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ABSTRACT 

Thermally and Acoustically Driven Transport in Supercritical Fluids 

Nusair Mohammed Ibn Hasan 

Bakhtier Farouk, Ph. D. 

 

Supercritical fluids are fluids at temperature and pressure above their respective 

critical values. Such fluids are increasingly being used in power generation, refrigeration 

and chemical process industry. The objectives of the current research were to develop a 

fundamental understanding of the transport phenomena in near-critical supercritical fluids 

via high-resolution numerical simulations and careful experiments for improved design of 

industrial processes and applications that employ supercritical fluids. A set of synergistic 

experimental and numerical studies were proposed in this research. Four main focus areas 

under the broad spectrum of supercritical fluid transport were chosen – (a) characterization 

of thermoacoustic transport, (b) interaction of thermoacoustic transport with natural 

convection, (c) characterization of acoustically augmented transport and (d) enhancement 

of mass transport using acoustic waves. 

 

A numerical model to simulate thermoacoustic convection in near-critical fluids 

was developed. In the computational model, the conservation equations were solved along 

with a real-fluid equation of state for supercritical fluid and variable thermo-physical 

properties. Thermoacoustic waves in near-critical carbon dioxide were also investigated 

experimentally on acoustic time scales using a fast response measurement system. The 

predicted results from the calculation and the measurements provide interesting details 

regarding the thermal transport mechanisms at near-critical states. The numerical model 

was applied to investigate the interaction of buoyancy driven flows with thermoacoustic 
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convection in near-critical supercritical fluids. This model can be extensively used for 

studying the steady-state thermal transport and stability behavior of near-critical fluids. 

 

Mechanically driven acoustic waves in supercritical fluid generated by a vibrating 

wall in a cylindrical resonator were studied both numerically and experimentally. The 

simulations revealed interesting steady-periodic flow patterns in the resonator filled with 

near-critical fluid due to the fluctuations caused by the vibrating wall. High-fidelity 

computational fluid dynamics models of mass transport processes in supercritical fluid 

extraction systems were also developed. A novel application of acoustically driven 

transport in supercritical fluid was demonstrated numerically for the supercritical fluid 

extraction process. The numerical predictions indicated major improvements in the 

extraction yield due to the application of acoustic waves and can be utilized in the design 

and optimization of supercritical fluid extraction systems. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

This thesis reports the interactions between thermal and acoustic energy, and the 

effect of induced acoustic waves on the transport in near-critical supercritical fluids. The 

focus of this dissertation is placed on how these interactions are harnessed to the purpose 

of energy transport and process enhancement, specifically in solvent extraction. The 

information contained within this chapter will put into context the motivations and 

objectives of the current research and will provide a better understanding of the results 

presented in the following chapters. 

 

1.1.1 Critical point and supercritical fluids 

In thermodynamics, a critical point specifies the conditions (temperature, Tc and 

pressure, pc) at which a phase boundary ceases to exist and above which distinct liquid and 

gas phases do not exist. For pure substances, there is an inflection point in the critical 

isotherm on a p-v diagram [1]. This means that at the critical point: 

2

2
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T T

p p

v v

   
   

    

     (1.1) 

The supercritical state of a fluid is defined as the state of a compound, mixture or 

element above its critical pressure (pc) and critical temperature (Tc) but below the pressure 

required to condense it into a solid [2]. In that sense, the critical point corresponds to the 

highest temperature and pressure at which the substance can exist as a vapor and liquid in 

equilibrium. Figure 1.1 shows a p-T (pressure - temperature) phase diagram for carbon 

dioxide in gas, liquid, solid and supercritical states. The critical pressure (pc) for carbon 
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dioxide is 7.377 MPa and the critical temperature (Tc) is 304.13 K [3]. If both pressure and 

temperature are beyond each critical point, the carbon dioxide is in a supercritical state. 

 

Figure 1.1: p-T phase diagram for carbon dioxide. 

 

The thermo-physical properties of a supercritical fluid vary over a wide range 

depending on the temperature and the pressure, but generally are intermediate between 

those of liquids and gases. However, these properties are highly sensitive to small changes 

in temperature and pressure near the critical point. Supercritical fluids has been considered 

very useful as reaction, extraction and thermal transport media because of their high 

compressibility, specific heat and solubility as well as their tunability, which allows one to 

control the thermo-physical properties to cater specific applications. In addition, 

supercritical fluids has the ability to dissolve gases such as H2, O2 and CO [4]. 
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1.1.2 Thermoacoustics 

Pressure waves in fluids can be generated by either mechanical or thermal effects. 

Pressure waves travelling in a medium at the speed of sound of that medium are known as 

acoustic waves. In fluids, pressure waves that are generated due to a rapid expansion or 

compression of the fluid due to thermal effects are characterized as thermally generated 

acoustic waves or thermoacoustic waves. The study of this phenomenon (involving both 

thermodynamics and acoustics) is broadly classified as thermoacoustics. The term 

‘thermoacoustics’ includes all effects in acoustics in which heat conduction and entropy 

variations of the gaseous medium play a significant role [5]. All acoustics in fluids in which 

diffusive effects are considered belong within the field of thermoacoustics. 

 

Thermoacoustic waves are generated due to the rapid heating or cooling of a gas 

[6]. When a gas is subjected to a rapid temperature increase at a solid surface, the fluid in 

the immediate vicinity of the boundary is heated by conduction and tends to expand. 

However, the sudden expansion of the gas due to the energy input is constrained by the 

inertia of the unperturbed media and induces a pressure wave called a thermoacoustic 

wave. The pressure wave that is generated from the hot wall travels at approximately the 

speed of sound within the fluid and impinges on the opposite wall and is reflected back. 

The wave repeatedly traverses between the walls, and its amplitude eventually damps out 

due to the viscous and thermal losses within the gas. Thermal transport by thermoacoustic 

waves can be significant when the fluid is close to the critical point or when other modes 

of convection are weak or absent [7]. 
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1.1.3 Acoustic streaming 

Acoustic streaming can be defined as steady convection which is driven by 

oscillatory phenomenon in bounded channels [8]. It is well-known that acoustic sources 

may generate a convective field in which the particle velocities are not simply sinusoidal, 

and a pattern of time-independent vortical flows or steady circulations is often found in the 

body of compressible media. These second-order steady flow patterns are known as 

acoustic streaming, which always have rotational character. Figure 1.2a below shows the 

streaming patterns that appear near the external surface of a cylinder oscillating in a 

quiescent medium (here glycerin-water mixture). Figure 1.2b shows similar streaming 

patterns on the inside of an acoustic resonator tube that is excited by a loudspeaker. 

 

 

(a)        (b) 

Figure 1.2: Acoustic streaming patterns (a) external: outside a cylinder oscillating in a 

quiescent medium [9] and (b) internal: inside a cylinder that has oscillatory flow within it 

generated by a loudspeaker [10]. 
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Typical acoustic streaming velocities are more than an order of magnitude smaller 

than the instantaneous oscillatory velocity flow field in the resonator [11]. Acoustic 

streaming flows are mostly uni-directional in nature as compared to the alternating nature 

of the oscillatory flow. Acoustic streaming has applications in mixing channels and 

enhanced convective transport. 

 

1.1.4 Supercritical fluid extraction 

Supercritical fluid extraction (SFE) covers the application of fluids at supercritical 

or near-critical conditions in separation processes or extractive operations [12]. The 

supercritical fluid extraction (SFE) process has attracted increasing interest over the past 

few years [13, 14]. Conventional separation techniques such as solvent extraction, 

partitioning (also known as liquid–liquid extraction; a method to separate compounds 

based on their relative solubility in two different immiscible liquids)  and distillation 

usually have the drawback of leaving trace amounts of inorganic (potentially toxic) 

solvents or to cause thermal degradation [15]. Some supercritical fluids have the potential 

to replace these toxic industrial solvents. Due to its unique characteristics and physic-

chemical properties such as being less toxic, nonflammable, and having the extraction 

power tuned by temperature and pressure, supercritical carbon dioxide is generally used as 

a green solvent for extraction of substances especially from solid or liquid substrates. Such 

extraction has been carried out on commercial scale for more than two decades and 

applications like decaffeination of coffee beans and black tea leaves and hops extraction 

are involved in large-scale processes [16]. 
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1.2 Motivation of the dissertation research 

Although supercritical fluids have been used in various industrial applications for 

the past 60 years, it is only in the early ‘90s that their peculiar thermo-physical properties 

have been identified, following the works of Widom, Kadanoff and Wilson [17-19]. The 

understanding of the hydrodynamics and transport phenomena in these fluids is thus a 

relatively recent result. However, the knowledge regarding the thermal and chemical 

(species) transport phenomena in supercritical fluids is not complete and many open 

questions exist. An important area is the detailed understanding of transport behavior of 

supercritical fluids near the critical point. The typical characteristics of supercritical fluids 

near the critical point can be summarized by the following points – 

 Near the critical point, supercritical fluids are dense and compressible at the same time. 

 Thermal diffusion coefficient of near-critical fluids is generally very small compared 

to gases while the mass diffusion coefficients are much larger than in most liquids. 

 Near the critical point, minor adjustments in temperature and pressure can provide 

significant variations of the thermo-physical properties. 

 The divergence of the thermo-physical properties at the critical point can also be felt 

around the pseudo-critical states (i.e. where ρ = ρc). 

 

Due to the above characteristics, near-critical thermal transport exhibits features 

that are not observed in supercritical fluids far from their critical point and also in gas/liquid 

phases [20-22]. A significant amount of research on heat transfer to supercritical fluids has 

been carried out over the past years [23-29]. The existing studies in the literature regarding 

thermal transport in supercritical fluids mainly focus on two working fluids - carbon 
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dioxide [30-34] and water [35-38]. This is due to their widespread practical applications in 

the refrigeration and nuclear industries. However, there is a lack of understanding and 

ability to predict the transport behavior of supercritical fluids in the near-critical region. 

Also, it is well known that, acoustic phenomena (thermoacoustic waves) are responsible 

for the fast thermal homogenization in supercritical fluids (near the critical point) which 

occurs on a much shorter time scale than in a purely diffusive medium [39-43]. These 

aspects are of practical importance in space engineering purposes like the storage and 

utilization of rocket fuel at supercritical conditions. Also, supercritical fluids have been 

considered for reclaiming potable water from the biological waste in long range space 

flights [44]. The low heat diffusivity character of near-critical conditions makes the 

thermoacoustic convection mode of heat transport significant for supercritical fluid storage 

systems which involve rather weak diffusive and convective transport of heat, especially 

in a reduced-gravity environment. Because of the high density and compressibility values 

of fluids in these systems, strong thermoacoustic waves are produced and heat transfer 

effects of these waves become critical due to the possibility of a sudden phase change in 

the storage system. Detailed numerical simulations are needed to clearly understand the 

physics of convection, thermal and chemical transport in supercritical fluids with and 

without the effects of thermally induced acoustic waves. 

 

Solvent extraction processes using supercritical fluids have attracted increasing 

interest over the past few years [13, 14, 45]. This is particularly motivated by concerns 

about environmental aspects, given the capability of some supercritical fluids for replacing 

toxic industrial solvents and the possibility to tune the solvent characteristics for highly 
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specific reactions or separations. Supercritical fluids are now being used in several 

applications (lab-scale or industrial) associated with the development of sustainable 

chemistry and engineering. However, chemical (species) transport processes in 

supercritical fluids has a very slow dynamics near the critical point and hence the operating 

parameters are set relatively far from the critical point. The use of acoustic excitation 

represents a potential efficient way of enhancing mass transfer processes in the near critical 

region by increasing localized convection [13, 46-49]. Also, acoustic streaming has the 

potential to accelerate certain kinds of rate processes and has applications in localized 

micro-mixing and convective transport processes [50-53]. 

 

A detailed study of thermally and acoustically driven flows in supercritical fluids 

near the critical point is important for understanding the hydrodynamics and transport 

behavior and for extending the range of process parameter space (pressure and 

temperature). Although extensive investigations of transport characteristics in supercritical 

fluids have been reported [34, 54, 55], experimental or numerical studies near the critical 

point are limited. The response to any thermal disturbance to near-critical fluids is complex 

and not fully understood. The difficulties mostly arise from the divergence of the thermo-

physical properties near the critical point. Detailed numerical modeling (accompanied by 

experimentations) of the thermally and acoustically driven flows in near-critical 

supercritical fluids can provide important insight into the interplaying thermo-

fluid/acoustic-fluid interactions and transport behavior that would be difficult to obtain via 

experiments only. This would provide better understanding of the regime of operation and 

would also provide guidelines for optimizing different process operating parameters. 
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1.3 Objectives of the dissertation research 

The objectives of the current research were to develop comprehensive 

computational models to accurately predict and study the thermally and acoustically 

induced flow and transport in near-critical supercritical fluids and to validate the numerical 

modes with detailed experiments. The objective was to perform the research based on a set 

of synergistic experiments and numerical simulations that can be used to understand the 

thermal and chemical (species) transport behavior in near-critical supercritical fluids. The 

developed models were used to study thermally and acoustically driven flows in simplified 

geometries (one dimensional slot, two dimensional enclosure, cylindrical tube etc.) as well 

as in complex systems (fixed bed extractor, membrane contactors etc.)1 and to investigate 

the effects of a variety of operating conditions (mainly thermodynamic state) on the 

transport. Based on the overall goal, the specific objectives for the current project are listed 

below – 

a. Develop real-fluid computational fluid dynamic models considering all of the relevant 

fluid property variations to accurately predict thermally driven convective flows 

(thermoacoustic and natural convection) and related transport phenomena in 

supercritical fluids. 

b. Generate and measure thermally induced acoustic waves in an experimental test 

cylinder filled with supercritical fluid. 

c. Numerically simulate the generation, propagation and dissipation of thermally induced 

acoustic waves in supercritical fluids and validate the numerical calculations with the 

results obtained from the experimentation. 

                                                 
1 Fixed bed extractors and membrane contactors will be discussed in detail in the following chapter. 
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d. Investigate the physical mechanisms of thermoacoustic convection and transport in 

near-critical supercritical fluids. 

e. Design, build, instrument and test a lab-scale experimental setup to generate and 

measure mechanically driven acoustic waves in near-critical supercritical fluids.  

f. Numerically investigate mechanically driven acoustic waves and acoustic streaming 

phenomena in near-critical supercritical fluids. 

g. Develop computational fluid dynamics (CFD) models to predict the chemical (species) 

transport characteristics in supercritical fluid extraction systems (fixed bed extractor 

and membrane contactor). 

h. Numerically investigate the effect of acoustically augmented flow in supercritical fluid 

extraction systems.  

 

To a significant extent, the objectives set at the onset were met by the present 

research study. The completed research and how it meets the objectives listed above is 

discussed in the following chapters. 

 

1.4 Overview of the dissertation 

The organization of this dissertation is as follows. Chapter 1 introduces the thesis 

topic and discusses the motivations and objectives of the research. Chapter 2 provides 

introductory information and background to familiarize the reader with the thermo-

physical properties variation in near-critical supercritical fluids and supercritical fluid 

extraction systems in context of the current research. Chapter 2 also includes a detailed 
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literature review of the past research performed on convective and thermoacoustic transport 

in supercritical fluids and modeling of supercritical fluid extraction processes. 

 

The presentation of results begins in chapter 3. For the most part, the chapters are 

self-contained with introductions, experimental setup/numerical model and simulation 

conditions, results and discussion and a brief set of conclusions corresponding to each 

study. Chapter 4 is devoted to the numerical investigation of thermally induced acoustic 

waves in supercritical fluids, and the effect of near-critical property variations on the 

thermoacoustic transport. This includes a detailed description of the numerical model 

developed and the validation of the numerical model with previously published data. 

Experimental studies of thermally induced acoustic waves in near-critical fluids are 

presented in chapter 4. The experimental study details the procedure followed to design, 

fabricate and instrument the test setup for measuring thermoacoustic waves in supercritical 

fluids. The experimental results are then compared with the calculations presented in 

chapter 3. Numerical investigation of the interaction between thermoacoustic convection 

and buoyancy induced convective transport in near-critical fluids are presented in chapter 

5. A correlation to predict the buoyancy-driven thermal transport is also proposed in this 

chapter. Chapter 6 describes the fundamental investigation for characterizing mechanically 

driven acoustic waves in supercritical fluids. Both experimental and numerical 

investigation of the mechanically driven acoustic waves and acoustic streaming formation 

in supercritical fluids are presented in this chapter. In chapter 7, computational fluid 

dynamic models to predict transport processes in supercritical fluid extraction systems, 

namely – fixed bed reactors and membrane contactors are introduced. The developed CFD 
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models are applied to study acoustic wave induced enhancement of the transport processes 

in these systems which are typical in solvent extraction industry. Finally Chapter 8 

summarizes and concludes the research presented in this dissertation with a proposal and 

discussion of research tasks that may be undertaken in the future to improve and better 

understand the near-critical transport phenomena and its applications in energy and solvent 

extraction systems. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

 

2.1 Critical point phenomena 

The transition between the vapor and liquid phases of a pure fluid is one of the most 

fundamental in nature. Critical point is considered as the reference point, from which all of 

the transition properties of such a fluid can be derived. This is the point, characterized by 

a fixed temperature, pressure and density, at which the distinction between the gas and the 

liquid phase simply disappears. For a better understanding of the phenomena, the phase 

equilibrium of carbon dioxide at a supercritical pressure is shown in figure 2.1. In the first 

image (Figure 2.1a), the temperature is sub-critical (T < Tc) the separated phases (liquid 

and vapor) of carbon dioxide are easily observed. With a slight increase in temperature, the 

meniscus (the line between the two phases) begins to diminish (Figure 2.2b). Increasing 

the temperature further causes the gas and liquid densities to become more similar. The 

meniscus is less easily observed but still evident (Figure 2.2c). Once the critical 

temperature and have been reached the two distinct phases of liquid and gas are no longer 

visible. The meniscus can no longer be seen. One homogenous phase (i.e. supercritical 

fluid phase) occurs which shows properties of both liquids and gases (Figure 2.2d). Similar 

phenomena is observed for all others fluids approaching critical point.  

 

In a wide domain around the critical point, thermo-physical properties such as 

isothermal compressibility, the density of the gas and liquid phases, and the surface tension, 

can be set in the form of scaled, universal functions (power laws) with respect to the 

critical-point parameters [56]. This has the very important consequence that any results 
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obtained with one fluid can be immediately re-scaled to describe any member of a whole 

class of systems, called a ‘class of universality’ [57]. 

 

Figure 2.1: Carbon dioxide transition from (a)-(c) vapor-liquid equilibrium to (d) a 

supercritical fluid phase [58].   

 

The thermo-physical properties of a near-critical fluid can easily be varied by using 

small changes in the temperature. The highly variable properties of near-critical fluids 

make them very appealing for studying many interesting phenomena that, because of the 

universality of the power laws, are valid for all fluids. Above the critical temperature and 

pressure (i.e. in the supercritical state) the fluids exhibit a number of specific properties 

(high density, low viscosity, large diffusivity), which make them intermediate between 

liquids and gases. In addition, the isothermal compressibility of near-critical fluids become 

extremely large. As the critical point is approached, the fluids become extremely 

compressible much more so than ideal gases. Excited by the thermal fluctuations and 

enhanced by the large compressibility of the fluid, the density fluctuates more strongly as 

the critical point is approached. A supercritical fluid may be considered macroscopically 

homogeneous but microscopically, it is inhomogeneous – consisting of clusters of 

atoms/molecules and free volumes. The vicinity of the critical point is thus characterized 

by the presence of very-large-scale density fluctuations (or more generally, order parameter 
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fluctuations), which develop throughout the fluid. These order parameter fluctuations are 

correlated with the correlations having a spatial extent that can be characterized by a 

correlation length ξ [56, 59, 60]. The specific nature of the critical region therefore involves 

the appearance of this new characteristic distance, which can become much larger than the 

inter-particle distance. The correlation length then becomes the natural length scale of 

critical-point phenomena. Figure 2.2 shows the shadowgram of near-critical SF6 in a 

thermostated cell (p = pc, T = Tc + 10 μK) under zero gravity (taken during STS-91 at Mir 

Space Station) [61]. The density inhomogeneity and the correlation length of the near-

critical fluid can be clearly observed from this shadowgram. 

 

Figure 2.2: Shadowgram of near-critical SF6 (T – Tc = 10 µK) showing large density 

fluctuations [61]. 

 

Apart from the strong dependency on state variables, transport properties of a near-

critical fluid undergoing acoustic perturbation can also show dependence on the frequency 

(f) of the perturbation [62-64]. Normally, the fluctuations in a fluid relax on a time scale 

much shorter than the period of the perturbation; the fluid remains in equilibrium despite 

the macroscopic motions within and frequency effects are not detected. On the other hand, 
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when a fluid approaches the critical point, the decay time of the fluctuations (τfluc) becomes 

very large. Hence a fluid sufficiently close to the critical point can no longer equilibrate 

within the time scale of the acoustic process and frequency effects become significant. 

Variation of the thermo-physical properties of near-critical supercritical fluids are 

discussed in the following sub-sections in context of the work presented in this dissertation. 

 

2.1.1. Variation of transport and thermo-physical properties near the critical point 

Near the critical and pseudo-critical states of a pure fluid, the thermo-physical 

properties exhibit unusual behaviors; showing large gradients for a small change in the 

state variables (pressure and temperature). Figure 2.3 shows a pressure vs. specific volume 

(p-v) diagram [22] for carbon dioxide in gas, liquid, gas-liquid mixture and supercritical 

states. The critical pressure (pc) for carbon dioxide is 7.3773 MPa, the critical temperature 

(Tc) is 304.1282 K and the critical density (ρc) is 467.6 kg/m3 [3]. 

 

Figure 2.3: The p-v diagram for carbon dioxide [3]. 
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The equation of state describing the ρ-p-T relation of supercritical fluids is 

complicated. It has been shown earlier [39, 56] that the van der Waals equation of state 

does not represent the properties of supercritical carbon dioxide accurately near the critical 

point. In this dissertation research, the NIST Standard Reference Database 23 [3] is used 

for evaluating the ρ = f(p, T) relations and most other thermodynamic and transport 

properties of supercritical fluids. The NIST23 [3] equation of state describing the ρ-p-T 

relation for carbon dioxide is based on the equation of state proposed by Span and Wagner 

[65], which is mainly empirical in nature and includes special non-analytic terms to predict 

the correct behavior of the fluid to the immediate vicinity of the critical point. 

 

 

Figure 2.4: Variation of density as a function of pressure and temperature for near-

critical CO2 [3]. 

 

Figure 2.4 shows the density vs. temperature (ρ-T) relationship of carbon dioxide 

at different pressures ranging from sub-critical to supercritical states. The density of carbon 



18 

 

dioxide at a sub-critical pressure (say, 6.0 MPa) varies slightly with temperature, while the 

density in the near-critical pressure condition (~ 7.38 MPa) varies widely across the phase 

interface from the liquid or vapor to the supercritical fluid phase. Above the critical point, 

the thermo-physical property variations are mainly characterized by the pseudo-critical 

states. The pseudo critical state of a pure fluid can be defined as the state in near-critical 

supercritical region at which the density of the fluid is equal to its critical density (i.e. where 

ρ = ρc) and the thermodynamic and transport properties have their maximum rate of change 

with temperature, at a given supercritical pressure [66]. Its significance is that, below the 

temperature corresponding to the pseudo-critical state (where / 1c   ), the fluid has 

liquid-like properties while above (where / 1c   ); it more closely resembles a vapor. 

 

Figures 2.5(a) and 2.5(b) show the variation of  thermal diffusivity (α) and thermal 

conductivity (k)  of carbon dioxide with temperature respectively at different pressures and 

also along the critical isochor ( c  ).  It is observed that along the pseudo-critical states, 

thermo-physical properties of pure fluids experience significant changes. In particular, the 

thermal diffusivity (α) and acoustic speed (cs) approaches very small values while the 

thermal conductivity (k), specific heat (cp) and isothermal compressibility (β) tends to very 

high values. Hence, even around 10 K above the critical temperature (304.13 K), carbon 

dioxide is found to be compressible but the density remains high. The specific heat also 

shows a strong divergence around the critical point. Due to these divergences of thermo-

physicals properties at the critical point, thermal diffusion at 10 K above the critical point 

is about  170 times slower than that at the ambient conditions (and about 3000 times slower 

at Tc + 0.1 K). 
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(a) 

 

(b) 

Figure 2.5: Variation of (a) thermal diffusivity and (b) thermal conductivity as a function 

of temperatures at different pressure for near-critical carbon dioxide [3]. 
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Figure 2.6: Variation of the calculated binary diffusion coefficient (D12) of caffeine in 

supercritical carbon dioxide as a function of temperature at different pressures near the 

critical point of carbon dioxide. 

 

The binary diffusion coefficients of different species in a supercritical solvent can 

be calculated using the correlation developed by Catchpole and King [67, 68]. The 

correlation can be used to estimate both self and binary diffusion coefficients in a range of 

near critical solvents (including supercritical carbon dioxide) with an average error of 10%. 

The binary diffusion coefficient of caffeine (C8H10N4O2) in supercritical carbon dioxide as 

obtained from Catchpole and King [67] correlation is shown in figure 2.6. It is observed 

that the binary diffusion coefficient of caffeine in supercritical carbon dioxide is a strong 

function of pressure and temperature and it closely follows the density variation of 

supercritical carbon dioxide in the near critical region with very small coefficient of 

diffusivity near the critical point. Correlation developed by Gurdial et al. [69] is used to 
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calculate the solubility of a solute in supercritical solvents. The variation of equilibrium 

mole fraction of caffeine in supercritical carbon dioxide is shown in figure. 2.7. 

 

 

Figure 2.7: Variation of the calculated equilibrium mole fraction of caffeine in 

supercritical carbon dioxide as a function of temperature at different pressures near the 

critical point of carbon dioxide. 

 

Another thermo-physical property, the bulk viscosity (μ′) also shows significant 

variations near the critical point of a fluid. Bulk viscosity is a measure of the resistance of 

a fluid which is being deformed by a normal stress [70]. Mathematically, bulk viscosity is 

given by: 

2

3
    

     (2.1) 

Here  is the second coefficient of viscosity and μ is the shear viscosity. Bulk viscosity 

becomes important only for such effects where fluid compressibility is essential. For most 
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gases and incompressible fluids, the Stokes hypothesis [70] is valid and the bulk viscosity 

is considered to be negligible. However, for supercritical fluids, near the liquid-vapor 

critical point, the bulk viscosity is significant and the value diverges at the critical point 

and along the pseudo-critical states in the near-critical zone. In the present work, Onuki’s 

equation [56, 71] is used for calculating the zero frequency bulk viscosity ( )  of carbon 

dioxide: 

2

1

B S flucR c

Q

 


 
     

     (2.2) 

Here, RB is a constant (~ 0.03),  is the density, cs is the acoustic speed and for carbon 

dioxide, Q is given by: 

 
0.11

0.9 1CQ T T        (2.3) 

The fluctuation relaxation time (
fluc ) is given by [56]:   

36
fluc

B Ck T

 
         (2.4) 

Here, ξ is the correlation length of the critical fluctuations and kB is the Boltzmann constant. 

On the critical isochore ( C  ), Onuki [72] gave: 

 
0.63

0 1CT T 


       (2.5) 

Here,
o

0 1.5A   for CO2. However, for thermodynamic states that are not on the critical 

isochore the above expression for calculating the correlation length is not valid. Moldover 

et al. [73] gave a more generalized expression for calculating the correlation length, ξ : 

 0.63 2

0 1 0.16r        (2.6)  
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Here, the parameters r and θ can be found by simultaneously solving the following non-

linear equations: 

2(1 1.2766 ) 0C
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T T
r

T
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Figure 2.8: Variation of the ratio of bulk viscosity to shear viscosity as a function of 

temperatures at different pressure for near-critical carbon dioxide. 

 

Figure 2.8 shows the calculated bulk viscosity to shear viscosity (μ′/μ) ratio of 

supercritical carbon dioxide as a function of pressure and temperature near the critical 

point. The bulk viscosity tends to infinity when temperature and pressure approach critical 

values. This divergence of bulk viscosity of pure fluids along the pseudo-critical states 

plays a major role in the thermal equilibration of near-critical fluids. 
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2.2 Thermoacoustic transport 

There has been a considerable amount of analytical, numerical and experimental 

studies on thermoacoustic waves [7, 74-77]. The past studies can be divided into two 

categories: thermally induced acoustic waves in ideal gases and in supercritical fluids. 

Investigations in both of these categories are reviewed in detail in the following 

subsections. 

 

2.2.1 Thermally induced acoustic waves in ideal gases 

In 1899 Lord Rayleigh [78], starting from the Navier-Stokes equations for 

compressible fluids, derived an approximate solution in the form of a series for the 

generation of a pressure wave with a finite amplitude induced by the imposition of a high 

temperature plane in a gas. Trilling [79] also treated the problem of thermally induced 

sound fields in a semi-infinite body of a perfect gas, subjected to a step change in 

temperature at the solid wall. The one-dimensional compressible flow equations were 

linearized and a closed-form asymptotic solution was obtained using a Laplace transform 

technique. He also determined how sound intensity depended on wall temperature history 

by developing analytical solutions. Larkin [80] was the first to develop a finite difference 

solution to study the thermally induced acoustic waves, in a confined gas, generated by 

instantly heating one parallel plate with the other maintained at the initial temperature. He 

employed an explicit finite difference scheme for the continuity and momentum equations, 

but an implicit one for energy equation. His solution predicted the generation of a thermally 

induced acoustic wave traveling approximately at the local acoustic speed in helium. 

Additionally, he found that neglecting the convective and dispersive terms in the 
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momentum equation was not permissible. Kassoy [6] studied the response of a perfect gas 

confined in a slot to a monotonically varying temperature disturbance at the boundaries, 

employing a variety of perturbation methods. Kassoy investigated this problem in two time 

scales: acoustic time scale and conduction time scale. On the acoustic time scale, the 

solutions were based on a thin expanding conduction boundary layer adjacent to the slot 

wall and an isentropic core in which a thermally induced acoustic wave propagates. On the 

conduction time scale, the governing equations were found to include nonlinear convection 

and pressure work terms. Additionally, a weak acoustic field was found to be propagating 

in the spatially anisotropic system. Radhwan and Kassoy [81] investigated the behavior of 

a gas confined between infinite parallel planar walls subjected to significant heat addition. 

The solutions were developed in terms of asymptotic expansions, which are valid when the 

ratio of the acoustic time scale to the conduction time scale is small. Ozoe et al. [82, 83] 

numerically studied one- and two-dimensional thermoacoustic convection, due to rapid 

heating of one of the enclosing walls, in a confined region filled with a compressible fluid. 

The compressible Navier-Stokes equations with constant viscosity, constant conductivity 

and negligible viscous dissipation were non-dimensionalized, and numerically solved by a 

finite-difference method, with the convective terms approximated by a first-order upwind 

scheme, which is a flip-flop procedure depending on the sign of the velocity. The pressure 

waves were captured with substantial numerical diffusion in their numerical results. It is 

also shown that the fluctuating velocity generated by the pressure waves greatly enhance 

the rate of heat transfer over that for pure transient conduction. They also studied effects 

of various parameters, such as gravity, viscosity, wall temperature, and fluid properties on 

the development of convection. The description of thermally induced acoustic waves in a 
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fluid by the Navier-Stokes equations (continuity equation, momentum equation and energy 

equation) along with an appropriate equation of state was compared, by Churchill and 

Brown [84], with that provided by the hyperbolic conduction equation. Churchill and 

Brown found that the Navier-Stokes equations with the equation of state provided a 

satisfactory model for thermally induce acoustic waves for short, long and intermediate 

times. However the simplified hyperbolic conduction equation model just provided a crude 

approximation, due to the postulate of a wave velocity with a constant magnitude, was 

thereby invalid for the wave generation, propagation and dissipation. Brown and Churchill 

[77] also numerically investigated, with finite-difference method, thermally induced 

acoustic waves in a gas by rapid heating of a bounding solid surface. The numerical 

predictions showed that rapid heating of a solid surface bounding a region of gas generates 

a slightly supersonic wave with positive amplitude in pressure, temperature, density and 

mass velocity, which are in good qualitative agreement with prior experimental 

measurements. Thermally induced acoustic waves in a semi-infinite medium [85] and in a 

confined medium [86] were theoretically and numerically investigated by Huang and Bau. 

