
 
 
 
 
 
 

 
 
 
 
 

 
 

College of Information Science and Technology 

    

      

 
Drexel E-Repository and Archive (iDEA) 

http://idea.library.drexel.edu/   
 
 

Drexel University Libraries 
www.library.drexel.edu

 
 
 
 
 

 
 
 
 
 
 
The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may 
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations 
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non 
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may 
reproduce (print, download or make copies) the Material without prior permission. All copies must include any 
copyright notice originally included with the Material. You must seek permission from the authors or copyright 
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The 
responsibility for making an independent legal assessment and securing any necessary permission rests with persons 
desiring to reproduce or use the Material. 

 
 

Please direct questions to archives@drexel.edu
 

http://www.drexel.edu
http://idea.library.drexel.edu/
www.library.drexel.edu
mailto:archives@drexel.edu
http://www.ischool.drexel.edu/


Delineating the Citation Impact of Scientific Discoveries 
Chaomei Chen 
Drexel University 

3141 Chestnut Street 
Philadelphia, PA 

19104-2875 
cc345@drexel.edu 

Jian Zhang 
Drexel University 

3141 Chestnut Street 
Philadelphia, PA 

19104-2875 
jz85@drexel.edu  

 Weizhong Zhu 
Drexel University 

3141 Chestnut Street 
Philadelphia, PA 

19104-2875 
wz32@drexel.edu  

Michael Vogeley 
Drexel University 

3141 Chestnut Street 
Philadelphia, PA 

19104-2875 
msv23@drexel.edu 

 
 

ABSTRACT 
Identifying the significance of specific concepts in the diffusion of 
scientific knowledge is a challenging issue concerning many 
theoretical and practical areas. We introduce an innovative visual 
analytic approach to integrate microscopic and macroscopic 
perspectives of a rapidly growing scientific knowledge domain. 
Specifically, our approach focuses on statistically unexpected 
phrases extracted from unstructured text of titles and abstracts at 
the microscopic level in association with the magnitude and 
timeliness of their citation impact at the macroscopic level. The 
H-index, originally defined to measure individual scientists’ 
productivity in terms of their citation profiles, is extended in two 
ways: 1) to papers and terms as a means of dividing these items 
into two groups so as to replace the less optimal threshold-based 
divisions, and 2) to take into account the timeliness of the impact 
of knowledge diffusion in terms of the timing of citations and 
publications so that attention is particularly drawn towards 
potentially significant and timely papers. The selected terms are 
connected to higher-level performance indicators, such as 
measures derived from the H-index, in the form of decision trees. 
A top-down traversal of such decision trees provides an intuitive 
walkthrough of concepts and phrases that may underline 
potentially significant but currently still latent scientific 
discoveries. Timeliness measures can also help to identify 
institutions that are at the forefront of a research field. We 
illustrate how widely accessible tools such as Google Earth can be 
utilized to disseminate such insights. The practical significance 
for digital libraries and fostering scientific discoveries is 
demonstrated through the astronomical literature related to the 
Sloan Digital Sky Survey (SDSS). 

Categories and Subject Descriptors 
H.3.7 [Information Storage and Retrieval]: Digital Libraries – 
Collection. H.3.3 [Information Storage and Retrieval]: 
Information Search and Retrieval – Selection process.  

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
H-index, Sloan Digital Sky Survey, visualization, scientific 
discoveries, social networks 

1. INTRODUCTION 
The diffusion of scientific knowledge refers to the process in 
which scientific knowledge spreads through a scientific 
community or across disciplines. Identifying the significance of 
specific scientific concepts in such processes is essential to the 
understanding of the nature of scientific discoveries. One of the 
fundamental challenges is to integrate perspectives across 
different levels of granularity. In this article, we focus on 
associations between low-level features such as terms and phrases 
and high-level indicators of knowledge diffusion. 

The focus of our study in this article is the scientific literature 
directly resulting from the Sloan Digital Sky Survey (SDSS1). The 
SDSS is the premier astronomical survey of our time. The SDSS 
Survey has provided numerous data to the astronomy community, 
including the approximately 106 brightest galaxies and 105 
brightest quasars [40]. The early data release from the SDSS was 
in June 2001, including almost 14 million detected objects. It was 
followed by five official data releases annually since June 2003. 
The most recent one (DR5) contains 215 million unique objects. 
The SDSS data has become a real gold mine for astronomers. 
Important results of the SDSS include the discovery of a new 
class of stars within our Galaxy, the discovery of new galaxies 
orbiting the Milky Way, the discovery of the most distant quasars 
seen to date, at the edge of the observable universe, and the 
beginning of the measurement of dark energy and dark matter in 
the universe. 

