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Abstract

This paper presents a class of algorithms for scheduling packets in input-queued switches. As opposed

to previously known algorithms that focus only on achieving high throughput, these algorithms seek to

achieve low average delay without compromising the throughput achieved.

Packet scheduling in input-queued switches based on the virtual-output-queued architecture is a

bipartite graph matching problem wherein ports are represented by vertices and the traffic flows by the

edges. The set of matched edges determine the packets that are to be transferred from the input ports

to the output ports. Current matching algorithms implicitly prioritize high-degree vertices, i.e., ports

with a large number of flows, causing longer delays at ports with a smaller number of flows. Motivated

by this observation, we present three matching algorithms based on explicitly prioritizing low-degree

vertices and the edges through them. Using both real gateway traffic traces as well as synthetically

generated traffic, we present simulation results showing that this class of algorithms achieves a low

average delay as compared to other scheduling algorithms of equivalent complexity while still achieving

similar throughput. We also show that these algorithms determine the maximum size matching in almost

all cases.
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I. INTRODUCTION

A typical switch or a router in a network consists of a set of input ports that receive packets through

incoming links, a set of output ports that transmit packets onto the outgoing links, a switching fabric

(usually a crossbar) that transfers packets from the input ports to the output ports and some memory for

buffering packets. Almost all the switch architectures that have been developed can be categorized based

on where the incoming packets are buffered. The architecture that offers the highest throughput and low

delay is an output-queued switch where packets arriving at the input ports are immediately transferred to

their destination output port and, if necessary, buffered there. This requires packet buffers at the output

ports to operate faster than the line rate since they must, in the worst case, buffer multiple packets arriving

simultaneously from all the input ports (Karol et al., 1987). This problem is further compounded by the

advent of high speed optical links with line rates several orders of magnitude higher than current memory

speeds. This trend is expected to continue and place renewed emphasis on the design and development

of switch and router architectures capable of handling terabits of data per second.

On the other hand, input-queued switches based on the virtual-output-queueing (VOQ) architecture do

not require the buffers to operate faster than the line rates (Tamir and Frazier, 1988). Packets arriving

at the input ports of a VOQ switch are buffered at the input ports in different queues based on their

destination output port, thus requiring the packet buffers to operate only at the line rate. More recently,

researchers have proposed using a switching fabric with buffered crossbars, i.e., with buffers at each

cross-point, and demonstrated that this architecture is capable of achieving 100% throughput (Javidi

et al., 2001). However, the buffered crossbar architecture does not scale very well because of current

limitations on the number and size of memories that can be implemented on a single chip. The VOQ

architecture, therefore, remains an appealing design for high-speed switches. Recent research has shown

that it is possible to achieve 100% throughput as well as support Quality-of-Service (QoS) guarantees

using input-queued switches (McKeown et al., 1999). Central to this success are the scheduling algorithms

that control access to the switch fabric and determine which packets are transferred from the input ports

to the output ports.

This paper proposes a new class of algorithms to schedule the transfer of packets from input ports

to output ports in a VOQ switch. In contrast to past research which has largely focused on either high

throughput or guaranteed services, this work seeks to achieve lower average delays for best-effort traffic

while also achieving a throughput that is very close to the maximum possible.
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A. Background

Scheduling the transfer of packets from input ports to output ports in a VOQ switch is a bipartite

graph matching problem. The input ports and the output ports form the two disjoint sets of vertices of

the bipartite graph. The edge set of the graph is formed by adding an edge between two vertices if and

only if the input port represented by one vertex has a packet queued for transmission through the output

port represented by the other vertex. The scheduling problem is to generate a subset of edges such that

each vertex has at most one edge incident on it. This subset of edges describes the set of packets that

should be transferred from the input ports to the output ports.

It is desirable that the largest subset of edges be selected to maximize the overall throughput of the

switch. The fastest known algorithm for Maximum Size Matching (MSM) in bipartite graphs was proposed

by Hopcroft and Karp (1973). The algorithm begins with an initial match and then iteratively identifies

an augmenting path; i.e., a simple path whose edges are alternately matched and unmatched and whose

starting and ending vertices are unmatched. It increases the size of the initial matching by removing the

matched edges that occur in the path from the initial matching and adding the unmatched edges of the

path to the matching. This process is repeated until no augmenting path can be found. Although the

algorithm guarantees the largest matching possible and therefore maximizes the overall throughput, it is

unfair since it may lead to starvation of flows (i.e., some input and output ports are never matched). In

addition, it has been shown to be unstable even for admissible traffic patterns; i.e., even if none of the

input and output ports are over-subscribed, a queue may not become empty with probability one after

some finite time (Keslassy et al., 2003). On the other hand, it has been proved that a maximum weight

matching, with the weight function based either on the queue length (called the Longest Queue First or

LQF algorithm) or on the queueing delay of the head-of-line packet (called the Oldest Cell First or OCF

algorithm), is stable for all admissible traffic patterns (McKeown et al., 1999). It has also been shown

that these algorithms can provide bandwidth and delay guarantees (Charny et al., 1998, Kam and Siu,

1999, Leonardi et al., 1999).

