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Abstract 

 

Validation of Clinical Tests Used to Identify Patients Who Would Benefit From 

Trunk Stabilization Exercises: Preliminary Steps to Refine Test Interpretation and 

Improve Intervention Prescription 

 

Won Sung 

 

Low back pain (LBP) presents a challenge in rehabilitation due to its 

heterogeneous presentation across patients. However, trunk stabilization exercises have 

been identified to be successful in patients that meet specific clinical prediction rules. 

Identifying mechanisms that underlie the tests used in the clinical prediction rules may 

aid in better understanding impairments in these patients. This may aid in refining 

intervention selection and prescription. The purpose of this dissertation was to identify 

mechanisms underlying clinical tests that are used to predict a patient’s success with 

trunk stabilization exercises: aberrant movements observed during forward bending and 

the prone instability test. The aims were to: 1) characterize lumbar extensor muscle 

neuromuscular control during active forward bending and the prone instability test (PIT);  

2) validate clinical assumptions of the role that impaired lumbar multifidus muscle 

activity has in aberrant movements patterns during a forward bend task and a positive 

prone instability test.  

Aim 1 results revealed that all trunk extensors are activated to a greater extent in 

those with aberrant forward bending. However, the lumbar multifidus provided the 

greatest contribution.  In the prone instability test, muscle activity during the leg raising 

portion of the test resulted in a significant increase in spinal stiffness and reduction in 

pain. However, participants with LBP had greater reliance on fewer muscle synergies that 

involved dominance of extrinsic muscles compared to participants without LBP. 
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Aim 2 results revealed that a positive prone instability test with pain reduction 

and spinal stiffness increase could be yielded in participants with LBP through electrical 

stimulation of the lumbar multifidus. However, electrical stimulation driven fatigue to the 

muscle was not able to produce aberrant movement in individuals without LBP.  

Adaptations in neuromuscular control during forward bending and the prone 

instability test in individuals with LBP suggest that exercises that include movement 

control and coordination may be necessary within the intervention.  
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Chapter 1: Proposal 

1.1 Abstract 

 

Background: Clinical tests that can predict successful outcomes with trunk stabilization 

exercises have been identified. However, there are still approximately 30% of patients 

who meet these criteria and still fail with these exercises. Understanding the mechanisms 

behind these criteria that allow prediction for success may give better insight to the 

pathologic process.  This information would be helpful in improving focus of the 

intervention and improving efficacy for treatment. 

Purpose: The purposes of this study are to 1) characterize (describe and quantify) lumbar 

extensor muscle neuromuscular control during forward bending and the prone instability 

test, and 2) validate clinical assumptions of the role that lumbar multifidus has in aberrant 

movement patterns during a forward bend task and a positive prone instability test. 

Methods: In the first aim, EMG data captured during the forward bend and the prone 

instability test will be used to describe and quantify the contribution of lumbar extensors 

during these tasks. For aim 2, neuromuscular electrical stimulation will be utilized to 

selectively fatigue the lumbar multifidus to determine if inhibiting its contribution during 

forward bend produces aberrant movements. Electrical stimulation will also be used to 

isolate activation of the lumbar multifidus to determine if this muscle group can produce 

a positive prone instability test in healthy controls versus patients with low back pain. 

Data Analysis: For aim 1, cross correlation coeffecients and time lags of EMG signals 

will be used to determine muscle patterns during the forward bend. EMG amplitudes will 

also be used to assess motor unit synchronization during the forward bend. Repeated 
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measures ANOVA will be used to analyze spinal stiffness changes and muscle activation 

during the prone instability test. For aim 2, repeated measures ANOVA will be used to 

compare kinematic variables pre and post NMES to determine if fatigue is able to 

reproduce aberrant movements. Mixed measures ANOVA will also be used to analyze 

spinal stiffness changes of the spine with NMES and compare those changes between 

healthy controls and patients with low back pain. 

Significance: The study’s significance lies in the study of underlying mechanisms behind 

predictive tests to determine if there are potential differences between responders and 

non-responders to trunk stabilization exercises. The information gained from this study 

can potentially enhance intervention selection and prescription for patients as well as 

decreasing the percentage of non-responders. 

Innovation: The study’s innovations lie in being one of the first to address the 

mechanisms behind the predictive tests to determine success with trunk stabilization 

exercises. It is also unique in its aim to utilize electrical stimulation to selectively recruit 

and impair a muscle group that is difficult to test in isolation for the purpose of validating 

the tests’ mechanisms. 
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1.2 Specific Aims 

 

Low back pain (LBP) results in socioeconomic costs over $100 billion per year
1,2

, 

is responsible for 26% of disability claims in the US
3
, and with a 162% increase in 

prevalence
4
, costs and disability is likely to continue to increase. Disability from LBP 

stems from a cascade of pain that start with recurring episodes, progressing to chronic 

LBP.
5,6

 This recurrence of pain is theorized to be a result of progressively increasing 

reduction in spinal structural integrity causing faulty sensory information to the 

neuromuscular system, which eventually leads to muscle inhibition and further spinal 

damage
7
. However, rehabilitation utilizing trunk stabilization exercises (TSE) to improve 

the spine’s ability to attenuate harmful stress can potentially decrease the recurrence of 

LBP. Characteristics identifying individuals with LBP who would benefit from a TSE 

rehabilitation approach is currently driven by a clinical prediction rule (TSECPR) that 

attempts to optimize patient outcomes.  

Initially, 4 patient characteristics were identified under the TSECPR, with the 

presence of 3 or more of these characteristics increasing post examination likelihood for 

treatment success to 67%.
8
 A recent validation study of the TSECPR has found that 

presence of 2 of the 4 aforementioned exam findings: aberrant movement during forward 

bend and a positive prone instability test (PIT), improve diagnostic accuracy of the 

TSECPR
9
. However, even with this modified TSECPR, 28% of patients who met the 

criteria did not respond to treatment. Therefore, there is roughly a 30% chance of non-

response, either in individual’s post-exam probability or group probability for successful 

outcomes. Panjabi’s theory suggesting symptom recurrence (2006) progresses to chronic 

pain centers on reduced ability to improve spinal stability through regulation and output 
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of muscular forces and movement control. Examination for aberrant movement patterns 

and the PIT are believed to be appropriate tools to assess movement control and muscle 

function as well as guide intervention selection. However, very little to date is known 

about the neuromuscular mechanisms responsible for the presence of aberrant movement 

or an individual’s PIT results. Understanding the mechanisms or impairments underlying 

these tests would add to their diagnostic validity, yielding more accurate interpretation of 

clinical findings, and potentially lead to identifying improved interventions for those who 

have failed with TSE in the past. 

Kinematic assessment and quantification of aberrant movement during forward 

bend has been studied, with instability catch/judder (JUD) and altered lumbopelvic 

rhythm (aLPR) being associated with patients who have a history of or current episode of 

LBP compared to those with no LBP.
10

 In forward bend, the paraspinal extensor muscles 

perform an eccentric contraction to control the trunk during the forward bend phase, and 

then perform a concentric contraction during the return to the upright phase with 

assistance from the gluteus maximus and hamstrings.
11-14

 It is theorized that aberrant 

and/or unsmooth motion is representative of the neuromuscular system’s unsuccessful 

attempt to stabilize a joint.
15

 Therefore, aberrant movements during the forward bend 

suggest dysfunction of the lumbar extensor muscles resulting in inadequate control and 

protection of the joint during movement in patients with LBP. However, motor control 

and muscle activity associated with clinically observed aberrant trunk motion during 

forward bending has not been studied.  

A positive PIT is defined as a reduction in LBP during an examiner-applied 

posterior to anterior force to the lumbar spine during prone bilateral hip extension. The 
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clinical interpretation of a positive test is that the lumbar extensor muscles, particularly 

the lumbar mutifidus (LM) group based on its anatomical structure, adequately contract 

and stiffen the lumbar spine thereby reducing the subject’s LBP during the examiner-

applied force. A negative test, where pain is not altered by active hip extension, is 

implied as inadequate muscle activity to stabilize the spine against the examiner’s 

application of an external load. However, these clinical assumptions have not been 

validated. It is not known if stiffening of the spine occurs during this test nor what 

muscles are active to drive this potential stiffening. Therefore, observations of aberrant 

motion during forward bending and PIT assessment outcomes may be signs of lumbar 

extensor muscle dysfunction. However, this has not been systematically evaluated or 

validated. The ability to identify impaired performance of the lumbar extensor muscles, 

specifically the lumbar multifidus (LM) is important. A greater number of prognostic 

patient characteristics in the TSECPR have been associated with inactivity of the LM
16

. 

However, no direct link has yet to be made with LM activity and an individual’s result 

with PIT, nor the presence of aberrant movement. The work of Hebert, et al. (2010) 

suggests that LM function plays a key role in smoothly controlling forward bending and 

in stiffening the spine, and perhaps adequate LM activation is the key to successful 

outcomes following TSE. Those patients who demonstrate likelihood for success with 

TSE, but who fail to respond to the intervention may have a deficiency in activation 

and/or significant morphologic changes (cross sectional area, muscle to intramuscular fat 

ratio) of the LM that requires additional intervention. However, this is not yet 

substantiated in the current literature. 



 

 

 

 

6 

6
 

The long-term goal of this research is to identify primary mechanisms associated 

with impaired neuromuscular control in LBP patients in order to improve diagnostic 

criteria and intervention efficacy. The aims of this proposal contribute to the long-term 

goal by characterizing muscle activation patterns during two important clinical tests that 

predict success with TSE beginning the process of validating clinical assumptions. In 

addition, this investigation will determine the contribution of LM to the finding during 

these tests by assessing the effect of 1) enhanced activity of the LM on clinical 

interpretation of the PIT, and 2) fatigue or diminished LM activation on movement 

control during active forward bending. Since interventions are guided by these tests, 

improved understanding of the underlying neuromuscular mechanisms associated with 

results of these clinical tests will improve diagnostic accuracy, and elucidate impairments 

associated with responders and non-responders to TSE. Ultimately this work will 

improve the delivery of care for patients who previously may not have had successful 

outcome with rehabilitation.  

 

Aim 1: Characterize lumbar extensor muscle neuromuscular control strategies 

through trunk muscle activation patterns during active forward bending and the 

prone instability test. 

1a. Describe and quantify trunk muscle activity during a forward bend task. 

Hypothesis: Patients with low back pain will have higher LM and lumbar erector spinae 

EMG amplitudes compared to healthy control subjects. 
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Expected Outcome: Identification of typical and aberrant trunk muscle activation 

patterns in individuals classified with normal and aberrant (JUD, aLPR) forward bend 

movement patterns. 

1b. Describe and quantify trunk and hip muscle activity as well as changes in spine 

stiffness during the PIT test. 

Hypothesis: Lumbar spine stiffness increases during the PIT and is associated with 

muscle activity of the lumbar extensors. 

Expected outcome: Determine if spinal stiffness changes do occur during the PIT. 

Identify the role of the lumbar extensor muscles, particularly the lumbar multifidus, 

during the test. Determine if there is an association between spinal stiffness changes and 

muscle activation patterns during the PIT. 

 

Aim 2: Validate clinical assumptions of the role that lumbar multifidus muscle 

activity has in aberrant movements patterns during a forward bend task and a 

positive prone instability test. 

 

2a. Characterize the effects of isolated lumbar multifidus muscle fatigue, achieved by a 

neuromuscular electrical stimulation (NMES) fatigue protocol, on movement quality 

during a forward bend task in healthy controls.  

Hypothesis: Subjects with a typical forward bend movement pattern will demonstrate 

aberrant movement pattern following fatigue of the lumbar multifidi muscles.  

Expected outcomes: Production of aberrant movement through attenuation of LM activity 

via fatigue will support that theory that impaired activation of the LM impacts movement 

quality during the forward bend test.  
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2b. Determine if electrically induced LM contraction using NMES can yield:  

i. Increased stiffness of the lumbar spine during examiner applied posterior to anterior 

force on the lumbar spinous process.  

ii. Positive prone instability test result.  

Working Hypothesis: Stiffening of the spine is responsible for the pain reduction during 

the PIT and this is primarily achieved by strong activation of the LM muscle group.  

Expected Outcomes: Identification of the role that the LM plays in the PIT.  

 Aim 1 will allow for improved understanding of muscle activation patterns during 

clinical tests that are used to prescribe TSE. Aim 2 provides an approach to investigate 

the role of the LM during a forward bend task by selectively fatiguing the muscle with 

NMES. As LM has been suggested to be a key muscle in successful outcomes with TSE 

16
, enhanced understanding of this muscle’s role in clinical tests that can predict both 

success and failure of intervention in patients is crucial. The results of this work will 

validate underlying mechanisms associated with the forward bending and prone 

instability tests, and improve a clinician’s ability to interpret test findings with respect to 

intervention selection. 

1.3 Significance 

 

During 2002, over 250,000 people experienced low back pain in the United States 

(LBP) with medical costs and lost wages exceeding $100 billion.
1,2

 There had been an 

estimated 162% increase in the prevalence of LBP and by 2005, overall yearly medical 

costs for patients with LBP were near double that of patients without LBP.
4
 Up to 26% of 

disability claims in the US are attributed to LBP.
3
 These statistics may be attributable, in 
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part, to the recurrent nature of LBP which has been reported to range from 47-84 % 
17

 in 

a 1 year period. Musculoskeletal changes effecting spinal function may play a role in 

both the recurrence 
18-20

 and chronicity of LBP 
21

, with many of these structural changes 

being associated with the lumbar multifidus (LM). Beside structural changes, reduced 

muscle activity of the LM has been associated with tests used to identify patients who 

would benefit from trunk stabilization exercises (TSE).
16

 Improvements in muscle 

structure have been reported following implementation of a TSE that focuses on isolated 

activity of the LM
22,23

 while general back strengthening exercises have revealed no 

improvements in LM activation.
12

 This suggests that certain types of exercise may have a 

positive effect on the structures of the spine that play a role in recurrence and chronicity, 

making the role of rehabilitation exercises an important aspect of reducing risk for 

recurrence and chronicity of LBP. 

 Trunk stabilization exercises focusing on the coordination, endurance, and 

strength of the trunk are one of 3 rehabilitation interventions subgroups with strong 

evidence of efficacy.
24

 Intervention provision by subgrouping into a treatment categories 

based on patient characteristics and examination findings have been shown to lead to 

better outcomes
25

 and are more cost effective. 
26

 Prognostically, the TSECPR group, has 

a positive likelihood ratio (+LR) of 4.0 and post-test chance for success of 67% if 3/4 

characteristics are met.
8
 The subgroup identified for manipulation has a much higher 

likelihood for success (+LR=13.2 if 4/5 characteristics present) and a 92% post-test 

chance for success.
27

 The lower percentage of post treatment success in the TSE group 

may be tied to impaired LM function. In patients who do not respond to TSE and do not 

fit other treatment subgroups, failure to improve LM activity or function may be the 
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driving factor. Impairments of this muscle happen quickly after the initial onset of LBP 

28
, and it’s recovery relies on specific localized intervention versus generalized exercise. 

23,29
 If these impairments are not addressed, patients will present with alterations in 

muscle physiology and deficits in muscle function after cessation of pain , as this muscle 

group does not recover spontaneously.
19

 The ability to properly rehabilitate this muscle 

may be the true predictor for recovery in these patients. However, the role that the LM 

plays in development of LBP in these patients, and it’s involvement with a positive or 

negative response to TSE is unknown. 

Based on a 1 year prevalence estimate of LBP (36%), 112 million Americans may 

develop low back pain that limits activity.
30

 Patients that could potentially be categorized 

as responders to TSE could range from 12%-38% of this number.
9,31

 Taking a 

conservative estimate of 25% of these patients (midpoint of the above range), yields over 

50 million patients identified to benefit from TSE in the US alone. A 30% non-response 

rate yields, almost 17 million patients that could meet criteria for TSE, but do not fully 

benefit from it. Based on the potentially large number of patients with non-response to 

TSE, improving the percentage of responders to TSE could have a significant impact on 

the cases of recurrence and chronicity of LBP.  

Two of the 4 tests used to categorize patients into the TSE group have been 

identified to be better at predicting patients who would respond to TSE: prone instability 

test (PIT) and the presence of aberrant movements during forward bend. 
9
 Patients with 

these 2 clinical characteristics have been shown to have disruption of movement during 

the midrange forward bending, typically identified as the neutral zone, where muscle 

activity should be the dominant stabilizer.
32

 The LM has been identified to provide up to 
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2/3 of the stabilizing force in the spine
33,34

 and these findings may suggest a reduction in 

LM activity during movement. Decreased LM activity has been shown to be an important 

prognostic factor for patients who benefit from TSE
16

, and the presence of aberrant 

movement increases likelihood for success outcomes twofold. This suggests that, during 

forward bend, observation of aberrant movements may be signs of LM impairment, with 

presence of the sign suggesting the need to improve muscle function (either activation 

and/or strength).  

However, there is a different scenario with the PIT. The underlying assumption of 

the PIT is that the reduction of examiner induced pain to the spine that occurs during leg 

elevation is a result of increased trunk extensor and hip muscle activity resulting in 

increased spinal stiffness.
35

 A positive finding on the PIT results in a twofold increase of 

success with stabilization exercises. Muscle activity of the trunk’s anterior wall during 

abdominal hallowing and bracing have demonstrated increase in spinal stiffness in 

healthy subjects.
36

 Similar mechanisms may exist in the posterior wall. While the 

physiologic mechanism of this test has not been established, exercises involving 

unilateral prone hip extension have demonstrated that the LM, gluteus maximus, and 

erector spinae are the predominant muscles active during similar tasks.
37,38

  

While LM activity attenuation has been associated with prognostic factors for 

success with TSE
16

, in certain individuals, greater or more significant impairment in LM 

muscle activity may actually afford insufficient stabilizing ability and thus not change 

pain presentation during leg elevation. A negative PIT increases likelihood of failure 6 

fold. In patients with a positive PIT, while activity of LM may be decreased during 

function, they may still possess some ability to increase recruitment of that muscle during 
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active hip extension, suggesting the muscle group has the ability to activate; there is some 

reserve muscle capacity that can be augmented with rehabilitation Patients with a 

negative PIT may not have this reserve capacity, and general stabilization exercises may 

not be adequate for successful reduction in pain and improvement in function. This 

subgroup of patients potentially requires more specific interventions targeted at 

improving LM muscle function.  

Borrowing from knee rehabilitation literature, the inability to activate muscle to 

some requisite amount has prevented patients from achieving muscle hypertrophy
39,40

, 

and this may be similar in this subgroup of LBP patients. The ability to identify if similar 

mechanisms are present in this subgroup would not only aide recovery of those patient 

who may fail with this intervention, but also improve the efficacy of treatment for 

patients who would typically be identified as having successful outcomes with this 

intervention. In order to do so, we must have an understanding the neuromuscular control 

and coordination is present in a healthy sample devoid of symptoms. This allows 

comparison of movement patterns of those who have pain due to altered or impaired 

movement coordination to provide better informed therapeutic prescription.  

There may be types of characteristics noted in aberrancies, or characteristics in 

muscle activity, response associated with non-responders. But before we can interpret 

these potential differences, we need to validate the mechanism underlying the specific 

tests results. Validating clinical assumptions of diagnostic test may be the first step in 

improving the diagnostic properties or predictive validity of clinical prediction rules 

associated with responders to trunk stabilization exercises. Improvement in diagnostic 

tests may in turn, assist in improving intervention selection and implementation.  
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1.4 Innovation 

 

To date, no studies have directly investigated the construct validity or 

neuromuscular mechanisms underlying standing forward bend aberrant movement testing 

patterns and the PIT. Aim one allows for this by characterizing the muscle activation 

patterns during these clinical tests. Based on the predictive ability of these tests, 
9,41,42

 

characterization of muscle activity during these tests is important because it leads to 

prescription of specific exercises focused on improving muscle function. Understanding 

the muscle activity that occurs during the presence or absence of these specific clinical 

findings would allow investigators to understand typical versus atypical neuro-motor 

responses. This information would translate directly to clinical care through improvement 

of exercise prescription. 

Validating clinical assumptions related to LM performance is difficult because of 

this muscle groups morphology and synergistic activity to other muscle groups in the 

thoraco-lumbar spine. This makes isolating the LM for study in humans challenging. By 

utilizing electrical stimulation it may be possible to selectively recruit the LM muscles 

and test the assumptions of the prone instability test. Through this method, investigators 

can determine if specific activation of this muscle group leads to stiffening of the spinal 

column, compare that stiffening to that achieved during a PIT and better understand the 

role of the LM in symptom reduction during the PIT. By utilizing the same electrical 

stimulation of the LM to cause local muscle fatigue, investigators can selectively impair 

the role of the LM in healthy subjects with no identified aberrant motion during forward 

bend. This would help determine if altered function of the LM muscle group has a 

significant impact on movement patterns during forward bending. This paradigm would 
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allow investigators to determine the criterion validity of these tests. Understanding the 

role of the LM would provide a significant leap forward in interpretation of these tests. 

Since these tests predict both responders and non-responders to TSE treatment the 

findings will result in improved outcomes for patients with LBP. 

1.5 Background 

1.5.1 Rehabilitation of Low Back Pain 

 

Low back pain (LBP) is a major source of activity limitations in the industrialized 

world with medical costs and lost work day/wage costs ranging from $5 to $100 billion 

dollars.
2,43,44

 Over 250,000 people experienced low back pain in the United States in 

2002. 
1
 With a prevalence of 36% in the population and adjustment to the current US 

population, that number exceeds 100 million people having experienced low back pain.
30

 

Of these patients, 33-73% will have at least 1 recurrence within 12 months, while the 

number of prior episodes of LBP increases the likelihood of future episodes.
17,45

 In 

patients with acute LBP, 10-33% of them will go on to develop chronic pain.
46,47

 Based 

on the incidence and prevalence of low back pain, the number of patients who are at risk 

of experiencing recurrent LBP with progressing to chronic LBP can come to represent a 

large number of the population, with profound impacts on societal productivity, health 

care costs, and quality of living. Improved methods to prevent future episodes and 

intervene in current episodes would have a great impact but requires identification of risk 

factors that drive recurrence and chronicity. 

Physical factors may not always be considered the primary risk factor for 

development of chronic LBP. Presence of psychosocial factors, clinically referred to as 

yellow warning flags, have been thought to be most predictive of chronic LBP. 
48,49
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However, there is emerging evidence that the intensity of pain and impairments at 

symptom’s first onset is a significant prognostic factor for chronicity of LBP as well.
50

 It 

has also been identified that injury and pain can lead to the depression, catastrophizing 

thoughts, and fear avoidance in people typically not considered at risk for chronic LBP.
51

 

Therefore, pre-existing psychosocial risk factors may not be sole contributor to chronicity 

in some patients. Rather, there may be instances where physical characteristics or 

conditions drive symptoms to recurrence and eventual chronicity. Addressing patients’ 

experience with pain, impairments, and recurrence as early as possible could reduce this 

progression into chronicity in certain subgroups of patients. Improving current methods 

for intervention selection and provision of care has great potential for allowing clinicians 

to do just that. 

The current trend in rehabilitation of patients with LBP is to match interventions 

by subgrouping patients into treatment groups based on clinical findings.
24

 There are 4 

treatment groups considered in this treatment based classification system (TBC): 

Manipulation, specific exercise, traction, and stabilization exercise groups.
52

 Three of the 

4 groups are focused primarily on reducing acute pain/ symptoms. Manipulation group 

has excellent odds of reducing acute pain in patients that meet the clinical exam criteria
27

 

through neural modulation of pain and changes in disc hydration.
53-55

 Specific exercise 

and lumbar traction are aimed at patients with referred leg pain with support for use of 

centralization or directional preference in reducing symptoms through changes in disc 

hydration
56

, while traction continues to be equivocal in these patients.
24

 These groups can 

typically reduce pain within 3-7 sessions
27,57,58

, which may be beneficial for dealing with 

the risk of chronicity resulting from the experience of pain at initial onset. Based on their 
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mechanism they may be best utilized in more acute exacerbations of pain, as discal 

mechanisms are theoretically believed to occur in the earlier stages of LBP.
59,60

 

The TSE subgroup can potentially address problems with recurrence and 

chronicity of LBP through improving motor control and movement coordination 

impairments (MCI) in patients. Neural and mechanical faults progressing from initial 

discal involvement leading to increased spinal instability have been theorized to be 

responsible for certain types of LBP.
61,62

 These faults include changes in muscle 

physiology, reduction of morphologic quality
18,21,63,64

 and inhibition of neural control in 

muscles protecting the spine.
63,65-67

 It has been theorized that failure to correct these faults 

leads to recurrence and chronicity of LBP.
7
 Interventions associated with the TSE group 

have been identified to be beneficial in patients with MCI 
24

 and based on theorized 

mechanism associated with LBP and spine mechanics, have the potential to make a great 

impact on recurrence and chronicity.  

1.5.2 Theoretical Basis of Spinal Instability and Trunk Stabilization Exercises 

The conceptual framework for TSE is grounded by the theoretical mechanism of 

spinal degeneration. The spine is an inherently unstable system
68

 that requires external 

support through muscle activity for structural integrity.
59,69

 The sequelae of spinal 

degeneration associated with development of LBP was characterized as a stepwise 

mechanism beginning with an injury that causes instability of the lumbar spine. This 

segmental instability is characterized by greater mobility in the segments of the lumbar 

spine.
59

 The stabilization mechanism of the spine has been defined by 3 separate systems 

that work in unison.
61,62

 Panjabi (1992A, 1992b) refers to the presence a passive 

subsystem of osseous and ligamentous structures that give increase integrity to the spine. 
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Injury to the spine, typically at the intervertebral level have been reported to increase 

segmental mobility and joint laxity.
70

 The system is able to compensate for this insult 

through increased muscle activity of the active subsystem. Increased muscle activity is 

modulated by neural input from the neural subsystem 
62

 through feedback from the 

ligaments and muscles.
71

 Failure of one or more of these systems is associated with 

LBP
72

 with failure to correct the faults potentially resulting in recurrence and chronicity 

of LBP 
7
. When approaching the problem from this perspective, active or physical 

rehabilitation is best aligned to address the faults in the muscular and neural subsystems, 

with a goal of reducing the progression of recurrence to chronicity. 

1.5.3 Evolution of Trunk Stabilization Exercises:  

1.5.3.1 Moving from theory into practice: Role of abdominal muscle activity in trunk 

stabilization exercises 

 

Muscles of the trunk that play a role in the stabilization of the spine are an area of 

interest to rehabilitation sciences, as there is evidence to support their role in spinal 

stability. Much of this evidence centers on biomechanical concepts of spinal stiffening. In 

a typical spine the inherent instability is addressed with muscle activity in the beginning 

of the motion until passive tension across the muscles and ligaments engage contributing 

to stability in the end range.
62

 Muscle co-contractions have demonstrated an ability to 

stiffen the spine with increasing levels of co-contraction leading to increasing levels of 

stiffness.
36,73,74

 Findings on spinal stiffening with muscle co-contractions have gone on to 

influence rehabilitation through spinal stabilization exercises to address patients with 

LBP.  

There are many philosophies on spinal stabilization exercises. One approach 

suggests all muscles around the spine act in unison, contributing to some portion of spinal 
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stability and should be strengthened as a unit.
75

 Other approaches are more selective, 

based on a theory of local intrinsic spinal muscles (transverse abdominus, internal 

oblique, and lumbar multifidus) and global extrinsic muscles(quadratus lumborum, 

erector spinae, latimus dorsi, and gluteal), with local muscles responsible for stabilization 

of the spine.
76

 Based on the latter approach, isolated training of the intrinsic muscles are 

fostered first, and then progressed to incorporate global muscles, and finally functional 

tasks.
77

 The concept of intrinsic muscle dysfunction came to the forefront of 

rehabilitation with the findings of delayed onset of the transverse abdominus in patients 

with chronic low back pain compared to healthy controls during rapid arm and leg 

movements.
67,78,79

 This led the authors to conclude that there were postural control 

impairments in patients with LBP. Translation of these findings is difficult to in-vivo 

situations. These studies were performed in static positions, while postural control 

involves coordination of body orientation in space during movement.
80

 The findings do 

raise questions of the neural subsystem’s involvement in LBP, at least in relation to the 

impairments associated with the transverse abdominus.  

Muscle onset timing is based on delays seen with EMGs, with this technology in 

general, providing some information on the central nervous system’s control over a motor 

unit. Therefore, changes in activation timing or any other EMG characteristic of a muscle 

may be considered to provide, at least some indirect information on the neural 

subsystem’s control over muscles. Further work in muscle onset delays of the transverse 

abdominus in patients with chronic LBP would lead to findings or re-organization of 

motor cortices, suggesting some central nervous system changes are associated with 

patients who experience LBP 
66

 There is some evidence that with isolated motor control 
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training, improvements in onset times occur with lasting effect in patients reporting 

chronic LBP.
65,81

 However, there are methodological issues with these findings: 

repeatability with these measures suggest the onset time differences do not exceed 

standard errors of measure, and use of real time ultrasound imaging is not able to detect 

muscle onset delays
82

 raising a question about the clinical relevance of transverse 

abdominus onset times. Other findings suggest that general exercise and isolated motor 

control exercises result in similar improvements on muscle onset timing
83

 in patients with 

chronic LBP, suggesting that the impairments may have other causes such as pain 

inhibition or deconditioning. In a sample of patients with chronic LBP, similar to the 

patients in these prior studies identifying onset times and cortical changes, improvement 

in transverse abdominus function was not associated with successful outcomes.
84

  

While the evidence surrounding abdominal muscle activation may be equivocal, 

increase in intra-abdominal pressure through abdominal contractions has also been 

considered a mechanism of improving spinal stability. Increase in intra-abdominal 

pressure modeling suggests it aids in decompressing spinal compression
85

, with increase 

in intra-abdominal pressure independent of abdominal contraction demonstrating increase 

in spinal stiffness.
86

 Spine modeling has demonstrated that this increase in intra-

abdominal pressure can provide approximately 10% of extensor torque required to unload 

spinal compression
87

, allowing for stabilization of the spine with decreased trunk 

extensor demand.
88

 In conditions where the trunk extensors may not be functioning 

properly, the abdominal muscles’ role in increasing intra-abdominal pressure may add 

additional stability to the spine. However, selective activation of the transverse 

abdominus or the oblique abdominals may not provide significant stiffening to the spine 
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89
 while increases in stiffness from intra-abdominal pressure may include contributions 

from other muscles of the trunk and other mechanisms such as tension on the 

thoracolumbar fasciae.
90

 This is supported by EMG comparisons during abdominal 

bracing task and an abdominal hallowing task in healthy control subjects. Abdominal 

hallowing resulted in a 26.8% increase in spinal stiffness from resting condition, while 

abdominal bracing yielded a 47% stiffness increase.
36

 Abdominal hallowing was 

characterized by internal oblique/transverse abdominus activity while abdominal bracing 

involved lumbar erector spinae activation of 30% MVIC among subjects. While 

abdominal contractions alone can increase stiffness of the spine above resting level we do 

not know from this study alone how much stiffness the spine requires above baseline to 

decrease pain and also see that spinal stiffness is enhanced with contribution from the 

lumbar extensors. These findings challenge prior interpretations of transverse abdominus’ 

role and importance in rehabilitation. They also lead us to consider the role of the 

paraspinals and extensors in spinal stabilization as, strategies to increase intra-abdominal 

pressure may be attempts to compensate for decreased extensor function based on the 

works above. 

1.5.3.2 Developing a theory into practice: establishing the role of the lumbar 

extensors and their contribution to spinal stability 

 

The primary lumbar extensor muscle group identified as the multifidus muscles 

has potential to be the most significant of the stabilizers of the lumbar spine. They 

represent the largest muscle group with direct attachment to the lumbar spine whose 

fibers have been associated with stabilization of the vertebral segments during motion. 

Their physiologic cross sectional area provides more force generation to stabilize the 
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spine than the quadratus lumborus, illiocostalis thoracis and lumborum, or rectus 

abdominus
91

, supporting their role in stabilization. Their morphology and histology allow 

for this muscle group to generate more force as it is lengthened
91,92

 aligning them to 

stabilize the spine as trunk flexion angles increase. The flexors and extensors are reported 

to work in a co-activation pattern to promote stability of the spine
74

, however, lumbar 

multifidus models have been shown to provide up to 2/3 of that stabilizing force about 

the spine
93

. Therefore, the lumbar multifidus would, anatomically and morphologically, 

be at an advantage to be the key player in spinal stiffness associated with stabilization of 

the spine. 

While the support for the role of transverse abdominus is primarily based on 

delayed onset, several properties of lumbar multifidus have been associated with the 

presence of LBP. Reduced cross sectional area of the lumbar multifidus has been present 

in patients with acute to subacute low back pain, with the atrophy located ipsilateral to 

the pain and typically isolated to one level that has been identified to be the pain 

generating level through physical examination.
28,94

 The specific localization of the 

atrophy to side and vertebral level would suggest that some direct relationship exists 

between the pain and muscle atrophy. The time from pain onset to atrophy has been noted 

to be too short to be attributed to disuse atrophy
28

 which suggests there may be some 

more direct link between LBP onset and LM atrophy. This type of rapid atrophy to 

muscles can often be from loss of neural input
95

 and can be a result of nerve root lesion in 

the lumbar spine.
96

 Experimental injury to the annulus, as well as nerve root injury, has 

demonstrated atrophy in the lumbar multifidus, in as little as three days in porcine 

models
97

 potentially supporting the presence of a more direct link between pain and 
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muscle changes in the LM. The atrophy noted by Hides et al. (1994) does not improve 

unless specifically targeted therapy is provided. Failure to regain function of the LM in 

the absence of automatic recovery of the LM may be directly associated with prevalence 

of recurrent pain.
23

 It can be speculated that failure to regain this muscle’s function leads 

to chronicity further degradation of the spinal column as patients who require surgery for 

their LBP demonstrate this asymmetric atrophy
94,98

 that is localized and likely not 

associated with disuse. 

Aside from atrophy, and perhaps as symptoms become more chronic, increased 

fatty infiltrate to the muscle also become apparent.
18,99

 D'Hooge, et al. (2012) reported 

that while overall cross sectional area was not changed in patients with low back pain, the 

increase in fatty infiltrate had more effect on the quality of the muscle. Morphologic 

changes to the LM have associated with increase in inflammatory cytokines related to 

spinal injury on animal models
100

. The changes likely affect their ability to stabilize the 

spine as the muscle loses the ability to generate force, as force generating tissue is 

replaced by non-contractile adipose tissue. Experimental injury has also demonstrated an 

increase in muscle stiffness within 12 weeks from a simulated disc degeneration puncture 

in rabbits.
101

 Considering the LM’s ability to generate force increases as the muscle is 

lengthened into a trunk flexed position 
91,92

, histological changes leading to increased 

stiffness are likely to decrease the extensibility of the LM. This reduction in muscle 

extensibility can lead to reduction in the muscle’s ability to lengthen during forward bend 

thus inhibiting force generation to stabilize the spine. 

There are some questions that are raised to the relationship of LM and LBP. The 

association of fatty infiltrate’s to LBP is strong in adults in their 40’s independent of BMI 
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and activity levels with greater amount of fatty infiltrate increasing odds of having 

experienced low back pain, within the last year. 
99

 This is not true of all patients with 

LBP as the association of fatty infiltrate and occurrence of LBP decrease in a 10-year 

follow up of these patients at 49-50 years of age.
102

 These increased odds of low back 

pain occurrence highlight the importance of the lumbar multifidus. However the 

decreasing odds a decade later may not suggest the initial study results were spurious 

relationships, but instead be could suggestive that the patients have regained some 

stability from compensation by the passive subsystem.
59,60

  

Aside from structural changes in the muscles, there also appear to be metabolic 

changes that may be related to their morphologic changes. LM of patients with chronic 

low back pain demonstrate imaging shifts on fMRI compared to healthy controls that 

suggest a change to higher glycolytic muscle fibers.
19

 According to the authors, increase 

to a more anaerobic metabolism with higher rates of metabolic activity could represent 

muscles that have to perform higher intensity contractions with the side effect of more 

rapid fatigue. Loss of physiologic cross sectional area through atrophy and muscle fatty 

infiltrate could result in more demand placed on the remaining muscle. Morphologic and 

metabolic changes in the lumbar multifidus that do not improve may factor into 

recurrence of pain or chronicity in some patients.
18

 More importantly, in a study 

investigating predictors for success with TSE, greater impairment in LM activation levels 

were responsible for greater number of exam findings placing people into a stabilization 

exercise category, with 80% of these patients having had prior LBP.
16

 This draws one to 

consider the impact that LM may have on movement control that TSE may address as 

well as factoring into recurrence. Overall, however, these findings substantiate the role of 
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LM in LBP and rehabilitation. Given these results and association to changes in LM with 

LBP, TSE should be one of the most effective intervention methods in patients with low 

back pain. However, that has not always been the case, and methods to identify patients 

who would benefit from TSE have been studied with mixed results. 

