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Abstract 

Psoriasis: A Study of the Skin Transcriptome and Microbiome 

Ceylan Ece Tanes 

Aydin Tozeren, PhD 

 

Psoriasis is a complex autoimmune skin disorder characterized by dry, scaly plaques and painful 

flares. Even though genetic contribution and environmental factors are suspected, the exact 

trigger of psoriasis is not well understood. The chronic condition of the disease and the lack of 

effective and definitive treatments are burdens on the patients. Recent emergence of 

transcriptome and genomic datasets for the host, as well as the taxonomic datasets for the 

microbiome has enabled the use of bioinformatics approaches to investigate altered gene 

circuits in psoriasis. 

As a first step, open source microarray datasets of psoriasis were analyzed in context of other 

skin conditions. The analysis showed that upregulated genes in the psoriasis transcriptome 

included those involved in epidermal differentiation complex and antimicrobial processes, while 

the top downregulated genes were involved in lipid metabolism. The Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways that were enriched with significantly altered genes point 

to the upregulation of both innate and adaptive immune responses. The psoriasis gene 

signature was distinctive from other inflammatory skin conditions and it resembled the wound 

healing process in terms of keratinization and immune response signals. 
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On the microbiome side, over-abundance of opportunistic bacteria on the psoriasis microbiome 

was observed compared to controls. Virulence genes were consistently in high abundance 

across different body sites. Bacterial invasion of epithelial cells gene pathway was crowded with 

both significantly altered genes on the host side and high-abundance orthologs on the 

microbiome side. The findings suggested bacterial involvement in the initiation or maintenance 

of psoriasis flares.  

Genetic components also play a role in susceptibility to psoriasis. Human Leukocyte Antigen 

(HLA) is one of the regions that has previously been associated with psoriasis through Genome 

Wide Association studies. The Single Nucleotide Polymorphisms (SNPs) typed in the HapMap 

dataset (11 ethnic populations) within the HLA region have been analyzed using extended 

haplotype homozygosity based tests to identify positive selection on polymorphisms that have 

not yet reached fixation. Results showed regional specificity of positive selection signals on the 

sub-classes of HLA. The positive selection signals in Class I sub-region showed European ancestry 

specificity with intronic SNPs on a psoriasis related gene PSORS1C1 as well as on TCF19, MUC22, 

TRIM10, and TRIM15. The region specific selection signals were also seen in the Class III region 

for the East Asian populations and in the Class II region for African ancestry populations. Similar 

to single population tests, the cross population tests showed that the significant SNPs were 

concentrated in the Class II region for African ancestry populations, whereas for European 

ancestry populations, they were concentrated in the Class I region. The results show how 

positive selection of a SNP can encourage genetic hitchhiking of the susceptibility SNPs for a 

disease along with a SNP that is under positive selection. 
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This research thesis bridges large scale transcriptome datasets of the host and operational 

taxonomy unit abundance datasets of the microbiome, opening up new avenues for drug 

repositioning studies by pointing out specific host-microbiome genes as drug targets. 
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Introduction 

Motivation  

This research is dedicated to investigating psoriasis as a complex disease through gene 

expression, microbiome, and genetic susceptibility analysis. Although the literature contains 

psoriasis research using these approaches individually, the bridge between the three 

perspectives is still lacking. There is hence a need to integrate between multiple microarray 

datasets to investigate psoriasis in the broad spectrum of skin conditions and bridging them with 

microbiome functional perturbations. The combination of the results from the two analyses can 

provide a comprehensive perspective of the cross-talk between host and the microbiome. 

Furthermore the genomic aspect of psoriasis can be identified by positive selection regions in 

the highly disease and psoriasis associated HLA region. 

Psoriasis has an extensive number of open source datasets available for meta-analysis, however 

the datasets that have been curated for this study for both microarray and microbiome will 

continue to expand over time. Therefore, the methodology and approach described in this 

thesis will have the ability to incorporate new datasets and study other autoimmune conditions 

as they become available in the future. 
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Background Information 

Skin Disorders and Psoriasis 

Autoimmune disorders currently affect 5% of the Western population and are on the rise, with 

more than seventy subtypes [1]. Current drugs on the market prescribed to manage 

autoimmune diseases are of the anti-inflammatory type used primarily to subdue the symptoms 

and does not provide complete treatment. These disorders are hypothesized to arise when the 

immune system reacts to self, in addition to non-self antigens through the relaxation of negative 

selection for T-cells and B-cells. This results in the accumulation of clones that recognize major 

histocompatibility complex (MHC) molecules. The resulting inflammation damages and can 

eventually destroy the affected tissues [2]. In our lab, inflammatory bowel disease has been 

extensively studied using transcriptome data to provide a deeper understanding of autoimmune 

disease mechanisms [3]. 

