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Abstract – We optimize the placement of sensors for detecting a
nuclear, biological, or chemical (NBC) attack in a dense urban
environment. This approach draws from two main areas: (1)
computational fluid dynamic (CFD) simulations and (2) sensor
placement algorithms. The main objective was to minimize de-
tection time of a NBC sensor network for attacks on a generic
urban environment. To this end we conducted simulations in
the generic urban environment using thirty-three (33) unique
attack locations, thirty-three (33) candidate sensor locations,
prevailing wind conditions, and the properties of the chemical
agent, chlorine gas. A total of ninety-nine (99) simulated attack
scenarios were created (three sets of thirty-three unique attack
simulations) and used for optimization. Simulated surrogate
agent concentration data were collected at each candidate sen-
sor location as a function of time. The integration of this con-
centration data with respect to time was used to calculate the
”consumption” of the network and the sensor placement algo-
rithm minimized consumption to the network while minimizing
the number of sensors placed. Our results show how a small
number of properly placed sensors (eight(8), in our case) pro-
vides the best achievable coverage (additional sensors do not
help).

Keywords – Homeland Security, Optimization, Sensor Net-
works, Sensor Placement, Computational Fluid Dynamics, Ur-
ban Dispersion.

I. INTRODUCTION

Given recent heightened security concerns, a clear need ex-
ists for technologies to detect, classify and localize a nuclear,
biological or chemical (NBC) attack in an urban environment.
Currently, no such technology exists. The main objectives of
the techniques described in this study are: (1) to provide ac-
curate predictions of agent dispersion patterns following the
onset of an attack; and (2) to optimize NBC sensor placement
based on computational fluid dynamics (CFD) simulations.

Several U.S. government agencies have studied the design
of sensor networks for homeland security purposes, most no-
tably the Defense Threat Reduction Agency of the U.S. Army
Nuclear and Chemical Agency [1]. Their efforts resulted in the

development of several tools including SAFE (Sensor Analysis
and Fusion Environment) and REASON (Response and Effects
Analysis System for Operational Needs) [1]. CFD techniques
have been widely studied for a variety of interests for the pre-
diction of complex propagation [2] ranging from fire prediction
[3], [4] aerodynamics, to air pollution systems and plasma pro-
cessing [5]. The application of CFD for the prediction of NBC
dispersion in urban environments is relatively new [6] and no
previous research has been done on optimizing sensor place-
ment based on the CFD simulations. By understanding how
complex agents disperse in urban environments, cities will be
better prepared to set up defenses against such attacks.

Using CFD for threat analysis, we present a robust place-
ment methodology, optimized for an urban environment which
aims to minimize the detection time for a contaminant in a net-
work of sensors. The objectives are quick detection, classifi-
cation, and neutralization of the threat. Our formulation takes
into account detailed CFD simulations of potential attacks, the
likelihood of these attacks, and total cost considerations.

The rest of the paper is organized as follows: Section II cov-
ers the background information on the sensor network design
and the computational fluid dynamics. Section III explains the
formulation of sensor placement algorithm. Section IV dis-
cusses the results of fallout dispersion of the CFD simulations
and the optimized sensor configurations. Finally, conclusions
are presented in section V. A symbol table is provided in sec-
tion VI.

II. BACKGROUND

A. Sensor Network Design

Current sensor placement methodologies for target localiza-
tion and surveillance applications often use grid based meth-
ods. These methods rely on the use of area sensors, which
have an associated coverage area over which they are effective.
Fixed sensors are deployed throughout a grid, or sensor field,
such that at least one sensor covers each point in the area of
interest. Chiu and Lin [7] focused on the placement of such
sensors for target location based on the constraints of cost lim-
itation and complete coverage. Dhillon’s grid-based method



[8] operated under the constraints of cost limitation, imprecise
detections, and terrain properties.