 
Figure 1. The SDSS data is used by astronomers all over the 

world. Each dot on the map marks the location of an author of 
an SDSS paper published between 2001 and 2006. The 

intensity of a marker indicates the frequency of publications 
in the corresponding geographic area. 

The SDSS has led to an extremely fast-growing and high-impact 
body of literature. The SDSS literature currently includes nearly 
1,400 papers with over 40,000 citations. The total citation number 
has doubled in the past 1.5 years. By citation impact, the SDSS 

                                                                 
1 http://www.sdss.org/  
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was the most important astronomical observatory in the world in 
2003, 2004, and 2006 (it ranked second in 2005 to the NASA 
WMAP satellite). Michael Strauss, of Princeton University, 
recently posted a citation-ordered list2 of all refereed papers to 
date with 'SDSS' or 'Sloan Survey' in their title or abstract. There 
are 89 papers with 89 or more citations; this is a generalized use 
of the H-index [19] on the SDSS literature. 

2. CHALLENGES 
Understanding even the most significant scientific discoveries in a 
fast-advancing field such as the SDSS is a challenging job. 
Investigating the massive volumes of observational data obtained 
by the SDSS survey is also a challenge that SDSS astronomers 
must deal with on a daily basis. Imagine the amount of effort it 
takes for SDSS astronomers to find their way through the 
interwoven data space and the knowledge space. The primary goal 
of our research in this area is to augment the ability of 
astronomers and information scientists to deal with the highly 
dynamic and transient body of scientific knowledge. We focus on 
establishing associative links between the massive volume of 
observational data and the most up-to-date scientific discoveries 
on relevant astronomical objects in scientific literature. Such links 
would enable astronomers to explore and investigate various 
emergent patterns across the data space and the knowledge space. 
Such links would also allow information scientists to study the 
interrelationship between the fast-growing data space and the 
evolving knowledge space and track the growth and spread of 
scientific knowledge at its forefront.   

 
Figure 2. An overview of the SDSS literature analysis 

component of our approach. 
We are developing an innovative approach that identifies and 
delineates statistically unexpected connections between phrases 
extracted from unstructured text and citation impact measures of a 
rapidly growing scientific knowledge space, especially including 
timeliness as well as magnitude of impact. The role of a phrase in 
the context of citation is depicted in an extended form of decision 
trees. A conceptual walkthrough of such decision trees is intuitive 
and extensible for further analysis. Timeliness of citations can 
help to identify institutions that are at the forefront of a research 
field. We are experimenting with Google Earth for conveying the 
diffusion of scientific knowledge. 

                                                                 
2 http://tinyurl.com/42jxy 

Connecting text-level patterns and paper-level citations has not 
been done in a way that would give intuitive interpretations of the 
dynamics of a scientific field based on a growing body of text 
input and citation patterns. Making such connections is important 
for us to improve our understanding of science in the making. It is 
also important for the development of data mining and visual 
analytics algorithms. In addition to the astronomy and information 
science communities, broad impact is expected to reach other 
data-rich and fast-moving scientific fields. In this article, we 
introduce our approach to delineating the SDSS literature from an 
integrated microscopic and macroscopic perspective. 

3. RELATED WORK 
3.1 Studies of the Astronomical Literature 
The astronomical literature in general has been extensively 
studied in the past. Abt addressed the issue of why some papers 
have long citation lifetimes [4]. He also studied trends in three 
leading American astronomical journals between 1910s and 1980s 
and found a continuous increase of annual publication rate since 
the WWII [3]. In 2000, Abt found that in the past decades “the 
number of published research papers worldwide show on abrupt 
change due to increased technical and scientific capabilities… The 
number of papers is a function only of the number of 
astronomers”[1]. He also noticed that the important papers did 
produce more citation than average papers [2]. Davoust and 
Schmadel [13] analyzed the worldwide astronomical publications 
from 1969 to 1987 and identified 14 “superproductive” 
astronomers, who published over 150 papers in 15 years. 

Fernandez [16] compared single-author papers with multiple-
author papers in two leading European astronomical journals 
between 1901 and 1996: Astrophysical Journal and the Monthly 
Notice of the Royal Astronomical Society. He found that the 
average number of authors per paper jumped from a little more 
than zero in the first half this century to about three in 1996. 
Fernandez’s study confirmed that collaboratively authored papers 
are the mainstream of astronomical publication. On the other 
hand, multiple-author papers distribute differently among 
journals. We found a much higher average number of authors in 
the SDSS literature (9.5 between 2001 and 2006). More recently, 
Kurtz et al. [24] combined the NASA Astrophysics Data System 
(ADS) with astronomical journals, developing an easily accessible 
query-level digital database. ADS has comprehensive coverage of 
the SDSS literature. 