1.5.4 Identifying patients with low back pain that would benefit from trunk 

stabilization exercises 

Armed with a strong theoretical background supported by evidence, specific 

stabilization exercises should have potential to improve outcome and function in patients 

with LBP. One of the first randomized control trials on stabilization exercises in patients 

with LBP demonstrated successful outcomes compared to a control group with continued 

lasting effects at follow up.
103

 However, other randomized control trials using trunk 

stabilization exercises have shown no additional effect from stabilizing exercises in 

patients with LBP.
104-106

 A Cochrane review in 2000 suggested that in some cases no 

treatment for LBP was equally effective as exercise.
107

 The difference in outcomes 

between O’Sullivan et al. (1997) and other randomized trials could be due in part, to 

patient selection. O’Sullivan randomized the intervention to a specific group of patients 

with spondylolysis or spondylolisthesis of the spine, likely with instability from those 

osseous faults. Other investigators had patients with non-specific LBP. This highlights 

the importance of matching proper interventions to patients, which is the aim of 

treatment-based classifications. Since then, there is evidence that specific classification 

based rehabilitation for LBP may be more successful than a general rehabilitation 

program
26

 and support that matching interventions to exam criteria is crucial for good 

outcomes.
52
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As a result, there has been the development of a clinical prediction rule for 

determining the type of patients who that would benefit from trunk stabilization 

exercises.
8
 The TSECPR aims to identify patients who would benefit from trunk 

stabilization exercises. Initially, 4 patient characteristics were identified, with the 

presence of 3 or more of these characteristics increasing post examination likelihood for 

success to 67%.
8
 More importantly, there are still other patients, who are identified in this 

prediction rule to fail with trunk stabilization exercises. Some may be identified as failing 

with stabilization exercises because they may belong to another group. However, other’s 

may be failing because of a current inability of the TSECPR to detect the need for 

adjunctive treatment, perhaps introducing methods to selectively recruit key specific 

muscle stabilizers that are not functioning well due to inhibition or morphological 

changes. Better understanding of LM inhibition could help in improving diagnostic tests 

and interventional efficacy. 

Up to now, the proposal has only mentioned morphologic and metabolic changes 

to the LM. However, neural control of the LM also appears to be affected in patients with 

LBP. Investigators using real time ultrasound imaging have detected cross sectional area 

differences as well as impairments in volitional contraction of the lumbar multifidus
63

 

leading the authors to suggest changes in neural control of the muscle. Similar findings 

are noted in healthy control subjects with induced pain through saline injection
108

, 

demonstrating a rapid inhibition of the muscle. While the mechanism is not well 

elucidated, pain related inhibition is a plausible explanation. The lumbar multifidus 

would not be the only muscle group that has shown inhibition with injury, as the 
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quadriceps have demonstrated similar findings following surgery unrelated to the 

quadriceps, that appears to be influenced by central nervous system impairments.
109,110

  

Mechanism for impairment in the LM may have a very similar neural component. 

In these patients with quadriceps activation failure, development of a method to detect the 

underlying mechanism of neural inhibition has resulted in the use of electrical stimulation 

as an important supplemental intervention in these patients.
40,111,112

 In fact, not providing 

supplemental intervention has shown to inhibit recovery of the quadriceps in these 

patients.
40,110

 In patients with LBP, a review of trunk extensor exercises reports that 

general exercises are not always able to have lasting training effect unless care is taken to 

isolate specific muscle activity.
29

 However, there is no further information currently 

available in patients with LBP to determine if 1) inhibition of LM is truly responsible for 

recurrent LBP 2) if there is a neural component to potential inhibition and 3) is 

supplemental interventions to the LM would be beneficial. We first need to determine if 

LM is truly a major factor in recurrence and to what extent its impairments play in LBP. 

This may lie in the two tests that identify patients who would benefit from TSE: presence 

of aberrant movement and the PIT. 

1.5.4.1 What does aberrant movement during the forward bend tell us? 

 

A recent validation study has found that the presence of 2 of the 4 aforementioned 

exam findings: aberrant movement during forward bend and prone instability test (PIT), 

improve diagnostic accuracy of TSECPR.
9
 Patients with these 2 characteristics have been 

shown to have disruption in linear and angular displacement during the midrange forward 

bending, where muscle activity should be the dominant stabilizer.
32

 Altered posture and 

lumbopelvic rhythm during forward bend have been speculated to be resulting from 
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decreased LM activity and overuse of the erector spinae
113

 based on decreased paraspinal 

muscle activity during forward bend in patients with chronic LPB
11

, but these works have 

been on a heterogenous population of patients with LBP without an isolated study into 

the lumbar multifidus. Decreased LM activity however, has been shown to be an 

important prognostic factor for patients to benefit from TSE
16

. The presence of aberrant 

movement increases likelihood for success twofold. However, even with this modified 

TSECPR, 28% of patients who met the criteria did not fully respond to treatment. Based 

on 1) movement disruptions identified by Teyhen et al. (2007) and theoretical basis of 

muscle impairments speculated by van Wingerden et al. (2008), 2) the impaired return of 

LM activity after a low back injury
23

, and 3) need for specific training of the muscles to 

regain function
29

, there is a possibility that there may be intervention selection issues 

associated with lack of response to TSE. However, before that can be determined, these 

underlying assumptions about the mechanism responsible for aberrant movements must 

be validated. Aberrant patterns of motion have been associated with LBP by many 

investigators.
8,114-116

 The common aberrant movements are clinically defined are an 

instability catch/judder (JUD), deviation way from the sagittal plane (DEV), and altered 

lumbopelvic rhythm (aLPR). The operational definition of these are listed in table 1.1 as 

defined by Biely, et al. (2014). 
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Table 1.1. Operational definition of aberrant movements 

Aberrant Movement Operational Definition 

Judder (JUD) Sudden acceleration or deceleration of the 

trunk or quick momentary deviations away 

from the sagittal plane during forward bend 

 

Deviation from the sagittal plane (DEV) Movement away from the sagittal plane 

during forward bend, occurring in the 

transverse and/or frontal plane 

 

Altered Lumbo-pelvic rhythm (aLPR) Hip motion dominates first 1/3 of trunk 

motion on forward bend and/or lumbar 

segment movement dominate in the last 1/3 

of forward bend; lumbar motion dominates 

in the first 1/3 of return from forward bend 

and/or hip motion dominates lumbar 

movement in the last 1/3 of return from 

forward bend. 

 

 

 

 

 

The criterion validity of aberrant movement during forward bend has been 

studied, with clinical observation of JUD and deviation from the sagittal plane DEV 

being significantly associated with active LBP, separating subjects with aberrant 

movements with no history of low back pain
42

. This supports that while aberrant 

movements are present across populations, certain types of aberrant movement may have 

greater significance in the study of movement control in patients with LBP. While 

methods to quantify the 3 dimensional kinematics of these aberrant movements using 

secondary analysis from Biely et al (2014) yielded similar findings of unique aberrant 

movements’ ability to identify those with LBP, these movements were aLPR and JUD
10

, 
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not DEV. More importantly, the frequency of aberrant movements during the forward 

bend is highly associated with low back pain
42

, suggesting that these are a consistent 

motor pattern within the individual and not spurious findings based solely on prevalence 

of aberrant movement across individuals. 

Both Biely, et al. (2014) and Wattananon (2014) identify JUD’s association with 

the presence of LBP. However, the discrepancy between DEV vs aLPR between the two 

studies is unclear. In regards to DEV’s association with LBP, the chi-square analysis only 

identifies an association, but not a strength of association and can be largely effected by 

frequency of a condition.
117

 DEV was present in a large number of the sample, including 

43% of the forward bend observation of healthy individuals with no LBP.
42

 It is likely 

that once analyzed using kinematic variables to more specifically identify those with 

DEV, this aberrant movement became a more pervasive pattern seen across populations 

and was not significantly associated with LBP.
10

 Biely, et al. (2014) also mention that 

aLPR tended to present in unison with other aberrant movements; it is possible that more 

subtle aLPR in the observational study were overshadowed by other more prominent 

aberrant movements, decreasing the number of times aLPR was detected effecting 

analysis. However, despite the discrepancies, there are several neuromuscular factors that 

may play a role behind the mechanism of these aberrant movements. 

During forward bending, the extensors must act to control the trunk mass, 

eccentrically during the lowering phase and concentrically during the return phase. It is 

theorized that atypical and unsmooth motion can be representative of the neural system’s 

attempt to stabilize a joint via motor unit synchronization during a challenging task and 

represented on EMG with increase in peak amplitude and power band spectrum.
15

 The 
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increase in EMG amplitude during synchronization is likely due to increasing motor unit 

recruitment simultaneously to generate more force. Fluctuations in force production 

during contraction have been noted with increasing motor unit recruitment
118

 and this 

may be occurring during aberrant movement patterns. In hand muscles with similar 

multi-pennate and multi-segmental morphology to the LM, these types of motor unit 

synchronizations have been found to occur more during eccentric contractions
119

, similar 

to the lowering phase of forward bend where aberrant motions kinematics were 

quantified in patients with LBP.
10

 The early hip motion associated with aLPR may be due 

to the neural system’s attempt to increase motor unit contribution during forward bend by 

recruiting other motor groups. This strategy of recruiting other muscle groups are present 

with extensor function in healthy subjects: as demand on the extensors increase, lumbar 

multifidus activity increases along with a shift from medial erector spinae to the lateral 

erector spinae along with recruitment of quadratus lumborum, likely to increase the 

physiologic CSA of muscles participating in the activity.
120

 Fatiguing exercise of the 

trunk in healthy subjects have demonstrated increases in peak EMG initially of the 

lumbar extensors, up to a threshold, but once the threshold is exceeded, there is reduction 

in lumbar extensor EMG, with increased recruitment of hip extensors.
121

 The early onset 

of hip motion or domination of hip motion, from a motor recruitment perspective may be 

similar in mechanism: recruitment of other muscles to facilitate a goal of forward 

bending. 

Along with the possible neural drive mechanism for aberrant movements that can be 

assessed using sEMG, physiologic muscle properties potentially lend evidence for a 

muscular mechanism behind aberrant movements. The multipennate fiber orientation of 
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the LM 
64

, lends itself for coordinated activation and deactivation of motor units during 

motion to produce smooth movements, with irregular motion likely occurring with motor 

unit synchronization. Aberrant movement during forward bend may represent changes in 

motor control strategy during the forward bend to deal with increasing load and lever arm 

of the trunk through motor unit synchronization. However, this is speculation and 

analysis of EMG characteristics during the movement may provide more insight to this 

theory by providing more detailed knowledge of the neuromuscular mechanisms 

underlying aberrant movement during the forward bend. 

1.5.4.2 What might the prone instability test tell us? 

 

The PIT is performed with the patient prone, trunk supported on the examining 

table, and the legs over the end of the table with the feet on the floor. Passive posterior to 

anterior (PA) forces are applied to the intervertebral segments. PA loads are able to cause 

deformation of the spine with translation of the vertebral bodies in the sagittal plane.
122,123

 

PA loads are applied to the spine for provocative testing for various diagnostic purposes 

including identification of painful segments
23,28

 and assessing for segmental 

mobility.
35,124

 If pain provocation occurs with this load, the patient is asked to lift the legs 

off the floor, holding on to the table as necessary to maintain position. A positive PIT is 

represented by an elimination of pain when the posterior to anterior load is reapplied to 

the pain provoking segment.
35,125

 The extensors are assumed to contract to stiffen the 

spine, resulting in symptom reduction. A negative test: symptoms not abolished or 

diminished, is not as well elucidated. A negative result may suggest inadequate muscle 

activity to stabilize the spine to eliminate symptoms.   
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Similar tests exist to test the ability of muscular activity to stabilize the shoulder 

during provocative testing, but in these tests muscle activation to eliminate or decrease 

pain are both considered favorable response.
126,127

 However, it is uncertain with the PIT, 

what impact elimination of symptoms versus reduction of symptoms may have on overall 

prognosis for benefit from TSE. In both cases, the lumbar extensors may be working to 

stabilize the spine while the latter may suggest insufficient activation for complete 

stabilization. Failure to eliminate or reduce symptoms may be more indicative of failure 

to stabilize the spine with extensor activity. However, the validity of these test 

assumptions has not been systematically investigated. Muscle activity is also uncertain 

with the PIT. EMG analysis has found lumbar erector spinae (LES) and LM activity to be 

similar during a bilateral hip extension task.
128

 However, in their test the subjects brought 

their hips from a neutral position to a hip extended position while the upper trunk was 

stabilized with straps. The difference in movement positions from this task to the PIT 

makes generalization of EMG activity questionable, but it does suggest that the trunk 

extensors have a large role during this type of movement. 

Dysfunction of the lumbar extensors has been clinically assumed to be 

responsible for aberrant movement and the results of the PIT, but this has not been 

validated. The ability to identify impaired performance of the extensors is important as 

the function of these muscles, specifically the lumbar multifidus (LM) has been identified 

as a key muscle related to predicting success with TSE with higher numbers of predictor 

variables being present with lower LM activation levels.
16

 PIT had the highest univariate 

point biserial correlation (r= .38) of the predictor variables followed by presence of 

hypermobile segments (r=.36) in relation to reduced LM activity levels. What is unclear 
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from this data is what role decreased LM activation has with a positive PIT, considering 

that LM activity is what is assumed to give a positive response. Intuitively, a positive PIT 

would be negatively correlated with LM function.  

Based on similarity of r values between the PIT and rating of hypermobile 

segments, the results may be influenced by the number of people who had hypermobile 

segments in relation to decreased LM activity. The patient must first have pain with a PA 

load to be considered for positive for the test. Perhaps with decreased levels of LM 

activity associating with greater hypermobility, patients with good LM activation did not 

demonstrate pain with a PA load, leading to negative test results. Therefore, the first step 

in detecting a positive PIT: pain with PA load, may be a reflection of changes in LM 

activation. However, the patients in this study may have had adequate LM activation with 

hip extension to stabilize the spine. These results however, are the only link to the PIT 

and LM activity and do not clarify a relationship between LM and PIT findings, making 

interpretation of the test difficult. While the PIT helps to identify patients who would 

benefit from TSE, better understanding why could favorably impact clinical decision 

making. One such possibility is through selection of interventions that may preferentially 

target specific muscle related impairments, such as LM activation and/or strength 

deficits. Delineation and improved appreciation of the mechanisms responsible for the 

presence of aberrant movements and PIT findings, allows for better interpretation of test 

findings, so clinicians understand movement control impairments that are driving these 

test results, which is the goal of this proposal. 
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1.6 Preliminary Studies 

 

The purposes of the preliminary studies were to pilot and verify the different 

methodological approaches needed to address the aims of the proposal. For aim 1, data 

reduction and analysis methods were tested to determine the feasibility of identifying 

muscle activation patterns during the forward bend. In addition, a pilot study was also 

performed to determine if the linear elastic beam stiffness model chosen to study spine 

stiffness met assumptions of linearity. For aim 2, several methods were used to determine 

the ability of NMES to isolate and fatigue the LM. EMG data was collected in a small 

sample to ensure the feasibility of collecting trunk muscles activity during the test. 

Testing was also performed to determine if the NMES created significant disturbance 

within the electromagnetic field during collection of spine stiffness data.  

1.6.1 Approach to sEMG analysis during the forward bend: Example in several 

subjects 

 

The purpose of aim 1a is to characterize surface EMG (sEMG) signals of patients 

with and without aberrant movements associated with low back pain. The working 

hypothesis of aim 1a is that the lack of a smooth movement pattern is due to increased 

demand on the neuromuscular system during forward bend that requires altered trunk 

muscle activation or that is not adequately met. It is theorized that, as challenge on the 

musculoskeletal system increases, synchronization occurs within motor unit to produce 

more force, resulting in increased EMG amplitude with reduction in smooth movement 

15,118
. Therefore, increases in muscle EMG amplitude in the time domain that aberrant 

movement occurs, may indicate this. However, there may also be synchronization 

between muscles of the trunk during the task, which may be reflected in the sEMG 
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activation patterns between muscles. This type of muscle synchronization has been seen 

in muscles of the knee, with synchronization increasing as demand on the muscles 

increase.
129

 Analysis through cross correlation of trunk muscles is one approach to 

investigation of this theory. Cross correlation involves correlation of 2 time series signals 

against each other, shifting 1 signal back and forth against the other, with correlation 

values determined at each shift. This function gives the point in time (phase lag, T) that 

the signals are most correlated with the other and the correlation coefficient (r).
130

 T 

provides information on muscle timing, positive r indicates muscles in phase, and 

negative r indicates muscles out of phase.
131

 Therefore, a positive r with small T would 

indicate muscles activating in phase within a short time of each other, with increasing T 

values indicating further temporal width between contractions. A negative r would 

indicate one muscle activating while another muscle deactivates, with T representing the 

time between those two events. The magnitude of r values would determine how in phase 

or out of phase muscles are in relation to other muscle pairings and their respective r 

values. 

The purpose of this preliminary analysis was to investigate the feasibility of this 

approach to characterizing motor behavior by analyzing sEMG of primary muscles 

during forward bending. Chang et al. (2012) found increasing cross correlation values 

and decreasing time lags as muscle fatigue increased, likely from the need to increase 

synchronized muscle activity to complete the task. This may be the same in patients with 

LBP performing a forward bend with a muscular system that is impaired and not 

adequate to complete the task and need more muscles to synchronize for task completion. 
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Based on association of types of aberrant motion to the presence and absence of 

low back pain.
10

 Investigating the mechanism behind these specific aberrant movements 

could possibly yield information about the faults in the system that these observations are 

detecting, and potentially bring investigators closer to optimal interventions. Biely et al 

(2014) found that the clinical observation of JUD and DEV were strongly associated with 

patients with LBP. Secondary analysis of this data was performed to quantify and 

validate kinematic variables that identify these aberrant movements 
10

. This secondary 

analysis found significant associations between kinematically defined JUD, aLPR and 

LBP. The current proposal will be investigating sEMG data synchronized with the 

kinematic variables that were significantly associated with LBP, so will focus on subjects 

whose kinematic data identifies them as having JUD and/or aLPR. Cross correlation 

values and time lags will be studied to look at synchronization of muscles. Percent 

contribution of muscle activation during the forward bend will be studied to identify 

contribution of specific muscles during the forward bend to characterize contribution of 

muscles during the task. sEMG amplitude during forward bend will be studied to 

determine if amplitude differences exist in patients with aberrant movement versus 

healthy controls. 

Methods 

For this preliminary analysis, 4 patients with low back pain and 4 healthy subjects 

were selected from this sample for preliminary data analysis. This sample of 8 subjects 

was taken from 32 patients (62% female, age 44±9.8) with LBP identified through 

clinical examination to benefit from TSE 
8,9

 and 37 healthy subjects (64% female; age 

42±10.5) that participated in a prior LBP study and were part of the sample used by 
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Wattananon (2014). These subjects all had simultaneous recording of sEMG and 

kinematic variables recorded during the forward bend. The current LBP group had pain 

present for 12 weeks or less with no course of physical therapy for their current 

symptoms. Exclusion criteria were: history of spinal surgery, peripheral or central 

neurologic signs, lower extremity surgery or injury that would affect testing, systemic 

symptom or pregnant. 

An electromagnetic tracking system (Liberty, Polhemus Inc., Colchester VT) was 

used to capture kinematic data. Electromagnetic sensors were mounted on thermoplast 

molded to fit the contours of anatomic landmarks. These sensors were placed on the 

spinous process of T3, L1,and S2 to model segments of the trunk, and a sensor on the 

lateral condyle of the femur to model the movement of the pelvis on the femur (see 

complete details of subject preparation in Appendix E). SEMG (SA Instrumentations, 

San Diego, CA) data for 16 trunk muscles were also collected (gain 500; band pass 

filtered 20-500Hz). Skin surface was prepped by cleaning with alcohol and abrading with 

sand paper. Pairs of Ag-AgCl electrodes were placed with 2cm inter-electrode distance 

along landmarks for muscles as described bilaterally in Table 1.2. A reference electrode 

was placed on the lateral malleolus. A custom program (Labview 8.6, National 

Instuments, Austin Tx) was used to collect sEMG (2400 Hz) and kinematic (120Hz) data 

simultaneously.  

Subjects underwent collection of quiet resting sEMG for 2, 30 second trials 

followed by maximal and submaximal strength testing for trunk flexion, extension, and 

bilateral side bending for the purpose of sEMG normalization. They were seated in a 

custom device designed to secure the lower extremities to minimize their contribution to 
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the force, and a tension load cell was utilized to measure their strength. Visual feedback 

was given to the subjects at 15% of their body weight for submaximal contraction while 

no visual feedback was provided for maximal contraction (sMVIC). They then performed 

2 sets of 3 forward bend trials with return to standing (6 forward bends). Subjects were 

asked to bend forward as far as they comfortably could and then return to standing. 

 

Table 1.2Bilateral surface sEMG electrode placement 

Muscle Location Muscle Location 

Rectus Abdominus 

(RA) 

3cm lateral to 

umbilicus 
Latissmus Dorsi 

(LD) 

Midline between 

spinous process of 

T9 and axillary line 

 

External Oblique1 

(EO1) 

15 cm lateral to 

umbilicus 

 

Thoracic Erector 

Spinae (TES) 

5cm lateral to T9 

spinous process 

External Oblique2 

(EO2) 

5cm above and 5cm 

medial to EO1 

 

Lumbar Erector 

Spinae (LES) 

3cm lateral to L2 

spinous process 

Transverse  

Abdominus/Internal 

Oblique (IO) 

2cm below and 

medial to ASIS and 

above the inguinal 

ligament 

Lumbar 

Multifidus (LM) 

2cm lateral to L5 

spinous process 

 

 

 

Kinematic variable were used to quantify and develop an algorithm to detect JUD 

and aLPR
10

 using the following kinematic definitions established from this study: JUD: 

defined as sudden changes in instantaneous velocity or fluctuations in lumbar or pelvis 

segment angular velocity ; aLPR: reversal of the lumbopelvic rhythm in which hip 

motion is greater than lumbar spine motion in the first 1/3 of forward bend, and/or lumbar 

motion is greater than hip motion in the last 1/3 of movement. Kinematic data were 

analyzed using the algorithm developed by Wattananon (2014) and each forward bend 
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performed by the subject was rated for presence/absence of JUD and/or LPR using a 

custom program (Labview 8.6). Calculation of kinematic variables and the methods used 

to detect aberrant movement are presented in Appendix F and G, respectively. For the 

purpose of this preliminary study, a sample of 2 patients with LBP identified as having 

only JUD , 2 patients with only aLPR (4 LBP patients with aberrant movements), and 4 

healthy controls with no JUD and aLPR were selected and their 6 forward bend 

movements were analyzed. Subjects were DEV were not analyzed in this preliminary 

study, as the presence of DEV appears to be a common characteristic even in healthy 

subjects as 43% of subjects with no low back pain were observed to have DEV (Biely et 

al. 2014), and the kinematics of DEV did not identify those patients with LBP 

(Wattananon 2014). Therefore, ignoring the presence of DEV and analyzing the sEMG 

patterns associated with LPR and JUD may be the most meaningful. 

Data Reduction 

 Resting kinematic plot of the lumbar segment on the pelvis was measured and 

plotted against time to determine angular velocity. For subjects standing at rest, many 

forward bends started at a negative velocity. Therefore the first 0 crossing for angular 

velocity was used as a reference point, and the first data point that exceeded 1 deg/sec 

was considered the start of the forward bending phase. The forward bending phase is 

represented by a positive velocity based on the kinematics point of reference. As the 

segments begin to return from forward bend, the angular velocity assumes a negative 

value. Therefore, forward bending phase was considered to stop at the second 0 crossing, 

where the velocity transitioned from a positive to a negative value. Remaining data points 

from that point were considered to be return form forward bend and not currently 
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analyzed (Figure 1.1). Time stamps from the first and second crossing were used to 

obtain EMG signals for the forward bend. 

 

Figure 1.1 Determining initiation of the forward bend. Plot of angular displacement of the lumbar segment 

on the pelvis, with angular velocity plots in the forward bend and return from forward bend.  

The first 0 crossing of the angular velocity was considered the initiation of forward bend and the second 0 

crossing was considered the initiation of return from forward bend. SEMG from the forward bend portion 

was analyzed in this preliminary study. 

 

 

 

Raw sEMG data had heart rate artifact removed using a custom fast independent 

component analysis (ICA) program (Labview 8.6). Cross correlations were performed on 

the forward bend portion task, using non normalized EMG signals with a 30ms RMS 
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window and a correlation timing window of 1.75 second to examine synchronicity 

between muscle groups.  

 A custom data synchronization program was used to RMS (Tc = 30ms) and down 

sample the sEMG to 120Hz (data collection frequency of the electromagnetic system), 

and synchronizes the signal to the kinematic data. Four subjects with aberrant movements 

were randomly selected along with 4 healthy subjects, reduced through this process. 

EMG amplitudes of the right and left lumbar multifidus (RLM, LLM), right and left 

lumbar erector spinae (RLES, LLES), and right and left thoracic erector spinae (RTES, 

LTES) were each averaged over the first 2 seconds of the initiation of the forward bend. 

The heart rate removed EMG signals were then RMS filtered without down sampling 

(2400 Hz) and the same 2 seconds of data were averaged for the same muscles. A paired t 

test (P<0.05) and coefficient of variation was performed on the signals of these 6 

individual muscles at 120Hz and 2400 Hz, to determine if there was any change in signal 

amplitude as a result of downsampling from 2400 Hz to 120 Hz. There was no significant 

difference between the sEGM signals at 120Hz and 2400 Hz, with CV at less than 1%. 

Based on this, it was decided to perform exploratory analysis of the data at the down 

sampled rate (120Hz) synchronized to the kinematics.  

Data Analysis 

Side-to-side symmetry of the extensor muscle groups was investigated first, to 

determine if sides should be analyzed as individual muscles, or if they should be 

collapsed using a 2 x 2 mixed model ANOVA as well as an Intraclass Correlation 

Coefficient (ICC2,1). Mean sEMG amplitude during the forward bend was determined for 



 

 

 

 

42 

4
2
 

each forward bend trial per muscle, per side and used in both ANOVA and ICC2,1. 

Coefficient of variation (CV) between trials of the mean forward bend sEMG amplitude 

was calculated for each subject by muscle to determine variation between forward bends 

(Table 1.3). Due to high CV’s, each forward bend was handled as a separate case, rather 

than collapsing by trials for side-to-side symmetry. For mixed model ANOVA, left and 

right Factors of the muscles: LM, LES, and TES each with 2 levels were considered 

within groups variable and the factors of LBP with 2 levels, was used as between subjects 

measure. ICC2,1 coefficients were calculated separately for LBP and healthy control 

subjects per muscle group, with side as the testing variable.  

To determine synchronicity of muscle groups, cross-correlation values (r) and lag 

times (T) were collected for 6 forward bend trials for all subjects. Correlations (r) and T 

values were averaged across trials per subject and compared across groups. Following 

cross correlation of the non-normalized signal, sEMG from strength testing was used to 

normalize the EMG. Submaximal contractions tended to level sooner than maximal 

contractions, allowing for longer time durations to obtain sEMG amplitudes. A 2 second 

mean around the peak amplitude was obtained for each submaximal test and two trials 

were averaged, as this method provided a stable value for normalization with lower 

standard deviations compared to the same values for maximum contraction. The highest 

mean peak average sEMG amplitude from flexion, extension, or side bending to either 

side was used to normalize sEMG data to obtain a percentage of the submaximal 

volitional contraction (sMVIC) during the forward bend. After sEMG normalization each 

forward bend which ranged from 2-4 seconds in duration, was time normalized by 

dividing into 10 epoch bins and sEMG for each muscle was analyzed within the bins. 
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Table 1.3Coefficient of variation of the mean SEMG amplitude during forward bend, between trials, per 

muscle. 

Subject Group   

RLM 

  

LLM 

  

RLES 

  

LLES 

  

RTES 

  

LTES 

1 LBP 0.40 0.60 0.46 0.60 0.76 0.59 

2 LBP 0.46 0.63 0.41 0.50 0.67 0.40 

3 LBP 0.94 0.96 0.85 1.13 0.48 0.67 

4 LBP 0.77 0.86 0.53 0.82 0.92 0.87 

5 Control 0.53 0.57 0.30 0.59 0.31 0.43 

6 Control 0.73 0.74 0.58 0.76 0.55 0.47 

7 Control 0.47 0.64 0.45 0.57 0.46 0.62 

8 Control 0.62 0.58 0.52 0.51 0.55 0.62 

 

 

 

Results 

Muscle Activation Symmetry  

Table 1.4 contains descriptive statistics for normalized mean sEMG amplitudes 

between groups, for left and right muscles. There was a significant main effect of muscle 

side (F3,44)=29.8, p<.001. There was an effect within groups for left to right difference for 

LM (F1,46)=44.5, p<.001 and LES(F1,46)=10.2, p<.001, but not for TES (F1,46)=1.2, 

p=.281. There was a between groups effect for left to right sided difference between 

patients with LBP vs control subjects for LM (F1,46)=4.9, p<.05, LES(F1,46)=5.4, p<.05, 

and TES (F1,46)=12.3, p=.001. 

Due to between groups effect on side-to-side symmetry of sEMG amplitudes 

during the forward bend, ICC(2,1) was calculated separately for patients and control 

subjects. Table 1.5 contains the correlation coefficients, which were overall, fairly high.  
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Table 1.4 Descriptive Statistics of sEMG amplitude. Side-to-side means and standard deviations of average 

SEMG amplitudes (mv) during the forward bend, per muscle group between patients with low back pain 

and healthy control subjects. 

 

  LM LES TES 

  Right Left Right Left Right Left 

Groups Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Controls 0.82 0.50 0.61 0.38 0.50 0.22 0.47 0.29 0.18 0.09 0.26 0.13 

LBP 0.54 0.35 0.40 0.31 0.39 0.22 0.27 0.22 0.51 0.39 0.36 0.24 

 

  

 
Table 1.5 ICC coefficients for side-to-side difference. ICC(2,1) coefficients for average sEMG amplitudes 

during the forward bend, per muscle group between patients with low back pain and healthy control 

subjects. 

  LM LES TES 

Controls 0.77 0.90 0.77 

LBP 0.84 0.77 0.87 
 

 

 

Muscle group synchronization: 

Results between ICC and mixed ANOVA were conflicting for side-to-side muscle 

symmetry. As this was a preliminary study, it was decided to treat muscle sides as 

individual muscles to explore muscle group synchronization. Table 1.6 contains cross 

correlation coefficients (CCC) (r) and lag between muscle onsets (T). Normality of CCC 

was performed using Kolmagrov-Smirnoff test using individual forward bend CCC trials 

for each subject. Assumptions were met for normal distribution, as a Fisher’s 

transformation was not performed prior to averaging r-values. There are overall lower r 

values in healthy controls across the lumbar extensors, with higher T between muscle. 

CCC tended to be higher across bilateral LM and LES in patients with LBP, but not so 

for relationships among TES or between TES and the LM/LES groups. 
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Table 1.6. Mean cross correlation coefficient (r) and time lag (T) between muscles during the forward bend. 

Patients with LBP with JUD and aLPR demonstrate higher r-values and shorter T duration compared to 

healthy control subjects. 

  Healthy Controls LBD JUD and aLPR 

Mean r SD r Mean T (s) SD T Mean r SD r Mean T (s) SD T 

RLM-

LLM 
0.36 0.18 1.00 0.63 0.74 0.20 0.31 0.39 

RLM-

RLES 
0.32 0.19 1.42 0.69 0.68 0.23 0.32 0.38 

RLM-

LLES 
0.27 0.22 1.24 0.68 0.72 0.25 0.30 0.40 

RLM-

RTES 

0.17 0.17 1.44 0.88 0.32 0.21 0.64 0.06 

RLM-

LTES 

0.18 0.21 1.34 0.61 0.48 0.19 0.47 0.23 

LLM-

RLES 
0.19 0.22 1.11 0.64 0.74 0.20 0.37 0.33 

LLM-

LLES 
0.54 0.15 1.22 0.50 0.77 0.24 0.28 0.42 

LLM-

RTES 

0.19 0.14 1.14 0.83 0.26 0.25 0.57 0.13 

LLM-

LTES 

0.23 0.15 1.43 0.62 0.48 0.25 0.52 0.18 

RLES-

LLES 
0.21 0.21 1.23 0.77 0.75 0.23 0.29 0.41 

RLES-

RTES 

0.22 0.15 1.46 0.94 0.24 0.20 0.57 0.13 

RLES-

LTES 

0.19 0.20 0.26 0.56 0.44 0.19 0.39 0.31 

LLES-

RTES 

0.20 0.17 2.44 1.05 0.25 0.26 0.66 0.04 

LLES-

LTES 

0.17 0.21 1.23 0.68 0.49 0.21 0.55 0.15 

RTES-

LTES 

0.22 0.12 0.83 0.54 0.32 0.22 0.25 0.45 

 

 

EMG amplitude during forward bend  

 Table 1.7 contains mean normalized sEMG amplitudes during the forward bend, 

represented as a percentage of the sMVIC time normalized into 10 bins, each 

representing 10% of the forward bend. Patients with aberrant movements tended to 
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demonstrate a higher activation of the trunk extensors during the forward bend especially 

the lumbar multifidus compared to healthy controls with no aberrant patterns. These 

patients maintain a higher level of LM activation throughout the movement, but the 

activity of LM peaks in the beginning of the motion, with LES peaks happening within 

the same bins. However, there appears to be a change in movement strategy that occurs at 

the halfway mark of the forward bend in these patients: LM activation while remaining 

high begins to decrease while TES activity begins to increase. In healthy control subjects, 

TES activity levels stay fairly steady while both LM and LES groups begin to increase 

activation towards 50% of the motion and then decrease fairly sharply. 

Movement control during forward bend:  

 Figure 1.2, Figure 1.3, and Figure 1.4 depict the percent contribution of extensor 

muscle activation during the forward bend along with the angular velocity of the lumbar 

segment relative to pelvic segment. Based on muscle symmetry among healthy controls 

without DEV, it was decided to average the forward bends of these subjects together for 

analysis. Healthy control subjects, there is an early rise in angular velocity and a gradual 

reduction in velocity towards the end of the forward bending phase. There is no large 

fluctuation in the muscle activity through the 10 bins. In the patients with aLPR, lumbar 

velocity starts lower and gradually increases by the third bin. This is likely due to the 

pelvic dominant movement in the beginning of motion. As velocity increases, LM and 

LES are the dominant muscles with no change in velocity. By midpoint of the 6
th

 bin, 

there is a dramatic increase in TES activation along with a sharp reduction in velocity. 

There is a similar pattern in patients with LBP presenting with JUD, as they begin to 
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demonstrate a shift in muscle activation strategy followed by a reduction in forward bend 

velocity.  

 

Table 1.7. Percentage of the sMVIC trunk extensors during the forward bend, time normalized to 10 bins 

each representing 10% of the forwarding bending motion. Shading separates the forward bend by halves.  

   LBP (JUD and aLPR Combined) 

 RLM LLM RLES LLES RTES LTES 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Bin 1 75% 55% 64% 38% 49% 22% 42% 26% 25% 9% 10% 4% 

Bin 2 127% 64% 97% 36% 62% 23% 68% 37% 24% 14% 10% 6% 

Bin 3 141% 53% 114% 34% 74% 24% 84% 42% 26% 11% 10% 3% 

Bin 4 140% 53% 97% 40% 78% 26% 76% 33% 32% 11% 15% 8% 

Bin 5 107% 38% 80% 41% 72% 24% 61% 32% 45% 19% 30% 12% 

Bin 6 61% 20% 52% 30% 54% 18% 40% 20% 78% 23% 40% 15% 

Bin 7 50% 20% 30% 12% 44% 14% 21% 8% 85% 18% 40% 9% 

Bin 8 48% 23% 30% 8% 38% 18% 19% 7% 49% 23% 24% 12% 

Bin 9 61% 34% 43% 21% 41% 23% 27% 14% 36% 29% 11% 12% 

Bin 10 85% 53% 61% 36% 47% 31% 39% 26% 61% 55% 23% 36% 

  

 

Healthy Control Subjects 

 RLM LLM RLES LLES RTES LTES 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Bin 1 21% 13% 18% 14% 29% 16% 15% 12% 15% 5% 21% 7% 

Bin 2 30% 6% 24% 11% 36% 11% 18% 13% 21% 6% 27% 6% 

Bin 3 46% 12% 46% 7% 47% 13% 39% 7% 24% 6% 31% 8% 

Bin 4 71% 14% 63% 15% 64% 19% 57% 19% 28% 5% 34% 5% 

Bin 5 86% 9% 80% 13% 62% 17% 65% 18% 26% 5% 37% 6% 

Bin 6 87% 31% 65% 28% 59% 24% 66% 26% 23% 4% 35% 11% 

Bin 7 49% 31% 39% 28% 27% 14% 29% 16% 20% 6% 31% 18% 

Bin 8 8% 4% 7% 2% 11% 4% 7% 3% 14% 4% 31% 19% 

Bin 9 9% 1% 7% 1% 15% 6% 6% 2% 12% 3% 28% 13% 

Bin 10 9% 2% 7% 1% 9% 2% 5% 1% 15% 3% 25% 11% 
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Figure 1.2. Average muscle activation pattern and angular velocity of 6 forward bends, in 4 control subjects 

with no aberrant movement over 10 epochs of movement. There is a sharp increase in velocity in the first 

bin that reaches maximum velocity by the third bin (roughly 30% of motion). Percent activation of sEMG 

muscle activation of the trunk extensors are fairly stable throughout the motion.  
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Figure 1.3. Average muscle activation pattern and angular velocity of 6 forward bends, in 2 subjects with 

aLPR, in radians per second over 10 epochs of movement. Lumbar segment velocity slowly increases and 

reaches maximum by the 60% of the motion. At the 70% point, there is a change into a thoracic erector 

spinae dominant pattern, with a sharp reduction in angular velocity. 
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Figure 1.4. Average muscle activation pattern and angular velocity of 6 forward bends, in 2 subjects with 

JUD, in radians per second over 10 epochs of movement. Lumbar segment velocity increase is more 

gradual but similar to healthy control subjects, with peak velocity by the 40% of the forward bend. At 60% 

of the motion, there is a change over into a thoracic erector spinae dominant pattern, with a sharp reduction 

in angular velocity. 
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Conclusion 

All subjects appear to demonstrate statistically significant side-to-side asymmetry 

of muscle activation during the forward bend. The operational definition of DEV would 

suggest that the overriding muscle activation characteristic of this movement pattern 

would be asymmetric muscle activity. However, based on the current results of mixed 

model ANOVA, asymmetry of muscle activity appears to be present across all groups. 

And therefore, may support the decision to ignore DEV and focus on aLPR and JUD. 