Huang and Bau solved the linearized wave model with asymptotic methods and a 

numerically inverted Laplace transform. Farouk et al. [7] used a control-volume-based 

flux-corrected transport algorithm to predict the early time behavior of thermally induced 

acoustic waves in a compressible-fluid filled cavity. In their numerical model, the 

temperature dependent fluid properties were used. Aktas and Farouk [87] studied the effect 

of gravity on the fluid motion generated by the thermally induced acoustic waves in a 

rectangular enclosure. The gravitational acceleration was found to have a negligible effect 

on the behavior of thermal induced acoustic wave for early times. A uniformly heated side 
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wall was considered and the flow development of thermally induced acoustic waves under 

zero-gravity conditions was not studied. Lin et al. [88, 89] numerically investigated the 

flows generated by thermally induced acoustic waves in an enclosure with and without 

gravity, using a control-volume-based flux corrected transport algorithm. They considered 

that the left wall of the enclosure was heated rapidly either in a spatially uniform or a non-

uniform manner, whereas the right wall was held at the initial temperature of the gas. Their 

simulations showed that, at zero gravity, the spatially non-uniform heating induced a 

vortical flow in the enclosure, similar to that found in buoyancy-induced flows in a side-

heated enclosure. 

 

The generation of thermally induced acoustic waves in gases has been studied 

experimentally by only a few investigators. Parang and Salah-Eddine [90] investigated the 

thermoacoustic convection phenomena in a cylinder containing air in both normal and 

reduced gravity environments. In their resulting measurements of air temperature, no 

oscillations was recorded due to the small oscillation amplitude and low sample rate of 

measurement, but the air temperatures were found to rise much faster than in the 

computational results for the case of pure conduction. No pressure measurement was 

reported. Experimental measurements of pressure waves generated by rapid heating of a 

surface were reported by Brown and Churchill [74]. In their experiments, the rapid heating 

procedure was achieved by an R-C circuit. The pressure measurements in the wall of the 

closed chamber clearly demonstrated the generation of acoustic waves by rapid heating of 

a wall. Lin and Farouk [75] experimentally investigated the behaviors of thermally induced 

acoustic waves generated by rapid heating of a bounding solid wall in a closed cylindrical 
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tube. Following Brown and Churchill [74], they used a R-C circuit to generate a rapid 

temperature increase in a thin nickel foil located at one end of the closed cylindrical tube, 

generating a thermally induced acoustic waves. They measured the characteristics of 

generation, propagation, and decay of the acoustic waves with two different pressure 

transducers, and found that the measured decay rate of the acoustic waves was somewhat 

faster than the numerically predictions. 

 

2.2.2 Thermally induced acoustic waves in near-critical fluids 

Thermally induced acoustic waves are much stronger in supercritical fluids than in 

ideal gases under the same temperature increase and the rate of increase [91]. Because of 

the specific properties of supercritical fluids, such as the vanishingly small thermal 

diffusivity near the critical point, thermally induced acoustic waves play a dominant role 

in temperature equilibration [92, 93]. Due to the vanishingly small thermal diffusivity near 

the critical point, very long time to reach equilibrium was expected for heat transfer in 

near-critical fluids. However, thermoacoustic waves in a confined layer of near-critical 

fluid induce an adiabatic compression of the bulk fluid which results in a homogeneous 

temperature increase of the bulk. This adiabatic compression known as the ‘piston effect’ 

phenomena in fluids near the gas-liquid critical point, was first explained by Boukari et al. 

[94] using thermodynamic analysis and was later confirmed by Onuki et al. [95, 96] using 

analytical solution of linearized hydrodynamic equations.  

 

Zappoli et al. [97, 98] studied the response to a boundary heating of supercritical 

CO2 under microgravity by numerically solving the complete one-dimensional Navier-
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Stokes equations. The van der Waals equation of state for supercritical CO2 was used in 

this study. However, the internal energy of supercritical CO2 (as it appears in the energy 

equation) was considered as a function of temperature only, which is correct only for ideal 

gas. The PISO (Pressure Implicit with Splitting of Operators) method was employed to 

solve the one-dimensional Navier-Stokes equations. The temperature of one boundary was 

increased linearly by 13.0 mK in 1.3 ms. Figure 2.9a and 2.9b shows the temperature 

profiles for short times and for longer times respectively. Both figures show rapid thermal 

equilibration in the supercritical CO2. It was concluded that the thermal energy is 

transformed into kinetic energy in a hot expanding boundary layer, which in turn 

transformed into thermal energy in the bulk fluid. 

 

Figure 2.9: Temperature profiles (a) in the short time scale for different acoustic times 

(t/ta: where ta = 11.5 µs) and (b) in the longer time scale for different diffusion times (t/td; 

where td = 157 s) [98]. 

 

Klein et al. [99] published their experimental results of temperature propagation in 

near-critical sulfur hexafluoride (SF6). The SF6 sample of critical density was housed in a 

cylindrical copper cell. The sample was rapidly cooled down form a temperature some 

milli-Kelvins above the critical temperature to a temperature some milli-Kelvins below the 

critical temperature under reduced gravity in a sounding rocket of the TEXUS 
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(Technologische Experiment unter Schwerelosigkeit) program. At the critical temperature, 

thermal diffusivity of SF6 is of the order of 10-7cm2/s. This, along with the thermal length 

of 2.0 mm of Klein’s sample cell, leads to a thermal relaxation time of the order of about 

100 h. However in Klein’s microgravity experiments, temperature changes were found 

propagating through the sample cell within seconds. Based on their experiment results and 

the theory of Onuki et al.[96], Klein et al. [99] pointed out that using thermal diffusivity in 

relaxation time estimation only qualifies for samples at constant pressure. If the sample 

volume is fixed and gravity convection is absent, the propagation of temperature changes 

into the interior region of the fluid near its critical point is mainly proceeding by adiabatic 

heating, like the temperature rise due to adiabatic compression. Temperature changes 

somewhere in the fluid cause expansion or contraction of the adjacent fluid. This in turn 

causes a pressure change throughout the sample volume with the consequence that the 

sample temperature is changed adiabatically and quickly. 

 

Zappoli and Carles [100] numerically studied the thermo-acoustic nature of piston 

effect. The problem geometry was a 1-D slab-like container filled with a near-critical fluid, 

which was submitted to a given heat flux at the boundary. Zappoli’s governing equations 

[100] were non-dimensional 1-D compressible Navier-Stokes equations, in which the 

internal energy of near-critical fluids was assumed to be a function of temperature only. 

This assumption does not qualify for supercritical fluids. For other properties in the 

governing equations, such as thermal conductivity and viscosity, Zappoli and Carles [46] 

used the formulation: 

0.5

0
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     (2.9) 
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Here  is the dimensional property, 0  denotes the property of the ideal gas. T  is 

temperature and CT   is the critical temperature. Λ is a constant. Along with the van der 

Waals equation of state, the 1-D compressible Navier-stokes equations were solved by the 

matched asymptotic expansion method and multiple-time-scale techniques. Figure 2.10 

shows temperature profiles at t = 0.25 s and t = 0.5 s for a 0.5 s boundary heating at constant 

flux. The homogeneous heating of the bulk fluid can be seen from this figure. 

 

Figure 2.10: Temperature profiles at t = 0.25 s and t = 0.5 s for a 0.5 s boundary heating 

at constant flux [100]. 

 

The mechanisms of heat and mass transport in a side-heated square cavity filled 

with a supercritical fluid were explored numerically by Zappoli et al. [76] with emphasis 

on the interplay between buoyancy-driven convection and the thermally induced acoustic 

waves. The response of a fluid in near-critical conditions to a heat pulse, in the absence of 

gravity effects was also studied experimentally by Garrabos et al. [93]. The study 

demonstrated that the dynamics of thermal relaxation is governed by two typical time 
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scales, a diffusion time and a time associated to the adiabatic heat transport. They also 

provided interferometric observations of the piston effect under terrestrial and micro-

gravity conditions. Formation of a hot boundary layer around the upper heating thermistor 

was observed. Also fading out of this boundary layer and the reappearance of distorted 

fringes was noticed as time proceeds. Time comparison of the relaxation process of the hot 

boundary layer density inhomogeneities for the two different initial temperatures Ti 

evidences the diffusive critical slowing down. A striking observation was the simultaneous 

shift under weightlessness of the whole fringe pattern, with the fringes remaining straight 

and parallel. This bulk phenomenon, which coincides with the growth of the hot boundary 

layer, is the signature of the piston effect phenomena [101]. Lei [40] numerically 

investigated the generation and propagation of thermoacoustic waves in supercritical 

nitrogen and carbon dioxide by solving a fully compressible form of the Navier-Stokes 

equations and variable thermo-physical property relations. However, the model failed to 

predict the piston effect phenomena in supercritical fluids. 

 

Piston effect in a layer of supercritical nitrogen was recently studied numerically 

by Shen et al. [102] by employing a real fluid equation of state based on thermodynamic 

relations. The results show that, dependent on the rapidity of the heating, inherently 

different fluid dynamical wave behaviors occur on the acoustic timescale with respect to 

acoustic emission, propagation, and reflection patterns. Specifically, the sudden ramp of 

the boundary temperature is capable of triggering a strong thermoacoustic pulse in the 

fluid, whose reflection at the isothermal boundary introduces complex features. In contrast, 

linear compressive waves dominate under the gradual heating. On a longer timescale, both 
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types of fast processes lapse into slow thermal diffusion coupled by pronounced density 

inhomogeneities, via different routes nonetheless. 

 

Figure 2.11: Normalized density change at the cell center in the time region 0 ~ 0.4 ms 

for T − Tc = 150 and 30 mK, produced by continuous heating in 0 ~ 0.2 ms in a cell of 

length 1.03 cm. Inset: Long-time behavior for T − Tc = 150 mK in the time region 0.2 ~ 

1.4 ms [103]. 

 

Due to the difficulty of experimentation near the critical point (hydrodynamic 

stability, measurement in high pressures), only a few experimental studies are reported in 

the literature. By means of laser holographic interferometry the long-term evolutions of the 

piston effect in supercritical nitrogen [104] was measured and compared against theoretical 

analyses, which yielded good agreement. Lei [40] attempted to measure thermally induced 

acoustic waves both in supercritical nitrogen and carbon dioxide far from the critical point. 

However, the pressure field measurements were severely obstructed by the convective 

flows induced by inhomogeneous heating of the experimental cell. Acoustic emission and 

propagation caused by rapid boundary heating in near-critical carbon dioxide was first 
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measured by Miura et al. [103]. They developed an experimental setup to measure density 

changes of order 10−8 g/cm3 on a time scale of 1 µs in a cell filled with CO2 on the critical 

isochore close to the critical point. Figure 2.11 shows the temporal acoustic density 

variations ( )t at the cell center x=L/2 in a cell of L=1.03 cm at T − Tc = 150 and 30 mK. 

Continuous heating was applied in the time region 0 - 0.2 ms and the supplied heat to the 

fluid was 367 erg. 

 

2.3 Convective thermal transport in supercritical fluids 

Convective thermal transport has been the subject of research for many years due 

to its importance in the understanding of phenomena appearing in nature and engineering 

applications. Numerical studies on buoyancy driven convective flow inside an enclosure 

have been conducted by several researchers. de Vahl Davis [105] numerically investigated 

the natural convection of air in a square enclosure. This study has widely been accepted as 

the benchmark solution for such flows. Kimura and Bejan [106] studied natural convection 

in a rectangular cavity with uniform heat flux imposed at different sides of the cavity. A 

review of the developments in understanding and modeling of natural convection studies 

in enclosures can be found in the review paper by Ostrach [107]. However, the above 

studies are mainly focused toward atmospheric pressure gases.  

 

Due to the increasing number of applications of supercritical fluids in chemical and 

thermal process industries, convective transport in near-critical and supercritical fluids has 

drawn a lot attention to the researchers in the recent decade [28, 108-111]. In spite of the 

number of applications, the heat transfer mechanisms involved in near-critical supercritical 
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fluids has not been studied in sufficient detail. Large scale variation of the thermo-physical 

properties of fluids in the near-critical region affects the mechanism of heat transfer and 

particularly that of natural convection. Also as discussed in the previous sections, fluids 

near their critical point are subjected to a specific temperature equilibration mechanism 

called piston effect, which becomes increasingly efficient as the critical point is 

approached. Early experimental investigations by Knapp and Sabersky [20] reported an 

increase of heat transfer coefficient for natural convection in supercritical carbon dioxide 

as the critical point is approached. Since then, similar phenomena have been observed for  

natural  convection from electrically heated wires to supercritical carbon dioxide by Hahne 

et al. [31], Neumann et al. [22] and Nishikawa et al. [112]. However, most of these studies 

are performed either relatively far from the critical point or covers only a small part of the 

near-critical region where the thermo-physical properties show a strong divergence. 

 

 

Figure 2.12: Instantaneous temperature fields for Ti – Tc = 1 K and temperature 

difference in a bottom heated cavity filled with supercritical CO2 [113]. 2.5 mKT 
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A number of numerical studies have also been performed to model the buoyancy 

driven convective flows and heat transfer in supercritical fluids. Zappoli et al. [76] 

developed a numerical model to predict hyper-compressible, low Mach number and 

buoyant convection flows for application to a  problem involving near-critical fluids 

subjected under normal gravity conditions to heat addition at a boundary. A three 

dimensional numerical model for the prediction of supercritical fluid buoyant flows inside 

heated enclosures was developed by Accary and Raspo [114]. Raspo et al. [113] also 

investigated the buoyancy driven flow of near-critical fluid in a bottom heated cavity. It 

was observed that, in the convective regime the heat flow which is obtained on long time 

scales exhibits some characteristics of that observed in turbulent convection in normally 

compressible fluids: it is composed of plumes in thermal boundary layers, jets on lateral 

walls and a large-scale flow. The results show that, as it is the case in turbulent convection, 

this large-scale flow can suddenly change its orientation. Figure 2.12 shows the 

instantaneous temperature fields for Ti – Tc = 1 K and temperature difference 2.5 mKT 

. Due to the high compressibility and the very small thermal diffusivity of the supercritical 

fluid, the heating of the bottom wall induces the appearance of three distinct zones in the 

fluid layer: two very thin thermal boundary layers near the bottom and top walls, in which 

diffusion realizes heat transfer, and the bulk of the cavity which temperature is 

homogeneously increased by thermoacoustic effects. Furukawa et al. [115] presented a 

hydrodynamic model of compressible fluids taking into account the piston effect and the 

adiabatic temperature gradient effect. Several other studies [29, 116, 117] have also been 

performed to numerically model the buoyancy driven flow in a near-critical fluid. 
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2.4 Mass transport in supercritical fluids 

Mass transport behavior of different species in ideal gases as well as in liquids is a 

well-studied problem and there have been many fluid-to-solid mass transfer correlations in 

the literature, such as those of McCune and Wilhelm [118], Williamson et al. [119], Wilson 

and Geankoplis [120] and Upadhyay and Tripathi [121]. Most of these correlations were 

obtained by applying the solid dissolution technique. Owing to the difference in Schmidt 

numbers, gases and liquids usually follow different correlations for mass transfer 

coefficients. The Schmidt numbers for supercritical fluids lie between those for gases and 

for liquids [122]; hence the correlations obtained for gases and liquids may not be 

applicable to supercritical fluids. A number of researches have been performed to study 

transport behavior in supercritical fluids [45, 123-128]. Usually the mass transfer resistance 

and the binary diffusion coefficients of nonvolatile solutes in supercritical fluids are studied 

theoretically and experimentally. 

 

Debenedetti et al. [129] measured diffusion coefficients of two different solutes 

(benzoic acid and naphthalene) in supercritical SF6 and CO2 experimentally. In a similar 

study, Knaff et al. [130] measured diffusion coefficients of naphthalene and caffeine in 

supercritical CO2. The experimental setup consisted of an annular duct with a bar of 

naphthalene at the center. Catchpole et al. [67] also measured the diffusion coefficients of 

benzoic acid, oleic acid, a-tocopherol, and glycerol tri-oleate over a range of temperatures 

and pressures in near critical CO2 and developed a correlation to predict both self and 

binary diffusion coefficients over a wide density range. The correlation can be applied to 

nonionic near critical fluids, and does not require additional parameters, such as hard 
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sphere molecular diameters or viscosities. However, most of these studies are based on 

specific applications (particular solutes) focused towards supercritical fluid extraction 

systems. 

 

2.4.1 Supercritical fluid extraction (SFE) systems 

In recent years supercritical fluid technology has been applied to the extraction of 

raw materials from both solid matrices and liquid mixtures. Examples of processes in 

which supercritical fluids are currently used are decaffeination of coffee or tea, removal of 

pesticides, batch hop extraction, recovery of solvents and the continuous fractionation of 

beverages and oils [16, 131-134]. Supercritical fluid extraction (SFE) from solid phase is 

usually carried out in fixed bed extractors (i.e. packed extraction columns), while that from 

fluid phase is carried out using a membrane contactor. Introduction as well as the 

investigations carried out in both of these systems are provided in detail in the following 

subsections. 

 

2.4.1.1 Fixed bed extractors 

An important application of supercritical fluids is the extraction of one or more 

components from porous solid matrices. In most cases, this technology constitutes a cleaner 

alternative to the traditional industrial techniques, which are based on extraction with 

hydrocarbon solvents. Mass transfer processes take place when a solute is extracted from 

a fixed bed of a porous material (usually organic components, vegetables, seeds etc.), with 

a solvent in supercritical or near-critical state. The pressurized solvent flows continuously 

through the porous bed. After extraction, pressure is reduced and, consequently, solubility 
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decreases and the solute precipitates in a separator. The process is characterized by an 

extraction curve, the plot of the cumulated extract versus the extraction time or the amount 

of solvent required in the extractor. Schematic diagram of a typical fixed bed extractor is 

shown in figure 2.13. 

 

Figure 2.13: Schematic diagram of a typical fixed bed extractor. 

 

Supercritical fluid extraction (SFE) of different organic species in fixed bed 

extractors has been studied by several authors from the processing point of view and a wide 

range of seed species has been explored [123, 135-140]. Despite the relatively large number 

of species processed, only a few numerical models of the SFE of organic solutes have been 

published [125, 128, 137, 141-144]. Also, the mathematical models proposed are generally 

based on differential mass balance integration only. Models developed by Bulley et al. 

[123], Lee et al. [141] and Fattori et al. [135] assumed mass transfer resistances only in the 

solvent phase. In other models, the authors considered an internal mass transfer resistance. 
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King and Catchpole [68] used a shrinking core model to describe a variable external mass 

transfer resistance where the solute balance on the solid phase determines the thickness of 

the mass transfer layer in the external part of the particles. In a more recent study, 

Reverchon and Marrone [127] presented a numerical model considering the physical 

description of organic substrates and it extend the model to all the seed oils obtained by 

SFE using the data sets available in the literature. Nei et al. [145] developed a mathematical 

model to predict fatty acid extraction from trout powder considering diffusion-controlled 

regime in the particle and film mass transfer resistance around the particle with axial 

dispersion of the bulk phase at dynamic conditions. A review of the relevant mathematical 

models employed for supercritical fluid extraction of solutes from liquids or solids was 

presented by Oliveira et al [124]. With proper inclusion of the model parameters (solute 

solubility, diffusion coefficient, packed bed porosity etc.), the mathematical models 

discussed above can predict the yield of the traditional supercritical extraction process 

fairly well. 

 

2.4.1.2 Membrane contactors 

Separation processes using membrane contactors have been conducted in 

concentration or purification processes such as solvent extraction, gas absorption, ion 

exchange and membrane distillation. In membrane contactors, the membrane mainly 

operates as a physical barrier between two fluids and unlike most membrane operations, 

the membrane has no selectivity to the separation, i.e. it has no impact on the partition 

coefficients [146, 147]. One of the applications of membrane contactors is supercritical 

extraction. This process is called porocritical extraction. This process utilizes a hollow fiber 
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membrane contactor to contact two phases for the purpose of separation [147]. A macro-

porous membrane provides contact between the aqueous feed (i.e. the solute phase) and the 

supercritical fluid. The aqueous feed solution is passed on one side, while the extraction 

solvent is flowed on the other side. The aqueous solution is also maintained at a high 

pressure near the dense solvent to establish interface between solvent and feed. A 

hydrophobic material is chosen as the membrane, so that the aqueous solution does not 

penetrate the membrane pores and the supercritical phase can fill the membrane pores. In 

this process, the driving force is the concentration gradient of the solute between feed and 

dense solvent. Schematic diagram for a membrane contactor is shown in figure 2.14. 

 

Figure 2.14: Schematic diagram of a typical membrane contactor. 

 

Introducing membrane contactors in supercritical fluid extraction process has been 

suggested by several authors, main for two different potential applications – solvent 

recovery after a typical supercritical fluid extraction step and carbon dioxide extraction 

coupled with cross-flow or countercurrent-flow filtration. Semenova et al. [148] studied 

the separation of supercritical fluid and ethanol mixtures with an asymmetric polyimide 

membrane and obtained a separation factor (α-ethanol / CO2) of 8.7. For the separation of 

supercritical CO2 / iso-octane mixtures, a separation factor of 12.8 was obtained by Ohya 
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et al.[149]. Sartorelli and Brunner [150] used two different inorganic membranes to 

separate low volatile compounds from supercritical carbon dioxide extracts. Retention 

factors between 80 and 90% were reported in this study. Regeneration of supercritical 

carbon dioxide from caffeine loaded gas phases was achieved by commercial nano-

filtration membranes, with a ZrO2–TiO2 thin layer [151]. Finally, Carlson et al. [152] 

applied reverse osmosis membranes (thin layer supercritical membrane) to separate 

efficiently limonene (94% retention factor) from supercritical carbon dioxide extracts.  

 

The use of hollow fiber micro-porous membrane contactors in supercritical fluid 

extraction processes has been reported in the literature in recent years [153-155]. Sarrade 

et al. [156] proposed the coupling of supercritical carbon dioxide extraction with nano-

filtration separation to extract and purify low molecular weight compounds. A tubular 

membrane of nano-filtration resistant enough to endure supercritical conditions was 

applied to two different processes – the fractionation of triglycerides from fish oil and the 

purification of β-carotene issued from either carrot oils or carrot seeds. The coupled process 

lead to good quality extracts. 

 

2.4.2 Enhancement of mass transport using acoustic waves 

The conventional process of supercritical fluid extraction (either in a fixed bed 

extractor or in a membrane contactor) has a very slow dynamics even when solute free 

solvent is re-circulated and therefore improvements in the extraction process are required 

[157]. The use of acoustic waves represents a potential efficient way of enhancing mass 

transfer processes in the supercritical region [13, 46-49]. This is due to the effects produced 
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by compressions and decompressions, as well as by radiation pressure and acoustic 

streaming. In addition, this is probably the unique practical way to produce agitation in the 

system because the limitation of use of mechanical stirrers.  

 

 

Figure 2.15: FESEM images of ginger particles. (a) Experiments without the influence of 

ultrasound and (B) experiments with ultrasound [46]. 

 

Balachandran et al. [46] studied the influence of ultrasound on supercritical 

extraction based on extraction from a freeze-dried ginger sample. The study reported a 

significant increase in the yield of pungent compounds from ginger under the influence of 

ultrasound, with improvements of up to 30% towards the end of the extraction period. The 

ginger particles were also analyzed by field emission scanning electron microscopy 

(FESEM). Figure 2.15 shows the FESEM image of the ginger particles with and without 

the ultrasonic excitation. The observations suggest that the intensification of mass transport 

is due to physical effects on the surface of the particles (SEM showed clear evidence of 

cellular damage). 
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Figure 2.16: Schematic diagram of the extractor used by Riera et al. [49]. 

 

In a recent experimental study, Riera et al. [48, 49] proposed power ultrasound 

assisted supercritical fluid extraction to enhance the mass transport in almonds oil 

extraction. The ultrasonic system is composed of a power piezoelectric transducer 

(Langevin type) with a 100 W power capacity, an impedance matching box and a power 

generator unit. This unit consists of two parts – a power amplifier and a resonant frequency 

control system to keep constant the power applied to the transducer during the SFE process. 

The control system generates a signal which lies within the resonance frequency band of 

the transducer during operation. A schematic diagram of the extraction system used in these 

studies is shown in figure 2.16. 

 

Although results from these studies show that power ultrasound significantly 

accelerates the kinetics of the process and improves the final extraction yield, 

characteristics of the extraction curve from these two studies are significantly different. 
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Balachandran et al. [46] proposed that the improvement in extraction yield is attributed to 

an increase in solubility of the solute in the solvent at the early time. While, according to 

Riera et al. [48, 49], this is due to an increase in the mass transfer coefficient in the 

convective regime. 

 

2.5 Relevance and significance of present research 

Supercritical fluids have gained increased importance in thermal transport and 

chemical process industries in the recent past. However, basic understanding of the 

transport phenomena in the near-critical states as well as improvements of the transport 

processes associated with supercritical fluids are needed to increase the efficiency and 

effectiveness of the current state of the art supercritical fluid systems. These improvements 

in performance can be achieved by superior design and performance prediction models. 

There are numerous analytical and numerical models available in the literature to predict 

supercritical fluid transport. However, most of the published research work is based on 

some simplified (and sometimes questionable) assumptions about the equation of state and 

thermo-physical properties in the near-critical region. In general, thermo-physical 

properties of supercritical fluid are considered to be constants  [97, 158] or a function of 

temperature only [100, 159-163] whereas it is a function of both temperature and pressure 

(or density). 

 

The research performed in the past on the thermoacoustic convection in near-

critical fluids has resulted in numerous models that have been able to predict the generation 

and propagation of thermoacoustic waves. However, the transitional behavior of the 
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thermoacoustic waves from a subcritical to supercritical phase has not been reported in the 

literature. While piston effect phenomena in near-critical fluids is reported in literature 

numerous times [72, 94-97, 100, 159, 161-165], most of these studies are analytical in 

nature and the piston effect is investigated quite far (Generally, Tc + 1.0K) from the critical 

point to avoid critical divergence of the thermo-physical properties. Several earlier studies 

[95, 159] reported that, under the same temperature perturbation at the boundary, stronger 

acoustic fields can be generated in near-critical fluids as the critical point is approached. 

But, the different near-critical fluid states considered in these studies were along the critical 

isochor ( c  ) only. Thus, a detailed description of the behavior of the piston effect 

phenomena in the near-critical supercritical region covering the pseudo-critical states is 

absent in the literature. Additionally, effect of the critically diverging bulk viscosity on the 

thermoacoutic transport has not been investigated in the past. Experimental studies on the 

behavior of the thermoacoustic phenomena in the near-critical supercritical region detailing 

the temperature and pressure measurements are also not reported in the literature. Since, 

convection of a pure fluid near the critical point is difficult to study both experimentally 

and theoretically due to the critical divergence of the thermo-physical properties, no 

satisfactory correlations are currently available to predict the convective heat transfer in 

near-critical fluids. 

 

Transport processes in supercritical fluid extraction systems are generally modeled 

using the species (mass) conservation equation with a constant flow-field [124, 141, 142, 

145, 166]. However, models solely based on the differential mass balance integration are 

unable to predict the yield of the extraction process under an oscillating flow field or in 
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complex geometries. Full hydrodynamic description of the solvent fluid along with proper 

mass balance of the solute and solvent phases are necessary in this regard. Guardo et al. 

[167, 168] developed a CFD model to predict the particle-to-fluid mass transfer coefficients 

in supercritical fluid solvents in a packed bed reactor. But, the model does not take into 

account the actual dynamics of the transport processes associated with supercritical fluid 

extraction process (solute solubility, particle porosity and finite mass of the solute) and 

cannot accurately predict the yield too. A reliable and validated CFD model of the 

supercritical fluid extraction process for understanding the near-critical transport 

phenomena in supercritical fluid extraction systems is not available in the literature.  

 

A comprehensive research program was undertaken to overcome the shortcomings 

of the past research in the field of transport in near-critical fluids focused towards thermal 

and chemical process systems. The goal was to develop robust computational models to 

design and predict the transport processes in these systems and provide useful design 

guidelines based on the predictions of the models. To accomplish this, four main focus 

areas were chosen: (a) studying the thermoacoustic wave induced transport phenomena in 

near-critical fluids, (b) experimentally investigating thermoacoustic wave generation and 

propagation in near-critical fluids, (c) computationally studying the transport processes in 

supercritical fluid extraction systems and (d) investigating transport enhancement in 

supercritical fluid extraction systems using acoustically augmented flow. 
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CHAPTER 3: NUMERICAL INVESTIGATION OF THERMOACOUSTIC TRANSPORT IN NEAR-

CRITICAL SUPERCRITICAL FLUID2 

 

3.1 Introduction 

Thermal and mechanical processes in compressible fluids are closely coupled and 

a local thermal disturbance is always followed by a mechanical response, and vice versa. 

When a compressible fluid is subjected to a fast temperature increase at a solid surface, the 

fluid in the immediate vicinity of the boundary is heated by conduction and tends to expand. 

The sudden expansion of the fluid due to the energy input is constrained by the inertia of 

the unperturbed media and it induces thermoacoustic waves from the heated wall. the heat 

transfer effects of such waves may be very significant when the fluid is close to the 

thermodynamic critical point or when other modes of convection are weak or absent [98, 

170]. The diminishing thermal diffusivity and diverging compressibility character of near-

critical fluids make the thermoacoustic convection mode of heat transport significant for 

cryogenic storage systems which involve rather weak diffusive and convective transport of 

heat, especially in a reduced-gravity environment [76]. 

 

In this chapter, the generation and propagation of thermally induced acoustic waves 

in supercritical carbon dioxide (in near-critical and near-pseudo-critical states) are 

investigated numerically by considering accurate representation of the thermo-physical 

properties. A high-order (central difference) numerical scheme is used for the simulations. 

                                                 
2The results presented in this chapter can be found in, [169] N. Hasan and B. Farouk, 

"Thermoacoustic Transport in Supercritical Fluids at Near-critical and Near-pseudo-

critical States," The Journal of Supercritical Fluids, vol. 68, pp. 13-24, 2012. 
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Thermally quiescent and motion free supercritical carbon dioxide in a one-dimensional 

layer confined by two rigid walls is considered. The NIST database 23 [3] is used to obtain 

the ρ-p-T relations for supercritical carbon dioxide, along with  the static enthalpy h0 = f 

(p, T), thermal conductivity k = f (p, T), viscosity μ = f (p, T) and specific heat cp = f (p, T) 

relations. Equations developed by Onuki [56, 71] and Moldover [73] are used for the 

determination of the bulk viscosity ( ) of supercritical carbon dioxide. Different features 

regarding the flow field and thermal transport induced by thermoacoustic waves near the 

critical and pseudo-critical points are revealed by the simulations. The thermo-mechanical 

behavior in supercritical carbon dioxide in response to external thermal perturbations in 

the forms of different types of boundary heating is also observed and a novel thermal 

transport device utilizing the thermoacoustic convection in near-critical fluids is proposed. 

 

3.2 Mathematical modeling 

The thermoacoustic effect in fluids can be modeled by the complete hydrodynamic 

description for an isotropic, Newtonian, compressible, and dissipative (viscous and heat-

conducting) fluid [7, 87, 88]. Although there have been reasonable concerns over the 

legitimacy of applying continuum physics at the vicinity of the critical point, according to 

Stanley[57] the hydrodynamic limit is located around   510c cT T T   (for CO2, 

3.0cT T  mK) on the critical isochor ( c  ). But the thermodynamic states we 

consider here are relatively far from the hydrodynamic limit, and as a result they fall safely 

into the realm of continuum mechanics. We consider one-dimensional continuity and the 

compressible form of the Navier-Stokes equations to describe the generation and 

propagation of thermally induced acoustic waves in supercritical carbon dioxide: 
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Here, x is a Cartesian coordinate, t is time, ρ is density, u is the velocity, h is the total 

enthalpy, T is the temperature and p is pressure. The equation of state describing the ρ-p-T 

relation of supercritical fluids is complicated. It has been shown earlier [39, 56] that the 

van der Waals equation of state does not represent the properties of supercritical carbon 

dioxide accurately near the critical point. In this study, we used the NIST Standard 

Reference Database 23 [3] for the ρ = f(p, T) relations and for evaluation of other 

thermodynamic properties of supercritical carbon dioxide. The NIST23 [3] equation of 

state describing the ρ-p-T relation for carbon dioxide is mainly empirical in nature and 

includes special non-analytic terms to predict the correct behavior of the fluid to the 

immediate vicinity of the critical point.  

