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INV ITED
P A P E R

Optimality and Duality of
the Turbo Decoder
Two optimality criteria which underlie the turbo decoder are reconciled within.

By Phillip A. Regalia, Fellow IEEE, and John MacLaren Walsh, Member IEEE

ABSTRACT | The near-optimal performance of the turbo

decoder has been a source of intrigue among communications

engineers and information theorists, given its ad hoc origins

that were seemingly disconnected from optimization theory.

Naturally one would inquire whether the favorable perfor-

mance might be explained by characterizing the turbo decoder

via some optimization criterion or performance index. Recent-

ly, two such characterizations have surfaced. One draws from

statistical mechanics and aims to minimize the Bethe approx-

imation to a free energy measure. The other characterization

involves constrained likelihood estimation, a setting perhaps

more familiar to communications engineers. The intent of

this paper is to assemble a tutorial overview of these recent

developments, and more importantly to identify the formal

mathematical duality between the two viewpoints. The paper

includes tutorial background material on the information

geometry tools used in analyzing the turbo decoder, and the

analysis accommodates both the parallel concatenation and

serial concatenation schemes in a common framework.

KEYWORDS | Dual optimization; free energy minimization;

information geometry; maximum likelihood estimation; turbo

decoder

I . INTRODUCTION

The advent of the turbo decoder [1], [2] ushered in a new

era of practical codes and decoders offering error rate

performance inching ever closer to the Shannon limit.

Such performance is all the more impressive given that
the iterative decoding algorithm was not derived from

some optimization procedure, but obtained originally in

an ad hoc fashion. Considerable effort has since been

expended to understand theoretically the success of it-

erative estimation procedures, and in particular whether

the turbo decoder is optimal in any well-defined sense.

Early analysis methods rapidly honed in on code con-
struction, which was recognized by seasoned experts as a

Bsecond coming[ of concatenated codes. The role played

by the interleaver in securing favorable distance properties

was expounded upon by Benedetto and coworkers [3], [4].

Such distance properties are relevant for maximum

likelihood decoding, and confirm, in effect, that concat-

enated codes with interleavers are Bgood[ codes. Iterative

decoding, however, is not maximum likelihood (nor max-
imum a posteriori probability) decoding, and so the dis-

tance properties themselves do not entirely explain why

iterative decoding yields good performance. Greater at-

tention was thus warranted for the information exchange

that characterized iterative decoding, and techniques such

as density evolution [5], [6] and extrinsic information

transfer charts [7] proved successful in deducing iterative

decoder characteristics as a function of certain constituent
code properties. Such techniques appeal ultimately to

asymptotic approximations which are reasonable for rath-

er long block lengths. The approximations break down,

however, for shorter block lengths, which are increasingly

important in latency constrained applications or when

quality-of-service metrics must be integrated in an overall

system design.

Analysis methods which invoke no approximation
gained foothold with McEliece et al.’s insightful connec-

tion [8] between the turbo decoding algorithm and Pearl’s

belief propagation algorithm [9]. The turbo decoder was

thus situated within a larger family of algorithms [10]

derived via graph theoretic methods of information

exchange. This family, fittingly, includes Gallager’s itera-

tive decoding algorithm from 1962 [11] for low density

parity-check codes. In parallel, connections with informa-
tion geometry and statistical physics surfaced with

Richardson’s analysis [12], which established existence

of stationary points of the iterative procedure. These

Manuscript received November 9, 2006; revised February 20, 2007. The work of

P. A. Regalia was supported in part by the CNRS of France under Contract 14871.

P. A. Regalia is with the Department of Electrical Engineering and Computer Science,

Catholic University of America, Washington, DC 20064 USA, and also with the GET/INT,

91011 Evry, France (e-mail: regalia@cua.edu).

J. M. Walsh is with the Department of Electrical and Computer Engineering,

Drexel University, Philadelphia, PA 19104 USA (e-mail: jwalsh@cbis.ece.drexel.edu;

jwalsh@coe.drexel.edu).

Digital Object Identifier: 10.1109/JPROC.2007.896495

1362 Proceedings of the IEEE | Vol. 95, No. 6, June 2007 0018-9219/$25.00 �2007 IEEE



results were subsequently clarified and extended by
Ikeda et al. [13], providing a proper reference point in

information geometry [14], [15]. Concurrent works in

[16] and [17] espoused a fruitful connection with free

energy minimization from statistical mechanics; the

turbo decoder was viewed as the solution to an ap-

proximate energy minimization.

A more complete treatment for the general belief

propagation algorithm was advanced by Yedidia et al. [18],
who recognized the equivalence between the stationary

points of belief propagation on the one hand, and the

stationary points of the Bethe approximation [19] to the

free energy of statistical physics on the other. This

intriguing equivalence provided arguably the first formal

result attesting to the solid pedigree of the stationary

points of iterative decoding.

From a different angle, Walsh [20] developed a con-
strained likelihood interpretation of the stationary points

of iterative decoding. Likelihood functions, of course, are

quite familiar in coding and communications, and thus an

approach connecting such familiar quantities with the

turbo decoder analysis is a welcome result. An interesting

feature was the formulation with wordwise [21] rather than

symbolwise maximum likelihood estimation, a seeming

oddity given the dependence on symbolwise detectors in
constructing the iterative algorithm. The mathematical

formalisms, however, characterize the turbo decoder sta-

tionary points, and one would expect, therefore, an

equivalence with the Bethe approximation result. The

equivalence is to be found in the mature field of dual

optimization problems, and is developed for the general

expectation propagation case in [20], [22].

The intent of this paper is to assemble a tutorial
development of these two optimality claims, in the

particular (and more tractable) case of the turbo decoder.

We begin in Section II with some basic relations from

information geometry which prove useful in analyzing

the turbo decoder. Section III then reviews the turbo

decoder for both parallel and serial concatenated codes,

to show how the two forms may be treated in a common

framework. A maximum likelihood formulation to turbo
decoding is developed in Section IV, leading to the im-

portant equivalence between turbo decoding stationary

points and a constrained maximum likelihood estimation

problem. Section V then revisits the factor graph view-

point of the turbo decoder, and derives an explicit ex-

pression for the Bethe free energy on this graph. We

expose also the formal equivalence between the Bethe

free energy critical points and the constrained likelihood
formulation of Section IV as dual optimization problems.

Concluding remarks are synthesized in Section VI.

II . PRELIMINARIES

We assemble in this section specific tools adapted from

information geometry [14], [23] that prove useful in an-

alyzing the turbo decoder, particularly the logarithmic
coordinates of probability mass functions and the charac-

terization of product distributions in this logarithmic

coordinate system. These tools have appeared in varying

forms across different publications analyzing iterative

decoding (e.g., [12], [13], [21], [24], [25]), and are afforded

a self-contained tutorial treatment here.

A. Probability Mass Functions
Let B ¼ ½�1; �2; . . . ; �N�T denote a collection of N bits,

and let bi denote the N-bit binary representation of the
integer i, with the bits arranged as a column vector:

b0 ¼ ½0 0 � � � 0 0�T

b1 ¼ ½0 0 � � � 0 1�T

b2 ¼ ½0 0 � � � 1 0�T

..

