (share more of their implementation source code) than
the “ Search” and “ Save” features. This implies that
comprehending “ Save” simplifies the task of compre-
hending “ Save As”, and vice versa. We envision de-
velopers using this technique to comprehend a software
system by considering only a few of its features to which
the rest are similar.

We have developed a measure of similarity between
pairs of software features that aids in partitioning them
into sets. We use this measure to determine the set of
canonical features of a software system. The canonical
features set (CFS) consists of a small number of features,
relative to the total number of features, that are most rep-
resentative of the software system. Intuitively, the CFS
is a set of distinguished features that characterizes a soft-
ware system succinctly.

Engineers can obtain an overview of a system’s capa-
bilities by studying the features in its CFS. This follows
from the fact that all other features of the system are sim-
ilar to features in the CFS. Because members of the CFS
are as dissimilar as possible, engineers can obtain a broad
overview of the system by inspecting a small number of
its features.

Engineers can also obtain an overview of a system’s im-
plementation by studying how members of its CFS have
been implemented. Two features that have similar func-
tionality should share code and thus only one of the two
features should appear in the CFS. Transitively, if many

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

Feature Name Feature Name
1 startup 8 type
2 file-open 9 email-doc
3 file-open-doc 10 bookmark-open
4 save 11 bookmark-add
5 cut 12 search
6 copy 13 search and replace
7 paste 14 exit

Table 1: Features of Jext Text Editor.

features are similar to each other, as we would expect in a
large system where features share code, only one of those
features should appear in the CFS.

The features in the CFS act as central points for all of
the features and induces a clustering that partitions the
features of a software system. Each of the clusters is an-
chored by a canonical feature and contains feature ele-
ments that are similar to the canonical feature.

Partitioning the set of features can reduce the cost
of understanding large and complex software systems.
When an engineer knows that a specific feature must
undergo maintenance, understanding which features are
most closely related is helpful since related features most
often share significant portions of their code. Our method
partitions the features of a software system around a
highly representative subset of those features. Under-
standing this highly representative subset leverages the
engineer’s time investment by presenting a minimal num-
ber of specific features that reveal the most about the sys-
tem.

2 Technique
In this section we describe our technique for comput-
ing Canonical Feature Sets (CFSs) and Feature Partitions
(FPs) of software systems. The work-flow and tool chain
is depicted in Figure 1. We explain our technique using
an analysis of the Jext programmer’s editor [1].

We first identify the features of the Jext program us-
ing documentation, use cases, test cases, or other means
such as the help system of the software. A list of the Jext
features is shown in Table 1.

Next, a set of test cases is designed to exercise the fea-

tures of the program. The features are executed under
the supervision of a dynamic analysis tool that captures
the objects, functions, and variables that were involved.
If a test suite is present for the software, we can utilize
the test cases corresponding to individual features, rather
than manually exercising the features. In analyzing Jext
we obtained function call information using the dynamic
analysis tool EJP [17].

The test cases are used with the call graph tool (Fig-
ure 1a) to produce a set of call graphs, one for each ex-
ecuted feature of the software being studied. Using the
similarity measurement tool (Figure 1b), we next com-
pute the pairwise similarity between the call graphs that
were generated in the previous step and create a similar-
ity matrix. Since call graphs are a direct representation of
feature implementation, the similarity between two call
graphs is equivalent to the similarity of the features being
represented by those call graphs. Call graph similarity can
be measured using simple metrics such as (a) the number
of function nodes the call graphs have in common, (b) the
number of call edges they have in common, such as the
Jaccard [8] similarity, or (c) a more sophisticated approx-
imate graph matching algorithm.

In order to determine the similarity between two fea-
tures, we compute the association graph based on the call
graphs of those features. We define their similarity as the
cardinality of the maximal clique in the computed asso-
ciation graph [13]. We refer to this measure as the as-
sociation graph matching similarity measure (AGM). We
computed the AGM for all pairs of features.