While the algorithms discussed above are stable and guarantee high-throughput, their implementation

and time complexity make them unsuitable for implementation in high-speed switches. Therefore, the

design of simpler algorithms that seek to approximate these perfect algorithms has received significant

attention over the last decade. The need for simple, efficient and fast schedulers for high-speed switches

was first addressed by Anderson et al. (1993) with the Parallel Iterative Matching (PIM) algorithm, a

distributed maximal matching algorithm based on iterative negotiations between input and output ports.
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The PIM scheduling algorithm is composed of multiple iterations, with each iteration having three distinct

phases.

• The Request Phase: In this phase, the input ports first identify the output ports to which they have

at least one packet queued and proceed to send a Request signal to these output ports asking for

permission to transmit.

• The Grant Phase: The output ports receive these Request signals from the input ports. Each output

port randomly selects one of the requesting input ports to which it sends a Grant signal indicating

permission to transmit.

• The Accept Phase: The input ports receive these grants (an input port may receive more than

one grant). Each input port randomly selects one of the grants and sends an Accept signal to the

corresponding output port indicating acceptance of the grant.

The above three phases complete a single iteration. Ports between which an Accept signal was exchanged

during an iteration are considered matched and they do not take part in subsequent iterations. PIM has

been shown to achieve over 98% utilization under uniform traffic in just 4 iterations. However, since

PIM is a randomized algorithm, it cannot place a finite upper bound on the length of time a flow might

be starved.

One approach to prevent starvation is to have the input and the output ports issue requests and grants

in a round-robin fashion, with each output port issuing grants to the input that appears next in a fixed

round-robin schedule. Similarly, the input ports issue accepts to the output port that appears first in a fixed

round-robin schedule. While the round-robin matching algorithm is simple to implement and eliminates

the use of randomness, it becomes unstable for an offered load of just 63%. This is because, at heavy

loads, the counters move in lock-step and hence multiple output ports issue grants to a single input port.

The iSLIP algorithm, proposed by McKeown (1999), eliminates the use of randomness and solves the

synchronization problem by having the input ports and the output ports issue grants and accepts in a

round-robin fashion. Each port maintains a counter that keeps track of the next port to which a grant or

an accept is to be issued. Input ports increment the counter to one past the last accepted output port,

while output ports increment their counter by one past the input port it last granted to, if and only if the

grant was accepted by the input port in the Accept phase. This round-robin fashion of issuing grants

and accepts places a finite upper bound on the length of time a flow might be starved. McKeown (1999)

also showed that iSLIP can provide 100% throughput for uniform traffic.

Although the iSLIP algorithm bounds the starvation experienced by flows, it treats all flows equally

and does not support bandwidth reservations. Zhang and Bhuyan (2003) proposed the Iterative Port-
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(a) Probability of an input port being matched is directly

proportional to its degree.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OUTPUT PORT DEGREE

P
R

O
B

A
B

IL
IT

Y
 O

F
 M

A
T

C
H

1 ITERATION
2 ITERATIONS
4 ITERATIONS
16 ITERATIONS

(b) Probability of an output port being matched is directly

proportional to its degree.

Fig. 1. Simulation results illustrating PIM’s implicit bias towards matching ports with a high degree.

based Deficit Round Robin (IPDRR) algorithm as a scheme to ensure that flows receive an allocation in

proportion to their reservations. IPDRR maintains a Deficit Round Robin (DRR) scheduler at each input

and output port (Shreedhar and Varghese, 1996). The reservation of a flow is determined by the quota

of the flow in the DRR scheduler. An unmatched output port issues its grant to a requesting input port

that occurs first in the linked list maintained by the DRR scheduler. Similarly, an unmatched input port

issues its accept to the granting output port that occurs first in its linked list. The IPDRR algorithm also

achieves 100% throughput under uniform traffic.

B. Motivation and Contributions

Most matching algorithms proposed for scheduling packets in an input-queued switch have focused on

achieving 100% throughput or at least as high a throughput as possible. When throughput is the primary

goal, it is often the case that some ports will more likely to be matched than others. For example, in the

PIM scheduling algorithm, an input port with a high degree will issue a greater number of requests and

have a greater probability of receiving a grant, as compared to an input port of lower degree. Similarly,

an output port with high degree is more likely to receive a request from an input port of smaller degree,

and hence has a greater probability of receiving an accept. Fig. 1 plots the fraction of instances in

which a port of a certain degree was matched based on simulations of the PIM scheduling algorithm on

2, 500, 000 randomly generated bipartite graphs. Fig. 1(a) shows that an input port with a large degree

has a significantly higher probability of being matched when compared to a port of a smaller degree.