.

b2N�1 ¼ ½1 1 � � � 1 1�T:

If the N bits �1; . . . ; �N are considered random binary

variables, then the fbig account for all outcomes. We

denote by B the 2N � N matrix which collects these

vectors

B ¼
bT

0

..

.

bT
2N�1

264
375:

Let qðbiÞ be a probability mass function (or PMF)

defined on these outcomes, comprised of nonnegative

elements qðbiÞ � 0 that sum to one

X2N�1

i¼0

qðbiÞ ¼ 1:

The term qðbiÞ will often be abbreviated qi, and the

evaluations collected in a column vector

q ¼ ½q0 q1 � � � q2N�1�T:

The set of all PMFs is denoted D.
Suppose fðBÞ is some function of the bits, yielding

values fðB ¼ biÞ defined on the outcomes. We denote

Regalia and Walsh: Optimality and Duality of the Turbo Decoder
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by Eqð�Þ the expected value induced by the probability
mass function q

Eq fðBÞ½ � ¼
X2N�1

i¼0

fðbiÞqðbiÞ:

Consider the particular choice fðbiÞ ¼ bi: the j-th com-

ponent is bit �j, and we may develop EqðBÞ as

EqðBÞ ¼

0 � Prqð�1 ¼ 0Þ þ 1 � Prqð�1 ¼ 1Þ
0 � Prqð�2 ¼ 0Þ þ 1 � Prqð�2 ¼ 1Þ

..

.

0 � Prqð�N ¼ 0Þ þ 1 � Prqð�N ¼ 1Þ

266664
377775

¼

Prqð�1 ¼ 1Þ
Prqð�2 ¼ 1Þ

..

.

Prqð�N ¼ 1Þ

266664
377775 ¼� pq

in which Prqð�Þ denotes the probability measure induced
by q. This is seen to generate the bitwise marginal prob-

ability evaluations; such marginals will occur frequently

in this paper, and so will be denoted pq, to indicate de-

pendence on q. We may also develop EqðBÞ as

EqðBÞ ¼
X2N�1

i¼0

biqi ¼ BTq ð¼ pqÞ

from which we see that premultiplying a PMF vector by

BT gives its marginal evaluations.

B. Log Probability Coordinates
Let gðqÞ denote the negative of the Shannon entropy

[14], [26] of q

gðqÞ ¼
X2N�1

i¼0

qi log qi:

The constraint that the probabilities sum to one is captured

by setting

q0 ¼ 1�
X2N�1

i¼1

qi

which allows us to rewrite gðqÞ as

gðqÞ¼ 1�
X2N�1

i¼1

qi

 !
log 1�

X2N�1

i¼1

qi

 !
þ
X2N�1

i¼1

qi log qi:

The derivatives of this function are then readily calcu-

lated to be

dgðqÞ
dqi
¼ log

qi

q0
i ¼ 1; 2; . . . ; 2N � 1:

(The derivative with respect to q0 is not taken, since it is

redundant). These derivatives expose the logarithmic co-

ordinates that will appear frequently

�i ¼� log
qi

q0
; i ¼ 0; 1; . . . ; 2N � 1:

Observe that �0 ¼ 0 always results. The original PMF can

be recovered from its logarithmic coordinates according to

qi ¼ exp �i �  ðQÞð Þ; i ¼ 0; 1; . . . ; 2N � 1

using a normalization function

 ðQÞ ¼� log
X2N�1

i¼0

expð�iÞ
 !

: (1)

Observe that, for all Q (with �0 ¼ 0), the q defined in this

manner is a valid PMF ðq 2 DÞ.
The map from Q to q can also be expressed as a de-

rivative, since

d ðQÞ
d�i
¼ expð�iÞP2N�1

j¼0

expð�jÞ
¼ qi:

This shows that dgðqÞ=dq maps q to Q, and that d ðQÞ=dQ
maps Q back to q. Since  ð�Þ and gð�Þ have derivatives that

are inverse maps of each other, they form a Legendre

transform pair [14] (or convex conjugate pair [27], [28],

as gðqÞ is convex [26]). From this fact (or by a direct
calculation), we have

gðqÞ þ  ðQÞ ¼
X2N�1

i¼0

qi�i ¼ hq; Qi

Regalia and Walsh: Optimality and Duality of the Turbo Decoder
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whenever �i ¼ logðqi=q0Þ. More generally, if t denotes
any other PMF, with T its logarithmic form, then

gðqÞ þ  ðTÞ ¼ hq;Ti þ DðqktÞ (2)

involving the Kullback–Leibler distance [26]

DðqktÞ ¼
X2N�1

i¼0

qi log
qi

ti
� 0:

We henceforth use Roman letters for PMFs and their

Greek counterparts for their logarithmic coordinates (e.g.,

q corresponds to Q, s to S, t to T, etc.).

C. Product Distributions
A product distribution is a PMF (say, t) which factors

into the product of its marginals, i.e.,

tð�1; �2; . . . ; �NÞ ¼ t1ð�1Þt2ð�2Þ � � � tNð�NÞ

in which tjð�Þ denotes the j-th marginal function. (The

evaluations t1ð1Þ; . . . ; tNð1Þ are contained in the vector

BTt). Consider its logarithmic form �i ¼ log ti � log t0;

since log t0 ¼
P

j log tjð0Þ, its entries (as a function of the
bits �j) become

�ð�1; �2; . . . ; �NÞ ¼
XN

j¼1

log
tjð�jÞ
tjð0Þ

¼
X

j:�j¼1

log
tjð1Þ
tjð0Þ

where we note that terms with �j ¼ 0 drop out of the

second-to-last sum. As such, letting

�j ¼ log
tjð1Þ
tjð0Þ

; j ¼ 1; 2; . . . ;N

denote the log marginal ratios and collecting them in the

column vector L, we have

�ðB ¼ biÞ ¼ bT
i L ¼ hbi;Li

once we note that only those bit positions where bi is 1

contribute in the inner product hbi;Li. By stacking

successive evaluations, the vector T takes the form

T ¼
�ðb0Þ

..

.

�ðb2N�1Þ

264
375 ¼ BL:

Since the preceding steps are reversible, this shows that

a PMF factors into the product of its marginals if and

only if its logarithmic form lies in the column space of
B. The set of all product densities is denoted P.