3.2 Fostering Scientific Discoveries 
Studies of scientific discoveries are distributed across a wide 
spectrum of disciplinary perspectives, ranging from studying 
scientific discoveries as a problem solving process [30, 32] to 
identifying the growth points in science guided by bibliographical 
statistics [25] to studying rapid theoretical changes through co-
citation analysis [35].  

Researchers in information science are increasingly challenged by 
the tension between the overwhelming volume of scientific 
literature and the lack of tools that can help them to uncover 
hidden structures across the boundaries of individual articles, to 
reveal how such structures evolve over time, and to understand 
what role is played by such structures in the advances of science 
[18].  

Tabah [36] gives an insightful review of various issues concerning 
the dynamics of scientific literature, particularly the study of 



growth, diffusion, and epidemics. Research in fields such as social 
network analysis [38], complex network analysis [6, 27, 29], and 
citation mapping and information visualization [8, 10, 33, 39] has 
produced a number of techniques that have the potential to tackle 
the structural complexity challenge. 

Dunbar [14] studies the role of goal-setting strategies in making 
scientific discoveries in molecular biology. He concludes that 
goals are a powerful constraint on the cognitive processes 
underlying scientific reasoning and, more importantly, the types 
of goals influence the quality of reasoning. For example, he found 
that as soon as one notices evidence inconsistent with current 
hypotheses, a good strategy is to attempt to explain the cause of 
the discrepant findings. 

Kostoff [22] described two methods that can be used to find 
potentially radical discoveries and innovations from “external” 
literatures, which can solve the problems defined in “internal” 
literatures. The two methods are the front-end component and the 
back-end component. The front-end method starts with a query to 
a discipline’s core literature, and then generalizes the query terms 
to search another discipline’s literature. The goal is to identify the 
potentially radical discoveries and innovations. The back-end 
method starts with the identification of radical discoveries and 
innovations from “external” sources, such as science and 
technology sponsoring organizations, journals, advisory panels, 
workshops, and review panels; it then finds links that bridge the 
external discoveries and innovation to the internal problems. 

Daim et al. [12] utilized multiple methods, including patent 
analysis, bibliometric analysis, system dynamics, growth curves, 
and scenarios, to forecast the development of three technologies: 
fuel cells, food safety, and optical storage. Among those methods, 
bibliometric analysis was used to generate literature curves, which 
can demonstrate the development trail of a technology. 
Bibliometric analysis was also used to extract noun phrases, 
which formed the candidates of new technologies. 

Ackermann [5] summarized the study of information epidemics in 
the scientific literature and identified six indicators: 

1. Presence of one or a small group of seminal papers. 

2. Rapid influx of numerous researchers who publish 
prolifically 

3. Several distinct disciplines represented 

4. Epidemic growth and decline of publication 

5. Predominance of short communications published in rapid 
communication journals 

6. Increase in multi-authorship of publications 

Ackerman studied the Polywater and Cold Nuclear Fusion 
literature and found that indicators #1 through #4 are obvious in 
both cases, while indicators #5 and #6 are not. 

Zitt et al. [41] introduced a hybrid method for extracting the 
bibliography of a specific scientific field, such as nanoscience. 
They first queried the ISI citation database to retrieve “seeds.” 
Next, they used an improved citation rule based on the “reference 
structure” function (RSF) to extend the “seeds” into a 
comprehensive collection in order to delineate a scientific 
subfield. 

Temporal complexity refers to the temporal dynamics of scientific 
knowledge’s evolution and diffusion. How fast is fast for a new 
topic to receive citations? How is a new finding spreading within 
a scientific community? What is the most recent layer of the 
intellectual structure? What is the more recently formed sub-
community? What was the turning point for the acceptance of a 
new theory? Research in knowledge discovery and data mining is 
particularly relevant, notably in the areas of concept drifts [21, 
37], topic detection [26, 34], and change detection [20, 23]. 

An extensively used approach to understanding the dynamics of 
scientific knowledge and scholarly communication is to study the 
structure and dynamics of scientific literature. These studies of 
scientific literature can be further divided into two types based on 
whether they focus on text analysis or citation analysis [9]. Text 
analysis primarily focuses on the use of words and derives from 
similarities between different passages ranging from abstracts to 
entire full-text papers. Citation analysis, on the other hand, 
focuses on emergent patterns associated with references made by 
scientists in their publications. In contrast to word-frequency-
based indexing mechanism commonly found in text analysis, 
citation indexing capitalizes on the potential intellectual value 
attributed to a referential link made by a scientist. A fundamental 
assumption is that such links are similar to a voting system by 
nature and they reflect a collective and contemporary view of 
many scientists on an intellectual association [33]. In practice, 
many researchers have pointed out that one should maintain 
caution when drawing conclusions, in particular if the specific 
citation context is not accessible. 