The skin is an organ commonly affected by autoimmune conditions, either as the primary target 

such as psoriasis, atopic dermatitis, and allergic contact dermatitis, or through secondary 

manifestations such as dermatomyositis or sarcoidosis. Due to their chronic nature, they have 

negative effects on the quality of life of the patient in terms of economic burden, pain 

management, social discrimination, and mental status [4, 5].  

Among the skin related autoimmune conditions, psoriasis has a 1.4 – 3% prevalence across 

Europe and the United States [6]. It is a chronic inflammatory condition in which the 

keratinocytes proliferate and differentiate resulting in skin thickening [7]. Even though the exact 

trigger for psoriasis is not fully understood, genetic disposition [8] and environmental conditions 
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[9] are known risk factors. Psoriatic patients (approximately 70%) have a peak onset between 

the ages of 16-22 [10]. The symptoms for psoriasis can be alleviated with anti-inflammatory 

drugs, topical treatments, and dietary regimen [11, 12]. Psoriasis treatment adherence is 

challenging due to concerns regarding long-term safety and drug efficacy [6]. The chronic nature 

of the disease calls for life-long maintenance and high healthcare cost [13]. Approximately 20% 

of patients with psoriasis are also diagnosed with psoriatic arthritis within a decade of initial 

diagnosis [6]. Comorbidities including cardiovascular conditions [14, 15], psoriatic arthritis [16], 

type II diabetes [17], and inflammatory bowel disease [18] cause additional long term physical 

and economical strain for the patient [19].  

In order to study psoriasis, high throughput technologies are required to understand the 

complex and multi-level nature of the disease. Microarray technologies that quantify the 

amount of mRNA in the samples are used to observe gene expression changes in the 

hyperproliferating keratinocytes in the context of other skin conditions. SNPchip microarrays are 

used to detect the polymorphisms in different populations. The genotypes can be utilized to 

better understand the susceptibility differences observed across populations. Finally, high 

throughput sequencing technologies are useful in confirming suspected microbiome 

contributions to the psoriasis phenotype. Understanding the pathology of psoriasis through 

transcriptomic and genomic datasets will aid in creating better, more effective treatments to 

increase patient quality of life and decrease associated life-long economic burdens. 

DNA Microarrays 

DNA microarrays are high throughput technologies to detect the relative concentration of 

nucleic acid sequences that are extracted from a sample of interest. In DNA microarrays, short 
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nucleic acid sequences, called probes, are bound to a platform. They rely on DNA base pairing 

between the probes and the tested sequences. Relative concentrations are calculated from 

fluorescent labeling techniques. This technology has been used for manufacturing high 

throughput gene expression, transcription binding, and genotyping platforms [20]. 

Gene expression levels in a sample are detected using mRNA microarrays. One of the major 

companies that produce microarrays is Affymetrix. Their core technology identifies and 

synthesizes species specific 25 nucleotide length oligonucleotide sequences onto the microarray 

platform surface. The RNA segments extracted from the samples of interest are processed and 

labeled with fluorescent markers. The microarray platform is washed with the extracted 

sequences to promote hybridization and fluorescence intensities are subsequently quantified by 

confocal microscopy. The intensities correlate directly to corresponding gene expression levels 

[20].  

The single nucleotide polymorphism genotyping platforms manufactured by Affymetrix rely on a 

similar method where pairs of oligonucleotides are used to represent the alleles on the genome. 

Each pair of oligonucleotides differ at only one position in the middle of the sequence that 

represent the two alleles of a SNP. The DNA is extracted from the samples, labeled with 

fluorescent markers, and hybridized onto the platform synthesized with the oligonucleotides. 

The image that is captured from the fluorescent labeling can then determine if the sample of 

interest is homozygous in one of the two alleles or heterozygous. 