We shall often examine marginals in the logarithmic

domain. Given a PMF q, its marginal functions evaluated

at �j ¼ 1 are contained in BTq; the marginal evaluations

at �j ¼ 0 are thus contained in 1�BTq, where 1 is the

vector of all ones. Conversion to the log marginal ratios

(denoted L) then appears as

L ¼ log BTqðQÞ
� �

� log 1�BTqðQÞ
� �

¼� 	ðQÞ

where the logð�Þ operator acts componentwise, and the

argument to 	ð�Þ is the logarithmic coordinate vector Q for

convenience in what follows. The notation 	ðQÞ is used

since it describes an information-theoretic projector [23],

[29]: let t be a product distribution built from the log

marginal ratios L calculated from qðQÞ, so that ti ¼
exp½�i �  ðTÞ� where T ¼ BL. One can show that t is

the closest product distribution to q, in the sense that
t ¼ argmins2P DðqksÞ where s 2 P is constrained to be

a product distribution. Indeed, from (2) we have

DðqksÞ � DðqktÞ ¼  ðSÞ �  ðTÞ � hq;S� Ti: (3)

As both t and s are product distributions, their log forms

are T ¼ BL and S ¼ BM for certain log marginal ratio

vectors L and M. Thus the inner product hq;S� Ti may

be developed as

hq;S� Ti ¼ q;BðM� LÞh i
¼ hBTq;M� Li
¼ hBTt;M� Li
¼ t;BðM� LÞh i ¼ ht;S� Ti

in which BTq ¼ BTt since, by construction, t is built

from the marginals as q. Appealing again to (2), we have

ht;Ti ¼ gðtÞ þ  ðTÞ and ht;Si ¼ gðtÞ þ  ðSÞ� DðtksÞ.
Upon inserting these back into (3), we obtain a

BPythagorean[-like [15], [30] relation

DðqksÞ � DðqktÞ ¼ DðtksÞ � 0

Regalia and Walsh: Optimality and Duality of the Turbo Decoder
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for all product distributions s. This confirms that t is

indeed the closest product distribution to q, by the

Kullback–Leibler distance.

III . TURBO DECODER

We review in this section the basic description of the turbo

decoder for parallel and serial concatenated codes. As the

implementation aspects of turbo decoding have been

extensively studied (e.g., [31]–[36]), we restrict our

development in this section to the basic information ex-

change iterations.

A. Parallel Concatenated Codes
Fig. 1 shows a parallel concatenated encoder in

which the information bits B are passed through a

systematic encoder (labeled BEncoder 1[), then permut-
ed (or interleaved) and passed through a second

systematic encoder (labeled BEncoder 2[). The system

transmits the information bits plus two sets of parity-

check bits, over a memoryless channel. The received

versions of these bits (which incorporate modulation/

demodulation artifacts and noise) are collected into

vectors rs (for the information or Bsystematic[ bits), r1

(parity check bits from encoder 1) and r2 (parity check
bits from encoder 2).

The a posteriori probability mass function may be

written as

si ¼
�

PrðB ¼ bijrs; r1; r2Þ

¼ PraðB ¼ biÞpðrs; r1; r2jB ¼ biÞ
pðrs; r1; r2Þ

in which Prað�Þ is the probability measure induced by an

a priori probability mass function a, and pðrjBÞ denotes

the channel transition function, evaluated here for a given

realization r. The probability evaluation pðrs; r0; r1Þ con-

tributes a scale factor that does not vary with the

hypothesis bi and so is henceforth omitted.
We normally assume that the a priori PMF a is a

product distribution ða 2 PÞ; its logarithmic form is

thus A ¼ BL, specified by the log prior ratios

�j ¼ log
Prað�j ¼ 1Þ
Prað�j ¼ 0Þ ; j ¼ 1; 2; . . . ;N:

Denoting the log coordinates of the channel likelihood

function as

�i ¼ log
pðrs; r1; r2jbiÞ
pðrs; r1; r2jb0Þ

; i ¼ 0; 1; . . . ; 2N � 1

we may write the a posteriori probability function in log

coordinates [with 
i ¼ logðsi=s0Þ] as

S ¼ BLþ Q:

The maximum a posteriori word estimate for B is bk,

where k ¼ argmaxi si. The maximum a posteriori bitwise

estimate is given by thresholding the marginal evaluations

contained in BTs. If the a priori probabilities are uniform

(or simply omitted), then either estimate reduces to its

maximum likelihood counterpart. The computational
complexity of these operations is generally an exponential

function of the block length N, rendering a direct eval-

uation impractical.

If we impose additionally that each encoder be a

convolutional encoder, then computational reductions can

be achieved using the forward-backward algorithm [37].

Specifically, if we consider only the information from the

first encoder in

½Q1�i ¼ log
pðrs; r1jbiÞ
pðrs; r1jb0Þ

; i ¼ 0; 1; . . . ; 2N � 1

then the marginals from the adjusted a posteriori proba-

bility function (whose log form becomes S1 ¼ BLþ Q1)

can be calculated in OðNÞ computations [37]; the log form

of this marginal calculation corresponds to

M ¼ 	ðBLþ Q1Þ

with M containing the log a posteriori probability ratios

�j ¼ log
Prð�j ¼ 1jrs; r1Þ
Prð�j ¼ 0jrs; r1Þ

; j ¼ 1; 2; . . . ;N:

This operation, however, fails to take into account the in-
formation from the second set of parity check bits, Bhidden[

Fig. 1. Parallel concatenated code setup.
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in r2. The turbo decoder thus runs two (computationally

efficient) decoders, and stitches them together in the
following iterative algorithm:

L
ðkÞ
2 ¼ 	 BL

ðkÞ
1 þ Q1

 �
� L
ðkÞ
1

L
ðkþ1Þ
1 ¼ 	 BL

ðkÞ
2 þ Q2

 �
� L
ðkÞ
2 : (4)

Here the superscript ðkÞ denotes an iteration index, and Q2

collects the channel likelihood information from the
second set of parity-check bits1

½Q2�i ¼ log
pðr2jbiÞ
pðr2jb0Þ

; i ¼ 0; 1; . . . ; 2N � 1:

The variables L1 and L2 passed between the decoders are

log Bextrinsic information[ ratios; the extrinsic informa-

tion from one decoder is seen to usurp the position

reserved for the a priori information in the other. For this

reason, the terms L1 and L2 are sometimes called

Bpseudo priors,[ and the resulting marginals
[	ðBL1 þ Q1Þ or 	ðBL2 þ Q2Þ] Bpseudo posteriors.[

B. Serial Concatenation
Fig. 2 illustrates the cascade connection of two

encoders in the serial concatenation scheme. The outer

encoder is systematic; it begins with M ðG NÞ information

bits in H and adds another N �M parity check bits, for a

total of N bits that are interleaved to give B. The inner
encoder is assumed convolutional, but need not be

systematic.

The channel likelihood function pðrjHÞ would again

allow for optimum estimation (word- or bitwise) of the

information bits H, but the exponential complexity of

such an operation renders it impractical. The turbo

decoder instead uses the likelihood function with respect

to B (the input to the inner encoder) as

½Q1�i ¼ log
pðrjB ¼ biÞ
pðrjB ¼ b0Þ

; i ¼ 0; 1; . . . ; 2N � 1

since, as the inner encoder is convolutional, the calcula-
tion of marginals can again be accomplished in OðNÞ
computations. This operation becomes M ¼ 	ðBLþ Q1Þ
in our notation, where L contains log prior ratios for the

bits f�jg. The marginals M so calculated, however, ignore

the constraint that B must belong the outer code book.

The decoder for the outer code must therefore be ab-

sorbed; a means of stitching the two decoders together

was first proposed in [38], and in the present notation
takes the form

L
ðkÞ
2 ¼	 BL

ðkÞ
1 þ Q1

 �
� L
ðkÞ
1

L
ðkþ1Þ
1 ¼	 BL

ðkÞ
2 þ Q2

 �
� L
ðkÞ
2 (5)

in which Q2 is the log indicator function for the outer

encoder

½Q2�i ¼
0; if bi is an outer code word;

�1; otherwise.