Similarly, as Fig. 1(b) shows, PIM is more likely to match a high-degree output port. This observation
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holds true even if the number of iterations performed are increased; when 16 iterations are performed, a

port with a degree of 8 is almost guaranteed to be matched, whereas a port with a degree of 1 has only

a 40% probability of being matched.

Further, as we shall show later in this paper, high throughput does not necessarily imply low average

delays. Mechanisms that achieve guaranteed services such as a delay deadline also do not necessarily

achieve low average delays. Meanwhile, low average delays combined with high-throughput is the ideal

goal for best-effort traffic.

This paper seeks to achieve low average delays while also achieving very high throughput in VOQ

switches. Our approach is motivated by the fact that randomized algorithms frequently bias the matching

algorithm in favor of high-degree ports, causing higher delays for packets at ports corresponding to low-

degree ports. Matching the high-degree ports first reduces the number of edges available to vertices with

a smaller degree and hence, reduces the size of the matching.

Borrowing from a strategy used by Angluin and Valiant (1977), we describe three algorithms for

scheduling packets in a VOQ switch. These algorithms are based on the principle of matching ports

with the lowest degree first, thus increasing the choice available in later iterations and resulting in large

matchings. The first algorithm, called Degree-Sequenced Matching, sorts vertices in order of their degrees

and, in each iteration, matches the vertex with the lowest degree to one of its neighbors. We show that

this approach leads to lower average delays without compromising the throughput goals. The algorithm

requires no state information to be carried over for the next matching since the degree information is

already available at the input and the output ports. We investigate the scenarios in which DSM calculates

a match smaller than the maximum possible match and present two improved versions of the algorithm.

The first version, called the enhanced Degree-Sequenced Matching, identifies pairs of vertices with the

lowest degree and matches them first. The second version, called the neighbor-aware Degree-Sequenced

Matching, improves upon the earlier versions by considering both the degrees of the vertices as well as

the set of neighbors of the vertices. We examine, via simulations, the trade offs between the performance

and complexity that these algorithms provide.

A similar approach was used by Gura and Eberle (2002) in developing the Least Choice First (LCF)

scheduling method. The LCF algorithm follows the approach of the iSLIP algorithm in issuing grants

and accepts. If, however, an output port does not receive a request from the input port its counter points

to, then the output port issues a grant to the input port with the smallest degree amongst the requests

it has received. Similarly, an input port first accepts a grant from the output port its counter points to.

If the input port does not receive a grant from that output port, then it accepts the grant issued by the
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output port with the smallest degree. While the LCF algorithm improves upon the performance of PIM

and iSLIP scheduling algorithms, it reduces to the iSLIP algorithm at high loads since each output port

receives a request from all the input ports.

In our simulation studies, we plot the fraction of instances in which the DSM algorithm does not

achieve the perfect matching for various sizes of switches and show that these fractions are very small

with almost negligible impact on overall throughput. Using a detailed simulation environment, we show

that the proposed algorithms achieve throughput close to or better than that achieved by most other

scheduling algorithms. Further, we show that these algorithms achieve significantly better average delays

than other algorithms of equivalent complexity. We present these results for both real gateway traffic

traces as well as synthetically generated random traffic.

Section II presents our notation and the DSM algorithm in detail along with its pseudo-code description.

The two improvements to DSM are presented in Sections III and IV. Simulation results are presented in

Section V. Section VI concludes the paper with some closing remarks on the possible future directions.

II. DEGREE-SEQUENCED MATCHING (DSM)

A. Notation

We denote a bipartite graph by G(U, V,E) where U and V are the disjoint sets of vertices and E is

the set of edges. Each edge e ∈ E connects a vertex in U to a vertex in V . The neighbors of a vertex u,

which we denote by Γ(u), are the set of vertices that u is connected to. The degree deg(u) of a vertex

u is the number of vertices it is connected to. Further, we denote the smallest degree of all the vertices

in the graph by δ(G); i.e., δ(G) = min({deg(u) : ∀u ∈ G}).

A matching M on the graph G is a subset of E such that each vertex has at most one edge in M

incident on it. The matching problem is to identify M and the maximum size matching problem is to

identify the largest possible M . In the following, we assume that the vertex sets are of the same size,

i.e., |U | = |V | = n and that the graph contains |E| = m edges.

B. Description

The algorithm is iterative and in each iteration, it identifies the minimum degree vertex and matches

it to one of its randomly selected neighbors. If there are multiple minimum degree vertices, one of

them is selected at random. These two matched vertices are now eliminated from further processing and

consequently, the degrees of each of the neighbors of these vertices is decreased by 1. In this process, any

vertices that are disconnected from the rest of the graph are also eliminated. The iterations are repeated

until there are no more pairs of vertices in the graph available to match.
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01 Initialize:

02 create set M = {}
03 create heap H
04 for each vertex v ∈ G

05 if deg(v) > 0
06 insert tuple {(v, deg(v))} into H
07 end if

08 end for

09 Match:

10 while H is not empty

11 {(v, deg(v))} ← minimum degree vertex in H
12 randomly select a vertex u such that u ∈ Γ(v) ∩H
13 M←M∪ {(u, v)}
14 remove u and v from H
15 for each vertex w ∈ Γ(u) ∪ Γ(v)
16 decrease key of w in H by 1
17 if deg(w) is 0
18 remove w from H
19 end if

20 end for

21 end while

22 return M

Fig. 2. Pseudo-code for the centralized version of the Degree-Sequenced Matching (DSM) algorithm.