In summary, our research aims to improve the understanding of 
the interrelationships between the advancement of science and the 
growth of its literature. The ongoing SDSS provides a good 
opportunity for the study of a rapidly growing body of scientific 
knowledge. A key objective of our work at this stage is to bridge 
the conceptual gap between local details in terms of phrases and 
terms used by scientists in their papers and the global structures of 
an evolving knowledge domain as perceived by the SDSS 
community. Specifically, our approach is to identify the role of 
information-rich terms in predicting the potential impact of 
underlying topics in the contemporary astronomy. 

4. METHODS 
Our method consists of several steps, including ranking papers by 
citation impact, categorizing papers by citation indices, selecting 
features from titles and abstracts of source records with reference 
to the citation impact of corresponding papers in which they 
appear, and generating and representing salient predictive 
relationships in decision trees. 

4.1 Dataset 
The SDSS literature dataset is provided by Thomson ISI, 
consisting of 1,350 bibliographic records, known as the source 
articles or records, written by 11,718 distinct authors. Source 
articles as a whole cited 25,946 references published between 
1735 and 2007. The source articles themselves were collectively 
cited by 8,435 subsequently published articles between 1991 and 
2006.  

We removed two types of source records from the dataset: 1) 
records that are irrelevant to astronomy and 2) records that are 
relevant to the Sloan survey but purely focus on data releases and 
techniques of the survey. We removed the second type of records 
so that we can focus on scientific discoveries made with the SDSS 



data. A citation to these papers is required for papers using SDSS 
data; thus, their citations are not informative in this context. 
Seventeen data release-related records were removed for this 
reason. 

The removal of the first type of records was due to the unexpected 
popularity of SDSS as an acronym. The source dataset was 
generated as a result of a search for SDSS. Since we expect a 
small number of pre-SDSS papers on the survey, we examined 
records dated before 1996 and manually removed records 
containing any of the following uses of SDSS as acronyms: 

• SDS-Sedimentation  
• Sodium dioctyl sulfosuccinate  
• Self-Disclosure Situations Survey  
• Spatial Decision Support Systems  
• Strategic Decision Support Systems  
• Superduplex Stainless Steels  
• Superficial Dermatome Skin Samples  

 
The remaining dataset contains 1,293 source records for 
subsequent analysis.  

4.2 Measuring the Citation Impact 
The number of citations to a published article is the most 
commonly used measure of the article’s intellectual impact. It is 
easy to calculate and simple to understand. However, aggregating 
citations across a group of articles may not faithfully measure the 
impact of the group, especially when within-group differences are 
significant.  

The H-index was originally proposed by Hirsch [19] as a measure 
of a scientist’s scholarly productivity over his/her entire scientific 
career. It takes into account the number of publications and the 
number of citations of these publications and produces a simple 
metric. The H-index is defined as a number h for a scientist such 
that there are h papers published by the scientist with at least h 
citations, and the remaining publications by the same scientists 
have at most h citations. It effectively evaluates the output of a 
researcher from both impact and productivity. The H-index has 
been very popular in part because of its simplicity. However, the 
simplicity of the original H-index also limits its ability to track 
temporal variations of publications and citations more accurately. 

Sidiropoulos et al. [31] generalized and normalized two variants 
of the H-index to reveal latent temporal facts in the citation 
networks; the contemporary H-index for “brilliant though young 
scientists who may have a small h” and the trend H-index for 
“trendsetters.” Their research results inspire our experiments for 
exploring the potential of using expanded versions of the H-index 
as measures of citation impact. 

For a scientist, one can consider his/her top h papers as the 
primary representatives of his/her work as far as the citation 
impact is concerned. Therefore, it would make sense if we can use 
the ideas and concepts expressed in these top h papers to 
characterize the nature of his/her citation impact. This notion of 
dividing papers into high- and low-impact groups can be easily 
extended to a collection or a digital library of papers written by 
different scientists. Dividing papers in this way is preferred to the 
use of arbitrarily chosen citation threshold values. 

We use Hg to denote the generalized H-index. Given a collection 
of N papers C, if there are Hg papers in the collection that have at 
least Hg citations and the remaining N- Hg papers have at most Hg 

citations, then Hg is the value of the generalized H-index for this 
collection of papers. The collection can be split into two subsets 
by Hg : Split(C, Hg) = SLow∪SHigh. 

Following [31], we consider two scores to make adjustments to 
citation counts: St for a citation impact adjusted for timeliness, 
which gives heavier weights to citations made more recently than 
to citations made earlier, and Sc for a citation impact adjusted for 
publication age.  St measures the impact in terms of the current 
citation trend, whereas Sc discounts citations accumulated over a 
long period of time. Sc and St scores are computed for each article 
a in the dataset according to [31]: 
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where Y(a) is the year in which article a is published, Ynow is the 
current year, and C(a) is the set of articles that cite article a. γ is 
the coefficient and δ generally is set to 1.  