�

We observe that these equations assume the same

form as for the parallel decoder in (4); they differ es-

sentially in how the log likelihood functions Q1 and Q2

are formed. Note also that the serial decoder estimates
both the systematic and parity-check bits of the outer

encoder. With these differences aside, the remaining de-

velopments will apply equally well to the parallel and

serial forms of the turbo decoder, and we shall dis-

tinguish the two henceforth only when necessary.

C. Consensus Property
We close this section with a classic property that

characterizes stationary points:

Property 1V(Consensus Property): A stationary point of

the turbo decoder occurs if and only if the two decoders

produce the same set of marginal probabilities.

Indeed, a stationary point is characterized by

L
ðkþ1Þ
1 ¼ L

ðkÞ
1 ; this then implies that L

ðkþ1Þ
2 ¼ L

ðkÞ
2 as

well. Denoting the stationary values as L1 and L2, we see
that (4) [or (5)] reduces to

L1 þ L2 ¼ 	ðBL1 þ Q1Þ ¼ 	ðBL2 þ Q2Þ

confirming that the two decoders produce the same

marginal probabilities. We note in passing that

T ¼ BðL1 þ L2Þ is the logarithmic form of a product
density t produced by these marginals. One may also show

(e.g., [12], [25]) that a stationary point always exists.

1Although at first sight the form of Q2 would appear to exclude the
contribution of information bits contained in rs, these bits do indeed enter
into the second decoder via the log extrinsic information ratios L2.

Fig. 2. Serial concatenation setup.
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We should emphasize that the symbol estimates
furnished at a stationary point do not, in general, yield

the true maximum a posteriori nor maximum likelihood

solution. An exception occurs when either likelihood

function Q1 or Q2 is a product distribution (e.g., [25], [39]),

but constituent codes yielding Q as a product distribu-

tion offer no coding gain. The remaining sections develop

more elaborate performance functions whose critical

points are the stationary points of turbo decoding.

IV. MAXIMUM LIKELIHOOD ESTIMATES
AND TURBO DECODING

We begin by studying specific functions in which the

pseudo priors L1 and L2 are allowed to behave as free

parameters. Specifically, consider the three log distributions

S1 ¼BL1 þ Q1

S2 ¼BL2 þ Q2

S0 ¼BðL1 þ L2Þ: (6)

Here S1 and S2 are the logarithmic forms of the pseudo

posterior distributions that are marginalized by either

decoder, and S0 is the logarithmic form of a product

distribution which, at any stationary point, would generate

the same marginals. (Recall that the marginals from either
decoder agree with those from S0 at a stationary point,

and differ otherwise). Their corresponding PMFs are de-

noted s1, s2, and s0, respectively, with s0 a product

distribution ðs0 2 PÞ.

A. A Preliminary Cost Function
Consider the scalar function

FðL1;L2Þ ¼  ðBL1 þ Q1Þ þ  ðBL2 þ Q2Þ
�  BðL1 þ L2Þð Þ

built around the normalization term  ð�Þ intro-

duced in (1).

Theorem 1: The critical points of FðL1;L2Þ are the

stationary points of the turbo decoder.

For the verification, recall from Section II-B that

the derivative of  ð�Þ with respect to its argument gives
the underlying probability mass function. As such, by the

chain rule for differentiation

@ ðBL1 þ Q1Þ
@L1

¼ @ðBL1 þ Q1Þ
@L1

� �T
@ ðBL1 þ Q1Þ
@ðBL1 þ Q1Þ

¼BTs1 ¼ ps1

giving the marginal probabilities for decoder 1. In the
same way, the derivatives

@ ðBL2 þ Q2Þ
@L2

¼ps2
;

@ BðL1 þ L2Þð Þ
@L1

¼ps0

@ BðL1 þ L2Þð Þ
@L2

¼ps0

give their respective marginal probabilities. Combining

these derivative expressions

@FðL1;L2Þ
@L1

¼ps1
� ps0

;

@FðL1;L2Þ
@L2

¼ps2
� ps0

:

These derivatives vanish if and only if we have consensus

between the marginal probabilities; by Property 1, this

characterizes the stationary points of the turbo decoder.

�
From this, one is tempted to examine whether the

turbo decoder might optimize this function in any way.

The following result would appear to dampen such a hope:

Theorem 2: All critical points of FðL1;L2Þ for which the

Hessian does not vanish are saddle points.

The verification involves calculating the Hessian (or

second derivative) matrix

r2FðL1;L2Þ ¼
@
@LT

1

@F
@L1

@
@LT

1

@F
@L2

@
@LT

2

@F
@L1

@
@LT

2

@F
@L2

24 35:
An exercise will show that the terms of the diagonal blocks

become

@

@LT
1

@F

@L1

� �
ij

¼Pr0ð�i¼1ÞPr0ð�j¼1Þ

� Pr1ð�i¼1ÞPr1ð�j¼1Þ
þ Pr1ð�i¼1; �j¼1Þ � Pr0ð�i¼1; �j¼1Þ

@

@LT
2

@F

@L2

� �
ij

¼Pr0ð�i¼1ÞPr0ð�j¼1Þ

� Pr2ð�i¼1ÞPr2ð�j¼1Þ
þ Pr2ð�i¼1; �j¼1Þ � Pr0ð�i¼1; �j¼1Þ

�
where Prkð�Þ is the probability measure induced by the

distribution Sk from (6). At any critical point, the marginal
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probabilities agree ½Pr0ð�jÞ ¼ Pr1ð�jÞ ¼ Pr2ð�jÞ�. More-
over, the joint probabilities Prkð�i; �jÞ reduce to these

marginals for i ¼ j. As such, the diagonal entries of r2F
all vanish at a critical point. The trace of r2F thus van-

ishes as well and, since the trace of a matrix is the sum of

its eigenvalues, we conclude that r2F must have both

positive and negative eigenvalues. (The case of all zero

eigenvalues give r2F vanishing, since r2F is symmetric).

This yields a saddle point. �
The situation can nonetheless be salvaged by reinter-

preting FðL1;L2Þ as the Lagrangian of a constrained

likelihood function, as we develop next.

B. BBroken[ Encoders
Consider the form

GðL1;L2Þ ¼  ðBL1 þ Q1Þ �  ðBL1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G1ðL1Þ

þ  ðBL2 þ Q2Þ �  ðBL2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G2ðL2Þ

which is seen to decouple into two functions. We observe
for either decoupled function (suppressing the index B1[
or B2[) that

GðLÞ ¼ log

P
i
exp bT

i Lþ �i

� �
P

i
exp bT

i L
� �

0B@
1CA

¼ log

P
i

ai

a0

qi

q0P
i

ai

a0

0@ 1A
¼ log

X
i

ai
qi

q0

 !
� max

i
log

qi

q0

where faig are the priors whose log form is A ¼ BL.
The maximum is attained by placing all the probability

mass of the priors faig on the largest entry from q.

Since q is, in this context, a channel likelihood func-

tion, the maximum of GðLÞ generates the maximum

likelihood word estimate bi for B; since �j ¼
log½Prð�j ¼ 1Þ=Prð�j ¼ 0Þ�, the correspondence becomes

�j ¼
1; if �j ! þ1;

0; if �j ! �1.

�

The role played by GðL1;L2Þ in turbo decoding is
highlighted in the following two examples. The setting in

either example is deliberately fabricated; the seeming

prevarication will be removed in Section IV-C.