 

Two-dimensional look-up tables are employed in the present study to represent the 

ρ = f (p, T), k = f (p, T), μ= f (p, T), h0 = f (p, T) and cp = f (p, T) data provided by the NIST 

Standard Reference Database 23 and the bulk viscosity   = f (p, T) data provided by 

analytical functions. Onuki’s equation [56, 71] is used for calculating the zero frequency 

bulk viscosity (  ) of carbon dioxide (as described in chapter 2). 
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3.2.1 Numerical modeling 

The governing equations (3.1 – 3.3) are solved by finite volume method using a 

central difference scheme for the spatial discretization and a Crank-Nicolson scheme for 

time discretization. The coupling between the velocity field and the pressure in the Navier–

Stokes equations is solved through the SIMPLEC algorithm [171]. A 10.0 mm layer of 

supercritical carbon dioxide, bounded by two rigid walls is considered for the simulations 

reported here. Throughout the simulations, a uniform grid spacing of Δx = 0.01 mm is relied 

on to generate sufficiently high spatial resolution such that the fine structures of the 

acoustic waves can be resolved. For the early time calculations reported here, a Courant 

number (csΔt/Δx) of 0.4 is set to assure proper numerical convergence of the solutions. Here 

Δt is the time step, and cs is the local acoustic speed. All computations were carried out on 

a Dell OPTIPLEX 755 personal computer. 

 

3.3 Verification of the numerical scheme 

The numerical prediction of thermally induced acoustic waves in near-critical 

carbon dioxide with the present method is compared with a previous numerical study [97] 

and an experimental measurement [103].  

 

 

Figure 3.1: Schematic diagram of the problem domain used by Zappoli et al. [97]. 
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Zappoli et al. [97] presented a model for predicting thermoacoustic wave induced 

flows in supercritical carbon dioxide. In their numerical model, supercritical carbon 

dioxide at the critical isobar (pi = pc) and at a temperature greater than the critical 

temperature (Ti = Tc + 1.0 K) was considered in a one dimensional enclosure of length, L 

= 2.5 mm. Here, the subscript ‘i’ and ‘c’ denotes initial and critical values respectively. 

The schematic diagram of the problem domain used in shown in figure 3.1. The left wall 

of the enclosure was heated to 13.0 mK with a constant heating rate of 10.0 K/s. The 

simulations with the present model for the comparison is carried out based on the same 

initial and boundary conditions as specified in [97]. 

 

Figure 3.2a shows the comparison of the predictions of the spatial variations of the  

rise in pressure at different times by the present method with those obtained by Zappoli et 

al. [97]. The spatial variations of the rise in temperature inside the enclosure are also shown 

in figure 3.2b. The numbers identifying each line in the figures refer to the ratio t/τ, where 

τ = L/cs is the acoustic time-scale; L is the distance between the two walls, and cs is the 

acoustic speed at the initial conditions of the fluid. For the initial condition considered, the 

acoustic speed used by Zappoli et al. [97] is cs = 216 m/s while we obtain cs = 187.4 m/s 

from the NIST Standard Reference Database 23 [3]. This error propagates to the results 

obtained in [97].  In order to compare our predictions to those given in ref. [97], we have 

re-scaled the results by a factor  (216.0 /187.4 1.15)  as discussed below. Two values of 

t/τ are given in identifying the results in figures 3.2a and 3.2b, where the values within the 

parentheses correspond to the value cs = 216 m/s used by Zappoli et al. [97]. 
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(a) 

 

(b) 

Fig. 3.2: Comparison of spatio-temporal variations of calculated (a) pressure and (b) 

temperature in enclosure filled with near-critical CO2 with results by Zappoli et al. [97]. 
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It can be seen from figure 3.2a that the general shape of the thermoacoustic waves 

calculated with the present study agrees well with the result obtained from the previous 

study [97]. Comparing the results quantitatively, it is observed that higher pressure levels 

are predicted by the present model. In figure 3.2b, piston effect can be clearly observed in 

the results predicted by both the models, but the change in bulk temperatures (δT) predicted 

in the present model is higher than those given in Zappoli et al. [97]. The difference in 

magnitudes of the change in pressure (δp) and temperature (δT) inside the computational 

domain (in figures 3.2a and 3.2b) show an increasing trend within several reflections. The 

variation in the results predicted  by the two studies is clearly due to the use of van der 

Waals equation of state and constant thermo-physical properties in ref. [97]. The density 

for the initial condition (pi = pc, Ti = Tc + 1.0 K) predicted by  van der Waals equation is 

276.2 kg/m3 [97], whereas it is 307.1 kg/m3 in the NIST Standard Reference Database 23 

[3]. Figures 3.2a and 3.2b  indicate that predicted  acoustic speed (from the waveforms) is 

close to the value obtained from the NIST23 Database (i.e. cs = 187.4 m/s) at early time (0 

~ 1τ). 

 

Miura et al. [103] measured density changes of order 10-8 g/cm3 on a time scale of 

1 μs due to weak continuous heating  in a cell (L = 10.3 mm) filled with carbon dioxide on 

the critical isochore close to the critical point (Ti – Tc = 30 mK and 150 mK) using an 

ultrasensitive interferometer. Continuous heating was applied in the time region 0 < t < 0.2 

msec and the supplied heat to the fluid was 367 erg ( 21.83 kW/minq  ). A simulation with 

the present model considering the same initial and boundary conditions of the experiments 

is performed. 
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Figure 3.3: Comparison of calculated normalized density change (δρ/ρ) at the cell center 

in the time region 0 < t < 0.4 msec for Ti –Tc = 150 mK, produced by continuous heating 

in 0 < t < 0.2 msec in a cell of L=10.3 mm with measurements given by Miura et al. [103] 

 

Figure 3.3 shows the numerical results for the continuous heating case with Ti – Tc 

= 150 mK. Although, a generally fair agreement with the experimental measurements is 

noticed, some inconsistencies are also observed. The predicted amplitudes of the acoustic 

field (δρ/ρ in this case) appear to slightly overshoot from those observed in the 

measurement. However, numerical prediction of the normalized density changes in the first 

oscillation (
7/ 2.641 10    ) is more close to the analytical value of the density change 

along the critical isochore given by 
 

7( ) 2.591 10S
in

s

T
p

q t
c T










   [103] than the 

experimentally measured value (
7/ 2.2 10    ). Also, the numerical results show 

relatively less damping of the acoustic field in the time when heating is turned off (0.2 < t 
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< 0.4 msec). This is possibly due to the viscous losses incurred in the experimentation due 

to the presence of the side walls, while the numerical model, being one dimensional, do 

not account for those losses. 

 

3.4 Problem description 

For the present study of thermoacoustic transport, a confined layer of thermally 

quiescent and motion-free supercritical carbon dioxide inside a one dimensional layer (L = 

10 mm) is considered. At t > 0, a prescribed thermal load is applied at the left boundary in 

the form of: 

/( ) )(1 At

L iT f t T T e         (3.4) 

Here, ΔT is the target temperature rise and A is the parameter that controls the rate of 

boundary heating. In Eq. (3.4), the acoustic time, τ = L/cs is defined as the flight time for 

an acoustic wave to traverse the layer. The right wall is held at the initial temperature. The 

thermally induced acoustic waves generated are studied as a function of space and time. 

 

3.5 Fundamental studies of thermoacoustic transport: Result and discussion 

Numerical simulations for thermally induced acoustic waves in supercritical carbon 

dioxide as well as in ideal gases (for comparative purpose) are carried out for 20 cases, 

which are summarized in Table 3.1. The parameter ( i c  ) shown as the last column in 

Table 3.1 indicates the relative distance of the initial state of the supercritical fluid from 

the critical/pseudo-critical state. Also 1i c    is a critical/pseudo critical state. For the 

near-pseudo-critical cases, 1i c   . The results presented are for the early time behavior 

of thermally induced acoustic waves in terms of pressure and other variables. Multiple 
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wave reflections and wave damping are observed within a short time for the thin layer of 

fluid considered. 

Table 3.1: List of computational cases for thermoacoustic transport studies 

Case No. Physical State 
pi 

(MPa) 

Ti 

(K) 

ΔT 

(K) 
A 

i

c




 

01 

Gas 

0.10 310.00 10.0 10 -- 

02 1.00 310.00 10.0 10 -- 

03 2.00 310.00 10.0 10 -- 

04 4.00 310.00 10.0 10 -- 

05 

Supercritical 

7.40 310.00 10.0 10 0.520 

06 7.40 305.00 0.1 10 0.687 

07 7.40 304.50 0.1 10 0.758 

08 7.40 304.30 0.1 10 0.851 

09 7.40 304.28 0.1 10 0.8835 

10 7.40 304.24 0.1 10 1.131 

11 7.40 304.22 0.1 10 1.161 

12 7.40 304.20 0.1 10 1.179 

13 7.38 305.00 0.1 10 0.671 

14 7.38 304.80 0.1 10 0.689 

15 7.38 304.60 0.1 10 0.712 

16 7.38 304.50 0.1 10 0.727 

17 7.38 304.40 0.1 10 0.746 

18 7.38 304.30 0.1 10 0.772 

19 7.38 304.30 0.1 2 0.772 

20 7.38 304.30 0.1 1 0.772 
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Figure 3.4: Temporal variation of change in left wall temperature [TL(t) - Ti] for  

different boundary heating rate parameters (A). 

 

To determine the frequency dependency of transport properties for the applied 

temperature perturbation (equation 3.4) shown in figure 3.4, the most representative 

frequency of the strongest temperature perturbation (with A = 10) was determined. The 

time dependent part of the temperature perturbation function is given by   

max( ) ( ) 1
At

L iT t T t T T e 
 

      
 

,   for t > 0   (3.5)  

The Fourier approximation of ΔT(t) can be expressed by the following integral function –  
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 ,   for t > 0 and ω > 0   (3.6) 

Here, ( ) ( )T t T t   as  (or cyclic frequency, f  ). A comparison of the 

temperature perturbation function (equation 3.5) with the Fourier approximations at 
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different limiting frequency (f) values is shown in figure 3.5. From figure 3.5, it is observed 

that the most representative frequency of the function is around f = 1 MHz. 

 

 

Figure 3.5: Temporal variation of the temperature perturbation function (Eqn. 3.5) and 

the corresponding Fourier approximations at different limiting frequencies. 

 

The transport properties of a near-critical fluid are independent of the frequency in 

the low frequency limit. The low frequency limit is given by [56, 62]: 

1fluc       (4.4) 

Here, 2 f  and τfluc is the fluctuation relaxation time (discussed in chapter 2). For the 

different cases considered in the present study, the largest fluctuation relaxation time 

obtained is 84.95 10fluc   . Hence, 0.311fluc   (with 
6/ 2 10f     ) and all the 

cases considered in the present study are in the low frequency limit where frequency 

dependence of the transport properties can be ignored. 
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3.5.1 Generation and propagation of thermoacoustic waves 

Before studying thermally induced acoustic waves in supercritical fluids, we 

numerically investigate thermally induced acoustic wave shapes in gases (Cases 1 ~ 4). 

The different characteristic of thermally induced acoustic waves in intermediate states 

between ideal gases and supercritical fluids are thus explored. A temperature perturbation 

of 10 K (with boundary heating rate parameter A = 10) is applied to the left wall of the 

enclosure for all of these cases and its effect is investigated. 

 

Figure 3.6: Temporal variation of change in pressure (δp/pi) at the center of the enclosure 

with different initial pressures for subcritical CO2 [Cases 1-4]. 

 

Figure 3.6 shows the temporal variations of pressure change (δp/pi) at the midpoint 

of the enclosure for cases 1 ~ 4. It is observed that, as initial pressure increases, the induced 

thermoacoustic field get stronger and stronger (i.e. δp/pi increases), and the acoustic speed 

also decreases with increasing initial pressure. The spatial variation of the acoustic field at 
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five different times for case 1 is shown in figure 3.7. The rapid heating along the left wall 

causes a sharp pressure rise in the ideal gas and the generated pressure waves travel towards 

the right wall with wave speeds of about 274 m/s (figure 3.7). The predicted wave speed is 

close to the value obtained from the NIST database 23 [3]. 

 

Figure 3.7: Spatial variation of change in pressure (δp/pi) inside the enclosure at different 

times for subcritical CO2 with pi = 0.1 MPa and Ti = 310 K [Case 1]. 

 

In case 5 (Table 3.1) we consider supercritical CO2 at the initial pressure of 7.4 

MPa and initial temperature of 310.0 K (>> Tc). Temporal variation of pressure change 

(δp/pi) at the midpoint of the enclosure for case 5 (supercritical CO2) is shown in figure 

3.8. The result shows that, for a large temperature perturbation (ΔT = 10 K, A = 10), strong 

acoustic field is induced in the supercritical fluid. The current numerical model predicts 

the correct speed of propagation of the acoustic waves generated due to rapid heating in 

supercritical fluid. 
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Figure 3.8: Temporal variation of change in pressure (δp/pi) at the center of the enclosure 

for supercritical CO2 with pi = 7.40 MPa and Ti = 310 K [Case 5] 

 

 

Figure 3.9: Spatial variation of change in pressure (δp) inside the enclosure at different 

times for supercritical CO2 with pi = 7.40 MPa and Ti = 310 K [Case 5]. 
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Figure 3.9 shows the spatial variation of change in pressure (δp) inside the 

enclosure at five different times for case 5. Comparing figure 3.7 (sub-critical CO2) and 

3.9 (supercritical CO2), it is observed that, unlike the characteristic long tails of the 

thermally induced acoustic waves in ideal gas (CO2), the pressure wave signatures in 

supercritical fluid show a step-like profile due to the high density and compressibility in 

the near-critical region. 

 

Figure 3.10: Temporal variation of density change (δρ/ρi) and heat flux (Q"R) at the right 

wall of the enclosure for supercritical CO2 with pi = 7.40 MPa and Ti = 310 K [Case 5]. 

 

Figure 3.10 shows the temporal variation of change in density (δρ/ρi) and heat flux 

Q"R at the right (cold) boundary for case 5 where the undisturbed fluid is supercritical. It 

is observed from the figure that the compressive waves reflecting from the right boundary 

acts as carriers of thermal energy delivering energy to the right wall. However, with the 

vanishingly small thermal diffusivity near the critical point, the energy that the wave carries 
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cannot be efficiently diffused through the boundary via thermal conduction. As a result, a 

large portion of the energy is reflected back from the boundary, whose superposition with 

the incoming wave thus increases the temperature and pressure in the bulk fluid. Due to 

such a reflection pattern, the reflected pressure waves seem to directly gather upon the 

incoming waves. 

 

3.5.2 Piston effect in near-critical supercritical fluids 

Cases 6 ~ 18 represent thirteen cases in the near-critical and near-pseudo-critical 

regions on two different isobars p = 7.4 MPa and p = 7.38 MPa with the heating rate 

parameter A =10. The pseudo-critical states at p = 7.40 MPa (cases 6 - 12) and p = 7.38 

MPa (cases 13 - 18) are characterized by ρ = ρc = 467.6 kg/m3. The same temperature 

perturbation (ΔT = 0.1K) is applied to all of these thirteen cases (case 6 ~ 18) under the 

same boundary heating rate parameter (A = 10). It should be noted that creating a controlled 

thermal perturbation of such rate and magnitude is experimentally feasible. The 

experimental study by Miura et al. [103] reports measurement of thermoacoustic 

disturbances in supercritical fluid under the temperature perturbation  of only 0.01 mK. For 

cases 6 - 12 (pi = 7.4 MPa, Table 3.1), the values of  i c    range from 0.687 to 1.179. 

For cases 13 - 18 (and pi = 7.38 MPa, Table 3.1), the values of  i c   range from 0.671 to 

0.772. As can be seen from the p-v diagram for CO2 (see chapter 2 – figure 2.3), we reach 

very close to the critical point when 0.772i c   . Two additional cases (19 and 20) are 

shown in table 3.1 where  0.772i c    , albeit for heating rate values of A = 2 and 1 

respectively. 
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Figure 3.11: Temporal variation of change in pressure (δp/pi) at the center of the 

enclosure with different initial temperatures for supercritical CO2 (pi = 7.40 MPa) 

[Cases 6 ~ 12]. 

 

 

Figure 3.12: Temporal variation of change in pressure (δp/pi) at the center of the 

enclosure with different initial temperatures for supercritical CO2 (pi = 7.38 MPa) 

[Cases 13 ~ 18]. 
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Temporal variation of change in pressure (δp/pi) at the center for cases 6 ~ 12 (on 

the isobar p = 7.40 MPa) is shown in figure 3.11. As the initial state of the fluid approaches 

the corresponding pseudo-critical state (p = 7.40 MPa, T = 304.26 K, ρ = 467.6 kg/m3), 

relatively stronger acoustic waves (i.e. greater value of δp/pi) are generated for the same 

boundary heating rate parameter (A) and temperature perturbation (ΔT) in the fluid. 

Accordingly, the strongest waves are generated (in figure 3.11) for case 9, which has the 

initial state closest to the corresponding pseudo-critical state. Similar phenomenon is also 

observed for cases 13 ~ 18 (figure 3.12) which are on the isobar p = 7.38 MPa and even 

closer to the critical state of carbon dioxide. Here, the strongest waves are generated (in 

figure 3.12) for case 18, which has the initial state closest to the corresponding pseudo-

critical state. 

 

 

Figure 3.13: Spatial variation of change in bulk temperature (δT) inside the enclosure at t 

= 5τ with different initial temperatures for supercritical CO2 (pi = 7.40 MPa). 
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Figure 3.14: Spatial variation of change in bulk temperature (δT) inside the enclosure at t 

= 5τ with different initial temperatures for supercritical CO2 (pi = 7.38 MPa). 

 

Figure 3.13 and 3.14 show the spatial variation of the change in bulk temperature 

 ( ) iT T t T   at t = 5τ for cases 6 ~ 12 and 13 ~ 18 respectively. It is observed from the 

figures that the stronger acoustic fields induced in the near-critical fluid (figure 3.11 and 

3.12) due to the temperature perturbation at the boundary eventually gives rise to larger 

change in bulk temperature (δT) as the corresponding pseudo-critical state is approached. 

 

From previous analysis [88], it was found that decreasing the thermal diffusivity 

(α) weakens the acoustic field, while both increasing (
𝜕𝑝

𝜕𝑇
)
𝜌

 and isothermal compressibility 

(β) enhances the acoustic field. In the above cases, increase in strength of the acoustic field 

is observed mainly due to the constructive combination of the increasing isothermal 

compressibility (β) and decreasing thermal diffusivity (α) near the pseudo-critical state. 
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The spatial variation of the change in bulk temperature [ ( ) iT T t T   ] at five early times 

for case 18 is shown in figure 3.15. Within these times, the thermally induced acoustic 

waves have reverberated within the domain several times and the wave amplitudes have 

begun to damp out, heating the bulk fluid homogeneously. The homogeneously heated bulk 

is sandwiched between two thin thermal diffusion layers that have developed on the 

enclosing walls. This demonstrates the existence of the so called piston effect in 

supercritical fluid due to rapid heating of a side wall.  

 

 

Figure 3.15: Spatial variation of change in bulk temperature (δT) inside the enclosure at 

different characteristic times (τ) for supercritical CO2 with pi = 7.38 MPa and Ti = 304.3 

K [Case 18]. 

 

The results shown in figures 3.13 and 3.14 are summarized in figure 3.16. It shows 

the change in bulk temperature [ ( ) iT T t T   ] at the midpoint ( / 0.5x L  ) of the 

enclosure and at t = 5τ for the different cases considered (Cases 6 ~ 18). For the seven cases 
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considered on the isobar p = 7.40 MPa (Cases 6 ~ 12), the initial temperature of the fluid 

varies from 305.0 K to 304.2 K, while the temperature corresponding to the pseudo-critical 

state is 304.26 K. Hence, the parameter ( i

c




) has values both less than (Case 6 ~ 9) and 

greater than unity (Case 10 ~ 12). It is observed that, the change in bulk temperature (δT) 

in these cases (Cases 6 ~ 12) show an increasing trend as the parameter ( i

c




) approaches 

unity and the initial state of the fluid approaches the corresponding pseudo-critical state (p 

= 7.40 MPa, T = 304.26 K, ρ = 467.6 kg/m3). Thus, the curve for the isobar p = 7.40 MPa 

shows a sharp peak (extrapolated and shown by the dotted line in figure 3.16) at the 

corresponding pseudo-critical state.  

 

 

Figure 3.16: Variation of the change in bulk temperature (δT) at the midpoint of the 

enclosure and at t = 5τ as a function of initial temperature (Ti) for different initial 

pressures [Cases 6 ~ 18]. 
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On the other hand, for the cases (Cases 13 ~ 18) considered on isobar p = 7.38 MPa, 

the initial temperature of the fluid varies from 305.0 K to 304.3 K while the temperature 

corresponding to the pseudo-critical state is 304.14 K. Hence, the parameter ( i

c




) is less 

than unity  and the results show a monotonically increasing trend in change in bulk 

temperature (δT) as the initial state of the fluid approaches the corresponding pseudo-

critical state (p = 7.38 MPa, T = 304.14 K, ρ = 467.6 kg/m3). It is also observed that, the 

change in bulk temperature (δT) are much higher in cases on the isobar p = 7.38 MPa 

(Cases 13 ~ 18) than that for cases on the isobar p = 7.40 MPa (Cases 6 ~ 12). This is 

explained by the close proximity of cases 13 ~ 18 to the critical point than that for cases 6 

~ 12. 

 

3.5.3 Effect of bulk viscosity on thermoacoustic transport  

To investigate the effect of critically diverging bulk viscosity on the thermally 

induced acoustic waves, an initial condition (case 9) with a relatively high bulk viscosity 

 / 800   is considered. The temporal and spatial variation of the thermally induced 

acoustic field (δp/pi) is shown in figures 3.17 and 3.18 respectively. It is observed that, the 

effect of bulk viscosity on the thermoacoustic field is twofold. Initially, during the 

expansion of the hot boundary layer along the left wall, a relatively stronger acoustic field 

(δp/pi) is observed when the bulk viscosity is present in the model. This is mainly due to 

the viscous resistance imposed on the expanding boundary layer by the high bulk viscosity 

fluid. Figures 3.17 and 3.18 also reveals that, the acoustic field starts to attenuate slowly 

after several reflections when bulk viscosity is present in the model. 
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Figure 3.17: Temporal variation of change in pressure (δp/pi) at the center of the 

enclosure for supercritical CO2 with pi = 7.40 MPa and Ti = 304.28 K [Case 9] showing 

the effect of bulk viscosity. 

 

Figure 3.18: Spatial variation of change in pressure (δp/pi) inside the enclosure at 

different times for supercritical CO2 with pi = 7.40 MPa and Ti = 304.28 K [Case 9] 

showing the effect of bulk viscosity. 
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3.5.4 Effect of boundary heating rate on heat transfer 

In cases 18 ~ 20, the initial states of the supercritical fluid are identical. The 

boundary heating rate decreases gradually from case 18 to case 20. As illustrated in figure 

3.4, the fastest heating corresponds to A = 10 (case 18) with decreasing heating rates for 

case 19 (A = 2) and case 20 (A = 1). For the same initial state, rapid boundary heating 

generate stronger thermally induced acoustic field (δp/pi) and thus larger change in bulk 

fluid temperature (δT). 

 

 

Figure 3.19: Temporal variation of change in pressure at the center of the enclosure for pi 

= 7.38 MPa and Ti = 304.3 K with different heating rates [cases 18-20]. 

 

Temporal variations of change in pressure at the center point for cases 18 ~ 20 are 

shown in figure 3.19. For case 20 (A = 1), the generated acoustic field is weak (i.e. relatively 

smaller δp/pi) and the reverberations are not as noticeable as for case 18 (A = 10). The 
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computed value of the acoustic speed for cases 18 ~ 20 compare very well with the 

tabulated value given in the NIST23. The strength of the acoustic field (δp/pi) and the 

overall rate of pressure increase are found to be strongly correlated to the boundary heating 

rate. The rapid temperature increase at the boundary (A = 10) induces large-scale 

oscillations into the fluid giving rise to a stronger acoustic field (δp/pi) whether the acoustic 

waves produced are rather weak when the boundary heating rate is slower (A = 1). 

 

3.6 Thermal transport over a long distance using supercritical fluids 

Thermal transport over a shorter distance can be achieved by conduction while for 

a relatively long distance; it is generally performed by heat pipes (latent heat). However, 

performance of heat pipes is limited by the combination of latent heat, viscosity and surface 

tension of the working fluid, gravity and design of the wick etc. Piston effect phenomena 

in near-critical fluids can be utilized to design a simple yet effective thermal transport 

device for transfer of heat over longer distances. The prospect of thermal transport over a 

long distance in zero gravity conditions using the adiabatic heat transfer mechanism (piston 

effect) in supercritical fluids was first demonstrated by Beysens et al. [172]. However, the 

computational model proposed in that study [172] does not consider the hydrodynamics 

effect of the problem. 

Table 3.2: List of computational cases for long distance thermoacoustic transport studies 

Case No. Physical State pi 

(MPa) 

Ti 

(K) 

Qin 

(W/m2) 

21 Gas 0.10 304.4 100.0 

22 
Supercritical 

7.38 304.4 100.0 

23 7.38 304.3 100.0 
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Figure 3.20: Temporal variation (early time) of heat flux (Qout) at the right (cold) wall of 

the enclosure for carbon dioxide at both ideal and supercritical phases after a constant 

heat flux (100 W/m2) is applied at the left wall. 

 

To study the thermal transport behavior in near-critical fluids, three cases are 

simulated using a constant heat flux boundary condition for the same layer (L = 10.0 mm) 

of fluid contained between two rigid walls. A constant heat flux boundary condition is 

applied to the left wall of the enclosure instead of the isothermal boundary condition while 

the right wall is maintained constant at the initial temperature of the fluid. Gravity is not 

included in the model. Figure 3.20 shows the predicted temporal evolution (early time) of 

the heat flux at the right wall (Qout) of the enclosure from 0 to 2.5 msec for cases 21 ~ 23. 

The fluid (CO2) in case 21 is low (atmospheric) pressure ideal gas while that in cases 22 

and 23 are supercritical fluid. However, the initial state of the fluid in case 23 (ρ = 361.03 

kg/m3) is closer to the corresponding pseudo-critical state (ρc = 467.6 kg/m3) than that in 

case 22 (ρ = 348.89 kg/m3). Due to a relatively higher thermal diffusivity in ideal gas (CO2), 
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the thermoacoustic waves in ideal gas can deliver the thermal energy to the right wall more 

efficiently than that with supercritical fluids at the very early time. On the other hand, in 

the near-critical region (Case 22 and 23), the diverging compressibility and small viscosity 

of the fluid allows the thermoacoustic waves to reflect within the enclosure for a relatively 

longer period of time while in ideal gas conditions (Case 21) the waves damp out within 

several acoustic times (t/τ) and thereby reducing the rate of increase in heat flux at the right 

wall to a great extent. 

 

Figure 3.21: Temporal variation (long time) of heat flux (Qout) at the right (cold) wall of 

the enclosure for carbon dioxide at both ideal and supercritical phases after a constant 

heat flux (100 W/m2) is applied at the left wall. 

 

The long time evolution of the heat flux at the right wall (Qout) of the enclosure is 

shown in figure 3.21. It is observed that, for a relatively longer time period (1 sec) the heat 

transfer performance with supercritical fluid is superior to that with ideal gas. Both figures 

3.20 and 3.21 also shows that, the fluid with a relatively close proximity (Case 23) to the 
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corresponding pseudo-critical state delivers more thermal energy than the fluid whose 

initial state is relatively far (Case 22) from the corresponding pseudo-critical state. 

 

It is evident from the above results that, the thermoacoustic waves in a near-critical 

fluid carry thermal energy from the boundary to deep inside the fluid due to the piston 

effect. After the rapid initial rise at the early time, the transport is mainly is governed by 

diffusion in the fluid. It is also observed from the result (figure 3.21) that, for supercritical 

carbon dioxide as the working fluid, almost 25% (Case 23) of the total energy supplied is 

delivered very quickly (within 1 sec). During the transient stage, the rest of the energy is 

consumed to increase the temperature of the fluid. Also the thermal transport performance 

(Qout/Qin) is found to be highly associated to the initial state of the supercritical fluid. 

 

3.7 Summary and conclusions 

The generation and propagation of thermally induced acoustic waves in 

supercritical carbon dioxide are investigated by numerically solving a fully compressible 

form of the Navier-Stokes equations. The NIST Standard Reference Database 23 [3] is 

used to generate two-dimensional look-up tables to represent the equation of state and other 

thermodynamic properties for supercritical carbon dioxide. Bulk viscosity calculated from 

the analytical equations developed by Onuki [56, 71] and Moldover [73] is also included 

in the numerical model. The novel contribution of the present study is the development and 

validation of a high fidelity predictive model based on an accurate equation of state for 

sub- and supercritical carbon dioxide and an in-depth analysis of the behavior of 

thermoacoustic transport phenomena in near-critical and near-pseudo-critical states. With 
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the aid of the developed model, the transition of the thermoacoustic wave generation and 

propagation phenomena from a sub-critical to supercritical phase is investigated. The 

adiabatic piston effect phenomena in near-critical fluids are also investigated by 

systematically approaching the pseudo-critical states. 

 

The results exhibit that rapid heating of the boundary emits strong compressive 

waves that carry energy and momentum from the heated boundary deep into the 

undisturbed regions of the fluid. The existence of the piston effect in supercritical fluid due 

to rapid heating of the boundary is also demonstrated. Two exciting phenomena are 

observed from the results presented. Firstly, as predicted by earlier studies [95, 159], the 

relative strength of the acoustic field (δp/pi) as well as the corresponding change in bulk 

temperature (δT) certainly increases as the critical state of the fluid (CO2) is approached. 

Secondly and most interestingly, change in these parameters (δp/pi and δT) are highly 

correlated with the pseudo-critical states. Near the pseudo-critical state ( 1i

c




 ), the 

acoustic field (δp/pi) and the corresponding change in bulk temperature (δT) shows rapid 

increase while their magnitude decreases as the initial state is moved away from the 

pseudo-critical state. Proper inclusion of bulk viscosity in the model shows that, viscous 

resistance imposed on the expanding boundary layer by the high bulk viscosity fluid affects 

the thermoacoustic field both in the early and later times. A novel thermoacoustic wave 

driven thermal transport device using supercritical carbon dioxide as the working fluid is 

also proposed. From the study of this type of device, it is observed that a portion of the 

total energy supplied can be transmitted very quickly by the thermoacoustic waves. It is 

also observed that, the thermal transport performance (Qout/Qin) is mainly dependent on the 
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initial state of the fluid and its proximity to the corresponding pseudo-critical state. Hence, 

the performance of the device can be adjusted easily and it can be used in conjunction with 

a traditional heat pipe where rapid transport of thermal energy is necessary.  
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CHAPTER 4: EXPERIMENTAL INVESTIGATION OF THERMALLY INDUCED ACOUSTIC 

WAVES IN SUPERCRITICAL FLUID3 

 

4.1 Introduction 

In this chapter, thermoacoustic waves in near-critical supercritical carbon dioxide 

are investigated experimentally on acoustic time scales using a fast electrical heating 

system along with high speed pressure measurements. In particular, the generation, 

propagation and decay of thermoacoustic waves in a cylinder filled with near-critical 

supercritical carbon dioxide at different initial states is studied experimentally. A thin 

nickel foil attached to one end of the cylinder is heated by a resistance-capacitance (R-C) 

circuit. The fast heating of the nickel foil generates a thermally induced acoustic wave in 

the closed cylinder which keeps traversing between the two ends and undergoes many 

reflections before it is fully damped out. The time-dependent pressure variations in the 

cylinder is measured by a microphone located at a specific point on the side of the cylinder 

with a fast-response data acquisition system (DAQ). The heating rate, at which the 

boundary temperature is raised, is a key factor in the generation of these acoustic waves. 

The effect of different rates of boundary heating on the acoustic wave formation 

mechanism near the critical point is also studied. Finally, thermoacoustic wave generation 

and propagation in near-critical supercritical fluid under the experimental conditions is also 

investigated numerically using the model described in the previous chapter and the results 

are compared with the experimental measurements. 

                                                 
3The results presented in this chapter can be found in, [173] N. Hasan and B. Farouk, "Fast 

Heating Induced Thermoacoustic Waves in Supercritical Fluids: Experimental and 

Numerical Studies," Journal of Heat Transfer, vol. 135, pp. 081701-081701, 2013. 
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4.2 Experimental apparatus 

Achieving supercritical state safely is a key point for the success of measuring 

thermally induced acoustic pressure waves in supercritical carbon dioxide. The 

experimental setup is designed to ensure this. Figure 4.1 shows the details of the 

experimental setup. 

 

(a) 

 

(b) 
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(c) 

Figure 4.1: (a) Schematic diagram of the experimental setup. Inset: Detailed schematic of 

the B&K microphone. (b) PTFE tubing with end piece (c) Detailed view of the PTFE end 

piece with Ni thin-foil. 