As demonstrated by [31], the H-index can be extended further 
based on the two scores Sc and St as Hc and Ht. Similarly to the Hg 
extension we described above, we extend Hc and Ht to indices for 
a collection of papers from multiple authors. Again, the extended 
indices can be used to split such collections of papers. An Ht split 
will divide papers into new-born star papers and old-star papers, 
whereas an Hc split will separate papers into ones that have more 
time to collect citations and ones that are heavily cited within a 
short period of time. Thus, we have a number of ways to split a 
collection of papers into two groups based on an H split, an Hc  
split, and an Ht split in addition to splits based on average 
measures such as arithmetic mean and geometric mean. Multiple 
splits are an important component of our approach to contrast the 
role of concepts in different subgroups. 

If the notion of average is defined for a group of entities, we often 
choose to separate them into the above-average group and the 
below-average group. Equations 3 and 4 define the arithmetic 
means and geometric means, where each term si is the St or Sc 
score of paper i. The arithmetic means and geometric means of the 
Sc and St scores are about 11 (See Table 2), except the geometric 
mean of St scores, which is 8.61. These numbers can be used to 
identify above-average papers and below-average papers in terms 
of their citation performance. 
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4.3 Feature Selection 
The feature selection step aims to select terms, i.e. phrases of 
multiple words, from the text fields of bibliographic records so 
that selected terms are content bearing and meaningful for our 
analysis and interpretation. First, we need to identify candidate 
terms. We utilize part-of-speech tagging to identify terms that 
contain up to four nouns with or without an adjective. Second, we 
want to select terms that would be most valuable in differentiating 
scientific discoveries reported in two subsets of the SDSS 
literature. For example, why is that one discovery is highly cited, 



but another one is not? By addressing questions like this, we could 
improve our understanding of the priorities and research agenda 
of SDSS research and attend to high-quality collections in a 
digital library more effectively. 

We developed a feature selection method based on log-likelihood 
ratio [15] for differentiating conflicting opinions in customer 
reviews [11]. The extended Hg indices have made it possible for 
us to adapt the log-likelihood ratio method to select feature terms 
that are linked to citation impact measures, with additional 
adjustments for timeliness and freshness. Our selection method 
focuses on statistically unexpected connections. In essence, it tests 
statistical associations between terms and the category of the 
corresponding papers in which they appear. 

Using log-likelihood ratios leads to a desirable advantage over 
threshold-based feature selection methods. That is, one can 
control the scope of a feature selection procedure by adjusting the 
statistical significance level (p-level) as a parameter. The lower 
the p-level, the more stringent the selection criteria, thus fewer 
associations are selected (See Table 1). In this study, the p-level is 
set to 0.01. Selected associations are used subsequently to build 
decision trees with terms as inner nodes and the categories of the 
split groups as leaf nodes. 

 

Table 1. Statistical significance levels of log-likelihood ratios. 

Log-likelihood ratio p-level 
15.13 0.0001 
10.83 0.001 
6.63 0.01 
3.84 0.05 

4.4 Decision Trees 
Selected terms along with the citation status of hosting 
publications are used to generate decision trees so that the role of 
each term in the overall citation context of the SDSS can be 
represented in an easy-to-interpret form. The generation of 
decision trees is based on the concept of information gain to make 
a tree of classificatory decisions with respect to a previously 
chosen target classification. The information gain can be 
described as the effective decrease in entropy (usually measured 
in terms of bits) resulting from making a choice as to which 
attribute to use and at what level. For example, if one chooses a 
specified attribute like the length of a phase to discriminate among 
cases at a given point in its rule construction process, this choice 
will have some effect on how well the system can tell the classes 
apart. By considering which of the attributes is best for 
discriminating among cases at a particular node in the tree, we can 
generate a tree of decisions that allows us to navigate from the 
root of the tree to a leaf node by continually examining attributes. 
Decision trees classify every object within a dataset. Decision 
trees are often simplified by using pruning algorithms to reduce 
the size of the tree according to a user-defined level. In this study, 
we used a classic decision tree generating algorithm called C4.5 to 
generate decision trees because C4.5 is particularly suitable to 
meet our requirements in the following areas [28]: 

• Avoiding overfitting the data  

• Determining how deeply to grow a decision tree  

• Handling continuous attributes  

• Choosing an appropriate attribute selection measure 

We also considered a variation of decision trees known as 
alternating decision trees (ADTrees). ADTrees are a 
generalization of decision trees by alternating layers of prediction 
nodes and splitter nodes [17]. As in decision trees, an instance is 
mapped to a path along the tree from the root to one of the leaves. 
On other hand, unlike decision trees, an ADTree maps each 
instance to a real valued prediction, which is the sum of the 
predictions of the path, rather than the label of a leaf. ADTrees 
extend decision stumps to represent classifications in real numbers 
rather than +1 or -1. For example, the classification of the paper 
containing the term star formation is sign (0.5-0.529)=sign(-
0.029)= -1, which corresponds to the group of papers that have 
received above average citations. ADTrees tend to give smaller 
classification rules, which make them relatively easy to interpret. 