Fig. 2 presents the pseudo-code of the algorithm that uses a heap to identify the minimum degree

vertices. Lines 01–08 describe the initialization phase wherein the heap is created and each vertex of the

bipartite graph is inserted into the heap as a tuple along with its degree. In each iteration, the algorithm

identifies the vertex with the smallest degree that is as yet unmatched (line 11) and matches it randomly

with one of its neighbors (lines 12–13). The matched pair is now eliminated from the heap (line 14).

Lines 15–20 update the degrees of all the neighbors of the two matched and eliminated vertices. Note

that the degree of any neighbor is reduced by 1, since no vertex can be connected to both the matched

vertices. Further, if any of the neighbors are no longer connected to the graph, i.e., if their degree is

zero, then they are deleted from the heap. In such cases, we do not need to update the degrees of the

neighbors of the deleted vertex since, if the degree of the deleted vertex was 1, then it was connected

either to u or to v. If its degree was greater than 1, then decreasing its degree by 1 does require updating

the degrees of its neighbors.
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C. Correctness

We prove that the algorithm achieves a maximal match by first proving a loop-invariant that M and

H are disjoint; i.e., a vertex is either a part of the matched set M, or is a part of the unmatched heap

H or neither. Initially, M = {} and H = V ∪ U . In each iteration, a vertex that is removed from H is

either matched and inserted into M or is discarded because, after its degree was decreased to 0, it was

disconnected from the graph. At the end of the execution of the algorithm, H = {}, thus proving the

loop-invariant. Note that once a vertex is matched and removed from the heap, it is never revisited by

the algorithm and all the other unmatched edges incident on it are removed from the graph, thus proving

the correctness of the algorithm. Further, the algorithm returns a maximal match. This is because once

two vertices are matched, they remain matched even if a better match is possible.

D. Performance

Since the algorithm is a maximal matching algorithm, it is 1

2
-optimal. We, however, present a more

formal proof.

Consider the operation of DSM on a bipartite graph that has a maximum size matching of size S. In

each iteration, DSM selects two vertices and deletes all the edges incident on these vertices. At most two

of these deleted edges could be present in S. In lieu, DSM adds the edge between these vertices to its

matching. Thus, the matching produced by DSM must contain at least S

2
edges and DSM is, therefore,

1

2
-optimal.

Our simulation results with real traffic, however, indicate that the DSM algorithm achieves almost as

good throughput as a maximum matching algorithm and better throughput than most other algorithms.

E. Complexity

We derive the worst-case time-complexity assuming that the algorithm uses a Fibonacci Heap. The

Initialize routine is of O(n) complexity since it inserts at most 2n elements one by one into a heap, and

the amortized cost of an insertion to a Fibonacci Heap is O(1). The while loop executes at most n times

since in each iteration two elements are removed from the heap. The complexity of lines 11 and 13 is at

most log n and the complexity of lines 12 and 14 is O(1), and they are executed at most n times. Line

16 is executed at most m times during the execution of the algorithm. Thus, the overall complexity of

the algorithm is O(m + n log n). Note that m is O(n2) but is much smaller in sparse graphs.
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01 Initialize:

02 create set M = {}
03 create heap H
04 for each vertex v ∈ G

05 if deg(v) > 0
06 Create heap hv

07 for each vertex u ∈ Γ(v)
08 Insert tuple {(u, deg(u))} into hv

09 end for

10 Insert tuple {(v, deg(v), hv )} into H
11 end if

12 end for

13 Begin:

14 while H is not empty

15 {(v, deg(v), hv )} ← minimum degree vertex in H
16 {(u, deg(u))} ← minimum degree vertex in hv

17 M←M∪ {(u, v)}
18 remove u and v from H
19 for each vertex w ∈ Γ(u) ∪ Γ(v)
20 if u ∈ hw

21 remove u from hw

22 else

23 remove v from hw

24 end if

25 decrease key of w in H by 1
26 if deg(w) is 0

27 remove w from H
28 end if

29 for each vertex x ∈ Γ(w)
30 decrease key of w in hx by 1
31 end for

32 end for

33 end while

Fig. 3. Centralized version of the enhanced Degree-Sequenced Matching Algorithm.

III. ENHANCED DEGREE-SEQUENCED MATCHING (EDSM)

We now present an improvement to the Degree-Sequenced Matching algorithm. Recall that in each

iteration DSM selects the minimum degree vertex and matches it to one of its neighbors. The neighbor

is selected randomly and hence, when a very low-degree vertex is connected to a high-degree vertex,

DSM may match a low-degree vertex with a high-degree vertex. Viewed from another perspective, a

high-degree vertex has a greater probability of being connected to a low-degree vertex and hence may
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be matched early on, reducing the choice available during later iterations.