As formulated by Pelillo et. al [13], we use a for-
mal approach for matching hierarchical structures to de-
termine the AGM. An association graph is constructed
whose maximal cliques are in one-to-one correspondence
with maximal subtree isomorphisms. The formulation al-
lows for the mapping of hierarchical information embed-
ded in two trees onto a flat structure. Then, using the
Motzkin-Straus theorem [10] the clique problem is for-
mulated as a continuous quadratic program. The program
is then solved utilizing replicator equations, as described
by Pellilo et. al. This approach to matching hierarchical
structures has been applied to various problems includ-
ing those of pattern matching and object recognition. We
use this approach by considering two call graphs to build
an association graph based on them. Then we determine
the cardinality of the maximal clique within the computed

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

Figure 1: Work-flow and tool chain; a) Call graph tool, b) Similarity measurement tool, c) Canonical feature set tool,
d) Feature partitioning tool.

association graph and use it as the measure of similarity
between the two call graphs.

The underlying assumption that we make is that the
implementations of similar features have a significant
amount of code in common. Therefore, the dynamic call
graphs that are created during the execution of two sim-
ilar features should have several vertices (functions) and
edges (function call relations) in common. We can justify
this assumption since call graphs have been shown to ac-
curately depict the implementation of features [11, 4]. Ta-
ble 2 shows the similarity relationships between all pairs
of features for Jext.

The similarity matrix describes a graph called the fea-
ture interaction graph (FIG), whose vertices represent fea-
tures of the program and whose weighted edges represent
the degree of similarity between the features that are inci-
dent to the edges [15]. Feature similarity is based on the
pairwise similarity of the underlying call graphs of the
features. Figure 2 illustrates the FIG for Jext.

The CFS tool (Figure 1c), uses the FIG to determine
the canonical feature set, which in the case of Jext is “
url-open-doc, save, paste, search”. Ta-
ble 3 shows the CFS for Jext. The Canonical Feature Set
(CFC) tool extracts a subset of features with the following
properties.

Figure 2: Partial feature interaction graph (FIG) for Jext.
Each vertex in the graph represents a feature of the sys-
tem. Edges between vertices represent the similarity be-
tween the features that are represented by those vertices.

I. Features in the CFS are minimally similar.
II. Features outside the CFS are maximally similar

to features in the CFS.
III. Features in the CFS are maximally stable.

In previous work [12, 9, 14], we presented a framework
for reducing a set of features to a smaller, more stable sub-
set, called the stable bounded canonical set, which in this

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

st
ar

tu
p

fil
e-

op
en

ur
l-

op
en

-d
oc

cu
t

co
py

pa
st

e

em
ai

l-
do

c

bo
ok

m
ar

k-
op

en

bo
ok

m
ar

k-
ad

d

se
ar

ch

se
ar

ch
/r

ep
la

ce

sh
ut

do
w

n

startup 1 0.12 0.1 0.04 0.02 0.07 0.07 0.16 0.1 0 0.09 0.14
file-open 0.12 1 0.57 0.14 0.07 0.35 0.22 0.77 0.29 0.06 0.19 0.4

url-open-doc 0.1 0.57 1 0.14 0.08 0.51 0.3 0.55 0.1 0.05 0.22 0.22
cut 0.04 0.14 0.14 1 0.61 0.27 0.2 0.19 0.3 0.12 0.33 0.18

copy 0.02 0.07 0.08 0.61 1 0.22 0.12 0.14 0.23 0.09 0.14 0.1
paste 0.07 0.35 0.51 0.27 0.22 1 0.14 0.33 0.26 0.03 0.35 0.11

email-doc 0.07 0.22 0.3 0.2 0.12 0.14 1 0.38 0.37 0.08 0.34 0.2
bookmark-open 0.16 0.77 0.55 0.19 0.14 0.33 0.38 1 0.22 0.04 0.24 0.4
bookmark-add 0.01 0.29 0.1 0.3 0.23 0.26 0.37 0.22 1 0.09 0.47 0.21