5. RESULTS 
The dataset contains 1,293 bibliographic records. The average title 
length is about 83 characters (82.96). The average abstract length 
is 1,389 characters (1,387.83). 

5.1 Hg Indices and Splits 
The 1,293-record dataset yielded an H-index of 65, including 3 
papers with 65 citations each. The H split would put 67 papers in 
the highly cited group and the remaining 1,226 papers in the not 
highly cited group. Similarly, the Hc index for this dataset is 52, 
whereas the Ht index is 53. 

We first split the dataset by the H-index, then we use the Hc and 
Ht splits, respectively. In addition, arithmetic or geometric mean 
is also used to divide the dataset. In this paper, however, we will 
focus on the geometric mean split and the H split. 

Part-of-speech tagging identified a total of 22,665 terms, i.e. noun 
phrases. Our log-likelihood ratio method selected 290 terms. This 
is a significant reduction of the number of terms needed to be 
analyzed. 

 

Table 2. Dividing the set of papers by arithmetic and 
geometric means. 

 Sc Sc St St 
Total terms: 22,665 A(Sc) G(Sc) A(Sc) G(Sc) 

Pivotal value 11.70 11.06 11.46 8.61 
#High 379 379 328 401 
#Low 914 914 965 892 

 

Figure 3 is a hybrid network visualized by CiteSpace, showing 
author assigned keywords (shown as concentric rings) and burst 
terms (shown as triangles) extracted from titles and abstracts. The 
concentric rings of a keyword depict the history of its use. For 
example, the term spectroscopic target selection has a red outmost 
ring, which indicates that it is a burst term. Rings in other colors 
correspond to individual time slices in the entire time interval (See 
the legend on top of the image). The color of its innermost ring 
indicates the earliest year this term first appears, in this case 2003. 
In contrast, the term early data release, located in the northeast 
quadrant of the image, has a thick ring corresponding to 2002, but 
two very thin rings corresponding to 2003 and 2004, respectively.  

 



 
Figure 3. Prominent keywords assigned by authors and burst 

terms extracted from titles and abstracts (2002-2006). 

5.2 Decision Trees 
Figure 4 shows a decision tree of free-text terms selected by the 
log-likelihood ratio corresponding to the statistical significance 
level of p<0.01. The lower the p-level, the fewer the number of 
terms selected because of the more stringent selection criteria. The 
dataset was split by the geometric mean of the St scores. Figure 4 
illustrates the overall structure of the tree rather than provide local 
details. Labels at this scale are too small to read. We include more 
readable examples in Figures 5, 6, and 7. 

 
Figure 4. An overview of a decision tree generated based on 

216 terms selected by log-likelihood ratio values (p<0.01) and 
a geometric mean split (74.44% of classification accuracy). 
The tree should be read from the root downwards (See also 

Figure 5). 
Figure 5 shows a part of the tree in Figure 4 with larger-sized 
labels. The presence of the term gravitational lens is associated 
with the lower citation group, whereas terms on star formation 
tend to connect to the high and more timeliness citation group. 

Figure 6 shows an ADTree derived from the same data split and 
the same feature set. The ADTree is much more compact than the 
earlier decision tree. For example, the left-most path shows that 
the term dimensional power spectrum, which is part of three 
dimensional power spectrum, is connected to the high-
performance group because of the sign (0.409+-1.339<0). 

 
Figure 5. A part of the tree shown in Figure 4. The presence 
(>0) or absence (<=0) of a term is associated with a citation 

status group, i.e. highly and timely cited group.  

 
Figure 6. An ADTree derived from the data selected with the 

same selection criteria with 70.55% of accuracy. 

 
Figure 7. A decision tree of 95.82% classification accuracy 

derived from 721 terms and 1,267 records. 



Figure 7 shows a decision tree derived from 721 terms and 1,267 
bibliographic records. 95.82% of incidences are correctly 
classified by this decision tree (precision=0.769 and 0.962 for 
positive and negative groups, respectively; recall=0.299 and 0.995 
for positive and negative groups, respectively). 

5.3 Most Productive Organizations 
The available citation impact indices make it possible to identify 
leading organization in terms of their accumulative productivity, 
timeliness of impact, and contemporariness of their research. 
Table 3 shows the most productive organizations in terms of the 
total number of papers they have produced in the entire dataset. 
Table 4 shows the top organizations in the high-performance 
group by the H-index split. Table 5 shows the top organizations in 
the high-performance group by the Hc split. Table 6 shows the top 
organizations in the high-performance group by the Ht split. 

