
Entity-Relationship Modeling Re-revisited

Don Goelman1 and Il-Yeol Song2

1 Department of Computer Science
Villanova University

Villanova, PA 19085
don.goelman@villanova.edu

2 College of Information Science and Technology
Drexel University

Philadelphia, PA 19104
song@drexel.edu

ABSTRACT. Since its introduction, the Entity-Relationship (ER) model has
been the vehicle of choice in communicating the structure of a database schema
in an implementation-independent fashion. Part of its popularity has no doubt
been due to the clarity and simplicity of the associated pictorial Entity-
Relationship Diagrams (“ERD’s”) and to the dependable mapping it affords to
a relational database schema. Although the model has been extended in
different ways over the years, its basic properties have been remarkably stable.
Even though the ER model has been seen as pretty well “settled,” some recent
papers, notably [4] and [2 (from whose paper our title is derived)], have
enumerated what their authors consider serious shortcomings of the ER model.
They illustrate these by some interesting examples. We believe, however, that
those examples are themselves flawed. In fact, while not claiming that the ER
model is perfect, we do believe that the overhauls hinted at are probably not
necessary and possibly counterproductive.

1 Introduction

Since its inception [5], the Entity-Relationship (ER) model has been the primary

approach for presenting and communicating a database schema at the “conceptual” level
(i.e., independent of its subsequent implementation), especially by means of the associated
Entity-Relationship Diagram (ERD). There’s also a fairly standard method for converting
it to a relational database schema. In fact, if the ER model is in some sense “correct,” then
the associated relational database schema should be in pretty good normal form [15]. Of
course, there have been some suggested extensions to Chen’s original ideas (e.g.,
specialization and aggregation as in [10, 19]), some different approaches for capturing
information in the ERD, and some variations on the mapping to the relational model, but
the degree of variability has been relatively minor. One reason for the remarkable
robustness and popularity of the approach is no doubt the wide appreciation for the
simplicity of the diagram. Consequently, the desirability of incorporating additional
features in the ERD must be weighed against the danger of overloading it with so much
information that it loses its visual power in communicating the structure of a database. In
fact, the model’s versatility is also evident in its relatively straightforward mappability to

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190330688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the newer Object Data Model [7]. Now admittedly an industrial strength ERD reflecting
an actual enterprise would necessarily be some order of magnitude more complex than
even the production numbers in standard texts [e.g., 10]. However, this does not weaken
the ability of a simple ERD to capture local pieces of the enterprise, nor does it lessen the
importance of ER-type thinking in communicating a conceptual model.

Quite recently, however, both Camps and Badia have demonstrated [4, and 2 (from
whose paper the title of this one is derived)] some apparent shortcomings in the ER
model, both in the model itself and in the processes of conversion to the relational model
and its subsequent normalization. They have illustrated these problems through some
interesting examples. They also make some recommendations for improvements, based on
these examples. However, while not claiming that the ER model can be all things to all
users, we believe that the problems presented in the examples described in those two
papers are due less to the model and more to its incorrect application.

Extending the ERD to represent complex multi-relation constraints or constraints at
the attribute level are interesting research topics, but are not always desirable. We claim
that representing them would clutter the ERD as a conceptual model at the enterprise
level; complex constraints would be better specified in a textual or language-oriented
format than at the ERD level.

The purpose of this paper is to take these examples as a starting point to discuss the
possible shortcomings of the ER model and the necessity, or lack thereof, for modifying it
in order to address them. We therefore begin by reviewing and analyzing those
illustrations. Section 2 describes and critiques Camps’ scenarios; Section 3 does Badia’s.
Section 4 considers some related issues, most notably a general design principle only
minimally offered in the ER model. Section 5 concludes our paper.

2 The Camps Paper

 In [4], the author begins by describing an apparently simple enterprise. It has a
straightforward ERD that leads to an equally straightforward relational database schema.
But Camps then escalates the situation in stages, to the point where the ER model is not
currently able to accommodate the design, and where normalizing the associated relational
database schema is also unsatisfying. Since we are primarily concerned with problems
attributed to the ER model, we will concentrate here on that aspect of the paper. However,
the normalization process at this point is closely tied to that model, so we will include
some discussion of it as well. We now give a brief recapitulation, with commentary.