search 0 0.06 0.05 0.12 0.09 0.03 0.08 0.04 0.09 1 0.19 0.04
search/replace 0.09 0.19 0.22 0.33 0.14 0.35 0.34 0.24 0.47 0.19 1 0.16

shutdown 0.14 0.4 0.22 0.18 0.1 0.11 0.2 0.4 0.21 0.04 0.16 1

Table 2: Similarity Matrix for Jext listing each feature and similarity between features. The pairwise similarity
between two features is based on the association graph computed using the call graphs of those features. Their
similarity is defined as the cardinality of the max clique in the computed association graph.

context we call the canonical feature set (CFS). The sta-
bility of a feature is a measure of the relative desirability
of having a feature in the CFS; features with higher sta-
bility are preferred to be in the CFS over those with lower
stability.

The input to the CFS tool consists of a set of features
P = {p1, ..., pn}, an associated set of stability measures
τ = {t1, ..., tn}, and a similarity function W : P × P →
R+. In our work, P represents the set of software fea-
tures; the stability, τ , is set to one for every feature in-
dicating no bias towards certain features in the CFS; and
W represents the feature similarity. Given the input P, τ
and W , the CFS tool computes the CFS, P∗ ⊆ P . We
note that the CFS is an approximate solution to a problem
which has been shown to be intractable [7].

Lastly, the feature partitioning tool (Figure 1d), is used
to cluster the remaining, non-canonical features, using the
canonical features as partition representatives. To parti-
tion the features our technique places every non-canonical
feature in a set with its nearest neighbor in the CFS. Clus-
ters represent sets of similar features based on implemen-

Feature Name
1 Url-open-doc
2 Save
3 Paste
4 Search

Table 3: Canonical Feature Set (CFS) for Jext.

tation. With an understanding of the functionality of fea-
tures we can expect that features with similar functional-
ity, share implementation, and should be placed into the
same cluster. Instances where this is not the case, are
anomalies and deserve further scrutiny.

Furthermore, we can observe anomalies in the imple-
mentation of features with similar functionality by exam-
ining the similarity matrix. For example, in earlier ver-
sions of Jext, we observed very little similarity between
the “ Search” and “ Search and Replace” fea-
tures. Based on their similar functionality we expected
that these two features should be implemented using

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

shared code. After inspecting their implementations it
was clear that both features were implemented separately,
which explains the anomaly. In later versions we saw that
the similarity between these two features increased signif-
icantly as well as the feature similarity of “ Copy” and “
Paste”, indicating the use of common code. Inspecting
the call-graphs of each of these features and their imple-
mentations corroborated the change.

3 Case Study
In order to demonstrate the effectiveness of our technique,
we applied it to two prominent open-source systems: the
Firefox suite, and Gaim. The Firefox suite includes a
web-browser based on the Mozilla engine, and an e-mail
and news client; Gaim is an Internet chat application.

We applied our technique to each application in our
case study in order to analyze the features of those ap-
plications. Using the profiling methods described in Sec-
tion 2 we determined the features of the system and ob-
tained call graphs for those features. Next, we computed
the pairwise similarity for all pairs of features and used
those similarities in order to obtain the CFS for the appli-
cation. Using the CFS and the similarities between fea-
tures we partitioned the features around the elements in
the CFS. Lastly, we analyzed and corroborated the results
of the CFS and partitions through manual inspection of
the code, and an understanding of functionality.

3.1 Firefox Suite
We first applied our technique to the Mozilla-based web-
browser, Firefox, and its companion mail and news client,
Thunderbird. The open-source, multi-platform browser
that accounts for over of 19% of the Browser market
share [18]. The browser provides features such as an in-
tegrated pop-up blocker, tabbed browsing, built-in search,
live bookmarks, themes, and the ability to apply exten-
sions to the browser for added custom functionality [5].
Since Firefox and Thunderbird share a code-base, we
treated them as a single integrated system.