A. Description

The algorithm presented in this section improves upon DSM by matching vertices to their neighbors

with the lowest degree. In each iteration, it selects the minimum degree vertex and matches it to its

minimum degree neighbor. If in any of the previous steps, multiple vertices have the smallest degree,

one of them is randomly selected. The matched vertices are eliminated from further processing and the

degrees of all their neighbors are reduced by 1.

Fig. 3 presents the pseudo-code for this improved version. Since each vertex has to keep track of the

degrees of its neighbors, the algorithm creates a min-heap for each vertex (line 06) and all the neighbors

of the vertex are inserted into this heap with a lower degree implying greater priority (lines 07–9). All the

vertices are then inserted into a heap (line 10). In each iteration, the algorithm extracts the smallest degree

vertex (line 15). It also extracts the neighbor of that vertex with the smallest degree (line 16). These

two vertices are matched (line 17) and hence eliminated from consideration in succeeding iterations (line

18). Lines 19–24 remove these matched vertices from all the heaps they occur in. Lines 25–32 decrease

the degrees of the neighbors of these matched vertices in all the heaps that they are present in. As in

DSM, it is possible that reducing the degree of a vertex may disconnect it from the graph. For example,

if {u, v,w} and {(u, v), (w, v)} are the vertices and edges, respectively, in one instance of the bipartite

graph, then the algorithm will match u (or w) to v thus disconnecting the other vertex w (or u) from the

rest of the graph. Lines 26–28 check for such a case and remove the disconnected vertex from the graph.

This check is unnecessary in lines 29–31, since if a vertex had a degree of 1 before it was disconnected,

then it would not have had any neighbors occur other than the matched vertex, and hence would not

occur in any other heap.

B. Correctness

The proof for correctness is similar to that of DSM and relies on the loop-invariant that M and H are

disjoint. Initially, M = {} and H = V ∪ U . In each iteration, a vertex that is removed from H is either

matched and inserted into M or is discarded because its degree was decreased to 0. At the end of the

algorithm, H = {}. Further, a vertex that is matched is removed from all the heaps it occurs in. Hence,

the algorithm never revisits a vertex that it previously matched.

C. Performance

The algorithm is maximal and is 1

2
optimal. The proof is similar to that of DSM.
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Fig. 4. An operation of the DSM algorithm that results in a maximum match.

D. Complexity

We assume that all the heaps are Fibonacci heaps. The initialization phase of the algorithm creates one

main heap (H) and a heap for each vertex. Thus, a total of 2n + 1 heaps are created. Inserting all the

vertices into the main heap requires 2n insertions. Further, the neighbors of each vertex are inserted into

the heap associated with that vertex. The number of insertions required to insert the neighbors of each

vertex into the heap associated with that vertex is twice the number of edges in the graph and equals

2m (or each edge requires 2 insertions). Hence, the total number of insertions in the initialization phase

is 2n + m which is O(m).

In each iteration, two vertices are removed from the main heap. Hence, the maximum number of

iterations required are n and these deletions total 2n. Further, in each iteration, the matched vertices

are removed from the heaps associated with each vertex. Initially, the total number of elements in all

the heaps associated with the vertices is 2m and all these heaps are empty at the end of the algorithm.

Hence, the total number of deletions are O(m).

The total number of decrease key operations performed in each iteration is one less than the sum of

the degrees of the matched vertices. One of these vertices is guaranteed to have the minimum degree,

while the other vertex will have a degree greater than or equal to the minimum degree and less than or

equal to the maximum degree of the graph. Thus, in the worst case, the total number of decrease key

operations is O(m).

The total time complexity of the algorithm is thus O(m) + O(m log n) + O(m) which is O(m log n).
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Fig. 5. A sample traffic pattern for which DSM does not return a maximum match.

IV. NEIGHBOR-AWARE DEGREE-SEQUENCED MATCHING(NDSM)

To explain the motivation for this third algorithm, we shall examine the reasons why DSM and eDSM

may not determine the maximum match. Consider the operation of DSM on the traffic pattern depicted

in Fig. 4(a). In the first iteration, vertices 3, 5, a, c, and d have the smallest degree. One of these, say

vertex c, is randomly selected and is matched to its one of its neighbors, say vertex 1, resulting in the

residual traffic pattern depicted in Fig. 4(b). At this point, vertex a has the smallest degree; it is selected

and matched to vertex 3, resulting in the residual traffic pattern depicted in Fig. 4(c). Vertices 4 and 2

are matched to vertices d and b in the third and fourth iterations, respectively, leaving vertices 5 and e

to be matched in the fifth and final iteration.