Both the expression and genotyping arrays have been utilized in this research to understand the 

psoriasis phenotype. The expression arrays have been utilized to detect mRNA perturbations in 



19 
 

psoriasis skin. Genotype data from the HapMap project [21] have been used to discover the 

genetic contribution to the susceptibility differences observed in psoriasis. 

Sequencing Technologies 

Since the draft of the human genome in 2001, sequencing technologies have improved to 

provide more sequence reads per run at a significantly lower cost. This has paved the way for 

large scale efforts such as the 1000 Genomes Project [22] and Human Microbiome Project [23]. 

Through these efforts, genomes of bacteria and model organisms have been decoded. Besides 

genomic characterization of organisms in their healthy state, sequencing technologies have also 

made it possible to depict disease states. Various projects have been funded such as decoding 

the genome of cancer patients [24] and sequencing the microbiome communities of patients 

with autoimmune disorders [25]. Whereas microarrays can only test for what they are designed 

to detect, sequencing allows for the detection of less annotated regions of the genome and can 

therefore be used to detect novel biomarkers [26].  

Current sequencing technologies follow the same essential steps with slight variations 

depending on the manufacturer. First, adapters are ligated at the ends of the DNA fragments to 

be sequenced. The fragments are then amplified on a solid surface such as a glass slide or a 

microbead by a polymerase mediated process. The nucleotides that are added are detected 

automatically using fluorescence. The detection procedure varies for different technologies and 

ranges from measuring bioluminescent signals to four-color imaging of single molecular events 

[26, 27].  
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One application of sequencing technologies is for detecting the bacterial composition of an 

environment by sequencing 16S ribosomal RNA. 16S rRNA is a component of the ribosome that 

is present in every organism. It is made up of conserved regions that can be selectively targeted 

during sequencing, but it is also composed of variable regions ideal for differentiating between 

organisms. Depending on the capabilities of the technology used, sequencing one or more of the 

variable regions makes it possible to record the bacterial composition of an environment when 

mapped against a 16S library. To date 16S sequencing has been utilized to categorize bacteria 

into their appropriate taxonomy using sequence similarity instead of phenotypic traits. It has 

also been used to identify novel bacterial species and diagnose culture negative infections [28]. 
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Specific Aim I: Analyzing Psoriasis Transcriptome 

The primary aim of this chapter is to uncover statistically significant gene expression alterations 

in psoriasis lesions compared to uninvolved skin and healthy controls. My hypothesis is that the 

meta-analysis of multiple psoriasis microarray datasets will aid in generating a robust gene 

expression signature for psoriasis. Psoriasis will likely share gene expression markers with other 

inflammatory skin conditions, while having a set of distinct genes that can be used as 

biomarkers. Higher level functional annotations of skin conditions will provide similarities 

between the conditions pointing to common inflammatory responses in the skin conditions of 

interest. 

 

Introduction 

Psoriasis is a complex inflammatory condition characterized by keratinocyte hyperproliferation, 

epidermal differentiation, and immune cell infiltration [7]. It has also been defined as aberrant 

wound healing due to uncontrolled thickening of the epidermis [29]. To understand the disease 

as a whole, a systemic approach using microarray expression analysis of psoriasis lesions in 

context with other skin conditions is necessary. 

Various microarray studies have been conducted to investigate the lesional and non-lesional 

psoriasis expression profiles compared to healthy controls. Inflammatory signatures altered in 

psoriasis lesions have been identified such as TNF-alpha, IFN-gamma signaling [30], and Th17 

immune response [31]. Among the genes that have psoriasis associated SNPs positioned on 
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them, the highest expression was seen in neutrophils, signifying a genetic component for the 

inflammatory response [32]. Meta-analysis of the psoriasis microarray datasets revealed that 

the gene signature is most consistent within the same microarray platform [33, 34]. The studies 

selected in this chapter were hybridized onto the widely used and comprehensive Affymetrix 

HGU133+2 microarray platform. The results were later compared to a study hybridized onto 

PIQOR platform for validation. 

Since psoriasis only effects humans and primates [35], animal models have not been insightful 

on the full spectrum of the disease. Comparing microarray gene signatures of human psoriasis 

biopsies and mouse disease models showed that even though there are expression similarities 

between the progression of the disease in terms of keratinization and epidermal differentiation, 

each mouse model had slight variations on psoriasis inflammatory signatures [36]. In general, 

there have been conflicting studies on the correlation of mouse and human inflammatory 

signatures [37, 38]. In order to evaluate the most genuine representation of psoriasis flares, this 

chapter will only focus on the expression profiles of human skin biopsies. 