The versions of Firefox and Thunderbird that we con-
sidered in this analysis were 1.0.6 and 1.0.7 respectively,
the two latest releases at the time. Both systems are pri-
marily implemented with C and C++ code. To gauge the

Feature Name
1 Startup/Shutdown 7 Open/Close Tab
2 Open Location/File 8 Get/Read Mail/News
3 Save Location/File 9 Compose/Send Mail
4 Send Link 10 Block Pop-up
5 Go Link/Forward/Back 11 Find
6 Bookmark Add/Open 12 Mouse Click Functions

Table 4: Major Features of Firefox and Thunderbird

size of the system, and implicitly the complexity of its
source code, we note that the Firefox suite is implemented
using over 3 million lines of code and 10,000 source files,
not including the shared libraries. The task of understand-
ing a system of this size by examining its code is daunting.

We began by developing use-cases to invoke the func-
tionality of the browser and mail reader. We also devel-
oped a variety of use-cases that employ different methods
of invoking the same functionality. For example, visit-
ing a website by typing the URL in the address bar, nav-
igating to the “File” menu and choosing the “ Open
Location” option, right clicking on a particular link
and selecting “ Open”, or simply left clicking on a link
all result in the same functionality being invoked. Addi-
tionally, in order to consider the “ Pop-up Blocker”
as a feature, we opened a number of websites known to
have pop-ups. We did this for varied number of pop-ups
per site. Table 4 lists the major sets of use-cases devel-
oped. Ultimately, we used more than 80 use-cases in our
analysis.

We computed the similarity between each of these use-
cases using two different similarity functions. The first
was the Jaccard Similarity Coefficient [8], and the sec-
ond was the association graph matching similarity mea-
sure (AGM) which uses the max clique cardinality of an
association graph [13]. The Jaccard coefficient we used
was based on the caller-callee relationships of the meth-
ods invoked for each use-case, whereas AGM uses the ex-
ecution traces (call graphs) of each use-case to obtain a
similarity. In our analysis of the Firefox Suite and Gaim
we used AGM. In investigating these two approaches we
found that AGM is a more informed measure than the Jac-
card Similarity Coefficient though it is more computation-
ally intensive. Our motivation for using AGM was based

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

on the observation that Jaccard similarity does not incor-
porate the topography, and hence relationships, between
function call orderings embedded in the call graphs. AGM
builds the association graph of two execution traces and
uses the cardinality of the max clique within that associ-
ation graph as the measure of similarity. Figure 3 shows
a heat map representation of the similarity matrix for the
Firefox Suite.

Figure 3: This image depicts a heat map of the similarity
matrix for the Firefox Suite. The degree of similarity is
encoded as temperature in the map. Inspection reveals ar-
eas where the temperature becomes warmer (darker) indi-
cating high levels of similarity. The rows and columns of
the similarity matrix used to make the heat map have been
reordered to emphasize hot spots. To obtain the ordering,
we evenly distributed members of the CFS along the rows
and columns of the similarity matrix and permuted the
remaining rows and columns around their corresponding
nearest neighbor in the CFS.

After computing the pairwise similarity between all of
the use-cases, we computed the Canonical Features Set.
The CFS we computed for the Firefox suite can be seen in
Table 5. The CFS does not explicitly state that browsing is
a canonical feature of the suite. However, inspecting the
similarities of features we see that “Open Location
in Tab”, “Open Location in Window”, and “Go
to Location” are all very similar to “File-Open
Location”. Any of these features could represent the
group of features containing those, and similar features
since they all represent the browsing functionality.