There are conflicting results from the ICC and the ANOVA. ICC was utilized for it’s 

properties in determining how well groups resemble one another, as in the case of test-

retest reliability. However, the differences may be occurring since ICC uses a random 

effects model versus a fixed model used in the ANOVA. In this case, where for the 

purpose of this proposal, the muscles of interest will be fixed, the mixed model ANOVA 

gives a better interpretation of symmetry. The asymmetry of the muscle groups would 

also suggest that the sEMG should be analyzed with independent sides, rather than 

collapsing sides to analyze as one muscle group. Prior to analysis of the data for the 

proposed study, side-to-side differences will be analyzed as was done in this preliminary 

study, to determine if muscles should be analyzed collapsed or as individual right vs. left 

side. This preliminary analysis was based solely on statistical significance of symmetry. 

Further work with larger sample size will include establishing minimal detectable change 

to determine if side to side differences exceed error, as well as calculation of effect size 

between sides to aid in the decision of collapsing sides or analyzing sides separately. 

On inspection, the cross correlation values appear to demonstrate higher CCC 

values and shorter lag in patients with low back pain that present with JUD and aLPR, 
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compared to healthy controls. While not tested statistically due to low number of 

subjects, the higher r suggests more muscles acting in phase with each other in these 

patients. For many of the extensor muscles that had CCC above .5 in patients, the lag 

times were below 500ms. In prior studies, muscles with lag times below 500ms were 

considered to be acting simultaneously 
131,132

 , possibly supporting the theory that muscle 

synchronization is necessary to complete a challenging task. In healthy controls, these 

muscles had low CCC, with lag greater than 1 second. This may be more representative 

of synergistic activation of muscles, with certain muscle groups dominating during 

different portions of the forward bend to allow for smooth motions. This may be the case 

of the data in Table 1.7.1.6 representing the percentage of muscle sMVIC during the 

forward bend. In healthy control subjects, the LES begins to peak in bin 3 through bin 5 

(30-50% of forward bend), with LM peaking in bins 4-6 (40-60% of the forward bend). 

Interestingly, in the later stages of forward bend, subjects with LBP demonstrating 

aberrant movement continue to maintain high levels of muscle activity, whereas healthy 

controls demonstrate a drop in muscle activity. This may represent a difference in passive 

structures between the two groups, with healthy control subjects being able to rely on 

passive structure tension to provide for spinal stability. The stability of muscle percent 

contributions through the 10 bins in the healthy controls may support this, and warrants 

further study. Preliminary data suggests that group comparisons of CCC and lag values 

should be able to determine differences in muscle synchronization.  

While overall correlations in the LBP patients with aberrant movements tend to be 

higher between LM and LES, CCC values are lower in relation to the TES, suggesting 

this muscle group may be more out of phase during the forward bending phase of 
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movement. In fact, the muscle activation contributions of the forward bending phase 

demonstrates a higher LM and LES in the first ½ of the motion with a switch to a TES 

dominant activation pattern, suggesting a change in muscle activation strategy. In both 

the aLPR and JUD, the central nervous system may be trying to control the decent of 

trunk but the muscle activity may not be adequate, and a change in strategy has to occur: 

recruitment of the TES to abruptly decrease angular velocity. This may be represented by 

the out of phase correlation coefficients between LM, LES, and TES. Lastly, the patients 

with low back pain tended to possess a larger percentage of the sMVIC during the 

forward bend compared to healthy controls, which may suggest a larger percentage of 

motor unit activation during the task, and could also represent synchronization of motor 

units during the forward bend. Based on preliminary results, the current method of 

binning sEMG data and cross correlation appear to offer an appropriate approach to 

characterize sEMG patterns during the forward bend. 

1.6.2 Bending Stiffness of an Elastic Beam: Validating Linearity Assumptions of 

Stiffness. 

Completion of Aim 1b and 2A will require the ability to identify stiffness changes 

of the spine. To accomplish this, an elastic beam model of the spine will be used. In this 

model, the lumbar spine represents an elastic beam that is supported by the thoracic cage 

and the pelvis as cantilevers, with a force applied to the spine to produce angular and 

linear displacement 
133

. A formula has been derived to model this during posterior to 

anterior stiffness during a manipulative force, using the formula below:  

𝐸𝐼 =

𝑃𝑏
2𝐿

[(𝑒 + 𝑎)𝑑 + 𝑎𝑏]

𝜃𝐿1𝑆
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where stiffness (EI) is defined by pressure applied to the spine (P), the distance between 

the rib cage cantilever and the sacrum cantilever (L), the horizontal distance between the 

pressure applied to the spine and the sacrum (b), the horizontal distance from the rib cage 

cantilever to the pressure applied (a), and the maximum angular displacement of the spine 

(θL1S)
134

. 

The elastic beam model has been utilized by Shum et al, (2013) to measure 

changes in bending stiffness of the lumbar spine during posterior to anterior 

mobilizations. In their study, electromagnetic sensors were placed on the first lumbar 

spinous process (L1, representing the thoracic cantilever) and on the sacrum at the first 

spinous tubercle (S1 representing the pelvic cantilever) to measure bending stiffness of 

the spine using displacement of the sensors. However, the equation operates on an 

assumption that structural bending can be represented by linear relationship. Work was 

performed in the lab to check this assumption of a linear relationship to force and 

bending stiffness. In this study, two cantilevers of known distance supported a PVC 

beam. The beam stiffness was tested under several conditions to determine if the stiffness 

measures meet the assumptions of linearity. Verifying this assumption is important when 

comparing load delivered to the spine and stiffness changes during the planned 

experiment for aim2b. 

Methods 

A 94 cm long PVC beam, 3mm in thickness, with an inner diameter of 2cm was 

supported at its ends by wooden beams and is depicted in Figure 1.5. Wood was used to 

limit distortion of the electromagnetic sensors. Two electromagnetic sensors (sensors 1 

and 2) (Liberty, Polhemus Inc., Vermont) were attached to the ends of the PVC beam, 31 
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cm apart. Sand weights held in a plastic container were suspended from a nylon cord 21 

cm from sensor 1 and 11 cm from sensor 2 to allow for testing vertical displacement of 

the beam with varying loads. The load was offset between the two sensors, as this may be 

the case when testing aim 2b. A third sensor (sensor a) was initially placed directly above 

the load as an additional sensor to detect displacement directly at the load and as an 

additional sensor in determining linearity of the formula. Data were collected at 120 Hz. 

A plastic container was filled with sand of gradually increasing weights (7.5lb, 12 lbs, 

16.5 lbs, 24 lbs) and vertical displacement measured at each weight increase.  

Sensors were moved to various locations as depicted in Figure 1.6 to determine if 

position of the sensor along the beam would affect linearity. The experiment was 

repeated with a compression load cell with a ferrous metal casing that will be used in the 

planned validity experiment. The ferrous metal was introduced in to the field to 

determine if the presence of a small amount of metal would significantly distort the 

electromagnetic field and therefore alter stiffness measures. 
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Figure 1.5. Setup to test linearity of the elastic beam formula with distances between sensors and the load 

along the PVC pipe. Sensors 1 and 2 represent two electromagnetic sensors used by Shum et al (2014). 

Sensor A was initially placed directly over the load.  

 

 

This procedure was repeated with sensors 1 and 2 as well as the load remaining in the 

same position, while sensor A was placed 10 cm away from sensor 1, and then again with 

sensor A 23 cm away from sensor 1, as illustrated in Figure 1.6, to have additional data 

points for vertical displacement data.  

Data analysis 

A dual quaternion algorithm was used to represent displacement of a rigid body was used 

to plot the rotation in relation to the sensors, using the formula by Shum et al.(2013).  
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Figure 1.6. Depicts the movement of the middle sensor to varying distances from the load and 2 end 

sensors to determine linearity of the model and equation.  
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Results 

There is a linear relationship between load and sensor rotation change, including with 

introduction of metallic compression load cell. 

 

 

 

Figure 1.7. Plot of sensor rotation change over load.  
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Conclusions 

The equations used by Shum et al (2013) were determined to satisfy the assumptions 

of linearity in an elastic beam, with minimal distortion (within measurement error of the 

instrument) introduced by the metal compression load cell. This allows for use of the 

equation in aim 2b for determining spine stiffness. 

1.6.3 Determining the Ability to Measure Spinal Stiffness In vivo Using Currently 

Available Kinematic Equipment 

In validating the clinical assumption of spinal stiffness during the PIT, as well as 

determining if electrically elicited muscle contractions can yield spinal stiffness changes, 

electromagnetic sensors will be used to track spinal segment displacement, and thus used 

to calculate spinal stiffness. The purpose of this preliminary study was to examine load to 

spine deformation relationship using current kinematic equipment in the lab and refine 

methodology in collecting and analyze this data. 

Methods 

A 38-year-old female subject with a history of recurring low back pain who was 

currently asymptomatic participated. She was placed in prone with the spine in less than 

5 degrees of extension. Two electromagnetic sensors were placed at L1 and S2 as 

described by Shum et al 2013. A compression load cell (Transduce Techniques, 

Temecula, CA) was attached to a custom apparatus to measure the force applied during a 

posterior to anterior load applied to the spine (Figure 1.8). The subject was asked to 

exhale and hold her breath as a posterior to anterior (PA) load was applied to L3 at 22 

Newtons (N) (5lbs). Two trials were administered 120 seconds apart. Real time visual 

feedback from the compressive load cell was provided on a computer screen to allow the 
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examiner to keep forces consistent between trials at ± 2.5% of the target load. This was 

repeated at 44 N (10lbs) of PA load with a 5-minute rest period between incremental load 

increases. Prior studies investigating posterior to anterior loads on the spine have utilized 

forces ranging from 50 to 200 N, equaling 11 to 45 lbs of force 
86,135,136

. Twenty-two N 

and and 44 N were utilized in this study as loads were administered manually rather than 

a mechanical loading device, and 44N was the maximum load that could be manually 

applied consistently with visual feedback. 

 

 

 

Figure 1.8. Apparatus attached to a compression load cell to apply anterior loads to the spine.  

 

 

The subject was then placed in the testing position for the PIT. A wooden, non-height 

adjustable plinth was utilized to avoid electromagnetic field distortion. A set of stepping 

blocks were placed under subjects as necessary to place their ASIS at the height of the 

table. She was then asked to lie on the table such that the table would support the upper 
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body with legs extended off the table, supported by the stepping blocks (if necessary). 

Two trials of each load (22, 44N) were applied again to the spine at L3 using the same 

trials and rests as described above in prone. Once testing was performed in the resting 

position of the PIT, the subject was placed in the PIT testing position again, and a 24-inch 

high beam attached to a gate was placed above the calf. She was asked to raise the legs to 

the 24-inch height to standardize leg raising position. Prior to testing, pilot subjects were 

given the opportunity to be in the PIT testing position and perform the leg raise (hip 

extension. Several heights were trialed for the gate, but subjects tended to overshoot the 

target, which may impact sEMG analysis of the PIT in future aims of the study. Subjects 

were more consistent with reaching the 24-inch high gate without overshooting and so 

was used for this study. This was performed following an audible signal, and a PA load 

was applied at 22 N to L3. This was repeated for 2 trials with 2 minutes rest between 

trials, followed by 2, 44 N trials as in the above sessions. Complete protocol sequence is 

presented in Appendix C. 

Data Analysis 

 Rotation of the L1 sensor about the S2 sensor was measured in degrees, as force 

was applied to the L3 segment. Bending compliance of the spine during load application 

was expressed as the slope of the load (y axis) against the angle change (x-axis). Stiffness 

of the spine was expressed as the inverse of the compliance (1/compliance slope). A 

regression line was also created to determine the line of best fit. 

Results 

 Table 1.8 contains the compliance slope, stiffness index, and R
2
 of the best fit 

curve during the 3 conditions tested under two different loads. There are strong 
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associations between the load and the angle change. However, the flexibility of the spine 

to load does not demonstrate a consistent change across the conditions. The subject did 

not demonstrate any increase in spinal stiffness using the current calculation of 

compliance and stiffness using slope values. Figure 1.9 depicts graphical plots of the load 

versus angle change. In the examples shown, there are 6 degrees of change to the anterior 

load in the prone and PIT resting position. There is a 3 degree change in the PIT leg 

raising position demonstrating reduction in angular motion between the L1 and S2 

sensors, with leg raising. However, the stiffness index as calculated does not reflect a 

stiffness change. 

Table 1.8. Compliance (slope of load versus angle change), Stiffness index (1/compliance) and R2 of the 

best fit curve. All plots fit a linear best fit curve. 

 

Prone PIT Resting Position PIT Leg Raised 

 

22N 44N 22N 44N 22N 44N 

 

Trial 

1 

Trial 

2 

Trial 

1 

Trial 

2 

Trial 

1 

Trial 

2 

Trial 

1 

Trial 

2 

Trial 

1 

Trial 

2 

Trial 

1 

Trial 

2 

Compliance 5.7 3.9 6.8 4.7 3.5 6.2 4.6 4.7 4.8 7.6 6.8 4.7 

Stiffness 0.17 0.26 0.14 0.21 0.29 0.15 0.22 0.21 0.2 0.13 0.14 0.21 

R2 0.98 0.99 0.94 0.89 0.96 0.94 0.98 0.9 0.88 0.99 0.94 0.89 
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Figure 1.9.Example of scatter plot of angle change versus load in three different positions, along with 

associated r
2
 values. Steeper slope reflects greater flexibility of the spine. In the Prone Instability Test, leg 

raising position, the angle starts at a higher baseline as the subject demonstrated an increased lordosis of the 

spine upon leg raising. The slope was calculated based on the angle of the spine and it’s change, once the 

load was applied. 
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Conclusion 

A subject with recurring symptoms who was currently asymptomatic was specifically 

chosen for this preliminary trial to provide the most variability that may be possible 

during the testing protocol. She would potentially offer challenges during the testing 

protocol that we may face in the future with patients who have low back pain, while 

having lower risk for symptom irritability as the protocol was piloted. She did not report 

any pain production during the testing but did report an overall irritation of her 

symptoms.  

The plot of load to angle demonstrated a strong, nearly linear association between 

load and angle change, supporting the findings of preliminary study 5.2. It demonstrates 

our ability to obtain spinal compliance changes that occur during the testing. The 

paradoxical nature of increasing flexibility during the leg raising portion of the PIT of 

this subject may be due to her history of recurring pain and we are likely to have differing 

results with other subjects.  

There is broad variability in spinal compliance throughout the testing conditions and 

loads applied. Scatter plots in some cases demonstrated changes in angle even as load 

was held fairly constant, demonstrating hysteresis. This is likely an effect of the rate of 

loading. In practice sessions prior to testing of this subject, greater hysteresis was seen 

when load was applied more abruptly, impacting the slope and stiffness values. This did 

decrease over time with tester practice, and will be a necessary motor skill that needs to 

be developed by the tester. Gradual loading appears promising for decreasing this effect 

of hysteresis. This may be the case as demonstrated in Figure 1.9. In the resting position, 

there is a 6 degree angle change from application of the load while the leg raising leads to 
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a reduction in the angular change once load is applied. This would appear to be a stiffness 

increase as there is less spinal bending. However, the slope may be impacted by the rate 

of loading and hysteresis. There may also be an effect of muscle guarding during the test 

that will affect the slope. Ensuring subject comfort will likely reduce this guarding.  It 

may be possible to reduce this guarding through introducing the load application 

apparatus to the subjects while testing for painful segments. SEMG will also be collected 

during the PIT test.  Therefore, monitoring of the sEMG signal during testing may also 

give the tester information of subject guarding and allow for coaching to relax.   

Currently, this preliminary case study demonstrates the ability to use current 

equipment in the laboratory to collect and analyze the data necessary for the study. It is 

still necessary to run a smaller study to establish a more robust pattern of spinal mobility 

changes that occur with loading. We also need to establish instrumental and tester error to 

determine standard error of measure and minimal detectable change values necessary to 

interpret our findings.  

1.6.4 Isolation of Lumbar Multifidus using NMES: Near Infrared Spectroscopy 

The purpose of this preliminary study was to determine the ability for NMES to 

target the LM. Aims 2A and 2B require selected activation of the LM and the ability to 

fatigue the LM. Based on the surface anatomy in the lumbar region with several muscles 

located in a common area including LM and LES, a method was required to confirm 

isolated activity of the LM, with negligible activation of the LES. The use of both sEMG 

and indwelling EMG electrodes pose limitations, as the use of sEMG to confirm 

electrical activity in surrounding muscles would be tainted by skin conductance of the 

electrical signal from NMES and the limited sampling area of fine wire EMG cannot 
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adequately confirm electrical silence in surrounding areas. Near infrared spectroscopy 

(NIRS) offers advantages for studying muscle activation characteristics as NIRS is not 

distorted by NMES conductance and has been used in the past in conjunction with 

electrical stimulation to study muscle metabolism.
137

 It has the potential to indirectly 

determine magnitude of muscle contraction through blood volume changes in a muscle
138

 

when referenced against EMG. It also provides insight into muscle physiology through 

comparing the ratio of oxygenated to deoxygenated blood.
139

 Carefully placed sensors 

could provide the ability to detect and differentiate LM recruitment compared to other 

trunk extensors (lumbar and thoracic erector spinae), offering suggestions for electrode 

placement. Changes in the magnitude of blood flow volume and ratio of oxygenated to 

deoxygenated blood through iterative stimulations could potentially determine if NMES 

sufficiently overloads a muscle by using muscle fatigue parameters to determine 

appropriate prescription of NMES dosage.  

The purpose of this preliminary study was to 1) determine how well NMES can 

be utilized to isolate LM activation; and 2) determine if NMES could result in fatigue of 

the LM via assessment of muscle fatigue and the relationship between muscle 

physiologic changes (NIRS) and electrical activity (EMG) across a range of activation 

levels.  
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Methods 

Subjects 

Subjects between the age of 18-50 were recruited. 12 healthy subjects (5 female) 

with average age 29 +/- 5, BMI 27.4, +/- 5.2 participated in the experiment. Subjects 

were a sample of convenience recruited from the University area through word of mouth 

and flyers. Exclusion criteria were current or a history of low back pain that limited 

function for greater than 3 days. This data was collected under Drexel IRB protocol 

number 1404002752 (see Appendix D). 

 Procedure 

All subjects underwent skin preparation as mentioned in section 6.1. Pre-gelled 

(Ag-AgCl) disposable surface EMG electrodes (2cm inter-electrode distance ) were 

applied to target muscles as listed in table 1.9. The reference electrode placed on the left 

lateral malleolus according to ISEK standards.  

A continuous wave (CW) near infrared spectroscopy device with three separate 

probes was used to measure hemodynamic changes of the muscles (Drexel University 

Biomedical Engineering, Philadelphia, PA). Each NIRS probe had one light source and 

three detectors embedded into a foam molded square block. Two of the detectors were 

placed at 2.8 cm distance from the light source (far channels), and one detector at 1 cm 

from the light source (near channel). This selection leads to a penetration depth of up to 

0.5 cm at the ‘near channel’ and up to 1.4 cm at the ‘far channels’ to measure the 

hemodynamic changes within superficial tissues -including the skin- for near channel and 

deeper layers –including muscle- for far channel. Probes were placed so the light source 

and the far channel (deep probe) would be 3 cm from the spinous process of S1-L3 for 
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LM, 5 cm lateral to spinous process of T12-L1 for LES, and 5 cm lateral to spinous 

process of T9-T7 for the TES (Figure 1.10). Real time ultrasound was used to identify 

superficial tissue (skin and fasciae) on 4 subjects upon completion of the study. Mean 

skin and fasciae depth was 5.4mm ±2.1, with muscle belly starting below that level. This 

would allow the far channel to have adequate penetration to the LM, LES, and TES. 

 

 

Table 1.9 sEMG placements on the trunk during testing of trunk muscles 

Muscle Location Muscle Location 

Gluteus Maximus 

(G. Max) 

Midpoint between 

the lateral edge of 

the sacrum and 

greater trochanter 

 

Gluteus Medius 

(G.Med) 

5 cm posterior and 

15 cm inferior to 

the midpoint of the 

iliac crest 

Latissmus Dorsi 

(LD) 

Midline between 

spinous process of 

T9 and axillary line 

 

Thoracic Erector 

Spinae (TES) 

5cm lateral to T9 

spinous process 

Hamstring (HS) 15cm from the 

ischial tuberosity 

 

Lumbar Erector 

Spinae (LES) 

3cm lateral to L2 

spinous process 

 

Transverse  

Abdominus/Internal 

Oblique (IO) 

2cm below and 

medial to ASIS and 

above the inguinal 

ligament 

Lumbar 

Multifidus (LM) 

2cm lateral to L5 

spinous process 
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Figure 1.10. Surface EMG and fNIR setup. SEMG are surrounded by the square, while fNIR probes are 

highlighted by circles. 

 

 

NIRS raw optical intensity data were recorded at two wavelengths (730 nm and 850 nm) 

with a sampling rate of 2 Hz. Similar collection rate and light source to detector distances 

have been used to collect blood volume in the erector spinae 
140

. To remove 

environmental and physiological irrelevant data (subject movement artifact, respiration 

and heart pulsation effects), a low-pass filter with a cut-off frequency of 0.14Hz was 

applied to the raw optical data. 

  

SEMG signals were normalized using a modified Biering-Sorensen test, single leg 

bridge bilaterally, and a curl up. Subjects performed a modified Biering-Sorensen test 
141

 

while lying prone over the edge of a plinth. The head of the plinth was angled downward 

at 20 degrees with the ASIS aligned with the break of the plinth. The subjects laid with 

LM 
LES TES 
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their arms across the chest in a flexed position with the upper body resting on the angled 

head of the plinth with their calf and pelvis strapped to the table. They were asked to raise 

their trunk to neutral at an audible signal. They performed three trials for 10 seconds, to 

obtain a steady submaximal volitional isometric contraction (sMVIC) for the trunk 

extensors. Three trials for 10 seconds were performed for this test as it was also used for 

the preliminary study with NIRS. Two repetitions of a 5 second single leg bridge were 

performed bilaterally to obtain sMVIC measures for the G.max and HS. Curl up was 

performed with the subjects lying in a hooklying position with their backs reclined to a 

45 degree angle. They were asked to lift their backs away from the support and hold for 5 

seconds. This was repeated for 2 trials. These were performed for data to be used in 

preliminary study 6.6.  

In a fully supported prone position, they then performed the multifidus lift test (MLT) 

with the dominant arm 
142

 under the no load (MLTN) and high load conditions (MLTH) 

143
. With the upper body supported on a plinth they performed a bilateral prone leg lifting 

task adapted from the prone instability test (PIT) 
35

. Each test was performed for 5 trials 

and held for 10 seconds with 30 seconds rest between trials. EMG and NIRS were 

collected simultaneously 30 seconds before the test (rest phase) and during the test 

maneuver. These tasks represent different levels of trunk extensor activation, which 

allowed for multiple comparisons of EMG and NIRS and established maximum 

voluntary isometrics contraction (MVIC) for EMG normalization.  

After test movements were completed, EMG electrodes were removed and 5cm x 

5cm carbon foam stimulating electrodes were placed 1cm from the L5-L2 spinous 

process bilaterally. NIRS sensors were left in place (Figure 1.11). In certain cases, 



 

 

 

 

71 

7
1
 

stimulating electrodes were cut to remain within the muscle borders of the LM. Subjects 

were placed in the prone position with less than 10 degrees of lumbar extension, a 

fixation belt was placed across the pelvis to limit anterior pelvic tilt, and NMES was 

administered until a visible anterior tilt was observed. NMES was administered using a 

clinical device (EMPI Continuum, Minnesota, USA) at 35Hz, 400us pulse duration, 1 

second ramp, with 10 seconds on time and 50 seconds off time for 10 contractions. 

Subjects were instructed to relax and not contract any muscles during the stimulation.  

 

 

 

Figure 1.11. Set up of NMES and NIRs probes during stimulation of LM. Square NMES stimulating 

electrodes were placed bilaterally along the LM, while the rectangular fNIR probes were on the right side 

of the subject. SEMG electrodes have been removed from the subject. 
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Data Reduction 

 

SEMG: 

All sEMG signals were heart rate stripped using a fast independent component analysis 

(ICA). Data were then low pass filtered (20Hz; RMS filter) and downsampled to match 

the NIRS data collection rate using a custom LabView program (v8.6, National 

Instruments, Austin, TX). Average mean amplitude of 2 trials was determined over a 2-

second period once steady state activation was reached. This approach provided the most 

stable value. Trunk extensor muscle sEMG activations were normalized to the MVIC 

produced during the trunk extensor test. 

NIRS: 

Change in absorbency of the 730 nm and 850 nm light source by hemoglobin are 

used to determine the level of oxygenated blood (HbO) and deoxygenated blood (Hb) 

using a logarithmic ratio of detected light during the resting phase, and comparing that to 

the activity phase. The ratio provides a unit less ratio of rest to activity that is referred to 

as arbitrary units (AU). The logarithmic ratio is used to account for the decay of light that 

occurs as it travels from its source. The AU was set to 0 at rest through subtraction of the 

resting levels from the time series, and represent change in HbO2 and Hb during the 

activity compared to the baseline. Total blood volume is the sum of HbO2 and Hb.  

Data Analysis 

Heart rate stripped sEMG amplitudes normalized to the Modified-Sorensen 

(sMVIC) and NIRS variables were time synchronized to data from all testing conditions. 

Each subject had Pearson correlations performed within tests between sEMG and NIRS 

variables using time series data stream 10 seconds before the test (rest) and the 10 
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seconds during the test. This was done to determine if within individuals, NIRS and 

sEMG variables were associated with each other: how accurately does change in sEMG 

amplitudes reflect changes in NIRS variable. This was also done to determine which 

channel’s data would be used in group analysis, since there were two far channels and 

one channel may better represent blood volume changes at the muscle targeted by sEMG 

electrodes. The NIRS far channel that had the highest correlation was then used for group 

comparisons. Pearson correlations of group sEMG amplitudes and NIRS variable were 

performed and used to determine variables for linear regression. Results from the linear 

regression were used to predict a percentage of the sMVIC activation during NMES 

across 10 subjects. Two subjects’ NMES data were not entered into analysis due to 

potential data corruption of the NMES NIRS files, detected in post processing. A paired 

t-test of the predicted percent sMVIC of the 1st and 5th NMES stimulations were 

performed to determine if NMES could provide adequate dosage to overload/fatigue the 

LM to achieve therapeutic benefits. ANOVA of mean LM, LES, and TES HbO2 AU over 

the 10 second NMES stimulations were performed to determine its ability to isolate 

activation of LM. 

Results 

  Individual within subjects absolute correlation values were high, for all muscle 

groups’ sEMG amplitudes vs HbO2, Hb, and blood volume. These ranged from .71 to .97 

individually, between tests. However, for LES and TES, there was great variability in the 

direction of the correlations across all conditions. A negative correlation would mean a 

reduction in a NIRS variable in relation to sEMG increase. When negative correlations 

occurred in an individual, they occurred in conjunction with reduction in total blood 
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volume within that trial. This only happened in 8 of 100 cases in LM during the MLT. 

However, during the PIT and Modified Biering Sorensen tests, tests that required more 

movement of the lumbar on pelvis compared to the MLT, LM also demonstrated highly 

negative correlations. An example is provided in Table 1.10. 

 

 
Table 1.10 Example of highly negative correlation coefficients between LM and LES EMG between 5 

trials within a subject. 

  EMG vs NIRS variables for 

LES during MLT, 

unweighted condition 

EMG vs NIRS variables for 

LM during PIT condition   

 

HbO2 Hb Total vol. HbO2 Hb Total vol. 

Trial 1 -0.90 -0.90 -0.90 -0.83 -0.82 -0.82 

Trial 2 -0.95 -0.94 -0.95 -0.84 -0.77 -0.82 

Trial 3 -0.98 -0.95 -0.97 -0.83 -0.78 -0.82 

Trial 4 -0.78 -0.82 -0.95 -0.77 -0.84 -0.71 

Trial 5 -0.98 -0.99 -0.99 -0.86 -0.90 -0.87 

 

 

 Since the change in direction of correlation was present in LM with activities that 

were potentially more challenging, the relationship between direction of correlation and 

EMG variables was further analyzed. NIRS vs sEMG correlation directions (+ vs -) 

entered into a point biserial correlation versus sEMG amplitudes to determine if there 

was an effect of sEMG amplitude, amplitude of the muscle recruitment, on differences in 

blood flow. There were no significant correlations, among LM, LES, nor TES for 

amplitude of muscle recruitment across variables, with r ranging from .08 to .24. This 

was not investigated further due to the lack of association between magnitude of muscle 

recruitment and changes in blood flow. As blood flow values did not appear to be 

impacted by the magnitude of the recruitment but perhaps amount of movement allowed 
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to happen in the area of the muscle, the impact of reduction in blood flow could not be 

well accounted for. Therefore, LM sEMG and NIRS variables during the MLT conditions 

that proved to have stable correlation directions were used to predict muscle activation 

during the NMES. 

In group correlations of sEMG and NIRS variables, LM HbO2 vs LM sEMG 

yielded the highest correlations (p<.05, r=.81). This is supported by prior studies that 

establish HbO2 to be most reliable during muscle activity 
144

. Plots of these variables 

against each other demonstrated a linear best fit line; therefore, HbO2 and sEMG 

amplitude of the LM were entered into a linear regression. Linear regression revealed a 

significant relationship between sEMG amplitude and HbO2 (Beta=.269, p<.001) with an 

overall model fit of Y=0.269x-0.0000332, adjusted R
2
=.62. This formula was used to 

predict the percentage of sMVIC during NMES for trials 1-5, using HbO2 values. This is 

represented in Figure 1.12. Individuals produced as much as 100% of the sMVIC in the 

first trial of NMES and as low as 8% of the sMVIC by the 5
th

 trial. There was a 

significant difference between the 1
st
 and 5

th
 trial of NMES to the LM, p<.05. 

Based on high within subject correlation coefficients between LM, LES, and TES 

sEMG to NIRs variables, it was determined that the NIRS sensors at the LES and TES 

would likely give good representations of muscle activity during NMES. LM 

demonstrated significantly greater HbO2 levels (mean=1.15 AU ± 0.8) compared to the 

LES (mean=0.3 ±0.8) and the TES (mean=0.2 ±0.45), F(1,39)=39.21, p<.001. Figure 

1.13 is an example of the difference between LM, LES, and TES HbO2 from rest to 

NMES stimulation. 
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Figure 1.12 Average predicted percent of s MVIC from NMES across 5 trials. 

  

 

 

Figure 1.13 HbO2 levels of LM, LES, and TES from rest to NMES stimulation. 
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Conclusion 

The linear relationship of HbO2 to sEMG activity allows for prediction of muscle 

recruitment using HbO2 measures during NMES, at least during submaximal contraction. 

While the NMES achieves less than 50% of sMVIC, the long on time of ten seconds 

likely ensures that the muscle is achieving overload and fatigue, as represented by the 

reduction in HbO2 by the 5
th

 NMES stimulation. This suggests that it should be able to 

adequately fatigue the LM to test aim 2B. In carrying on with the proposal, it may be 

beneficial to increase NMES on times to 15 seconds and go through completion of 10 

NMES elicited impulses to assure fatigue of this muscle and limit its ability to contribute 

in the forward bend. 

The benefits to NIR are that it appears to be able to determine if there is muscle 

activity occurring. There are overall strong correlations with blood levels and sEMG 

activity. As sEMG activity occurs, there is some change in blood physiologic 

characteristics. In regards to the direction of the correlations, this may have to do with 

movement of the muscle during the task. In the NMES condition, the pelvis was 

stabilized to allow an isometric anterior pelvic tilt. During the MLT conditions, there was 

fairly minimal movement occurring between the pelvis and the lumbar spine likely 

resulting in minimal shortening of the LM during the contraction. However, in several 

subjects, there were visible contractions of the LES and TES as well as movement in the 

thoracic spine during these movements. In these conditions where the muscle is allowed 

to shorten during the contraction, overall blood flow may be constricted due to the 

contraction. Even in the literature, there is discrepancy in blood flow characteristics with 

NIR testing with some studies demonstrating increase in blood flow along with increase 
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is HbO2 
140,145

 but others seeing reduction in blood flow and a plateau in HbO2 
144

. High 

correlations, within individuals but changes in direction of the correlation would suggest 

that there are still several factors that need to be considered in future testing of this 

manner. However, it does suggest that the NIRS sensors are reporting some activity in 

relation to the sEMG amplitude, based on the high correlation values. What can be 

assumed from the current results are, that any change in the NIR value may be indicative 

of muscle activity, and flat line blood physiologic characteristics that vary minimally 

from resting values can be interpreted as muscle silence. With this in mind, the 

differences noted between the LM, LES, and TES in HbO2 characteristics are likely very 

representative of activity occurring at the LM, and not at the LES and TES with the use 

of NMES.  

Overall, for the purpose of this proposal, it appears that NMES provides the ability to 

isolate activation of the LM with minimal activation of the LES and TES, and is able to 

obtain muscular fatigue, to provide a “knockout” model of the LM.  

1.6.5 Isolation of the Lumbar Multifidus using NMES: Rehabilitative Ultrasound 

Imaging and pre-post extensor strength test 

 

The purpose of this pilot study was to confirm the results of the NIRS in detecting 

isolated activity of the LM during NMES elicited contraction using rehabilitative 

ultrasound imaging (RUSI). RUSI has been found to be a reliable method to identify 

muscle thickness changes and activation 
146-148

. The aims of this study were to investigate 

the ability to isolate muscle activation to the LM during NMES elicited contraction. It 

was also designed to determine if NMES could fatigue the LM as demonstrated by 

changes in RUSI characteristics of contraction time during NMES and strength reduction 
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following NMES due to LM fatigue. It was hypothesized that isolated contraction to the 

LM would yield minimal changes to the LES during NMES stimulation. It was also 

hypothesized that fatigue to the LM would lead to decrease in muscle thickness change 

during the contraction, lower contraction time as the muscle fatigues and loses contractile 

ability. It was also hypothesized that fatigue of this muscle group would lead to force 

reductions of the trunk extensors when compared to pre and post NMES. 

Methods 

Five healthy subjects from a sample of convenience, age=25.6 ±1.1, BMI: 

22.9±3.1 with no history of low back pain participated in this study. The examiner 

underwent 12-hours of training with RUSI for the trunk, and has been utilizing RUSI in 

patient care for 2 years. He has been utilizing NMES to the lumbar spine in treatment of 

patients with low back pain for 13 years. 

Procedure 

Subjects first performed a Modified Biering-Sorensen test as described in section 

5.4. They were asked to hold the position while a hand held dynamometer was used to 

measure trunk extensor strength with resistance applied at the T7 spinous process, using 

an isometric break test, for two trials (Figure 1.14). MDC90 of 3.7 lbs. using this 

procedure had been established for a prior case study on NMES. Following strength 

testing, subjects underwent measurement of LM and LES using RUSI ( Mindray, MSK50 

Shenzhen, China) with a 2-6Hz curvilinear array probe during administration of NMES 

to the LM.  
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Figure 1.14 Trunk extensor strength testing with hand held dynamometer 

 

 

Motion mode (m-mode) ultrasound was used to detect both onset and offset of 

contractions while also measuring thickness change of the muscle. M-Mode presents 

ultrasound data as a time series. As changes occur in the muscle fascicles, they are 

presented as grey scale disturbances along the time series. It also presents a brightness 

mode (b-mode) image above the time series typically associated with RUSI that can be 

used to measure thickness changes of the muscle (Figure 1.15). Muscle onset and offset 

has been found to be detectable using visual inspection in m-mode 
149

, and is useful in 

determining muscle onset when thickness change in b-mode may not be obvious 
150

. 

Although m-mode has not been found to be a reliable method for detecting onset times 

151
, these errors ranged from 16 to 22ms. When analyzing muscle activity that takes 

multiple seconds, such as the duration of the contraction, this type of error may be a 

negligible factor.  
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Figure 1.15. M-Mode image of lumbar multifidus during NMES. 

 

 

Subjects were placed in a prone position with setup of electrodes as described in 

section 6.4 with electrodes cut to size to stay within the boundaries when necessary. To 

determine if NMES could isolate contraction to LM, subjects initially received 6 short 

length contractions of 20Hz, 400us, 3 seconds in duration which was triggered manually. 

Three seconds was chosen to minimize fatigue of the muscle during this phase as it was 

the shortest stimulation time that could be used with this stimulation unit, while still 

ramping stimulation. Ramping electrical stimulation was necessary to avoid gross 
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contractions of the trunk from subjects’ guarding response resulting from a sudden onset 

of electrical stimulation. LES was measured using a longitudinal approach as described 

by Watanabe, et al. (2004) with the probe positioned within 3-5 cm of the spinous 

process. Location of the probe was determined for each subject using a transverse 

oriented view of the muscle, and looking for the fasciae boundary. Once the LES was 

found, the probe was turned to a longitudinal orientation so that the probe was between 

L2 and T1. NMES was triggered manually and m-mode video was captured for that time 

sequence. This was repeated for three trials to obtain 3 separate m-mode clips. This 

process was then repeated to capture LM with the probe positioned just above S1, lateral 

to the spinous process to capture the facet joints and the LM. RUSI image capture of the 

LM was done in a manner to first identify L5 and S1 based on the location of the sacrum 

and then the ultrasound head was moved caudally so that the L5 facet joint was in view 

without the sacrum. This was done to minimize examiner bias of the LM vs LES during 

image processing post collection, through identification of the sacral border. Bias could 

not be eliminated, as the transverse process captured in LES is visually different from the 

facet joints captured with LM. The RUSI beam was pointed directly downward, in the 

area of L4 for LM and L1 for LES.  

To measure the ability of NMES to fatigue the LM, subjects received 2 manually 

controlled, 15 second, 400us, 50Hz NMES stimulations with concurrent measurement of 

m-mode RUSI at LM, with 50 seconds rest between. They then received 6 automated 

stimulations using the parameters above, with 15 second on time and 50 second off time. 