Psoriasis and atopic dermatitis are the two most common autoimmune skin conditions. Small 

inflammatory expression differences could be observed between psoriasis and atopic dermatitis 

[39]. Meta-analysis of psoriasis, atopic dermatitis, nickel allergy, and acne transcriptome 

signatures showed a unifying gene signature that was T cell mediated but with different sets of 

chemokines upregulated for each condition [40, 41]. For example, while psoriasis was Th17 

mediated, atopic dermatitis was Th2 mediated. However they both had neutrophil 

chemoattractant expressions in common [39]. The results were further confirmed with a 

microarray study including five inflammatory skin conditions where IL-17 and TNF-alpha signals 

were exclusively predominant in psoriasis lesions [42]. Among the comparative studies in 
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literature, a microarray meta-analysis of multiple skin conditions is needed to reach a unifying 

conclusion about the commonalities and differences between psoriasis and other skin 

conditions.  

Wound healing is significantly accelerated in patients with psoriasis compared to healthy 

controls [43]. The two conditions also show similarities with respect to increased keratinocyte 

proliferation and differentiation. During wound healing, chemoattractants are released to 

regulate neutrophils and IL-8 is essential in re-epithelialization signaling [44]. Due to their 

similarities, when gene targets and biomarkers are selected for psoriasis, it is crucial to analyze 

wound healing transcriptome alongside of inflammatory skin conditions to differentiate 

between which altered genes are beneficial for the organism to heal wounds and the genes that 

result in an aberrant wound healing response such as psoriasis. 

Merkel cell carcinoma is an aggressive cutaneous cancer with mortality rate greater than 30%. It 

has been observed that 75% of Merkel Cell carcinomas contain Merkel cell polyomavirus. Clonal 

integration of the virus to the host cells implicates viral origins of the cancer [45]. Psoriasis and 

atopic dermatitis are autoimmune conditions that have suspected bacterial involvements [46]. 

Therefore the Merkel Cell carcinoma dataset was included in the analysis even though the 

pathology of the disease varies from autoimmune definition. 

Since the development of microarray technologies, sequencing has become cheaper and 

available, making way for high-throughput complementary DNA sequencing (RNA-seq) as an 

alternative to microarray studies. RNA-seq study by Bingshan et al. has expanded the psoriasis 

transcriptome, especially in the immune system process [47]. Even though RNA-seq data would 

provide a more sensitive analysis of the expression profiles of skin conditions, not enough 
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studies have been performed to carry out a meta-analysis. Therefore, in order to put psoriasis in 

context of other skin conditions, microarray datasets have been utilized as they provide a rich 

source of data. 

Overall, this chapter focuses on the meta-analysis of psoriasis microarray datases in context of 

other inflammatory conditions (atopic dermatitis and allergic contact dermatitis), an aggressive 

skin cancer with suspected viral origins and natural wound healing process making it the most 

comprehensive analysis of psoriasis transcriptome in literature.  

 

Methods 

Microarray Datasets 

NCBI Gene Expression Omnibus (GEO) [48] was queried with the search term “skin” and 

“GPL570” for skin biopsy microarray datasets hybridized onto Affymetrix Human Genome U133 

Plus 2.0 GeneChip Array. This platform is commonly used and is a comprehensive gene chip 

representing almost 19,000 genes. The datasets (before January 1st 2014) obtained were further 

narrowed down by selecting skin condition studies which include at least five skin biopsy 

samples, each from at least two of the flare-up (A), uninvolved skin (U), and healthy control (C) 

categories. The search criteria yielded 14 datasets as summarized in Table 1. From these 

datasets, only the untreated samples have been included in the study. The datasets were 

processed using robust multiarray averaging (RMA) background adjustment and quantile 

normalization [49]. The resulting probe expression data were mapped onto Entrez Gene IDs 

using the custom chip description file (cdf) [50] using median polishing [49]. 
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The microarray dataset GSE63741 hybridized onto PIQOR Skin 2.0 platform was also included in 

the analysis due to its extensive coverage of inflammatory skin conditions [42]. The dataset 

represented 30 samples each from healthy controls, as well as psoriasis, atopic dermatitis, and 

allergic contact dermatitis patients. In this chapter the dataset has been used to compare the 

robustness of expression profiles across platforms as well as validate the gene signatures 

obtained for each skin condition. The normalized expression values for the dataset were 

downloaded from NCBI GEO [48] for further processing. 