 At first, Camps considers an enterprise with four ingredients: Dealer, Product,
State, and Concession, where Concession is a ternary relationship among the other three,
implemented as entity types. Each ingredient has attributes with fairly obvious semantics,
paraphrased here: d-Id, d-Address; p-Id, p-Type; s-Id, s-Capital; and c-Date. The last
attribute’s semantics represents the date on which a given state awards a concession to a
given dealer for a given product. As for functional dependencies, besides the usual ones,

we are told that for a given state/product combination, there can only be one dealer. Thus,
a minimal set of dependencies is as follows:

{s-Id, p-Id} d-Id (A)
{s-Id, p-Id} c-Date
d-Id d-Address
p-Id p-Type
s-Id s-Capital

 An ERD for this is given in Figure 1 (attributes are eliminated in the figures, for

the sake of clarity), and the obvious relational database schema is as follows:

State(s-Id, s-Capital) (B)
Product(p-Id, p-Type)
Dealer(d-Id, d-Address)
Concession(s-Id, p-Id, d-Id, c-Date)

Figure 1. Example of 1:N:N relationship (from Figure 1 in [4], modified).

 The foreign key constraints derive here from the two components of Concession’s

key, which are primary keys of their native schemas. Since the only functional
dependencies are those induced by keys, the schema is in BCNF. Here Camps imposes
further constraints:

 p-Id d-Id
 s-Id d-Id

In other words, if a product is offered as a concession, then it can only be with a single
dealer regardless of the state; and analogously on the state-dealer side. The author is
understandably unhappy about the absence of a standard ERD approach to accommodate

the resulting binary constraining relationships (using the language of [12]), which he
renders in a rather UML-like fashion [17], similar to Figure 2. At this point, in order to
highlight the generic structure, he introduces new notation (A, B, C, D for State, Dealer,
Product, Concession, respectively). However, we will keep the current ones for the sake
of comfort, while still pursuing the structure of his narrative. He notes that the resulting
relational database schema includes the non-3NF relation schema Concession(s-Id,p-Id,d-
Id,c-Date). Further, when Camps wishes to impose the constraints that a state
(respectively product) instance can determine a dealer if and only if there has been a
concession arranged with some product (respectively state), he expresses them with these
conditions:

π s-Id,d-Id (Concessions) = π s-Id,d-Id (State) (C)
π p-Id,d-Id (Concessions) = π p-Id,d-Id (Product)

Each of these can be viewed as a double inclusion dependency and must be

expressed using the CHECK construct in SQL.

Figure 2. Two imposed FDs (from Figure 2 of [4]).

 Now we note that it is actually possible to capture the structural properties of the

enterprise at this stage by the simple (i.e., ternary-free) ERD of either Figure 3a [13] or
Figure 3b [18]. The minimal set of associated functional dependencies in Figure 3a is as
follows:

s-Id s-Capital (D)
p-Id p-Type
d-Id d-Address
s-Id d-Id
p-Id d-Id
{s-Id, p-Id} c-Date

 One, therefore, obtains the following relational database schema, which is, of

course, in BCNF, since all functional dependencies are due to keys:
State(s-Id,s-Capital,d-Id) (E)
Product(p-Id,p-Type,d-Id)
Dealer(d-Id,d-Address)
Concession(s-Id,p-Id,c-Date)

Figure 3a. A binary model of Figure 2 with Concession as a M:N relationship.

Figure 3b. A binary model of Figure 2 with Concession as an intersection (associate)
entity.

Admittedly, this approach loses something: the ternary character of Concession.

However, any dealer-relevant information to a concession instance can be discovered by a
simple join; a view can also be conveniently defined. The ternary relationship in Figure 2

is therefore something of a red herring when constraining binary relationships are imposed
to a ternary relationship. In other words, it is possible that an expansion of the standard
ERD language to include n-ary relationships’ being constrained by m-ary ones might be a
very desirable feature, but its absence is not a surprising one.