After 6 automated cycles, subjects received 2 manually controlled stimulations with 

concurrent measurement of m-mode RUSI. The sequence of manual versus automated 
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delivery methods was to allow the examiner control over the delivery of the stimulus for 

image capture. Following NMES, subjects were placed back into the Modified Biering-

Sorensen position and re-tested with two trials. 

Measurements 

Images were saved as video files and converted to 24bit grey scale for analysis 

offline through imageJ (Wayne Rasband, National Institutes of Health, USA). Video files 

were assigned an 18 number, 3-letter identifier by the RUSI that made distinguishing files 

difficult. Determining contraction durations during NMES required knowledge of when a 

true contraction occurred. Studies to date have been concerned with onset times using 

computer analysis of the frequency components of the image 
150,151,153

. Therefore 

different methods needed to be developed for this pilot study. Full descriptions of the 

methods to determine contraction duration are outlined in Appendix E. There were subtle 

differences that were noticeable between the LES and LM due images due to the different 

appearance of facet joints versus transverse processes. Therefore, the top of the screen 

was obscured at the time of the rating (with exception to the menu bar at top of the 

screen) using paper and tape. The first measurement that occurred was with m-mode grey 

scale histogram analysis as defined in Appendix E for contraction duration. This was 

done to block the b-mode view. Once this was completed, the blinder was flipped to 

confirm contraction with b-mode. There were two ratings, 1 week apart, to establish test-

retest reliability. 

Muscle thickness was only measured if a contraction was confirmed and there 

was a contraction duration. Muscle thickness change was performed as described by 

others: from the tip of the facet joint to the inner edge of the fasciae over the muscle for 
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LM 
143,154

 and from the tip of the transverse process to the inner fasciae edge for LES 
152

. 

Bias was unavoidable with this process. However, only 1 subject had a detectable 

contraction in the LES that required thickness limiting this source of bias. For the other 

subjects, there was 100% agreement between the first and second blinded rating of the 

LES in m-mode for the absence of contraction. As the purpose of this pilot study was to 

determine if LES contraction occurred, the first step of identifying a contraction through 

m-mode grey scale analysis that could be blinded, was of more importance. LES measure 

was planned mainly for descriptive purposes. Statistical comparison was initially planned 

to compare contraction durations of the LM and LES during the 3-second contraction. 

However, only one subject had detectable contraction at LES, so descriptive statistics 

(Mean, SD) were performed. 

To determine the ability of NMES to fatigue the LM, paired t-test with bonferroni 

correction of LM contraction duration and muscle thickness change during the first and 

second, ninth and tenth contractions were planned. The first and second trial values were 

to be averaged and compared against the values for the ninth and tenth trial. 

Test-retest reliability 

Test retest reliability was determined for muscle thickness change during the short 

contraction duration (short impulse=3 second impulse) and the long contraction duration 

(long impulse=15 second impulse) using ICC(2,1). ICC was then used to calculate standard 

error of measure (SEM) and minimal detectable change with 90% confidence (MDC90). 

The two contraction durations were calculated separately due to the large difference in 

contraction times that would skew the SEM and MDC. These were used to determine if 



 

 

 

 

85 

8
5
 

measurement differences across conditions exceeded rater error and if changes were 

meaningful. 

Results 

Reliability 

ICC, SEM and MDC90 values are presented in Table 1.11. ICC value for muscle 

thickness was negative; therefore other variables could not be calculated. There were 

large differences in muscle thickness change ratings between the first and second 

readings. Percent difference between the first and second ratings was performed, to 

determine the differences. Average percent difference across subjects for rating 1 and 2 

were 74%. Based on this, further comparisons of muscle thickness change were not made 

as planned, due to the likelihood of large error in measuring this variable. 

 

 

Table 1.11. ICC coefficients, SEM, and MDC. Time in seconds (s) 

  ICC2,1 SEM MDC 

Contraction duration (short) 0.88 0.4 s 0.9 s 

Contraction duration (long) 0.92 0.1 s 1.9 s 

 

 

Isolation of LM with NMES 

 Based on m-mode ratings, only 1 subject was identified as having an LES 

contraction. Across 3 trials, this subject’s mean contraction duration with the short 

impulse was 0.9 seconds (sd=0.2). The mean contraction duration of the LM during this 

phase for subjects across 3 trials was 3.6 (sd=0.4). While statistical inference cannot be 
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made, the contraction duration difference between LES and LM exceed the MDC 

established for the short duration impulse.  

Fatigue of the LM with NMES 

 There was a significant difference in contraction duration between the first and 

second contraction (mean=15.5 seconds, ± 0.4) compared to the ninth and tenth 

contraction (mean=11.1 seconds ± 2.3), p=.018. The mean difference of 4.4 seconds 

exceeds the MDC90 for contraction duration. There was also a significant reduction in 

trunk extensor strength before the NMES (mean=40.9lbs ± 10.1) and following the 

stimulation protocol (mean=30.8lbs± 7.6), p<.001.  

Conclusion 

 The method appears to support the ability of NMES to isolate contraction of the 

LM with minimal involvement of the LES. The method above using a combination of m-

mode and b-mode ultrasound potentially gives investigators a method to determine 

contraction onset and contraction times during NMES while also measuring LM 

thickness changes with NMES. However, this was a sample of convenience using young, 

healthy individuals with good muscle quality. The good echodensity of the muscles likely 

played a large role in obtaining many of the measures above. Determining muscle onset 

and offset times was a function of pixel grey scale. Therefore, it is uncertain if this 

method will be as reliable or valid when applied to individuals with poor muscle quality 

where echodensity may be an issue. 

 The inability to detect thickness change may be that the NMES does not provide 

stimulation to a recruitment threshold where cross sectional area change is observable. It 

may also have to do with the method the images were obtained. Within m-mode, the b-



 

 

 

 

87 

8
7
 

mode image is smaller therefore the b-mode image is compressed with resulting loss in 

resolution. To obtain measurable thickness using imageJ, the image had to be expanded 

leading to pixilation of the image that made distinguishing landmarks difficult. This 

increased the source of error for measurement. From the current data, it appears that 

NMES can isolate the LM and generate fatigue as seen by reduction in contraction times 

and trunk extensor strength. It appears to be able to isolate LM based on m-mode 

characteristics comparison between the LM and LES. If thickness change associated with 

NMES is to be studied in greater detail, it should be done separate of m-mode. It should 

also be performed on separate sessions with adequate rest between sessions so that true 

indicator of what happens between the first and last NMES elicitations can be gathered.  

1.6.6 Preliminary Analysis of Muscle Activity During the Prone Instability Test 

 

The purpose of this pilot study was to obtain descriptive information about trunk 

extensor activity during the prone instability test. This was part of a larger pilot study to 

determine the ability of NMES to isolate lumbar multifidus activity (preliminary study 

section 6.4), and was collected to aid in approximating the percentage of voluntary 

isometric contraction that NMES is able to elicit. The current sEMG setup used in the 

forward bend listed in table 1.7.1.1 may over represent the abdominal muscles with 

inadequate representation of the lower quarter, based on movements during the PIT. This 

secondary analysis of data collected during study 5.4 would aid in identifying other 

muscles that may be recruited during the PIT and help determine muscle selection for 

sEMG in the proposed study.  
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Methods 

Subjects 

Subjects between the age of 18-50 were recruited. 12 healthy subjects (5 female) 

with average age 29 +/- 5, BMI 27.4, +/- 5.2 participated in the experiment. Subjects 

were a sample of convenience recruited from the University area through word of mouth 

and flyers. Exclusion criteria were current or a history of low back pain that limited 

function for greater than 3 days. This data was collected under Drexel IRB protocol 

number 1404002752 (see Appendix D). 

 Procedure 

All subjects underwent skin preparation as mentioned in section 6.1. Pre-gelled 

(Ag-AgCl) disposable surface EMG electrodes (2cm inter-electrode distance ) were 

applied to target muscles as listed in table 1.7.4.1 with the internal oblique/transverse 

abdominus muscles representing the abdominal group. The reference electrode placed on 

the left lateral malleolus according to ISEK standards.  

  

SEMG signals were normalized using a modified Biering-Sorensen test, single leg 

bridge bilaterally, and a curl up as described in section 6.4 and the PIT leg raising task 

was administered prior to the delivery of NMES. Unlike the preliminary study described 

in section 6.3 (which was performed prior to study 6.4) there was no standardized height 

for leg raising during this test.  

 

Data Reduction and Analysis 

Two subject’s PIT data were not analyzed due to equipment malfunction, one 

detected prior to testing and one detected in post processing of the PIT data. Data were 
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sampled at 2400 Hz, passed through a pre-amplifier at a gain of 500, and band pass 

filtered at 20-500Hz. Two additional subjects had a large noise to signal ratio of bilateral 

G.Med that could not be resolved in post processing, therefore, G.Med was not included 

for these two subjects. Raw EMG signals were heart rate stripped using fast ICA 

algorithm. Mean maximum amplitude of each muscle was calculated over 2 seconds of 

data starting when the subjects reached a steady state of muscle activity during the 

modified Biering-Sorensen test , single leg bridge, and the curl up. Average mean 

amplitude of 2 trials was determined over a 2-second period once steady state activation 

was reached. This approach provided the most stable value. For reduction of the PIT, an 8 

second average (2 seconds to achieve steady state) of muscle activity was calculated for 

all muscles, using an RMS smoothing filter with a 30ms time constant. Once completed, 

all muscles were normalized to the sMVIC. Muscle activity was expressed as a 

percentage of the sMVIC. Univariate repeated measures ANOVA were performed for 

muscle groups, at an alpha of .05 for the 1
st
 and 3

rd
, 1

st
 and 4

th
, and 1

st
 and 5

th
 trials to 

screen if there was an impact of fatigue based on the response of the 3 subjects that did 

not complete 5 trials. There were significant differences for most muscles at the 4
th

 and 

5
th

 trials. Therefore, the first 3 trials of the PIT were used for analysis. 

Left to right muscle comparisons were made for each muscle group using a within 

subjects ANOVA with 8 factors (8 muscle groups) and 2 levels (left vs right) with each 

trial entered as a separate case per subject. Before analysis, data were screened for 

normality. One subject had a right G.Med that was 3 times the sMVIC and was an 

extreme outlier, therefore, this muscle group (left and right) was excluded from side-to-

side symmetry analysis for this subject. Once excluded, the data met normality 
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distribution using Kolmogorov-Smirnoff tests. There was a significant effect for side-to-

side difference between muscle groups (F8,6)=32.13, p<.001. Univariate comparison 

following this analysis revealed that G.Max was the only significant factor, (F1,13)=19.1 

p<.001 with no other factors were significant for side-to-side differences. F-values ranged 

from 1.2 to 2.8 for all other groups. Because no other groups had a side-to-side difference 

with the omnibus being driven by 1 muscle group and the main purpose to gain an 

understanding of muscle contributions during the test for electrode placement selection, it 

was decided to average sides together for final analysis. 

Left and right sides of the muscles were averaged, and trials collapsed. 

Descriptive statistics (mean, SD) for the percentage of sMVIC are presented in Table 

1.12. SEMG percent contributions during the task, derived from % sMVIC were then 

compiled for each subject where the muscle of interest’s contribution (MM) was 

calculated as MM= (MM%sMVIC/∑MM%sMVIC)x100 where ∑MM%sMVIC was the 

sum of all muscles percent activation of the sMVIC, and MM%sMVIC was the muscle’s 

percent activation of sMVIC. These results are presented in Table 1.7.6.2 

Results 

 Table 1.7.6.2 demonstrates the range of variability across muscle activation by 

subjects during the PIT. Subjects 2, 3, and 4 have fairly even distribution of muscle 

activity across the muscles. However, other subjects demonstrate a preference to the TES 

or HS during the test. No subject demonstrated LM as the highest activating muscle 

group. The IO appears to have negligible activation during this test. The TES, LD, and 

HS appear to activate at a higher percentage of the sMVIC than other muscle groups with 
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larger standard deviations (Table 1.13), which suggest that healthy control subjects have 

a varied strategy of activating these muscles during the test. 

 

 

Table 1.12. Group mean and standard deviation of the percent sMVIC for muscles during the prone 

instability test 

 

Mean SD 

 

Mean SD 

IO 9.2% 10.9% LM 63.3% 22.9% 

TES 110.8% 62.7% G.MAX 27.8% 11.6% 

LD 87.6% 93.1% G.MED 56.0% 54.3% 

LES 70.9% 25.0% HS 90.3% 76.1% 
. 

 

 

 
Table 1.13. Percent contribution of muscles during the PIT. Muscles with the highest activation ratio per 

subject are bolded. * Subjects with high noise to signal ratio of G.Med, with muscle excluded from 

analysis.  

Subject IO TES LD LES LM G.MAX G.MED HS 

1 0.19 11.38 10.26 16.23 16.60 2.43 9.89 33.02 

2 1.30 31.99 7.51 13.73 24.48 9.07 * 11.92 

3 0.81 19.06 1.34 15.44 21.07 11.68 20.54 10.07 

4 0.13 18.92 7.94 27.74 18.92 4.54 3.15 18.66 

5 1.06 44.29 9.57 12.35 11.88 6.17 9.88 6.94 

6 0.47 10.43 15.88 25.36 14.34 9.12 7.82 16.82 

7 1.34 6.60 18.14 10.32 9.29 2.56 23.27 28.59 

8 4.34 14.70 42.16 5.51 3.63 2.01 3.17 24.48 

9 4.33 38.48 15.43 13.83 6.68 6.02 6.59 8.65 

10 1.94 42.77 20.95 11.15 11.74 8.15 * 3.30 
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Conclusion 

Based on the TES and LES contribution to the common extensor and thoraco-

lumbar fasciae, it is possible that their contribution to the PIT is meaningful and helps 

with supporting the trunk. The role of the HS is evident in the hip extension portion of the 

test, but it’s contribution to a positive test response in unclear. Their attachment to the 

pelvis may help with stabilizing the spine from the distal end, but it is difficult to 

determine if the large activation amounts seen in some subjects have to do with the hip 

extension required or if this activity would help to protect the spine against a PA load. 

The relationship between the TES and HS seen in some of the subjects may suggest there 

is some role the HS has in protecting the spine but these are associations at best.  

 From this dataset, while it was not statistically analyzed, if we consider all 

muscles involved, the LM plays a smaller role during this test. However, these are a 

combination of local and global trunk stabilizing muscles and we do not know what 

contribution all of these muscles acting on the spine have for predicting success with 

stabilization exercises. If the muscles of the lower extremity involved in hip extension are 

ignored(Table 1.13) the LM appears to have a larger proportion of activation during the 

test. The ability to isolate LM and determine if this alone can produce positive responses 

during the PIT will help shed light on what the major muscle contributors may be during 

this test. A positive response solely from LM NMES could suggest that the other muscles 

do not play a major role. The limitation to this preliminary study however, is that there 

was no standardization of how high the leg was raised in this protocol and the differences 

in HS and TES could be simply from varying leg raising heights across subjects: HS from 

hip extension and TES from the amount of flexor moment created during the test based 
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on leg raising height. In addition, these were healthy subjects with no force applied to the 

spine to determine painful response was present. Therefore, no one had a negative test (as 

clinically defined). The role of the LM during the test may be better defined by being 

able to recruit individuals with negative test findings. Overall, there is great amount of 

variability in muscle activity during this test as it was performed. In order to study the 

test and muscle contribution during this test, greater standardization of this test needs to 

be considered for the final proposal. 

 For the purpose of this proposal it would be beneficial to collect information on 

LD, TES, gluteal, and HS along with LES and LM during the PIT to understand the 

contribution from upper and lower quarter muscles. The proposed study will have a limit 

on sEMG leads available. Based on observation above, G.Max provided less contribution 

during the PIT than G.Med, therefore, G.Max will not be assessed bilaterally during the 

test. Prior work on G.Max activity has revealed that muscle activity increases as the hip 

joint reaches extension.
155

 During this preliminary analysis, hip extension was not 

controlled, but subjects did not bring their hips to full extension. This could explain the 

lower percent activation of G.Max during this test. IO/TA had minimal contribution to 

the test, but it may still be beneficial to have abdominals represented during the test, 

therefore, external oblique may offer a different perspective on the role of trunk flexors 

during the test. It would also be beneficial to standardize leg raising height across 

subjects so that muscle activity from height of the leg raise influencing interpretation of 

muscle activity during the test is minimized. 
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1.7 Research Methods 

 

Aim 1: Characterize lumbar extensor muscle neuromuscular control strategies 

through trunk muscle activation patterns during active forward bending and the 

prone instability test. 

1.7.1 Methods for Aim 1a: Describe and quantify trunk muscle activity during a 

forward bend task.  

 

The objective of aim 1a is to characterize muscle activation patterns in healthy 

individuals devoid of aberrant movement patterns (altered lumbopelvic rhythm (aLPR) 

and judder (JUD)) and the muscle activation patterns of patients with LBP who have JUD 

and aLPR. This aim will be accomplished through a descriptive study utilizing data from 

our previously conducted cross-sectional designed study. Expected Outcome: 

Identification of typical and aberrant trunk muscle activation patterns in individuals 

classified with normal and aberrant (JUD, aLPR) forward bend movement patterns 

Subjects 

The pool of 69 subjects (52% female; age 43± 11.2) noted under preliminary 

study 5.1 and used for the development of the approach to analyzing the sEMG activity 

will be used for this aim. Subject demographics, inclusion, and exclusion criteria are 

listed in section 5.1. 

Instrumentation and Data Collection 

 Kinematic and sEMG data collection procedures have been described in the 

preliminary study section 1.6. 
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Procedures 

Kinematic data will be analyzed using the algorithm developed by Wattananon 

(2014) where each forward bend motion is rated for presence/absence of JUD and/or 

aLPR(Appendix G). Operational definitions for aberrant motion during the forward bend 

are as follows: 1) Instability catch and judder (JUD): sudden changes in instantaneous 

velocity or fluctuations in lumbar or pelvis segment angular velocity, and 2) altered 

lumbopelvic rhythm (aLPR): hip motion is greater than lumbar spine motion in the first 

1/3 of forward bend, and/or lumbar motion is greater than hip motion in the last 1/3 of 

movement
10

.  

Data Reduction and Analysis 

Forward bend motions that demonstrate aberrant patterns of JUD and aLPR will 

be used to investigate muscle activation patterns associated with these aberrant 

movements. These muscle activation patterns will then be compared to activation patterns 

from healthy control subjects with typical movement patterns. In order to investigate 

muscle activity patterns during forward bend for aim 1a, sagittal plane kinematics of the 

lumbar segment with respect to the pelvic segment will be used to determine the forward 

bending phase of the motion. The first zero crossing of the lumbo-pelvic angular velocity 

that exceeds 1 radian/sec will be considered the initiation of the forward bend movement. 

If there is no negative velocity, then, the point where angular velocity exceeds 1radian 

per second will be used. The point where angular velocity crosses from a positive value 

to a negative value (second 0 crossing) will be considered the end of the forward bending 

phase. Heart rate will be removed from all EMG signals with a fast independent 

component analysis (ICA) Labview program. The EMG signals will be further processed 
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with a 10Hz Bartlett RMS filter and all trunk muscles will be cross correlated against 

each other. In order to investigate synchronization of muscles, cross correlation 

coefficients (CCC) will be calculated for all trunk muscle combinations (LM, LES, TES) 

as described in the preliminary study. Positive correlations will indicate that muscle pairs 

are acting in phase while negative CCC will indicate that muscle pairs are acting out of 

phase. The magnitude of CCC between muscle pairs determines how in phase or out of 

phase muscles are in relation to other muscle pairings. Cross correlation phase lags (T) 

between muscles will also be used to assess muscle synchronization. Small T (<500ms) 

values will be considered to be indicative of simultaneous muscle activation
131,156

. CCC 

will be checked for normality assumptions, with Fisher’s Z transformation
157

 performed 

if normality distributions are not met. A MANOVA of the CCC and T of the LES, TES, 

and LM muscles will be performed between LBP patients with aberrant movements and 

healthy control subjects with typical movements to determine synchronization of muscle 

activation during the forward bend. Muscles that are acting more synchronously would 

yield higher CCC and lower T compared to other muscle pairings.  

Exploration of motor unit synchronization within muscles during the forward 

bend will be performed by analysis of sEMG amplitude data. Kinematic and sEMG 

normalized to the submaximal volitional contraction (sMVIC) data will be time 

normalized into 10 bins during the forward bending phase (as defined in the preliminary 

study 5.1) and compared between groups using a mixed model ANOVA. Muscle and bins 

will be held as within group factors with low back pain as the between groups factor. The 

underlying theory here will be that motor unit synchronization will lead to higher EMG 

amplitudes within individual muscles
15,118

 in patients with LBP that possess aberrant 
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movements compared to healthy controls with typical movement. Percent contribution of 

muscle activation during the forward bend will also be calculated for each bin as 

performed in the preliminary study to identify contribution of the trunk muscles during 

the forward bend. A mixed model ANOVA will be used to compare the bins during the 

forward bend between groups.  

1.7.2 Common Instrumentation, Data Collection Procedures and Measures for 

prospective Aims 1B, 2A, and 2B. 

Kinematics 

Stiffness modeling: 

 In order to measure spinal stiffness an electromagnetic tracking system (Liberty, 

Polhemus Inc.) will be used to track trunk position data during the PIT. This data will be 

used to calculate a change in the angle between the two sensors and then determine 

stiffness of the spine by the change in rotation of sensor 1 and sensor 2. One sensor will 

be placed on S2 and another on L1, with a data sampling frequency of 120Hz
123

. Data 

reduction methods utilized in the preliminary study for beam bending stiffness and 

instrument error associated with our methods will be used to determine bending stiffness 

during this protocol. 

Compression Load Cell 

A custom apparatus will be used to apply a PA load over the transverse processes 

of (L1-L5) of the subject’s lumbar spine. A compression load cell will be attached to the 

apparatus (Figure 1.8) and data streamed in real-time to a computer monitor that will 

provide real time visual feedback of the compression load applied to the spine by the 

examiner. The target force will be displayed on the screen with a ±2.5%  window to 

ensure the tester achieves similar loads to the spine during the test. An event marker will 
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be made available to all subjects to indicate if there is a painful response to the load. The 

event marker will notate the amount of load that was applied at the time of the marker, so 

that same load can be re-applied during subsequent trials. 

Forward bending kinematics: 

Spinal kinematic data during the forward bending task will be collected as 

described in preliminary study section 1.6.1. Subject preparation and calculation of 

kinematic variables are described in Appendix F and Appendix G respectively. 

Surface Electromyography 

For aim 1B, a pre-amplified 14 channel sEMG unit (SA Instrumentation, San 

Diego, CA) will be used to collect muscle activity during the PIT. Pre-gelled Ag-AgCl 

electrodes will be placed at anatomical landmarks (Table 1.14) with a 2cm inter-electrode 

distance and a reference electrode placed on the lateral malleolus. One channel on the 

data collection board will be utilized for a signaling trigger that allows the subject to 

identify any painful event. All EMG data will be collected at 2400 Hz. with a gain of 500 

and band pass filtered at 20-500Hz. Based on preliminary findings in section 1.6.6, 

gluteus maximus will only be recorded on one side, as it had a smaller percent activation 

during the PIT compared to the gluteus medius.  
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Table 1.14. Anatomic landmarks for placement of sEMG electrodes for aim 1B. 

Muscle Location Muscle Location 

Gluteus Maximus 

(G.Max) 

Midpoint between 

the lateral edge of 

the sacrum and 

greater trochanter 

 

Gluteus Medius 

(G.Med) 

5 cm posterior and 

15 cm inferior to the 

midpoint of the iliac 

crest 

Hamstring (HS) 15cm from the 

ischial tuberosity 

 

Thoracic Erector 

Spinae (TES) 

5cm lateral to T9 

spinous process 

Lumbar Multifidus 

(LM) 

2cm lateral to L5 

spinous process 
Lumbar Erector 

Spinae (LES) 

3cm lateral to L2 

spinous process 

 

External Oblique 15 cm lateral to 

umbilicus 
Latissmus Dorsi 

(LD) 

Midline between 

spinous process of 

T9 and axillary line 

 

 

 

Neuromuscular Electrical Stimulation 

For Aim 2A and 2B a clinical NMES device will be used to provide electrical 

stimulation to the LM. Stimulating electrode placement will be identical to those in the 

preliminary study as described in section 1.7.4 (Figure 1.16). NMES will be delivered at 

50pps of 400us phase duration, with an on time of 15 seconds. The stimulation duration 

will be extended to 15 seconds to allow the tester ample reaction time to deliver 

compression loads to the spine. This also mimics the stimulation parameters used in the 

RUSI pilot study in section 5.5. Longer contraction duration times should aide in 

promoting fatigue of the target muscle. The stimulation will be manually triggered during 

the prone instability test. For the fatigue protocol, 15 seconds off time will be utilized to 

decrease rest period and increase the likelihood for fatigue.  
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Figure 1.16.NMES setup for targeting lumbar multifidus for aims 1B, 2A, and 2B. 

 

 

Pain Intensity Scale 

Numerical pain rating scale (NPRS) (MDC=2;MICD=2.2;
158

 will be used to 

measure pain intensity for aim 1B and 2B. See Appendix J for example of scale and 

anchor terms.  

Disability Index 

Oswestry Disability Index (ODI) (MDC=10;
159

 will be used to measure self-

perception of disability from patients with LBP. See Appendix J for example of the 

outcome scale. 

Kinesiphobia  

Fear avoidance beliefs questionnaire (FABQ) 
49

 will be collected on patients with 

LBP and will be used for descriptive purposes. See Appendix J for example of the 

outcome scale. 
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Fatigue 

 The Borg scale of perceived exertion 
160

 will be used to measure fatigue levels 

before and after testing. When a subject has an increase greater than 1 on the Borg 

following an activity, they will rest until it returns to baseline levels. 

1.7.3 Methods for Aim 1b: Describe and quantify trunk and hip muscle activity as 

well as changes in spine stiffness during the PIT test. 

 

The objective of aim 1b is to characterize muscle activation patterns of the trunk 

extensors during the PIT. Hypothesis: Lumbar spine stiffness increases during the PIT 

and are associated with muscle activity of the lumbar extensors. This study will employ a 

cross-sectional design using patients with LBP and healthy controls to characterize 

muscle activation patterns during the PIT. The result of a patient’s PIT will be difficult to 

predict prior to the test. Therefore, all subjects with low back pain will be tested, and 

positive/negative test responses will be handled as a covariate in the analysis. Spine 

stiffness changes will be compared within subjects in each phase of the test (resting and 

active leg raise). Expected outcome: Determine if spinal stiffness changes do occur 

during the PIT. Identify the role of the trunk lumbar extensor muscles, particularly the 

lumbar multifidus, during the test. Determine if there is an association between spinal 

stiffness changes and muscle activation patterns during the PIT in increasing spinal 

stiffness and reducing pain during the PIT. 
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Subjects 

Ten healthy subjects between the ages of 18-45 will be recruited. Exclusion 

criteria specific to healthy subjects will be a history of LBP that lasted longer than 3 days 

or required a visit to a health professional, BMI greater than 30, presence of aberrant 

motion during forward bend, and history of abdominal, back, or lower extremity surgery. 

Ten patients between the ages of 18-45 with current low back pain or a history of low 

back pain that lasted more than 3 days which is currently in remission will also be 

recruited. Exclusion criteria common to both healthy subjects and patients with low back 

pain are listed in Table 1.15.  

 

 

 

Table 1.15. Exclusion criteria for aim 1B, 2A, 2B. 

 

Common Exclusion Criteria for Patients and Healthy Controls 

Permanent structural spinal deformity (e.g., 

scoliosis), 

Spinal fracture or history of spinal fracture 

Osteoporosis Active inflammatory joint disease 

Signs of systemic illness or suspected non-

mechanical LBP (spinal tumor , cancer or 

infection) 

Active treatment of another medical illness 

that would preclude participation in any 

aspect of the study 

Previous spinal or hip surgery Frank neurological loss, i.e., weakness and 

sensory loss in a NR distribution 

history of neurologic disease that required 

hospitalization 

Pain or paresthesia below the knee 

Body mass index greater than 30 kg/m2: 

The body mass index will be calculated 

from measured weight and height 

Has performed rehabilitative exercises in 

the past with return to full function and no 

recurrence 

Leg length discrepancy of greater than 2.5 

cm 

Current pregnancy 

Allergies to medical tape or adhesives  
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Procedures 

 

Prior to testing, healthy subjects will be screened for the presence of aberrant 

movement during forward bending. Following the movement screen, sEMG electrodes 

will be placed on the LM, lumbar erector spinae, thoracic erector spinae, latissimus dorsi, 

gluteus medius, hamstring, and external oblique as described previously. All subjects will 

perform 2 trials of the modified Biering-Sorensen test, unilateral bridge (both sides), 

trunk flexion with tester applied resistance, along with bilateral resisted shoulder 

extension at 90 degrees, and bilaterally resisted shoulder flexion. The EMG data collected 

from these trials will be used for normalization purposes. Two electromagnetic sensors 

will be then be placed on the spinous processes of L1 and S2. All LBP and healthy 

subjects will be placed prone on a plinth. A posterior to anterior force will be applied by 

the examiner to spinous levels L1-S1 to determine any painful segments, using the 

compression load cell with a load of 22 N. Kinematic data will be collected to determine 

baseline spinal segmental mobility. When a painful segment is identified it will be 

marked with a skin marker, and the subject will be asked to assume the resting position of 

the PIT. Pressure will be applied to the segment again to confirm the presence of pain. If 

more than 1 painful segment exists, the subject will be asked to identify the most painful 

segment as outlined in Appendix I.  

Testing in the resting phase: 

 Table 1.16 outlines the testing conditions, trials, and loads that will be used for 

the PIT. Healthy subjects will be placed in the resting PIT test position as described in 

preliminary study 6.3. Once properly positioned, 5 seconds of resting EMG and 

kinematic data will be collected via an examiner triggered button. After 5 seconds, the 
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data collection program will trigger an audible alarm and a PA load of 22 N will be 

applied to the pre-determined spinal segment via the apparatus attached to the 

compression load cell. The examiner will ramp up the force to get to the target load 

within 3-5 seconds, and total data collection time (including 5 second resting data 

collection) will last for 20 seconds. Visual force feedback will be provided in real time to 

achieve the target load (tolerance ± 2.5%). An event marker will be placed next to the 

subjects hand to tap in the event that there is pain provocation. This procedure will be 

performed three times with 2 minutes rest between trials. If the subject reports pain 

provocation, the record from the event trigger will be plotted and the load that reproduced 

pain will be utilized for the remainder of testing. If there was no pain provocation, the 

same 22 N ± 2.5% load will be used for remainder of testing. 

 LBP subjects will be placed in the resting PIT testing position and an anterior 

load will be applied until pain is produced. Data collection will be similar to that of 

healthy subjects. Once positioned in the resting position, data collection will begin via an 

examiner triggered button and 5 seconds of resting EMG and kinematic data will be 

collected. After 5 seconds, the data collection program will trigger an audible alarm and 

anterior force will be applied to the marked painful spinal segment via the apparatus 

attached to the compression load cell. The applied load will be slowly increased until 

pain provocation occurs. The patient will verbally report pain provocation to the 

examiner of, while simultaneously pressing the event marker placed by their hand. NPRS 

will be collected for each pain provocation point for healthy controls and patients. Visual 

feedback will be set at 100% ± 2.5% of the load noted at the time of the painful event 
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marker and that load will be used for the subsequent 2 trials. Two minutes of rest will be 

allowed in between trials.  

Testing in the leg raise position 

Once resting condition data have been collected, all subjects will perform the 

active leg raising portion of the PIT. For this test, subjects will be asked to position 

themselves in the resting position , and a beam placed over a 24-inch high gate will be 

placed over their calves in order to standardize leg raising. Once positioned in the resting 

position, data collection will being via the examiner triggered button and 5 seconds of 

resting EMG and kinematic data will be collected. After 5 seconds, the data collection 

program will trigger an audible alarm. Subjects will be asked to raise their legs to the 

gate. The examiner will apply the same amount of an anterior load, to the same spinal 

segment as was done in the resting condition. Visual feedback will be set to 22N (± 

2.5%) for healthy subjects without pain provocation or the pain provocation load (± 

2.5%) that was established in the resting condition. Subjects will undergo 3 trials of the 

leg raising test. Subjects will be asked to trigger the event marker and provide a 

numerical pain rating during the test if there is pain with compression. A positive PIT is 

defined as elimination of pain during the leg raising portion. If a subject experiences a 

pain reduction of 2 or more points, during the leg raising portion, the test will be 

considered a negative test but with symptom improvement . Three trials of the 

standardized load will be completed. All subjects with LBP, who had a positive test, will 

undergo 1 trial of the maximal load the examiner can produce during the leg raise to 

determine the amount of load the subject can tolerate under the leg raising condition and 

the effects of that load on symptoms. This is being done to mimic the clinical testing 
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situation, since clinically the load is not held constant during PIT testing conditions. To 

compare stiffness values across the conditions (prone, PIT position, PIT leg raise) we are 

holding the applied force constant during our experiment. 

 

Table 1.16. Outline of load application by position during PIT 

  
PIT Resting Position PIT Leg Raising 

  
Load Load 

 

Segment 

Level 
Trial 1 Trial 2 and 3 Trial 1-3 

Trial 4 (only if test 

is positive) 

Healthy 

Control 

L3 or pain 

provoking 

segment if 

any is 

identified 

22 N, and 

possibly 

identify pain 

provoking 

load 

22 N or pain 

provoking 

load from 

trial 1 

22 N or pain 

provoking load 

from PIT 

resting position 

Healthy Control 

with pain 

provocation has a 

positive test 

response: Apply 

maximal load 

LBP 

Pain 

provoking 

segment 

Gradually 

apply load 

until pain is 

provoked 

Pain 

provoking 

load from 

trial 1 

Pain provoking 

load from PIT 

resting position 

LBP patient with 

positive test 

response: Apply 

maximal load 

 

 

Data Reduction and Analysis 

 

To characterize muscle activity during the PIT, EMG data from the 14 muscles 

will be heart rate stripped and normalized to sMVIC. The mean sEMG amplitude during 

steady state leg elevation (over 2 seconds) will be used to create a percent of muscle 

contribution during the test, along with descriptive statistics (mean, standard deviation) of 

muscle activity. Test of multiple proportions using Chi Square analysis will be used to 

determine differences in muscle contribution between patients with low back pain 

patients and healthy subjects.  
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Spinal compliance and stiffness will be calculated as described in preliminary 

study 5.3. Repeated measures ANOVA will be used to determine if there are differences 

in spinal stiffness changes within patients with low back pain and healthy subjects during 

the resting and leg raising portions of the test. An alpha of .10 will be set for the omnibus, 

and effect size calculated for the change in spinal stiffness. In the event that there are 

patients with a negative test, or healthy control subjects with pain production that does 

not abolish with leg raising, the result of the test (positive/negative) will be used as a 

covariate in determining spinal stiffness changes. 

Aim 2: Validate clinical assumptions of the role that lumbar multifidus muscle 

activity has in aberrant movements patterns during a forward bend task and a 

positive prone instability test. 

1.7.4 Methods for Aim 2a: Characterize the effects of isolated lumbar multifidus 

muscle fatigue, achieved by a neuromuscular electrical stimulation (NMES) 

fatigue protocol, on movement quality during a forward bend task in healthy 

controls.  

 

Hypothesis: Subjects with a typical forward bend movement pattern will 

demonstrate aberrant movement pattern following fatigue of the lumbar multifidi 

muscles. The objective of this aim is to determine if a temporary, isolated impairment of 

the LM through fatigue, can reproduce or worsen aberrant movements (detected via 

visual observation as well as kinematic detection) during an active forward bend task. A 

pre-posttest design will be used, with trunk kinematics during forward bend as the 

dependent variable measure before and after NMES fatigue of the LM.  

Expected outcomes: Evidence to support the concept of lumbar extensor dysfunction as a 

primary mechanism underlying aberrant movement patterns during standing forward 
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bending. Production of aberrant movement through attenuation of LM activity via fatigue 

will support if reduced participation of this muscle during the forward bend has a major 

impact on movement quality.  

Subjects 

Healthy subjects recruited for aim 1b will be used for this aim. If subjects had 

pain provocation during the PIT test that persists other healthy subjects will be recruited 

to prevent the potential of experimental pain induced aberrant movements. See aim 1B 

for inclusion/exclusion criteria for healthy subjects. Care will be taken to detect aberrant 

movements through clinical observation. However, it must be recognized that a 

discrepancy between clinician observation and kinematic identification of aberrant 

movement exists (Wattananon, 2014). Subjects may be cleared during observation, 

however be categorized as having aberrant movement once forward bending is quantified 

using the kinematic algorithm. The purpose of pre-screening is to minimize this 

occurrence or only marginally exceed criteria for typical movement. By doing so, we 

hope to increase the likelihood of producing larger aberrant motion patterns that can 

exceed kinematic MDC’s following the NMES fatigue protocol.   

Procedures 

 For subjects who participated in the previously described studies an additional 

electromagnetic sensor will be placed on the lateral femoral condyle and spinous process 

of T3 as outlined in Appendix F. They will undergo a digitization trial , data will be 

calibrated with the digitization file, and converted to segment angular rotations using 

Euler angles to calculate kinematic variables as described in Appendix G. They will 

perform 2 trials of 3 repetitions of the forward bend task during which time segment 
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position will be collected. They will then be positioned to receive 10 electrical 

stimulation trains at 400us, 50 pps, with 15 second on time, and 60 seconds between 

stimulations, followed by the performance of 2 trials of 3 repetitions of the forward bend 

task. This number of NMES elicited contractions should be adequate to achieve fatigue 

based on results of preliminary study 1.6.4 and 1.6.5.  

 For newly recruited healthy subjects, subjects will have electromagnetic sensors 

placed as described in Appendix F, and then undergo a digitization process to calibrate 

kinematic segments. They will then receive 10 electrical stimulations as outlined in aim 

2a. Following electrical stimulation, they will undergo an additional 2 trials of 3 

repetitions of the forward bend task.  