Table 3. Most productive organizations. 

Organization #Papers City Country 
Princeton Univ Observ 71 Princeton USA 
Johns Hopkins Univ 39 Baltimore USA 
Univ Chicago 33 Chicago USA 
Univ Arizona 31 Tucson USA 
Univ Cambridge 31 Cambridge England 
Princeton Univ 29 Princeton USA 
Univ Washington 28 Seattle USA 
Ohio State Univ 27 Columbus USA 
Harvard Smithsonian Ctr 
Astrophys 

25 Cambridge USA 

Penn State Univ 24 University Pk USA 
CALTECH 24 Pasadena USA 
Max Planck Inst Astrophys 23 Garching Germany 
NYU 22 New York USA 
Max Planck Inst Astron 21 Heidelberg Germany 
Univ Tokyo 20 Tokyo Japan 
Chinese Acad Sci 19 Beijing Peoples R 

China 
Fermilab Natl Accelerator 
Lab 

17 Batavia USA 

Univ Pittsburgh 16 Pittsburgh USA 
Univ Durham 14 Durham England 
Univ Oxford 13 Oxford England 
Univ Calif Berkeley 13 Berkeley USA 
Univ Tokyo 13 Kashiwa Japan 
Los Alamos Natl Lab 11 Los Alamos USA 
Space Telescope Sci Inst 11 Baltimore USA 

 
Table 4. Top organizations in the high-performance group of 

the H-split (H=65). 

#Papers Organization City, Country 
9 Princeton Univ Observ Princeton, USA 
4 Fermilab Natl Accelerator Lab Batavia, USA 
4 Univ Durham Durham, UK 
3 Inst Adv Study Princeton, USA 

3 Johns Hopkins Univ Baltimore, USA 
3 Max Planck Inst Astron Heidelberg, 

Germany 
3 Max Planck Inst Astrophys Garching, 

Germany 
3 NYU New York, USA 
3 Penn State Univ University Pk, 

USA 
3 Univ Arizona Tucson, USA 
2 Univ Michigan Ann Arbor, USA 
2 Princeton Univ Princeton, USA 
2 Univ Penn Philadelphia, USA
2 Ohio State Univ Columbus, USA 
 

Table 5. Top organizations  in the high-performance group of 
the Hc split (Hc =52). 

#Papers Organization City, Country 
5 Princeton Univ Observ Princeton, USA 
4 Fermilab Natl Accelerator Lab Batavia, USA 
4 Max Planck Inst Astrophys Garching, Germany 
4 Univ Arizona Tucson, USA 
3 Johns Hopkins Univ Baltimore, USA 
3 NYU New York, USA 
2 Inst Adv Study Princeton, USA 
2 Max Planck Inst Astron Heidelberg, Germany
2 Penn State Univ University Pk, USA 
2 Univ Durham Durham 
2 Univ Penn Philadelphia, USA 

 
Table 6. Top organizations by the Ht split (Ht=53). 

Organization #Papers City Country
Princeton Univ Observ 6 Princeton USA 
Fermilab Natl Accelerator Lab 4 Batavia USA 
Inst Adv Study 3 Princeton USA 
Max Planck Inst Astrophys 3 Garching Germany
NYU 3 New York USA 
Univ Durham 3 Durham England 
Max Planck Inst Astron 2 Heidelberg Germany
Penn State Univ 2 University Pk USA 
Univ Penn 2 Philadelphia USA 
Univ Michigan 2 Ann Arbor USA 
Ohio State Univ 2 Columbus USA 

 
Figure 8 is a screenshot of Google Earth in which we marked the 
locations of the first authors of SDSS papers. Using the Hc and Ht 
splits one can trace the changes of the most active organizations 
over time and space. 

5.4 The Role of Timeliness Adjustments 
The average year of citations in top 20 highly cited articles is 
2001. The average year of publications in top 20 Sc ranked articles 
is also 2001, whereas the average year of publications in top 20 St 
ranked articles is 2002. 



Figure 9 depicts the implications of the Sc and St scores on the 
adjusted citation curves. The original citation counts (citations) 
are shown as the highest line until the most recent two years. Sc, 
i.e. citations adjusted by the age of publication, is the lowest line 
until the most recent two years. The line in between is the St line, 
which tracks the raw citation line more closely than Sc. 

 
Figure 8. Timeliness can be used to select and track 

organizations. The view is facing west from the US east coast. 
The highest marker is located at Princeton. 

 
Figure 9. Citations adjusted by age of publication (Sc) and by 

age of citation (St).  
Table 7. High impact papers by citations and St  scores. 

