

College of Engineering

Drexel E-Repository and Archive (iDEA)

http://idea.library.drexel.edu/

Drexel University Libraries
www.library.drexel.edu

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may
reproduce (print, download or make copies) the Material without prior permission. All copies must include any
copyright notice originally included with the Material. You must seek permission from the authors or copyright
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The
responsibility for making an independent legal assessment and securing any necessary permission rests with persons
desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190330811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.drexel.edu
http://idea.library.drexel.edu/
www.library.drexel.edu
mailto:archives@drexel.edu
http://www.drexel.edu/coe/

Design-For-Debug: A Vital Aspect In Education

Prawat Nagvajara and Baris Taskin

Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA
E-mail: {prawat nagvajara,taskin}@coe.drexel.edu

Abstract

We often assume that debugging is a skill that comes
with common sense. However, we have observed that many
students do not have an inherent aptitude for debugging.
Hands-on projects teaching the engineering design pro-
cess can become troublesome for some students who cannot
complete their projects and consequently fail their courses.
In this paper, we advocate the importance of teaching de-
bugging skills throughout digital design courses, especially
during the introductory courses. We present teaching tech-
niques in developing the skills for debugging for both intro-
ductory and advanced digital design courses. These tech-
niques include emphasis on incremental design stages, test
stimuli and observation techniques, and debugging using
critical (divergent and convergent) thinking.

1. Introduction

As educators in microsystems, we look at education
much in the same way we would look at design of a tech-
nology. That is, education is a process that can be assessed
for “bugs” or debugged, improved for efficiency and thor-
oughness, and tested via the learning experience “feedback”
from students and colleagues. We argue the necessity to im-
prove engineering design education, exemplified by digital
design education discussed in this paper, where debugging
should become a critical component of design education.
We emphasize the utility of debugging and bug diagnosis
within a typical design process, by asserting that debugging
is a skill than can be taught. We believe proper teaching of
debugging skills will improve student retention rates due to
fewer dropouts from design courses and empower students
with trained critical thinking skills.

Although debugging in its simplest sense may appear
intuitive, we believe that it is actually a skill that can be
taught. Towards this end, debugging needs to be empha-
sized through effective learning techniques. Pragmatic ap-
proach to debugging shares the same principles with the
critical thinking approach within a typical design process.

The formulation of effective teaching method to communi-
cate debugging techniques to students is also based on these
principles. In essence, we find the relationship between cre-
ative thinking, creative problem solving, creativity in de-
sign, and debugging to be intriguing and instrumental to our
discussion. We pose the following questions: “Are creative
designs easy to debug? Do the students who are creative in
design also possess good debugging skills?” It is reasonable
to assume that, there would be advocates to both sides of the
arguments for these two questions. On one hand, conform-
ing to design rules and practices can simplify debugging.
On the other hand it may hinder innovation. In order to de-
velop an effective teaching technique we must understand
the educational and cognitive aspects of the debugging pro-
cess which is tightly coupled with the design process as a
whole [4–6]. We view design-for-debug concept as not only
a technical design attribute but also a product of creativity.

We have noticed a pattern of frustration among students
who sense that this skill is something that is expected of
them as opposed to something that can be (and needs to
be) taught. As such, we have constantly observed the lack
of student patience in investing the time to “fix” their de-
signs. We believe that assessing cognitive characteristics
or generic influences on learning are the basis of teaching
systematic debugging and diagnostic skills. Among the as-
sessment merits we have established are attending to salient
aspects of a situation, forming relationships, conceptualiz-
ing, and generalizing as well as improving creative thinking
skills (including originality, fluency, flexibility, elaboration,
and resistance to premature closure). We believe teaching
students the ability to assess these merits will result in im-
proved persistence and independence of the student.

2. Teaching Techniques

In this section we will discuss plausible design-for-debug
techniques for introductory and advanced digital design
courses. The courses are based on Hardware Description
Languages (HDLs), simulation and verification tools, elec-
tronic design automation (EDA) and hardware design using
Field Programmable Gate Arrays (FPGAs). The techniques

2007 IEEE International Conference on Microelectronic Systems Education (MSE'07)
0-7695-2849-X/07 $20.00 © 2007

presented here include how to teach debugging skills during
the design stage as well as the test bench development stage
of a product design cycle. We will also discuss debugging
exercises we have developed to enhance debugging skills,
which utilize and stimulate creative thinking.