 Jones and Song showed that the ternary schema with FDs imposed in Figure 2 can
have lossless decomposition, but cannot have an FD-preserving schema (Pattern 11 in
[13]). Camps now arrives at the same schema (E) (by normalizing his non-3NF one, not
by way of our ERD in Figure 3a). The problem he sees is incorporating the semantics of
(C). The constraints he develops are:

π s-Id, p-Id (Concessions) ⊆ π s-Id, p-Id (State*Product) (F)
π s-Id (State) ⊆ π s-Id (Concessions) iff State.d-Id is not null
π p-Id (Product) ⊆ π p-Id (Concessions) iff Product.d-Id is not null

 The last two conditions seem not to make sense syntactically. The intention is most

likely the following (keeping the first condition and rephrasing the other two):

π s-Id, p-Id (Concessions) ⊆ π s-Id, p-Id (State*Product) (G)
(∀s0∈πs-Id(State))(s0 ∈πs-Id(Concessions) iff (∃d0)(<s0,d0> ∈ πs-Id, d-Id(State)))
(∀p0∈πp-Id(Product))(p0 ∈πp-Id(Concessions) iff (∃d0)(<p0,d0> ∈ πp-Id, d-Id(Product)))

At any rate, Camps shows how SQL can accommodate these conditions too using

CHECKs in the form of ASSERTIONS, but he considers any such effort (to need any
conditions besides key dependencies and inclusion constraints) to be anomalous. We feel
that this is not so surprising a situation after all. The complexity of real-world database
design is so great that, on the contrary, it is quite common to encounter a situation where
many integrity constraints are not expressible in terms of functional and inclusion
dependencies alone. Instead, one must often use the type of constructions that Camps
shows us or use triggers to implement complex real-world integrity constraints.

3. The Baida Paper

In his paper [2] in turn, Badia revisits the ER model because of the usefulness and
importance of the ER model. He contends that, as database applications get more complex
and sophisticated and the need for capturing more semantics is growing, the ER model
should be extended with more powerful constructs to express powerful semantics and
variable constraints. He presents six scenarios that apparently illustrate some inadequacies
of the ER model; he classifies the first five as relationship constraints that the model is
not up to incorporating and the sixth as an attribute constraint. We feel that some of the
examples he marshals, described below in 3.3 and 3.6, are questionable, leading us to ask
whether they warrant extending the model. Badia does discuss the down side of
overloading the model, however, including a thoughtful mention of tradeoffs between

minimality and power. In this section we give a brief recapitulation of the examples,
together with our analyses.

3.1 Camps Redux
 In this portion of his paper, Badia presents Camps’ illustrations and conclusions, which
he accepts. We’ve already discussed this.

3.2 Commutativity in ERD’s
 In mathematical contexts, we call a diagram commutative [14] if all different routes from
a common source to a common destination are equivalent. In Figure 4, from Badia’s paper
(there called Figure 1), there are two different ways to navigate from Course to
Department: directly, or via the Teacher entity. To say that this particular diagram
commutes, then, is to say that for each course, its instructor must be a faculty member of
the department that offers it. Again, there is a SQL construct for indicating this. Although
Badia doesn’t use the term, his point here is that there is no mechanism for ERD’s to
indicate a commutativity constraint. This is correct, of course. Consider the case of
representing this kind of multi-relation constraints in the diagram with over just 50 entities
and relationships, which are quite common in real-world applications. We believe,
therefore, that this kind of a multi-relation constraint is better to be specified as a textual
or a language-oriented syntax, such as OCL [17], rather than at a diagram level. In this
way, a diagram can clearly deliver its major semantics without incurring visual overload
and clutter.

Figure 4. An example of multi-paths between two entities (from Figure 1 in [2]).

In certain limited situations [8] the Offers relationship might be superfluous and
recovered by composing the other two relationships (or, in the relational database schema,
by performing the appropriate joins). We would need to be careful about dropping Offers,
however. For example, if a particular course were at present unstaffed, then the Teaches
link would be broken. This is the case when Course entity has partial (optional)
participation to Department entity. Without an explicit Offers instance, we wouldn’t
know which department offers the course. This is an example of a chasm trap which
requires an explicit Offers relationship [6]. Another case where we couldn’t rely on
merely dropping one of the relationship links would arise if a commutative diagram
involved the composition of two relationships in each path; then we would surely need to
retain them both and to implement the constraint explicitly.

We note that allowing cycles and redundancies in ERD’s has been a topic of research

in the past. Atzenti and Parker [1] advise against it; Markowitz and Shoshani [15] feel that
it is not harmful if it is done right. Dullea and Song [8, 9] provide a complete analysis of
redundant relationships in cyclic ERD’s. Their decision rules on redundant relationships
are based on both maximum and minimum cardinality constraints.