Kinematic criteria developed by Wattananon (2014) will be used to identify 

aberrant motion, as follows: 

Coupling-angles of the femur on pelvis and pelvis on lumbar segments and phase-

plane diagrams will be created. Coupling-angle will be used to determine the time 

point (T) that the coupling angle crosses the standard deviation band indicating a 

shift from lumbar dominant to pelvis/hip dominant motion. This will be used to 

determine if reversal of lumbopelvic rhythm occurs. Lumbar on pelvis coupling 

angle that exceeds 59 degrees, before 38% of the total forward bend will be 

considered as aLPR. MDC90 has been established by Wattananon using the same 

protocol as 11.9% of time normalized movement and this value will be able to 

determine if a shift in lumbopelvic rhythm is meaningful.  

 The number of local minimum and local maximum, characterizing sudden 

acceleration/deceleration will be quantified using the phase plane diagram. The 
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presence of 6 or more local minimum would indicate the presence of judder. 

MDC90 has been established as 1.6 local minimum, so forward bends with 

increases in minimum/maximum that exceed 2 local minimum will be considered 

to have worsened. 

 Forward bend will be analyzed using the above kinematic criteria. Subjects who 

do not have aberrant movement prior to NMES will be considered to demonstrate 

aberrant movement following NMES if they satisfy two criteria: They exceed the 

kinematic cutoff points for either aLPR and/or JUD and they exceed it by a value greater 

than the MDC90. If subjects are determined to have aberrant movements through 

kinematic analysis pre NMES but not in the clinical observation, their movement pattern 

will be considered to have worsened if kinematic cut offs exceed MDC (Appendix H). 

Repeated measures ANOVA using an alpha of .10 will be used to determine if 

there is a statistical difference between pre and post electrical stimulation of forward 

bend, with time crossing (T) and number of local minima as the dependent variables 

measured before and after NMES. This will be used to analyze overall differences in 

kinematics following NMES. To determine the impact of NMES to create or worsen 

aberrant movements, response of forward bend following NMES will be dichotomized: 

created/worsened aberrant vs. no change. McNemar’s chi square change test will be 

utilized with an alpha of .10 to determine if there were significant changes following 

NMES.  
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1.7.5 Methods for Aim 2b: Determine if electrically induced LM contraction using 

NMES can yield increased spinal stiffness and a positive prone instability 

test. 

 

This will be a pre-post design study with pain and spinal stiffness as dependent 

variables. NMES will be the independent variable that all subjects will receive. Pain and 

stiffness changes will be measured in the PIT position pre NMES and again during 

NMES. Response to the test and its effect on stiffness changes will be handled as a 

covariate as per aim 1B.  

Expected outcomes: Identification of the role that the LM plays in the PIT. A large 

portion of the PIT test’s impact on intervention is based on assumed roles of the trunk 

extensors, particularly the LM and associated spinal stiffening. This approach will 

provide a method to investigate those assumptions and directly support or change clinical 

practice. 

Subjects 

Healthy subjects and patients with low back pain recruited for aim 1b will also be 

used for this aim. See details of inclusion and exclusion criteria under aim 1b. 

Procedures 

All subjects will first undergo testing for aim 1b. Following completion of testing 

for aim 1b and 2a EMG electrodes over the LM will be removed. Healthy subjects who 

had symptom provocation during the PIT will be asked if they have residual symptoms. 

Healthy subjects that do not have residual symptoms will receive 10 additional NMES 

stimulations. Electrical stimulation electrodes will be placed 1cm from the spinous 

process between the spinous process of S1-L3 bilaterally as previously described.  
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For determining spinal stiffness changes with adjunctive NMES, all subjects will 

be placed in the PIT position and a fixation belt will be placed across the sacrum below 

the S2 recording sensor. Three anterior forces will be applied, with 120 seconds in 

between at the prior established segment and anterior force (aim 1b, using the 

compression load cell apparatus). Following application of anterior forces in the relaxed 

position, electrical stimulation will be applied using a clinical stimulation unit at 400 us 

pulse duration, 50 pps, with amplitude increased until LM muscle contraction is 

visualized and an isometric anterior tilt of the pelvis is achieved. Data collection will 

begin via an examiner triggered button and 5 seconds of resting kinematic data will be 

collected. After 5 seconds, the data collection program will trigger an audible alarm at 

which point the NMES will be triggered by the examiner and anterior force will be 

applied. For healthy subjects, anterior forces will be administered at the L3 level or at the 

segment that was found to be painful in aim 1B with previously applied forces. Subjects 

with low back pain will have the anterior force reapplied at the pain provoking segment 

using prior established pain provoking force. This will be repeated for 3 trials with 120 

second rest between trials. All subjects will have access to an event trigger to activate, as 

in aim 1B, if there is pain provoked during the anterior force. NPRS will be collected on 

all subjects before and after each trial. Elimination of pain with anterior load will be 

considered a positive response to NMES, while reduction of pain by 2 points or more will 

be considered a negative response, with pain reduction. 

Healthy subjects selected that do not have residual pain following this procedure 

will be moved to a prone position with a fixation belt positioned on the pelvis, under the 

S2 kinematic sensor and receive an additional 10 electrical stimulations delivered with no 
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anterior load applied. This will be to achieve muscular fatigue of the LM to conclude aim 

2a.  

Data Reduction and Analysis 

Methods used in preliminary study 5.3 will be used to measure changes in spinal 

stiffness. Mixed model ANOVA will be used to determine if there are differences in 

spinal stiffness changes between patients with low back pain and healthy subjects during 

the resting and NMES portion of the test. An alpha of .10 will be set for the omnibus, and 

effect size calculated for the change in spinal stiffness. In the event that there are patients 

with a negative test, or healthy subjects with pain production that does not abolish with 

leg raising, the result of the test (positive/negative) will be used as a covariate in 

determining spinal stiffness changes. 

The flow of data collection for aims 1B, 2A, and 2B are illustrated in Figure 1.17. 
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Figure 1.17Testing protocol for aim 1B, 2A, and 2B.  
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1.8 Potential Problems and Alternative Strategies 

 

Aim 1B 

Low back pain patients may not have symptom elimination during the leg raising 

portion of the PIT. It is uncertain how many subjects will demonstrate a negative test 

result. In this case, as described in the data analysis segment of aim 1B, correlations 

between kinematic spinal stiffness changes and EMG signals may offer some information 

on the relationship between muscle activity, spinal stiffness, and pain reduction. Another 

option would be to add additional subjects with low back pain to the study protocol in an 

attempt to insure that 10 subjects demonstrate a positive test response. Lastly, we can also 

add additional subjects to increase the number that demonstrates a negative PIT to better 

understand the differences between a positive and negative test result. The alternatives 

will depend on the number of subjects enrolled that demonstrate positive versus negative 

response. An additional method may also be to provide an electrical stimulation 

superimposition during the PIT in patients with LBP with negative test results.  

Subjects may demonstrate stiffness changes as a result of viscoelastic changes 

from repetitive compressive loads. This may impact stiffness change data during the leg 

raising task, as well as during aim 2B’s NMES elicited contraction. To minimize this, 

loads will be applied gradually to the spine, and ample resting time of 2 minutes will be 

given before trials. All subjects will receive PA spring tests prior to the application of 

kinematic sensors, to determine the presence of painful segments. This may also help to 

precondition tissues prior to testing protocol and minimize changes resulting from 

viscoelastic effects. The amount of change that is a factor of test protocol error also needs 

to be established. In order to accomplish this, a smaller sub-study will be performed on a 
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mix of healthy controls subjects and patients (with a history of low back pain, but 

currently in remission), to determine test-retest reliability of the stiffness changes 

measured with kinematic sensors.  

Aim 2a 

Subjects may be fatigued from the leg raising task of the PIT performed for aim 

1B. This may affect kinematic data collected during the pre and post electrical 

stimulation conditions. If already fatigued, they may develop or increase aberrant 

movements prior to testing of aim 2B. To deal with this potential problem, ample resting 

time will be used between trials, Borg scale will be used to determine fatigue levels 

before and after testing, and care will be taken to avoid mistakes that will require 

additional trials. Healthy control subjects will be screened for the presence of aberrant 

movements before participating. Healthy control subjects may also develop pain from 

testing which is unlikely based on practice sessions performed to refine the testers load 

application.  However, if pain is produced during the testing of the PIT that does not 

resolve, the subject will not proceed to the forward bend protocol. 

aim 2a and 2b. 

These aims are proof of concept studies, and preliminary data does not yet exist to 

support the number of subjects that are necessary to power the study. This may lead to a 

type II error. To deal with this error, an alpha of .10 will be used rather than .05. Effect 

size will be calculated during the study to quantify the difference in spinal stiffness 

changes that occur as a result of hip extension during the PIT and during NMES to the 

LM. In the absence of statistical significance, the effect size will be able to quantify the 

strength of association and proportion of variance explained in spinal stiffness changes as 
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a result of a leg raise and the NMES. Effect size will also be used to determine changes in 

kinematic variables of local minima of the phase plane diagram used to detect JUD and 

change in time crossing T of the coupling-angle diagram used to detect aLPR 
161

. A 

planned analysis of the data midway once 5 subjects in the healthy control and low back 

pain groups have been completed can be completed and a power analysis performed on 

stiffness changes during the PIT and NMES. This should refine the number of potential 

subjects that are needed for the study, and additional subjects will be recruited as 

necessary. 

Preliminary studies 1.6.4 and 1.6.5 established the ability to isolate LM with 

NMES, and that fatigue with the protocol is promising. However, another fatigue study is 

planned using EMG pre and post NMES to study medial frequency drop following 

stimulation. Subjects will perform a modified Biering-Sorensen test (holding for 30 s) as 

identified in Appendix J, with EMG collected for the LM and LES. They will then 

receive NMES to the LM as described in previous sections. They will then perform 

another Biering-Sorensen test with EMG collection to analyze medial frequency drop as 

another measure of fatigue. After 5 minutes rest, they will perform the Biering-Sorensen 

test again to determine level of muscle fatigue. This repeated test will be used to 

determine if subjects will remain adequately fatigued as it takes several minutes to prep 

them for the post fatigue forwarding bending tests.  It is anticipated that the transition 

from NMES through data collection will happen within a 5 minute window. 
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Chapter 2: Muscle activation characteristics during forward bending in 

individuals with low back pain and movement coordination impairment: a 

planned secondary analysis. 

 

Abstract 

Background: Forward bending is used to classify individuals with movement 

coordination impairment related back pain (MCILBP). Identifying mechanisms involved 

in this impairment may help identify specific treatment options. 

Objective: Characterize muscle activation differences of the trunk extensors between 

individuals with and without MCILBP. 

Study Design: Secondary analysis of data from a cross sectional study on individuals 

with MCILBP.  

Methods: Data from 24 individuals with MCILBP and aberrant movements during 

forward bend were included in this analysis. Fourteen met a-priori kinematic criteria for 

altered lumbopelvic rhythm and 10 met criteria for rapid acceleration and deceleration in 

lumbar angular velocity. These individuals were compared to 15 individuals with no 

history of low back pain and typical movement patterns. Surface EMG collected on the 

lumbar multifidus (LM), lumbar erector spinae (LES), and thoracic erector spinae (TES) 

muscles was used to characterize and compare muscle activity during forward bend. 

Mean EMG, normalized to a submaximal contraction, was used to compare muscle 

activity. EMG signals were divided into epochs to compare movement patterns. Cross-

correlation was used to compare co-activation.  
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Results: Individuals with MCILBP had greater lumbar multifidus, lumbar erector spinae, 

and thoracic erector spinae muscle activity during forward bend, compared to individuals 

with no history of low back pain (p<.05). Individuals with aberrant movement reached 

peak extensor activity at a later phase in forward bending but maintained increased 

activity for longer duration than individuals without aberrant movement. Individuals with 

typical movement appear to be characterized by greater co-activation between lumbar 

multifidus and lumbar erectors spinae than those with aberrant movements. 

Conclusions: Individuals with MCILBP who demonstrate aberrant movements are 

characterized by higher trunk extensor activation compared to individuals with no history 

of low back pain and typical movement. This finding may be an attempt of the trunk 

extensor muscles to increase spinal stability during a forward bend movement. 
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Introduction 

 

Low back pain (LBP) effects up to 26% of the population in the United States.
1
 It 

has been reported that upwards of $100 billion in medical costs and lost wages per year 

are associated with caring for individuals with LBP.
2
 Rehabilitation of individuals with 

LPB is challenging due to little association between pathoanatomic mechanisms and 

symptoms .
3
 However, selecting interventions by subgrouping individuals into treatment 

based classifications has resulted in improved outcomes in individuals with acute to 

subacute LBP. 
4
 One treatment subgroup consists of individuals identified to benefit from 

trunk stabilization exercises.
5,6

 These individuals are considered to have movement 

coordination impairments (MCI) of the lumbopelvic region resulting from impairments in 

muscle function.
3
 Unresolved impairments in muscle activation are theorized to drive 

recurrence and chronicity of LBP
7
. Therefore, individuals with movement coordination 

impairment related LBP (MCILBP) might be an important subgroup to study to 

determine whether impairments in neuromuscular control exist during functional tasks.  

Many classification systems exist for determining whether an individual has 

MCILBP.
6,8-10

 All of these systems assess the quality of a forward bending motion as part 

of their examination. Forward bending requires coordination of multiple segments 

including the spine and the hips
11

 and may provide sensitive diagnostic information on 

movement control. Kinematic analysis has demonstrated that aberrant movements occur 

in the midrange of the forward bend movement
12

 where muscle activity is believed to 

play a primary role in spinal stabilization.
13,14

 These aberrant movements have been 

considered construct validation for this subgroup having impairments in muscle 

controlled spine stability.
12

 Therefore, forward bending represents an important task by 
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which to assess an individual’s movement coordination and control. Further study of 

neuromuscular control in this subgroup of individuals would provide information that 

could be useful for guiding interventions within these classification systems.  

Previous studies have shown that higher levels of trunk muscle co-activation 

occur in individuals with LBP.
15

 Higher levels of trunk muscle co-activation have been 

proposed to offer joint protection, but perhaps at the cost of movement control and 

precision.
16

 This finding may provide one explanation for aberrant forward bending but 

this has yet to be established. Increased LES activation during forward bend has been 

reported in patients with LBP.
17

 This is believed to result in aberrant movements from 

reduction in the stabilizing activity of the lumbar multifidus (LM) .
18

 A reduction in LM 

contraction ability among individuals with MCI
19

 may lend support to this theory. 

Impaired muscle function may result in synchronization of motor units within a muscle to 

increase motor output, represented by an increase in EMG amplitude, at the cost of 

smooth fluid movement.
20,21

 Increasing the ratio of hip flexion to lumbar flexion angle 

has been reported to improve the lumbar extensors’ ability to stabilize the spine.
22,23

 This 

may cause alteration in the coordination of the multi segment spine and pelvis during 

forward bending, resulting in aberrant movement. 

Prior research has suggested that movement disruptions occur in stages of forward 

bending when muscle activity provides primary stabilization to the spine.
12,24

 Combining 

this knowledge with 1) evidence of LM activation impairments in individuals with 

MCILBP
19

 and 2) the role that the LM is believed to have in forward bending
18

 provides 

theoretical support for altered neuromuscular control of the lumbar extensor muscles 

driving the differences in forward bending movement patterns between healthy 
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individuals and those with MCILBP. Identifying differences in neuromuscular control 

between these groups during forward bending would help substantiate these theories and 

provide valuable information in the mechanism related to impaired movement control.  

The overall aim of this secondary analysis was to identify and characterize 

differences in neuromuscular control during forward bending between individuals 

without a history of LBP and a typical forward bending movement pattern, and 

individuals identified to have MCILBP and aberrant forward bending movements. There 

were 3 study hypotheses. The first purpose was to determine whether differences in trunk 

extensor muscle activity, across the entire forward bend task, existed between groups. It 

was hypothesized that individuals with MCILBP would have greater activation of the 

LM and erector spinae muscles when compared to individuals with no LBP and typical 

forward bending movement. The second purpose was to compare muscle activation 

patterns throughout the forward bending task between these two groups. It was 

hypothesized that individuals with MCILBP would demonstrate altered patterns of 

muscle activation during forward bending when compared to individuals with no LBP 

and typical forward bending movement. The third purpose was to determine whether 

there were differences in co-activation of trunk extensor muscles during forward bending. 

It was hypothesized that there would be greater co-activation of the lumbar and thoracic 

erector spinae in individuals with MCILBP. 
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Methods 

Participants  

Participants for this analysis were drawn from a clinical trial that investigated the 

effects of trunk stabilization exercises on seated postural control in individuals with MCI 

related LBP. The study was approved through (blinded) university’s institutional review 

board and data were collected from 2009 through 2013. 

Participants were invited to participate if they had LBP for less than 12 weeks, 

average pain greater than 3/10 on a numeric pain rating scale, and Oswestry disability 

index of 20% or greater. Exclusion criteria were: history of spinal surgery, peripheral or 

central neurologic signs, lower extremity surgery or injury that would affect testing, 

systemic symptoms, prior physical therapy for their LBP, or pregnancy. Individuals that 

met inclusion criteria underwent a clinical examination by physical therapists to 

determine whether they met the classification of MCILBP using criteria established by  

Hicks, et al. (2005) and Sahrmann (2001) (see Sung, et al. (2015)  for specific criteria). 

Thirty-three individuals with MICLBP (20 females, mean body mass index (BMI): 25.6 ± 

4.4 kg/m
2
, mean age: 32 ± 14 years) were selected to participate in the postural control 

study. They were matched by gender, age (± 5 years), and BMI (± 5 kg/m
2
) to 33 

individuals without a history of low back pain (mean BMI: 23.8 ± 3.8 kg/m
2
, mean age: 

34 ± 13 years). Participants for the current analysis were drawn from this total pool of 66 

individuals with and without a history of LBP. 

Instrumentation and procedures 

As part of the study, participants had simultaneous recording of surface EMG and 

thoraco-lumbo-pelvic kinematics during a forward bending task. An electromagnetic 
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tracking system (Liberty, Polhemus Inc., Colchester VT) was used to capture kinematic 

position data from the thoracic and lumbar spine, pelvis and femur. EMG data were 

collected (SA Instrumentations, San Diego, CA gain 500; band pass filtered 20-500Hz) 

from the LM, LES, and thoracic erector spinae (TES) musculature.  

Skin preparation for EMG involved cleaning with alcohol followed by light 

abrasion. Pairs of Ag-AgCl electrodes with 2 cm inter-electrode distance were placed 

bilaterally along target muscles as follows: LM- 2 cm lateral to L5 spinous process , LES 

- 3 cm lateral to L2 spinous process, and TES – 5 cm lateral to T9 spinous process.
26

  A 

reference electrode was placed on the lateral malleolus.  

Participants underwent collection of quiet resting EMG for 2, 30-second trials. 

This was followed by performance of resisted trunk flexion, extension, and bilateral side 

bending in a custom device designed to minimize lower extremity contribution. This was 

performed for EMG normalization. Submaximal contractions (sMVIC) were used for 

normalization due to uncertainty of patients with LBP producing maximal effort.
27 

SMVIC has also been reported to have better reliability compared to MVIC in 

normalizing trunk EMG data.
28

 In order to standardize the sMVIC across participants, a 

computer monitor with a force target (15% of their body weight) was provided to the 

participants during the sMVIC trials. 

Electromagnetic sensors were then placed on the spinous process of T3, L1, and 

S2 along with one sensor on the lateral condyle of the femur to model the thoracic, 

lumbar and pelvic segments of the trunk. EMG (2400 Hz) and kinematic data (120Hz) 

were collected simultaneously and time synchronized through a custom program 
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(LabVIEW 8.6, National Instruments, Austin, TX). Participants used their preferred 

strategy to perform 6 maximal forward bend movements.  

Rating of forward bend movements and subject selection for analysis 

This analysis used previously validated kinematic algorithms to identify the 

presence/absence of two types of aberrant movements during the forward bend task. 

Aberrant movements consisted of altered lumbopelvic rhythm and judder (rapid 

acceleration and deceleration in lumbar angular velocity). These aberrant movements 

have been shown to be able to identify individuals with MCILB
24

 who would benefit 

from trunk stabilization exercises. Abnormal lumbopelvic rhythm (aLPR) was defined as 

a lumbopelvic coupling angle exceeding 58 degrees within the first 38% of the forward 

bend motion on a graph plotting lumbar angle versus pelvic angle during forward 

bending. Judder was defined by the presence of 6 or more decelerations on a lumbar 

phase-plane graph (segment angular velocity versus angular displacement)
24

. A custom 

written LabView 8.6 (National Instruments, Austin, TX) program was used to apply the 

algorithms to each individuals forward bend trials. 

Prior work has determined that not all individuals with LBP demonstrate aberrant 

motion, nor do all individuals without a history of LBP consistently present with typical 

motion during a forward bend task.
29

 Therefore, to ensure that movement pattern 

classification was based on a consistent movement pattern, we established the following 

criteria for rating forward bend movements.  Individuals without a history of LBP and a 

typical movement pattern (TYP) were identified and selected for inclusion when aberrant 

movement was detected in 2 or less forward bend trials. Individuals with LBP and 

aberrant forward bending patterns were selected for inclusion when aLPR or judder was 
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detected in 3 or more trials. Based on these criteria, two LBP groups with aberrant 

movement patterns were identified: aLPR only and, both aLPR and judder (aLPRJUD). 

Separation of LBP participants into two movement patterns groups was determined a 

priori based upon preliminary analysis of EMG data that demonstrated distinct muscle 

activation patterns between these groups.  Table 2.1 contains demographic information of 

participants selected for inclusion into this analysis from the original study on postural 

control. 

EMG data reduction 

 EMG data reduction included removing heart rate artifact using fast independent 

component analysis
30

, rectification (RMS, Tc=30ms) and resting EMG signal subtraction 

through a custom LabView 8.6 (National Instruments, Austin, TX) program. In order to 

determine whether the trunk extensor muscle activation data should be treated as a group, 

or as separate muscles, a cross correlation analysis was performed.
31

 Coefficient values 

were significantly different (P<.001), which indicated minimal cross talk between 

muscles. This finding supported our initial thought that each muscle group would be 

analyzed separately.   

To investigate EMG amplitude for muscle activation differences during forward 

bending, signals were normalized to the sMVIC and analyzed for left-to-right differences 

(paired t-test, alpha=.016). No significant differences in muscle activity levels between 

sides existed; therefore, muscle activity levels were considered to be symmetrical and 

EMG data were analyzed as an average of left and right sides for LM, LES, and TES. 

Within session reliability was calculated using normalized EMG of the 1
st
 and 6

th
 forward 

bend trial of all participants in this analysis. ICC(3,2) was determined to be as follows: 
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LM: .91, LES: .95, TES: .95. Standard error of the measure (SEM) was determined to be 

13% for LM, 9% for LES, and 14% for TES.  

Statistical analysis 

Kinematic rating of forward bending revealed three distinct movement groups: 

individuals with a history of low back pain that demonstrated either aLPR or aLPRJUD 

and individuals without LBP who demonstrated TYP movement pattern. Therefore 

analysis consisted of three groups. All data analyses were performed using SPSS 21 

(IBM, Armonk, NY).  

Differences in trunk extensor muscle activation between groups: mean muscle EMG 

amplitude  

To compare differences in trunk extensor muscle activation between groups, 

normalized EMG amplitude was compared between groups using mixed ANOVA (within 

groups: muscles; between groups: typical (TYP), aLPR, and aLPRJUD, alpha=.05). Post-

hoc analyses were performed using Tukey’s HSD multiple comparison correction with 

harmonic means adjustment for unequal sample size.  

Muscle activation pattern differences between groups: EMG amplitudes within movement 

epochs  

To characterize and compare trunk extensors activation patterns between the 

groups throughout the forward bending task, normalized EMG signals for each extensor 

muscle group were divided into10 epochs. Each epoch represented 10% of the forward 

bend task. For each muscle, the average EMG signal within each epoch was determined. 

Epochs were then averaged across trials and compared using mixed ANOVA (within 

groups: muscles and epochs; between groups: TYP, aLPR, and aLPRJUD).  
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Kinematic data for lumbar flexion angles, lumbar angular velocity, and ratio of 

hip to lumbar flexion were calculated and presented as means within epochs. This 

information was presented to assist with interpretation of EMG data within epochs. 

Mixed ANOVA with Tukey HSD post hoc testing was performed to compare mean 

lumbar velocity, mean lumbar flexion angles, and mean hip to lumbar flexion ratio as an 

average of the complete forward bending phase (alpha=.05).  

Comparison of muscle co-activation during the forward bend task 

Co-activation of trunk extensor muscles were first quantified using the cross-

correlation function. 
33

 LabVIEW 8.6 (National Instruments, Austin, TX) was used to 

calculate the cross-correlation coefficient between muscle pairs (Rxy) using the equation: 

𝑅𝑥𝑦(𝜏) = (
1

𝑇
)

∫ 𝑥(𝑡)𝑦(𝑡±𝜏)𝑑𝑡
𝑇
0

√𝑅𝑥𝑥 (0)𝑅𝑦𝑦(0)
     (1) 

In equation 2, τ refers to the phase shift (magnitude of the shift between x and y , T is the 

duration of the signal record, x(t) is the signal held stationary, and y(t) is the time shifted 

signal. Rxx (0) and Ryy(0) represent zero phase lag autocorrelations  and serve to 

normalize the correlation coefficient.
34

  The Rxy range is between +1 and -1, with highly 

positive numbers indicating muscles acting in phase, while highly negative values would 

indicate activation of one muscle while the other muscle is not active. 

A 300 ms limit was placed on the maximum shift allowed to obtain a cross 

correlation coefficient.
31,34

 Without a limit on the phase shift, highly correlated points in 

two signals that are separated by a large period of time may be falsely interpreted as co-

activation. Side-to-side pairings in the cross correlation co-efficient revealed no 

significant differences (p<.05) so symmetry was assumed and sides were averaged. 

Moderate correlations between Rxy pairings (.3-.64) required the use of MANOVA to 



 

 

 

 

142 

1
4
2
 

compare muscle co-activation between groups using LM-LES, LM-TES, and LES-TES 

muscle pairing. Phase-lag (τ) between the muscle pairings at the maximal correlation was 

compared using MANOVA to determine onset latencies and activation order between 

muscle pairings (alpha=.05). When the first muscle listed in the pairing is activated prior 

to the second muscle, τ is positive. Negative τ values indicate activation of the second 

muscle prior to the first muscle listed in the pairing. 

Muscle co-activation was characterized by calculating how much each muscle 

contributed to the forward bend. The contribution of individual muscles was calculated 

as: 

𝑀𝑢𝑠𝑐𝑙𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = (
𝑇𝑎𝑟𝑔𝑒𝑡 𝑀𝑢𝑠𝑐𝑙𝑒 𝐸𝑀𝐺 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝐿𝑀 𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑+𝐿𝐸𝑆 𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑+𝑇𝐸𝑆 𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
) = x 100            (2) 

Muscle percent contribution was compared using MANOVA, (alpha=.05). 

Results 

Differences in trunk extensor muscle activation between groups: mean muscle EMG 

amplitude  

There was a significant main effect of muscles during the forward bending task 

F(2,35)=4.841, p=.014, 
2
=.217. There was also a significant main effect of group: 

F(2,36)=11.17, p<.001, , 
2
=.383 Post hoc analyses revealed LM activation (mean=75% ± 

42%) to be significantly greater than both LES (mean=58% ±41%) and TES (62% ± 

43%). However there were no differences between LES and TES.  There was no 

significant interaction F(2,36)=2.197, p<.126, 
2
=.109  between movement groups and 

muscles. Figure 2.1depicts muscle activity levels between the movement groups. Post hoc 

analyses (alpha <.05) revealed significantly lower EMG amplitude of the LM in the TYP 

group compared to both aLPR and aLPRJUD groups. However, there were no differences 
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were detected between the aLPR and aLPRJUD groups. LES demonstrated significantly 

higher amplitude in the aLPRJUD compared to the TYP group. However there were no 

differences between TYP and aLPR groups or between the aLPR and aLPRJUD groups. 

TES activity was significantly higher in the aLPRJUD group than TYP or the aLPR 

group. However, there were no differences between TYP and aLPR.  

 Muscle activation pattern differences between groups: EMG amplitudes within 

movement epochs  

ALPRJUD demonstrated significantly slower velocity compared to aLPR and 

TYP with no differences between the latter groups. TYP demonstrated greater lumbar 

flexion angles compared to the aberrant groups, with no difference between aberrant 

groups. This is in agreement with prior work that found individuals with LBP typically 

demonstrate less lumbar motion and slower velocity during forward bending compared to 

individuals without LBP
11,32

. There were no statistical differences in the hip to lumbar 

flexion ratio across groups. 

Figure 2.2 displays kinematic descriptive data for mean lumbar and hip flexion 

angles, lumbar flexion velocity, and the ratio of hip to lumbar angles during forward 

bending within the epochs. There was a significant main effect of muscles across the 

epochs F(27,10)=3.43, p=.023 
2
=.903 during forward bending. There was also a main 

effect of groups across epochs. F(18,19)=2.69, p=.019 
2
=.719. There was a significant 

interaction across the epochs between movement groups, F(54,22)=2.645, p=.007, 
2
=.867. 

Post hoc analysis revealed a significant effect of LM F(9,324)=3.65,  p=.026 
2
=.088, LES 

F(9,324)=3.719, p=.018 
2
=.094, and TES F(9,324)=6.46, p=.000 

2
=.152  across epochs. 
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However, there was no muscle x group x epoch interaction among any muscle group 

(Figure 2.3). 

 Comparison of muscle co-activation during the forward bend task 

Comparison of muscle co-activation revealed a significant difference between the 

muscle pairings among movement pattern groups F(6,72)=2.58, p=.025, 
2
=.177. Cross-

correlation coefficient values are listed in Table 2.2.  Post-hoc comparisons were 

performed among muscle pairings between the TYP and aLPR, as well as TYP vs 

aLPRJUD to determine the differences in co-activation that exist within the aberrant 

movement groups. There were significant differences between TYP and aLPR 

F(3,26)=3.49, p=.019, 
2
=.313 for muscle co-activation. TYP displayed higher LM-LES 

in-phase activation compared to aLPR p=.016, but there were no differences between 

LM-TES or LES-TES (Table 2.2). This was similar in the TYP vs aLPRJUD comparison, 

F(3,22)=3.69, p=.027, 
2
=.335, with TYP demonstrating higher in-phase activation of LM-

LES compared to aLPRJUD, p=.008, with no differences between other pairings.  

There was no significant effect of lag times between movement groups among 

muscle pairings, F(6,72)=0.924, p=.48, 
2
=.072, suggesting that muscle pairings were 

activated nearly simultaneously during forward bending. Based on negative phase lag 

values (Table 2.2) all groups demonstrated a cephalocaudal muscle activation pattern 

independent of their forward bending movement pattern with the exception of the LM-

TES pairing in the judder group.  

There was a significant main effect of muscle percent contribution differences, 

F(2,72)=5.19, Wilkes Lambda p=.011, 
2
=.229, during the forward bend task.  Overall, LM 

contributed the most (mean =37.2%, SD= 14%) followed by the TES (mean=34.4%, 
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SD=16.5), with the LES contributing the least (mean=28.1%, SD= 11.8%). However, the 

contribution of muscles was not significantly different between groups F(4,70)=0.952, 

p=.77, 
2
=.148.  

Discussion 

The purpose of this analysis was to investigate neuromuscular control between 

individuals without LBP and typical forward bend movement, and individuals with 

MCILBP who demonstrate aberrant movements during forward bending. In a 

heterogeneous condition such as low back pain, analysis of motor control has been able 

to identify differences between participants, when they are placed into subgroups for 

analysis, rather than pooling all individuals with LBP into 1 group
35

 The strength of this 

study is that it investigates a specific subgroup of patients with LBP, thus reducing the 

effects of heterogeneity and providing more specific information that may be relevant for 

treatment. Through separation of different forward bending movement patterns via 

kinematic analysis, we were able to characterize muscle activation and recruitment 

patterns that may be driving clinically observed aberrant movements. We identified 

differences in muscle activation within movement groups. We were also able to identify 

that these movement groups have unique muscle activation patterns during forward 

bending. However, there does not seem to be greater co-activation of the LES-TES 

within the aberrant groups. In contrast, the co-activation within LM-LES appears to be 

greater in TYP compared to the aberrant groups. 
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Differences in trunk extensor muscle activation between groups: mean muscle EMG 

amplitude  

 Our first finding identified muscle activation differences during forward bending 

between TYP and aberrant movement groups (Figure 2.1). LM was activated to a greater 

extent across all movement groups during forward bending, while LES and TES were 

activated on the same degree within the groups. This supports the theory that LM 

provides the predominant stabilizing force in forward bending
18

. However, the theory that 

aberrant movement may be a result of greater LES was not supported, as neither LES nor 

TES activation was significantly greater than LM in the aberrant groups. Both aberrant 

groups demonstrated significantly higher LM activation compared to TYP. However, 

aLPRJUD was distinguished by greater activation of all 3 muscles, compared to TYP. 

There was a moderate effect size for group (
2
=.217) and muscle (

2
=.383) main effects.  

Muscle activation differences between groups also exceeded the SEM. Collectively this 

indicates that these differences are clinically meaningful.  

Prior research suggests that LM activation deficits are present in patients with 

MCI related LBP
19

. These findings are based on ultrasound imaging of muscle 

contraction with inference of activation rather than a direct measurement of the muscles 

electrical activity. Our findings identify increased activation of the LM in individuals 

with MCILBP and aberrant movements. These findings may not contradict, but rather 

support each other. A reduction in contractile ability of the LM within this subgroup of 

patients may require recruitment of additional motor units in an attempt to provide 

lumbar segment stability during movement.   
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Muscle activation pattern differences between groups: EMG amplitudes within movement 

epochs  

Our findings demonstrated differences between muscles across epochs among the 

movement groups. There was a large effect size in the group by epoch interaction 

(
2
=.719), and group differences for muscle activation exceeded the SEM, indicating 

clinically meaningful findings. Within the TYP group, LM and LES reached peak EMG 

amplitude by 40% of movement and began returning to baseline by the end of forward 

bending (Figure 2.3). However, for the aberrant movement groups, peak LM and LES 

amplitudes occured later in the movement and the EMG amplitudes remained elevated. 

TES had a similar pattern across all groups in the 1
st
 50% of the movement. The 

activation peaks within the 5
th

 to 6
th

 epoch. Once activity peaks, aLPR begins to reduce 

activity and approached baseline activation levels. However, TYP and aLPRJUD did not 

return to baseline levels. TES activation in the TYP group had small fluctuations after the 

peak but remained fairly steady. Within the aLPRJUD group, TES activity continued to 

increase. Impairments in muscle contraction of the extensors identified by several studies 

in individuals with LBP
19,36,37

 may require either additional muscle activation or 

maintained activation to provide lumbar segmental stability during movement. Studies on 

muscle quality and contractile abilities within this population would help to determine if 

that is the case. 

Muscle activation pattern and aberrant movement 

Group differences in hip to lumbar flexion angle ratios were not significant 

through the movement epoch (Figure 2.2b).  However, the aberrant groups did have a 

greater proportion of hip flexion within in the first 20 percent of movement. The lack of 
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statistical significance was likely due to the greater proportion of hip flexion that all 

groups demonstrate at the end of forward bending. The ability of lumbar extensors ability 

to resist anterior shear in forward bending have been found to improve with greater hip 

flexion, due to changes in muscle fiber orientation.
23

 The aberrant groups, both of which 

demonstrated aLPR, may alter the coordination of the lumbar and pelvic segments in 

order to take advantage of this mechanical phenomenon. Future studies investigating the 

coupling of the hip and lumbar spine during flexion and its effect on muscle orientation 

and vertebral shear may help to expand on this speculation.  

Flexion-relaxation or electrical silence of the lumbar extensors at higher angles of 

lumbar flexion is attributed to increases in spinal stability from the passive tension of the 

lumbar extensors
38-40

. Peak stabilization from passive tension has been found to occur 

around 40 degrees of flexion and greatly reduce LES EMG activity.
41

 The TYP group 

reached 40 degrees of lumbar flexion angle by the 5
th

 epoch along with a reduction in LM 

and LES around that point. However, the aberrant groups maintained their lumbar flexion 

angle between 40-50 degrees, with continued activation of the extensor muscles (Figure 

2.2a). They may require the muscle activation to enhance stability of the spine within this 

range if there is injury to the passive structures of the spine. However, the aLPRJUD 

group had distinct, high activation of all muscle groups compared to the TYP group.  The 

aLPRJUD group was further separated by higher TES activation. The aLPRJUD group 

may have required additional TES activity to maintain spinal segment stability within this 

40-50 degree lumbar flexion range that aLPR group does not.  The higher degree of 

muscle activation during forward bending and the motor unit synchronization required to 

maintain that activation may account for the rapid acceleration and deceleration of judder 
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in this group.
21

 What is unknown from this secondary analysis is why the aberrant groups 

restrict their lumbar motion between 40-50 degrees, and why the aLPRJUD group 

requires greater muscle activation.  

 

Co-activation of muscles during forward bending 

The hypothesis of greater co-activation across LES and TES in the aberrant 

movement groups was not supported. Cross-correlation coefficient between the LM-LES 

muscle pairing was significantly greater in TYP compared to the aberrant groups, 

suggesting greater co-activation between LM-LES in TYP. While LM had the greatest 

activation during forward bending, it may indicate that a synergistic activation between 

the LM and LES is also important to control forward bending. 

 The phase lags derived from the cross-correlation analysis did reveal an 

interesting finding. Phase lags suggest a cephalo-caudal order of activation of muscles. 