2.1. Design Stages

We require that students develop and present the stages
in their designs starting with the simplest version, continu-
ing with improved versions of increasing complexity and
finishing with a functional version. These design stages
are based on modular and hierarchical design procedures,
where students are taught automatically to switch to a hi-
erarchical design mode for advanced assignments. How-
ever, a good debugging plan, which is ignored by some stu-
dents and instructors, is typically vital to the project com-
pletion. In order to teach debugging, we require students
to formulate their own hierarchical design and debugging
plan before they start implementation. Students are asked
to itemize what potential bugs they anticipate after the de-
sign stage is complete, and explain how they would “find”
and “fix” such bugs. After the design stage is complete, the
students go through their list of anticipated bugs and com-
pare it with the actual design problems they encountered.
Through repetition of this process, students develop a crit-
ical understanding of how to assess and plan their designs,
which translates into valuable debugging skills.

2.2. Test Bench

We introduce test bench as an integral design compo-
nent in introductory digital systems classes. Students learn
to design and code test benches to automate the verifica-
tion process. In our proposed approach, test bench design
is extended to cover techniques in capturing internal signals
and states of designs for debugging. By analyzing the erro-
neous responses on the internal signals during simulation,
students can easily deduce the design errors. Students are
asked to report how they used the internal signals to cap-
ture design errors, and how they fixed these errors. The
Chip Scope Pro tool (Xilinx [1]) also provides additional
understanding to this process. Although all of these tech-
niques are observed to be effective, we especially argue
that it is more instructive for students to develop “debug-
ging hardware” in introductory-level courses. Such a hands-
on-type approach constitutes an effective mechanism to ex-
pressing and demonstrating the importance of the design-
for-debugging scheme.

2.3. Debugging Exercises

Students can gain debugging skills with design exercises
which contain pre-designed bugs. Many textbooks on soft-

ware debugging [2, 3] view the process as a “detective”
work, which involves inductive and deductive reasoning.
The exercises can include designs with logical errors which
can be diagnosed by simulation and synthesis errors diag-
nosed by test data (via test bench). The latter are more chal-
lenging exercises. They require students to retrofit a test
bench onto the original design.

Divergence

Convergence Decision
Point

Figure 1. Divergent and convergent thinking.

Creative thinking can be a framework in developing use-
ful debugging exercises. Figure 1 shows a diagram of cre-
ative thinking which corresponds to a strategy in debugging
whereby students create different possible bugs (divergence
of ideas) and converge to a bug deduced from the symp-
toms. The diverge/converge process continues until the de-
sign is debugged. The study of creating and solving buggy
designs with the diverge/converge system enhances creative
problem solving and debugging skills.

3. Concluding Remarks

Industries are putting more emphasis on developing de-
bugging techniques to reduce the cost and the time-to-
market. We argue such valuable debugging skills can be
effectively taught to students through systematic exercises.
We intend to improve the technical knowledge and the way
students learn debugging, which will impact growth and
productivity both in education and industry.

References

[1] www.xilinx.com. Xilinx Inc. website, March 2007.
[2] D. J. Agans. Debugging: The 9 indispensable rules for find-

ing even the most elusive software and hardware problems.
Amacom, 2002.

[3] R. C. Metzger. Debugging by thinking. Digital Press, 2003.
[4] National Academy of Engineering. The engineer of 2020:

Visions of engineering in the new century. National Academy
Press, Washington, D.C., 2004.

[5] R. J. Sternberg, editor. Handbook of Creativity. Cambridge
University Press, 1999.

[6] R. J. Sternberg. Creating a vision of creativity: The first 25
years. Psychology of Aesthetics, Creativity, and the Arts, 1,
August 2006.

2007 IEEE International Conference on Microelectronic Systems Education (MSE'07)
0-7695-2849-X/07 $20.00 © 2007