 

A supercritical fluid chamber (see figure 4.1a) is made from a block of 316 stainless 

steel and designed to withstand much higher pressure than the critical pressure of carbon 

dioxide (pc = 7.3773 MPa). The supercritical chamber consists of gas inlet and outlet ports 

fitted with high pressure (103.4 MPa) ball valves and the chamber is connected to a carbon 

dioxide tank (p ~ 6.0 MPa). The thermoacoustic waves in supercritical carbon dioxide are 

studied in a PTFE (Polytetrafluoroethylene) tube (inside diameter 1.8 cm, length 25.0 cm, 

see fig. 4.1b) snugly fitted inside the supercritical chamber. A small hole in the PTFE 

tubing aligned with the gas inlet port provides flow path for the gas to and from the 

supercritical chamber. A very thin nickel foil (thickness 6.0 μm, electrical resistivity 

6.84x10-8
 ohm-m) completely covers one end of the tube and is attached with a mica end-

piece. A similar mica plate is used at the other end of the tube. These mica plates ensure 

rigid reflecting surfaces for the pressure waves. In addition, thick PTFE plates are added at 

the back of the mica plate and anchored with the tube to ensure rigid support and a good 

seal for the tube (see figure 4.1c). The foil is anchored by two aluminum bars that serve as 
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connection wires and supports for the foil. Lead wires from a foil heating circuit are 

introduced inside the supercritical chamber through compression fittings and are connected 

to the aluminum bars. A hand pump (HiP, 34.5 MPa, 60 mL/stroke) is used to raise the 

pressure of the carbon dioxide in the supercritical chamber from the tank pressure to a 

pressure above the critical point of carbon dioxide. Heating tape (Thermolyne, 0.5” x 4’) 

wrapped around the supercritical chamber is used to raise the temperature of the carbon 

dioxide in the supercritical chamber from the room temperature (usually ~ 295 K) to a 

temperature above the critical point of carbon dioxide. 

 

 

Figure 4.2: Electronic schematic of the foil heating circuit. 

 

In order to generate thermally induced acoustic waves in the enclosure, rapidly 

increasing the boundary wall (nickel foil) temperature is of critical importance. The 

temperature rise rate at the boundary not only influences the character of thermally induced 

acoustic waves, but it also determines the strength of the waves, which determines whether 

the waves can be detected by a measurement device or not. With the knowledge gained 

from previous studies [74, 75], we utilize a direct-current heating of the nickel foil covered 

end-piece of the PTFE cylindrical enclosure by means of an R-C circuit. The electronic 

schematic of the foil heating circuit is shown in figure 4.2. 
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Table 4.1: Specifications of the experimental system for thermoacoustic transport studies 

No. Part Make and Model Specification 

1 Capacitor 
Cornell Dubilier 

CGS273U050V4C 

27 mF 

50 V 

2 SCR Littlefuse TO-218X 
Max Trigger Time 2.5 

μs 

3 Foil Alfa Aesar Nickel Thin-Foil 

6 μm Thick 

Resistivity 6.84 x 10-8 

Ω-m 

4 Thermocouples 
Omega CHCO-005 (Bare Wire) 

Omega EMTSS-125 (Probe Type) 

Type E - 12.7 μm dia. 

Type E – 3.175 mm dia. 

5 Pressure Probes 
B&K 4193 with UC0211 Adapter 

Omega PX309-2KG5V 

Sensitivity: 2 mV/Pa 

Pressure Rating: 13.8 

MPa 

6 
Data Acquisition 

Board 
NI 6052E 

Sampling Rate: 333 

kHz 

7 Hand Pump HiP 87-6-5 34.5 MPa 60 mL/stroke 

8 Glands Conax TG-24T(E)-A2-T 
Pressure Rating: 22 

MPa 
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Nickel foil is used in the present study for fast heating of a boundary wall. The 

dimensions of the foil (attached around a circular PTFE end-piece) are 5.0 cm x 3.6 cm x 

6.0 μm and the electrical resistance of the foil is calculated to be 0.016 ohm. By carefully 

calculating every component in the R-C circuit, the circuit efficiency foil totalR R   is found 

to be about 36%. A capacitor rated at 27 mF is used in the circuit. The circuit time constant 

(τRC) is hence 0.0012 sec. A silicon-control-rectifier (SCR), (Littelfuse, model: TO-218X) 

with a 2.5 μs triggering time is used to fully discharge the capacitor. This arrangement 

provides a rapid rise of the foil temperature for generating the acoustic waves in the 

surrounding gas along the tube. Some other advantages of the R-C heating system include 

good repeatability and easy control of heating rate and maximum temperature increase. 

The details of the apparatus and circuit elements are listed in table 4.1. 

 

A condenser type microphone (12.7 mm Brüel & Kjær model 4193) is used to 

measure the thermally generated acoustic waves in the tube. The probe is mounted 

transversely on the plastic tube (see figure 4.1a), with the sensing surface flush with the 

inner wall of the tube. The probe is thus directly exposed to the gas and minimally 

interfered with the pressure wave propagation. For the experiments of thermally induced 

acoustic waves in supercritical carbon dioxide, the microphone probe is in a high pressure 

zone, while the data is transmitted to the DAQ card, which is in an atmospheric region. A 

multiple wire cable gland is employed to seal the connection port of the microphone cable. 

The Brüel & Kjær condenser microphone is chosen because of its high sensitivity, fast 

response, and wide frequency-response band. The probe instrumentation also includes a 

low-frequency adaptor (UC0211), a microphone preamplifier (model 2669) and a 
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conditioning amplifier (ZN 2690). The Brüel & Kjær 4193 condenser microphone (see 

figure 4.1a Inset), consists of a metal housing, inside of which a delicate and highly 

tensioned diaphragm is placed ahead of a back-plate. The distance between the diaphragm 

and the back-plate changes if there is any pressure difference between the microphone 

housing and the tube volume exposed to the diaphragm. The corresponding capacitance 

variation is converted to pressure signal by the microphone cartridge (not shown). To 

eliminate the influence of static pressure variation and protect the diaphragm, the 

microphone housing is connected to the tube medium by a static pressure equalization vent 

hole (figure 4.1a Inset). The narrow vent hole ensures that the static pressure of the 

microphone housing follows the pressure variation in the tube. The vent hole is designed 

to equalize the static pressure variations without suppressing the low-frequency 

components of the dynamical acoustic pressure which are to be measured. The time 

constant of the microphone’s pressure equalization system is about 0.1 s; therefore, 

frequencies below 10 Hz are affected by the vent hole. The Brüel & Kjær 4193 microphone 

is thus suitable for measuring the dynamic pressure variation when the static pressure in 

the tube remains constant or varies slowly. 

 

Other than the pressure measurements, the temperature and voltage drop histories 

of the foil (after the capacitor is discharged) are also recorded in our experiments. Previous 

numerical studies [74, 75] of thermally generated acoustic waves by a rapidly heated 

surface show that the early temperature behavior of the heated surface (during the first 

several micro-seconds) has a significant influence on the behavior of the acoustic wave 

generated. Hence we pay special attention to the measurement of the foil temperature at 
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early times after the capacitor is discharged. A Chromel-constantan type E thermocouple 

(Thermocouple 1, figure 4.1a) with a diameter of 12.7 μm is used for its fast response time. 

The attachment of thermocouple on the foil is also critical. Silver adhesive (503, Electron 

Microscope Science) is chosen after evaluating many other brands of adhesives, mainly for 

its high thermal conductivity and ease of applicability. Due to its heat capacitance, the 

adhesive slows down the response time of the thermocouple at very early times. The signals 

from the thermocouple probe are conditioned by an Omega Omni Amp IIB-E conditioning 

amplifier. The amplifier not only amplifies the weak signal from the thermocouple, but 

also isolates the high-frequency electrical disturbance by its interior signal conditioning 

circuit. Although the amplifier eliminates the electrical disturbance at early times, it does 

not accurately record the peak value of the temperature rise of the foil (due to signal 

conditioning by the Omega Omni Amp IIB-E amplifier). Two other type E thermocouples 

(Thermocouple 2 and 3, figure 4.1a) are used to measure the steady state initial temperature 

of the supercritical fluid. A high pressure transducer (Omega PX309) is used to measure 

and monitor the steady state pressure inside the supercritical chamber. The analog 

temperature, pressure and voltage measurements were recorded, digitized and saved 

through a National Instrument SCB-68 terminal block and a 6052E data acquisition (DAQ) 

board. High sample rate (333 kHz) of the 6052E DAQ board guarantees that the signals 

are recorded with high fidelity. The data acquisition system also provides a voltage output 

to a relay to control the triggering time of the SCR. 
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4.3 Experimental method 

At the beginning of an experiment, the supercritical chamber is heated and 

pressurized to a specific initial temperature and pressure (Ti > Tc, pi > pc), where the 

experiment is to be performed and all measurement devices are powered up and run such 

that the warm-up time requirements are met. The capacitor is then charged up to a desired 

voltage V0, which is measured by an HP 34401A multi-meter. The LabvVIEW 7.0 software 

is used to record the signals of temperature, voltage and pressure in the experiments, and 

to provide controlling signals. The SCR is triggered to initiate the experiment. At this point 

in the experiment, the capacitor is discharged causing fast heating of the foil. The foil 

temperature gradually falls after the initial rapid rise. After one experiment is carried out, 

the experimental conditions are initialized before the next set of measurements is made. 

Each experiment is repeated several times in order to confirm the measurements. 

 

4.4 Estimation of experimental uncertainty 

Several independent measurements are performed for the completion of the 

experimental study. These measurements are as follows: dynamic pressure in the tube 

(measured by the Brüel & Kjær 4193 microphone), foil temperature (measured by the 

Omega fine wire thermocouple), steady state pressure of the fluid (measured by Omega 

PX309 pressure probe), steady state temperature of the fluid (measured by Omega probe 

type thermocouples) and the voltage decay across the foil. All measurements are recorded 

by the NI 6052E DAQ board. The accuracy of the NI 6052E is ±4.747 mV for the range of 

voltage measurements made by the 4193 microphone and ±0.242 mV for the thermocouple 

measurements. There are two sources of fixed error in the Brüel & Kjær 4193 microphone 
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system: ±0.2 dB from the 4193 microphone itself and ±0.1 dB from the 2690 signal 

conditioner. With the error introduced by the DAQ board, the total maximum error for the 

pressure measurements made by the Brüel & Kjær 4193 microphone is estimated to be 

±0.15 Pa. The errors in the thermocouple measurements include ±0.045 ºC error from the 

cold junction compensation, 0.01%/ºC instability from the amplifier, ±0.02 ºC error from 

conversion of thermocouple voltage to temperature scale (oC) and ±0.08 ºC DAQ board 

error. Consequently, the total temperature error is 0.145 ºC plus 0.01% of the reading value. 

The only error in the voltage measurement is from the DAQ board, which is ±7.47 mV. 

Apart from these fixed errors, high frequency micro-scale oscillations (noise) are also 

present in the system. The measured pressure trace is digitally filtered by using a third order 

Butterworth method. The fixed errors along with the inherent noise level of the 

experimental system during the measurements are used to calculate the total error of the 

acoustic pressure and foil temperature measurement. The total errors of the pressure and 

temperature measurement are presented as error bars in the filtered traces (pressure and 

temperature). The uncertainty associated with the experimental data is estimated by using 

the method recommended by Kline and McClintock [174]. Both the transient pressure 

measurements by the Brüel & Kjær 4193 microphone and voltage measurements exhibit 

very high degrees of consistency and very low uncertainties. For the 4193 microphone 

measurement, the uncertainty, with a 95% confidence level, is 0.85% for the experimental 

case with the lowest charging voltage and capacitance. The corresponding uncertainty is 

0.1% for the voltage measurements. The maximum uncertainty is ±0.5% for the foil 

temperature measurements. The steady state initial temperature (Ti) for all the experiments 

is within ±0.05% of the measured value, and the steady state initial pressure (pi) is within 
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±0.2% of the measurements. Hence, the error associated with the variation of the initial 

conditions is considered to be minor. 

 

4.5 Measurement of thermoacoustic waves: Result and discussion 

The behavior of thermally induced acoustic waves in supercritical carbon dioxide, 

generated by fast heating of a bounding solid wall in a closed cylindrical tube is 

investigated experimentally. The fast heating of the nickel foil generates a thermally 

induced acoustic wave in the closed cylinder, which keeps traversing between the two ends 

and undergoes many reflections before it is fully damped out. The time dependent gas 

pressure variation in the tube and the voltage and temperature histories of the foil are 

recorded by a fast-response measurement system. Experiments are first carried out in 

supercritical carbon dioxide relatively far from the critical point [pi = 7.653 MPa (1110 

psi), Ti = 315 K] with a capacitor charging voltage of V0 = 30 V.   

 

Figure 4.3a exhibits the transient voltage drop across the foil. The response shows 

a typical R-C circuit discharge behavior. The corresponding foil temperature (V0 = 30 V) 

measured by the thermocouple is shown in figure 4.3b. At early times (for less than 0.04 s 

after the beginning of capacitor discharging) the foil temperature increase fast, but the 

increasing rate decreases gradually. The temperature rise in the foil depends on the heat 

gain and loss to the supercritical fluid. It should also be noted that during the capacitor 

discharge period, the electromagnetic disturbance is high, and the thermocouple cannot 

respond during the initial discharge period (for about t < 0.005 s). 
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(a) 

 

(b) 

Figure 4.3: Temporal variation of (a) voltage drop across the foil and (b) corresponding 

foil temperature (measured) with pi = 7.653 MPa (1110 psi), Ti = 315 K and V0 = 30 V. 
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(a) 

 

(b) 

Figure 4.4: Temporal variation of pressure measured at the center of the cylinder by 

B&K microphone with pi = 7.653 MPa (1110 psi), Ti = 315 K and V0 = 30 V at (a) early 

time and (b) long time. 
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Figures 4.4a and 4.4b show the trace of the pressure wave measured by the Brüel 

& Kjær microphone with a capacitor charging voltage of V0 = 30 V at early and long time 

scales respectively. The probe records a peak when the acoustic wave sweeps past the probe 

diaphragm during its motion from the heated side to the unheated side. The next peak 

indicates the reflected acoustic wave that now travels from the unheated side to the heated 

side. During the first several acoustic cycles (figure 4.4a) the wave shape shows sharp step 

like profiles. This is consistent with the previous studies [103, 169]. Due to viscous 

dissipation and energy losses, the characteristic acoustic wave profile gradually disappears. 

The measured Mach number (M) of the acoustic wave is about 1.0. High frequency 

disturbances in both early and long time scales are observed from the measurements (figure 

4.4a and 4.4b). Similar disturbances were also reported in the experimental study by Miura 

et al. [103]. These are caused mainly by the fluid flow within the supercritical chamber 

induced by imperfections in foil and tube surface and non-uniform heating of the 

supercritical chamber. The high frequency noise is digitally filtered from the measured data 

and used to calculate the total error of the actual measurements. The pressure variations 

measured by the Brüel & Kjær 4193 microphone over a longer period of time (about 14.0 

s) is presented in figure 4.4b. It is interesting to observe that the probe records pressure 

values lower than the ambient value (non-physical) beginning at about t = 3.0 s. This is due 

to the inherent construction and operational features of the Brüel & Kjær condenser 

microphone [75]. The existence of the narrow vent hole (see figure 4.1a inset) causes the 

non-physical results at longer times. The Brüel & Kjær microphone is suitable for the 

measurement of dynamic pressure where static pressure remains constant. It is not designed 

for the measurement with varying static pressure in the longer time scale [175].  
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In the experiment, as the Nickel thin-foil is suddenly heated, the fluid inside the 

tube also heats up and the static pressure starts increasing. The static pressure inside the 

tube increases to a maximum value, then decreases to the initial value in several seconds 

as the applied heat is lost to the ambient from the wall. Since, the diameter of the vent hole 

connecting the microphone housing to the pressure field in the tube is very small, the static 

pressure inside the microphone housing varies more slowly than that in the enclosed flow 

field. Within some time period, the static pressure inside the microphone housing becomes 

greater than that of the fluid in the tube, causing the pressure readings to fall below zero 

(from t = 3.0 s to t < 14.0 s in figure 4.4b). Finally, as the static pressure difference between 

the microphone housing and the tube is eliminated (due to the cooling of the system), the 

pressure measurement eventually become equal to zero in the longer time scale (t ≈ 14.0 

s). This behavior of the Brüel & Kjær 4193 microphone, however, does not affect the 

thermoacoustic pressure measurements in the early time scale. Based on the observations 

discussed above, a series of experiments are performed in near-critical states. Effect of the 

near-critical property variations and the boundary heat rate on the generation of 

thermoacoustic waves are investigated in detail. The results obtained from these 

experiments are discussed in detail in the following sub-sections. 

 

4.5.1 Effect of critically diverging thermo-physical properties 

To observe the effect of the critical point (diverging thermo-physical properties) on 

the generation and propagation of thermoacoustic waves, two different sets of experiments 

are carried out with the same capacitor charging voltage V0 = 30 V. The operating 

parameters for the two sets of experiments are shown in table 4.2. 
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Table 4.2: Operating parameters for the experiments performed 

Experiment Set 

# 

Capacitor 

Charging 

Voltage (V0) 

Initial Pressure (pi) Initial Temperature (Ti) 

1 

30 V 7.653 MPa (1110 psi) 315 K 

30 V 7.584 MPa (1100 psi) 315 K 

30 V 7.515 MPa (1090 psi) 315 K 

2 

30 V 7.515 MPa (1090 psi) 315 K 

30 V 7.515 MPa (1090 psi) 310 K 

30 V 7.515 MPa (1090 psi) 308 K 

30 V 7.515 MPa (1090 psi) 306 K 

 

The first set of experiments (set #1) are performed at the same initial temperature 

(Ti = 315 K), but different initial pressures of supercritical carbon dioxide ranging from 

7.515 MPa to 7.653 MPa (1090 psi to 1110 psi). Figure 4.5a shows the measured (filtered) 

pressure trace at the early time for the first set of experiments. It is observed that, as the 
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initial pressure of the fluid approaches the critical pressure (pc = 7.3773 MPa), relatively 

stronger acoustic fields are generated for the same capacitor charging voltage (i.e. same 

temperature perturbation (ΔT) in the fluid).  

 

Accordingly, the strongest waves are generated (in figure 4.5a) for pi = 7.515 MPa, 

which has the initial pressure closest to the critical pressure. However, the variation of the 

strength of the acoustic field is not significantly different since the initial state for all of the 

experiments performed in set #1 are relatively far from the critical point. The long time 

behavior of the pressure traces for set #1 is shown in figure 4.5b. The measured pressure 

values are again lower than the ambient value (non-physical) at longer times and are similar 

to the trends shown in Figure 4.4b. The reasons for the behavior are already explained. 

 

 

(a) 
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(b) 

Figure 4.5: Temporal variation of pressure measured at the center of the cylinder by 

B&K microphone (filtered) with Ti = 315 K, V0 = 30 K and at various initial pressures at 

(a) early time and (b) long time. 

 

The second set of experiments (set #2) are performed at the same initial pressure 

(pi = 7.515 MPa) with changing initial temperatures (Ti) ranging from 315 K to 306 K. The 

measured (filtered) pressure traces at both early and long time scales are shown in figure 

4.6a and 4.6b respectively. The measured pressure values (in figure 4.6b) are again lower 

than the ambient value at longer times and are similar to the trends shown in figure 4.4b. 

The reasons for the behavior are already explained. Similar to the phenomena observed for 

the experiments performed in set #1, the strength of the generated acoustic fields for these 

experiments (set #2) also increased as the critical state is approached. It is also observed 

that, as the initial state of the fluid approaches the critical point, the variation of the strength 

of the acoustic field becomes significantly different. 
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(a) 

 

(b) 

Figure 4.6: Temporal variation of pressure measured at the center of the cylinder by 

B&K microphone (filtered) with pi = 7.515 MPa (1090 psi), V0 = 30 K and at various 

initial temperatures at (a) early time and (b) long time. 
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From previous analysis [88], it was found that decreasing the thermal diffusivity 

(α) weakens the acoustic field, while both increasing (
𝜕𝑝

𝜕𝑇
)
𝜌

 and isothermal compressibility 

(β) enhances the acoustic field. In the above experiments, an increase in strength of the 

acoustic field is observed mainly due to the constructive combination of the increasing 

isothermal compressibility (β) and decreasing thermal diffusivity (α) near the critical point. 

The experiment performed in supercritical carbon dioxide with initial state pi = 7.515 MPa 

(1090 psi) and Ti = 306 K hence exhibits the strongest acoustic field (figure 4.6a). Due to 

the same reason, it is also observed that the small scale disturbance in the pressure trace 

(indicated by the error bars in the figures) increases in magnitude as the critical point is 

approached. However, the measured acoustic speeds for all the experiments are in good 

agreement with the numerical value predicted by the NIST Standard Reference Database 

23 [3]. 

 

4.5.2 Effect of charging voltage 

Several experiments are carried out with different capacitor charging voltage (V0) 

and keeping the initial state of the supercritical carbon dioxide fixed (pi = 7.515 MPa, Ti = 

306 K). Figure 4.7a shows the effects of the charging voltage on the temporal decay of 

voltage across the foil. The corresponding foil temperature measurements are given in 

figure 4.7b. Any change of the charging voltage of the capacitor only changes the total 

electrical energy stored in the capacitor; it does not affect the characteristics of the circuit. 

As it is observed from figure 4.7a and 4.7b, an increase in the charging voltage of the 

capacitor directly affects the temperature of the foil and hence the rate of increase of the 

foil temperature. 
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(a) 

 

(b) 

Figure 4.7: Temporal variation of (a) voltage drops across the foil and (b) foil 

temperatures for different charging voltages. 
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(a) 

 

(b) 

Figure 4.8: Temporal variation of pressure measured at the center of the cylinder by 

B&K microphone (filtered) with pi = 7.515 MPa (1090 psi), Ti = 306 K and at various 

charging voltages at (a) early time and (b) long time. 
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Figure 4.8a shows the effects of the charging voltage (V0) of the capacitor on the 

acoustic wave (early time) as measured by the Brüel & Kjær microphone under the same 

initial conditions of the supercritical fluid. It is observed that, relatively stronger acoustic 

waves are generated for higher charging voltages, because of the greater temperature rise 

rate of the boundary (foil). Physically, the acoustic wave originates from the local pressure 

disturbance near the wall introduced by sudden gas temperature increase. The sudden gas 

temperature increase is due to the heat conduction from the foil that is rapidly heated. 

Therefore, the strength of the generated acoustic wave is found to vary almost linearly with 

the charging voltage. The long time evolution of the measured pressure trace is shown in 

figure 4.8b. The measured pressure values (see figure 4.8a) are again lower than the 

ambient value (non-physical) at longer times and are similar to the trends shown in figure 

4.4b. The reasons for the behavior are already explained.  

 

4.6 Comparison of experimental and numerical results 

 Following the numerical model described in chapter 3, the thermoacoustic waves 

in supercritical carbon dioxide are also numerically simulated and compared with the 

experimental measurements. A confined layer of thermally quiescent and motion-free 

supercritical carbon dioxide inside a one dimensional layer of length, L is considered. A 

schematic of the computational domain is shown in figure 4.9. At t > 0, a prescribed time 

dependent thermal load (TL) is applied at the left boundary. 

 

Figure 4.9: Schematic diagram of the computational domain. 
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The right wall temperature (TR) is held at the initial bulk fluid temperature (Ti). The 

thermally induced acoustic waves generated are studied as a function of space and time. 

We consider one-dimensional continuity, compressible form of the Navier-Stokes 

equations and total energy equation to describe the generation and propagation of thermally 

induced acoustic waves in supercritical carbon dioxide (Equations 3.1-3.3). For speeding-

up the numerical calculations carried out in the experimental geometry, non-dimensional 

form of these governing equations with appropriate scaling rules are used. The following 

non-dimensional variables are defined: 
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Here t is time, x is a cartesian coordinate, ρ is density, u is the velocity component in x 

direction, μ is the shear viscosity, μb is the bulk viscosity, h is the total enthalpy given by 
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  (where e is the specific internal energy), k is the thermal conductivity, T is the 

temperature and p is pressure. The non-dimensional governing equations of the problem 

are then:  
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Here, the subscript ‘i’ refers to the conditions at the initial state. cs is the local acoustic 

speed. Pri is the Prandtl number at the initial state (i.e. at p = pi, T = Ti) of the fluid. τa and 

τd are the acoustic and diffusion time scales of the problem respectively, where τa = L/C 

and τd = L2/α (α is the thermal diffusivity).  

 

Although the experiments are performed in a 25.0 cm long tube, the long time 

numerical simulation is carried out in one dimensional domains of length L = 1.0 cm and 

25.0 cm. For the L = 1.0 cm case, the left wall thermal boundary condition is scaled using 

a temporal scaling factor of exp =25eriment computationL L . Within the piston effect time scale 

2( 1)PE d    , where γ is the ratio of specific heats) in near-critical fluid, the acoustic 

field is mainly one dimensional in nature [96, 176]. Also, an order of magnitude analysis 

of the non-dimensional form of the governing equations reveals that, the coefficient 

 Pri a d   of the viscous terms in equations 4.2 and 4.3 is very small compared to the other 

terms of the equations within the piston effect time scale. Due to this reason, the non-linear 

viscous terms has a very small effect on the generation and propagation of the 

thermoacoustic waves in this time scale (τPE) except for the case where the initial state of 

the supercritical fluid is very close to the pseudo-critical state [169]. Hence scaling down 

the problem with the characteristic length scale should not significantly change the 

characteristics (amplitude and profile) of the acoustic wave at the very early time period. 

The thermal boundary conditions of the problem are given by: 

( ) LT f t      (4.4) 

2

i i
R

i i

T k
T

C
      (4.5) 
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The governing equations (equations 4.1~4.3) are solved by finite volume method 

using central difference scheme for the spatial discretization and a Crank-Nicolson scheme 

for time discretization. Details of the mathematical modeling and numerical scheme used 

are already discussed in chapter 3. Development of the time dependent thermal boundary 

condition and the comparison of the numerical result with the experimental measurements 

are discussed in the following sub-sections. 

 

4.6.1 Development of time dependent thermal boundary condition 

The experimental measurements of both the voltage drop and temperature decay of 

the foil are used to develop the thermal boundary condition of the heated wall for the 

numerical simulations. Limited by the properties of the Omega fine wire thermocouple, its 

contact with the foil and the electrical noise of the discharging circuit, the thermocouple 

(Thermocouple 1 in figure 4.1a) in our experiments can not accurately measure the foil 

temperature at very early times (temperature rise time). Hence, the foil voltage 

measurements and the electrical energy input into the foil are used to develop the transient 

change in foil temperature at very early times. 

 

Figure 4.10 gives the foil voltage measurements and the foil temperatures 

calculated from the foil voltage measurements for V0 = 30 V. In the calculation of foil 

temperature (from the voltage measurements), an energy balance equation for the foil is 

considered: 

 
loss
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Here,  is the density of the foil, cp is the specific heat of the foil,  is the foil thickness, A 

is the foil surface area, qloss is the total heat loss of the foil to the surrounding and V(t) is 

the transient voltage response of the foil. At the early time, the heat loss to the surrounding 

is modeled by radiation loss and is given by qloss = σA (T4 − Ti
4). Here  is the emissivity 

of the foil and σ is the Stefan-Boltzmann constant. The above equation is numerically 

solved by an explicit scheme. From the calculated temperature profile, it was observed that 

the heat loss term has only a slight effect on the foil temperature during the temperature 

rise time (within the initial 0.005 s). 

 

 

Figure 4.10: Measured foil voltage and calculated foil temperature at early times with V0 

= 30 V 

 

 Figure 4.11 shows the comparison of the calculated foil temperature (with radiation 

heat loss) from the voltage measurements and the thermocouple temperature 

measurements. The thermocouple data is conditioned by an Omega Omni Amp IIB-E 
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conditioning amplifier. The signal conditioning circuit along with the adhesive used to 

attach the thermocouple with the foil slows down the overall response of the thermocouple. 

These effects perhaps cause the measured temperature data at early times to be under-

predicted. In longer time scale, somewhat different reasons cause the discrepancy between 

the measured and predicted values of the temperature. There are several sources of heat 

loss, such as convective heat loss to air and conduction losses to the aluminum bars and 

the mica plate, that were not considered in equation 4.6. A polynomial fit of the measured 

data is obtained for t > 0.15 s and is extended from t = 0.15 s to t = 0.0001 s, as shown in 

figure 4.11. 

 

 

Figure 4.11: Measured, calculated and extrapolation of measured foil temperature with 

V0 = 30 V 

 

For the experiments, the foil temperature increases rapidly and then gradually 

decays. The predicted temperature increase of the foil (from the voltage measurement) 
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meets the extrapolated curve of the temperature decay at about t = 0.0009 s. This is close 

to the calculated circuit time constant, τRC = RtotalC = 0.0012 s for C = 27.0 mF as (section 

4.2). The corrected temperature history of the foil (as shown in figure 4.11) is used as the 

temperature input (as high resolution look-up table) in our numerical simulations for the 

experimental case where V0 = 30 V and pi = 7.515 MPa (1090 psi), Ti = 306 K. 

 

4.6.2 Numerical predictions 

The generation of acoustic waves in supercritical carbon dioxide (pi = 7.515 MPa, 

Ti = 306 K) in an enclosure by rapidly heating a boundary wall is simulated by numerically 

solving the compressible form of the Navier-Stokes equations. As observed from our 

numerical investigation of thermoacoustic transport (discussed in chapter 3), the behavior 

of the acoustic waves produced in supercritical fluid is strongly dependent on the rate of 

increase of the heated boundary and its subsequent cooling. Hence, it is of critical 

importance to apply the accurate boundary conditions in the numerical simulations. In 

section 4.6.1, the procedure to develop the temporal boundary condition for the heated foil 

(TL) is discussed. The numerical simulations for the first several acoustic cycles are 

calculated for the scaled domain (L = 1.0 cm) and a domain with the exact length of the 

test section (L = 25.0 cm). The numerical model is used to obtain the predictions of the 

flow and acoustic fields in the experimental tube driven by fast heating of the foil. The 

temporal evolution of the pressure (experimental and numerical) is represented using a 

non-dimensionalized time scale (t/τa) for the sake of comparison. 
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Figure 4.12: Temporal variation of measured and calculated pressure at the center of the 

cylinder with pi = 7.515 MPa (1090 psi) and Ti = 306 K at early time. 

 

Figure 4.13: Temporal variation of measured and calculated pressure at the center of the 

cylinder with pi = 7.515 MPa (1090 psi) and Ti = 306 K at long time. 
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For the pressure at the mid-point of the cylindrical tube, the comparison of the 

numerical and experimental results at the very early time is given in figure 4.12, with V0 = 

30 V. It is observed that, in the first several acoustic cycles (t/τa < 5) the numerical and 

experimental results are in good agreement. The computational results for both the cases 

(L = 1.0 cm and L = 25.0 cm) compares well with the experimental pressure trace. No 

significant differences between the computational results are observed within this time 

period. This is also in accordance with the scaling analysis. However, the computational 

results are always found to slightly over-predict the experimental result. The reason the 

computational results are always a little bit higher than the experimental results may be 

that the parameters that used in the numerical model are slightly different from the real 

value. For example, the thickness of the metal foil plays a significant role in the numerical 

model. But, the value given by manufacturer (6.0 μm) has ±10% toleration level. There is 

also an error level associated with the measurement of the initial state of the supercritical 

carbon dioxide in the experimental system. So, it is possible that the initial state considered 

in our numerical model is not exactly same as that in the experiments. The overall good 

comparison between the computational and experimental pressure results at the very early 

time demonstrates that the method for reconstructing the transient foil temperature is 

reasonable. 

 

Calculations with both the scaled and exact domains (L = 1.0 cm and 25.0 cm) are 

carried out for a longer period of time. The comparison of the experimental and the 

numerical evolution of pressure at a longer time scale are shown in figure 4.13. While the 

numerical results correctly predict the acoustic wave speed and amplitude of dynamic 
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pressure fluctuations, a significant deviation of the computed pressure evolution from the 

measurement is noticed from the figure. Obviously, the case with the exact length (L = 25.0 

cm) of the experimental system compares relatively well with the experimental 

measurement. This is mainly due to acoustic attenuation affecting the pressure wave as it 

propagates through longer distances. But it is also noticed that, there is still a significant 

amount of discrepancy existing between the calculated (L = 25.0 cm) and the measured 

pressure amplitude (~ 15% maximum). In the numerical model, both of the walls are 

considered smooth and rigid, and also the system is assumed to be sealed perfectly. 