The only muscle pairing considered to fire from inferior to superior was the LM-TES 

pairing within the aLPRJUD group. However, the phase lag was only 0.6 ms with a large 

standard deviation. Within this group, the LM-LES phase lag was negative, suggesting 

LES was activated prior to LM. The LES-TES phase lag was also negative, suggesting 

TES was activated prior to LES. Therefore, it is likely that the TES was activated prior to 

LES. This has interesting implications. If the assumption within this secondary analysis is 

that TES and LES activation was greater in the aberrant groups to compensate for some 

deficiency in LM function, the activation order may suggest that this increase in muscle 

activation was a pre-planned feed forward mechanism. However, these interpretations 
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must be tempered carefully given the large variance in the data, the relatively small phase 

lags throughout muscles between groups, and the small effect size.  

Limitations and considerations  

Clinically, aberrant movement were based on participants selected through 

clinical examinations and selected on the presence of at least 1 type of aberrant motion 

during forward bending.
6
  To ensure that movement patterns were a regular pattern of 

behavior rather than a single isolated event, we selected participants based on the 

consistency of kinematic movement ratings. Therefore, these findings are only 

generalizable to individuals with consistent aberrant movement during forward bending. 

However, in these individuals, the findings provide insight into their neuromuscular 

control and may impact future intervention selection.  

Increase in LES and TES activation have been identified in patients with recurrent 

LBP and is theorized to enhance spinal stability.
42

 The results from the current study 

support the theory. Increased muscle activation may be influenced by fear of pain and 

resulting maladaptive increase in muscle activation.
9,43

 However, our participants with 

LBP did not have FABQp scores that suggest heightened fear of movement. Furthermore, 

participants in this study did not demonstrate an association between pain and fear of 

movement to other trunk movement tests.
25

 It is also unlikely that pain drove the 

differences between the aLPR and aLPRJUD groups, as there were no significant group 

differences in pain intensity. It is unlikely that differences noted in this analysis are due to 

maladaptive behavior or fear of movement.  

Because the purpose of this analysis was to identify the neuromuscular control of 

the trunk extensors, agonist-agonist muscle relations were not investigated. There may be 
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differences in agonist-antagonist muscle interactions that occur in patients with MCILBP 

that contribute to the aberrant movement patterns.  Investigating the interaction of flexors 

and extensors during forward bending may provide further information about changes in 

neuromuscular control in patients presenting with aberrant movements.  Increased 

extensor activation during forward bending and differences in extensor activation pattern 

within movement epochs were identified in patients with aberrant movements. However, 

several conditions may require this change in neuromuscular control. Increased signaling 

may have been necessary to improve spinal stability during bending. However, increase 

in electrical activity does not indicate that greater force generation occurred in the 

aberrant movement groups vs TYP. It may have been an attempt to activate a larger 

number of motor units due to deterioration of muscle quality. Future investigation into 

the muscle characteristics and quality in patients with these aberrant movements may 

yield more information to guide intervention. 

Conclusions 

The subgroup of individuals with MCILBP in this study appear to have two 

predominant aberrant movement patterns: aLPR and aLPRJUD. During forward bending, 

LM appears to be the largest contributor across all movement groups. Higher levels of 

extensor activity overall appears to distinguish the aberrant groups from individuals 

without LBP and typical forward bending movement. Several modifiable factors may be 

contributing to aberrant movements. There may be impairments in force generating 

properties of muscle that require recruitment of additional motor units. If that is the case, 

interventions that effect muscle capacity such as strength and endurance may need to be 

considered in treatment of these patients. There may be impairments in movement 
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coordination of the lumbar spine with the hip and pelvic complex. It may be reasonable to 

attempt restoring the movement pattern in patients to obtain similar movement and 

muscle activation patterns as the noted in individuals without LBP. This may be obtained 

through exercises that focus on improved movement coordination between the spinal 

segments as proposed by Sahrmann (2001) and O'Sullivan (2000). 
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Tables and Figure 

 

Table 2.1 Demographic information of participants used for analysis (mean ± standard deviation). 

Group 

Subjects 

Identified 

(N) 

Sex Age BMI 

Oswestry 

Disability 

Index 

Pain 

 

FABQp 

Typical Movement 15 11 female (73%) 34.4 ± 11 

23.5 ± 4.4 

kg/m
2 

 NA NA 

 

NA 

Altered Lumbopelvic 

Rhythm 14 10 female (71%) 38.2 ± 15 

26.9 ± 6.1 

kg/m
2 

25.4 ±10.7 3.4 ± 1.2 

 

16.2 ± 6.1 

Altered Lumbopelvic 

Rhythm with Judder 10 7 female (70%) 37.2 ± 17 

26.7 ± 4.7 

kg/m
2 

17.8 ±9.4 4.4 ± 2.2 

 

12.5 ± 9.9 

 

Note: No significant group differences (alpha >.05) for age, body mass index (BMI), Oswestry Disability Index, pain intensity, and 

Fear Avoidance Beliefs Questionnaire-physical activity subsection (FABQp). There was similar representation of sex within all 

groups. 
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Figure 2.1. Mean normalized EMG amplitude across trunk extensor muscles (+/- SD) between individuals without LBP and typical movement, individuals with 

altered lumbopelvic rhythm, and individuals demonstrating altered lumbopelvic rhythm with judder during forward bending. The individuals without LBP 

demonstrated lower EMG amplitudes across all muscle groups in relation to the two aberrant movement groups. Lumbar multifidus recruitment was significantly 

higher in both aberrant groups compared to individuals without LBP (*). The group with altered lumbopelvic rhythm with judder had higher lumbar multifidus 

and erector spinae EMG amplitudes compared to individuals without LBP (!). This group also demonstrated higher thoracic erector spinae amplitude in 

comparison to individuals without LBP and the altered lumbopelvic rhythm group (#). 
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Figure 2.2 Graph of the kinematic descriptive data for lumbar flexion angles and velocity, and ratio of hip flexion to lumbar flexion. Data were time normalized 

with each epoch representing 10% of the forward bending. (2a) displays mean lumbar spine flexion angle and velocity within movement epochs across 

movement groups; (2b) displays the ratio of hip flexion to lumbar flexion angles during forward bending. Ratios greater than 1 represent greater hip flexion 

during movement. 
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Figure 2.3 Means muscle amplitude during epochs of forward bending. 
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Each epoch represents 10% of the forward bend task. In individuals 

without LBP, LM and LES demonstrated a tendency to reach peak 

amplitude by the 4th epoch and then reduce muscle activation levels 

close to baseline values as the motion progressed. However, in the 

aLPR and aLPRJUD groups, LM peaked between the 4th and 5th 

epoch and continued to remain active through the motion, not 

returning back to baseline levels. TES recruitment maintained stable 

across epochs in individuals without LBP , while the aLPR group 

tended to reach a peak between the 5th and 6th epoch before 

approaching baseline levels as movement progressed to full forward 

bending. In individuals with aLPRJUD the same peak in behavior 

was noted but there was no trend in returning to baseline values 
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Table 2.2 Mean, standard error of the mean (SEM), and standard deviation (SD) of cross-correlation coefficients and phase lag (τ) between trunk extensor muscle 

pairs during forward bending.  

 

  
Typical Movement Altered Lumbopelvic Rhythm 

Altered Lumbopelvic Rhythm with 

Judder 

  

Cross 

Correlation 

Coefficient Phase Lag (ms) 

Cross 

Correlation 

Coefficient Phase Lag (ms) 

Cross 

Correlation 

Coefficient Phase Lag (ms) 

 

Mean SEM Mean SD Mean SEM Mean SD Mean SEM Mean SD 

LM-

LES 
0.64 0.02 -12.2 50.8 0.55 0.02 -55.4 101.3 0.53 0.03 -19.6 62.1 

LM-

TES 
0.43 0.02 -15.6 100.2 0.41 0.03 -48.7 74.0 0.35 0.03 0.6 86.1 

LES-

TES 
0.46 0.03 -14.2 79.8 0.48 0.03 -18.8 57.3 0.43 0.04 -8.8 43.2 

 

Note: Individuals with typical movement demonstrated higher co-activation during the forward bending for the LM-LES pairing 

compared to the two aberrant movement groups. No differences were found between other muscle pairings. The phase lags suggest a 

top-down control for all movement groups during the forward bend, with exception to the LM-TES pairing in the aLPRJUD group. 

However, this lag time was less than 1ms. 
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Chapter 3: Spine stiffness changes and muscle activation of the lumbar extensors 

during the prone instability test 

 

Abstract 

 

Purpose: The prone instability test (PIT) is used to identify individuals with low back 

pain (LBP) that would benefit from trunk stabilization exercises. It is theorized that 

activity from muscles such as the lumbar multifidus (LM) during the leg raising portion 

of the PIT enhances spinal stiffness resulting in pain reduction. However, evidence to 

support this theory is lacking. The purpose of this study was to compare and contrast the 

following in individuals with LPB and healthy participants:  1) pain and spinal stiffness 

changes between testing conditions of the PIT and during electrically elicited contraction 

of the LM and 2) muscle activation patterns during the PIT leg raise. 

Participants: Ten participants with LBP, 10 participants with no low back pain.  

Materials/Methods: Three-dimensional kinematics was used to measure spinal stiffness 

using a bending beam model. Stiffness changes were compared across PIT conditions and 

compared between groups. Surface EMG was collected on trunk and limb musculature. 

Principle component analysis was used to extract muscle synergies.  

Results: There were significant increases in stiffness during the PIT test conditions and 

with electrical stimulation of the LM within participants (p=.001). Patients with LBP also 

had significant reduction in their pain across conditions (p=.017). There were no between 

group differences in the percentage of stiffness change between PIT conditions (p>.05). 

Participants without LBP used three muscle synergies during the active leg raise:                
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1) lumbar stabilization 2) thoracic spine and pelvic stabilization, and 3) limb movement. 

Participants with LBP used only two muscle synergies: 1) thoracic spine stabilization and 

leg raising and 2) lumbar spine and pelvis stabilization. 

Conclusions: Spinal stiffness changes occur during the PIT that can be reproduced with 

electrical stimulation of the LM muscle. Participants without LBP demonstrate a muscle 

synergy pattern where each synergy suggests a distinct function during the task. The 

muscle activation strategy of participants with LBP tended to use muscles in a more 

global pattern with less distinction between functions.  
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Introduction 

Treatment of individuals with low back pain (LBP) can be challenging because 

the heterogeneous nature of the condition makes intervention selection difficult
1
.  

However, providing rehabilitation by subgrouping patients into treatment classifications 

has been found to have superior outcomes compared to unmatched treatments
2
. Trunk 

stabilization exercise (TSE) is one of these treatment classifications. The intervention is 

thought to address LBP resulting from impairments in muscle coordination in patients 

with spinal instabilities.
3,4

 The interventions are thought to enhance muscle function and 

movement coordination to enhance stability of the spine.
5,6

  

The prone instability test (PIT) is a clinical test that can be used to help predict 

which subgroup of individuals with LBP would benefit from trunk stabilization 

exercises.
3,7

 The PIT is performed with the patient prone on an examining table with the 

trunk supported and the legs over the end of the table and feet on the floor. The test 

begins with assessing for painful lumbar segments through a clinician applied posterior to 

anterior (PA) force on the spine.  If a painful spinal segment is present during PA testing, 

the individuals raise their feet off the floor using hip extension and the PA force is 

reapplied to the painful segment. The test is considered positive if pain is reduced or 

eliminated during PA force with active hip extension.
8,9

  

Individuals with LBP who require trunk stabilization exercises are theorized to 

have impairments in the ligamentous or bony structures resulting in increased spinal 

segment mobility and reduced spinal stiffness.
10,11

 Muscle recruitment modulated through 

neural control is believed to augment spinal stability in this condition.
12,13

 Based on this 

theory, the PIT may be testing 2 constructs of LBP: pain from reduced spinal stiffness 
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and reduction in pain from muscle enhanced stability. However, mechanisms underlying 

pain with PA glide and reduced pain with active hip extension during this test are 

unknown.  

Pain provocation tests, using PA force to the spine, have been determined to be 

more reliable than segmental mobility judgements
14

 and are considered to be clinically 

acceptable tests.
15

 Symptom provocation has also been found to have moderate to high 

correlations with atrophy of the lumbar multifidus (LM) at the tested segment.
16

 

Individuals with LBP identified to benefit from TSE, using the PIT as one predictor, have 

been shown to have LM activation impairments.
17

 With LM reported to contribute up to 

2/3 of lumbar spine stability
18

, association of pain provocation with LM atrophy, and LM 

activation impairments in this LBP subgroup, it is plausible that the PIT may be detecting 

lumbar segmental impairment, as well as the ability of the LM to enhance spinal stability.  

Voluntary contractions of the abdominal and lumbar extensor muscles have been 

found to increase spinal stiffness.
19

 Isolated contraction of the lumbar extensor muscles at 

maximal or submaximal efforts (30-50% of the maximal volitional contraction [MVC]) 

have also been reported to increase spinal stiffness to external PA forces.
20,21

 An exercise 

that is similar to the hip extension phase of the PIT has been shown to produce muscle 

activation levels between 60-80% of MVC of the thoracic and lumbar erector spinae 

musculature (TES, LES).
22

  While that study offers some preliminary concept to the role 

of muscles during the PIT, it only details the role of the TES and LES and do not describe 

the role of the LM. There is also no description of other muscles of the upper and lower 

limbs such as the latissimus dorsi and gluteal muscles during the PIT. Both of these 
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muscles could have a role in spinal stabilization through anatomical attachments. There is 

also no information regarding spinal stiffness changes during the PIT.  

Individuals with LBP have been noted to have impaired neuromuscular control, 

such as altered muscle activation patterns and delays in muscle onset and offset timing 

when compared to healthy participants.
23-26

 Therefore, comparison of neuromuscular 

control between individuals with and without LBP may provide a better understanding of 

mechanisms during the test. Lastly, it is unknown whether spinal stiffness changes may 

be driving pain reduction during the test. The PIT relies on symptom reduction or 

elimination to predict success with TSE. Understanding the mechanism that drives 

symptom reduction during this test may translate to information that is useful in treatment 

planning for individuals with LBP. 

Given the proposed role of the LM muscle in spinal stability, it would be valuable 

to understand the role of this muscle group during the PIT with regards to symptom 

reduction and enhanced spinal stiffness. Electrical stimulation has demonstrated the 

ability to produce contractions that are within 50% of the MVC of the lumbar extensors.
27

 

This is the same range that has been identified to increase spinal stiffness.
20,21

 Therefore 

selective recruitment of the LM through electrical stimulation (LMES) during application 

of a PA force to individuals with segmental pain would allow for studying the role of this 

muscle during the PIT. 

The first purpose of this study was to explore spinal stiffness changes as well as 

identify and compare lumbo-pelvic muscle activation patterns during the PIT among 

healthy participants and those with LBP. It was hypothesized that all participants would 

demonstrate increased spinal stiffness under posterior to anterior test force application 
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when progressing from the prone testing position to the leg raising position of the PIT.  In 

those participants with LBP who achieved a positive PIT test, it was hypothesized that 

spinal stiffness changes would not be different from healthy participants. Based on the 

findings from Hebert, et al. (2010), it was hypothesized that individuals with LBP would 

have an altered pattern of muscle activation and decreased activation of the lumbar 

extensors during the leg raising portion of the PIT. This altered muscle activation pattern 

would be present even with a positive PIT finding. The second purpose of the study was 

to determine whether selective recruitment of LM would be able to reproduce the pain 

reduction and stiffness changes of the PIT in individuals with LBP who demonstrated a 

positive test. It was hypothesized that selective recruitment of the LM through LMES 

would result in pain reduction and stiffness increase in individuals with LBP and that the 

increased stiffness would not be different from that produced during the PIT test leg 

raise.   

Methods 

Participants 

 Power analysis (G-power) from a pilot study determined 4 participants were 

necessary to detect a difference of moderate effect size in stiffness within participants 

with LBP between the PIT conditions (Cohen’s d=.5, beta=.95). The study was approved 

through (blinded) University’s institutional review board. Ten individuals with recurrent 

or episodic LBP and 10 individuals without a history of LBP between the ages of 18-45 

were recruited through flyers and word of mouth. Individuals without a history of LBP 

(NLBP) were included if they had no history of LBP that required medical intervention or 

limited their activity for longer than 3 days. Individuals with LBP were included if they 
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had current LBP that required medical attention or had limited their activity and function 

for no longer than 6 months. All participants were excluded if they had permanent 

structural spinal deformity (e.g., scoliosis), spinal fracture or history of spinal fracture, 

osteoporosis, active inflammatory joint disease, signs of systemic illness or suspected 

non-mechanical LBP (spinal tumor , cancer or infection), previous spinal or hip surgery, 

frank neurological loss, pain or paresthesia below the knee, leg length discrepancy of 

greater than 2.5 cm, current pregnancy, allergies to medical tape or adhesive, body mass 

index (BMI) greater than 30 kg/m
2
, or

 
performed rehabilitative exercises in the past with 

return to full function and no recurrence.  

 Individuals with LBP completed the Oswestry Disability Index for current 

functional status 
28

 and the Fear Avoidance Beliefs questionnaire.
29

 All participants 

completed the Fear of Pain questionnaire-short form
30,31

, which has been associated with 

ability to tolerate electrical stimulation.
32

 All participants were also asked to rate pain 

using the numerical pain rating scale during PA compressions to the spine.
33

 Participant 

demographics are detailed in Table 3.1.  

Instrumentation  

 An electromagnetic tracking system (Liberty, Polhemus Inc., Colchester VT) was 

used to capture kinematic data using electromagnetic sensors placed on the spinous 

processes of L1 and S2(120 Hz collection frequency). EMG data were collected (SA 

Instrumentations, San Diego, CA gain 500; band pass filtered 20-500Hz) from the 

External Oblique (EO), LM, LES, TES, Latissimus Dorsi (LD), Gluteus Maximus (GM) 

and Hamstring (HS) muscles bilaterally using pairs of Ag-AgCl electrodes with 2cm 
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inter-electrode distance (Table 3.2).
34,35

 Skin preparation for EMG involved cleaning with 

alcohol followed by light abrasion.  

 A custom apparatus consisting of a compression load cell (Transducer 

Techniques, Temecula, CA) was used to apply a PA force over the spinous processes of 

the participant’s lumbar spine. Load cell data were streamed in real-time to a computer 

monitor providing visual feedback of the force applied by the examiner with a ±2.5% 

margin to ensure similar forces were applied to the spine during testing. An event marker 

was available to all participants to indicate the presence of pain during the application of 

the PA force. This allowed us to capture the amount of PA force applied to the spine that 

was associated with pain onset.   

LMES was delivered through 4 bifurcated leads from 1 channel attached to 

2.5cm
2
 buffered electrodes using a clinical device (EMPI Continuum, Minnesota, USA) 

at 50 Hz, 400 μs pulse duration at minimum intensity of 20 mA. Frequency was selected 

at 50Hz based on the force-frequency findings of Russ et al. (2009). A study using 

infrared spectroscopy demonstrated that LMES can obtain preferential stimulation to the 

LM equivalent to 43% of the MVC with minimal recruitment of the LES.
36

 

 

Procedure 

Surface EMG electrodes were applied and 2 trials of resting EMG (30 second 

duration) were collected in supported quiet sitting. Following resting EMG collection, 

participants performed 2 trials of the modified Biering-Sorensen test, unilateral bridge 

(both sides), trunk flexion with tester applied resistance, along with bilateral resisted 

shoulder extension, and bilaterally resisted shoulder flexion (Appendix J) to obtain a 
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maximal volitional isometric contraction (MVIC) of the trunk and hip muscle groups. 

Kinematic sensors were placed on L1 and S2. Participants were placed in prone lying. 

Testing conditions for the PIT included 1) Full prone position: participants were prone 

with arms and legs on the table, 2) Resting position of the prone instability test (RPIT):  

participants were partially prone with the upper trunk on the table and feet on the floor, 

and 3) Prone instability leg raising position (PITLR): participants raised their feet off the 

floor via hip extension (Figure 3.1).  

Stiffness testing: full prone position 

A physical therapist specializing in spinal rehabilitation with 14 years of clinical 

experience performed all testing. Spinal stiffness and pain response in the full prone 

position was performed as a baseline condition with minimal to no muscle activation. 

This position was compared to the positions of the PIT. Participants were asked to take a 

deep breath then exhale, and refrain from inhaling during testing of each segment to 

minimize breathing artifact. A posterior to anterior force was applied by the examiner to 

the spinous processes of levels L1-L5.  For participants with LBP the PA force was 

applied gradually until they reported pain production or increase in current pain. 

Participants indicated the presence of pain verbally and with an event trigger placed in 

their hand. Participants were asked to rate their pain from 0-10 on the numeric pain rating 

scale (0=no pain, 10= worst possible). The painful segment was marked and a visual 

target was set to the pain producing force (+/- 2.5%) and displayed to standardize the PA 

force that would be applied during testing across all PIT conditions.  Next, participants 

underwent 2 trials of PA force application over the painful segment using the previously 

determined amount of force, with 2 minutes rest between trials. The force applied to the 
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spine was standardized in this manner within participants to compare stiffness changes 

between conditions. Participants with LBP that had more than 1 painful segment were 

asked to identify the most painful segment for testing. Within each trial, participants were 

asked to mark pain presence with the event trigger and rate the pain via NPRS. 

NLBP participants received a standardized 22 N force at L3. L3 was chosen due 

to its midpoint location in the lumbar spine. The force was based on an average force 

needed to produce pain in pilot studies performed in the lab using a load cell and the 

clinic using a hand held dynamometer. EMG was collected on all individuals to ensure 

minimal muscle activity in the prone position during PA force application. 

Stiffness testing: Resting Prone Instability Tests Position (RPIT) 

 Once testing was completed in the full prone position, participants were placed in 

the RPIT (Figure 3.1) with the edge of the table placed at ASIS level. They were 

instructed to have their arms overhead but not holding onto the table and their feet were 

resting on the ground with their knees extended. The painful segment was reassessed to 

confirm pain in this position using the same PA force as in full prone position. Once the 

painful segment was confirmed, the same PA force was reapplied while the participant 

refrained from breathing. Participants were asked to press the trigger when they 

experienced pain. Participants rated their pain at the end of the trial. Two trials were 

performed with 2 minutes rest between trials. EMG data were collected to ensure 

minimal muscle during testing in this position. 
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Stiffness testing: Prone Instability Test Leg Raise (PITLR) 

 Following 2 trials of stiffness testing in RPIT, a 24 inch high gate was placed 

above the participant’s calf (Figure 3.1). They were asked to hold on to the table with the 

shoulder abducted less than 120 degrees and elbows flexed as necessary. Participants 

were instructed to raise their legs to the height of the gate keeping their knees extended. 

The same PA force and segment were tested. Participants were again asked to rate their 

pain (if any) and press the trigger if and when they experienced pain during the test. Two 

trials were performed. EMG was collected during PITLR. Participants also underwent 1 

trial of the maximum force tolerated by the participant or that the tester could produce 

(PITLRmax). This step was included as there is no clear instruction on how much force 

should be applied to the spine during clinical testing of the PIT.  

Stiffness testing: full prone position with LMES 

 Following PITLR, participants were placed in the full prone position and 

stimulating electrodes were placed 1.5 cm lateral to the spinous process of L5-L2 (Figure 

3.2).
36

 LMES was administered to 20 mA.  If a tetanic contraction was not observed, the 

intensity was increased in 1 mA increments until a tetanic contraction was achieved. 

Once the stimulating dosage was set, a manual trigger was used to deliver 10 seconds of 

electrical stimulation. PA force was once again applied to the spinal segment 3 seconds 

into the LMES. Two trials were performed using the same spinal segment and force 

established in the full prone position.  
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Data Reduction and Statistical Analysis 

PIT clinical results 

 Pain between the PIT conditions in participants with LBP were compared using 

paired t tests (alpha = 0.05). Differences in the PA force used during the test between 

healthy participants and individuals with LBP were assessed via independent t-tests 

(alpha =.05). No adjustments were made to alpha based on low, non-statistically 

significant correlations between the measures. 

Spine Stiffness 

An elastic beam model to measure changes in bending stiffness of the lumbar 

spine during posterior to anterior mobilization was used to measure spinal stiffness.
37

 A 

formula has been derived to model spinal stiffness to PA force on the lumbar spine:  

𝐸𝐼 =

𝑃𝑏
2𝐿

[(𝑒 + 𝑎)𝑑 + 𝑎𝑏]

𝜃𝐿1𝑆
 

where stiffness (EI) is defined by pressure applied to the spine (P), the distance between 

the rib cage cantilever and the sacrum cantilever (L), the horizontal distance between the 

pressure applied to the spine and the sacrum (b), the horizontal distance from the rib cage 

cantilever to the pressure applied (a), and the maximum angular displacement of the spine 

(θL1S).
38

 Rotation of the L1 sensor about the S2 sensor was measured in degrees, as force 

was applied to the identified segment in patients with LBP and at L3 in healthy 

participants. Bending compliance of the spine during force application was expressed as a 

compliance slope of the force (y axis) against the angle change (x-axis) and expressed in 

(N·m/deg). Plots of this data while participants received PA force in the full prone 

position revealed a that a linear equation represented the line of best fit for the data with a 
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median r
2
=.96, (min=.75, max=.99). Stiffness of the spine was expressed as the inverse of 

compliance (1/compliance slope) expressed in (N·m/deg
-1

). A within day reliability study 

of 5 participants was done to assess intra-rater reliability of obtaining spinal stiffness 

measures in the full prone position (ICC (2,1), =.90; standard error of the measure 

(SEM)=2.1 N·m/deg
-1

), RPIT (ICC (2,1),=.79; SEM=4.7 N·m/deg
-1

), and during PITLR 

(ICC (2,1),=.95; SEM=1 N·m/deg
-1

).  

 

Comparison of stiffness within and between participants 

All comparisons were performed using SPSS 21(IBM, Armonk NY). Stiffness 

data were non-normally distributed (Kolmogorov-Smirnov test, p<.05). Therefore the 

data were transformed using an inverse transformation. Repeated measures ANOVA was 

conducted to assess differences in stiffness between the positions/ test conditions of 

prone, RPIT, PITLR, PITLRmax, and LMES (alpha=.05). This was performed separately 

for NLBP participants and participants with LBP. Planned comparisons were made 

between prone and RPIT, RPIT and PITLR, PITLR and PITLRmax, prone and LMES, 

RPIT and LMES, and PITLR and LMES. Alpha was set to .05 with a significant 

Omnibus on the repeated ANOVA.   

Percent change in spinal stiffness were non-normally distributed (Kolmogorov-

Smirnoff test, p<.05). Therefore data were transformed using an inverse transformation. 

Differences between groups were compared using the percent change in stiffness between 

the PIT testing positions.  Percent change was calculated as [(final value – initial 

value/initial value x 100)] and compared using independent t-test for independent 

samples with Bonferroni correction for multiple comparisons (alpha=.0125) 
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Muscle Activation during PITLR 

EMG data collected during testing had heart rate artifact removed via fast ICA
39

 

and resting EMG subtracted. Data were then normalized and represented as a percentage 

of the MVIC. EMG data were non-normally distributed (Kolmogorov-Smirnov); 

therefore the data were transformed using an inverse transformation (1/EMG). EMG data 

were averaged by side because there were no significant side to side differences (p<.05). 

Principle components analysis (PCA) was first used to extract muscle synergies of NLBP 

participants and participants with LBP with suppression of correlations below .5 and 

Bartlett’s test of sphericity (alpha=.05).  Muscles that loaded onto synergy components 

were entered into a mixed-model ANOVA (within participants: muscle; between 

participants: group) and individual muscle activation amplitude levels were compared 

during the PITLR. Post-hoc analysis using Fisher’s Least Significant Difference was 

performed on significant interactions and effects.  

 

Results 

PIT clinical results 

Clinical results of the PIT test are presented for descriptive purposes. No healthy 

participant demonstrated pain during any of the PIT conditions. Nine of 10 LBP 

participants had pain provocation in the full prone position. All 9 patients with LBP had a 

positive PIT. Eight of the 9 had pain elimination with PA force during LMES. Force used 

and pain produced between the tests conditions are detailed in Table 3.3. There were no 

significant differences in force used in the PIT conditions between healthy and low back 
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pain participants (p>.05). Pain during PA force was significantly less in the PITLR, 

PITLRmax, and LMES conditions compared to full prone and RPIT conditions in 

participants with LBP (p<.05). There was not a significant difference in pain between the 

full prone and RPIT conditions (p>.05). 

Stiffness between conditions 

EMG data from the full prone position revealed muscle activation ranging from 

0% ± 1%  (TES) to 9% ± 2% (EO) of the MVIC across all participants. EMG activity 

ranged from 4%± 12% (EO) to 13% ±19% (G.Max) of the MVIC for the resting PIT or 

start position of the test across all subjects. There was no significant difference (p>.05) in 

muscle activity between groups in full prone nor RPIT. 

NLBP participants 

 A significant difference in spinal stiffness was found between the full prone and 

PIT conditions within healthy participants F(4,36)=4.731, p=.001, η
2
=.345.  Planned 

comparisons revealed stiffness to be significantly greater in PITLR (p=.042, d=2.11) and 

LMES (p=.007, d=1.01) compared to the full prone position. Stiffness was also 

significantly greater in PITLR (p=.039, d=.385) and LMES (p=.029, d=.46) compared to 

RPIT (starting position of the PIT). There were no significant differences in stiffness 

between full prone and RPIT (starting position of the test) (p=.33, d=.46). There was no 

significant difference in stiffness in LMES (p=.912, 2=.239) nor PITLRmax (p=.91, 

d=.21) compared to PITLR. 
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Participants with LBP 

A significant difference in spinal stiffness was found between the full prone and 

PIT conditions within the LBP group F(4,36)=7.387, p=.017, η
2
=.831.  Planned 

comparisons revealed stiffness to be significantly greater in RPIT (p<.001, d= 1.75), 

PITLR (p<.001, d=1.28), and LMES (p=.0135, d=.956) compared to the full prone 

position. Stiffness was significantly greater in PITLR (p=.021, d=.219) and LMES 

(p=.025, d=.488) compared RPIT. There was no significant difference in stiffness in the 

LMES (p=.588, d=.326  ) nor PITLRmax (p=.91, d=.038 ) compared to PITLR.  

 

Stiffness change between groups 

 No significant difference in the percent change of stiffness in RPIT (p=.432, 

d=.072), PITLR (p=.91, d=.03) nor LMES (p=.97, d=.2) were found with respect to the 

full prone position between NLBP participants and those with LBP. There was also no 

significant difference between groups for the percent of stiffness change from RPIT to 

PITLR (p=.45, r=.38).  

 

Muscle Activation during PITLR 

NLBP participants 

PCA yielded 3 components in the synergy extracted from NLBP participants, 

accounting for 93.2% of the variance during PITLR (KMO=.48, Bartlett’s test=.006). 

The first synergy accounted for 41.8% of the variance and included the LD, LES, and 

LM. The second synergy accounted for 31.7% of the variance (73.5% cumulative) and 
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included the TES and G.Max. The third synergy accounted for 19.7% of the variance 

(93.2% cumulative) and consisted of the HS.  

 

Participants with LBP 

The synergy extracted for participants with LBP yielded 2 components accounting 

for 77.3% of the variance during the PITLR (KMO=.534, Bartlett’s test=.048). The first 

synergy accounted for 56.8% of the variance and included TES, LD, and HS. The second 

synergy accounted for 20.5% of the variance (cumulative 77.3%) and included LES, LM, 

and G.Max (Table 3.4). 

 

Group Comparison of Individual Muscle Activations 

The external oblique muscle group did not load on any synergy for either group. 

Therefore, it was left out of the individual muscle activation comparisons. The result of a 

mixed model ANOVA comparing muscle activity between groups during the PITLR 

demonstrated significant differences across muscles, F(5,13)=4.475, p=.014, η
2
=.314. There 

was also a significant interaction between the healthy and LBP participants across 

muscles F(1,17)=5.628, p=.03, η
2
=.249. Table 3.5 contains EMG values of muscle 

activation as a percentage of the MVIC. Post hoc analysis revealed no significant 

activation differences between the muscles in healthy participants (p>.05). In patients 

with LBP, both G.Max and HS had significantly less activation compared to TES, LES, 

and LM (p<.05). There were no significant differences between G.Max and HS. There 

were also no significant differences between TES, LES, and LM. There was a significant 

difference between LD and G.Max (p=.034). Between group comparison revealed 
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significantly greater activation of the LES (p=.043), LM (p=.016), and G.Max (p=.016) 

in healthy participants versus patients with LBP.   

 

Discussion 

 Statistically significant increases in spinal stiffness were found between the full 

prone position and the PITLR testing position within participants with LBP that were 

similar to NLBP participants. This validates the clinical assumption of the test that 

associates the leg raise with stiffening of the spine. The EMG findings demonstrate 

differences in muscle activation synergies and the level of individual muscle activations 

in participants with LBP versus those without LBP. However, the participants with LBP 

were still able to reduce their symptoms. The change in muscle activation may provide an 

adequate compensation to reduce pain in patients with positive PIT test results. 

Interestingly, preferential recruitment of LM through LMES was also able to reproduce 

spinal stiffness increases and pain reduction when individuals with LBP were in the full 

prone position. This supports the important role of the LM in modulating lumbar spine 

stiffness. It also suggests spinal stiffening may play a role in the reduction of pain against 

PA force. This may suggest a role for LMES to enhance current rehabilitation to target 

this muscle. 

Spinal stiffness changes during the PIT 

Figure 3.3 displays stiffness changes within groups for both LBP and healthy 

participants. Both groups demonstrate an increase in stiffness from the full prone position 

to the PITLR with LBP participants demonstrating significant reduction in pain during 

the PITLR. The increase in stiffness from full prone to PITLR exceeded the SEM with 
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large effect sizes (NLBP d= 2.11; LBP d=1.78). Both groups also demonstrated a 

significant change in spinal stiffness from RPIT to PITLR that exceeded the SEM, while 

demonstrating moderate effect sizes (NLBP d=.385, LBP d=.219). Increase in spinal 

stiffness with PITLR that exceeded measurement error and demonstrated a moderate to 

large effect sizes indicate meaningful findings that were linked to clinically relevant 

results of the PIT for those with current LBP. This has important clinical implications, as 

it suggests muscle activity associated with the PITLR does contribute to an increase in 

spinal stiffness during the test, which is performed between the RPIT and PITLR 

conditions. These changes in spinal stiffness support the assumption that muscle activity 

during the PITLR is associated with an increase in spinal stiffness. 

Participants with LBP had pain provocation in in the RPIT that was similar to the 

full prone position. However, their stiffness increased significantly from full prone to the 

RPIT position. In contrast, healthy participants did not have a significant change in 

stiffness from full prone to the RPIT position. There was some electrical activity across 

both groups in the RPIT position that may explain for some of the increase in stiffness 

from full prone to RPIT position. However, the muscle activity in the RPIT was similar 

in both groups. Increase in stiffness in the RPIT may be attributed to passive tension of 

the lumbar extensor muscles. Reduction in spinal stability could require greater use of the 

lumbar muscles, resulting in muscle hypertrophy in individuals with LBP that may result 

in resting tissue stiffness across the extensors.
40

 The extensors may be on more tension 

within the RPIT position, resulting in an increase in RPIT stiffness. Differences in muscle 

length across the hips may also be a factor that was not measured in this study. Lastly, 
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there is evidence of an increase in muscle stiffness in patients with LBP
41,42

, but it is 

unknown if this would alter stiffness in the RPIT position.  

  

LMES during application of PA force was performed in the full prone position 

due to better experimental control and a smaller SEM in that position, which would allow 

for better detection of change in spinal stiffness. Both participants with and without LBP 

had significant increase in spinal stiffness with LMES, with a large effect size (NLBP 

d=1.01, LBP d=.956) that exceeded SEM, indicating clinically meaningful differences. 

Participants with LBP had a significant reduction in pain against PA force with LMES, 

along with stiffness changes with respect to the prone position that were similar to 

participants without LBP (Figure 3.4). The results suggest that preferential muscle 

activation of the LM can replicate positive PIT results along with increases in spinal 

stiffness in participants with LBP. 

Muscle Synergies and Level of Activation during the PIT 

 PCA extracted muscle synergies with different characteristics for individuals with 

and without LBP. Participants without LBP had 3 components or muscle synergies that 

explained a large percentage of the variance. Items within a component are considered to 

be acting in unison to contribute to some aspect of the synergy.
43

 The first component in 

healthy participants explained the majority of the variance and included the LD, LES, and 

LM. The LD has an attachment to the spine via the thoracolumbar fascia while the LM 

and LES have bone/tendon interface with the lumbar spine and are considered intrinsic 

stabilizers
44

. This may be a lumbar spine stabilizing synergy. LES and LM are likely 

stabilizing the lumbar spine while the LD may be supporting the trunk on the table, while 
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providing some contribution to lumbar spine stability through the fascia. The second 

component included TES and G.Max and may be associated with stabilizing the thoracic 

spine and pelvis respectively during leg raising. While the G.Max is a hip extensor and 

may be contributing to raising the feet off the ground, it may have a larger role in it’s 

interaction with the thoracic spine to stabilize the pelvis due to its loading on the 2
nd

 

component. It is also possible that the posterior pelvic tilt moment created by the gluteus 

maximus when raising the feet off the ground
45

 require the TES to counterbalance that 

action. The third component of the synergy may play a larger role in lifting the feet off 

the ground and is represented by the hamstring.  

In participants with LBP, only two components were extracted by the PCA. While 

the same muscle groups appeared in the muscle synergies of the LBP patients as the 

healthy controls, they loaded in different combinations on different components, and 

accounted for different proportions of the total variance. The first muscle synergy 

accounted for a majority of the variance during PITLR consisted of TES, LD, and HS. 