Now consider the operation of DSM on the traffic pattern depicted in Fig. 5(a). At the beginning of

the first iteration, vertices 3, 5, a, c, and d have the smallest degree. Assume that vertex a is selected

and matched to vertex 1 in the first iteration. Thus, at the end of the first iteration, vertices c and d have

a degree of 1 and are both connected to vertex 4. Successive iterations match vertices 4 and c, 3 and b,

and 5 and e resulting in a matching of size 4. The maximum possible match, however, is of size 5 as

depicted in Fig. 5(e).

Thus, DSM may potentially return sub-optimal matches for some traffic patterns. The key to under-

standing this phenomenon is in the traffic pattern itself, wherein vertices c and d both have the smallest

degree and have the same set of neighbors. Hence, in the first iteration when vertices 1 and a are matched,

vertices c and d are connected to the same vertex and succeeding iterations can match only one of these

two vertices, thus resulting in a smaller match. In fact, in our study we found that in most of the cases in

which DSM or eDSM did not result in a maximum match, the traffic pattern contained a set of vertices
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01 Initialize:

02 create set M = { }
03 Match:

04 while G is not empty

05 Su = {u : u ∈ U and deg(u) = δ(G)}
06 Sv = {v : v ∈ V and deg(v) = δ(G)}
07 S = Sv ∪ Su

08 Qu = {u : u ∈ Us and ∀u′ ∈ Qu, Γ(u) = Γ(u′)}
09 Qv = {v : v ∈ Vs and ∀ v′ ∈ Qv, Γ(v) = Γ(v′)}
10 Q = Qu ∪Qv

11 if Q is empty

12 u← select a vertex from S

13 v ← minimum degree vertex in Γ(u)
14 else

15 u← select a vertex from Q

16 v ← minimum degree vertex in Γ(u)
17 end if

18 M←M∪ {(u, v)}
19 G← G\{u, v}
20 end if

21 return M

Fig. 6. Centralized version of the neighbor-aware Degree-Sequenced Matching (nDSM) algorithm.

that had the smallest degree and shared the same set of neighbors. This insight forms the basis of the

third algorithm.

A. Notation

Let Su and Sv denote the set of vertices in U and V , respectively, whose degree equals δ(G). Formally,

Su = {u : u ∈ U and deg(u) = δ(G)} and Sv = {v : v ∈ V and deg(v) = δ(G)}. Su and Sv shall

together be referred to as S = Su ∪ Sv.

Let Qu and Qv denote a set of vertices in Su and Sv, respectively, that share the same set of neighbors;

i.e., Qu = {u : u ∈ Su and ∀u′ ∈ Qu, Γ(u) = Γ(u′)} and Qv = {v : v ∈ Sv and ∀v′ ∈ Qv, Γ(v) =

Γ(v′)}. Qu and Qv shall together be referred to as Q = Qu ∪Qv.

Note that for any graph the set S is unique. However, the set Q need not be unique since different

subsets of Su and Sv may qualify as instances of Qu or Qv, respectively. In such cases, it is sufficient

to arbitrarily select Qu and Qv from the possible candidates and generate the set Q.
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B. Description

This version of DSM, which we call neighbor-aware DSM (nDSM), checks if any of the vertices with

the smallest degree share the same set of neighbors. If they do, then nDSM matches these vertices with

one of the neighbors; otherwise, if no such vertices exist, nDSM reduces to eDSM and matches a vertex

with the smallest degree to its smallest degree neighbor.

Fig. 6 presents the pseudo-code for nDSM. In each iteration, the algorithm first determines the vertices

with the smallest degree (lines 05–07). It then identifies any vertices that, in addition to having the

smallest degree, share the set of neighbors (lines 08–12). If multiple sets of such vertices exist, nDSM

selects one such set. If no such vertices exist, then nDSM reduces to eDSM. It selects a vertex from

the set of vertices of the smallest degree and matches it to its smallest degree neighbor (lines 11–13).

If, on the other hand, some vertices share the same set of neighbors, then nDSM matches one of these

vertices to its smallest degree neighbor (lines 15–17). nDSM then updates the graph by eliminating these

matched vertices, all the edges incident on these vertices, and any vertices that are disconnected from the

rest of the graph during this process of elimination; if there are vertices left to match, nDSM continues

onto the next iteration.

C. Correctness

We shall prove correctness by showing that G and M are disjoint. Initially, all the vertices are

unmatched and are in G. M is empty. In each iteration, the algorithm removes two vertices from G

and inserts them into M . Hence, a vertex that is matched is never revisited. Further, lines 13 and 16

ensure that the vertices are always disjoint. Hence the algorithm returns a matching.

D. Performance

The algorithm is maximal and hence, is 1

2
optimal. The formal proof is similar to that of DSM.

E. Complexity

The minimum degree of the graph, δ(G), and the sets, Su and Sv can be determined in O(m) time.

In the worst case, determining Qu and Qv will take n2 time. The algorithm requires n iterations, leading

to a total complexity of O(n3).