However, in the experiments, the acoustic energy is partially absorbed by the walls when 

the wave hits one. In the longer time scale, the acoustic wave in the experimental system 

is also dissipated due to viscous damping introduced by the side walls. There is also the 

possibility of the existence of leakage flow through the crevices of the inlet port (figure 

4.1a) in the experimental setup. 

 

4.7 Summary and conclusions 

Experimental measurements are performed to characterize the generation, 

propagation and dissipation of thermally induced acoustic waves in supercritical carbon 

dioxide near its critical point. Fast heating of a thin nickel foil along the boundary of the 

enclosure produces strong compressive waves that carry energy and momentum from the 

heated boundary deep into the undisturbed regions of the fluid. The behavior of the 

generated acoustic waves is studied as functions of the initial state of the supercritical fluid 

and the boundary heating rate. The thermally induced acoustic waves in supercritical 

carbon dioxide are also investigated by numerically solving a fully compressible form of 



111 

 

the Navier-Stokes equations. The NIST Standard Reference Database 23 [3] is used to 

generate two-dimensional look-up tables to represent the equation of state and other 

thermodynamic properties for supercritical carbon dioxide. The results from the numerical 

simulations are compared with the experimental measurements with accurately developed 

boundary conditions. 

 

Two interesting and significant phenomena are observed from the results presented. 

First, as predicted by the numerical studies described in chapter 3 and earlier studies [95, 

159], the strength of the generated acoustic wave is found to be correlated with the initial 

state (pi, Ti) of the supercritical fluid. It is observed that the relative strength of the heating 

induced acoustic wave increases as the critical state of the fluid (CO2) is approached. 

Secondly, the strength of the generated acoustic field is also dependent on the rate of 

boundary heating (temperature rise rate). At early times, the computational and 

experimental results show an excellent match. But the experimental measurements and 

numerical results (L = 25.0 cm) for the pressure evolution at longer time scales do not 

compare well quantitatively. This deviation is explained by the presence of leakage flow 

in the experimental tube and viscous dissipation due to the side walls (simulations are 

considered one dimensional). The physical features of the computational and experimental 

results are also found to be in good agreement. 
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CHAPTER 5: NUMERICAL INVESTIGATION OF BUOYANCY INDUCED THERMAL 

TRANSPORT IN NEAR-CRITICAL SUPERCRITICAL FLUID4 

 

5.1 Introduction 

Supercritical fluids are characterized by high densities, high thermal conductivities 

(compared to gases) and low viscosities, but low thermal diffusivities (compared to 

liquids). Due to the high compressibility of supercritical fluids, very strong thermoacoustic 

waves are generated due to temperature relaxation at a boundary. In the long time scale 

under terrestrial gravity, the thermoacoustic waves are attenuated due to viscous dissipation 

and buoyancy driven flows. The interaction of thermoacoustic transport with buoyancy 

driven flows in near-critical supercritical carbon dioxide is investigated numerically in this 

chapter. Buoyancy driven thermal transport in supercritical carbon dioxide is studied 

numerically by employing a high-fidelity CFD model. Thermally quiescent and motion 

free supercritical carbon dioxide in a two-dimensional square enclosure confined by rigid 

walls is considered. The NIST Standard Reference database 23 [3] is used to obtain the ρ-

p-T relations for supercritical carbon dioxide, along with the static enthalpy h0 = f(p, T), 

thermal conductivity k = f (p, T), viscosity μ = f(p, T) and specific heat cp = f (p, T) relations. 

Different features regarding the flow field and thermal transport induced by natural 

convection near the critical point are revealed by the simulations. Correlations are 

developed to predict the heat transfer coefficient during buoyancy driven convection at 

both supercritical and near-critical conditions in the form ( , , , )pcNu f Ra p T T    where, 

                                                 
4The results presented in this chapter can be found in, [177] N. Hasan and B. Farouk, 

"Buoyancy driven convection in near-critical and supercritical fluids," International 

Journal of Heat and Mass Transfer, vol. 55, pp. 4207-4216, 2012. 
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 i c cp p p p    is the dimensionless pressure,  m c cT T T T  

 

is the dimensionless 

temperature, ( ) / 2m i LT T T    and  pc pc c cT T T T    is the dimensionless pseudo-critical 

temperature. The subscripts ‘i’, ‘m’, ‘c’, and ‘pc’ refer to the initial, mean, critical, and 

pseudo-critical conditions respectively.  The subscript 'L∞' refers to final value of the left 

(heated) wall temperature. The effect of critically diverging bulk viscosity on buoyancy 

driven transport is also investigated. 

 

5.2 Problem description 

Thermally quiescent and motion-free supercritical carbon dioxide inside a square 

cavity (L = 10.0 mm) is considered. The initial state of the fluid is described as, Ti and pi 

with Ti > Tc and pi > pc for all cases considered. Figure 5.1 shows the schematic diagram 

of the computational domain. 

 

Figure 5.1: Schematic Diagram of the computational domain. 
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At t > 0, a prescribed thermal load is applied at the left boundary (X/L = 0.0) in the 

form of: 

/(( ) (1 )) At

L iT f t T Tt e        (5.1) 

Such that, at steady state, ( )L t iT t T T    . Here, ΔT is the target temperature rise and A 

is the heating parameter (as discussed in chapter 3). The acoustic time, τ = L/C is defined 

as the flight time for an acoustic wave to traverse the slab. The left wall temperature 

(equation 5.1) is a sigmoid function of time which is characterized by a faster change in 

temperature at the early time and by a slower change as the target temperature is 

approached. The rate of the boundary heating is dependent on the combination of target 

temperature rise (T) and the heating parameter (A).  

 

5.3 Mathematical modeling 

Natural convection in supercritical and near-critical fluids can be modeled by the 

complete hydrodynamic description for an isotropic, Newtonian, compressible, and 

dissipative (viscous and heat-conducting) fluid [76, 114]. Although there have been 

reasonable concerns over the legitimacy of applying continuum physics at the vicinity of 

the critical point, according to Stanley[57] the hydrodynamic limit is located around 

  510c cT T T   (for CO2, 3cT T  mK) on the critical isobar (p = pc). The physical 

conditions we consider here are relatively far from the hydrodynamic limit, and as a result 

they fall safely into the realm of continuum mechanics. The following two-dimensional 

continuity and the compressible form of the Navier-Stokes equations are used to describe 

the buoyancy driven flow in supercritical and near-critical carbon dioxide: 
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Here, Φ and Ψ are the viscous dissipation functions given by –  
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Here, x and y are the cartesian coordinates, t is time,  is density, �⃗�  is the velocity vector 

given by ˆ ˆV ui vj  , where, u and v are the velocities in x and y direction respectively, h is 

the total enthalpy, T is the temperature and p is pressure. The property shear viscosity () is 

a measure of the resistance of a fluid which is being deformed by a shear stress while bulk 

viscosity (µb) is the measure of the resistance to a normal stress. The equation of state 

describing the -p-T relation of supercritical fluids (including the near-critical states) is not 

well-described. It has been shown earlier [39] that the van der Waals equation of state does 

not represent the properties of supercritical carbon dioxide accurately near the critical 

point. In this study, we used the NIST Standard Reference Database 23 [3] for the ρ = f (p, 

T) relations and for evaluation of other thermodynamic properties of supercritical and near-

critical carbon dioxide. The NIST23 [3] equation of state describing the ρ-p-T relation of 

carbon dioxide is based on the equation of state proposed by Span and Wagner [65], which 
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is mainly empirical in nature and includes special non-analytic terms to predict the correct 

behavior of the fluid to the immediate vicinity of the critical point. Two dimensional look-

up tables are developed in the present study to represent the  = f (p, T), k = f (p, T), μ = f 

(p, T), h0 = f(p, T) and cp = f (p, T) data provided by the NIST Standard Reference Database 

23. Bulk viscosity (b) of near-critical CO2 is calculated using the set of equations proposed 

by Onuki [56] and is given as a function of pressure and temperature. The temperature 

range considered for the look-up tables is 300K - 350K and the pressure range is 7.38 MPa 

– 12.0 MPa. 

 

5.3.1 Boundary conditions 

The thermal boundary conditions for the wall heating (left wall, TL) has been given 

earlier in equation (5.1). The right wall is maintained at a constant temperature (TR = Ti) 

while the top and bottom walls of the enclosure are insulated ( 0
T

n





, where n is the 

direction normal to the wall). No slip conditions are used for all four walls. Zero gradient 

boundary condition ( 0
n





) for fluid density at the walls is applied and the wall pressure 

is updated using the equation of state for supercritical carbon dioxide as a function of wall 

temperature and wall density. 

 

5.3.2 Numerical method 

The governing equations are solved by a finite volume method using a central 

difference scheme for the spatial discretization and a Crank-Nicolson scheme for time 

discretization. Throughout the simulations, a non-uniform grid spacing (Δxmax / Δxmin = 
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Δymax / Δymin = 5) with relatively finer mesh near the walls is considered to generate 

sufficiently high spatial resolution. For the early time calculations, a Courant number 

(cst/x) of 0.4 is set to assure proper numerical convergence of the solution. Here t is 

the time step, x is the grid spacing and cs is the local acoustic speed. All computations 

were carried out on a Dell Precision T7500n computer. 

 

5.4 Buoyancy driven thermal transport: Result and discussion 

Numerical simulations for buoyancy driven flow in supercritical carbon dioxide are 

carried out for a number of cases in the near-critical region as well as far from the critical 

point and for different Rayleigh numbers ranging from 106 to 109. The Rayleigh number 

for the problem is defined as, .PrRa Gr . Here, Gr is the Grashof number and Pr is the 

Prandtl number. Grashoff number is given by
3

2

g L T
Gr






 . Here, β is the volumetric 

thermal expansion coefficient,   is the kinematic viscosity, L is the characteristic length 

of the computational domain and ΔT is the temperature difference between the hot and cold 

wall at the steady state. The spatially averaged steady state Nusselt number is calculated as

q L
Nu

k T





. Here, L is the characteristic length; k is the thermal conductivity of the fluid 

and q" is the spatially averaged heat flux along the vertical walls calculated using the 

following equation: 

0

1
L

xq q dx
L

        (5.8) 

xq  is the local heat flux along the vertical walls. All fluid properties are evaluated at the 

bulk mean temperature (   2m i LT T T   ) and pressure. The results presented are for the 
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transient as well as the steady state behavior of the convective flow field and thermal 

transport in supercritical carbon dioxide. The steady state solutions are obtained by directly 

solving the steady state form of the governing equations (equations 5.2 – 5.5).  

 

5.4.1 Buoyancy driven flows in supercritical fluids 

Buoyancy driven convection in a side heated enclosure filled with supercritical 

carbon dioxide is investigated here. For variation of the governing parameters, namely, the 

Rayleigh number and the temperature and pressure deviation from the critical point, the 

intensity and structure of the steady-state convective heat transfer are observed. Steady 

state temperature contours due to free convective flow (Ra = 108) in supercritical carbon 

dioxide both near (p' = 3.66x10-4, T' = 2.9x10-3 and Tpc' = 3.88x10-5) and far (p' = 6.26x10-

1, T' = 6.86x10-2 and Tpc' = 8.71x10-2) from the critical point, is shown in figures 5.2 and 

5.3 respectively. At this high Rayleigh number at  early time (t = 1 sec), both figures 5.2a 

and 5.3a shows formation of thin thermal boundary layers along the vertical walls while 

the central region of the enclosure remains isothermal. As a result of the buoyancy effect, 

the upstream flow rises near the left warm surface and downstream flow moves near the 

cool right surface. Due to the vanishing thermal diffusivity near the critical point, diffusion 

is much slower in the near critical supercritical fluid (figure 5.2a) than in supercritical fluid 

far from the critical point (figure 5.3a). However, as the conditions inside the enclosure 

approaches steady state, the center of the enclosure becomes thermally stratified due to the 

large density variations present in the supercritical fluid and the temperature contours for 

cases both near and far from the critical point become almost identical (figures 5.2b and 

5.3b). 
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Figure 5.2: Contours of steady state temperature inside the side heated enclosure filled 

with supercritical carbon dioxide near the critical point (pi = 7.38 MPa, Tm = 305.0 K) 

with Ra = 108, p' = 3.66x10-4, T' = 2.9x10-3 and Tpc' = 3.88x10-5 at (a) t = 1.0 sec and (b) 

steady state [Tmax = 305.05 K (left wall), Tmin = 304.95 K (right wall), δT = 10 mK]. 

 

 

Figure 5.3: Contours of steady state  temperature inside the side heated enclosure filled 

with supercritical carbon dioxide far from the critical point (pi = 12.0 MPa, Tm = 325.0 K) 

with Ra = 108, p' = 6.26x10-1, T' = 6.86x10-2 and Tpc' = 8.71x10-2; at (a) t = 1.0 sec and 

(b) steady state [Tmax = 325.3 K (left wall), Tmin = 324.7 K (right wall), δT = 60 mK]. 
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The corresponding steady state velocity fields are shown in figures 5.4a and 5.4b 

respectively. Although the temperature contours and the flow field appear to be similar for 

supercritical fluids near and far from the critical point, it is observed that the thermal 

transport behavior in these two zones (near and far from the critical point) is unlike. The 

transport phenomena in supercritical fluid as observed from the present study are discussed 

in the following sections. 

 

 

Figure 5.4: Velocity vectors (Ra = 108) inside the side heated enclosure filled with 

supercritical carbon dioxide (a) near the critical point (pi = 7.38 MPa, Tm = 305.0 K, p' = 

3.66x10-4, T' = 2.9x10-3 and Tpc' = 3.88x10-5) and (b) far from the critical point (pi = 12.0 

MPa, Tm = 325.0 K, p' = 6.26x10-1, T' = 6.86x10-2 and Tpc' = 8.71x10-2) at steady state. 

 

5.4.2 Nusselt number correlation for supercritical fluids far from the critical point 

In a supercritical carbon dioxide far from the critical point (p > 10 MPa, T > 320 

K), i.e. where 
1 2 > 3.56 10 , 5.22 10p T     , the thermo-physical property variations are 

monotonic and the effect of the critical divergence is not felt. To study the thermal transport 
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behavior in this region, a number of cases are calculated with different Rayleigh numbers 

(Ra) by changing the bulk pressure and temperature. Calculations for cases far from the 

critical point   > 10MPa,  > 320Kp T  i.e. 
1 2 > 3.56 10 , 5.22 10p T     reveal that, 

similar to convection in ideal gases, the Nusselt number (Nu) for free convective flow in 

supercritical fluids (far from the critical point) is a function of Rayleigh number (Ra) only. 

 

 

Figure 5.5: Variation of steady state spatially averaged Nusselt (Nu) number along the 

vertical walls as a function of Rayleigh (Ra) number for supercritical carbon dioxide far 

from the critical point. 

 

A correlation for steady state spatially averaged Nusselt number for the buoyancy 

driven flow in supercritical carbon dioxide far from its critical point is obtained from the 

calculations, which is in the form: 

0.28630.1754Nu Ra      (5.9) 
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This correlation covers a range of 106 < Ra < 109 and can be applied to calculate the free 

convective heat transfer coefficient in supercritical CO2, far from its critical point. The 

correlation obtained from the present study (equation 5.9) is compared in figure 5.5 with 

Nusselt number (Nu) correlations for free convective flow in high density and high Prandtl 

number ( Pr 1) fluids given by Barakos et al. [178], Markatos and Pericleous [179] and 

Bejan [180]. It is observed that, in the absence of critical divergence (far from the critical 

point),

 

thermal transport behavior of supercritical fluids compares reasonably well to that 

for a high density and high Prandtl number gas. 

 

5.4.3 Nusselt number correlation for supercritical fluids near the critical point 

Near the critical point  1 2 < 10MPa,  < 320K,  < 3.56 10 , 5.22 10p T p T     , 

supercritical fluid properties are characterized by strong critical divergence as discussed in 

chapter 2. Usually for ideal gases and supercritical fluids far from the critical point (where 

thermo-physical property variations are monotonic), Nusselt number, which characterizes 

convective thermal transport, is a function of the Rayleigh number only. However, it was 

observed that, in the near critical supercritical region, transport of thermal energy varies 

not only as a function of Rayleigh number (Ra) but also as a function of the dimensionless 

pressure, 
 i c

c

p p
p

p


   and temperatures 

 m c

c

T T
T

T


  , 

 pc c

pc

c

T T
T

T


   where

( )

2

i L
m

T T
T 

 . The subscripts ‘i’, ‘m’, ‘c’ and ‘pc’ refer to the initial, mean, critical, and 

pseudo-critical conditions. 
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Figure 5.6 shows the Nusselt number (Nu) variation in near critical carbon dioxide 

for different Rayleigh numbers, as a function of the dimensionless pressure ( 'p ) and 

temperature ( 'T ). It is observed that, similar to the thermo-physical property variations 

near the critical point, the Nusselt number is also maximized along the pseudo-critical 

states (i.e. where c  ). The variation of Nusselt number (Nu) along the pseudo-critical 

states is explained as a complex combination of the divergence of the specific heat (cp), 

thermal conductivity (k) and the shear viscosity (µ) around the near-critical supercritical 

zone. It is also observed that, for a fixed Rayleigh number (Ra) as the bulk pressure and 

temperature is moved away from the pseudo-critical state, the Nusselt number (Nu) 

eventually converges to a value given by the correlation (equation 5.9) in section 5.4.2. 

 

 

(a) 
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Figure 5.6: Variation of steady state spatially averaged Nusselt number as a function of 

for different for near-critical carbon dioxide with (a) 

Ra = 5x108 (b) Ra = 1x108 and (c) Ra = 5x108 

 m c cT T T T    i c cp p p p  
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A surface map for the Nusselt number variation near the critical point of carbon 

dioxide for Ra = 1x108 is shown in figure 5.7. The point   0i c cp p p p    , 

  0m c cT T T T     refers to the critical point. A strong divergence of the Nusselt number 

(Nu) at the critical point is observed. It is also observed that, for the same Rayleigh number 

(Ra), the Nusselt number (Nu) becomes a strong function of the dimensionless temperature 

( 'T ) and pressure ( 'p ) and is maximized along the line where c  (pseudo-critical 

states). The divergence of the Nusselt number (Nu) along the pseudo-critical states is 

continuously diminishing as the dimensionless pressure ( 'p ) and temperature ( 'T ) moves 

away from the critical point ( 0, ' 0p T   ). 

 

Figure 5.7: Steady state spatially averaged Nusselt number (Nu) surface map as a 

function of the dimensionless temperature 

 

and pressure 

 for near-critical carbon dioxide at Ra = 108. 

 m c cT T T T  

 i c cp p p p  
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A correlation for Nusselt number (Nu) to fit the calculated data for different 

Rayleigh numbers (Ra) and the dimensionless pressure ( 'p ) and temperature ( 'T ) near the 

critical point of carbon dioxide is obtained which is in the form of: 

0.2863 0.31320.02260.1754 7RaNu Ra f     (5.10) 

Where, 
- 105

0.06

.21- 43.21

27

6024.62
s

0.664
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( ) 86.74 +1
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 and
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T
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   and 

pc c

pc

c

T T
T

T


  . The above correlation is valid for the 

Rayleigh number range 6 910 10Ra   and the near critical range where,

10 3.56 10p    , 20 5.22 10T     and 20 4.97 10pcT    . The parameter 

pc c

pc

c

T T
T

T


   refers to the dimensionless pseudo-critical state temperature and the 

parameter ‘f’ is defined to characterize the effect of pressure and temperature on the 

Nusselt number (Nu) variation. The parametric value f   indicates the critical point, 

where it decreases as the bulk mean pressure and temperature are moved away from the 

critical point. A parametric value of 0f   indicates the point (
10 3.56 10p    ,

20 5.22 10T    ) where Nusselt number variation is insignificant with changing 

pressure and temperature. 

 

Figure 5.8 shows the variation of Nusselt number as a function of Rayleigh number 

with changing values of the ‘f’ parameter. The curve referring f = 0 is the same one obtained 

from equation 5.9 and shown in figure 5.5. It is observed that as critical point is approached 
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( f  ), Nusselt number (Nu) increases for the same Rayleigh number (Ra). However, 

this divergence is stronger in the high Rayleigh number region (108 ~ 109) than in lower 

Rayleigh number region (106). This behavior is mainly due to the transition to turbulence 

at the higher Rayleigh number flow regimes. 

 

 

Figure 5.8: Variation of steady state spatially averaged Nusselt (Nu) number as a 

function of Rayleigh (Ra) number for supercritical carbon dioxide with different values 

of the parameter ‘f’ 

 

5.4.4 Effect of critically diverging bulk viscosity on buoyancy driven convection 

To investigate the effect of critically diverging bulk viscosity on the buoyancy 

driven flow in supercritical fluids, a different problem geometry is employed. A two 

dimensional square cavity of height L = 10 mm, which is filled with supercritical carbon 

dioxide near its critical point is considered. The fluid is initially at rest, in thermodynamic 

equilibrium at a uniform temperature Ti = 304.3 K and pressure, pi = 7.38 MPa (
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4' 3.66 10p   , 4' 5.65 10T   and 53.88 10pcT    ). Temperature of the bottom wall is 

raised to 304.4 K according to equation 5.1, whereas the top wall is kept at the initial 

temperature and the lateral walls are adiabatic. In the convective regime, the heat flow 

which is obtained on relatively longer time scales, exhibits some characteristics of that 

observed in turbulent convection in normally compressible fluids: it is composed of plumes 

in thermal boundary layers and jets on lateral walls. The results presented below describe 

the system evolution just after the beginning of bottom wall heating and after the 

convection onset.
 

 

    (a)          (b) 

Figure 5.9: Contours of temperatures inside a bottom heated enclosure at t = 1.5 sec for 

near critical carbon dioxide (pi = 7.38 MPa, Ti = 304.3 K, = 3.66x10-4,  = 5.65x10-4 

and  = 3.88x10-5) and Ra = 7.35x108 (a) without and (b) with the inclusion of bulk 

viscosity [Tmax = 304.4 K (bottom wall), Tmin = 304.3 K (top wall), δT = 1.0 mK]. 

 

Figure 5.9a and 5.9b shows the contours of temperature inside the enclosure with 

and without the effect of bulk viscosity respectively. It was observed that, at the very early 

stage, due to the high compressibility and the very small thermal diffusivity of the 

'p 'T

pcT 
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supercritical fluid, the heating of the bottom wall induces the appearance of three distinct 

zones in the fluid layer: two very thin thermal boundary layers near the bottom and top 

walls, in which diffusion realizes heat transfer, and the bulk of the cavity which 

temperature is homogeneously increased by thermoacoustic effects and bulk viscosity 

shows no effect at this time. However, in the convective flow regime, plumes developed 

along the heated boundary at a relatively earlier time (t = 1.5 sec) when the bulk viscosity 

was absent in the model. With the inclusion of the bulk viscosity, the boundary layers 

appear more stable at this time. 

 

    (a)          (b) 

Figure 5.10: Velocity Vectors inside a bottom heated enclosure at t = 1.5 sec for near-

critical carbon dioxide (pi = 7.38 MPa, Ti = 304.3 K, p' = 3.66x10-4, T' = 5.65x10-4 and 

Tpc' = 3.88x10-5) and Ra = 7.35x108 (a) without and (b) with the inclusion of bulk 

viscosity. 

 

The corresponding velocity fields are shown in figure 5.10a and 5.10b respectively. 

The velocity fields at the earlier time (t = 1.5 sec) are mainly characterized by two large 

upward rising plumes located at the bottom corners of the cavity and the rest of the cavity 
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is almost undisturbed. However, for the case without considering the bulk viscosity (see 

figure 5.10a), several smaller convection rolls are also visible near the bottom (heated) wall 

while they are completely absent for the case considering bulk viscosity (see figure 5.10b). 

 

 

Figure 5.11: Spatial variation of temperature inside the enclosure at mid-plane (X/L = 

0.5) at t = 1.5 sec for near-critical carbon dioxide (pi = 7.38 MPa, Ti = 304.3 K, p' = 

3.66x10-4, T' = 5.65x10-4 and Tpc' = 3.88x10-5) and Ra = 7.35x108 with and without the 

effect of bulk viscosity. 

 

Figure 5.11 shows the spatial variation of the bulk fluid temperature inside the 

enclosure at midplane (X/L = 0.5) and at t = 1.5 sec for the two cases. In both the cases, the 

uniform rise of the bulk due to piston effect can be observed from this figure. It is observed 

that, without the inclusion of the bulk viscosity, the temperature in the bulk of the fluid 

increases relatively faster. This is mainly due to two factors – first, inclusion of bulk 

viscosity in the thermoacoustic time scale attenuates the induced acoustic waves quickly 



131 

 

which affects the thermoacoustic mode of transport and second, stability of the thermal 

boundary layer in the diffusion timescale affects the convective mode of transport.  

 

 

Figure 5.12: Temporal variation of spatially averaged Nusselt number (Nu) at the left 

wall (X/L = 0.0) of the enclosure at t = 1.5 sec for near-critical carbon dioxide (pi = 7.38 

MPa, Ti = 304.3 K, p' = 3.66x10-4, T' = 5.65x10-4 and Tpc' = 3.88x10-5) and Ra = 7.35x108 

with and without the effect of bulk viscosity. 

 

The temporal variation of spatially averaged Nusselt number at the left (heated) 

wall of the enclosure is shown in figure 5.12. At the beginning, the temporal heat transfer 

rate at the left wall is very high due to the heating. The value decreases as the system 

approaches thermal equilibrium. It is observed that the case including the bulk viscosity 

effects exhibits a relatively smaller Nusselt number compared to that without the effect of 

bulk viscosity. This is mainly due to the larger effective viscosity in the system. For the 

case without the inclusion of bulk viscosity, the rapid increase and decrease in temporal 
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Nusselt number around 1.0~1.3 sec indicates the collapse of the bottom boundary layer and 

release of thermal plumes from the heated surface. A similar pattern is also expected for 

the case including bulk viscosity, but at a later time. On a longer time period, the flow field 

is characterized by large-scale flow reversals by the occurrence of a large plume moving 

through the cavity and suppressing the preexisting primary convection cell [113, 115], and 

the system never reaches a steady-state. However, it is observed that, the temporal Nusselt 

number for the case including bulk viscosity is comparable to that given by equation 5.10 

for near-critical carbon dioxide. 

 

 

Figure 5.13: Contours of viscosity ratio (µb/µ) inside a bottom heated enclosure at t = 1.5 

sec for near-critical carbon dioxide (pi = 7.38 MPa, Ti = 304.3 K, p’ = 3.66x10-4, T' = 

5.65x10-4 and Tpc' = 3.88x10-5) and Ra = 7.35x108  

[(µb/µ) max = 1200 (top wall), (µb/µ) min = 50 (bottom wall), δ(µb/µ) = 50] 

 

Figure 5.13 shows the contours of viscosity ratio (µb/µ) inside the enclosure. At the 

initial stage, the viscosity ratio is around 1200 which indicates a relatively higher effective 



133 

 

viscosity in the bulk of the fluid. As the bottom boundary is heated, the bulk viscosity 

effects become negligible (µb/µ ~ 0) along the hot boundary layer while the bulk of the 

fluid remains highly viscous (µb/µ ~ 250). Hence the process becomes analogous to one 

with diffusion of the less viscous fluid to a more viscous fluid. This whole phenomena is 

absent in the case where bulk viscosity is not considered, mainly due to negligible 

difference in viscosities between the boundary layer and the bulk of the fluid. 

 

5.5 Summary and conclusion 

Buoyancy driven flow induced thermal transport in supercritical carbon dioxide is 

investigated by numerically solving a fully compressible form of the Navier-Stokes 

equations. The NIST Standard Reference Database 23 [3] is used to generate two-

dimensional look-up tables to represent the equation of state and other thermodynamic 

properties for supercritical carbon dioxide. With the aid of the developed model, thermal 

transport phenomena in supercritical carbon dioxide in the near-critical as well as far from 

the critical point are investigated.  

 

The novel contribution of the present study is to demonstrate the effect of the 

pseudo-critical states (i.e. where c  ) on thermal transport as well as the development 

of a correlation to predict the thermal transport behavior of supercritical carbon dioxide 

both near and far from the critical point. The effect of critically diverging bulk viscosity on 

the buoyancy driven flow is also investigated. The results exhibit that in the absence of 

critical divergence far from the critical point   > 10MPa,  > 320Kp T thermal transport 

behavior of supercritical fluids is reasonably comparable to that for a high density and high 
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Prandtl number ( Pr 1 ) gas and depends on the Rayleigh number (Ra) of the flow only, 

while in the near critical region   <  < 10MPa,  <  < 320Kc cp p T T , transport of thermal 

energy varies not only as a function of Rayleigh number (Ra) but also as a function of the 

pressure and temperature. It was also observed that, similar to the thermo-physical property 

variations near the critical point, the Nusselt number (Nu) maximizes along the pseudo-

critical states. Correlations for Nusselt number was proposed for both of these regions as a 

function of the Rayleigh number of the flow and the dimensionless pressure i c

c
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p

p
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. It was found that, in the near-critical 

region, critically diverging bulk viscosity plays a major role on the development of 

boundary layer and thermal equilibration in the flow domain. These effects are only 

significant when the bulk viscosity has values higher than the shear viscosity and the bulk 

viscosity shows strong variation in the flow domain. 
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CHAPTER 6: FUNDAMENTAL STUDIES OF ACOUSTICALLY DRIVEN TRANSPORT IN 

NEAR-CRITICAL SUPERCRITICAL FLUID 

 

6.1 Introduction 

Interaction of acoustic waves in compressible fluids (e.g. supercritical fluids) and 

solid boundaries produces a non-linear phenomenon known as acoustic streaming. 

Acoustic streaming can enhance certain kinds of rate processes and has applications in 

localized micro-mixing and convective transport in reduced gravity environment. 

Application of mechanically driven acoustic waves coupled with acoustic streaming 

represents a potential efficient way of enhancing transport processes in the near critical 

region. This enhancement is mainly due to the augmented convective effects produced by 

compressions and decompressions of the acoustic waves as well as the formation of the 

secondary flow-field (acoustic streaming). 

 

In this chapter, the generation and propagation of mechanically driven acoustic 

waves in sub- and supercritical carbon dioxide are experimentally studied and numerically 

simulated. A cylindrical shaped resonator filled with carbon dioxide (sub- and supercritical 

states) is considered for this problem. The oscillatory flow field in the enclosure is created 

by the vibration of one of the end walls of the resonator. The driving frequencies of the 

vibrating wall are chosen such that the lowest acoustic mode propagates along the resonator 

and a standing wave field is produced. The amplitude of the generated acoustic waves are 

measured at the pressure anti-node (end wall) by a piezo-resistive pressure transducer. The 

variations in acoustic and flow fields are also studied as a function of space and time. 
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Formation of the standing wave and acoustic streaming are numerically simulated by 

directly solving the full compressible form of the Navier-Stokes equations. The NIST 

Standard Reference Database 23 [3] is used to obtain the ρ-p-T relations for supercritical 

carbon dioxide as well as the different thermo-physical and transport properties of the fluid. 

With the developed model, physical processes including the interaction of the wave field 

with viscous effects and formation of streaming structures are simulated. The effects of 

near-critical property variations and fluid pressure on the formation process of the 

streaming structures are also investigated in detail. 

 

6.2 Problem description 

 

Figure 6.1: Schematic diagram of the problem geometry. 

 

A cylindrical resonator with a length (L) of 25.0 cm is considered. The aspect ratio 

(L/D) of the resonator is around 12.5. The schematic of the geometry considered is shown 

in figure 6.1. One of the end walls (see figure 6.1) of the resonator is vibrated at a specific 

frequency. The frequency of vibration is chosen such that the lowest acoustic mode 

propagates through the fluid medium (i.e. f = csi / 2L; where csi is the acoustic speed at the 

initial state of the fluid). The axial symmetry of the problem geometry is utilized and only 

the top half of the domain is considered for the numerical calculations to simplify the 

computational efforts. Details regarding the experimental setup used for the measurement 
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of the acoustic waves in sub- and supercritical carbon dioxide are discussed in the 

following section. 

 

6.3 Experimental setup 

For the investigation of mechanically driven acoustic waves in sub- and 

supercritical carbon dioxide, an experimental setup is designed and built following setup 

discussed in chapter 4. Figure 6.2 shows a schematic illustration of the experimental setup. 

 

 

Figure 6.2: Schematic diagram of the experimental setup. 