Our sensor placement algorithm is based on the research of
Berry et.al. [9]. Their work employed an integer-programming
based technique for sensor placement in municipal water sys-
tems. The aim of the placement methodology was to maximize
the exposure of the network to potential contaminants, under
cost and placement constraints. The placement constraints re-
quire perfect point sensors to be placed in the pipes and junc-
tions of a municipal water network. Point sensors do not have
an ”effective area”; rather, in order to be detected the agent
must pass physically through the location or ”point” at which
the sensor is placed. Although the propagation properties as-
sumed in [9] differ from those of contaminants in our applica-
tion, the mathematical framework is suitable for sensor place-
ment for NBC detection of airborne contaminants (with an ex-
tension to account for the urban topology).

B. Computational Fluid Dynamics

The Department of Defense has funded the development of
the FAST3D [10] and FEFLO [11] models by the Naval Re-
search Laboratory. The Department of Energy’s Lawrence Liv-
ermore National Laboratory has also developed a dispersion
model called FEM3C [12]. These models are 3-dimensional
CFD solvers explicitly developed for urban dispersion and
transport modeling in complex geometries.

The National Institute of Standards and Technology has de-
veloped the Fire Dynamic Simulator (FDS) [13] a CFD soft-
ware primarily designed to analyze fires. FDS is a multi-
species, multi-variable boundary condition CFD solver that
uses the large eddy simulation (LES) technique to solve the
three dimensional flow. The flow is computed through a prede-
fined mesh where agent dispersal is calculated from one mesh
box to another. Accuracy of the flow can be further increased
by refining the mesh size. However, there is a tradeoff between
dispersal resolution and computation time. Lagrangian parti-
cles are used to visualize the flow in FDS and have been used
to investigate particle-laden flows in many common industrial
applications (such as atmospheric transport of pollutants). Al-
though FDS was primarily designed to analyze fires, its pre-
dictive capabilities can be used for the simulation of chemical
and biological agent dispersal [14], [15].

III. SENSOR PLACEMENT FORMULATION

We build upon the framework of Berry et.al. [9]. Consider
a set of candidate sensor locations in an urban sensor network,

V = {v1, v2, v3, . . . , vN}, (1)

where N is the number of candidate sensor locations and
vi ∈ V is a 3-dimensional position vector. Let τ be the set
of discrete times for which NBC agent concentration data was
recorded in the CFD simulator. A is the set of attacks, where

each attack is uniquely specified by location and time. αa is
the probability that there will be an attack at a ∈ A, and∑

a∈A

αa = 1 (2)

For each attack, let La ⊆ V correspond to the set of contam-
inated locations. This set of contaminated locations is deter-
mined from the CFD simulations by monitoring NBC agent
concentration as a function of locations in the set V . We use
the concentration data to determine ωa,j , the consumption. The
symbol ωa,j stands for the amount of NBC agent delivered by
attack a ∈ A to the network (i.e., all nodes in V ) assuming that
a sensor placed at node j ∈ La was the first sensor to signal
an alarm. To compute ωa,j , we use the initial time of attack
a ∈ A, denoted by ta,0 and the time, ta,j , at which the attack
is detected at node j ∈ La. Specifically, we define

ωa,j =
∑
v∈V

dv(ta,0, ta,j) =
∑
v∈V

∫ ta,j

ta,0

γa,v(t)dt (3)

where dv(t1, t2) is the total amount of contaminant delivered
to node v ∈ V from time t1 to t2. γa,v(t) represents the con-
centration of NBC agents, found by the CFD simulations, at
node v ∈ V during attack a ∈ A.

The decision variables for our optimization problem are: (1)
the sensor placement index si which is 1 if a sensor is placed
at node vi and 0 if there is no sensor at that location; and (2)
the first detector index ba,i which is 1 if a sensor at node vi is
the first sensor to react to attack a ∈ A and 0 otherwise. A
detection occurs at a candidate sensor location once the agent
concentration reaches a predetermined concentration thresh-
old. Given the above formulation, the objective function for
sensor placement becomes

min
∑
a∈A

∑
i∈La

αaωa,iba,i (4)

Subject to the following constraints:∑
i∈La

ba,i = 1 ∀a ∈ A (5)

ba,i ≤ si ∀a ∈ A, i ∈ La (6)∑
j∈V

sj ≤ SMAX (7)

The objective function (4) minimizes consumption of NBC
contaminants averaged over a set of attacks. The constraint
in (5) enforces that there is exactly one best sensor for each at-
tack. The constraint in (6) enforces that a sensor cannot be the
best sensor for an attack if it is not installed, and the constraint
in (7) enforces that at most SMAX sensors are used.