Given the action of these muscles and their attachments, they may be working to 

accomplish more than 1 role within the PITLR, thoracic spine stabilization and leg 

raising. TES and LD may be functioning to maintain the upper trunk on the table during 

leg raising. The TES and LD have an extension moment on the spine and may also be 

working to counterbalance the flexion moment caused by posterior tilting of the pelvis 

created by the hamstring during leg raising. The latter action that is proposed may also be 

contributing to gross trunk stability during the PITLR. One possible explanation to this 

response in participants with LBP could be due to the lower activation of the LM and 

LES, which loaded onto the second muscle synergy with the G.Max and accounted for 
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less variance in the PITLR. Within participants with LBP, this synergy may be providing 

lumbopelvic stability during the leg raising. However, because muscle activation is 

significantly lower than participants without LBP, these muscles may not be as effective 

in contributing to stability of the lumbopelvic region. Despite the different strategy, the 

percent change in stiffness from the full prone to PITLR positions between groups was 

similar (Figure 3.4). There was no statistically significant difference in the percent 

stiffness change, and the small effect size suggests that any differences between the 

groups were not clinically meaningful.    

 

Limitations 

Our findings should be interpreted with consideration of the difference in sex 

distribution between the healthy and LBP participants. There are likely anthropometric 

differences that may have an impact on findings.  A large factor may be in the gynecoid 

pelvis of women, which may impact orientation and length tension relationship of all 

trunk muscles that are attachments on the pelvis. This may impact how muscles 

contribute to the PITLR . However, hip extension is in the sagittal plane and may not be 

affected as greatly by different bony dimensions in the frontal plane of a gynecoid pelvis. 

LMES was assumed to preferentially activate the LM based on prior studies 

within our lab
36 

(Appendix K). However, based on anthropometric and morphologic 

differences across patients, this is difficult to generalize. However, even if LES was 

recruited partially within the participants, our PCA suggests that both LM and LES may 

function as lumbar stabilizers during this test. Therefore, the findings would still be 

applicable in demonstrating that the lumbar extensors may have a considerable effect in 
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the mechanism of the PIT. Pain elimination during the use of LMES (secondary to 

gaiting from the ES) may have contributed to the effects.
46

 However, pilot studies 

conducted in our lab using pain pressure thresholds along the spinous process of the 

lumbar spine in healthy participants during LMES did not yield any significant reduction 

in perceived pain as a result of neuromuscular electrical stimulation (Appendix K).  

Many aspects of the PIT were standardized to study the mechanism of the test, 

without having a clear indication of all testing variance that may exist in the clinical 

settings. This impacts generalizability and external validity of these findings.  To study 

muscle activation within the test, leg raising was set to 24 inches for all participants. To 

study stiffness changes across the different PIT conditions from full prone to PITLR, the 

amount of force that was delivered was kept constant for each participant. However, even 

when maximal forces were applied, patients still had pain reduction during the test. Given 

the uncertainty of testing procedure across clinicians, further clinical standardization of 

this test may improve overall reliability and validity of this test. 

In a commentary on the reliability of the PIT, Hicks (2011) mentioned the effect 

of introducing variability on the test findings. While standardizations occurred for the 

sake of experimental control, the investigators made the best attempt to perform the test 

as described in order to maximize external validity. Patient positioning, leg positioning 

and knee positioning, and arm positioning were all matched to the test as best as possible. 

Where the force applied to the spine during testing is not expressly stated, the 

investigators applied similar forces to limit confounding variability to the study, but did 

perform 1 trial with a maximal examiner possible force. Based on these measures, we feel 
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that testing was performed as close as possible to the clinic situation while still providing 

adequate controls. 

 We are also unable to state whether muscle activation has a direct role in spinal 

stiffening, but may be able to provide some supporting evidence to this possibility. There 

were increases in spine stiffness from the RPIT to PITLR conditions across both groups. 

More importantly, we were able to obtain an increase in stiffness in patients with LBP 

and healthy participants from prone to LMES. This was statistically significant with large 

effect sizes in both groups. This may support the construct that muscle activity can result 

in spinal stiffness along with pain reduction.  

 PA forces were applied manually by a clinician. Other studies of similar methods 

used an instrumented device to standardize the rate of PA force application. In order to 

maintain generalizability of findings, clinician applied forces were used. While this may 

be a limitation, intra-rater reliability for stiffness measures were high for all testing 

conditions. There was a linear relationship between the force applied and spinal bending 

for all participants. Lastly, fidelity tests of the investigator applying the load (WS) was 

performed on randomly drawn participants in this study. Rate of force application was 

calculated for each participant across conditions. There was less than a 10% coefficient of 

variation in the rate of force application during the study (Appendix D). These findings 

combined would suggest a fairly consistent rate of force application. 

Conclusion 

 Spinal stiffness increases with pain reduction during the PITLR were found in 

patients with LBP. Similar pain reduction and spine stiffening was noted with LMES to 

patients with LBP. That, combined with other studies
19,21

 may support the ability to 
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obtain spinal stiffening through muscular activation. Therefore, there may be sufficient 

evidence to state that muscle activation during the test increases spinal stiffness resulting 

in pain reduction.  There also appears to be differences in muscle activation strategies 

between patients and healthy participants during the leg raising that may describe a 

preference for use of a global stabilization system rather than intrinsic muscles in 

individuals with LBP presenting clinically similar to our participants. 

 

Clinical Implications 

Reproduction of positive test results with LMES may have important implications 

in patients who are unable to reduce or eliminate pain from PA force during PITLR. 

These patients would be predicted to fail with TSE. This may be due to reduced LM 

activity or inability to develop a successful compensatory mechanism. However, 

performing the PIT in these patients with a negative PIT with LMES may aid in 

determining if the patients has adequate LM muscle cross sectional area and/or quality to 

have a positive result. Based on the synergies however, strengthening alone may not be 

adequate for improvement in function. Individuals with LBP may be relying more on a 

global stabilization system. If that is the case, focus on facilitating intrinsic spinal 

stabilizers (O'Sullivan, 2000) such as the LM may be necessary. 
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Tables and Figures 

 
Table 3.1 Participant demographics.  

 

Sex Age 
BMI 

(kg/m2) 

Trunk 

length 

(cm) 

Skin 

Thickness 

(mm) 

Fear of Pain  FABQP 

Oswestry 

Disability 

Index 

NLBP 

2 

Female 
28.5 (5.9) 22.6 (2.3) 

55.1 

(4.2) 
6 (2) 23 (6.7) -- --  

LBP 

5 

Female 
28.8 (3.1) 23.5 (1.4) 

50.8 

(3.8) 
6 (2) 21.5 (5.1) 2.9 (3.9) 17.4 (17.1) 

 

Mean (SD) Age, body mass index (BMI), trunk length, skin thickness, Fear of pain 

(FOP), Fear Avoidance Beliefs Questionnaire Physical subjection (FABQP) and Oswestry 

Disability Index. 

 

 

 
 
Figure 3.1 Prone, Resting position of the prone instability test (RPIT) and leg raising (PITLR) 

 

 

 
Table 3.2 Surface EMG electrode placement. 

Muscle Location Muscle Location 

Gluteus Maximus 

(G.Max) 

Midpoint between the 

lateral edge of the 

sacrum and greater 

trochanter 

 

Thoracic Erector 

Spinae (TES) 

5cm lateral to T9 

spinous process 

Hamstring (HS) 15cm from the ischial 

tuberosity 

 

Lumbar Erector 

Spinae (LES) 

3cm lateral to L2 

spinous process 

 

Lumbar Multifidus 

(LM) 

2cm lateral to L5 

spinous process 
Latissimus Dorsi (LD) Midline between 

spinous process of T9 

and axillary line 

 

External Oblique 15 cm lateral to 

umbilicus 
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Table 3.3Mean (SD) load and pain during the prone instability test (PIT) conditions and with Lumbar 

multifidus electrical stimulation (LMES).  

 

 
Healthy LBP 

Load (N) 22 (0) 24.4 (8.8) 

PITLRmax Load 41.1 (13) 42.1 (12.9) 

Pain Prone 0 (0)  4.6 (2) 

Pain RPIT 0 (0)  4.1 (1.7) 

Pain PITLR --  0.33 (0.7) 

Pain PITLRmax --  0.6 (1.4) 

Pain LMES 0 (0)  0.5 (1.3) 

 

Note: The same load was used in prone, resting position of the prone instability test 

(RPIT), and prone instability test leg raising position (PITLR).There was no difference in 

loads applied during the maximal loading segment of the PITLR (PITLRmax) between 

healthy subjects and those with low back pain 

 

 

 

 

 
 
Figure 3.2 Electrode placement for electrical stimulation to the lumbar multifidus  
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Figure 3.3 Mean spinal stiffness during testing conditions. Participants without low back pain (NLBP) had a significant increase in stiffness in the prone 

instability test leg raising position (PITLR) and lumbar multifidus electrical stimulation (LMES) positions compared to prone (*) and resting position of the 

prone instability test (RPIT) (!). Participants with low back pain (LBP) demonstrated significantly greater stiffness in RPIT, PITLR, and LMES compared to 

prone (**). Stiffness was also significantly greater in PITLR and LMES compared to RPIT (!!). 
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Figure 3.4. Mean percent change for group differences between testing conditions. There was no statistically significant difference in 

the percentage of stiffness change in testing conditions between participants without low back pain (NLBP) and participants with 

LBP. 
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Table 3.4. Muscle synergy extraction results from principle components analysis with matrix correlation values for muscles and variance 

accounted for (VAF) per synergy. 

NLBP LBP 

Synergy 1 (41% VAF) Synergy 2 (31.7%VAF) Synergy 3 (19.7% VAF) Synergy 1 (56.8% VAF) Synergy 2 (20.5% VAF) 

Muscle 
Matrix 

Correlation Muscle 
Matrix 

Correlation Muscle 
Matrix 

Correlation Muscle 
Matrix 

Correlation Muscle 
Matrix 

Correlation 

LD .98 TES .92 HS .98 TES .91 LES .77 

LES .93 G.Max .93     LD .73 LM .94 

LM .73         HS .89 G.Max .95 

 

Note: Variance accounted for (VAF) 
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Table 3.5. Mean (SD) of normalized muscle activation during the prone instability test leg raising phase (percentage of the sMVIC).  

 Muscles Healthy LBP Percent Difference 

External Oblique 22% (17%) 12%(14%) 45% 

Thoracic Erector Spinae 60% (28%) 62% (69%) !     # 3% 

Latissimus Dorsi 84% (62%) 38% (32%)              * 55% 

Lumbar Erector Spinae 63% (24%) 41% (12%)  !     # 35% 

Lumbar Multifidus 65% (26%) 44% (17%)  !     # 32% 

Gluteus Maximus 56% (52%) 16% (17%)  !           * 71% 

Hamstring 43% (30%) 29% (19%)         #  33% 

 

Note: The third column represents percent difference in activation of patients with LBP compared to healthy subjects. External oblique is 

presented for descriptive information but was not included in the comparison of muscle activation due to results of the principle components 

analysis. There was significantly greater activation of the lumbar erector spinae, lumbar multifidus, and gluteus maximus in healthy subjects 

versus patients with LBP. There were no differences within muscles for the healthy subjects. Patients with LBP demonstrated no significant 

differences between thoracic erector spinae, lumbar erector spinae, or lumbar multifidus (p>.05).  There were also no differences between 

gluteus maximus or hamstrings (p>.05). However, there were significant differences between the gluteus maximus and the thoracic erector 

spinae, lumbar erectors spinae, and lumbar multifidus (!) (p<.05). There were also significant differences between the hamstrings and the 

thoracic erector spinae, lumbar erector spinae, and lumbar multifidus (#) (p<.05). Lastly, there was a significant difference between the gluteus 

maximus and latissimus dorsi (*) (p<.05). 
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Chapter 4: Effects of neuromuscular electrical stimulation induced fatigue of the 

lumbar multifidus on forward bending kinematics 

 

 

Abstract 

Background/Purpose: Observation of aberrant movement during forward bending is 

used to predict individuals with low back pain (LBP) who would benefit from trunk 

stabilization exercises. Dysfunction of the lumbar multifidus muscle may play a role in 

the development of aberrant movement. The purpose of this study was to determine 

whether fatigue from neuromuscular electrical stimulation to the LM (LMES) would 

reproduce deviations from typical forward bending patterns in individuals without LBP. 

Subjects: Nine individuals without a history of LBP and no observed aberrant movement 

on visual screening participated in this study. 

Methods: Kinematics data were collected during forward bend pre and post electrical 

stimulation to fatigue the LM. Forward bending kinematic data were rated, pre and post 

LM fatigue for presence or absence of aberrant movement using predetermined criteria. 

Chi-Square analysis was performed to compare forward bend classification changes 

following LMES. 

Results: There was a significant change in individual’s forward bend classifications 

following LMES (p<.05). Six of 9 participants had a change in forward bending 

classification following electrical stimulation. Three individuals with kinematic patterns 

rated as typical movement pre LMES, had production of aberrant movement following 

LMES. However, 3 had elimination of aberrant movement that was noted in their pre 

fatigue kinematic patterns. 
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Conclusions: There were changes in forward bending classification of individuals 

following LMES. However, not all individuals had changes consistent with a worsening 

of their movement pattern as expected. Failure to demonstrate deviation from typical 

forward bending may have resulted from an inability to fatigue LM in some individuals, 

potential recovery from fatigue prior to post-test forward bending trials, or presence of 

robust musculoskeletal system in healthy individuals that compensated for fatigue of one 

muscle group. Conversely, LM impairments may not be the sole contributor to aberrant 

movements.  
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Introduction 

Observational rating of forward bending is an important clinical measure in many 

examination pathways for low back pain (LBP). Pain behavior and movement quality 

during forward bending are often used for treatment classification for individuals with 

LBP
1-3

. The typical trunk forward bending pattern has been characterized by lumbar 

dominant movement in the initial phase followed by equal contribution of lumbar and hip 

flexion within mid phase
4
. As the trunk continues to bend, anterior displacement of the 

trunk’s center of mass results in posterior movement of the pelvis to maintain the center 

of mass within the base of support which requires more hip flexion than lumbar flexion
5
. 

Alterations in this movement pattern have been able to reliably differentiate individuals 

with current LBP or a history of LBP from those without a history of LBP
6
 highlighting 

the importance of forward bend movement assessment in diagnosis. 

Individuals with LBP who demonstrate aberrant movement during forward 

bending are considered to have trunk movement coordination impairments (MCI) .
2,3

 

These individuals have demonstrated improvement in pain and function when prescribed 

trunk stabilization exercises (TSE) .
7-10

 Kinematic analysis of individuals who were 

identified to benefit from TSE demonstrated disruptions between lumbar motion 

segments in the mid-range of movement, where muscle control is responsible for spinal 

stability
11

. Further kinematic study of this LBP subgroup identified that alteration in 

segment coordination (lumbopelvic rhythm, aLPR) and movement smoothness with 

sudden deceleration and acceleration in lumbar segment angular velocity (judder) during 
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forward bending were able to identify individuals who would benefit from trunk 

stabilization exercises.
12

  

It has been theorized that aberrant forward bending may result from reductions in 

lumbar multifidus (LM) activation resulting in higher lumbar erector spinae (LES) 

recruitment.
13

 The muscle fibers of LM have a high concentration of titin, which is 

thought to be responsible for the higher force generation during eccentric contractions
14-16

 

such as forward bending. This attribute suggests that the LM has large contributions to 

movement control of the lumbar spine during forward bending. Eccentrically controlled 

movements are also thought to require greater motor planning compared to concentric 

controlled movement because of greater coordination between the movement target and 

movement trajectory.
17

 Eccentric control of movement requires a large amount of sensory 

feedback to coordinate agonist-antagonist force generation in order to move towards a 

target at controlled speeds
18

, which may be provided by the LM.
19-21

 

 LM activation impairments have been associated with individuals with LBP who 

have been identified to benefit from TSE
22

. This impairment may cause a reduction in 

force production and sensory feedback, contributing to aberrant forward bending 

movement. An experimental condition that temporarily reduces the role of this muscle 

may be helpful in studying its impact on a forward bend movement. The ability to 

produce aberrant movements in individuals without LBP and typical movement through 

preferential fatigue of the LM may help determine the muscle’s role in trunk movement 

control. Generalized fatigue of the lumbar extensors has been identified to reduce 

postural control in healthy individuals 
23

. However, this study used a static postural 

control task rather than a movement task. Electrical stimulation (ES) presents 
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investigators with the ability to preferentially fatigue the LM
24

, and may be an effective 

method of temporarily inhibiting LM function during movement. The purpose of this 

study was to identify the effects of ES induced fatigue to the LM on forward bending 

movement in individuals without LBP. It was hypothesized that LM fatigue would result 

in deviation from a typical forward bend movement pattern; specifically a reduction in 

movement smoothness (judder) and segment coordination (altered lumbopelvic rhythm).  

Methods 

Participants 

 

Individuals without LBP who were between the ages of 18-45 and demonstrated 

typical forward bending movement upon visual screening were recruited for the study. 

Participants were excluded if they had LBP limiting function that lasted for greater than 3 

days or required medical attention, were pregnant, had a history of abdominal or lower 

limb surgery, and/or body mass index (BMI) greater than 30. This study was approved 

through the university’s institutional review board. Data was collected on ten individuals. 

However, loss of kinematic data was identified in post processing analysis. Therefore, 

data of nine individuals (2 female) with a mean age of 29 ± 5.9 years, mean body mass 

index of 22.6 kg/m
2
 ± 2.3, and mean skin thickness of 6mm ± 2 were analyzed for this 

study.  

Instrumentation 

An electromagnetic tracking system (Liberty, Polhemus Inc., Colchester, VT) 

captured position and orientation of trunk segments at 120 Hz during forward bending. 

Kinematic sensors mounted to Orthoplast were attached to the following body landmarks: 

1) right femur (15 cm. superior to the right femoral lateral epicondyle), 2) pelvis (over the 

spinous process of S2), 3) lumbar spine (over the spinous process of L1), and 4) thoracic 
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spine (over the spinous process of T3).  Lumbar multifidus neuromuscular electrical 

stimulation (LMES) was delivered through 4 bifurcated leads from 1 channel attached to 

2.5 cm
2
 buffered electrodes placed 1.5 cm lateral to the spinous process of L5-L2. A 

clinical device (EMPI Continuum, Minnesota, USA) was used to deliver stimulation at 50 

Hz, 400 μs phase duration at an intensity of 20 mA.
25

  

Procedure 

Each participant performed 6 forward bend movements using their typical, self-

selected pattern. Following this, each individual was placed on a plinth in a prone 

position and 4 pre-gelled carbon foam electrical stimulating electrodes were placed over 

the LM muscles. LMES was administered to the muscles at 400 us phase duration, 75 Hz, 

15 seconds on and off time, with minimum 20 mA intensity for 60 cycles. Prior work in 

the lab demonstrated EMG mean median frequency reduction of 32% ±12% in the LM 

and a mean median frequency reduction of 8% ± 4% in the lumbar erector spinae 

following 60 stimulation cycles (Appendix K). Following LMES, each individual 

repeated 6 forward bend movements.  

Kinematic Data Reduction 

Kinematic data were calibrated to a global reference frame and converted to 

segment angular rotations using Euler’s angle in Cardan sequence (x, y, and z). Segment 

angular rotations included total trunk flexion (thoracic spine motion with respect to the 

pelvis), lumbar flexion (lumbar spine motion with respect to the hip/pelvis) and pelvic 

anterior rotation (pelvic motion with respect to the femur). An algorithm was used to 

automatically determine 5% and 95% of the total movement for each repetition. This step 

was performed to reduce algorithm error associated with small fluctuations in motion at 
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the beginning and end ranges of motion. Kinematic data were filtered with a dual pass 

Butterworth filter (2nd order low pass at 5 Hz) and time-normalized to 51 data points 

(100 % of total movement) across the forward bend movement. Coupling angles between 

the pelvis and lumbar spine segments were derived and plotted over the forward bend 

movement. Lumbar segment phase plane plots  (velocity vs. angular displacement)
12,26

 

were also created. Custom algorithms and plotting programs created in LabView (v8.6, 

National Instruments, Austin, Texas) were used to classify individual forward bend 

movement patterns. 

Peak thoracic, lumbar, and pelvic segment angular velocities were calculated 

along with peak lumbar, thoracic, and pelvic segment excursion angles pre and post 

LMES for descriptive purposes.   

Rating of forward bending movement 

Kinematic algorithms for identifying  aLPR and judder were developed and 

validated in our lab.
12

 To determine aLPR, lumbar flexion angle was plotted against 

pelvic anterior tilt angles (Figure 1a) to derive coupling angles between the lumbar and 

pelvic segments (Figure 1b). Altered lumbopelvic rhythm was defined by an early shift to 

pelvic dominated movement using the time point (T) during forwarding bending when 

the coupling angle between the lumbar and pelvic segments exceeded 58 degrees. T 

values occurring less than 38% of the way through the forward bending movement were 

considered to be an indicator of altered lumbopelvic rhythm (aLPR). Judder was 

identified through the presence of 6 or more deceleration events or local minima (Lmin) 

of lumbar flexion angular velocity on a lumbar phase-plane graph (Figure 4.1c).  Forward 

bends were rated to be aberrant if a participant’s kinematic variable exceeded standard 
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error of measure (SEM) for  the respective variable  (SEM for T=9.8%, SEM for 

Lmin=1) .
12

  This resulted in a kinematic cut point of 7 Lmin for judder and T=28% for 

aLPR. This decision was made to address forward bend movements that were close to 

cutoff values for aberrant movement. Each forward bend trial of each individual was 

rated using this algorithm. 

Classification of forward bend movement pattern 

Kinematic ratings for forward bend movements were used to classify individuals 

into a forward bend movement category (typical or aberrant) pre LMES and again 

following LMES. Forward bend ratings were used to classify individuals into 1 of 4 

categories: 1) typical movement, 2) aLPR only, 3) judder only, or 4) both aLPR and 

Judder. Individuals were classified as having an aLPR or judder pattern if they met the 

kinematic criteria for the respective aberrant movement for 3 or more forward bend trials. 

If they met the criteria for an aberrant movement for 2 or less forward bend movements, 

they were not considered to have that aberrant movement. Individuals were classified as 

having typical movement if they did not meet the criteria for either aLPR or judder. This 

decision was based on prior work in our lab that determined stable and consistent EMG 

patterns in participants when they were categorized to have aberrant movement based on 

this rule. Forward bend movement patterns post LMES were rated using the same 

algorithm. Each individual’s forward bend pre LMES Lmin and T were averaged and 

compared to post LMES mean values. All individuals who had a change in forward 

bending classification following LMES had a mean difference in kinematic variables pre 

and post LMES that exceeded MDC90 for the respective aberrant motion (Lmin=1.6, 

T=11.6%).
12
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Data and statistical analysis  

Peak thoracic, lumbar, and pelvic segment excursion and angular velocities were 

normally distributed. Therefore, segment angles (alpha=.016) and segment velocities 

(alpha=.016) were compared respectively using paired t-test pre and post LMES with 

Bonferroni correction.  

Chi-square analysis of good fit was performed (alpha=.05) to determine if forward 

bending classifications changed following LMES.  Lmin and T values were averaged 

across trials by participants pre and post LMES. They were compared with paired t-tests 

to determine if there was a significant change in kinematic quality of forward bending pre 

and post LMES (alpha=.025). 

Results 

Segment excursion and velocity data are presented in Table 1. There were no 

significant differences in peak segment velocity or excursion pre and post ES (p>.05). All 

individuals reached peak segment excursions between 70-90% of forward bending both 

pre and post LMES.  

Prior to the delivery of ES, two individuals (participants 8 and 9) were identified 

to have no aberrant movement based on the a priori classification rules (Table 2). Two 

individuals (participants 1 and 3) were classified as having aLPR. Participant 2 was 

classified as demonstrating aLPR following LMES fatigue. Figure 2 displays lumbar-

pelvis coupling angle graphs of individual forward bend trials pre and post LMES for all 

participants.  
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Five of nine individuals were classified as demonstrating judder pre LMES. Of 

the four individuals with no judder, two (participants 1 and 8) developed judder following 

ES. Three of five individuals classified as demonstrating judder pre LMES no longer 

demonstrated this aberrant movement post LMES. Figure 3 displays lumbar phase-plane 

graphs of forward bend trials for all individuals pre and post LMES.   

Overall, six of nine individuals demonstrated a change in forward bend movement 

pattern following LMES, representing a significant relationship between ES and 

movement patterns X
2
 (1)=9, p=.003, phi=.707 with a large effect size. All individuals 

who underwent a movement pattern change had a minimum of 3 of 6 forward bend trials 

change from pre ES conditions.  Three individuals developed an aberrant movement 

pattern, and three had elimination of an aberrant movement following LMES (Table 2).  

Paired t-tests revealed no significant difference in lumbar segment velocity 

acceleration and deceleration (Lmin) pre (mean=6.37 ± 2.4) and post (mean=5.7 ± 2.6) 

LMES t(8)=1.46, p=.15, d=.19. There was also no significant difference in onset of pelvic 

segment domination of the movement (T) pre (mean=36% ± 21%) and post (mean=32% 

± 24%) following LMES, t(8)=1.33, p=.19, d=.18.  

Discussion 

The hypothesis that LMES mediated fatigue would result in aberrant forward 

bending across all individuals was not supported. Participants 1, 2, and 8 developed an 

aberrant pattern following LMES, while participants 5,6, and 7 extinguished aberrant 

movement following LMES. 

There was no significant difference in the values of kinematic variables (Lmin, T) pre 

and post LMES with small effect sizes. This would also suggest that participants with 
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aberrant movement pre LMES, did not have any worsening of their bending post LMES 

The presence of kinematic rated aberrant movement prior to fatiguing the LM confounds 

results of this study, as the intent was to determine if fatigue would result in production 

of aberrant movement. Participants were selected based on visual screening for absence 

of aberrant movement prior to them going through the study procedures.  However, 

despite not observing aberrant motion in these individuals, a majority of participants were 

rated to have aberrant forward bending based on their kinematic pattern prior to the 

LMES. Kinematic analysis classified 2 individuals with aLPR and five with judder. The 

level of agreement between the investigator and kinematic derived classifications for 

aLPR was comparable to the percent agreement of 75% (K=.47)  between visual rating 

and kinematic rating identified by Wattananon (2014). However, the level of agreement 

between the investigator and the kinematic derived classification was lower for judder 

than the percent agreement of 86% (K=.50) established by Wattananon (2014). 

The disagreement between observer and kinematic rating for judder may be 

attributable to various sources. Visual screening for inclusion into the study was 

performed prior to application of kinematic sensors that may have altered movement 

patterns that the criteria for judder may have been more sensitive to. The kinematic rating 

for judder has no set threshold of change that constitutes a significant shift in velocity. If 

the velocity profile of an individual has small amplitude changes in lumbar angular 

velocity it might not be appreciated through visual observation, but would be counted 

according to the kinematic criteria. Lastly, the investigator performing the visual rating 

(WS) may have been more proficient at detecting aLPR than judder. Interestingly, if a 

participant was classified with aberrant movement they only demonstrated 1 type of 
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aberrant movement. Diagnostic accuracy in patients with LBP improves with the 

presence of two aberrant movements in forward bending and therefore despite the 

findings of aberrant patterns our healthy participants did not reach the diagnostic 

threshold 
6,12

.  

The results of the chi-square analysis was significant with a large effect size 

(phi=.707). There were three individuals who demonstrated an elimination of judder 

following LMES. These individuals (participants 5, 6, and 7) had mean pre-stimulation 

peak lumbar angular velocities that were 1/3 the velocity of the study sample average. 

Following LMES, their mean peak lumbar angular velocities nearly doubled. While the 

reason for this is difficult to determine. LM fatigue may have reduced their ability to 

control forward bending, resulting in increased velocity.  

The lack of significant findings may have occurred because we could not induce 

fatigue of the LM with the ES protocol. It was not possible to test for fatigue using 

parameters such as EMG median frequency shifts. The time needed to perform that 

verification may have led to recovery of muscle function negating any effects of the 

LMES. However, prior work in our lab did demonstrate the ability to produce preferential 

fatigue of the LM compared to the LES 
24

 (Appendix K). There was median frequency 

reduction as well as force reduction as mentioned in the methods, suggesting that LMES 

is capable of producing LM fatigue. It may be possible that the individuals in this study 

recovered from fatigue prior to the post LMES forward bend trials.  

Individuals without LBP may also have a robust neuromuscular system that can 

better compensate for LM fatigue without resultant aberrant movements. This may 

include substitution with other muscles such as the erector spinae or subtle changes 
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involving movement of other segments. The current algorithms, which were intended to 

detect the presence of aberrant movements in individuals with LBP, identify segment 

alterations between the lumbar and pelvis. It may not have the ability to identify changes 

in movement patterns of individuals without LBP who may have  more robust 

compensatory mechanisms to fatigue that may possibly involve the thoracic spine 

segment (thoracic to lumbar sensors) or hip (pelvis to femur sensors) as well.   

 As an example, participant 2 was classified as not having aLPR pre LMES. This 

participant begins with a majority of forward bend trials starting well below the 58 degree 

coupling angle cut point prior to 38% of movement representative of a lumbar dominant 

pattern (Figure 2). As forward bending progresses, there is an increase in coupling angle 

as the pelvis begins to contribute more to the movement. Following LMES, this 

individual was classified as demonstrating aLPR. The movement is pelvic dominant and 

starts above the 58 degree point for a majority of the movement. In comparison to 

participant 2, participant 6 demonstrates a similar shift in the patterns with more pelvic 

contribution to the movement following LMES. While a few of the forward bend trials 

meet the kinematic cut points, it is clear that there was a shift in the pattern of forward 

bending that is present throughout the post LMES trials. The shift in pattern may have 

involved changes in movement within other segments of the trunk or the hips. 

These shifts in pattern are also seen in the phase-plane plots used for kinematic 

ratings for judder (Figure 3). Participant 4 demonstrated a flattening of the velocity curve 

post LMES. This indicates that the lumbar segment stayed at a constant speed, and 

another segment became responsible for the steady acceleration and deceleration of 

forward bending seen in the phase-plane plots of other participants. However, there was 
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no difference in the average Lmin count pre and post LMES that could quantify a change 

in this pattern. There were lumbar velocity pattern changes in some individuals following 

LMES, but the current kinematic criteria focuses solely on shifts in velocity using Lmin 

and was unable to detect other changes in pattern.  . Refinement of the current approach 

using kinematic algorithm with definitive cut points that account for these pattern 

changes is likely necessary to study more subtle changes in movement pattern 

coordination and control. Other supplemental information such as analyses of EMG 

activity during forward bending may also help in improving detection of changes in 

forward bend movement patterns. 

Conclusions 

 The current study was not able to support the hypothesis that fatigue induced 

LMES would result in aberrant movement using the current kinematic algorithm. This 

may be attributable to several factors. We may not have obtained adequate fatigue of the 

LM or the participants in this study may have recovered from fatigue prior to post testing. 

Individuals without LBP may also have redundant systems with greater degrees of 

freedom to prevent the formation of aberrant movements. However, there does appear to 

be some changes that occurred in the forward bending pattern. Individuals without LBP 

may have a more robust neuromuscular system that allows for compensations that are 

more evenly distributed through the movement system, than the segments that are 

monitored with the current kinematic algorithm. Identifying how individuals without 

LBP compensate to a temporary impairment in muscle function may assist in the 

intervention of patients with LBP that demonstrate changes in movement that appear to 

occur predominantly at the lumbopelvic segment
4,27

.  
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Tables and figures 

 

Table 4.1 Mean Peak segment excursion angle (standard deviation) and mean peak segment velocity 

(standard deviation) during forward bending pre and post electrical stimulation fatigue. 

 

Segment Excursion (degrees) Segment Velocity (deg/sec) 

 

Pre Post Pre Post 

Thoracic 6.1 (7.4) 3.2 (2.7) 6.4 (2.5) 6.6 (4.2) 

Lumbar 56 (6.8) 54.4 (8.1) 31.6 (11.8) 33.2 (15.2) 

Pelvis 54.9 (14.8) 52.5 (16.3) 54.9 (14.9) 52.5 (15.3) 

 

 

 
Table 4.2. Classification of movement patterns [altered lumbopelvic rhythm (aLPR) or lack of smooth 

control (judder)] during forward bending, pre and post electrical stimulation fatigue. Changes in 

classification following electrical stimulation are shaded in grey. Participants 1,2, and 8 developed aberrant 

movement following LMES. Participants 5,6, and 7 extinguished aberrant movement following LMES. 

Participant aLPR Judder 

 
Pre  Post  Pre  Post  

1 Yes Yes No Yes 

2 No Yes Yes Yes 

3 Yes Yes No No 

4 No No Yes Yes 

5 No No Yes No 

6 No No Yes No 

7 No No Yes No 

8 No No No Yes 

9 No No No No 

 

 

 

 
Figure 4.1 4.1a) Pelvis angle-lumbar angle plot used to derive: 4.1b) coupling angle plot to determine 

altered lumbopelvic rhythm 4.1c) phase plane plot of lumbar flexion angular velocity vs lumbar flexion 

angle used to determine judder. Adapted with permission from Wattananon 2014.  
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Figure 4.2 Graphs of coupling angles. Y axis is the coupling angle and X-axis is the percent of forward 

bend motion. Coupling angles that exceeded 58 degrees prior to 38% of forward bend motion were rated as 

altered lumbopelvic rhythm (aLPR). Participant 2 was classified as having a typical forward bending 

pattern with respect to lumbopelvic rhythm pre LMES, and classified as having aLPR following LMES 

fatigue.  
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Figure 4.3 Lumbar flexion angular velocity graph for rating of judder. Velocity is on the y-axis and time 

normalized motion of the forward bend phase on x-axis. A forward bend trial was rated as judder if it had 7 

or more deceleration events, or local velocity minima. Participants 1 and 8 were classified as having judder 

post LMES. Participants 5,6, and 7 were classified as having extinguished judder following LMES.   
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Chapter 5:  Summary  

 

 This chapter provides a brief summary of the rationale and specific aims, 

discussion, and conclusions of the aims originally proposed in Chapter 1. Conclusion of 

each specific aim will be addressed in addition to discussions of limitations, implications 

for clinical practice, and recommendations for future research. Changes from the original 

proposal and rationale will also be discussed.  

 The purpose of this dissertation was to identify mechanisms underlying clinical 

tests that are used to predict a patient’s success with trunk stabilization exercises: 

aberrant movements during forward bending and the prone instability test. The rationale 

was that identifying impairments driving positive findings on these tests could help 

improve test interpretation and intervention prescription.   

The following two specific aims were addressed in this dissertation (Chapter 1):  

1) Characterize lumbar extensor muscle neuromuscular control during active 

forward bending and the prone instability test (PIT);  

2) Validate clinical assumptions of the role that lumbar multifidus muscle activity 

has in aberrant movements patterns during a forward bend task and a positive 

prone instability test.  

Chapter 2 addressed specific aim 1 and focused on identifying motor control strategy 

utilized by patients with aberrant forward bending and comparing it to healthy subjects 

with typical forward bend. Chapter 3 investigated the PIT relative to stiffness change 

and neuromuscular control in patients with low back pain. Data from healthy control 

subjects were used to compare and contrast stiffness and neuromuscular control findings 

(specific aim 1). To determine the lumbar multifidus (LM) muscles’ ability to reproduce 
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positive PIT results and increase spinal stiffness, neuromuscular electrical stimulation 

was also used to elicit LM contraction in a prone position (specific aim 2). Chapter 4 

addresses the role of the LM in controlling forward bending. In this experiment 

neuromuscular electrical stimulation was used to fatigue LM and determine if limiting the 

muscles’ contribution in forward bending resulted in aberrant movement (specific aim 2).  

 

Conclusions 

The long term goal of this dissertation was to identify mechanisms associated 

with impaired neuromuscular control in LBP patients in order to improve diagnostic 

criteria and intervention efficacy. Because interventions are guided by the quality of 

forward bending and results of the PIT, it was believed that understanding the 

mechanisms responsible for these tests would help to improve treatment efficacy. Aim 1 

identified muscle activation differences in individuals with low back pain that suggest 

addition of interventions to address motor control and muscle capacity may prove useful. 

Aim 2 results would indicate that electrical stimulation can produce spinal stiffness 

changes that exceed that achieved through volitional activation in individuals with LBP 

and may be an adjunctive treatment.  

Aim 1 

Analysis of forward bending identified 2 subgroups of aberrant movement in 

individuals with low back pain (LBP): alteration of lumbopelvic rhythm (aLPR) and a 

combination of aLPR and rapid lumbar segment acceleration and deceleration during 

movement (aLPRJUD). Individuals with aLPR and aLPRJUD had higher LM and lumbar 

erector spinae (LES) activation compared to individuals without LBP that had typical 
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movement. Individuals with aLPRJUD had higher thoracic erector spinae (TES) 

activation compared to individuals with just aLPR and individuals without LBP. There 

were also differences in the point during forward bending that these muscles reached 

peak activation compared to individuals without LBP.  

Analysis of prone instability mechanism yielded increase in spinal stiffness to a 

posterior to anterior (PA) force from prone to the prone instability leg raising task 

(PITLR). Stiffness changes from prone to PITLR were not different between groups. 

However, EMG analysis did demonstrate a reduction in LM and LES activity in 

individuals with LBP. There was also a difference in the muscle synergy patterns used to 

achieve pain reduction during the test. Individuals without LBP had a higher percentage 

of variance accounted for by the LM, LES, and LD compared to those with LBP. While 

individuals with LBP were able to reduce pain from the PA force, they achieved this 

using a different neuromuscular strategy.  