 

The supercritical chamber consists of gas inlet and outlet ports fitted with high 

pressure (103.4 MPa) ball valves and the chamber is connected to a carbon dioxide tank (p 

~ 6.0 MPa). A hand pump (HiP, 34.5 MPa, 60 mL/stroke) is used to raise the pressure of 

the carbon dioxide in the supercritical chamber from the tank pressure to a pressure above 

the critical point of carbon dioxide. Heating tape (Thermolyne, 0.5” x 4’) wrapped around 
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the supercritical chamber is used to raise the temperature of the carbon dioxide in the 

supercritical chamber from the room temperature (usually ~ 295 K) to the operating 

temperature. The mechanically driven acoustic waves in supercritical carbon dioxide are 

studied in a PTFE (Polytetrafluoroethylene) tube (inside diameter 2.0 cm, length 25.0 cm) 

snugly fitted inside the supercritical chamber. A small hole in the PTFE tubing aligned 

with the gas inlet port provides flow path for the gas to and from the supercritical chamber. 

The resonator is mounted horizontally with the acoustic driver on the right end (see figure 

6.2) and a plug made of polyoxymethylene (Delrin) is used to close the opposite end. Delrin 

is a hard, high stiffness thermoplastic that prevents any absorption / attenuation of the 

acoustic waves during reflection from the end wall. 

 

The acoustic driver in this system is an electro-mechanical driver type loudspeaker 

(CUI CMS0401KL-3X). The sinusoidal driving signal of the acoustic driver is generated 

by a function generator (BK Precision 4011A) and amplified by a Crown CE1000 type 

power amplifier. The signal generator is capable of providing ± 5.0 V sine waves up to a 

frequency of 5.0 MHz. A wattmeter (Powertek, ISW 8000) was connected between the 

amplifier and the loudspeaker to measure the RMS values of the delivered input power, the 

applied voltage, the applied current and the phase angle between the voltage and the 

current. An Endevco 8507C-1 series piezoresistive pressure transducer is used to detect 

and quantify the acoustic field. The transducer is installed in the delrin plug located at one 

end of the resonator. The cross-sectional area of the microphone is approximately one 

percent of the resonator area, therefore the error introduced by the presence of the probe in 

the sound field is assumed negligible. Lead wires from the loudspeaker and the pressure 
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transducer are introduced inside the supercritical chamber through compression fittings. 

An Endevco 4428A pressure signal conditioner is used to process the signal from the 

transducer and provide excited voltage. 

 

Table 6.1: Specifications of the experimental system for acoustically driven transport 

studies 

No. Part Make and Model Specification 

1 Hand Pump HiP 87-6-5 
34.5 MPa  

60 mL/stroke 

2 Glands Conax TG-24T(E)-A2-T Pressure Rating: 22 MPa 

3 Thermocouples 
Omega EMTSS-125 

(Probe Type) 
Type E – 3.175 mm dia. 

4 
Pressure 

Transducers 

Endevco 8507C-1 

 

Omega PX309-2KG5V 

Sensitivity: 200 mV/psi 

Pressure Rating: 1 psi 

Pressure Rating: 13.8 MPa 

5 Acoustic Driver CUI CMS0401KL-3X 
Rated Power: 10 W 

Impedance: 8 Ω 

6 
Data Acquisition 

Board 
NI 6052E Sampling Rate: 333 kHz 

 

Two type E thermocouples (Thermocouple 1 and 2, figure 6.2) are used to measure 

the steady state initial temperature of the supercritical fluid. A high pressure transducer 

(Omega PX309) is used to measure and monitor the steady state pressure inside the 

supercritical chamber. The analog temperature and pressure measurements are recorded, 

digitized and saved through a National Instrument SCB-68 terminal block and a 6052E 
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data acquisition (DAQ) board. High sample rate (333 kHz) of the 6052E DAQ board 

guarantees that the signals are recorded with high fidelity. Details of the experimental setup 

are summarized in table 6.1. 

 

6.4 Mathematical modeling 

The numerical model of the acoustic resonator is described here. Specific details 

about the governing equations solved, the initial and boundary conditions and the 

numerical scheme used are also provided. 

 

6.4.1 Governing equations 

The transport processes in supercritical and near-critical fluids can be modeled by 

the hydrodynamic description for an isotropic, Newtonian, compressible, and dissipative 

(viscous and heat-conducting) fluid [76, 110, 167, 168]. The governing equations 

corresponding to mass, momentum and energy balances are as follows – 
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Here,  is the density, u is the (r – x) velocity vector, p is the pressure, T is the fluid 

temperature, k is the thermal conductivity of the fluid and the total enthalpy is h0 given by 

 0

21
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p
h i u


        (6.4) 

Here, i is the internal energy of the fluid. The equation of state describing the -p-T relation 

of supercritical fluids (including the near-critical states) is not well-represented by  the van 
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der Waals equation of state [39]. In this study, we used the NIST Standard Reference 

Database 23 [181] for the ρ = f (p, T) relations and for evaluation of other thermodynamic 

properties of supercritical and near-critical carbon dioxide. The NIST23 [181] equation of 

state describing the ρ-p-T relation of carbon dioxide is based on the equation of state 

proposed by Span and Wagner [65], which is mainly empirical in nature and includes 

special non-analytic terms to predict the correct behavior of the fluid to the immediate 

vicinity of the critical point. Two dimensional look-up tables are developed in the present 

study to represent the  = f (p, T), kf = f (p, T), μ = f (p, T), h0 = f (p, T) and cp = f (p, T) 

data provided by the NIST Standard Reference Database 23. 

 

6.4.2 Initial and boundary conditions 

Initially thermally quiescent and motion-free sub-/supercritical carbon dioxide 

inside the domain is considered for the calculations. The initial state of the fluid is described 

as, Ti and pi. The wall boundaries at the rigid end are maintained constant at the initial 

temperature of the fluid (isothermal). The isothermal boundary condition is the closest 

approximation to an experiment and has been shown in past studies to have the best 

agreement with experimental results [182, 183].  The vibrating wall and the wall along the 

length of the resonator are maintained adiabatic. For generating the acoustic waves, the 

vibrating wall is harmonically oscillated to model the motion of the speaker. The moving 

wall is vibrated according to the following equation: 

xwall (t) = xmaxsin(2πft)     (6.5) 

Here, xmax is the amplitude of vibration and f is the frequency of oscillation. The frequency 

of oscillation of the vibrating wall is chosen such that the lowest acoustic mode propagates 
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through the fluid medium (i.e. f = ci / 2L, where ci is the acoustic speed at the initial state). 

For the numerical simulations, the amplitude of vibration of the moving wall is calculated 

from the power consumption of the electro-mechanical speaker using the model developed 

by Beranek [184]. 

 

6.4.3 Numerical scheme 

The numerical scheme for solving the governing equations is based on the finite 

volume approach.  The continuity, momentum and energy equations are solved for the fluid 

using the central difference scheme. The motion of the vibrating wall is captured by a 

moving grid scheme near the piston wall.  The re-meshing scheme used in the simulations 

is the Transfinite Interpolation scheme [185]. A 2nd order Crank-Nicholson scheme (with 

a blending factor of 0.7) is used for the time derivatives in the continuity, momentum and 

energy equations.  The time-step (Δt) for the simulations is dependent on the driving 

frequency. Around 850 time-steps per cycle is sufficient to accurately predict the motion 

of the piston and the pressure waves generated. For the range of frequencies considered in 

the present study, the time-step obeys the CFL condition with a Courant number (C = cs×Δt 

/ Δx, where cs is the acoustic speed for the given conditions) between 0.3 and 0.4. An overall 

convergence criterion is set for all the variables at 10-4 in the iterative implicit numerical 

solver. Due to the symmetry of the problem geometry, only one-half of the resonators’ 

geometry (see figure 6.1) is considered for the simulations. The problem geometry is 

studied with non-uniform structured grid and fine grid is used in vicinity of the wall 

boundaries to provide adequate spatial resolution and capture the oscillating boundary layer 

(δv). 
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6.5 Results and discussions 

 Numerical simulations and experimental measurements of mechanically driven 

acoustic waves in sub- and supercritical carbon dioxide in a cylindrical resonator is 

performed for wide range of operating pressure and temperature of the supercritical fluid. 

The generated acoustic field and its interaction with the viscous effects leading to the 

formation of acoustic streaming structures in the fluid is studied as a function of space and 

time. The numerical model is validated first with results from past studies. The validation 

of the numerical model as well as the numerical and experimental results obtained from 

the present study is discussed in the following sub-sections. 

 

6.5.1 Model validation 

The numerical prediction of mechanically driven acoustic waves with the present 

model is compared with a previous numerical study by Aktas and Farouk [11]. Aktas and 

Farouk numerically investigated mechanically driven acoustic waves in atmospheric 

pressure nitrogen at 300 K in a two dimensional rectangular enclosure of length, L = 8.825 

mm and varying width. The frequency and amplitude of the vibrating wall is always kept 

at 20 kHz and 10 μm respectively. The length of the enclosure is chosen such that L = λ/2 

(λ is the wavelength calculated from cs = fλ) and the lowest acoustic mode propagates 

through the fluid medium. For the case considered for validation of our present model, the 

width of the rectangular enclosure is 20δv. Here, δv is the viscous penetration depth given 

by: 

2
, 2 f


  


      (6.6) 
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Figure 6.3: Spatial variation of pressure along the symmetry axis at four different 

instants (ωt = 0, π/2, 3π/2 and π) during the 100th acoustic cycle as calculated using the 

present model (solid lines) and obtained by Aktas and Farouk [11] (solid squares). 

 

Figure 6.3 shows the comparison of the predictions of the spatial variations of the 

pressure (absolute) along the symmetry axis at four different times (ωt = 0, π/2, 3π/2 and 

π) in the 100th cycle as calculated using the present model with those obtained by Aktas 

and Farouk [11]. Here, x = 0 represents the vibrating wall. Pressure distribution for ωt = 

2π (not shown here) is identical to the curve given for ωt = 0. The perfectly sinusoidal 

profile of the emitted wave by the oscillating wall is weakly distorted due to viscous and 

nonlinear effects. At ωt = 0 and ωt = π, the amplitude of the pressure waves reach a 

maximum value in the enclosure. At the beginning of the cycle (ωt = 0), the pressure is 

maximum on the vibrating wall of the enclosure and decreases with distance from the wall 

and reaches a minimum at the opposite wall (x = L). In the middle of the cycle (ωt = π) the 

pressure profile is fairly symmetric with respect to the vertical midplane (x = L/2) to the 
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profile given for ωt = 0, and reaches a maximum at the right wall. The pressure profiles 

given for different time levels intersect at approximately x = L/2 and creates a pressure 

node. For all the time instances considered in figure 6.3, the calculated pressure with the 

present model matches fairly well with that given by Aktas and Farouk. Due to attenuation 

caused by viscous and nonlinear effects, both pressure and velocity profiles slightly differ 

from a perfect sinusoidal wave field. 

 

The streaming velocities in the enclosure are calculated using the following 

formula: 

;st st

u v
u v

 

 
       (6.7) 

Here, ust and vst describes the x and y components of the streaming velocities, respectively. 

The ‹ › sign indicates the time-averaged quantities. The time averaging is performed during 

the 100th vibration cycle (between cycle #99 and #100). The streaming velocities calculated 

based on the time averaging during 80th and 100th cycles do not differ significantly. Hence, 

the average mass transport velocities are assumed to be cycle independent by this time 

(cycle # 100). 
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(a) 

 

(b) 

Figure 6.4: Variation of the (a) x component of the streaming velocity at x = 3L/4 and (b) 

y component of the streaming velocity at x = L/2 compared with Aktas and Farouk [11]. 
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Spatial variation of the x component of streaming velocity at x = 3L/4 for the 

validation case is shown in figure 6.4a. In this figure, the vertical axis is the x component 

of the dimensionless streaming velocity (ust / uR) and uR is given by uR = 3u0
2/16cs. Here, 

u0 is the maximum oscillatory velocity. This reference velocity value represents the 

maximum streaming velocity in case of a perfect sinusoidal wave form obtained by 

Rayleigh. Figure 6.4b shows the variation of the y component of streaming velocity along 

the enclosure semi-height at x = L/2. The vertical axis represents the y component of the 

non-dimensional streaming velocity (vstx0 /uRy0). Here x0 is the length of the enclosure and 

y0 is the semi-height of the enclosure. It is observed that, the dimensionless streaming 

velocities calculated from the present model are in good agreement with that predicted by 

Aktas and Farouk [11]. Figure 6.4a indicates the existence of two different vortical 

structures at x = 3L/4; one formed at the vicinity of the side wall (inner streaming) while 

the other is formed in the bulk fluid (outer streaming). The height of the circulatory flow 

structures (inner streaming) observed in the vicinity of the horizontal walls is characterized 

by the thickness of the acoustic boundary layer. The streaming structures seen in the middle 

section of the enclosure (outer streaming) have larger sizes. These predicted streaming 

structures are also in good agreement with the results reported by earlier studies [11, 186]. 

On an absolute scale, Aktas and Farouk [11] reported a maximum streaming velocity of 

approximately 0.06 m/s with a maximum instantaneous velocity of 12 m/s in the primary 

oscillatory flow field in the enclosure, while the present model slightly under predicts these 

velocities. The maximum streaming velocity and the instantaneous velocity calculated 

from the present model are 0.057 m/s and 11.2 m/s respectively. This deviation is mainly 
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due to the implicit nature of the present numerical model (the model used by Aktas and 

Farouk [11] is explicit in nature and have less numerical diffusion). 

 

6.5.2 Acoustic streaming in sub- and supercritical fluids 

To investigate the formation of streaming structures in sub- and supercritical carbon 

dioxide in a cylindrical resonator, four cases are studied (cases 1 – 4). These four cases 

correspond to carbon dioxide at two different thermodynamic states (sub- and supercritical) 

excited at their resonant frequencies and at various amplitudes of vibration. At this stage 

the initial temperature of the fluid is kept constant (Ti = 308 K) and the pressure is varied. 

Table 6.2 below lists the cases studied. 

 

Table 6.2: List of cases simulated for investigation of acoustic streaming formation in 

sub- and supercritical fluids 

Case # Ti (K) pi (MPa) ρ / ρc f (Hz) xmax (μm) δv (μm) 

1 308 0.1 0.0037 545.3 346.7 72.2 

2 308 2.0 0.0812 517.6 17.5 15.9 

3 308 4.0 0.1854 484.2 8.8 11.1 

4 308 7.6 0.6224 391.0 4.0 8.0 

 

   Here, the fluid in case 4 is in the supercritical state and this case is considered as 

the base case. In our experiments, acoustic waves are generated inside the cylindrical 

shaped resonator filled with supercritical carbon dioxide at this state (7.6 MPa and 308 K) 

with a speaker power of 10.0 W. The vibrational amplitude (xmax) of the moving wall 
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corresponding to the acoustic impedance (ρcs) of the fluid and the input power at case 4 is 

4.0 μm (calculated using the model developed by Beranek [184]). For the acoustic wave 

measurements in cases 1-3, the input power is kept constant (10.0 W) and the vibrational 

amplitude is calculated using the same model [184]. For the same electro-mechanical 

variables of the speaker and input power, these amplitudes can also be approximated using 

the amplitude for case 4 and the following equation: 

2

max,n max,i
i i

n n

f
x x

f





  
   

  
     (6.8) 

Equation 8 is based on a simple force balance on the vibrating wall where the subscript ‘i’ 

refers to the values corresponding to the base case and the subscript ‘n’ refers to the values 

corresponding to the nth case. 

 

Transient variation of the pressure (gage) at the mid-point of the end wall (pressure 

anti-node) of the cylindrical resonator at a pseudo-steady state for cases 1-4 are shown in 

figure 6.5. Both the computed and measured pressure transients are shown in this figure. 

A monotonic increase of the maximum pressure amplitude is observed with the increase in 

operating pressure. The maximum pressure amplitude reaches approximately 5.0 kPa at 

supercritical state (case 4), while it is around 0.6 kPa at atmospheric pressure (case 1). This 

monotonic increase is mainly due to the increase in density of the fluid with pressure. Also 

at atmospheric pressure (case 1), the pressure wave form is much sharper and shock wave-

type profile is observed (figure 6.5a), while at higher sub-critical pressures (cases 2-3), the 

pressure profile is near-sinusoidal (figures 6.5b and 6.5c). At the supercritical state (case 

4), the pressure profile again becomes sharper and shock-wave type (figure 6.5d). This 
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behavior can be explained by the isothermal compressibility,
1

T
p






 
  

 
of the fluid. At 

atmospheric pressure the isothermal compressibility is high. However the compressibility 

quickly decreases with the increase of operating pressure until the supercritical state is 

reached, where the compressibility starts to increase again. 

 

Figure 6.5: Transient variation of computed and measured pressure (gage) at the end wall 

of the cylindrical resonator at a pseudo-steady state for (a) p = 0.1 MPa, (b) p = 2.0 MPa, 

(c) p = 4.0 MPa and (d) p = 7.6 MPa and for four acoustic cycles. 
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For all the cases discussed (cases 1-4), the computed and the measured transient 

pressure distribution compares well. For the cases showing shock wave-type profiles (cases 

1 and 4), existence of a slight variation between the measured and computed pressure 

amplitude is observed at the peaks and troughs of the wave-form. This is mainly due to the 

high experimental noise in the system when the temporal pressure gradient is high (i.e. at 

peak and troughs of the wave-form). 

 

 

Figure 6.6: Cycle averaged temperature contours and flow-field (acoustic streaming) in 

the cylindrical resonator at a pseudo-steady state for (a) p = 0.1 MPa, (b) p = 2.0 MPa, (c) 

p = 4.0 MPa and (d) p = 7.6 MPa. 

 

The quasi-steady (time-averaged) temperature contours and flow-fields in the 

resonator corresponding to cases 1-4 are shown in figure 6.6. For all these cases (cases 1-

4), the flow patterns are observed in the shape of regular structures. Two outer steaming 
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structures are observed in all these cases. At supercritical state (case 4), the maximum 

primary oscillatory flow velocity is computed as 8 m/s while the maximum flow speed is 

0.041 m/s in the secondary steady streaming flow field (figure 6.6d). At atmospheric 

pressure (case 1), these velocities are 3 m/s and 0.009 m/s respectively (figure 6.6a).  

 

Although the observed streaming structures are very similar for all these cases, the 

quasi-steady temperature contours are different. At sub-critical pressures (case 1-3), a cold 

zone is observed in the temperature contours roughly at the location of the pressure node 

(x/L = 0.5), while two hot zones are observed at the pressure anti-nodes (x/L = 0, 1). The 

cold zone expands in size as the pressure is increased (figures 6.6a-c). However, as soon 

as the supercritical state is reached, the cold zone almost disappears (figure 6.6d). The 

phenomena observed in the sub-critical regime has been reported in earlier studies [187] 

and is utilized in the development of thermoacoustic refrigerators [188]. The disappearance 

of the cold zone in the supercritical state is due to the high thermal conductivity (k) and 

Prandtl number (Pr) coupled with the high isothermal compressibility of the fluid at this 

state. 

 

Variation of axial component of the non-dimensional streaming velocity at x = 3L/4 

for cases 1-4 is shown in figure 6.7a. Similar to the maximum pressure amplitude, a 

monotonic increase in the streaming velocities with increasing pressure is observed in this 

figure. The difference in the streaming structures are also noticed from this figure. At 

atmospheric pressure (case 2), existence of the anti-clockwise rotating inner streaming 

structure gives rise to the negative velocity near the wall (x/L = 1). However, with the 
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increase of operating pressure, the inner streaming structures are dissolved while the outer 

streaming structures expand and cover the entire domain. At supercritical state (case 4), 

streaming structures are characterized by relatively high streaming velocity (axial) near the 

wall and a flat plug-flow like profile in the rest of the domain as compared to a parabolic 

velocity profile at the atmospheric pressure (case 1).  

 

Variation of the radial component of the non-dimensional streaming velocity at x = 

L/2 for cases 1-4 is shown in figure 6.7b. A strong radial velocity from the bulk fluid to the 

wall in the supercritical state (case 4) is observed from this figure. This strong velocity 

corresponds to a jet like flow at x = L/2 which is also observed from figure 6.6d. This 

behavior is highly desired for mixing applications, where the ‘jet’ can efficiently carry the 

bulk fluid to the wall boundary layer. 

 

(a) 
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(b) 

Figure 6.7: Spatial variation of the (a) axial component of the streaming velocity at x = 

3L/4 and (b) radial component of the streaming velocity at x = L/2 for different operating 

pressures (cases 1-4). 

 

6.5.3 Effect of pseudo-critical state 

 Effect of the pseudo-critical thermo-physical property variations on the 

mechanically driven acoustic waves and acoustic streaming formation is investigated in 

this section. Three additional cases (cases 5-7) along with case 4 is considered for this 

study. For these four cases, the operating pressure is supercritical and is kept constant at p 

= 7.6 MPa. The pseudo-critical state (i.e. where / 1c   ) corresponding to this pressure 

is at 305.43 K. Hence, the pseudo-critical state is approached by reducing the operating 

temperature. The four cases corresponds to fluids ranging from gas-like (i.e. / 1.0c    ) 

to liquid-like (i.e. / 1.0c    ) properties. Table 6.3 below lists the details of the cases 
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studied. Here, the fluid corresponding to cases 4 and 5 are gas-like with relatively low 

density, thermal conductivity and acoustic speed, while that corresponding to case 7 is 

liquid-like with higher density, thermal conductivity and acoustic speed. The fluid 

corresponding to case 6 is very close to the pseudo-critical state. 

 

Table 6.3: List of cases simulated for investigation of the effect of pseudo-critical states 

on acoustic streaming 

Case # Ti (K) pi (MPa) ρ / ρc f (Hz) xmax (μm) δv (μm) 

4 308 7.6 0.6224 391.0 4.0 8.0 

5 305.8 7.6 0.8 352.6 3.81 8.1 

6 305.5 7.6 0.937 325.6 3.83 8.3 

7 305.1 7.6 1.2 373.1 2.26 7.9 

 

Temporal variation of the computed and measured pressures (gage) at the end wall 

(pressure anti-node) of the cylindrical resonator for cases 4-7 are shown in figure 6.8. Two 

specific phenomena are observed – first, the pseudo-critical state has a strong effect on the 

maximum pressure amplitude. It is observed that, as the pseudo-critical state (i.e. T = 

305.43 K at p = 7.6 MPa) is approached, the maximum pressure amplitude increases. For 

the cases studied (cases 4-7), the maximum pressure amplitude is observed for the case 

(case 6, T = 305.5 K) closest to the pseudo-critical state. This is due to the high 

compressibility and density of the fluid as it approaches the pseudo-critical state. The 
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maximum pressure amplitude decreases as the thermodynamic state of the fluid moves 

away from the pseudo-critical state (case 7, T = 305.1 K). At this state, density of the fluid 

is very high, but the compressibility is low. The second phenomena observed from the 

transient pressure is related to the pressure wave form. The pressure wave form 

corresponding to all these cases (cases 4-7) show shock wave-type profile with a sharp rise 

and long tail in general. However, the pressure wave form corresponding to the case closest 

to the pseudo-critical state (case 6, T = 305.5 K) exhibits a slightly different profile with a 

non-linear ‘distortion’. This ‘distortion’ of the pressure transient is mainly due to the strong 

variation of acoustic speed of the near-pseudo-critical fluid at this case (case 6). At near-

pseudo-critical states close to the critical point, the acoustic speed of the fluid exhibits 

relatively large variations with changing pressure and temperature. Hence, in an oscillating 

pressure (and hence temperature) field such as this, the acoustic speed of the fluid also 

oscillates to a great extent which in turn affects resonance and hence the standing wave 

field.  

 

The measured pressure (see figure 6.8 - symbols) also shows similar ‘distortion’ of 

the wave form discussed above. High frequency disturbances are observed from the 

measurements in the supercritical state (cases 4-7). Similar disturbances were also reported 

in earlier experimental studies in supercritical fluids [103, 173]. These are caused mainly 

due to the high compressibility of the medium and non-uniform heating of the supercritical 

chamber. 
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Figure 6.8: Transient variation of computed and measured pressure (gage) at the end wall 

of the cylindrical resonator at a pseudo-steady state for different operating temperatures 

at p = 7.6 MPa (cases 4-7). [Measured Pressures are shown with symbols:  T = 308.0 K; 

 T = 305.8 K;  T = 305.5 K and  T = 305.1 K] 

 

The quasi-steady (time-averaged) temperature contours and flow-fields in the 

resonator corresponding to cases 4-7 are shown in figure 6.9. Acoustic streaming structures 

are observed for all these cases (cases 4-7). For the cases relatively far from the pseudo-

critical state (i.e. cases 4, 5 and 7), four outer steaming structures are observed. This 

behavior is in accordance with that observed in the previous section. However, at the near-

pseudo-critical state (case 6), the streaming structures do not exhibit the regular pattern. It 

is observed that the existence of the ‘distorted’ pressure field gives rise to eight outer 

streaming cells in the system instead of four (figure 6.9c). Out of these eight, four of the 

cells are large and prominent in shape. While, the other four are relatively small in size and 

are derived from the variation of the thermo-physical properties (e.g. acoustic speed of the 
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medium) due to the wave field ‘distortion’. The strong thermo-physical property variation 

also affects the temperature field of the resonator. For the cases with gas-like properties 

(i.e. / 1.0c   ), a strong temperature gradient is observed in the resonator – with hot 

zones near the pressure anti-nodes and a cold zone near the pressure node. This temperature 

gradient is rather weak for the near-pseudo-critical state (case 6) due to very high specific 

heat of the fluid. The temperature gradient becomes practically non-existent in the case 

with liquid-like properties (i.e. / 1.0c   ). This is due to the relatively high thermal 

conductivity of the fluid at this state. 

 

 

 

Figure 6.9: Cycle averaged temperature contours and flow-field (acoustic streaming) in 

the cylindrical resonator at a pseudo-steady state for (a) T = 308.0 K (case 4), (b) T = 

305.8 K (case 5), (c) T = 305.5 K (case 6) and (d) T = 305.1 K (case 7) for an operating 

pressure of 7.6 MPa. 
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Variation of axial component of the non-dimensional streaming velocity at x = 3L/4 

for cases 4-7 is shown in figure 6.10a. For the cases relatively far from the pseudo-critical 

state (i.e. cases 4, 5 and 7), similar to the maximum pressure amplitude the streaming 

velocities also increase monotonically as the corresponding pseudo-critical is approached. 

The streaming velocity distribution at these states show a flat plug-like profile in the bulk 

fluid with a sharp gradient near the wall. But for the near-pseudo-critical state (case 6, T = 

305.5 K), the streaming velocity is not very high near the wall. The streaming velocity 

distribution in this state exhibits a parabolic profile (similar to the profile at atmospheric 

pressure, case 1). In this case, the streaming velocity is comparatively high in the bulk fluid 

(along the axis of the resonator) rather than the wall. Variation of the radial component of 

the non-dimensional streaming velocity at x = L/2 for cases 4-7 is shown in figure 6.10b. 

Similar to case 4 (section 6.5.2), a strong radial velocity from the bulk fluid to the wall in 

the supercritical states (cases 4-7) is observed. 

 

(a) 
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(b) 

Figure 6.10: Spatial variation of the (a) axial component of the streaming velocity at x = 

3L/4 and (b) radial component of the streaming velocity at x = L/2 for different operating 

temperatures at p = 7.6 MPa (cases 4-7). 

 

6.5.4 Effect of operating pressure 

 The effect of operating pressure on the mechanically driven acoustic wave and 

acoustic streaming in the supercritical state is investigated and discussed here. Two 

different operating pressures (8.0 MPa and 8.5 MPa) are considered for this study. To 

understand the effect of operating pressure on the near-pseudo-critical acoustic streaming 

formation, three cases ( / 1.0c   , / 1.0c   and / 1.0c   ) are considered for each 

of these pressures. Table 6.4 below lists the details of the cases studied. 
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Table 6.4: List of cases simulated for investigation of the effect of operating pressure on 

acoustic streaming 

Case # Ti (K) pi (MPa) ρ / ρc f (Hz) xmax (μm) δv (μm) 

8 307 8 1.2 401.1 1.97 7.6 

9 308 8 0.933 360.9 3.13 7.9 

10 308.75 8 0.8 373.0 3.42 7.8 

11 309.3 8.5 1.2 422.8 1.78 7.4 

12 311.1 8.5 0.936 384.1 2.76 7.7 

13 312.5 8.5 0.8 392.5 3.10 7.7 

 

Temporal variation of the computed and measured pressures (gage) at the end wall 

(pressure anti-node) of the cylindrical resonator for cases 8-10 (p = 8.0 MPa) are shown in 

figure 6.11. The same features of the pressure wave form (monotonic increase as pseudo-

critical state is approached, sharp and shock wave-type profile etc.) are also observed in 

this pressure. However, for the near-pseudo-critical state (case 9, T = 308.0 K), the non-

linear variation in the pressure wave form is not as prominent as observed for p = 7.6 MPa 

(case 6). The experimental measurements for this case also confirms this observation. 

Temporal variation of the computed and measured pressures (gage) at the end wall 

(pressure anti-node) of the cylindrical resonator for cases 11-13 (p = 8.5 MPa) are shown 
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in figure 6.12. It is observed that, the near-pseudo-critical effect on the pressure wave form 

(i.e. the non-linear variation) is further relaxed at this pressure. 

 

Figure 6.11: Transient variation of computed and measured pressure (gage) at the end 

wall of the cylindrical resonator at a pseudo-steady state for different operating 

temperatures at p = 8.0 MPa (cases 8-10). [Measured Pressures are shown with symbols: 

 T = 308.75 K;  T = 308.0 K and  T = 307.0 K] 

 

This behavior of the pressure (acoustic) wave can be explained by the near-critical 

thermo-physical property variations. As the operating pressure is increased, the 

thermodynamic state of the fluid is moved far away from the critical point and the thermo-

physical property variations (including the acoustic speed) at these higher pressures (e.g. p 

= 8.0 MPa and 8.5 MPa) are not very strong. Hence, the acoustic speed variation of the 

fluid (as discussed in section 6.5.3) in the resonator at the near-pseudo-critical state 

becomes very small / negligible and as a consequence of that the pressure wave form 

becomes similar to that observed at the cases far from the pseudo-critical states. 
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Figure 6.12: Transient variation of computed and measured pressure (gage) at the end 

wall of the cylindrical resonator at a pseudo-steady state for different operating 

temperatures at p = 8.5 MPa (cases 11-13). [Measured Pressures are shown with symbols: 

 T = 312. 5 K;  T = 311.1 K and  T = 309.3 K] 

 

The quasi-steady (time-averaged) temperature contours and flow-fields in the 

resonator corresponding to the cases at two different operating pressures (cases 8-13) are 

shown in figure 6.13. It is observed that for the cases far from the corresponding pseudo-

critical states (i.e. cases 8, 10, 11 and 13) the operating pressure has a negligible effect on 

the streaming structures. The regular outer streaming structures are observed for these cases 

(figures 6.13a, 6.13c, 6.13d and 6.13f respectively). However, for the near-pseudo-critical 

states (case 9 and 12), the additional streaming cells (corresponding to the ‘distortion’ of 

the standing wave field) are not significant at this elevated pressures. At p = 8.0 MPa, the 

additional streaming cell can be noticed and is almost merged with the regular outer 
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streaming structure (figure 6.13b). At p = 8.5 MPa, the additional structure is not noticed 

at all.  

 

Figure 6.13: Cycle averaged temperature contours and flow-field (acoustic streaming) in 

the cylindrical resonator at a pseudo-steady state for (a) p = 8.0 MPa, T = 307.0 K (case 

8), (b) p = 8.0 MPa, T = 308.0 K (case 9), (c) p = 8.0 MPa, T = 308.75 K (case 10), (d) p 

= 8.5 MPa, T = 309.3 K K (case 11), (e) p = 8.5 MPa, T = 311.1 K (case 12) and (f) p = 

8.5 MPa, T = 312.5 K (case 13). 

 

The temperature contours for these cases (case 8-13) also show similar trends as 

discussed in the previous section (section 6.5.3). This include a strong temperature gradient 

for the cases with gas-like properties (case 8 and 11, figures 6.13a and 6.13d respectively) 
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– with hot zones near the pressure anti-nodes and a cold zone near the pressure node, a 

rather weak for the near-pseudo-critical state (case 9 and 12, figures 6.13b and 6.13e 

respectively) and a very small gradient in the case with liquid-like properties (case 10 and 

13, figures 6.13c and 6.13f respectively). But this trend is relaxed as the operating pressure 

is increased. At the highest operating pressure (p = 8.5 MPa), the temperature gradient is 

almost the same for the three cases studied. 