IV. SIMULATION RESULTS

A. Fallout Dispersion

A simulation technique based on CFD was investigated in
order to build a large database of attack scenarios for the urban
environment. The scenarios differ by attack location and me-
teorological conditions. For our scenarios, FDS was used. The
data collected from the simulations were then used to optimize
our sensor placement algorithm.

In order to optimize the sensor network, accurate predictive
models are needed to compute the flow of gases and particles
in the urban environment under given meteorological condi-
tions. When studying urban air flow and dispersion, the mod-
eling of the environment is critical to the type of results that
can be achieved. An urban terrain can encompass hundreds
of city blocks where the details of the environment (such as
streets, buildings, and alleys) are extremely important in accu-
rately modeling dispersion.

A generic urban environment (see Figure 1) was developed
for the CFD simulator. Several observations were used to pro-
vide a realistic urban setting, namely: (1) The model contains
structures of high importance that would reside in major cities,
specifically: a city hall, skyscrapers, and a park; (2) The model
contains residential buildings; (3) the rest of the model is oc-
cupied by generic buildings to account for stores, restaurants,
and other common city structures. The environment was pop-
ulated with thirty-three candidate sensor locations (see Figure
1a) placed in the streets and intersections to collect simulated
concentration data as a function of time. The data were then
used to compute the consumption, ωa,j , in order to determine
optimal sensor configurations.

Chlorine gas was used as the chemical agent in all attack
scenarios. Since chlorine is an industrial chemical, relatively
easy to obtain, use, and often stored in or near large population
centers..

Ninety-nine attack scenarios were simulated for 500 sec-
onds each in the urban environment described above, under
different meteorological conditions. The simulations were di-
vided into three sets of 33 simulations each, labeled North-
west (NW), Southwest (SW) and Random (RD). These labels
corresponds to the prevailing wind condition. NWi, where
(i = 1, 2, . . . , 33), is the attack from the Northwest corre-
sponding to the ith attack location (see Figure 1b). The same
labeling convention is consistent for the SW and RD sets. Each
attack scenario has a unique attack location, but the attack lo-
cation for NWi, SWi, and RDi are the same.

Figure 2 is a series of snapshots taken from NW9. The
grey-scale bar to the right of each snapshot is a concentration
scale of the agent in Kg/Kg (Kg of agent/Kg of air). While the
wind is blowing from the northwest the contaminant remains
in the southeast section of the environment. At the end of the
simulation there are significant contaminant levels remaining
in the atmosphere, reflecting the fact that this simulation used a

(a) Sensor Locations

(b) Attack Locations

Fig. 1. Sensor Locations and Attack Locations

low speed wind profile. High wind speed would accelerate the
dispersion process, leaving little if any contaminant remaining.

By simulating a high number of attack scenarios, we were
able to create a large set of simulated data. These data were
used for optimizing sensor placement. It also provided insight
about dispersion behavior patterns coupled to the modeled en-
vironment. One example of a behavior pattern which was re-
vealed is the dispersion vortex. The vortex is created when
contaminant gets trapped in space found between buildings,
where the walls form a barrier around the contaminated area,
creating a tornado-like effect. The speed of the flow restricts
the agent from escaping the area, allowing it to dissipate only
upwards. This type of behavior can also be determined by an-
alyzing concentration data at the candidate sensor locations.
When a sensor has a constant concentration for an extended
period of time, it is either near the attack location (directly in



the flow of contaminant), or it is in an area where the agent is
trapped. Regardless, the concentration data can show us where
there are consistently high levels of contaminant, and, coupled
with information from other sensors, provide information on
the direction of the contaminant dispersion.