To cluster the remaining features that are not in the CFS
we associate each of them with their nearest neighbor in
the CFS. This induces a clustering of features where the

Feature Name
1 File-Open Location
2 Bookmark-Add
3 Get Mail
4 Send Link
5 Edit-Find in This Page

Table 5: CFS of Firefox/Thunderbird Suite

File-Open-Location Bookmark-Add
Rclick-Open in New Tab Bookmark-Bookmark
Rclick-Open in New Window Bookmark-Link
Go− > ∗ Rclick-Copy Link Location
File-Open File Get Mail
Bookmark-Open Read Mail
Bookmark Get News
File-New Window Get All Mail
File-New Tab Send Link
File-Save Page Send Message
Lclick− > ∗ Lclick-Email Address
Websearch Edit-Find in Page
Startup <Link or File > / <Text>

Edit-Find Again

Table 6: Clusters of features for Firefox suite

centroids are CFS members. Table 6 shows the clustering
of features using the nearest neighbor algorithm.

In order to justify why certain features appear in the
CFS we consider the release notes of the Firefox and
Thunderbird applications, as well as their implementa-
tions. The first surprising result is that “Send Link”
is in the CFS and “Send Message” is not. This is
because “Send Link” subsumes the functionality of
“Send Message” as well as places the link to be sent
in the message being written. “Send Link” opens an
email composition containing the link as the body of the
message. In actuality the “Send Link” feature invokes
a mailer command that does not necessarily need to be
handled by Thunderbird, but by the default mail client.
Similarly, “Left Click on email address” ex-
ecutes the same functionality of creating an email mes-
sage within the Firefox suite.

It was surprising to find that many features of Firefox

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

are highly similar to “File-Open Location”, partic-
ularly “Print” and “Save Page”. Viewing a page,
or opening a location or file, essentially opens a con-
nection to a site, makes a local copy of the files needed
for viewing the page in the local machine’s cache, and
displays the page accordingly. “ Save Page” per-
forms the exact same function as viewing a page, but
does not store to the cache; rather it saves a copy to
the location specified by the user. The encompassing
functionality explains why the feature “ File-Open
Location” is in the CFS and “ File-Open File”
is not. “File-Open Location” shares functionality
with “File-Open File” and also all the other fea-
tures in the same cluster. “File-Open File” does
not necessarily have as much in common with the other
features in the cluster. In other words, “File-Open
Location” better represents the cluster.

“Save Page” and “Print Page” have a consid-
erably high similarity as well. After comparing the call
graphs of the two features we were able to justify why
they were similar. Both features load a page in the same
manner, but “Save Page” simply copies the related
files in the cache to the location on the disk the user spec-
ifies. However, “Print Page” writes a file to a tem-
porary location on the disk, prints the page, and subse-
quently removes the file.

We expected the “New Tab” and “New Window”
features to be similar, but our results showed otherwise.
Taking a closer look at their functionality provided in-
sight as to why these two features were not as similar
as we expected. “New Window” will open a new win-
dow, and load a specified page, making it very similar to
“File-Open Location”, and “Startup” which ex-
hibit the same behavior. “New Tab” on the other hand,
opens a new tab without loading any content. Adjusting
the browser’s settings to open a homepage whenever a
new tab was created invoked full functionality of “New
Tab” and increased its similarity to “New Window”.

The newly added feature of “Websearch” in the tool-
bar is simply a wrapper to the “Open-Link” feature,
hence their high similarity. Considering the implemen-
tation we see that the text that is typed into the websearch
bar is fed into a hard-coded link for the websearch engine
of the user’s choice and then the “Open-Location” is
executed.

The features in the cluster represented by the canonical

feature “Bookmark-Add” are all very similar in their
implementation. The differences between them are in
how they are invoked, although they ultimately yield the
same functionality. One feature in the cluster, “Right
Click-Copy Link Location”, was not very simi-
lar to the other features in the cluster. This feature shares
the functionality of retrieving the link’s location. “Right
Click-Copy Link Location” falls into the clus-
ter represented by “Bookmark-Add” because it is more
similar than to the other features in the CFS. The features
in the clusters do not necessarily have high similarity to
each other, just to the centroids.