 

Variation of axial component of the non-dimensional streaming velocity at x = 3L/4 

corresponding to the cases at two different operating pressures (cases 8-13) are shown in 

figure 6.14. It is observed that, the operating pressure has a negative effect on the streaming 

velocity. The maximum amplitude of the non-dimensional streaming velocity decreases 

with increasing pressure. 

 

Figure 6.14: Spatial variation of the axial component of the streaming velocity at x = 

3L/4 for different operating temperatures at p = 8.0 MPa (cases 8-10) and p = 8.5 MPa 

(cases 11-13). 
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Although the additional streaming structures are not observed in the near-pseudo-

critical states (case 9 and 12), the distribution of the axial streaming velocity remains 

parabolic. A slight difference between the axial streaming velocities in the bulk fluid (along 

the axis of the resonator) for the cases in the gas-like ( / 1.0c   ) and liquid-like (

/ 1.0c   ) property regimes are observed at relatively low pressures (figure 6.10a and 

6.14a). With the increase in operating pressure, this difference is minimized. 

 

Figure 6.15: Variation of non-dimensional axial streaming velocity in the bulk fluid 

(along the resonator axis) with reduced density (ρ / ρc) at different isobars. 

 

The observations from figures 6.10a and 6.14 are summarized and shown in figure 

6.15. Figure 6.15 shows the variation of the axial streaming velocity (non-dimensional) 

along the axis of the resonator with reduced density for the three different operating 

pressures studied (p = 7.6 MPa, 8.0 MPa and 8.5 MPa). The reduced density axis represents 

the proximity of the thermodynamic state to the pseudo-critical state ( / 1.0c   ). It is 
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observed that, the streaming velocity in the bulk fluid (i.e. along the axis of the resonator) 

is maximized at the pseudo-critical point. At pressures close to the critical pressure (e.g. p 

= 7.6 MPa), the axial streaming velocity is slightly higher in the gas-like property regime 

( / 1.0c   ) than that in the liquid-like property regime ( / 1.0c   ). This variation is 

mainly due to the reduced viscosity and higher compressibility of the gas-like fluid. With 

the increase in pressure, the thermo-physical property variations become weak and this 

trend is barely noticed. 

 

6.6 Summary and conclusions 

Mechanically driven resonant acoustic waves in near-critical supercritical carbon 

dioxide is investigated in this chapter. The formation of acoustic (pressure) waves, 

acoustic-viscous boundary layer interactions, and associated flows in a cylindrical 

resonator are numerically studied by solving the unsteady, compressible Navier–Stokes 

equations in an axisymmetric x-r coordinate system. The acoustic field in the enclosure is 

created due to the harmonic vibration of the end wall. The effects of pseudo-critical state (

/ 1.0c  ) and operating pressure on the acoustic field and the formed flow structures 

are determined by utilizing a highly accurate numerical scheme. The computations are 

accompanied by appropriate experimentations on acoustically driven transport. Acoustic 

waves generated by an electro-mechanical driver in a cylindrical resonator filled with 

supercritical carbon dioxide are measured using a fast-response pressure field microphone. 

The results from the numerical simulations are compared with the experimental 

measurements with accurately developed boundary conditions.  
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Several interesting and significant phenomena are observed from the numerical 

simulations and confirmed by the experimental measurements. The observed primary 

oscillatory and secondary steady flow fields in the supercritical fluid medium demonstrate 

significant effects of the thermodynamic state (sub-critical / supercritical / pseudo-critical) 

as well as the operating pressure. The strength of the acoustic wave field was found to be 

in direct relation with the thermodynamic state (near-pseudo-critical / far from the pseudo-

critical state). It is observed that due to the strong thermo-physical property variations, 

amplitude of the maximum pressure increases as the thermodynamic state of the fluid 

approaches the corresponding pseudo-critical state. In the near-pseudo-critical state, the 

pressure wave form exhibits a non-linear and ‘distorted’ profile due to the large variation 

of acoustic speed of the supercritical fluid in the resonator. This phenomena also affects 

the formation of acoustic streaming structures in the near-pseudo-critical state. Far from 

the pseudo-critical state, the streaming structure consists of four counter rotating cells with 

a ‘jet’ like flow-field along the semi-length of the resonator (at the pressure node). While 

near the pseudo-critical state, irregular streaming structures consisting of eight outer 

streaming cells in the resonator are observed. The evolved flow structures are also 

dependent on the operating pressure. The irregular streaming patterns are observed mainly 

for near-pseudo-critical states at operating pressures close to the critical pressure (pc = 

7.377 MPa). However, these structures quickly re-orients to the regular streaming patterns 

(four outer streaming cells) with the increase operating pressure. The phenomena observed 

both numerically and experimentally in this study can be utilized for mixing applications 

in supercritical fluid medium, especially for enhancing the transport characteristics in 

supercritical fluid extraction processes. 
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CHAPTER 7: NUMERICAL INVESTIGATION OF MASS TRANSFER ENHANCEMENT IN 

SUPERCRITICAL FLUID EXTRACTION PROCESS USING ACOUSTIC WAVES5 

 

7.1 Introduction 

The supercritical fluid extraction (SFE) process has attracted increasing interest 

over the past few years [13, 14]. This is particularly motivated by concerns about 

environmental effects. Conventional separation techniques such as solvent extraction, 

partitioning (also known as liquid–liquid extraction; a method to separate compounds 

based on their relative solubility in two different immiscible liquids)  and distillation 

usually have the drawback of leaving trace amounts of inorganic (potentially toxic) 

solvents or to cause thermal degradation [15]. Some supercritical fluids have the potential 

to replace these toxic industrial solvents. There are also possibilities of tuning the 

supercritical solvent characteristics for highly specific reactions or separations. 

Supercritical fluids are now being used in several applications (lab-scale or industrial) 

associated with the development of sustainable chemistry and engineering.  

 

Although, supercritical fluid is widely used in process industries and in power 

generation, the transport dynamics is relatively slow near the critical point and therefore 

improvements in convective transport (both thermal and mass) are required [157]. The use 

of acoustic excitation represents a potential efficient way of enhancing transport processes 

in the near critical region [13, 46]. In the present chapter, computational fluid dynamics 

                                                 
5The results presented in this chapter can be found in, [189] N. Hasan and B. Farouk, 

"Mass transfer enhancement in supercritical fluid extraction by acoustic waves," Journal 

of Supercritical Fluids, vol. 80, pp. 60-70, 2013. 



170 

 

models of supercritical fluid extraction process is developed. The spatio-temporal 

simulation results are used to predict and explain the transport processes associated in 

supercritical fluid extraction. As discussed in chapter 2, supercritical fluid extraction (SFE) 

from solid phase is usually carried out in fixed bed extractors (i.e. packed extraction 

columns), while that from fluid phase is carried out using a membrane contactor. Both of 

these systems are numerically investigated with the developed computational fluid 

dynamics model. Supercritical fluid extraction of caffeine from a solid matrix of coffee 

beans in a fixed bed extractor is considered. Ethanol recovery from an aqueous feed using 

supercritical carbon dioxide in a membrane contactor is also simulated. The models are 

developed considering diffusion-controlled regime in the process. Convective-diffusive 

transport of the bulk fluid phase at dynamic conditions is considered along with accurate 

representation of the thermo-physical properties of supercritical carbon dioxide. The NIST 

Standard Reference Database 23 [3] is used to obtain the ρ–p–T relation as well as the 

thermo-physical properties of supercritical carbon dioxide. Correlations developed by 

Catchpole and King [67] are used to obtain the binary diffusion coefficient (D12) of the 

solute (caffeine and ethanol in these cases) in supercritical carbon dioxide. The solubility 

of the solute in supercritical carbon dioxide is obtained using the correlation developed by 

Gurdial et al. [69]. Henry’s law is used to describe the equilibrium state of solid and fluid 

phases. Different features regarding the flow field and species transport induced by mixed 

convection in the supercritical fluid extraction system are revealed by the simulations. 

Novel applications of the acoustically augmented supercritical fluid (CO2) extraction in 

fixed bed extractor (caffeine extraction) and membrane contactor (ethanol recovery) are 

demonstrated numerically. Due to the selective and non-toxic extraction properties, 
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supercritical fluids (supercritical CO2 in this case) are a good candidate for recovering 

chemicals from aqueous feed using the membrane contactors. The low binary diffusivity 

and solubility of the solvent makes the dynamics of the process slow. Hence, acoustically 

excited waves can be used in these systems to enhance the transport dynamics. 

 

7.2 Problem description 

To numerically investigate the flow and transport in supercritical fluid extraction 

systems, two different problem geometries are studied. The first problem investigates the 

supercritical fluid extraction of caffeine in a fixed bed extractor, while the second problem 

investigates the recovery of ethanol using supercritical fluid in a membrane contactor. The 

problems are described in detail in the following sections. 

 

7.2.1 Supercritical fluid extraction: Fixed bed extractor 

 

Figure 7.1: Schematic diagram of the fixed bed extraction column 

 

A circular cylindrical shell (extraction column) with a fixed bed of solute particles 

(coffee beans) and an inlet for introducing supercritical carbon dioxide and outlet tubing 

for allowing the discharge flow of the extracts is considered (figure 7.1). The geometrical 
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model for the present study is developed following the experimental investigations by 

Riera et al. [48, 49]. 

 

The inlet section of the model also consists of an annular opening and a flat circular 

vibrating plate. The vibrating plate is introduced at the inlet section to model a piezoelectric 

(acoustic) transducer used to generate the acoustic waves in the fluid. A piezoelectric 

power transducer in similar orientation inside the extraction column has also been used by 

Riera et al. [48, 49]. The fixed bed consisting of coffee beans are modeled as porous 

spherical particles. A mono-sized sphere stack [190] is selected for this study. A three-

layer arrangement (total of 56 spheres) is chosen as the geometrical model for CFD 

simulations. A two-dimensional approach to circle packing theory [191] is used to build a 

unit stack and then it is extrapolated to build a three-dimensional geometry. The origin is 

placed at the inlet of the extraction column. The geometrical parameters of the model are 

listed in table 7.1. 

 

Table 7.1: Geometrical parameters of the fixed bed extractor 

Parameter Value 

Height of the inlet section, Lin 2.0 cm 

Height of the Fixed Bed, Lbed 2.7 cm 

Height of the outlet section, Lout 4.0 cm 

Length of the discharge tubing, Ltube 2.0 cm 

Radius of the Extractor, ro 2.5 cm 

Radius of the discharge tubing, rtube 0.5 cm 
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7.2.2 Supercritical fluid extraction: Membrane contactor 

 

Figure 7.2: Schematic diagram of the membrane contactor. 

 

A membrane contactor for the recovery (i.e. extraction) of ethanol from a 10% w/w 

aqueous solution using supercritical carbon dioxide is considered. The schematic diagram 

of the system considered is shown in figure 7.2. The system consists of a single hollow 

fiber membrane housed in stainless steel tubing. The liquid feed (aqueous solution of 

ethanol) flows around the fiber membrane and the solvent fluid (supercritical carbon 

dioxide) flows in countercurrent flow inside the fiber membrane. For simplifying the 

problem only the supercritical carbon dioxide flow in the hollow fiber membrane is 

simulated with an ethanol concentration boundary condition for the side walls. Details 

regarding the boundary conditions are discussed later in this chapter. The total length of 

the membrane contactor is 2.5 cm with an aspect ratio (L/D) of 12.5. For generating the 

acoustic waves inside the fiber membrane, a concentric vibrating wall (motion along the x-

axis) is considered as a piston to model an electro-mechanical transducer whose front 

surface vibrates harmonically; generating longitudinal waves which propagate through the 

fluid. Similar to the cylindrical resonator problem in the previous chapter (chapter 6), the 

moving wall is vibrated at the resonant frequency of the supercritical solvent. 
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7.3 Mathematical modeling 

 Due to the different problem geometry and flow physics of the two problems 

studied in this chapter, mathematical modeling of the supercritical fluid extraction 

processes in the fixed bed extractor and in the membrane contactor is slightly different. 

The models are discussed in details in the following sub-sections. 

 

7.3.1 Fixed bed extractor 

When a fixed bed of solid (coffee beans) is contacted with a flowing solvent (carbon 

dioxide) at a selected supercritical condition, the mass transport mechanism involves 

diffusion and adsorption of supercritical fluid solvent followed by solute desorption, 

diffusion through pores, and the convective transport along with the flowing supercritical 

fluid solvent across the bed height. Based on the different transport mechanisms involved 

in the supercritical fluid extraction process, the following assumptions are considered –  

a) The fixed bed consisting of dry coffee beans are modeled as porous spherical particles 

(diameter ~ 0.8 cm, porosity 0.515 and permeability 10~11 Darcy [136]) arranged in a 

staggered pattern in three layers. 

b) A single pseudo-component (caffeine) is considered in the model. 

c) Caffeine (C8H10N4O2) is assumed to be uniformly distributed in the untreated porous 

solid particles (dry coffee beans). 

d) The volume fraction of porous particles in the fixed bed (see figure 7.1) is not 

influenced by the change in caffeine concentration during the extraction. 

e) Transport properties (dynamic viscosity) of the supercritical solvent/caffeine mixture 

are equal to that of the supercritical solvent. 
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f) Thermal equilibrium is considered between the flowing solvent (supercritical carbon 

dioxide) and the porous fixed bed of solids (dry coffee beans). 

 

The geometrical shape of coffee beans from different cultivars varies from non-

uniform ellipsoids to spheres. For the sake of simplicity, the coffee beans are approximated 

as uniform spheres with an equivalent surface area (obtained from Peker et al. [136]). Since 

the inlet flow rate considered in the study is very low and the corresponding Reynolds 

number is very small (10~15), the transport of caffeine is mainly dependent on the surface 

area of the spherical particles (coffee beans). The irregularities of the particle geometry 

would have negligible effect on the overall caffeine yield. Hence, a porous spherical 

particle to model coffee beans should be a good approximation. The transport processes in 

supercritical fluid extraction in a fixed bed extractor can be modeled by the complete 

hydrodynamic description for an isotropic, Newtonian, compressible, and dissipative 

(viscous and heat-conducting) fluid [167, 168]. Since the extraction process considered is 

essentially isothermal, the energy equation is not considered in the problem formulation. 

The governing equations corresponding to mass, momentum and species balances are listed 

below: 

For the supercritical fluid/caffeine mixture (in bulk fluid): 
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For the supercritical fluid/caffeine mixture in porous-solid medium (packed bed): 
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Here, t is time,  is density of the mixture, u is the mixture velocity vector given by

ˆ ˆu ui vj wk   , where, u, v and w are the velocities in x, y and z directions respectively, 

and p is pressure. The concentrations of the solute (caffeine) in the gaseous and porous-

solid phases are given by Cf and CS respectively. The porosity and permeability of the 

porous-solid phase are given by ε and κ respectively. 

 

7.3.2 Membrane contactor 

Similar to the fixed bed extractor problem, the transport processes in a membrane contactor 

is modeled by solving the mass, momentum, energy and species balance equation. The 

governing equations for the problem is listed below – 
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Here, t is time,  is density, u is the velocity vector given by ˆ ˆ
x x r ru u i u i  , where, ux and 

ur are the velocities in the axial and radial directions respectively, h0 is the total enthalpy, 

T is the temperature, p is pressure and Cf is the concentration of the solute (ethanol). 

 

7.3.3 Equation of state and thermo-physical properties 

The equation of state describing the -p-T relation of supercritical carbon dioxide 

(including the near-critical states) is not well-represented by  the van der Waals equation 

of state [39]. In this study, we used the NIST Standard Reference Database 23 [3] for the 

ρCO2 = f(p, T) relations and for evaluation of other thermo-physical properties of 

supercritical and near-critical carbon dioxide. As discussed in previous chapters, the 

NIST23 equation of state describing the ρ-p-T relation of supercritical carbon dioxide is 

based on the equation of state proposed by Span and Wagner [65], which is mainly 

empirical in nature and includes special non-analytic terms to predict the correct behavior 

of the fluid to the immediate vicinity of the critical point. The density of the supercritical 

solvent/solute mixture is given by 2

2

1

CO solute

CO solute

x x


 



 
  
 

where x is the species 

mass fraction and the subscripts ‘CO2’ and ‘solute’ refers to the supercritical solvent 

(carbon dioxide) and the solute (caffeine / ethanol) respectively. Transport properties of 

the supercritical carbon dioxide/solute mixture are practically independent of the solute 

(i.e. caffeine or ethanol) mass fraction due to very small saturation concentration of solute 

in supercritical carbon dioxide. Hence, the mixture transport properties (e.g. dynamic 

viscosity) are considered to be equal to that of the solvent. Two dimensional look-up tables 
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are developed in the present study to represent the CO2 = f(p, T), µ = f(p, T) etc. data 

provided by the NIST Standard Reference Database 23.  The binary diffusion coefficient 

of the solutes (D12) in supercritical carbon dioxide is calculated using the correlations 

proposed by Catchpole and King  [67] and is given as a function of pressure and 

temperature. For the fixed bed extractor problem, the effective diffusivity of caffeine in the 

porous solids is calculated using Deff = ε2D12. The temperature range considered for the 

look-up tables is 304K - 325K and the pressure range is 7.4 MPa – 12 MPa. With the 

developed computational fluid dynamics model, the transport characteristics of 

supercritical fluid extraction process and the output (%) of the extraction process is 

investigated. The extraction output is presented in terms of yield of the supercritical fluid 

extraction process. The percentage yield of the process is defined as –  

 

mass of solute extracted
% yield = ×100%

initial mass of solute in the system
  (7.11) 

 

7.3.4 Initial and boundary conditions 

Initially thermally quiescent and motion-free supercritical carbon dioxide inside the 

computational domain is considered in the problems (described in section 7.2.1 and 7.2.2). 

The initial state of the fluid is described as, Ti and pi. For generating the acoustic waves, 

the moving wall is harmonically oscillated to model an electro-mechanical transducer. The 

moving wall is vibrated according to the following equation – 

xwall (t) = xmaxsin(2πft)     (7.12) 

Here, xmax is the maximum wall displacement and f is the frequency of oscillation. The 

frequency of oscillation of the moving wall is chosen such that the lowest acoustic mode 
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propagates through the fluid medium (i.e. f = ci / 2L, where ci is the acoustic speed at the 

initial state). The different initial and boundary condition parameters used to simulate the 

supercritical fluid extraction (SFE) process in the fixed bed extractor and the membrane 

contactor are given in sections 7.4 and 7.5 respectively. 

 

For the solution of solid-fluid (i.e. from wall to bulk fluid) interfacial mass transport 

equations (Eqn. 7.3 and 7.6) in the fixed bed extractor (described in section 7.2.1), two 

interfacial boundary conditions have to be fulfilled. First, the interfacial concentration jump 

is defined by the thermodynamic equilibrium assumption f f
solvent wall

C H C , and second, 

the interfacial fluxes obey the continuity condition eff f AB f
wall solvent

D C D C   . Here, H 

is the Henry coefficient and
.

0

satC
H

C
 [192-194]. Csat. is the saturation concentration of the 

solute (i.e. caffeine) in supercritical carbon dioxide. A zero gradient boundary condition 

for solute concentration (Cf) is applied at the outlets.  

 

The solution of solid-fluid interfacial mass transport equations (Eqn. 7.10) in the 

membrane contactor (described in section 7.2.2) is much more simplified as the porous 

solid wall of the membrane contactor is not modeled here. Instead, a time dependent 

boundary condition at the side wall (see figure 7.2) is considered. The time dependent 

aqueous feed concentration (Cfeed) is calculated according to the following equation –  

0

1
( )

t

feed o fC t C vC dt
V

        (7.13) 
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Here, Co is the initial ethanol concentration, V is the volume of the recirculation tank 

(considered as 1.0 m3), v  is the volumetric flow rate and fC  is the average ethanol 

concentration at the outlet of the membrane contactor. The ethanol concentration at the side 

wall (Cwall) is set as per the following conditions –  

, when 
    

, Otherwise

 sat feed sat

wall

feed

C C C
C

C


 


    (7.14) 

 

7.3.5 Numerical scheme 

 

Figure 7.3: Generated geometric model of (a) supercritical fluid extraction column and 

(b) fixed bed consisting of porous spherical particles. 

 

For the fixed bed extractor problem (section 7.2.1), only one-sixth (a 60o pie-section 

about the z-axis) of the problem domain is modeled for the simulations considering the 

symmetry of the geometric model. This significantly reduces the total time of the numerical 

calculations. Figure 7.3 shows the generated geometry and mesh of the supercritical fluid 

extractor and the fixed bed. The construction of particle-to-particle contact points is an 



181 

 

important issue in model generation. To include real contact points, the spheres are 

modeled overlapping by 2.5% of their diameters with the adjacent surfaces in the geometric 

model. 

 

The membrane contactor problem is solved considering axial symmetry of the 

geometry. For both the problems, the governing equations are solved by a finite volume 

method using a central difference scheme for the spatial discretization and a Crank-

Nicolson scheme for time discretization. Non-uniform grid spacing with relatively finer 

mesh near the walls and particle-to particle contact points is considered. The fixed bed 

extractor model consists of tetrahedral elements in the particle and fixed bed region and 

hexahedral elements in all other regions. A total of 309972 elements are used for the 

calculations (fixed bed extractor). Trans-Finite Interpolation (TFI) scheme is used to re-

mesh problem domain for cases with acoustic waves.  All computations were carried out 

on a Dell Precision T7500n workstation. 

 

7.4 Results and discussions: Fixed bed extractor 

The transport processes in caffeine extraction from dry coffee beans is simulated 

with a computational fluid dynamics model. The prediction of the extraction yield of the 

supercritical fluid extraction process with the described numerical method is first compared 

with a previous experimental study [136]. The discussions on the model validation is 

described in the following sub-section. 
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7.4.1 Model Validation 

 

Figure 7.4: Schematic diagram of the extraction column used by Peker et al. [136] 

 

Peker et al. [136] presented an experimental study of the extraction of caffeine from 

whole coffee beans with supercritical carbon dioxide in a continuous-flow extraction 

apparatus. In their experimental investigation, 7 coffee beans (diameter ~ 0.8 cm) in an 

extraction column of length L = 1.27 cm and diameter, D = 1.73 cm was used. A schematic 

diagram of the extraction column used by Peker et al. [136] is shown in figure 7.4. The 

extraction yields are determined as functions of the solvent (supercritical carbon dioxide) 

flow rate and initial states (pressure and temperature). The simulation with the present 

numerical model for the comparison is carried out at an intermediate solvent flow rate (2.46 

ml/min) and initial state (13.8 MPa and 323 K) based on the conditions as specified in Ref. 

[136]. The spherical particles are arranged in a staggered pattern in three layers. The Henry 

coefficient for the initial state considered, is provided (H = 0.0036) in the investigation by 
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Peker et al. [136] and this same value is used in the simulations. The simulations are carried 

out for 200 min and the calculated extraction yield is compared to that obtained 

experimentally. 

 

The contours of caffeine concentration in the bulk fluid (Cf) and in the porous solid 

phase (Cs) at three different times of the process are shown in figure 7.5. The extraction 

process is mainly diffusion controlled at the very early time (figure 7.5a) and convection 

controlled at the longer time scale (figures 7.5b and 7.5c). It is also observed that the 

dynamics of the process is very slow. After 200 minutes of extraction, a considerable 

amount of caffeine is still trapped inside the porous solid phase (figure 7.5c). 

 

 

Figure 7.5: Contours of caffeine concentration in the fluid phase (Cf) and in the porous-

solid phase (Cs) inside the extraction column at (a) t = 5 min, (b) t = 100 min and (c) t = 

200 min. 
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Figure 7.6: Comparison of temporal evolution of calculated caffeine yield (%) at the 

extraction column outlet with experimental data provided by Peker et al. [136] 

 

Figure 7.6 shows the comparison of the transient variation of the extraction yield 

by the present numerical method with that obtained experimentally by Peker et al. [136]. 

It is observed that, the computational results (H = 0.0036) under predicts the extraction 

yield at the early time and over predicts it at the longer time scale. This behavior of the 

numerical model is explained by the variations in equilibrium saturation concentration of 

caffeine (Csat) calculated from the Henry coefficient (H). The correlations developed by 

Gurdial et al. [69] gives a value of 0.0048 for the Henry coefficient at the considered initial 

state (13.8 MPa, 323 K). This value is considerably different from the value used in the 

simulations (H = 0.0036, as provided by Peker et al. [136]). Using a relatively lower 

equilibrium saturation concentration (H = 0.0036) of caffeine resulted in a smaller 

extraction yield at the early time and greater yield at the longer time scale. However, the 
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calculated extraction yield is always within 8% of the experimental value. A second case 

is also simulated with the Henry coefficient value provided by the correlations developed 

by Gurdial et al. [69] (H = 0.0048). It is observed that, the case corresponding to H = 0.0048 

provides a better approximation for the measurements (within 5% of the reported value).  

 

7.4.2 Supercritical fluid extraction of caffeine 

A total of eight cases are simulated with the developed computational fluid 

dynamics model to investigate the transport characteristics of supercritical fluid extraction 

process and the effect of acoustic waves on the yield (%) of caffeine extraction from a fixed 

bed extractor. Details regarding the simulated cases are presented in table 7.2. A solvent 

flow rate of 2.5 ml/min is considered for all the cases. 

 

Table 7.2: List of calculated cases for supercritical fluid extraction of caffeine in fixed 

bed extractor. 

Case No. 
pi 

(MPa) 

Ti 

(K) 

Henry 

Coefficient 

×103 

Frequency of 

Vibration 

(Hz) 

Amplitude of 

Vibration 

(µm) 

1 10.0 307 6.5 - - 

2 10.0 315 2.4 - - 

3 8.0 307 0.71 - - 

4 8.0 315 0.0041 - - 

5 10.0 307 6.5 1855 25  

6 10.0 315 2.4 1356 25 

7 8.0 307 0.71 1090 25 

8 8.0 315 0.0041 1142 25 
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Extraction of caffeine from porous solid spheres (modeled as coffee beans) using 

supercritical carbon dioxide as the solvent is considered first. The initial states of the 

supercritical solvent are near-critical and the fluid properties vary from liquid-like (

1cr   , case 1-3) to gas-like ( 1cr   , case 4) regions. The binary diffusion 

coefficient of caffeine at the corresponding states of carbon dioxide is very small (in the 

order of 10-7 m2/sec) and is of comparable magnitude. Lab-scale supercritical fluid 

extractors are usually operated at very low flow rates, usually in the range of 0.5~4 ml/min 

[49, 135, 136, 166]. In accordance to that, a volumetric flow rate of 2.5 ml/min is applied 

at the inlet section (see figure 7.1). Figure 7.7a shows the contours of bulk fluid pressure 

inside the supercritical fluid extractor at pseudo-steady state (t = 5 min) for case 1. The 

velocity contours and streamlines of the flow field in the extraction column at the pseudo-

steady state for case 1 are shown in figure 7.7b. 

 

Figure 7.7: (a) Contours of bulk fluid pressure and (b) velocity with streamlines of flow 

field inside the extraction column at t = 5 min for case 1. 
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Figure 7.8: Contours of caffeine concentration in the fluid phase (Cf) and in the porous-

solid phase (Cs) inside the extraction column at (a) t = 5 min, (b) t = 60 min and (c) t = 

120 min for case 1. 

 

The contours of caffeine concentration in the supercritical fluid extractor at 

different times ranging from 5 to 120 minutes for cases 1 (maximum solubility of caffeine) 

and 4 (minimum solubility of caffeine) are shown in figures 7.8 and 7.9 respectively. It is 

observed that, for the both cases the extraction process is mainly diffusion controlled at the 

very early time (up to ~ 5 minute). While at the longer time scale it is controlled by 

convection. However, due to the small porosity and permeability of the spherical particles, 

there is hardly any convection of solute species (i.e. caffeine) within the porous solid 

particles. The relatively small solvent flow rate in the extraction column makes the overall 

kinetics of the extraction process very slow. Also, the process is strongly dependent on the 

equilibrium saturation concentration of caffeine (Csat). The equilibrium saturation 

concentration of caffeine for case 1 is about three orders of magnitude higher than that in 



188 

 

case 4. This makes the process very slow in case 4. Due to this reason, extraction is never 

carried out in the gas-like ( 1cr   ) regions of the supercritical solvent. 

 

Figure 7.9: Contours of caffeine concentration in the fluid phase (Cf) and in the porous-

solid phase (Cs) inside the extraction column at (a) t = 5 min, (b) t = 60 min and (c) t = 

120 min for case 4. 

 

Figure 7.10 shows the percentage yield of the caffeine at the outlet of the extraction 

column for cases 1-4. A sharp variation of the yield is observed in all the cases; at the initial 

period of extraction. At the static condition, some solute is extracted from the solid matrix 

by pure diffusion and is gathered at the outer surface of the particles (figures 7.8a and 7.9a). 

In the beginning of the convection regime, these solutes from the surface of the particles 

are carried to the outlet giving a sharp rise in extraction yield (figure 7.8b). It is observed 

that, solutes in the outer parts of particles are extracted much faster than the solutes in the 

inner parts of particles at the beginning of the dynamic extraction. This observation is in 

accordance with the study by Roy et al. [137]. As the extraction time proceeds, the 
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diffusion of solutes from inner parts to the bulk phase becomes more difficult due to the 

decrease in driving force between the solid and fluid phases leading to the reduction of 

extraction rate (figure 7.8c). 

 

Figure 7.10: Temporal evolution of caffeine yield (%) at the outlet of the extraction 

column for cases 1-4. 

 

7.4.3 Effect of acoustic waves on supercritical fluid extraction in fixed bed extractor 

Acoustic waves are introduced to the same cases (cases 1-4) discussed in the 

previous section (section 7.4.2). Perturbation at the inlet end wall generates relatively high 

amplitude (around 0.5-1.0 kPa) pressure waves in the compressible solvent (carbon 

dioxide). These waves propagate through the fixed bed and reflect back from the bottom 

end wall (z = +8.7 cm). The frequencies of the moving wall for the cases simulated (case 

5-8) are chosen such that the lowest acoustic mode propagates through the compressible 

fluid (i.e. at resonant frequency of the fluid medium based on the length of the extraction 
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column, / 2resonant fluidf c L ). The instantaneous and cycle averaged flow fields inside the 

extraction column for case 5 (at t = 5 min) are shown in figure 7.11. It is observed that, the 

pressure waves induce relatively large scale (almost two times larger than the steady flow 

case 1) oscillating convective motion inside the extraction column; especially in the fixed 

bed region (figure 7.11a). The perturbation of the inlet wall and the reflections from the 

bottom wall also results in some irregularities in the flow as observed in figure 7.11a. These 

irregular flow patterns (instantaneous) facilitate the convection from the fixed bed and 

mixing. The cycle averaged flow field at t = 5 min is shown in Figure 7.11b. However, no 

streaming patterns [186] are observed in the cycle averaged flow field. This is mainly due 

to the effect of the steady flow coming from the inlet; superimposed on the generated 

oscillating flow field. 

 

Figure 7.11: Velocity contours and streamlines of (a) instantaneous and (b) cycle 

averaged flow field inside the extraction column at t = 5 min for case 5. 
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Figure 7.12 shows the temporal pressure distribution at the bottom wall (z = +8.7 

cm) for cases 5-8. The time period shown in the figure is around five cycles. Due to a large 

aspect ratio of the extraction column (L/D ~ 1.8), the wall has very small effect on the bulk 

flow. This leads to less attenuation and relatively high amplitude (around 0.5-1.0 kPa) of 

the pressure waves. It is also observed that, due to relatively high compressibility and small 

dynamic viscosity of the near-critical fluid (case 7 and 8); high amplitude pressure waves 

are generated in the bulk fluid for the same acoustic perturbation. The amplitude of the 

generated pressure waves are found to be in direct correlation with the proximity of the 

initial state of the solvent to the corresponding pseudo-critical state ( / 1.0c   ), as well 

as the dynamic viscosity of the supercritical solvent.  

 

 

Figure 7.12: Temporal evolution of pressure at the bottom wall (z = +8.7 cm) of the 

extraction column for cases 5-8. 
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Figure 7.13: Contours of caffeine concentration (Cf) in the fixed bed extractor at three 

different times (a) without [case 1] and (b) with [case 5] the application of acoustic 

waves. 

 



193 

 

The contours of caffeine concentration in the supercritical fluid fixed bed extractor 

at different times ranging from 5 to 120 minutes for the cases with and without acoustic 

wave excitations at p = 10.0 MPa (case 1 and 5) are shown in figure 7.13. It is observed 

that, for the both cases the extraction process is mainly diffusion controlled at the early 

time (up to ~ 5 minute). While at the longer time scale it is controlled by convection. 