The above bound is weak. First, nDSM does not need to determine all the vertices that could be in Q;

in fact, it is sufficient to identify only two minimum degree vertices that share the same set of neighbors.

In the worst case, however, it will need to compare the neighbors of all the vertices to ensure that Q is

empty.
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Fig. 7. Architecture of the input-queued switch used for simulation.

A hardware implementation of nDSM can perform this comparison faster by having each vertex

maintain an n bit vector, wherein a bit is set if that vertex has an edge to the corresponding vertex

and unset otherwise. Q can be determined by testing if any two of these vectors are equal. This test can

be performed in O(1) time using O(n2) comparators. Similarly, the minimum of the degrees of the ports

can be determined in O(log n) time using O(n log n) comparators.

V. SIMULATION RESULTS

Our simulation experiments assume an n-input, n-output input-queued switch that uses virtual output

queueing, as shown in Fig. 7. IP packets arriving at each input port are first broken down into fixed-size

cells of 48 bytes by the segmentation (Seg) module, after which they are placed into the virtual output

queue (VOQ) for their destination port.

Each input port keeps the Scheduler updated of the state of its virtual output queues and the Scheduler

is responsible for configuring the crossbar for each transmission slot. Cells arriving at an output port are

first stored in the re-assembly buffers. When the last cell of a packet arrives into the re-assembly buffers,

the re-assembly module (Res) extracts all the cells, reassembles them into the complete IP packet and

enqueues the packet into the transmission queue (TxBuf). The transmitter, which is not shown in this

figure, dequeues packets from this queue and sends them out on the link. M and D are multiplexers and

demultiplexers, respectively, which control access to the queues. Sufficient control logic is assumed to

be present at the ports to manage the multiplexers and demultiplexers and related control signals.

We report simulation results for a 16-port switch operating with a per-port bandwidth of 155 Mbps

using nine different scheduling algorithms listed below:
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Fig. 8. Characteristics of the real traffic traces from NLANR.

• PIM, for its historical significance

• iSLIP, also for its historical significance

• IPDRR, for its ability to provide guaranteed QoS and its superior performance over the iterative

Fair Scheduler (iFS) (Ni and Bhuyan, 2002, Zhang and Bhuyan, 2003). Since all the flows were

best-effort traffic, each flow is assigned a weight of 1.

• The maximum size matching (MSM) algorithm, for its promise of maximum throughput.

• A variant of maximum weight matching called the Longest Queue First (LQF), where the edge

weights are equal to the number of cells in the corresponding VOQ, for its stability (McKeown

et al., 1999).

• Another variant of maximum weight matching called the Oldest Cell First (OCF) algorithm, where
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Fig. 9. Throughput and average delay with real traffic traces obtained from NLANR.

the edge weights are equal to the queueing delay of the head-of-line packet in the corresponding

VOQ, also for its stability (McKeown et al., 1999).

• Finally, the algorithms presented in this paper, i.e., Degree-Sequenced Matching (DSM), eDSM and

nDSM.

To ensure maximum possible performance, iterative algorithms, namely PIM, iSLIP, and IPDRR, were

run for 16 iterations.

We present simulation results using both real and artificial traffic traces. Real traffic traces are available

at the web-site of the Passive Measurement and Analysis (PMA) project of the National Laboratory for

Applied Network Research (NLANR). The traces are from the NLANR Colorado State University OC3c

tap (2003) that uses a pair of network cards synchronized by cable to tap an OC3c link. The original

trace file contains traces of about 2.5×106 packets, representing about 90 seconds of network activity. In

order to ensure that the average traffic rate arriving at each port was approximately equal, 16 traces were

derived by time-slicing the original trace file into 16 separate traces, each containing about 1.5 × 105

packets.

Figs. 8(a) and 8(b) describe some characteristics of the real traffic traces obtained from NLANR. The

average input traffic rate is around 112 Mbps per port although the instantaneous load varies significantly

from 90 Mbps to 155 Mbps. Fig. 8(a) plots the average input load observed during each interval of 100

clock ticks. The size of the packets varies from 64 bytes to 1500 bytes with a significant fraction of

packets being either 64 or 1500 bytes long. Fig. 8(b) shows the cumulative distribution function of the

sizes of packets. The destination output port of each packet is determined by the destination IP address of
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Fig. 10. Input load (as a fraction of the line rate) versus average delay in the region of interest using artificially generated

uniform Poisson traffic.

the packet. The traffic is non-uniform, with different output ports receiving different percentages (ranging

from 5% to 15%) of the total traffic arriving into any given input port. Fig. 8(c) shows a representative

destination distribution of packets arriving at an input port. This non-uniformity of the traffic is also

evident in Fig. 8(d) which plots the distribution of the sources of packets arriving at a representative

output port. Almost 15% of the packets arriving at an output port originate from a single input port.