The “Edit-Find in Page” and the “/ Text”
features are nearly identical as is the “Find-Again”
feature. Both the “/ Text” feature and “Edit-Find
in Page” features use the same interface. The only dif-
ference in their implementation is how the feature is in-
voked. One is invoked by typing a “/” and the other by
clicking “Edit-Find in Page”.

The “Pop-up blocker” feature was also interesting
as it did not seem to be invoked explicitly. After trying to
understand how the feature worked, we simply created a
site that would cause pop-ups to come up nonstop. At first
this did not seem to do anything either. The blocker fea-
ture would be invoked once per page. We then created a
series of pages that opened a pop-up at another address.
It turns out the pop-up blocker allows a site, and stops
checking for pop-ups once you have designated it as an
acceptable site for pop-ups. Otherwise the pop-up block-
ing feature is always on, and checks to see if each page
is causing a pop-up. If it is not, the user never actual sees
the feature. The pop-up blocking feature is embedded into
the browser.

Thunderbird has a few features, such as “Get POP3
Mail” and “Get IMAP Mail”, that are all quite simi-
lar. They retrieve information from remote locations and
store it on the local system in the same manner. The only
difference is that they each require unique protocols to ac-
cess and retrieve the data from the remote locations. Since
the code that deals with the protocol issues is a very small
part of the actual code of the features, it does not heavily
impact their similarity.

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

3.2 Gaim

The next application that we applied our technique to was
the instant messaging client, Gaim. Gaim is a client, that
supports numerous protocols and is available for many
operating systems including Linux, BSD, OS X, and Win-
dows. The protocols supported with a standard distri-
bution of Gaim are Oscar (AIM and ICQ), MSN Mes-
senger, Yahoo!, Zephyr, IRC, Jabber, Gadu-Gadu, SILC,
and Groupwise Messenger. For the purposes of this case-
study we only include features for Oscar, MSN, and Ya-
hoo!. Gaim allows users to log into several accounts us-
ing the various networks simultaneously and provides fea-
tures such as file transfer, away messages, buddy pounces,
theme support, and plug-in support.

Gaim proved to be an interesting case-study as it pro-
vides many similar features, for specific protocols. For
example, the feature of sending a message is very similar
in perceived functionality regardless of protocol (whether
you are using MSN or AIM). However, we suspected that
the implementation must be different since the protocols
are different. In determining how to continue with the
study of Gaim, we chose to use all the features of Gaim
for all of the protocols. This revealed interesting design
patterns used in the application.

We began by listing all the features of the system.
The major features for the messenger are listed in Ta-
ble 7. Features that are repeated have similar functional-
ity for different protocols and are treated as separate fea-
tures. For example, checking a buddy’s status on AIM and
checking a buddy’s status on Yahoo! are considered to be
two different features. Table 7 however, lists the feature
only once, indicating that it is supported for multiple pro-
tocols with an *. Also, certain features had to be invoked
with an implicit command. For example, the feature “
Receive Message” cannot be explicitly invoked by
a user. However, another user sending a message to the
client application we are profiling, would invoke the fea-
ture. These features are within parenthesis in the table.

We collected the execution traces for each invoked fea-
ture. There were approximately 80 features profiled. We
then computed the pairwise similarity between all of the
features; Figure 4 depicts the heat map representation of
the similarity matrix of Gaim.

Using the similarity matrix, we computed the CFS for
Gaim as can be seen in Table 8. Each repeated feature,

Feature Name Feature Name
1 Startup/Shutdown 11 Add Buddy*
2 Login*/Logout* 12 Add Group*
3 Send Message* 13 Add Chat*
4 (Receive Message)* 14 Set Away Message*
5 Send File* 15 New Away Message*
6 (Receive File)* 16 Return from Away
7 Direct Message* 17 Set Buddy Pounce*
8 Accept Direct Message* 18 (Execute Buddy Pounce)*
9 View Log 19 Set User Info*
10 Get Info*

Table 7: Major Features of Gaim Instant Messaging
Client. An * indicates that this feature is repeated for dif-
ferent protocols. () indicates that this feature is not user-
invokable.