However, due to the small porosity and permeability of the spherical particles, there is 

hardly any convection of solute species (i.e. caffeine) within the porous solid particles. The 

relatively small solvent flow rate in the extraction column makes the overall kinetics of the 

extraction process slow. For the case without acoustic waves (case 1, figure 7.13a), a 

concentration gradient in the fixed bed from upstream to the downstream of the flow is 

observed. This is due to the downward direction of the solvent flow inside the extraction 

column. Also, there are localized concentration gradients present in the fixed bed extractor 

due to the particle-to particle contact and wall effect. However, this concentration gradient 

is not distinct for the case with acoustic waves (case 5, figure 7.13b). Also, due to the 

presence of higher convective mass transfer in the system, relatively higher concentration 

of caffeine in the extractor is observed for the case with acoustic waves. 

 

The solute concentrations at the particle surface in the convective regime (t = 120 

min) for case 1 (without acoustic waves) and case 5 (with acoustic waves) are shown in 

figure 7.14. For the case without acoustic waves, a concentration gradient in the fixed bed 

from upstream to the downstream of the flow is observed. This is due to the downward 

direction of the solvent flow inside the extraction column. Also, there are localized 

concentration gradients present in the extractor due to the particle-to particle contact and 
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wall effect. However, this concentration gradient is not very distinct for the case with 

acoustic waves (case 5). Also, due to the presence of higher convective mass transfer in 

the system, relatively smaller average surface concentration of the particles in all the three 

layers is observed for the case with acoustic waves. 

 

 

Figure 7.14: Contours of caffeine concentration (Cf) at the surface of the spherical 

particles at t = 120 min (a) without [case 1] and (b) with the effect of acoustic waves 

[case 5]. 

 

The temporal evolution of the percentage yield of caffeine for the cases with 

acoustic waves (case 5-8) is compared to the cases without acoustic waves (cases 1-4) in 

figure 7.15. It is observed that, the relatively high convective velocities induced by the 

pressure waves increased the yield of the solute (caffeine) in all the cases. It is also 

observed that due to the absence of caffeine on the surface of the spherical particles, the 

yield of caffeine at the outlet is not at all affected by the acoustic waves at the very early 

time (diffusion controlled regime). In the longer time period, acoustic excitation increased 

the extraction yield at different rates depending on the initial state of the supercritical 

solvent. The inlet end wall perturbations in case 7 produce the largest pressure oscillation 

in the extraction column (figure 7.12) and hence the rate of increase of the extraction yield 
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is maximum for this case. Cases 5, 6 and 8 also exhibit a similar phenomenon but relatively 

smaller rates of increase due to acoustic waves.  Due to the large-scale pressure oscillations 

in the bulk fluid, the extraction yield for case 7 increased from 16% (case 3) to 25% after 

the end of 120 min. However, since the solubility (i.e. saturation concentration) of caffeine 

is relatively lower in case 7, the net extraction yield is still smaller than some of the other 

cases (case 5 and 6) calculated in this study. Case 5 and 6 shows relatively better yield of 

extraction (~ 55%) with the application of acoustic waves. 

 

 

Figure 7.15: Temporal evolution of caffeine yield (%) at the outlet of the extraction 

column with the effect of acoustic waves. 
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7.5 Results and discussions: Membrane contactor 

A membrane contactor (figure 7.2) used for extracting ethanol from an aqueous 

feed is considered for this study. Two cases (with and without the application of acoustic 

waves) are simulated to investigate the effect of acoustically augmented transport on the 

recovery yield. The initial state of the supercritical solvent (CO2) is considered near-critical 

(pi = 7.6 MPa, Ti = 306 K). The initial and boundary conditions for the simulations are 

listed in table 7.3. Transient simulations are carried out to a pseudo-steady state (t = 15 

min) for both the cases. The recovery output is presented in terms of yield of the 

supercritical fluid extraction process. 

 

Table 7.3: Initial and boundary conditions for the membrane contactor simulations 

Parameter Membrane Contactor 

Solvent-Solute CO2 - Ethanol 

Initial pressure, pi 7.6 MPa 

Initial temperature, Ti 306 K 

Initial Solute Concentration, Co 2.0 kmol/m3 

Henry Coefficient, H 0.00127 

Solvent (CO2) flow rate, F 5.0 ml/min 

Frequency of Oscillation, f 3.307 kHz 

Maximum Wall Displacement, xmax 10.0 µm 

 

Contours of ethanol concentration in the membrane contactor at t = 15 min for the 

two cases are shown in figures 7.16a and 7.16b. A scaling factor of 2.0 is applied in the 
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radial direction to clearly show the contours. Two different features of the concentration 

contour are noticed from these figures. The case with acoustic wave produces two regular 

streaming structures as discussed in chapter 6. Similar to the near-critical streaming 

structures, these structures are also centered near the end walls (i.e. not at x / L = 0.75). 

The streaming structures serves as feeding channels carrying ethanol from the side wall to 

the bulk flow. As a result, the much higher concentration of ethanol in the solvent flow is 

observed in this case (figure 7.16a) as compared to the case without acoustic waves (figure 

7.16b). For the case without acoustic waves, a concentration boundary layer is visible near 

the side wall. The boundary layer thickness near the end (right) wall increases suddenly. 

This is mainly due to the change in direction of the velocity at the end wall. 

 

Figure 7.16: Contours of ethanol concentration in the membrane contactor (a) with 

acoustic waves (xmax = 10.0 µm and f = 3.307 kHz) and (b) without acoustic waves at t = 

15 min. 
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Figure 7.17 shows the temporal evolution of the normalized pressure at the end 

(right) wall of the membrane contactor for the case with the application of acoustic waves. 

The time period shown in the figure is around four cycles. As discussed in chapter 6, the 

high compressibility and small dynamic viscosity of the near-critical fluid induces 

relatively high amplitude pressure waves in the bulk fluid for a small acoustic perturbation 

(xmax = 10 µm).  For comparison, temporal evolution of the normalized pressure at the end 

(right) wall of a cylindrical shape resonator with same length (L) and aspect ratio (L/D) of 

the membrane contactor is also shown in figure 7.17. It is observed that, there is a small 

drop in the oscillatory pressure amplitude due to the through flow from inlet to outlet. The 

acoustic wave profile in the membrane contactor and the cylindrical shaped resonator are 

‘saw-tooth’ like with sharp rise and a gradual fall. 

 

Figure 7.17: Temporal evolution of pressure at the end (right) wall of the membrane 

contactor (xmax = 10.0 µm and f = 3.307 kHz). 
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Figure 7.18: Temporal evolution of ethanol recovery yield (%) at the outlet of the 

membrane contactor with and without the effect of acoustic waves. 

 

The cumulative recovery yield of ethanol from the aqueous feed up to t = 15 min 

for the calculated cases is shown in figure 7.18. It is observed that, the relatively high 

convective velocities induced by the pressure waves as well as the streaming structures 

significantly increase the yield of the ethanol recovery process. The extraction dynamics is 

slow with supercritical solvents. For the case without acoustic waves, the recovery yield of 

ethanol is only around 1.1% after 15 minutes of operation. The application of acoustic 

waves increased the recovery yield by a factor of ~ 2. However, the slope of the recovery 

yield curve for the case with acoustic waves is relatively higher than that without the 

acoustic waves. Hence, a higher enhancement is recovery yield may be expected at longer 

times. 
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7.6 Summary and conclusions 

Mass transfer enhancement in supercritical fluid extraction processes using high 

amplitude resonant acoustic waves is investigated. Two different supercritical fluid 

extraction processes are simulated –the extraction of caffeine from a porous solid matrix 

(fixed bed) of spherical particles using supercritical carbon dioxide flow is considered first. 

Two levels of porosity are considered for the fixed bed of spherical particles – the bed 

porosity and the particle porosity. The bed porosity is modeled geometrically while the 

individual particle porosity is modeled by employing volume averaged porous media 

models. The convective mass transfer in supercritical fluid extraction process is simulated 

with the aid of a computational fluid dynamics model. A direct quantitative comparison of 

the caffeine extraction yield from coffee beans with a previous experimental investigation 

[18] shows a good match in the time-scale of the process. With the aid of the developed 

model, the influence of acoustically excited flows on supercritical extraction is 

investigated. Recovery of ethanol from an aqueous feed using supercritical carbon dioxide 

in a membrane contactor is also simulated and the effect of acoustic waves and streaming 

structures on the extraction yield is investigated in detail. 

 

Enhancement in extraction yield is observed for both the systems with the 

application of acoustic waves. The enhancement is mainly due to the cumulative effect of 

increased localized convection (due to perturbation) and formation of streaming structures 

in the extraction systems. The numerical results also show that, the effect of acoustic waves 

can be enhanced in the near-critical regime. The highly compressible and less viscous near-

critical solvent (carbon dioxide) generates large-scale oscillations in the flow-field which 
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results in relatively higher enhancement in process yield. In case of a fixed bed extractor, 

the enhancement is mainly due to localized convection. The positioning of the porous fixed 

bed in the extraction column attenuates the acoustic waves to a greater extent and hinders 

the formation of streaming structures. Application of acoustic waves enhances the yield of 

caffeine extraction by around 15-25%, with trends of even greater improvements towards 

the end of the extraction process. While in the membrane contactor, higher streaming 

velocities near the wall increases the concentration boundary layer thickness and there-by 

increases mixing of the solute (ethanol) with the solvent. 

 

The observations confirm that acoustic waves significantly accelerate the kinetics 

of the supercritical extraction process and improve the final extraction yield. These 

improvements are attributed to an increase in the overall mass transfer coefficient. Such 

promising result supports the need for further experimental research in this field, especially 

with near-critical solvents. 
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 CHAPTER 8: SUMMARY AND CONCLUSIONS 

 

8.1 Overall summary 

Considering the major goals introduced in chapter 1, the research reported in the 

subsequent chapters show that supercritical fluids exhibit complex and non-linear transport 

phenomena near the critical point which can be utilized to enhance the performance of 

different thermal and chemical process systems that uses these fluids. Based on the 

motivations of the research work, the objectives set were divided into two main areas: 

(a) To gain a better understanding of thermoacoustic transport in near-critical fluids. 

(b) To investigate the acoustically driven transport phenomena in near-critical fluids.  

 

In keeping with these objectives, this dissertation reports research that was 

completed in order to meet the set goals. Chapter 3 reports the development and validation 

of the numerical model for investigating thermoacoustic transport phenomena in near-

critical supercritical fluids. Investigation of a novel fast response heat transfer device based 

on the near-critical thermoacoustic phenomena is also reported in this chapter. 

Experimental measurements of thermoacoustic waves in near-critical supercritical fluid as 

well as a comparison of the experimental measurements with the computational results 

(reported in chapter 3) are reported in chapter 4. The reported studies discuss the 

experiments conducted and the corresponding results from the characterization of the 

thermoacoustic waves under a variety of operating conditions (thermodynamic state of the 

fluid, boundary heating rate etc.). Chapter 5 discusses the interaction of thermoacoustic 

transport with developing natural convection in the fluid as well as the effect of diverging 
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bulk viscosity of the near-critical fluid on the thermal transport. Development of a 

correlation to predict the thermal transport induced by buoyancy driven flow in 

supercritical fluids is reported in this chapter. Acoustically augmented flow and transport 

in near-critical fluids are reported in chapter 6 and 7. The experimental and numerical 

studies to investigate the mechanically driven acoustic waves in near-critical fluids as well 

as the development of computational fluid dynamic (CFD) models of different supercritical 

fluid extraction systems are discussed in these chapters. The specific conclusions of each 

of the above studies are presented in the next section of this chapter and the impact of the 

research is discussed. Based on that discussion, ideas for continuing and future work are 

presented in the section following the conclusions. 

 

8.2 Specific conclusions and impact of findings 

The conclusions are divided into four sub-sections as follows: 

(a) Characterization of thermoacoustic transport in near-critical fluids. 

(b) Interaction of thermoacoustic transport with natural convection. 

(c) Characterization of acoustically augmented transport in near-critical fluids and   

(d) Enhancement of supercritical fluid extraction using acoustic waves. 

 

Details of the specific conclusions and impacts of the findings for the above four 

areas (a) - (d) are given in the following four sub-sections 8.2.1 - 8.2.4. 
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8.2.1 Characterization of thermoacoustic transport in near-critical fluids 

Thermally induced acoustic waves are much stronger in supercritical fluids than in 

ideal gases under the same temperature increase and the rate of increase [91]. 

Thermoacoustic waves in a confined layer of near-critical fluid induce an adiabatic 

compression of the bulk fluid which results in a homogeneous temperature increase of the 

bulk known as ‘piston effect’. There are numerous analytical and numerical models 

available in the literature to predict supercritical fluid transport. However, most of these 

models do not consider the highly complex equation of state and non-linear thermo-

physical property variations of the near-critical fluids. Experimental studies on the 

behavior of the thermoacoustic phenomena in the near-critical supercritical region detailing 

the temperature and pressure measurements were also not reported in the literature. In this 

study, generation and propagation of thermoacoustic wave and associated transport 

phenomena in near-critical supercritical fluids were investigated both experimentally and 

numerically.  

 

The novel contribution of this study is the development and validation of a high 

fidelity predictive models based on an accurate equation of state for sub- and supercritical 

carbon dioxide and an in-depth analysis of the behavior of thermoacoustic transport 

phenomena in near-critical and near-pseudo-critical states. With the aid of the developed 

model, the transition of the thermoacoustic wave generation and propagation phenomena 

from a sub-critical to supercritical phase were investigated. Experimental measurements 

were also performed to characterize the generation, propagation and dissipation of 

thermally induced acoustic waves in supercritical carbon dioxide near its critical point. The 
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adiabatic piston effect phenomena in near-critical fluids were also investigated by 

systematically approaching the pseudo-critical states. The results exhibit that rapid heating 

of the boundary emits strong compressive waves that carry energy and momentum from 

the heated boundary deep into the undisturbed regions of the fluid. The existence of the 

piston effect in supercritical fluid due to rapid heating of the boundary were also 

demonstrated numerically. Two exciting phenomena were observed from the numerical 

investigations. Firstly, as predicted by earlier studies [95, 159], the relative strength of the 

acoustic field (δp/pi) as well as the corresponding change in bulk temperature (δT) certainly 

increases as the critical state of the fluid (CO2) is approached. Secondly and most 

interestingly, change in these parameters (δp/pi and δT) are highly correlated with the 

pseudo-critical states. Near the pseudo-critical state ( 1i

c




 ), the acoustic field (δp/pi) and 

the corresponding change in bulk temperature (δT) shows rapid increase while their 

magnitude decreases as the initial state is moved away from the pseudo-critical state. 

Proper inclusion of bulk viscosity in the model shows that, viscous resistance imposed on 

the expanding boundary layer by the high bulk viscosity fluid affects the thermoacoustic 

field both in the early and later times. A novel thermoacoustic wave driven thermal 

transport device using supercritical carbon dioxide as the working fluid was also proposed. 

From the study of this type of device, it was observed that a portion of the total energy 

supplied can be transmitted very quickly by the thermoacoustic waves. It was also observed 

that, the thermal transport performance (Qout/Qin) is mainly dependent on the initial state 

of the fluid and its proximity to the corresponding pseudo-critical state. Hence, the 

performance of the device can be adjusted easily and it can be used in conjunction with a 

traditional heat pipe where rapid transport of thermal energy is necessary.  
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The specific impact of this study on the thermoacoustics and supercritical fluids 

community can be summarized in the following points: 

 This study reports one of the first experimental investigations of thermoacoustic wave 

generation and propagation in the near-critical supercritical region with detailed 

temperature and pressure measurements. 

 A highly efficient and high-fidelity one-dimensional computational fluid dynamic 

model consisting of accurately represented equation of state and near-critical thermo-

physical property variations is presented and validated with experimental 

measurements. Given the lack of numerical models with accurately represented 

equation of state and thermo-physical properties of near-critical fluids, this is a 

significant impact.  

 The study also reports for the first time the effect of pseudo-critical states and bulk 

viscosity on the thermoacoustic wave generation and transport. 

 

8.2.2 Interaction of thermoacoustic transport with natural convection 

 In the long time scale under the action of gravity, the thermoacoustic convection 

mode of transport interacts with the buoyancy driven convection. Buoyancy driven 

convection in supercritical fluids has been investigated in the past. However, convection 

of a pure fluid near the critical point is difficult to study both experimentally and 

theoretically due to the critical divergence of the thermo-physical properties. As a result, 

no satisfactory correlations were available to predict the convective heat transfer in near-

critical fluids. In this study, thermal transport phenomena in supercritical fluids (carbon 
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dioxide) in the near-critical as well as far from the critical point were investigated 

numerically with the aid of a computational fluid dynamic model. 

 

The novel contribution of the this study is to demonstrate the effect of the pseudo-

critical states (i.e. where c  ) on buoyancy driven thermal transport (i.e. transport 

phenomena in longer time scale) as well as the development of a correlation to predict the 

thermal transport behavior of supercritical carbon dioxide both near and far from the 

critical point. The effect of critically diverging bulk viscosity on the buoyancy driven flow 

was also investigated. The results exhibit that in the absence of critical divergence far from 

the critical point   > 10MPa,  > 320Kp T thermal transport behavior of supercritical fluids 

is reasonably comparable to that for a high density and high Prandtl number ( Pr 1) gas 

and depends on the Rayleigh number (Ra) of the flow only, while in the near critical region

  <  < 10MPa,  <  < 320Kc cp p T T , transport of thermal energy varies not only as a 

function of Rayleigh number (Ra) but also as a function of the pressure and temperature. 

It was also observed that, similar to the thermo-physical property variations near the critical 

point, the Nusselt number (Nu) maximizes along the pseudo-critical states. Correlations 

for Nusselt number was proposed for both of these regions as a function of the Rayleigh 

number of the flow and the dimensionless pressure i c
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. It was found that, in the near-critical region, critically 

diverging bulk viscosity plays a major role on the development of boundary layer and 

thermal equilibration in the flow domain. These effects are only significant when the bulk 
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viscosity has values higher than the shear viscosity and the bulk viscosity shows strong 

variation in the flow domain. The specific impact of this study can be summarized in the 

following points: 

 Correlations to predict the thermal transport behavior in the near-critical as well as far 

from the critical point of the fluid is developed. This is a significant impact on the field 

of supercritical fluid heat transfer due to the lack to information regarding heat transfer 

phenomena in the near-critical regime. 

 The study reports one of the first investigations of effect of critically diverging bulk 

viscosity on natural convection and flow stability. 

 

8.2.3 Characterization of acoustically augmented transport in near-critical fluids 

Finite amplitude resonant acoustic waves in an enclosure induces a secondary flow 

field known as ‘acoustic streaming’. This secondary flow field may be effective in 

accelerating certain kinds of rate processes, especially to enhance mixing processes and to 

augment heat and mass transfer through resonator walls. Studies on acoustic wave induced 

convective transport inside an enclosure have been conducted by several researchers [11, 

50, 51, 195-197] in the past. However, most of these studies were limited to ideal gases at 

near atmospheric pressures. Mechanically driven resonant acoustic waves in near-critical 

supercritical carbon dioxide was investigated in this study. The formation of acoustic 

(pressure) waves, acoustic-viscous boundary layer interactions, and associated flows in a 

cylindrical resonator were numerically studied by solving the unsteady, compressible 

Navier–Stokes equations in an axisymmetric x-r coordinate system. The acoustic field in 

the enclosure was generated due to the harmonic vibration of the end wall. The effects of 
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pseudo-critical state ( / 1.0c  ) and operating pressure on the acoustic field and the 

formed flow structures were determined by utilizing a highly accurate numerical scheme. 

The computations were accompanied by appropriate experimentations on acoustically 

driven transport. Acoustic waves generated by an electro-mechanical driver in a cylindrical 

resonator filled with supercritical carbon dioxide were measured using a fast-response 

pressure field microphone. The results from the numerical simulations were then compared 

with the experimental measurements with accurately developed boundary conditions.  

 

Several interesting and significant phenomena were observed from the numerical 

simulations and confirmed by the experimental measurements. The observed primary 

oscillatory and secondary steady flow fields in the supercritical fluid medium demonstrate 

significant effects of the thermodynamic state (sub-critical / supercritical / pseudo-critical) 

as well as the operating pressure. The strength of the acoustic wave field was found to be 

in direct relation with the thermodynamic state (near-pseudo-critical / far from the pseudo-

critical state). It was observed that due to the strong thermo-physical property variations, 

amplitude of the maximum pressure increases as the thermodynamic state of the fluid 

approaches the corresponding pseudo-critical state. In the near-pseudo-critical state, the 

pressure wave form exhibits an irregular, non-linear profile due to the existence of a 

secondary resonant frequency in the system. This phenomena also affects the formation of 

acoustic streaming structures in the near-pseudo-critical state. Far from the pseudo-critical 

state, the streaming structure consists of two counter rotating cells with a ‘jet’ like flow-

field along the semi-length of the resonator (at the pressure node). While near the pseudo-

critical state, irregular streaming structures consisting of four outer streaming cells in the 
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top half of the resonator were observed. The evolved flow structures are also dependent on 

the operating pressure. The irregular streaming patterns were observed mainly for near-

pseudo-critical states at operating pressures close to the critical pressure (pc = 7.377 MPa). 

However, these structures quickly re-orients to the regular streaming patterns (two outer 

streaming cells) with the increase operating pressure. The phenomena observed both 

numerically and experimentally in this study can be utilized for mixing applications in 

supercritical fluid medium, especially for enhancing the transport characteristics in 

supercritical fluid extraction processes. The specific impact of this study can be 

summarized in the following points: 

 Acoustic streaming in near-critical supercritical fluids was reported for the first 

time. This was enabled by the multi-dimensional nature of the developed 

computational model. Acoustic streaming was shown to be dependent on the 

thermodynamic state of the fluids. 

 The numerical model was used to investigate the formation and structure of 

acoustic streaming in near-critical fluids. This can be used as an effective tool for 

designing acoustically driven processes in near-critical fluids. 

 

8.2.4 Enhancement of supercritical fluid extraction using acoustic waves 

 Mass transfer enhancement in supercritical fluid extraction systems using 

acoustic waves in a relatively recent concept. Proper implementation of an actual prototype 

system requires a lot of design and testing. Numerical modeling and simulation is an 

efficient tool for this purpose. Transport processes in supercritical fluid extraction systems 

are generally modeled using the species (mass) conservation equation with a constant flow-
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field [124, 141, 142, 145, 166]. However, numerical models solely based on the differential 

mass balance integration are unable to predict the yield of the extraction process under an 

oscillating flow field or in complex geometries. A reliable and validated CFD model of the 

supercritical fluid extraction process for understanding the near-critical transport 

phenomena in supercritical fluid extraction systems is not available in the literature. In this 

study, computational fluid dynamics models to simulate the supercritical fluid extraction 

processes were developed. Mass transfer enhancement in supercritical fluid extraction 

processes using high amplitude resonant acoustic waves was investigated with the 

developed models. Two different supercritical fluid extraction processes were simulated –

the extraction of caffeine from a porous solid matrix (fixed bed) of spherical particles using 

supercritical carbon dioxide flow was considered first. The influence of acoustically 

excited flows on supercritical extraction was investigated. Recovery of ethanol from an 

aqueous feed using supercritical carbon dioxide in a membrane contactor was also 

simulated and the effect of acoustic waves and streaming structures on the extraction yield 

was investigated in detail. 

 

Enhancement in extraction yield was observed for both the systems with the 

application of acoustic waves. The enhancement was mainly due to the cumulative effect 

of increased localized convection (due to perturbation) and formation of streaming 

structures in the extraction systems. The numerical results also showed that, the effect of 

acoustic waves can be enhanced in the near-critical regime. The highly compressible and 

less viscous near-critical solvent (carbon dioxide) generates large-scale oscillations in the 

flow-field which results in relatively higher enhancement in process yield. In case of a 
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fixed bed extractor, the enhancement is mainly due to localized convection. The 

positioning of the porous fixed bed in the extraction column attenuates the acoustic waves 

to a greater extent and hinders the formation of streaming structures. Application of 

acoustic waves enhanced the yield of caffeine extraction by around 15-25%, with trends of 

even greater improvements towards the end of the extraction process. While in the 

membrane contactor, higher streaming velocities near the wall increased the concentration 

boundary layer thickness and there-by increased mixing of the solute (ethanol) with the 

solvent. The specific impact of this study on the chemical process industry can be 

summarized in the following points: 

 This study reports the first experimentally validated computational fluid dynamic 

model of a supercritical fluid extraction system. The multi-dimensional computational 

model can be an effective tool for designing supercritical fluid extraction processes. 

 The novel concept of acoustically enhanced mass transfer in supercritical fluid 

extraction systems was demonstrated in this study. The results presented can be used 

as a guideline to set the operating conditions for these systems. 

 

8.3 Future work and recommendations for continuing research 

Significant progress was made in the area of supercritical fluid transport with the 

research reported in this dissertation. These significant contributions include the 

development of experimentally validated numerical models for thermoacoustic convection 

in near-critical fluids and supercritical fluid extraction systems. However, there is always 

room for improvement. Acoustic-fluid dynamic interactions in near-critical supercritical 

fluids have applications in a wide range of industrial processes and create challenging 
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problems. Several research problems in this area remain which require further investigation 

to fully explore the nature of their underlying physical processes. To further advance the 

knowledge and understanding of near-critical transport phenomena in engineering systems, 

the following research tasks are recommended. 

  

8.3.1 Supercritical fluids in thermoacoustic devices 

The knowledge gathered from the fundamental studies on near-critical 

thermoacoustic transport carried out in this research project can be utilized in designing 

thermoacoustic devices. Thermoacoustic devices are used to pump heat from one place to 

another (in case of a refrigerator), utilizing high amplitude acoustic waves, or conversely 

to induce high amplitude acoustic waves (in case of an engine) using a heat difference. An 

ideal working gas for a thermoacoustic device (i.e. engine or refrigerator) should have the 

following thermo-physical properties – high acoustic speed [198, 199] as the power density 

of the device is proportional to the speed of sound.  It should have a low thermal 

conductivity to reduce the heat transfer from the hot side to the cold side across the working 

gas [200]. It should have a specific heat ratio (γ) close to one and a relatively high Prandtl 

number, which leads to a minimum onset temperature [201, 202]. A low viscosity and high 

density of the fluid is also desirable to minimize viscous losses and leakage while operating 

at high pressures. These contradicting requirements indicate that the optimum 

thermodynamic state of the working fluid in a thermoacoustic engine should be selected 

according to the particular design objective with careful consideration of the temperature 

of the available heat source. From these perspectives, supercritical fluids (especially 

supercritical carbon dioxide) have the potential to be used as working fluids in 
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thermoacoustic devices. Near the critical point, thermo-physical properties of supercritical 

fluids exhibit large deviations for small change in temperature and pressure and hence they 

can be ‘tuned’ for highly specific applications. Near-critical fluid is somewhat 

compressible, has a large thermal expansion coefficient (comparable to or larger than that 

of an ideal gas), and has other attractive thermo-physical properties (such as – relatively 

low viscosity and very high specific heat).  

 

Near-critical fluids have been considered as working fluids for thermoacoustic 

devices in the past. Gu et al. [203] utilized supercritical heat recovery process in the stack 

(regenerator) section of a traditional thermoacoustic stirling engine to enhance the 

efficiency of the device. Haberbusch et al. [204] reported development of a thermoacoustic 

Stirling heat engine (TASHE) to drive a pulse tube refrigerator (PTR) and electrical linear 

alternator for instrument cooling and power generation for space applications. Three 

different working fluids – namely hydrogen, helium and supercritical carbon dioxide were 

investigated in their study using a DeltaEC [205] model. It was reported that supercritical 

carbon dioxide shows promising benefits and competitive thermal efficiency that is worthy 

to conduct design in parallel with traditionally used working fluids (e.g. helium). Our 

fundamental studies on thermoacoustic wave generation and transport in near-critical fluids 

showed that, relatively high amplitude acoustic waves can be generated in supercritical 

fluids even for a small temperature change. This is mainly due to the large thermal 

expansion coefficient (a desired property for conversion of heat to work) of these fluids. 

Thermoacoustic devices using near-critical working fluids are potentially important in 

applications involving large amounts of heat transfer across small temperature differences 
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(in the order of 30oC). It is expected such devices to be highly efficient and to have 

compact, inexpensive heat exchangers [206, 207]. 

 

Considering the potential of a supercritical fluid thermoacoustic engine discussed 

above, one interesting research direction would be to develop a multi-dimensional 

computational fluid dynamic (CFD) model that can be used to accurately predict the 

behavior and performance of a supercritical fluid thermoacoustic engine. This involves 

addressing the presence of heat-exchanger material in the system and how it affects the 

flow fields, accounting for heat transfer between the operating fluid (preferably 

supercritical carbon dioxide) and the solid surfaces including the heat-exchanger material 

and the walls of the components and accurately predicting the acoustic nature of the system. 

 

8.3.2 Effect of higher harmonics on acoustic streaming in supercritical fluids 

The numerical model developed to simulate acoustically augmented flow and 

transport in supercritical fluids has provided important insight into the thermal-fluid 

interactions inside the supercritical fluid resonators. However, the model can be used to 

further investigate the acoustically driven transport phenomena in supercritical fluids. 

 

One interesting and important study would be to investigate the effect of the driving 

frequency on the formation of streaming structures. Investigation of the mechanically 

driven acoustic waves reported in chapter 6 was mainly focused on resonant (first 

harmonic) standing waves in the resonator. However, the effect of using higher harmonics 

(f = nf1) on acoustic streaming structures generated in supercritical fluids as well as in 
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atmospheric pressure gases is an open field of study. Intuitively, it can be assumed that 

higher harmonic frequencies will generate more streaming cells in the resonator (due to 

greater number of pressure nodes in the system); however variation of the driving 

frequency might also lead to the variation of the streaming velocities. The developed model 

can be utilized to investigate the optimal driving frequency that will provide efficient 

mixing of the fluid in the system. 

 

Visualization of the flow structures inside a cylindrical resonator have been 

performed by numerous researchers in the past. But, most of these earlier studies are 

limited to atmospheric pressure gases / liquids. Flow visualization studies in supercritical 

fluid resonators will improve the understanding of acoustic streaming driven convective 

transport in these fluids. This can further validate the proposed application of using 

mechanically driven acoustic waves in supercritical fluid extraction to enhance mixing. 

The challenge of such a study lies in the development of an experimental system that will 

allow flow visualization studies in high pressures. In addition to flow visualization, 

velocity measurements of the generated oscillatory field will also improve our 

understanding of acoustically driven transport in high pressure / near-critical fluids. The 

best method of attempting velocity measurements would be with constant temperature 

anemometers given the visualization challenges posed in these high pressure systems (with 

regards to PIV methods). 
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8.3.3 Supercritical fluid extraction systems 

 Two different types of supercritical fluid extraction systems – fixed bed extractor 

and membrane contactor were modeled and simulated in the present research. They 

provided important insight on the underlying mechanisms of solvent extraction process 

using supercritical fluids. These models can be further improved to more accurately 

simulate the diffusion-convection processes in supercritical fluid extraction systems. 

 

 One important and significant improvement of the membrane contactor model 

would be to include the feed flow physics and the species transport in the membrane. The 

model developed in the present research do not consider the feed flow through the 

membrane contactor annulus as well as the porous membrane wall (section 7.3.3). The 

concentration boundary condition was calculated using a volume average model (Eqn. 

7.13). Investigation of the effect of feed flow rate and membrane transport on the overall 

extraction yield would be a significant contribution in this area. 

 

 Another important research task in the field of mass transfer enhancement in 

supercritical fluid extraction using acoustic waves, is the experimental validation of the 

numerical results obtained from the present research. Developing an economical, lab-scale 

supercritical fluid flow reactor that would continuously pressurize and supply supercritical 

fluids for this experimentation is a major challenge. One concept idea is to use a high 

pressure liquid chromatography pump (HPLC) for this purpose. Saturated liquid carbon 

dioxide (at room temperature) flowing from a siphon tube fitted tank will be further cooled 

using a cold heat-exchanger (driven by peltier coolers). The sub-cooled liquid will then be 
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pressurized above the supercritical pressure by the HPLC pump. The pressurized liquid 

will be heated by a hot heat exchanger to the operating temperature (> critical temperature 

in this case) and will flow through a test section where the experiments will be carried out. 

The same electro-mechanical transducers can be used the experiments to generated 

acoustic waves in the extraction system.  
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