In order to analyze the performance characteristics, we also present results of simulations using

synthetic traffic. Poisson traffic at fractions varying from 0.1 to 1.0 of the line rate were generated

using a custom traffic generator with the packet destinations being uniformly distributed. Packet sizes

were assumed to be a constant equal to 48 bytes. Hence, simulations performed using synthetic traffic

assume that the switch operates with an internal per port bandwidth of 48 × 8 = 384 Mbps with no

speedup.

Fig. 9 shows the throughput and the average delay under real gateway traffic of the three algorithms

as compared to other algorithms. Note that the performance of these algorithms is close to that of the

maximum size matching (MSM), theoretically the best performing algorithm but with a complexity of

O(n
5

2 ). Our DSM algorithm, however, has a complexity of only O(n2) for dense graphs and significantly

lower complexity for sparse graphs. The figure also shows that the throughput achieved by the various

algorithms under real traffic is almost identical. However, a significant variation is seen in the average

delays achieved. Our algorithms achieve a lower average delay than all other algorithms except MSM.

Fig. 10 plots the delay versus the input load for all the schedulers under synthetically generated Poisson

traffic. Packet destinations were uniformly distributed amongst all the output ports, thus minimizing
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Fig. 11. Comparison of the three algorithms with the maximum size matching algorithm.
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contention. Further, in order to achieve the maximum possible performance, PIM, iSLIP and IPDRR

were run with 16 iterations. All the algorithms perform well under these benign conditions. However,

when the traffic load approaches unity our algorithms perform better than PIM, iSLIP and IPDRR and

only negligibly worse than MSM, OCF and LQF.

It is of interest to see in what instances and how often our algorithms result in a match that is less than

the maximum possible. We study the performance of these algorithms on randomly generated bipartite

graphs of different sizes (4×4 to 64×64) and edge densities (fraction of vertex pairs with an edge

between them). The fraction of instances in which DSM, eDSM, and nDSM fail to return a perfect

match are shown in Figs. 11(a), 11(c), and 11(e), respectively. It may be noted that the algorithms return

a maximum match for almost all edge densities. For example, in a 64×64 graph, DSM always returns

the maximum matching when the edge density is greater than 0.2 and returns a maximum matching

in over 90% of the 64×64 graphs with edge densities less than 0.2. nDSM performs much better and

returns a maximum match in over 97.5% of the cases. Further, as shown in Figs. 11(b), 11(d), and 11(f),

in almost all instances these algorithms return a matching that is only one less than the perfect match.

This implies almost negligible impact on the overall throughput as also illustrated in Fig. 9. The graphs

in Fig. 11 also imply a correlation between the density of the graph, the number of vertices in the graph

and the difficulty of identifying a maximum size match. In graphs with high edge densities, multiple

matches of maximum size exist and it is relatively easy to identify a maximum match. In graphs with

low edge densities, the search space is small and this strategy of prioritizing ports with low degrees pays

off. However, when the edge densities are neither high nor low, matching in order of increasing degrees

does not always lead to a maximum match.

VI. CONCLUSION

Input-queued switches based on the virtual-output-queueing (VOQ) architecture are currently the most

attractive design for high-performance switches and routers. Past research has concentrated on devising

scheduling algorithms that achieve 100% throughput. In contrast, this paper proposes a class of algorithms

that concentrate on achieving a low average delay while still achieving near-maximum throughput.

The algorithms presented in this paper are motivated by the observation that current scheduling

algorithms are biased in favor of ports with large degrees and cause larger delays at ports with lower

degrees. In contrast, our algorithms prioritize the lower degree ports by matching them first.

We present three algorithms that sort the ports in increasing order of degrees and successively match

the lowest degree port. The first algorithm, called the Degree-Sequenced Matching (DSM) algorithm,



22

matches the lowest degree port to one of its randomly selected neighbors. An improved version of this

algorithm matches the lowest degree port with its lowest degree neighbor. The third algorithm, called

the neighbor-aware Degree-Sequenced Matching (nDSM), takes into account not just the degree of the

ports but also the destination ports to which packets are queued. We show, via simulations using both

real gateway traffic traces as well as synthetic traffic, that these algorithms achieve a low average delay

with negligible loss in throughput as compared to other scheduling algorithms. We also show that these

algorithms almost always achieve the maximum match. In the few instances where they do not achieve

the maximum match, the match returned is only one less than the maximum possible match.

Although this class of algorithms offers high throughput and low latency close to that of the Maximum

Size Matching (MSM) algorithm, it also inherits the fairness problems that are associated with MSM.

Specifically, some flows that originate from and are destined to ports with a high degree may be starved

indefinitely. One example of such a traffic pattern is a 2-input 2-output switch with one of the input

ports always having packets destined to both the output ports and the other input port having packets

destined to only one output port. Investigation and improvement of the fairness properties of DSM

remains an open problem. Modified versions of DSM, that are based on additional topological properties

of bipartite graphs or that consider information about the traffic, such as the queue lengths or the delays

of the enqueued packets, have the potential to closely approximate the fairness and stability guarantees

of maximum weight matching algorithms.
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