Figure 4: This image depicts a heat map of the similarity
matrix for the Gaim Messaging client.

one that occurs in multiple protocols, was only found at
most once in the CFS. After taking a closer look at the fea-
ture implementations and the design documentation we
can see that all repeated features are implemented with
the same code except for a small section of code that is
specific to the protocol being used. This can even be seen
in the GUI of Gaim as the entry points to the features are
the same regardless of protocol.

For example, in the “Send Message” feature, which
can be invoked by simply double clicking on a user in
a buddy list, or navigating to the “File” menu, choos-
ing “Send Message”, and typing a contact’s name will

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

Feature Name
1 Send Message*
2 Send File*
3 View Log
4 New Away Message*
5 Add Buddy*
6 Set User Info

Table 8: CFS of Gaim Instant Messaging Client. The CFS
was obtained using all the features of Gaim together. An
* indicated that this feature is repeated for difference pro-
tocols.

perform the same actions of sending the message regard-
less of the protocol being used. Despite which protocol is
being used, the same instructions are used for retrieving
the message from the GUI, and for parsing the message,
and contact name. The only difference occurs when the
message is finally being sent.

4 Related Work
In previous work [16], we used dynamic analysis to gain
an understanding of the Mozilla web browser by extract-
ing various structural views of the software. In this paper,
we instrument code in order to obtain function call graphs.
Bruegge et al. describe a framework [2] to monitor run-
time information such as function calls and variable mod-
ification. In their system, they instrument the source code
of applications to extract this information.

Our goals in this work were to analyze features and
compare their implementations to those of other features.
For our purposes, we define a feature as a piece of func-
tionality that can be invoked by a user of an application;
a usage scenario [3, 4]. In other words a feature is an
instance of execution of an application, which can be im-
plemented as a test case that invokes certain behaviors of
an application.

Work by Fuscher et. al [6] introduces an approach to
identify how certain features in an application are imple-
mented using execution traces and queries during runtime.
Since execution traces reflect the actual implementation
of a software system, they use them to analyze and com-
pare different versions of the same software system in or-

der to provide insights to its evolution.
We treat the obtained execution trace of each feature as

a unique signature of that feature and identification of how
it is implemented. Using graph matching techniques, we
compare the signatures and implementations of these fea-
tures. In previous work [13] a formal approach for match-
ing hierarchically organized graphs is presented. They
achieve this by constructing an association graph whose
maximal cliques are in one-to-one correspondence with
maximal subtree isomorphisms. They show that their ap-
proach is applicable to a variety of domains and is par-
ticularly effective for shape matching in computer vision.
We apply this procedure in order to find the similarity be-
tween the call graphs of two features.

Elsewhere [12] we presented a framework for reduc-
ing a set of items with measurable similarity to a subset
such that the subset is best representative of the entire set.
Using that framework, we tracked the evolution of soft-
ware systems [9] by encoding the similarity between sets
of changes applied to a software system in order to de-
termine the representative changes to that system. In this
paper, we apply the same technique, but instead use the
similarity between features to find the representative fea-
tures.

5 Conclusions and future work
This work contributes to the state-of-the-research in soft-
ware engineering by creating techniques and software
tools that help software engineers understand a complex
software by:

• characterizing the similarity of software features
based on the similarity of their underlying imple-
mentation (i.e., call-graphs);

• using this characterization of feature similarity to
identify a small set of the system’s canonical features
that are distinguishing and representative;

• using canonical features to partition the set of fea-
tures so that similar features are clustered together
while keeping the clusters distinct.

The work contributes to the state-of-the-practice in
software engineering by providing software engineers

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

with tools that can assist them in either a broad or a tar-
geted study of a software system. By examining each
canonical feature and the classification of features, soft-
ware engineers can get a broad overview of the distin-
guishing features of the software. This is especially help-
ful in the absence of high-quality software documenta-
tion. Similarly, by examining a cluster of the partitioned
feature set and by examining the similarity between the
features in the same cluster, the software engineer can per-
form a systematic and targeted study of a distinct set of
software capabilities.