Comparing LM activation during the prone instability test and forward bending 

offer interesting contrasts.  LM activation was higher in individuals with LBP that had 

aberrant movements during forward bending compared to a control group. However, it 

was lower during the prone instability test compared to a control group, along with a 

different synergy to accomplish a positive test. While participants in these two studies 

were from a different sample, they were of similar age and anthropometric 

characteristics. They had similar pain and functional outcome scores. Lastly, both 

samples were drawn from a population of individuals with LBP in an acute to subacute 

phase of symptoms. Their baseline pain tended to be low with pain exacerbation during 

functional activities. Lastly, both samples were recruited using the same inclusion and 
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exclusion criteria. Therefore, they are assumed to be similar in clinical presentation with 

similar impairments in neuromuscular control.  In the forward bend, there are very few 

ways that a person can modify the task. They can change how the thoracic, lumbar, and 

pelvic segments move relative to each other compared to a typical forward bending 

pattern and/or increase muscle output to complete the task. In the prone instability test, 

the table supports the trunk and the limbs may be able to contribute a larger role in 

stiffening or stabilizing the spine. This may allow the individual to change how muscles 

are activated and to what degree since more muscles may participate during the test. The 

individual may be demonstrating the capacity to successfully compensate, perhaps with 

suboptimal neuromuscular control, in order to stiffen the spine and reduce pain to 

external perturbations. In both cases, the individual with LBP is able to alter or 

reorganize some aspect of the neuromuscular system to accomplish or reduce symptoms 

during the task. Perhaps this is why these tests are able to identify an individual with LBP 

that responds favorably to trunk stabilization exercises. It may be the case, that 

individuals who are predicted to fail with trunk stabilization exercises lack these 

adaptation strategies. 

 

Aim 2 

The use of an electrically stimulated contraction of the LM, in individuals with 

LBP, was able to reproduce the pain reduction and spinal stiffening obtained in the prone 

instability test. The stiffening of the spine that was achieved with electrically elicited 

contraction was similar across individuals with and without LBP. While results of aim 1 

demonstrated a combination of muscles contributing to a positive finding on the prone 
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instability test, the results of aim 2 would suggest that LM can play a major role in spinal 

stiffening and subsequent pain reduction. We were not able to support the hypothesis that 

isolated fatigue of the LM would result in aberrant forward bending movement patterns 

in individuals with typical movement prior to fatigue. However, these findings may have 

been due to suboptimal kinematic criteria used to rate forward bending quality. It may 

also have been due to the ability of individuals without LBP to use their intact and robust 

neuromuscular system to compensate for fatigue of an isolated muscle. Therefore, we 

cannot rule out that impairments in LM function play a significant role in aberrant 

movement. 

Summary of Modifications 

Prone instability Test 

Delivery of Lumbar Multifidus Electrical Stimulation 

Initially, the electrical stimulation to the lumbar multifidus was to be administered 

in the resting position of the prone instability test. In this position, the participant lies 

partially prone with the upper body supported on the table, with the feet off the floor. 

This was initially proposed because it would best replicate muscle activation during the 

prone instability test. The methods were modified to administer electrical stimulation in 

prone. The standard error of measure was smaller in the prone position, allowing for 

better detection of spinal stiffness changes resulting from stimulation. 

 EMG Collection and Data Reduction 

The original proposal called for collection of EMG data from the right gluteus 

medius. However, equipment failure mid study resulted in the loss of 1 EMG lead. 

Examination of the EMG data to that point revealed that the gluteus medius and external 
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oblique had the lowest amplitudes compared to normalization tasks. We wanted to 

maintain representation from the trunk flexors muscles during testing. Therefore, the 

decision was made to omit gluteus medius from the remainder of the protocol for all 

participants.  

The proposal stated that submaximal isometric contractions would be used to 

normalize EMG signals collected during the prone instability test protocol. However, 

during initial practice trials as well as pilot work with 1 participant with LBP and 1 

participant without LBP, participants were not able to maintain the testing positions 

against the resisting forces applied by the examiner, resulting in a maximal test. 

Therefore the decision was made to use maximal force testing of all participants (break 

testing) to obtain maximal volitional contraction (MVC) testing. This would allow for 

consistent comparison of EMG across participants and conditions. 

   

Limitations and Future Studies 

Forward bending muscle activation patterns reported in chapter 2 were based on 

the lowering phase of the forward bending movement where eccentric contraction of the 

extensor muscles is presumed to control motion. The return phase where concentric 

activation of extensors would dominate was not investigated. This lowering phase was 

chosen because the kinematic criteria that detected aberrant movement were developed in 

this phase of forward bending.  The LM is functioning in eccentrically during the lower 

phase. The muscle fibers of LM have a high concentration of titin, which is thought to be 

responsible for the higher force generation during eccentric contractions such as forward 

bending
1-3

. This attribute may allow for LM to have large contributions in controlling 
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forward bend movement. Eccentric movements are also thought to require greater motor 

planning compared to concentric movement because of greater coordination between the 

movement target and movement trajectory 
4
. These movements require a large amount of 

sensory feedback to coordinate agonist-antagonist force generation in order to move 

towards a target at controlled speeds 
5
 which may be provided by the LM 

6-8
. Therefore, it 

was thought that the lowering phase of forward bending would be more indicative of 

movement coordination impairments. 

 The concentric return phase may yield further information on neuromuscular 

control patterns. Nelson-Wong, et al. (2012) identified a different order of muscle 

activation in individuals with LBP on the return phase compared to individuals without 

LBP. This study used cross correlation analysis to identify activation timing and did not 

look at muscle activation amplitude patterns. Further work should consider using 

methods similar to chapter 2 on the return phase of forward bending to obtain further 

information on neuromuscular control in these patients. Individuals with LBP that 

demonstrated aberrant forward bending have demonstrated improvement in forward 

bending quality following trunk stabilization exercises
10

. Therefore, it does appear that 

this movement pattern can improve, even if practice of the task is not performed in the 

clinic. Comparison of neuromuscular control during forward bending in individuals who 

had pain reduction and improvement in function following rehabilitation versus those that 

were not successful may therefore yield valuable mechanistic information. This type of 

analysis may help identify mechanism responsible for successful rehabilitation to help 

refine intervention planning.  
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In the studies on the prone instability test all of the LBP participants had 

successful pain reduction during the test. No LBP participant had a negative test. While 

these results help with identification of neuromuscular control in these patients, it still 

leaves a gap. We do not know what factors are responsible for those patients who do not 

have a reduction in pain during the test. This is important as these patients are associated 

with failure with trunk stabilization exercises. This may be a result of a patient’s inability 

to make necessary neuromuscular adaptations to reduce pain. Perhaps these are the 

patients that are at the highest risk for recurrence and need the most attention. 

Identification of factors that contribute to a negative response (no pain reduction during 

the test) may help adapt intervention planning to allow for success with trunk 

stabilization exercises. A study designed to compare neuromuscular control of patients 

with a positive and negative prone instability test response would help to achieve this 

task. 

The prone instability test study also identified the ability to obtain spinal 

stiffening and pain reduction against posterior to anterior forces on the spine with 

application of lumbar multifidus electrical stimulation (LMES). Therefore it is plausible 

that this modality has potential to be an effective adjuvant in clinical care. This would be 

supported by the work of Hicks, et al. (2016) in geriatric patients with chronic low back 

pain. However, unlike studies in the knee, where stimulation dosage can be adjusted to 

produce a measured force
12

, this was not pragmatically possible in this testing condition. 

ES was applied initially at 40mA and was increased for subjects as necessary to promote 

a contraction. No subject exceeded 50mA, and only 2 subjects required ES at greater than 

40mA to obtain a tetanic contraction. However, there is likelihood that there was 
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variability in the force generated among the subjects with the LMES. Refining the 

method to identify dosage of LMES to obtain specific dosage would be beneficial for 

future application of LMES.  

We were unable to detect production or worsening of aberrant movement during 

forward bending following fatigue of the LM in individuals without LBP. There did 

appear to be movement pattern changes, but these changes were not relative to alteration 

in movement pattern that were captured using our current kinematic algorithm. Refining 

the kinematic rating methods or using alternative methods such as dynamic systems 

analysis or center of rotation changes during movement may allow for better detection of 

movement pattern change or identification of clinically observed aberrant movement. 

These approaches could be used this and future studies on forward bending. While 

kinematic analysis was not able to detect changes in forward bending quality, EMG 

analysis during forward bending post fatigue may also be helpful in detecting any change 

in muscle activation of synergies associated with control of this movement.  

Rehabilitation implications 

During forward bending, LM  activity increase separated the aberrant movement 

groups from study participants with typical forward bending. Synchronization of motor 

units resulting in higher EMG amplitudes may could have resulted from several factors. 

There may have been an increase in vertebral segment movement requiring increased 

muscle activity. Reduction in muscle capacity may have been present requiring activation 

of additional motor units to accomplish the task. There may also have been sensory 

feedback impairments that resulted in improper modulation of muscle activation.  Results 

of EMG analysis during the prone instability test suggest there was reorganization of 
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muscle synergies to achieve the task. While findings resulted in pain reduction, the 

solution may be a suboptimal plan where global trunk stabilizing muscles are used to 

compensate for limitations within intrinsic muscles.  

These results make the case that interventions should address the specific 

impairments. However, tests to identify specific impairments in muscle coordination, 

timing, and capacity may be difficult, in an interrelated movement system that requires 

all of the above to successfully execute movement. Without clear tests to identify specific 

impairments in neuromuscular control, it may be best to implement an intervention plan 

that incorporates all facets of control. In this case, interventions with proper exercise 

prescription and dosage directed toward enhancing muscle capacity (strength and 

endurance), with perhaps a specific focus on LM, may need to be considered in treating 

these patients. It would also be reasonable to attempt restoring the movement 

coordination in patients to obtain similar movement and muscle activation patterns to 

those demonstrated by healthy participants. This may be obtained through exercises that 

focus on improved movement coordination between the thoracic, lumbar, and pelvic 

segments as proposed by Sahrmann (2001) and O'Sullivan (2000). Intervention planning 

may have to go beyond maintaining a neutral spine position during stabilization exercises 

and involve more coordinated movement through the available range to promote strength, 

endurance, and movement coordination as described by these investigators. In patients 

with LBP that have impaired LM activity, use of LMES may be a helpful adjunct to 

intervention. It may help to address muscle activation impairments to allow the muscle to 

properly function during exercises.  
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Summary 

Aberrant movement during forward bending and a positive prone instability test 

are able to predict individuals with LBP that would benefit from trunk stabilization 

exercises. The results may suggest that these individuals are able to succeed with this 

intervention because they have the ability to modify or reorganize their neuromuscular 

system using exercises associated with this approach. The results support the role of the 

LM in forward bending and the prone instability test. The findings also demonstrate that 

LES works in synergy with LM to control movement and stiffens the lumbar spine. 

Adaptations in neuromuscular control during forward bending and the prone instability 

test in individuals with LBP suggest that exercises that include movement control and 

coordination may be necessary within the intervention. Electrical stimulation may also be 

an important adjuvant to rehabilitation in some patients, however this requires further 

study. 
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Chapter 6: Appendices 

 

 

 

6.1 Appendix A:Timeline 

 

 

 

  

April 2015  

Proposal Defense 

 

May 2015-October 2015 

 

Data Reduction and Analysis for Aim 1a data: May 2015-August 2015 

Data Collection on Aim 1b, 2A, 2b: June 2015 – December 2015 

Data Reduction on Aim 1b, 2A, 2b: December 2015 

Data Analysis on Aim 1b, 2A, 2b: January 2016-March 2016 

 

October 2015-April 2016  

  

 Manuscript Preparation:  

  Aim 1a: September 2015-November 2015 

  Aim 1b, 2A, 2b: December 2015-March 2016 

 Dissertation Defense: April 2016 
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6.2 Appendix B: Resources 

 

 

 

Personnel 

Sheri P. Silfies, PT, PhD 

David Ebaugh, PT, PhD 

Susan S. Smith, PT, PhD 

Gregory Hicks, PT, PhD 

Peemongkon Wattananon, PT, PhD 

Scott Stackhouse, PT, PhD 

Marco Canella, PhD 

 

Primary Data Collection was funded by: 

Aim 1a: National Institute of Child Health & Human Development, National Institutes 

of Health (K01HD053632). 
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6.3 Appendix C: Testing protocol and results for within day reliability of posterior 

to anterior force application for the prone instability test 

 

 

 

  
Testing 

Position Load   

Fully prone: Subject is in 

prone position on an 

examination table. 2 minutes 

rest between trials, 5 minutes 

between load change 

Prone Trial 1 22 N 

20 seconds data acquisition; 

Audible test initiation 

marker at 5 seconds, where 

examiner applies load, 

ramping up force to visual 

markers on screen within 5-

10 seconds 

Prone Trial 2 22 N 

Subject rest 5 min 

Prone Trial 1 44N 

Prone Trial 2 44N 

Subject rest 5 min 

Prone Instability Resting 

Position (RPIT): Subject is in 

testing position with leg in 

resting position through whole 

session. 2 minutes rest 

between trials, 5 minutes 

between load change 

Testing 

Position Load 

20 seconds data acquisition; 

Audible test initiation 

marker at 5 seconds, where 

examiner applies load, 

ramping up force to visual 

markers on screen within 5-

10 seconds 

PIT Resting 

Trial 1 22 N 

PIT Resting 

Trial 2 22 N 

Subject rest 5 min 

PIT Resting 

Trial 1 44N 

PIT Resting 

Trial 2 44N 

Subject rest 5 min 

Prone Instability Leg Raise 

Session (PITLR): Subject is 

in testing position with leg in 

resting position until an 

auditory marker is heard. 2 

minutes rest between trials, 5 

minutes between load change 

Testing 

Position Load 

20 seconds data acquisition; 

Audible test initiation 

marker at 5 seconds, where 

subject raising legs to 18 

inch high gate at the marker. 

Examiner applies load, 

ramping up force to visual 

markers on screen within 5-

10 seconds 

PIT Trial 1 22 N 

PIT Trial 2 22 N 

Subject rest 5 min 

PIT Trial 1 44N 

PIT Trial 2 44N 
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Subjects: 5 (3 male, 2 female)  

Mean age: 30 +/- 

Mean weight: 

Mean height: 

1 subject with no low back pain 

4 subjects with low back pain 

 

 

 

  

Mean (test 

and retest) SD test SD retest ICC(2,)2 

MDC 

(95%CI) 

MDC 

(90%CI) 

Prone 6.68 6.9 6.5 0.902 5.81 4.89 

PIT resting 

position 14.58 14.3 6.2 0.79 13.02 10.96 

PIT leg raise 

position 18.8 4.9 3.73 0.945 2.81 2.36 
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6.4 Appendix D: Fidelity testing of posterior to anterior force onset suring the 

prone instability test 

 

 

 

Five random subjects were drawn from the pool of participants in the prone instability 

test study. Three data samples were taken of their prone, RPIT and PITLR trials. Each 

data stream was 2 seconds long and was captured on the load application at random 

points. The posterior force and time were taken these points and force application 

velocity were calculated. This is expressed in newtons per second (n/s) 

 

Coefficient of variation was calculated for the posterior to anterior force application 

across the subjects  

 

 
Table 6.1 Rate of posterior to anterior force application  samples  (newtons/second)  for 5 random subjects 

  

Subject Sample Prone RPIT  PITLR  

1 Sample 1 3.11 3.40 3.24 

1 Sample 2 3.24 3.17 2.99 

1 Sample 3 3.33 2.87 2.81 

2 Sample 1 3.19 3.23 3.13 

2 Sample 2 2.99 3.24 3.11 

2 Sample 3 2.99 3.12 3.21 

3 Sample 1 3.19 3.45 3.16 

3 Sample 2 3.25 3.21 3.19 

3 Sample 3 2.91 3.24 3.10 

4 Sample 1 3.28 3.11 3.12 

4 Sample 2 3.45 3.21 3.23 

4 Sample 3 3.19 2.98 3.34 

5 Sample 1 3.11 3.28 3.19 

5 Sample 2 3.23 3.12 3.25 

5 Sample 3 3.19 3.33 3.18 
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Table 6.2 ,Mean, standard deviation, and  coefficient of variation for rate of force application. 

 

 

Prone RPIT PITLR 

Mean 3.2 3.2 3.2 

S.D. 0.14 0.15 0.12 

CV 4% 5% 4% 

 
 

 

 

 

 

 

Table 6.3 Mean, standard deviation, and coefficient of variation for rate of force application for individual 

subjects across conditions (newtons/second). 

 

 

Prone RPIT PITLR 

Subject Mean S.D. CV Mean S.D. CV Mean S.D. CV 

1 3.2 0.11 3% 3.1 0.27 8% 3.0 0.22 7% 

2 3.1 0.12 4% 3.2 0.07 2% 3.2 0.05 2% 

3 3.1 0.18 6% 3.3 0.13 4% 3.2 0.05 1% 

4 3.3 0.13 4% 3.1 0.12 4% 3.2 0.11 3% 

5 3.2 0.06 2% 3.2 0.11 3% 3.2 0.04 1% 
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6.5 Appendix E. IRB approval documents 

 

 

 

Use of FNIR to determine the ability of NMES to selectively activate lumbar multifidus. 
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6.6 Appendix F: RUSI Analysis Method 

 

 

 

Images were saved from RUSI unit, to AVI files. These clips were converted in imageJ 

offline to a continuous grey scale image. Analysis of contraction time and thickness were 

performed using the scale setting feature, which takes a pixel count of a marked area with 

a known distance. Marker scales on the RUSI video were used to provide imageJ a 

known length and duration to calculate pixel count as seen below. A line is drawn in 

relation to the time scale below. The known distance of that line in seconds is entered to 

set scale. This is also done to scale for length using depth markers on the image. 

 

 
 

Figure 6.1 Image of Lumbar erector spinae. Erector spinae can be distinguished through the presence of the 

transverse process which is different in appearance to the  
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Identifying contraction times: 

Within imageJ, a scanning window of 1 second duration and equal thickness of the 

LM/LES at rest was created to measure mean grey scale histogram. The b-mode image 

above the time series, gave the rater an indication of when the muscle underwent 

contraction, through visualized thickness change of the muscle. This thickness change 

would cause a disturbance in the m-mode scan that was measured for contraction 

duration. This was performed by sliding the image through the histogram scanning 

window as seen below. 

 

 

 

 

 

 

 

 
 
Figure 6.2 Muscle at rest prior to the contraction was analyzed for mean grey scale, using the b-mode video 

above to confirm there was a contraction.  
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Figure 6.3 The video was passed through a sliding window with a live view of the histogram with changing 

grey scale.  

 

 

 
 
Figure 6.4 The offset of the contraction was confirmed by b-mode image showing relaxation of the muscle. 

This was associated with a return to mean grey scale values within 5% of the resting values as seen above. 
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Figure 6.5 RUSI video image of movement artifact. 

 

 

This process was repeated with a video clip of RUSI sound head compression along the 

surface of the skin. As seen above, the change in mean grey scale before the m-mode 

disturbance and during the m-mode disturbance does not exceed 5% of the baseline mean 

grey scale. This is beneficial when detecting the presence of contraction or disturbance in 

the m-mode time series from motion artifact such as breathing or skin movement along 

the probe from contraction distal to the area of inspection. 

This method proved to be essential as during LM stimulation, there was m-mode 

disturbance at the LES probe. This could be from skin movement, movement of the 

pelvic during LM contraction, or pull of the LM fasciae onto the LES fasciae. However, 

the two step confirmation of grey scale analysis and confirmation with b-mode view 

above the m-mode time series was able to confirm if this was contraction or artifact. 

An m-mode disturbance was classified as a contraction when there was a mean 

grey-scale change that exceeded 5% of baseline and there was confirmation with the b-

mode image. Markers were used to signal the start of the onset and the offset of the 

contraction, and measured to determine the duration of contraction time, and were 

measured in seconds.   
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6.7 Appendix G: Subject preparation for kinematic data collection (adapted from 

Wattananon 2014) 

 

 

 

 

This protocol was used for kinematic data used for preliminary study 5.1, and will also be 

used for prospective kinematic data collection during the forward bend. 

 

1. Each subject exposed his/her back and his/her left knee. 

2. Male subjects simply took off their shirt. Female subjects wore tank top or sport 

bra 

3. All subjects wore shorts or loose fitting sweat pants to expose left knee. 

4. All subjects wore their shoes throughout the test protocol. 

5. The following body landmarks were identified and marked with a skin pen: 

 Femur sensor location: 15 cm. superior and 5 cm medial to left lateral 

epicondyle. 

 Pelvis/sacrum sensor location: over S2 spinous process located by 

palpating the PSISs and move medially to the spinous process between 

the PSISs. 

 Lumbar spine sensor location: over L1 spinous process located by 

palpating the level of the iliac crests and moving medially to the 

adjacent spinous process interspace which was L4-5 interspace. 

Palpating the L4 spinous process above the interspace and moving 

superiorly until the L1 spinous process was reached. 

 Thoracic spine sensor location: over T3 spinous process located by 

palpating the C7 spinous process or vertebra prominent. The C6 
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spinous process was identified by its anterior translation with cervical 

extension. The C7 was inferior to the C6. The spinous processes were 

counted inferiorly until the T3 spinous process was reached. 

 Sternal notch, xyphoid process, C7, T8, T10, L3, L4, L5, ASISs, 

PSISs, and left medial and lateral epicondyles were also marked for 

digitization. 

6. Any hair in the area around the mark was shaved. 

7. The four sensors were mounted on a small piece of orthoplast. 

8. Double-sided adhesive tape was cut to the same size of the orthoplast. 

9. The backing on the tape was removed and the tape was affixed to the sensor. 

10. The femur sensor was attached with the subject standing normally. 

11. The pelvic and lumbar sensors were attached with the subject in a slightly forward 

bend position to prevent excessive sensor movement due to skin movement. 

12. The thoracic sensor was attached with the subject’s head and upper back in a 

slightly forward bend position and shoulders rounded. 

13. The sensor itself was ensured to be right on top of the skin mark. 
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6.8 Appendix H: Kinematic Data Conversion and Calculation 

 

 

 

 

 

 Rotation Convention 

: Rotations about x-axis- flexion/extension 

: Rotations about y- axis- lateral bending 

: Rotations about z- axis- axial rotation 

s: Sine 

c: Cosine 

Femur, Pelvis, Lumbar Spine, Thoracic Spine (x – y’ – z”) 

Rotation Matrix 

[
𝟏 𝟎 𝟎
𝟎 𝒄𝜶 −𝒔𝜶
𝟎 𝒔𝜶 𝒄𝜶

] . [
𝒄𝜷 𝟎 𝒔𝜷
𝟎 𝟏 𝟎

−𝒔𝜷 𝟎 𝒄𝜷
] . [

𝒄𝜸 −𝒔𝜸 𝟎
𝒔𝜸 𝒄𝜸 𝟎
𝟎 𝟎 𝟏

] =

[
 
 
 𝒄𝜸.𝒄𝜷 −𝒔𝜸.𝒄𝜷 𝒔𝜷
𝒄𝜸.𝒔𝜷.𝒔𝜶+𝒔𝜸.𝒄𝜶 −𝒔𝜸.𝒔𝜷.𝒔𝜶+𝒄𝜸.𝒄𝜶 −𝒄𝜷.𝒔𝜶

−𝒄𝜸.𝒔𝜷.𝒄𝜶+𝒔𝜸.𝒔𝜶 𝒔𝜸.𝒔𝜷.𝒄𝜶+𝒄𝜸.𝒔𝜶 𝒄𝜷.𝒄𝜶 ]
 
 
 
 

 

Angle Calculations 

𝑐𝛽 =  √(𝑅12)2 + (𝑅22)2     𝑠𝛽 =  𝑅02 

𝑐𝛼 =  
𝑅22

𝑐𝛽
     𝑠𝛼 =  −

𝑅12

𝑐𝛽
 

𝑐𝛾 =  
𝑅00

𝑐𝛽
      𝑠𝛾 =  −

𝑅00

𝑐𝛽
 

 

Kinematics adapted from Polhemus Manual: Shoulder Kinematics Program written by  

Andrew Karduna, PhD, MCP Hahnemann University (1997) 

 

 Vector coding 

Vector coding (VC) is calculated from the angle-angle plot which contains one 

state of variable (spatial). In angle-angle plot, the x coordinate represents angular 

displacement in degree from one segment (θ1) and the y coordinate represents 
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angular displacement in degree from another segment (θ2). The vector coding is 

calculated as follows: 

𝛩𝑉𝐶(𝑖) = 𝑡𝑎𝑛−1 [
𝜃2(𝑖 + 1) − 𝜃2(𝑖)

𝜃1(𝑖 + 1) − 𝜃1(𝑖)
] , 𝑖 = 1, 2, … , 𝑛 − 1 

 

 Continuous relative phase (CRP) is performed on relative phase angle between 

distal and proximal segments which are derived from phase plane plots. The state 

of each signal is described by two state variables (spatial and temporal). In phase 

plane plot, the x coordinate represents either segmental angular displacement in 

degree (𝜃̃) and the y coordinate represents segmental angular velocity (𝜔̃). The 

phase angle is calculated as follows: 

𝛷(𝑖) = 𝑡𝑎𝑛−1 [
𝜔̃(𝑖)

𝜃̃(𝑖)
] , 𝑖 = 1, 2, … , 𝑛 

 

The relative phase angle (the difference between the phase angles of two signals) 

is performed as follows: 

𝜃𝐶𝑅𝑃(𝑖) = |𝛷𝑑𝑖𝑠𝑡𝑎𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑖) − 𝛷𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑖)| 

 

However, the derivation of θCRP requires that the state variables (𝜃̃ and 𝜔̃) have 

the same amplitude and frequency. Therefore, the phase plane plot (θ vs. ω) 

should be scaled to the phase plane plot (𝜃̃ vs. 𝜔̃) in order to account for 

amplitude and frequency differences in the state variables.  

𝜃̃ = 2 [
𝜃 − min (𝜃)

max(𝜃) − min (𝜃)
] − 1 

 

𝜔̃ =
𝜔

max (|𝜔|)
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 Angular deviation (AD) is used to determine variability in the VC and CRP 

measurement because both 𝜃𝑉𝐶and 𝜃𝐶𝑅𝑃 are directional in nature. Angular 

deviation is calculated as follows: 

1. Decompose the angle of the vector coding (𝜃𝑉𝐶) and the angle of the relative 

phase (𝜃𝐶𝑅𝑃) into a unit vector for each time point. 

𝜃𝑖 = [
cos 𝜃𝑖

sin 𝜃𝑖
] 

 

2. Find mean resultant vector for that time point across the multiple repetition. 

 

𝜃̅𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 =
1

𝑁
∑𝜃𝑖

𝑁

𝑖=𝑁

 

 

3. Find mean resultant direction by transforming the mean resultant vector using 

the four quadrant inverse tangent function. 

𝜃𝑎𝑛𝑔𝑙𝑒 = 2𝑡𝑎𝑛−1
𝑦

√𝑥2 + 𝑦2 + 𝑥
 

 

4. Find the length of the mean resultant vector. This critical quantity is used for 

the measurement of circular variability and/or hypothesis testing in directional 

statistics. 

𝑅𝜃 = ‖𝜃̅𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟‖ 

 

𝑅𝜃 = √𝑥2 + 𝑦2 

 

5. Find angular deviation or circular standard deviation 

 

𝐴𝐷 =  √2(1 − 𝑅𝜃) 
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6.9 Appendix I: Detailed methods for kinematic identification of aberrant 

movements. 

 

 

 

Once kinematic data were reduced, coupling-angle diagrams and phase-plane 

diagrams were utilized to characterize movement. Wattananon 2014 used kinematic data 

that was collected simultaneously with examiner observation of the forward bend to 

detect aberrant movement. Cutoffs for kinematic detection of aberrant movement were 

based on agreements between the kinematic variables and the observed aberrant 

movement. 

Graph Type Definition 

Coupling-angle diagram The percentage of total angular displacement in the sagittal 

plane on x axis is plotted against coupling angle derived 

from segment angle –angle plot of the lumbar and pelvic 

segments on the y axis. Coupling-angle diagrams can be 

used to quantify relative or intersegment movement 

coordination and represent the point in time (% of 

movement) when hip/pelvic segment dominance occurred. 

This plot was used to determine the presence of altered 

lumbo-pelvic rhythm. Motion ratio between 2 segments 

greater than 45 degrees indicated proximal segment 

dominance, and less than 45 degrees indicated distal 

segment dominance (Figure 1a). Figure 1b depicts cut off 

points for altered lumbo-pelvic rhythm. 

 

Phase Plane Diagram The percentage of total angular displacement in sagittal 

plane (x axis) is plotted against instantaneous angular 

velocity (y axis). Phase-plane diagram can be used to 

capture movement control (smoothness of movement) 

during standing forward bend. This plot was used to 

determine when judder occurred. Figure 1c 
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Figure 6.6: Coupling angle diagram of lumbar vs pelvic excursion during forward bending 

 

 

Angle-Angle plot (insert) depicts a plot of angular displacement of the lumbar 

versus pelvic segments. A straight diagonal line on an angle-angle plot 

demonstrates 1:1 angular velocity of the 2 segments. A coupling angle diagram 

allows for standardization of the angle-angle plot by calculating a vector between 

two adjacent points. The diagram represents the coordination between segments 

quantifying the shape or trajectory of movement coordination between two 

segments relative to the percent of movement. The coupling-angle diagram can 

therefore, indicate when during the forward bend, when the alteration of lumbo-

pelvic rhythm occurred. Figure and text adapted from Wattananon 2014.  
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Figure 6.7 Example of a forward bend defined as demonstrating altered lumbo-pelvic rhythm.  

 

 

A coupling angle of 59 degrees or greater that occurs within the first 38% of the 

forward bending movement was identified as having an altered lumbopelvic 

rhythm. MDC90 was determined to be 11.9 seconds. Figure and text adapted from 

Wattananon 2014. 
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Figure 6.8 Phase plane diagram. 

 

 

 Plots angular velocity of the lumbar segment over the percentage of total angular 

displacement during the forward bend. The total local minima is used to 

determine the presence of judder: the presence of 6 or greater local minima 

classify a forward bend as having judder. The MDC90 for Lmin was found to be 

1.58. Figure and text adapted from Wattananon 2014.  
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6.10 Appendix J: Methods for obtaining submaximal isometric volitional 

contractions of the trunk. 

 

 

 

Submaximal Isometric Volitional Contraction (sMVIC) motions utilized for normalizing 

EMG data during preliminary study 5.4 and 5.5 . 

 

1) Trunk flexion: subject lied on their back with knees and hips bent to a 

comfortable position. They were then asked to raise their trunk up so their shoulder 

blades rose above the surface. Subjects held that position for 10 second. 

 

2) Unilateral bridge: subject lied on their back with knees and hips bent to a 

comfortable position. They were then asked to raise their right leg off the table and 

perform a bridge with the left leg by lifting the buttocks off the table until the pelvis and 

trunk were in a neutral position. This was then repeated with the opposite side. 

 

3) Modified Biering-Sorensen (Coorevits et al., 2008): The subject was positioned in 

a prone so that the lower trunk was supported on an exam table. Support straps were 

placed around the thighs to stabilize subjects to the table. The subject’s upper trunk was 

supported through their arms on a chair in front of the table. The subject was then asked 

to bring their arms across their chest and maintain the prone position using the trunk 

extensors for 10 seconds. 
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4) Seated row: The subject placed in a long sitting position with the trunk supported 

at a 45 degree angle. The subject held onto a 12 foot strap that was secured around the 

feet. The subject was then asked to use their arms to bring themselves to an upright 

seated position, and hold for 5 seconds. 

 

Strength tests to performed to normalize EMG data for aim  1b: 

Maximal resistance was applied using the “break test” method. 

1) Trunk flexion, unilateral bridge, and modified Sorensen tests were performed 

as described above. However, for all tests, the tester applied maximal 

resistance until the subject could not hold the testing position.  

2) Bilateral Shoulder Extension: While standing, subjects raised both arms to 90 

degrees of shoulder flexion while holding onto a PVC pipe in their hands. The 

examiner resisted bilateral shoulder extension from this position (to avoid 

potential changes in SEMG data from examiner contact) until the subject 

could not hold the testing position 

3) Bilateral Shoulder flexion: While standing, subjects brought their arms 

overhead while holding onto a PVC pipe in both hands. The examiner applied 

a downward force through the pipe, until the subject could not hold the testing 

position 
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6.11 Appendix K: NMES Pain Pressure threshold, force fatigue and EMG median 

frequency response to NMES 

 

 

Pain gaiting mechanism of NMES: Pain Pressure and Pain threshold tests 

Instrument: Wagner algometer with rubber tip with a load range from 4-44 lbs range was utilized. 

Gauge was marked in 0.5 lb increments.  

Methods: 

Pain pressure threshold was measured first.  Pressure was applied to the L3 spinous process and 

subjects were asked to indicate when they first perceived the onset of pain. Pain tolerance was 

then assessed. Pressure was applied to the L3 spinous process to the maximum level the subject 

could tolerate. Numerical Pain rating scale (NPRS, 0-10) was collected with each application of 

pressure. 

Both Pain pressure threshold and pain tolerance were done prior to the delivery of the NMES 

(pre-NMES) and during the NMES (NMES). 1 trial was performed for each condition. Pressure 

and pain ratings were compared using paired t-tests (alpha=.025) for pain pressure threshold and 

maximum pain tolerance.  

 

 

 

 

 

 



277 

 

 

2
7
7
 

Table 6.4 Pain pressure threshold. There were no statistically significant differences in pressure 

thresholds or numerical pain rating scale between pre-NMES to NMES conditions. *Only 1 

subject (#7) had pain reduction with NMES during the pain pressure threshold measurement that 

exceeded the 2 point MDC for the NPRS.  

  Pain Pressure Threshold 

  Pressure Applied (lbs) Pain Rating (NPRS) 

Subject Pre-NMES NMES Pre-NMES NMES 

1 8 8 2 2 

2 6.5 7 2 2 

3 9 9 1 2 

4 10 10.5 2 2 

5 6 7 3 2 

6 4 4.5 2 2 

7* 6 6 3 1 

Mean 

(SD) 
7.1 (2) 7.4 (1.9) 2.1 (0.7) 1.9 (0.4) 

 

  Maximal Pain Tolerance 

  Pressure Applied (lbs) Pain Rating (NPRS) 

Subject Pre NMES NMES Pre NMES NMES 

1 12 13 7 7 

2 16 14 8 7 

3 11 11 6 6 

4 18.5 19 7 7 

5 17 21.5 7 8 

6 9.5 11 6 8 

7 12.5 11 7 7 

Mean 

(SD) 
13.8 (3.4) 14.4 (4.2) 6.9 (0.7) 7.1 (0.7) 

 

There were no statistically significant differences in maximal pain tolerance pressure or NPRS 

between pre-NMES to NMES conditions. One subject (#6) exceeded the 2 point MDC for pain 

with NMES. This subject’s pain increased during the NMES but also had a 1.5lbs increase in the 

maximal pressure tolerated. 

 

 

Confirmation of fatigue with NMES 
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6 subjects underwent 2 testing sessions, at least 5 days apart to determine 1) force reduction with 

NMES and 2) EMG median frequency analysis of the lumbar multifidus and erector spinae after 

NMES. 

Day 1: Subjects were tested for lumbar extensor strength using a modified Sorensen position, 

using a hand held dynamometer as recommended by committee members. Strength was measured 

using a 5 second hold prior to the delivery of NMES. NMES parameters were as described in the 

proposal. Strength testing was repeated every 10 stimulations. 

Results 

 

 

Figure 6.9 Strength reduction through iterative stimulations. Strength was measured every 10 

electrical stimulations.  
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Figure 6.10 Percent change in strength through iterative stimulations. Subjects had on average, 

32% reduction in strength by the 40
th
 stimulation. Percent change is negative to reflect reduction 

in strength through iterative stimulations, compared to the first strength measure prior to NMES.  

 

 

 

Conclusions: 

Force reduction of trunk extensors reached a plateau after 40 stimulations. To ensure fatigue, it 

was decided to maintain 60 electrical stimulations. 

Day 2.  

After a rest period of at least 5 days, to allow for muscular recovery, subjects returned for 

testing. EMG electrodes were placed on the lumbar multifidus (LM) and lumbar erector spinae 

(LES) bilaterally, as described in previous methods in the proposal. EMG was collected during 

resisted trunk extension and a non-resisted 20 second extensor endurance test. They then received 
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60 electrical stimulations to the lumbar multifidus. Subjects were re-tested for extensor strength 

and endurance. 

Of the 6 subjects, 4 subjects were able to maintain an isometric contraction during 

strength testing. Only 1 subject was able to maintain an extensor endurance position post NMES.  

Therefore, the isometric extensor strength testing of the subjects was used for to investigate 

median frequency changes of the extensors.  

Results: 

EMG median frequency of the LM and LES  were averaged by side. Median frequency of 

the LM was reduced by an average of 32%±12% while the LES was reduced by an average of 

8%± 4% among the 4 subjects able to assume the testing position and maintain an isometric 

contraction. Of the 2 subjects that were not able to maintain testing position, 1 subject had an 

increase in median frequency across both LES and LM, while the remaining subject demonstrated 

no change. In these 2 subjects, the median frequency response is likely due to a change from an 

isometric contraction to an eccentric contraction as load was applied.  

Conclusion: 

The 32% median frequency reduction across the LM is consistent with relevant literature 

on muscle fatigue. It suggests that we are able to preferentially recruit LM with the NMES. The 

median frequency reduction along with the force reduction supports our ability to fatigue the LM 

with NMES.  
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6.12 Appendix L: Forms and outcomes. 

 

 

 

 

 

 

Numerical Pain Rating Scale 

 

Subject Number _______________________ Testing Date_________________ 

 

0-10 Numeric Pain Intensity Scale 

 

 

0  1  2  3  4  5  6  7  8  9  10  

 

No      Moderate  Pain    Worst 

Pain          Possible  

          Pain 

  



282 

 

 

2
8
2
 

 
  



283 

 

 

2
8
3
 

 
  



284 

 

 

2
8
4
 

Borg Scale of Perceived Exertion 

 

6 No exertion at all 

7 Extremely light 

8   

9 Very light 

10   

11 Light 

12   

12 Somewhat hard 

14   

15 Hard (heavy) 

16   

19 Extremely hard 

20 Maximal Exertion 
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