3.3 Acyclicity of a Recursive Closure

Next, Badia considers the recursive relationship ManagerOf (on an Employee entity). He
would like to accommodate the hierarchical property that nobody can be an indirect
manager of oneself. Again, we agree with this observation but can’t comment on how
desirable such an ER feature would be at a diagram level. Badia points out that this is a
problem even at the level of the relational database, although some Oracle releases can
now accommodate the constraint.

3.4 Fan Traps

At this point the author brings Figure 5 (adapted from [6], where it appears as Figure
11.19(a); for Badia it is Figure 2) to our attention. (The original figure uses the “Merise,”
or “look here” approach [17]; we’ve modified it to make it consistent with the other
figures in this paper.) The problem, called a fan trap arises when one attempts to enforce
a constraint that a staff person must work in a branch operated by her/his division. This
ER anomaly percolates to the relational schemas as well. Further, if one attempts to patch
things up by including a third binary link, between Staff and Branch, then one is faced
with the commutativity dilemma of Section 3.2. In general fan traps arise when there are
two 1:N relationships from a common entity type to two different destinations. The two
typical solutions for fan traps are either to add a third relationship between the two many-
side entities or rearrange the entities to make the connection unambiguous. The problem
in Figure 5 here is simply caused by an incorrect ERD and can be resolved by rearranging

entities as shown in Figure 6. Figure 6 avoids the difficulties at both the ER and relational
levels. In fact, this fix is even exhibited in the Connolly source itself. We note that the
chasm trap discussed in Section 3.2 and the fan trap are commonly called connection
traps [6] which make the connection between two entities separated by the third entity
ambiguous.

Figure 5. A semantically wrong ERD with a fan trap (from Figure 2 in [2] and Figure
11.19(a) from [6]).

Figure 6. A correct ERD of Figure 5, after rearranging entities.

3.5 Temporal Considerations

Here Badia looks at a Works-in relationship, M:N between Employee and Project, with
attributes start-date and end-date. A diagram for this might look something like Figure
7b; for the purposes of clarity, most attributes have been omitted. Baida states that the rule
that even though en employee may work in many projects, an employee may not work in
two projects at the same time may not be represented in an ERD. It appears impossible to
express the rule, although the relationship is indeed M:N. But wouldn’t this problem be
solved by creating a third entity type, TimePeriod, with the two date attributes as its
composite key, and letting Works-in be ternary? The new relationship would be M:N:1,
as indicated in Figure 7c, with the 1 on the Project node, of course. In figures of 7a

through 7d, we show several variations of this case related to capturing the history of
works-in relationships and the above constraint. We’ll comment additionally on this in
Section 4.

Figure 7a. An employee may work in only one project and each project can have many
employees. The diagram already assumes that an employee must work for only one
project at a time. This diagram is not intended to capture any history of works-in
relationship.

Figure 7b. An employee may work in many projects and each project may have many
employees. The diagram assumes that an employee may work for many projects at the
same time. This diagram is also not intended to capture any history of works-in
relationship.

Figure 7c. An employee may work in only one project at a time. This diagram can capture
a history of works-in relationship of an employee for projects and still satisfies the
constraint that an employee may work in only one project at a time.

Figure 7d. In Figure 7.c, entity TimePeriod is not easily materialized, we can reify the
relationship Works-in to an intersection entity. This diagram can capture the history of
works-in relationship, but does not satisfy the constraint that an employee may work in
only one project.

3.6 Range Constraints

While the five previous cases exemplify what Badia calls relationship constraints, this
one is an attribute constraint. The example given uses the following two tables:

Employee (employee_id, rank_id, salary, …)
Rank (rank_id, max_salary, min_salary)

The stated problem is that the ERD that represents the above schema cannot express the
fact that the salary of an employee must be within the range determined by his or her rank.
Indeed, in order to enforce this constraint, explicit SQL code must be generated. Baida
correctly sates that the absence of information at the attribute level is a limitation and
cause difficulty in solving semantic heterogeneity. We believe, however, that information
and constraints at the attribute level could be expressed at the data dictionary level or in a
separate low level diagram below the ERD level. Again, this will keep an ERD as a
conceptual model at enterprise level without too much clutter. Consider the complexity of
representing attribute constraints in ERDs for real-world applications that have over 50
entities and several hundreds of attributes. The use of a CASE tool that supports a
conceptual ERD with its any low level diagram for attributes and/or its associated data
dictionary should be a right direction for this problem.