Example 1: Consider the Bbroken[ parallel turbo

encoder of Fig. 3, in which the input bits to either encoder

are considered separate codewords B and bB. (Our

prevarication is to treat bB as independent of B). The
channel likelihood function for B now involves only rs and

r1 (which generate Q1), while that for bB now involves only

r2 (which generates Q2). Maximizing GðL1;L2Þ ¼
G1ðL1Þ þ G2ðL2Þ then generates the two maximum like-

lihood estimates for the code words B and bB. �

Example 2: One can likewise break the serial

concatenation, as in Fig. 4; the prevarication now is to
consider the input to the inner encoder (denoted B) as

being independent from the output of the outer encoder

(denoted bB). The maximum of G1ðL1Þ uses the channel
likelihood function built from r to determine a maximum

likelihood word solution for B, but ignores whether this

solution is compatible with the outer code book. The maxi-

mization of G2ðL2Þ now presents multiple maximaVall

equally goodVobtained whenever L2 gives a bB that

coincides with a (deinterleaved) code word from the outer

code book. �

C. Constrained Maximum Likelihood Estimation
Treating the terms from either encoder as independent

quantities is clearly inconsistent with the concatenation

that defines the turbo encoder. We develop here how

a dependence between the terms may be viewed as a

constraint.

To this end, consider the pseudo prior distributions a1

and a2 corresponding to B and bB, respectively. As a1 and

a2 are both product distributions ða1; a2 2 PÞ, their log
Fig. 3. Contrived setting in which inputs to encoders are treated

as independent.

Fig. 4. Contrived setting in which output of outer encoder is treated as

independent of input to inner encoder.
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forms are A1 ¼ BL1 and A2 ¼ BL2, using the log pseudo
prior ratios

½L1�j ¼ log
Pra1
ð�j ¼ 1Þ

Pra1
ð�j ¼ 0Þ

½L2�j ¼ log
Pra2
ðb�j ¼ 1Þ

Pra2
ðb�j ¼ 0Þ

; j ¼ 1; 2; . . . ;N:

We claim that

CðL1;L2Þ ¼
�
 BðL1 þ L2Þð Þ �  ðBL1Þ �  ðBL2Þ

provides a measure of discrepancy between these priors.

To see this, we observe that

 BðL1 þ L2Þð Þ �  ðBL1Þ �  ðBL2Þ

¼ log

P
i

a1;i

a1;0

a2;i

a2;0P
i

a1;i

a1;0

� � P
i

a2;i

a2;0

� �
0BB@

1CCA
¼ log

X
i

a1;ia2;i

 !
� log 1 ¼ 0

in which the maximum is attained if and only if the two

sets of priors yield unequivocal PMFs for the same index,

i.e., a1;i ¼ a2;i ¼ 1 for a certain index i, and zero

otherwise.

A more appropriate optimization problem is therefore

max
L1;L2

GðL1;L2Þ; subject to CðL1;L2Þ ¼ 

where  fixes the constraint set. If  ¼ log 1 ¼ 0, then

this optimization problem yields the maximum likelihood

word (or sequence) solution for the concatenated en-
coding problem. To see this, we note that

GðL1;L2Þ ¼ log
X

i

X
j

a1;ia2;j
q1;i

q1;0

q2;j

q2;0

 !

and if  ¼ 0, then a1;ia2;j ¼ 1 for a certain i ¼ j, and zero

otherwise. The criterion then reduces to maxi logðq1;iq2;iÞ,
whose solution gives the index i of the maximum

likelihood word estimate bi. If continuity of the solution

with respect to the constraint parameter extends to  ¼ 0,
then values of  near zero should give solutions near a

maximum likelihood word estimate.

The constraint may be absorbed by introducing the

Langrangian for our problem, viz.

LðL1;L2; �Þ ¼� GðL1;L2Þ þ � CðL1;L2Þ � ð Þ (7)

in which � is the Lagrange multiplier. The following result,

first obtained in [21], relates this constrained optimization

problem to the turbo decoder:

Theorem 3: The turbo decoding algorithm is an iterative

method to null the gradient of the Lagrangian LðL1;L2; �Þ
from (7) using � ¼ �1

Choose L
ðkÞ
2 :

@L L
ðkÞ
1 ;L

ðkÞ
2 ;�1

 �
@L
ðkÞ
1

¼ 0;

Choose L
ðkþ1Þ
1 :

@L L
ðkþ1Þ
1 ;L

ðkÞ
2 ;�1

 �
@L
ðkÞ
2

¼ 0:

The verification amounts to observing that

@L L
ðkÞ
1 ;L

ðkÞ
2 ;�1

 �
@L
ðkÞ
1

¼
@G L

ðkÞ
1 ;L

ðkÞ
2

 �
@L
ðkÞ
1

�
@C L

ðkÞ
1 ;L

ðkÞ
2

 �
@L
ðkÞ
2

¼p
BL
ðkÞ
1 þQ1
� p

B L
ðkÞ
1 þL

ðkÞ
2ð Þ

involving the difference of marginals. The value of L
ðkÞ
2

which nulls this is characterized by the matching of

marginals, i.e.,

L
ðkÞ
1 þ L

ðkÞ
2 ¼ 	 BL

ðkÞ
1 þ Q1

 �
:

But this is just the first equation of (4) [or (5)]. A similar

verification applies to the choice of L
ðkþ1Þ
1 . �

This result at first sight may seem peculiar: constrained

optimization normally involves fixing the constraint value

 and then seeking the Lagrange multiplier � consistent

with this constraint value. The turbo decoder, by contrast,

works in reverse: the Lagrange multiplier is first fixed to

� ¼ �1, and the value of the constraint  is then found
after convergence (using the pseudo priors fa1;ig and

fa2;ig). This need not be perceived as an oddity, once we

recognize that statistical thermodynamics contains various

constrained problems that may be solved by first fixing
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the Lagrange multiplier, and then inferring the con-

straint value; a common example is the derivation of

the Boltzmann distribution and grand partition function
[40]–[42], aiming to maximize the entropy under an av-

erage energy constraint.

Example 3: Fig. 5 shows the bit error rate for a parallel

turbo code using two (5,7) recursive systematic encoders,

and a block length of N ¼ 16 384. Also plotted is the

constraint value expðÞ which results after convergence.

For signal-to-noise ratios beyond the waterfall region, the
constraint value is observed to approach unity. If con-

tinuity with respect to  can be ascertained, then the

turbo decoder solution will approach a maximum like-

lihood word solution. �
How to bound some distance to a wordwise maximum

likelihood solution versus  is presently unresolved, as

apparently is the more pragmatic debate of how significant

the performance distinction between the bitwise and
wordwise optimal solutions is in the first place [43].

V. FREE ENERGY AND DUAL
OPTIMIZATION

We turn our attention to the belief propagation view of

turbo decoding, which facilitates the Bethe free energy

approximation. We first review how the turbo decoder
may be viewed as the belief propagation algorithm

applied to a factor graph; our treatment of this point is

succinct as greater detail is available in the lucid papers

by McEliece et al. [8] and Kschischang et al. [10]. We

then develop the Bethe free energy applied to the turbo

decoder using the methodology of Yedidia et al. [18].