Our plan is to continue working on the subject of this
paper. Specifically, we would like to perform:

• a systematic comparison of several call-graph match-
ing algorithms to evaluate their relative effectiveness
in computing feature similarity;

• a case study that includes more software systems, es-
pecially ones that have a very large number of fea-
tures (e.g., Gimp);

• a mining of versioned software repositories to ob-
serve the evolution of the canonical features and
canonical feature sets of the software systems in the
case study.

References
[1] Jext: Source code editor. http://www.jext.org/.
[2] B. Bruegge, T. Gottschalk, and B. Luo. A framework for

dynamic program analyzers. In Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOSLA93), pages 65–82, 1993.

[3] T. Eisenbarth, R. Koschke, and D. Simon. Aiding program
comprehension by static and dynamic feature analysis. In
Proceedings of The 17th IEEE International Conference
on Software Maintenance (ICSM 2001), pages 602–611,
2001.

[4] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. IEEE Trans. Software Eng.,
29(3):210–224, 2003.

[5] Firefox - Rediscover the Web, Firefox Homepage.
http://www.mozilla.com/firefox. May, 2006.

[6] M. Fischer, J. Oberleitner, H. Gall, and T. Gschwind. Sys-
tem evolution tracking through execution trace analysis.
In IWPC, pages 237–246. IEEE Computer Society, 2005.

[7] M. R. Gary and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness. Freeman,
San Francisco, 1979. (ND2,SR1).

[8] Jaccard Index. http://en.wikipedia.org/wiki/Jaccard index.
May, 2006.

[9] J. Kothari, T. Denton, A. Shokoufandeh, S. Mancoridis,
and A. E. Hassan. Studying the evolution of sofware
systems using change clusters. In Proceedings of the
14th International Conference on Program Comprehen-
sion (ICPC 2006, Athens, June 14-16),. IEEE Computer
Society, 2006.

[10] T. Motzkin and E. Straus. Maxima for graphs and a new
proof of theorem of turan. Canadian Journal of Mathe-
matics, 17:533–540, 1965.

[11] G. Murphy and D. Notkin. Software reflexion models:
Bridging the gap between source and high-level models.
In ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (FSE ’95), 1995.

[12] J. Novatnack, T. Denton, A. Shokoufandeh, and L. Bret-
zner. Stable bounded canonical sets and image matching.
In Energy Minimization Methods in Computer Vision and
Pattern Recognition, EMMCVPR 2005, November 2005.

[13] M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hierar-
chical structures using association graphs. Lecture Notes
in Computer Science, 1407, 1998.

[14] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh,
and F. I. Vokolos. Scenariographer: A tool for reverse
engineering class usage scenarios from method invoca-
tion sequences. In Proceedings of the 21st International
Conference on Software Maintenance (ICSM 2005, Bu-
dapest,September 25-30), pages 155–164, 2005.

[15] M. Salah and S. Mancoridis. A hierarchy of dy-
namic software views: from object-interactions to feature-
interacions. In Proceedings of The 20th IEEE Interna-
tional Conference on Software Maintenance (ICSM 2004),
2004.

[16] M. Salah, S. Mancoridis, G. Antoniol, and M. D. Penta.
Towards employing use-cases and dynamic analysis to
comprehend mozilla. In Proceedings of the 21st Interna-
tional Conference on Software Maintenance (ICSM 2005,
Budapest,September 25-30), pages 639–642, 2005.

[17] S. Vauclair. Extensible java profiler. Masters thesis, EPF
Lausanne, 2003. http://ejp.sourceforge.net.

[18] W3 Schools. http://www.w3schools.com. May, 2006.

Proceedings of the 13th Working Conference on Reverse Engineering (WCRE'06)
0-7695-2719-1/06 $20.00 © 2006