4 General Cardinality Constraints

While on the whole, as indicated above, we feel many of the alleged shortcomings of the
ER model claimed in recent papers are not justified, some of those points have been well
taken and are quite interesting. However, there is another important feature of conceptual
design that we shall consider here, one that the ER model really does lack. In this section,
we briefly discuss McAllister’s general cardinality constraints [16] and their implications.

 McAllister’s setting is a general n-ary relationship R. In other words, R involves n
different roles. This term is used, rather than entity types, since the entity types may not
all be distinct. For example, a recursive relationship, while binary in the mathematical
sense, involves only a single entity type. Given two disjoint sets of roles A and B,
McAllister defines Cmax(A,B) and Cmin(A,B) as follows: for a tuple <a>, with one
component from each role in A, and a tuple , with one component from each role in B,
let us denote by <a,b> the tuple generated by the two sets of components; we recall that A
and B are disjoint. Then Cmax(A,B) (respectively Cmin(A,B)) is the maximum allowable
cardinality over all <a> of the set of tuples such that <a,b>∈ πA∪B (R). For example,
consider the Concession relationship of Figure 1. Then to say that

Cmax({State, Product},{Dealer}) = 1 is to express the fact that
{s-Id, p-Id} d-Id. And the condition Cmin({Product},{State,Dealer}) = 1 is

equivalent to the constraint that Product is total on Concession. Now, as we see from
these examples, Cmax gives us information about functional dependencies and Cmin
about participation constraints. When B is a singleton set and A its complement, this is

sometimes called the “Chen” approach to cardinality [11] or “look across”; when A is a
singleton set and B its complement, it is called the “Merise” approach [11] or “look here.”
All told, McAllister shows that there are 3n-2n+1+1 different combinations possible for A
and B, where n is the number of different roles.

 Clearly, given this explosive growth, it is impractical to include all possible
cardinality constraints in a general ERD, although McAllister shows a tabular approach
that works pretty well for ternary relationships. He shows further that there are many
equalities and inequalities that must hold among the cardinalities, so that the entries in the
table are far from independent. The question arises as to which cardinalities have the
highest priorities and should thus appear in an ERD. It turns out that the Merise and Chen
approaches give the same information in the binary case but not in the ternary one, which
becomes the contentious case (n>3 is rare enough not to be a serious issue). In fact one
finds both Chen [as in 10] and Merise [as in 3] systems in practice. In his article, Genova
feels that UML [17] made the wrong choice by using the Chen method for its Cmin’s, and
he suggests that class diagrams include both sets of information (but only when either A
or B is singleton). That does not seem likely to happen, though.

 Still, consideration of these general cardinality constraints and McAllister’s
axioms comes in handy in a couple of the settings we have discussed. The general setting
helps understand connections between, for example, ternary and related binary
relationships as in Figure 2 and [12]. And it similarly sheds light on preservation (and
loss) of information in Section 3.5 above, when a binary relationship is replaced by a
ternary one. Finally, we believe that it also provides the deep structural information for
describing the properties of decompositions of the associated relation schemas. It is
therefore indisputable in our opinion that these general cardinality constraints do much to
describe the fundamental structure of a relationship in the ER model; only portions of
which, like the tip of an iceberg, are currently visible in a typical ERD. And yet we are not
claiming that such information should routinely be included in the model.

5 Conclusion

 We have reviewed recent literature ([4] and [2]) that illustrate through some interesting
examples areas of conceptual database design that are not accommodated sufficiently at
the present time by the Entity-Relationship model. However, some of these examples
seem not to hold up under scrutiny.

 Capabilities that the model does indeed lack are constraints on commutative
diagrams (Section 3.2 above), recursive closures (3.3), and some range conditions (3.6) as
pointed out by Badia. Another major conceptual modeling tool missing in the ER model is
that of general cardinality constraints [16]. These constraints are the deep structure that
underlies such more visible behavior as constraining and related relationships, Chen and
Merise cardinality constraints, functional dependencies and decompositions, and
participation constraints. How many of these missing features should actually be

incorporated into the ER model is pretty much a question of triage, of weighing the
benefits of a feature against the danger of circuit overload.