Our presentation deviates by examining the Bpseudo

dual[ [28] of the Lagrangian function from [18], which
is shown to yield the likelihood function of the previous

section and thus establish the equivalence of the two

approaches.

A. Belief Propagation Algorithm
We begin with the overall likelihood function for the

turbo decoder

qðBÞ / pðrs; r1jBÞpðr2jBÞ; parallel;

pðrjBÞIðBÞ; serial.

�

Here pðrs; r1jBÞ, pðr2jBÞ and pðrjBÞ are channel likelihood
functions, and IðBÞ is the indicator function for the outer

code book of Fig. 2.

The factor graph for the turbo decoder is sketched in

Fig. 6, using

q1ðBÞ / pðrs; r1jBÞ; q2ðBÞ / pðr2jBÞ

for the parallel concatenated case, and

q1ðBÞ / pðrjBÞ q2ðBÞ / IðBÞ

for the serial concatenated case. The branches connecting

the variable nodes (labeled �1; . . . ; �N) indicate that the
factors q1 and q2 depend on those variables; the branches

provide the paths along which messages are passed

between nodes [10]. Let m�j!q1
ð�jÞ denote the message

vector from variable node �j to factor node q1; this consists

of two evaluations m�j!q1
ð0Þ and m�j!q1

ð1Þ which are

nonnegative and sum to one, and designate roughly a

probability that bit �j is 0 or 1. The return message on the

j-th branch, denoted mq1!�j
ð�jÞ, is computed from the

belief propagation [9] (or sum-product [10]) algorithm

according to [8]

mq1!�j
ð0Þ /

X
B:�j¼0

q1ðBÞ
Y
i 6¼j

m�i!q1
ð�iÞ;

mq1!�j
ð1Þ /

X
B:�j¼1

q1ðBÞ
Y
i 6¼j

m�i!q1
ð�iÞ

Fig. 5. Plot of bit error rate (solid) and constraint value (dashed) near

the waterfall region.

Fig. 6. Factor graph for the turbo decoder.
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with the two terms scaled to sum to one. These messages
are then relayed to q2, i.e., m�j!q2

ð�jÞ ¼ mq1!�j
ð�jÞ, and

the node operations at q2 are analogous to those at q1

mq2!�j
ð0Þ /

X
B:�j¼0

q2ðBÞ
Y
i 6¼j

m�i!q2
ð�iÞ;

mq2!�j
ð1Þ /

X
B:�j¼1

q2ðBÞ
Y
i 6¼j

m�i!q2
ð�iÞ:

These messages, in turn, are relayed back to q1, and the

process iterates. The logarithmic forms of these interac-

tions give the turbo decoder of (4) (parallel concatena-

tion) or (5) (serial concatenation), with the identification

of variables

½L2�ðkÞj ¼ log
m
ðkÞ
q1!�j
ð1Þ

m
ðkÞ
q1!�j
ð0Þ

;

½L1�ðkþ1Þ
j ¼ log

m
ðkÞ
q2!�j
ð1Þ

m
ðkÞ
q2!�j
ð0Þ

:

B. Region Based Approximation
A convenient analogy of the turbo decoder operation

may be found in spin glass dynamics of a discrete-state
system in thermal equilibrium [16], [17]: if EðbiÞ is the

energy of a particular state configuration B ¼ bi, the

probability that the system is in such a state follows a

Boltzmann distribution [41]

PrðB ¼ biÞ ¼
1

ZðkTÞ exp �
EðbiÞ

kT

� �
¼� qi

where k is Boltzmann’s constant, T denotes temperature,

and ZðkTÞ is a normalization constant. We may set

the temperature so that kT ¼ 1 when the physical origin

gives but a mathematical analogy, as in our setting.

By rearranging terms, EðbiÞ ¼ � log½PrðB ¼ biÞ=
PrðB ¼ b0Þ� ¼ ��i, so that the logarithmic coordinate

components may be understood as the negative of energy

terms from statistical physics. The normalization con-
stant relates to our normalization function from (1)

according to

log Zð1Þ ¼ log
X

i

exp �EðbiÞð Þ ¼  ðQÞ:

Let fqig capture some true underlying likelihood

function, with evaluations scaled to sum to one, and

consider the problem of choosing a PMF fsig as some
candidate approximation. The average energy related to s is

given by [18]

UðsÞ ¼
X

i

siEðbiÞ ¼ �
X

i

si�i ¼ �hs; Qi:

Upon subtracting the entropy HðsÞ ¼ �gðsÞ, the free
energy results

FðsÞ ¼ UðsÞ � HðsÞ ¼ gðsÞ � hs; Qi:

Choosing s to minimize the free energy then yields s as a

type of approximation to q since, from (2), we have

gðsÞ � hs; Qi ¼ DðskqÞ �  ðQÞ

and, for fixed q, minimizing this amounts to minimizing

the Kullback–Leibler distance DðskqÞ. The obvious choice

here would be s ¼ q, but the number of evaluations in q
grows exponentially with the block length, inciting thus

more tractable alternatives.

Inspired by approximation problems arising in statis-

tical physics, Yedidia et al. [18] introduced region based
approximations, in which a factor graph is divided into

(generally overlapping) regions; a free energy approxima-

tion is carried out within each region, and the results

Bsewn up[ subject to certain consistency constraints on

marginal probabilities.

The Bethe approximation to the free energy arises from

a particular choice of regions: each factor node generates a

region (consisting of itself plus all variable nodes joined to
it), and each variable node generates a region (consisting

of itself). As the factor graph of Fig. 6 contains but two

factor nodes, the Bethe approximation strategy will lead to

three regions, sketched in Fig. 72

R1 ¼ fq1;Bg; R2 ¼ fq2;Bg; R0 ¼ fBg:

Let s1 and s2 be candidate approximations to the

likelihood functions q1 and q2 in regions R1 and R2,

2Observe that we have lumped all the variables nodes into a common
region R0, which is permitted since each variable node shares a common
degree (¼ 2 here); the Bethe approximation would properly associate to
each variable node its own region, since in more general factor graphs the
different variable nodes may have different degrees. Each node would
contribute an entropy factor ðdi � 1ÞH2ðpÞ to (8), where di is the node
degree and H2ðpÞ is the binary entropy function. Since di ¼ 2 for each
node, the net entropy so contributed is that from a product distribution
s0 2 P, accounting for the term �gðs0Þ in (8). The Bcounting numbers[
[18] for the regions become cR1

¼ cR2
¼ 1 and cR0

¼ �1.
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respectively. From the methodology of [18], the region

based energies and entropies become

UBethe ¼ � hs1; Q1i � hs2; Q2i;
HBethe ¼ � gðs1Þ � gðs2Þ þ gðs0Þ

where s0 2 P is a product distribution for region R0. The
Bethe free energy is then [18]

FBethe¼UBethe�HBethe

¼ gðs1Þ�hs1; Q1ið Þþ gðs2Þ�hs2; Q2ið Þ�gðs0Þ: (8)

The critical points of this function are sought, subject to

the constraint that all three approximants (namely s0, s1,

and s2) yield the same marginals, i.e.,

BTs1 ¼ BTs2 ¼ BTs0 ¼ p

in which the N values in p ¼ ½p1; . . . ; pN�T are the free

parameters in the optimization problem. Since s0 is a
product distribution, we may directly parametrize it in

logarithmic form as S0 ¼ BM in terms of the log mar-

ginal ratios

�j ¼ log
pj

1� pj
; j ¼ 1; 2; . . . ;N:

The entropy contributed to (8) then becomes

�gðs0Þ ¼ �
P

j½pj log pj þ ð1� pjÞ logð1� pjÞ�. We exam-

ine next the critical points of the Bethe free energy and,
more importantly, their relation to the constrained

likelihood formulation of Section IV-C.