(a) Initial onset of attack

(b) at 129 seconds

(c) at 270 seconds

(d) Remaining Contaminant

Fig. 2. Progression of Agent Dispersion from NW9 Attack Simulation

B. Sensor Configurations

We used AMPL and LPSOLVE [16] as our integer pro-
gramming software to compute the optimal sensor locations for
networks (containing up to twenty sensors). Figure 3 is a plot
of consumption values versus the number of sensors placed.

These results show that there is a limit to the effectiveness of
adding sensors.

Fig. 3. Plot of Consumption versus Number of Sensors Placed

The placement algorithm was run for each set of attack
scenarios to determine the optimal configuration respective to
that set. We constrained our algorithm to place ten sensors,
SMAX = 10, for the first optimization and found the best con-
figuration for each set. These configurations can be found in
Table 1 below. SNW , SSW , and SRD are the sensor configura-
tions for their respective simulation set. The normalized mean
consumption across these configurations was ωopt = 0.0805.

Table 1. Optimal Sensor Configurations with Smax = 10

Set Configuration Normalized
Consumption

SNW 5 12 13 14 19 22 24 26 29 31 0.032
SSW 2 5 9 10 12 18 20 27 29 33 0.0125
SRand 3 5 9 12 17 19 21 23 26 29 0.0358

Common 5 12 29

Next, we investigated the possibility of using any one of the
optimized configurations across the union of all ninety-nine
attacks. This was accomplished by computing the total con-
sumption, ω, for the configurations (SNW , SSW , or SRD) for
all simulation sets (NW, SW, and RD). When the SSW config-
uration was used in all three scenarios, the normalized mean
consumption value, ωNW , was found to be 0.334, which is ap-
proximately four times greater than ωopt. By using the SNW

set or the SRD set across all the scenarios, the normalized mean
consumption values across all ninety-nine attacks were found
to be ωNW = 0.472 and ωRD = 0.157, respectively.

We attempted to find a more robust sensor configu-
ration by calculating a configuration of sensors to mini-
mize consumption across the union of all three set of at-
tacks (i.e. all 99 attacks, as opposed to each individ-
ual set of 33 attacks) where SMAX = 10. We find



SMerg = {5, 9, 12, 17, 19, 21, 23, 26, 29, 33} by running our
sensor placement algorithm over the set of all 99 attacks. This
configuration represents a year-round fixed configuration and
had a total normalized consumption of ωMerg = 0.131. While
this consumption value is significantly greater than ωopt, it is
much lower than either ωNW , ωSW or ωRD. Clearly when a
fixed configuration of sensors is required the optimal configu-
ration is less effective at minimizing consumption then when a
seasonal configuration is used (calculated using seasonal pre-
vailing wind conditions).

V. CONCLUSIONS

Our study determines that sensor placement for NBC detec-
tion is highly sensitive to the wind - wind is the primary moti-
vator of agent dispersal. Consequently, it may be needed to use
seasonal sensor configurations in urban environments to maxi-
mize early warning capabilities. The improvement in detection
reached a saturation after a number of sensors were placed (in
our case, eight) and additional sensor do not improve perfor-
mance. The approach provides a consistent method to place
sensors for NBC detection so that total network consumption
is minimized.

VI. TABLE OF SYMBOLS

Table 2. Table of Symbols

Symbol Meaning
V = {v1, v2, ..., vN} Set of candidate sensor locations

A Set of attacks
αa, a ∈ A Probability an attack will

occur at location a
La Set of contaminated locations
ωa,j Consumption as a results

of attack a, with alarm j
dv(t1, t2) Total amount of contaminant

delivered from time t1 to t2
γa,v(t) Concentration of NBC agent as a

function of time and location
ba,i First detector index
si Sensor placement index (1 if

placed, 0 otherwise)
Smax Maximum number of sensors

allowed to be placed
NW Attack set with northwest

prevailing wind conditions
NWi Attack i in attack set NW
SNW Optimal sensor configuration for

attack set NW i

ωNW Consumption for all attack sets using
NW attack set optimal sensor configuration

ωopt Consumption for all attack sets using prevailing
wind condition optimal sensor configurations

SMerg Optimal sensor configuration for all attack sets
combined

ωMerg Consumption for all attack sets using fixed
sensor configuration,SMerg
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