We believe that some complex constraints such as multi-relation constraint are better
to be represented as a textual or a language-oriented syntax, such as OCL [17], rather than
at the ER diagram level. We also believe that information and constraints at the attribute
level could be expressed at the data dictionary level or in a separate low level diagram
below the ERD level. In these ways, we will keep an ERD as a conceptual model at
enterprise level to deliver major semantics without visual overload and too much clutter.
Consider the complexity of an ERD for a real-world application that has over 50 entities
and hundreds of attributes and representing all those complex multi-relation and attribute
constraints in the ERD. The use of a CASE tool that supports a conceptual ERD with its
any low level diagram for attributes and/or its associated data dictionary should be a right
direction for this problem.

We note that we do not claim that some research topics suggested by Baida, such as
relationships over relationships and attributes over attributes, are not interesting or worthy.
Research in those topics would bring interesting new insights and powerful ways of
representing complex semantics. What we claim here is that the ERD itself has much
value as it is now, especially for relational applications, where all the examples of Baida
indicate. We believe, however, that extending the ER model to support new application
semantics such as biological applications should be encouraged.

The “D” in ERD connotes to many researchers and practitioners the simplicity and
power of communication that account for the model’s popularity. Indeed, as the Entity-
Relationship model nears its 30th birthday, we find its robustness remarkable.

References

1.Atzeni, P. and Parker, D.S., “Assumptions in relational database theory”, in Proceedings

of the 1st ACM Symposium on Principles of Database Systems, March 1982.

2. Badia, A. “Entity-Relationship Modeling Revisited”, SIGMOD Record, 33(1), March

2004, pp. 77-82.

3. Batini, C., Ceri, S., and Navathe, S., Conceptual Database Design,

Benjamin/Cummings, 1992.

4. Camps Paré, R. “From Ternary Relationship to Relational Tables: A Case against

Common Beliefs”, SIGMOD Record, 31(20), June 2002, pp. 46-49.

5. Chen, P. “The Entity-Relationship Model – towards a Unified View of Data”, ACM

Transactions on Database Systems, 1(1), 1976, pp. 9-36.

6. Connolly, T. and Begg, C., Database Systems, 3d Edition, Addison-Wesley, 2002.

7. Dietrich, S. and Urban, S., Beyond Relational Databases, Prentice-Hall, to appear.

8. Dullea, J. and Song, I.-Y., “An Analysis of Cardinality Constraints in Redundant

Relationships," in Proceedings of Sixth International Conferences on Information and
Knowledge Management (CIKM97), Las Vegas, Nevada, USA, Nov. 10-14, 1997, pp.
270-277.

9. Dullea, J., Song, I.-Y., and Lamprou, I., “An Analysis of Structural Validity in Entity-

Relationship Modeling," Data and Knowledge Engineering, 47(3), 2003, pp. 167-
205.

10. Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems, 4th Ed., Addison-

Wesley, 2003.

11. Genova, G., Llorenz, J., and Martinez, P., “The meaning of multiplicity of n-ary

associations in UML”, Journal of Software and Systems Modeling, 1(2), 2002.

12. Jones, T. and Song, I.-Y., “Analysis of binary/ternary cardinality combinations in

entity-relationship modeling”, Data & Knowledge Engineering, 19(1), 1996, pp. 39-
64.

13. Jones, T. and Song, I.-Y., "Binary Equivalents of Ternary Relationships in Entity-

Relationship Modeling: a Logical Decomposition Approach." Journal of Database
Management, 11(2), 2000, (April-June, 2000), pp. 12-19.

14. MacLane, S., Categories for the Working Mathematician, Springer-Verlag, 1971.

15. Markowitz, V. and Shoshani, A., “Representing Extended Entity-Relationship

Structures in Relational Databases: A Modular Approach”, ACM Transactions on
Database Systems, 17(3), 1992, pp. 423-464.

16. McAllister, A., “Complete rules for n-ary relationship cardinality constraints”, Data

& Knowledge Engineering, 27, 1998, pp. 255-288.

17. Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language

Reference Manual, Addison-Wesley, 1999.

18. Song, I.-Y., Evans, M., and Park, E.K., "A Comparative Analysis of Entity-

Relationship Diagrams," Journal of Computer and Software Engineering, 3(4)
(1995), pp. 427-459.

19. Teorey, T., Database Modeling & Design, 3d Edition, Morgan Kaufmann, 1999.