C. Constrained Optimization
The constrained optimization problem is captured by

the Lagrangian

LBetheðs0; s1; s2;L1;L2Þ ¼ FBetheðs0; s1; s2Þ
þ hp�BTs1;L1i þ hp�BTs2;L2i

where L1 and L2 are vectors of Lagrange multipliers.

From optimization theory [28], it is convenient to
introduce the dual function

F�BetheðL1;L2Þ ¼� min
s02P

s1 ;s22D

LBetheðs0; s1; s2;L1;L2Þ

(with D the set of PMFs) as well as the pseudo dual
function

F ]BetheðL1;L2Þ ¼
� LBethe s�0; s

�
1 ; s
�
2;L1;L2

� �
where the distinguished elements s�0 2 P, s�1 ; s

�
2 2 D null

the gradients

@LBethe
@sk

!!!!
sk¼s�k
¼ 0; k ¼ 0; 1; 2

provided that, for each L1 and L2, these equations give a

unique solution for the PMFs sk. We show in Section V-D
that the pseudo dual function for our problem may be

characterized as

F ]BetheðL1;L2Þ ¼ max
s02P

min
s1;s22D

LBetheðs0; s1; s2;L1;L2Þ

but that the conventional dual function forces s0 to a

boundary of the domain of LBethe, and as such is not in

general characterized by null gradients.

Our preference for the pseudo dual stems from the

simple observation that its critical points, given by

@F ]Bethe
@Li

¼ 0; i ¼ 1; 2

are the critical points of the Lagrangian LBethe, and thus

the critical points of the constrained optimization problem

Fig. 7. Showing the three regions for the Bethe approximation of the

free energy for the turbo decoder.
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for the Bethe free energy FBethe. Our main result of this
section, adapted from [20] and [22], connects these critical

points to the stationary points of the turbo decoder:

Theorem 4: The pseudo dual function is given by

F ]BetheðL1;L2Þ¼ BðL1þL2Þð Þ �  ðBL1þQ1Þ
�  ðBL2þQ2Þ

which is the negative of FðL1;L2Þ from Theorem 1. Thus,

the critical points of the constrained Bethe approximation

problem are the stationary points of the turbo decoder.

That the critical points of the Bethe free energy give

the turbo decoder stationary points was previously shown
in [16], [18] through a direct evaluation of the first-order

necessary conditions.

The verification of Theorem 4 requires calculating the

necessary derivatives. To ensure that the sk are valid PMFs

(staying in D), we first parametrize s0 via its marginals p,

while for s1 (or s2) we set s1;0 ¼ 1�
P

i�1 s1;i so that the

evaluations sum to one. The solutions for the s�k obtained

at a critical point will be observed to have nonnegative
elements, giving valid PMFs.

Now, the derivative of the Lagrangian LBethe with

respect to the marginals pj which parametrize s0 become

@LBethe
@pj
¼ @

@pj
�gðs0Þþhp�BTs1;L1iþhp�BTs2;L2i
� �

¼ @

@pj
�
XN

i¼1

pi log piþð1� piÞ logð1�piÞð Þ
 !

þ ð�1;jþ�2;jÞ

¼ �log
pj

1� pj
þð�1;jþ�2;jÞ; j ¼ 1; . . . ;N:

Nulling these terms specifies the log marginal ratios that

parametrize s0 2 P, so that the logarithmic form of s�0 at

a critical point becomes S�0 ¼ BðL1 þ L2Þ.
For s1, we recall from Section II-B that the derivative of

the negative entropy gð�Þ generates the logarithmic

coordinates, so that

@LBethe
@s1;i

¼ @

@s1;i
gðs1Þ � hs1; Q1i þ hp�BTs1;L1i
� �

¼
1;i � hbi;L1i þ �1;i

� �
; i ¼ 1; 2; . . . ; 2N � 1:

Nulling this gives the logarithmic form S�1 ¼ BL1 þ Q1. A

similar exercise gives S�2 ¼ BL2 þ Q2. Since the solutions

are specified in the log domain, the resulting fs�kg are

valid PMFs.

Upon substituting these forms into the Lagrangian
LBethe, we obtain for the pseudo dual

F ]BetheðL1;L2Þ ¼
�

g s�1
� �
� hs�1 ;BL1 þ Q1

zfflfflfflfflffl}|fflfflfflfflffl{S�1

i
�

þ
�

g s�2
� �
� hs�2;BL2 þ Q2

zfflfflfflfflfflffl}|fflfflfflfflfflffl{S�2

i
�
� g s�0

� �
� hp;L1 þ L2i

� �
:

From (2) we identify gðs�1 Þ � hs�1 ;S�1i ¼ � ðS�1Þ and
gðs�2Þ � hs�2;S�2i ¼ � ðS�2Þ. Substituting finally p ¼
BTs�0, we also have

g s�0
� �
� hp;L1 þ L2i ¼ g s�0

� �
� BTs�0;L1 þ L2

" #
¼ g s�0
� �
� s�0;BðL1 þ L2Þ
" #

¼ � S�0
� �

:

Thus the pseudo dual may be written as

F ]BetheðL1;L2Þ ¼ S�0
� �
�  S�1

� �
�  S�2

� �
¼ BðL1 þ L2Þð Þ �  ðBL1 þ Q1Þ
�  ðBL2 þ Q2Þ

to confirm the theorem. �

D. Max-Min Characterization
Here we establish the Bmax-min[ property of the

pseudo dual function, a character previously overlooked.

We begin by rewriting the Bethe free energy from (8) as

FBethe¼ Dðs1kq1Þ �  ðQ1Þð Þþ Dðs2kq2Þ �  ðQ2Þð Þ
� gðs0Þ (9)

which results by applying relation (2) to the terms
involving s1 and s2. From the inequalities Dðs1kq1Þ � 0,

Dðs2kq2Þ � 0 and �gðs0Þ � 0, clearly the Bethe free

energy is lower bounded by � ðQ1Þ �  ðQ2Þ. As such, the

dual function

F�BetheðL1;L2Þ ¼ min
s02P

s1 ;s22D

LBetheðs0; s1; s2;L1;L2Þ

is well defined. Now, the Lagrangian LBethe depends on
s0 via the term �gðs0Þ þ hp;L1 þ L2i, which is concave

since the entropy

�gðs0Þ ¼ �
XN

j¼1

pj log pj þ ð1� pjÞ logð1� pjÞ
� �
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is a concave function of the marginals in p [26] and the
remaining term hp;L1 þ L2i is linear in p. Thus there is

a unique maximum with respect to p, obtained where

derivatives vanish. The minimum with respect to p, by

contrast, occurs at a boundary point which sets

gðs0Þ ¼ 0, viz.

pj ¼
0; if ½L1 þ L2�j 9 0;

1; if ½L1 þ L2�j G 0.