Year Title Cites St 
2004 Cosmological parameters from SDSS 

and WMAP 
404 367.00 

1995 THE FIRST SURVEY - FAINT 
IMAGES… 

455 301.64 

2003 Stellar population synthesis … 371 263.47 
2001 Evidence for reionization at z similar to 

6… 
307 255.07 

2001 The luminosity function of galaxies … 250 196.73 
2003 A survey of z > 5.7 quasars … 195 175.80 
2001 A survey of z > 5.8 quasars in the 

Sloan … 
226 174.87 

2002 Evolution of the ionizing 
background … 

211 170.00 

2001 Composite quasar spectra … 221 168.21 
2004 The three-dimensional power 224 167.00 

spectrum … 
2002 Observational constraints on growth 

of … 
171 155.93 

2002 Galaxy clustering in early Sloan … 157 142.33 
2002 The 2dF Galaxy Redshift Survey: the 

b(J)-band … 
160 136.53 

2003 The galaxy luminosity function … 152 126.87 
2001 High-redshift quasars found in Sloan … 151 114.35 
2003 Stellar masses and star formation … 142 113.27 
2001 Color separation of galaxy types in the 

Sloan … 
127 105.27 

2002 The 2dF Galaxy Redshift Survey … 111 98.73 
2002 The ghost of Sagittarius and lumps … 128 98.00 
2003 The dependence of star formation 

history … 
121 96.33 

2003 Galaxy star formation as a function of 
env…  

113 95.93 

2002 Toward spectral classification of L and 
T dwarfs 

112 88.00 

2003 The host galaxies of active galactic … 121 87.33 
2000 The discovery of a luminous z=5.80 

quasar … 
123 80.66 

2005 Cosmological parameter analysis 
including SDSS Ly alpha forest and 
galaxy bias… 

134 49.33 

 
Figure 10 shows the citation history of timeliness papers 
determined by their St scores. Darker lines correspond to the high-
performance group, whereas lighter lines correspond to the other 
group. It shows that St scores tend to promote highly cited but 
more recently published papers. 

 
Figure 10. The citation history of timeliness papers shows 
recently published papers are moved up in the rankings.  

6. DISCUSSIONS  
Several issues require attention for further investigation. For 
example, term-level patterns give detailed insights into specific 
concepts. On the other hand, it would be valuable to provide 
additional layers of abstraction between the term level and the 
document level citation impacts. Terms in the following list are 
closely related to one another, but they also have subtle and yet 
distinct meanings.  



observational data, observational discovery, observational 
estimate, observational evidence, observational measure, 

observational model, and observational result 

A domain-specific ontological structure would be a logical step to 
capture complex relations between terms so that one can classify 
articles much more precisely than using term-level patterns alone. 

An alternative approach to using existing ontological structures is 
to make use of the analysis of terminology variation patterns with 
which we experimented in differentiating conflicting opinions 
[11]. The strengths of terminology variations can be used as a 
grouping mechanism to construct higher-level aggregates. A 
significant advantage of the latter approach would be its domain-
independent feature and its flexibility to be applied to different 
domains. 

The timeliness-aware metrics are particularly valuable for 
detecting temporal patterns. They can be used to identify the very 
forefront of a scientific field, ranging from individual scientists 
and organizations.  

The use of decision trees has generated some promising results. It 
is shown that the interpretation power has the potential to 
accommodate more complex and more sophisticated relations and 
dynamics. 

7. CONCLUSIONS 
We have shown that the H-index and some existing 
generalizations can be further extended from individual scientists 
to a collection of scientific papers or a digital library of a special 
knowledge domain. Furthermore, generalized metrics take into 
account temporal dimensions of the dynamics of a rapidly 
advancing scientific field. They provide additional options for 
dividing a collection of scientific papers into time- or 
performance-registered groups. 

Terms extracted from hosting papers are a valuable source for 
arriving at insights into the interrelationship between term-level 
patterns at a microscopic level and citation impact patterns at a 
macroscopic level, such as a document-level, and even field-level.  

Our experiment has generated promising results and inspirations 
for further investigation. The approach has the potential to 
contribute to the understanding of scientific discoveries at both 
theoretical and practical levels. Furthermore, this is an important 
step towards the establishment of tight conceptual links between 
scientific data and the relevant literature. 

We suggest a few directions for future work, including 
unsupervised ontology construction to smooth the feature space, 
incremental classification of incoming new data and scholarly 
publications, self-directed optimization of existing decision trees 
based on new evidence, and full-text analysis that can model 
associative relations between hypotheses and evidence and 
between facts and opinions.  

Digital libraries should provide scientists not only with well-
organized and accessible scientific literature but also with 
intellectual pathways that can lead to scientific discoveries and 
knowledge creation, trailblazing and transforming the knowledge 
space as envisaged by Vannevar Bush in his Memex [7] .  
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