�

The dependence of the Lagrangian LBethe on s1, on

the other hand, is via the term Dðs1kq1Þ � hs1;BL1i,
which is convex in s1 [26]. Thus the critical point of

LBethe with respect to s1 is a minimum. The same

argument applies to the critical point with respect to s2,

which confirms that the pseudo dual function is a Bmax-

min[ form, i.e.,

F ]BetheðL1;L2Þ ¼ max
s02P

min
s1;s22D

LBetheðs0; s1; s2;L1;L2Þ:

E. The Constraint Manifold
We develop finally a more explicit form for the Bethe

free energy along the manifold in which s0, s1, and s2 are

constrained to give the same marginals.

With the logarithmic coordinates of s1 in the form

S1 ¼ BL1 þ Q1, let M1ðQ1Þ denotes the set of marginal

BTs1 that are reachable as L1 varies throughout IRN, and

letM2ðQ2Þ be defined similarly. In what follows, we let p
denote a vector of marginal probabilities in the intersec-

tion M1ðQ1Þ \M2ðQ2Þ. For any such p, the following

convex optimization problem [23], [29], [30] admits a

well-defined solution:

Lemma 1: Let q be an arbitrary PMF and s a candidate

approximation. The minimum of DðskqÞ subject to the

marginal constraint BTs ¼ p is attained with s of the form

si ¼ qi exp hbi;Li � ð Þ

for a certain L, chosen to obey the marginal constraint. (In

logarithmic coordinates, S ¼ BLþ Q.) The minimized

value is

min
s2D

BT s¼p

DðskqÞ ¼ hp;Li þ  ðQÞ �  ðBLþ QÞ:

�
For completeness, a verification is given in the

Appendix. Applying this lemma to the terms Dðs1kq1Þ

and Dðs2kq2Þ from (9), the Bethe free energy reduces to

FBetheðpÞ ¼ p;L1ðpÞ þ L2ðpÞh i � gðs0Þ
�  BL1ðpÞ þ Q1ð Þ �  BL2ðpÞ þ Q2ð Þ

in which we emphasize notationally that L1 and L2 are

now functions of p; these functions exist and are unique

for all p 2M1ðQ1Þ \M2ðQ2Þ by Lemma 1. By choosing

s0 as the product distribution built from p, then all three

PMFs s0, s1 and s2 satisfy the marginal constraint.

Introduce now t 2 P as the product distribution whose
logarithmic form is T ¼ BðL1 þ L2Þ. By the marginal

constraint p ¼ BTs0, the first two terms of the develop-

ment of FBethe become

hp;L1 þ L2i � gðs0Þ ¼ hBTs0;L1 þ L2i � gðs0Þ
¼
"
s0;BðL1 þ L2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

T

#
� gðs0Þ

¼ ðTÞ � Dðs0ktÞ

in which we invoke (2) for the final equality. Substituting

this back into the development for FBethe then gives

FBetheðpÞ ¼  B L1ðpÞ þ L2ðpÞð Þð Þ �  BL1ðpÞ þ Q1ð Þ
�  BL2ðpÞ þ Q2ð Þ � D s0ðpÞktðpÞð Þ

in which s0, L1, L2, and thus t are now all functions of p.

This gives directly the Bethe free energy along the constraint

mainfold BTs0 ¼ BTs1 ¼ BTs2 ¼ p. This differs from the
pseudo dual function due to the presence of the Dðs0ktÞ
term, and also because L1 and L2 are coupled from the

marginal constraint, and thus no longer independent vari-

ables. A critical point is, as expected, observed when p is

chosen to give s0 ¼ t (which gives then S0 ¼ T ¼
BðL1 þ L2Þ). Although this corresponds to a maximum

of the term �Dðs0ktÞ, it is not necessarily a maximum of

the constrained FBethe, since L1 and L2 are also functions
of the marginals p via Lemma 1. The general question thus

of whether turbo decoder stationary points are minima,

maxima, or saddle points of the constrained Bethe energy

would appear still unresolved for the general case.

VI. CONCLUDING REMARKS

We have reviewed two recent optimality formulations for

the turbo decoder, one based on constrained likelihood

estimation and the other on Bethe free energy optimiza-

tion. The former may be seen as the pseudo-dual function

of the Lagrangian of the latter.

A more complicated issue concerns characterizing the

critical points, i.e., whether the critical point of the Bethe
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free energy is indeed a minimum, or the constrained
likelihood indeed a maximum. Further properties for the

constrained likelihood are examined in [21] where it is

observed that a minimum or saddle point may result,

depending on the channel realization. Nonetheless, a

composite likelihood function, averaged over all channel

realizations, is shown to yield a maximum at its critical point

[21]. Whether an analogous composite Bethe free energy

will always yield a minimum is not presently resolved.
The role of these relations in studying the convergence

behavior is also of interest to pursue. The result of

Theorem 3 connects the turbo decoder with an iterative

attempt to null the gradient of a Lagrangian; this in turn

may be seen an application of the Gauss–Seidel method

[44]–[46] of numerical analysis. Further exploration

along these lines is pursued in [21], [47], [48], leading

to sufficient conditions for convergence that do not
appeal to asymptotic approximations. The conditions so

obtained are rather algebraic, however, and not easy to

relate to engineering design parameters. Indeed, the

interesting work of Kocarev et al. [49] shows that the

nonlinear dynamics of the turbo decoder can even induce

chaotic behavior in some cases. h

APPENDIX
Here we verify the claim of Lemma 1. Let

si ¼ qi expðhbi;Li � Þ, where L is chosen to satisfy the

marginal constraint
P

i sibi ¼ BTs ¼ p, and  the scaling
constraint

P
i si ¼ 1. We first evaluate DðskqÞ as

DðskqÞ ¼
X2N�1

i¼0

si log
si

qi
¼
X2N�1

i¼0

si hbi;Li � ð Þ

¼
X2N�1

i¼0

sibi;L

* +
�  ¼ hp;Li � :

Let now r denote any other PMF which satisfies
the marginal constraint:

P
i ribi ¼ BTr ¼ p. We may

develop DðrkqÞ as

DðrkqÞ ¼
X2N�1

i¼0

ri log
ri

qi
¼
X2N�1

i¼0

ri log
ri

si

si

qi

� �

¼
X2N�1

i¼0

ri log
ri

si
þ
X2N�1

i¼0

ri hbi;Li � ð Þ

¼DðrksÞ þ hp;Li � 
¼DðrksÞ þ DðskqÞ:

Thus, DðrkqÞ � DðskqÞ, with equality iff r ¼ s.

To evaluate the scale factor , we observe that

 ¼ log
X2N�1

i¼0

qi exp hbi;Lið Þ
 !

¼ log
X2N�1

i¼0

qi

q0
exp hbi;Lið Þ

 !
þ log q0

¼ log
X2N�1

i¼0

exp hbi;Li þ �ið Þ
 !

þ log
1P

i
expð�iÞ

0@ 1A
¼ ðBLþ QÞ �  ðQÞ:

Thus the minimized value is DðskqÞ ¼ hp;Li þ  ðQÞ�
 ðBLþ QÞ, as Lemma 1 claims. �
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