Gene Signatures of the Host 

For the Affymetrix datasets, gene signatures were obtained for the following comparisons: 

active involved versus active uninvolved samples (A/U), active involved versus healthy controls 

(A/C), and active uninvolved versus healthy controls (U/C). Lists of significantly upregulated and 

downregulated genes were obtained for each comparison using (a) Significance Analysis of 

Microarray (SAM) [51] and (b) Rank Product (RP) method [52]. Significant gene lists determined 

from the analyses had a q-value cutoff of 0.01 and fold change cutoff above 1.5. The 

intersection of the SAM and RP tests were considered as the gene signature for a given 

comparison in a single dataset. A consensus gene list was obtained with rth ordered p-value 

meta-analysis method [53] over multiple datasets by finding the genes that are significant in 

more than half of the datasets. 
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GSE # Condition Publication C U A Age 
Treatment Criteria for 
Eligibility 

Severity 
Biopsy 
diameter 

14905 Psoriasis Yao et al., 2008 21 28 33 - - moderate to severe - 

13355 
Plaque 
Psoriasis 

Swidell et al., 2009 64 58 58 
21-69 (PS) 
18-45 (C) 

No systemic treatments 2 
weeks prior, no topical 
treatments 1 week prior to 
study 

≥1% of body effected 
 

6 mm 

34248 
Plaque 
Psoriasis 

Bigler et al., 2013 0 14 14 19-55 No treatment 
moderate to severe 
≥10% of body effected 
PASI ≥10 

5 mm 

41663 
Plaque 
Psoriasis 

Bigler et al., 2013 0 15 15 19-55 No treatment 
moderate to severe 
≥10% of body effected 
PASI ≥10 

- 

41662 
Plaque 
Psoriasis 

Bigler et al., 2013 0 24 24 19-55 No treatment 
moderate to severe 
≥10% of body effected 
PASI ≥10 

6 mm 

30999 
Plaque 
Psoriasis 

Suarez-Farinaz et al, 
2012. 

0 85 85 - 

No systemic treatments 4 
weeks prior, no topical 
treatments 2 weeks, no 
biological agent 3 months prior 
to study 

moderate to severe 
≥10% of body effected 

4 mm 

63741 
Plaque 
Psoriasis 

D’Erme et al., 2015 30 0 30 - No treatment - - 

 

32924 
Atopic 
dermatitis 

Suarez-Farinaz et 
al., 2011 

8 12 13 16-81 
No treatment 4 weeks prior to 
study 

SCORAD 28-97.5 
11-63% of body effected 

- 

36842 
Atopic 
dermatitis 

Gittler et al., 2012 15 8 16 20-67 
No treatment 4 weeks prior to 
study 

SCORAD 40-63 - 

27887 
Atopic 
dermatitis 

Tintle et al., 2011 0 8 9 24-51 
Patients allowed to use 
emollients 

SCORAD 28-97.5 4-6 mm 
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16161 
Atopic 
dermatitis 

Guttman-Yassky et 
al, 2009. 

9 0 9 
28-54 (AD) 
24-69 (C) 

No treatment 4 weeks prior to 
study 

SCORAD 20-70 - 

63741 
Atopic 
dermatitis 

D’Erme et al., 2015 30 0 30 - No treatment - - 

 

6281 
Allergic 
contact 
dermatitis 

Pedersen et al., 
2007 

16 9 9 
33-49 
(ACD) 
31-55 (C) 

No immunosuppressants during 
study 

At least 2+ reaction to 5% 
nickel sulfate 

4 mm 

63741 
Allergic 
contact 
dermatitis 

D’Erme et al., 2015 30 0 30 - No treatment - - 

 

39612a 
Merkel cell 
carcinoma 

Harms et al., 2013 64 16 19 59-88 - Stage I-III - 

 

28914b 
Wound 
healing 

Nuutila et al., 2012 6 6 5 20-75 NA NA 3 mm 

Table 2 Summary of skin condition transcriptome datasets obtained from NCBI GEO database obtained before January 1st 2014. The numbers 
of control (C), active uninvolved (U) and active lesion (A) skin biopsy samples are presented for each dataset. Only the skin biopsies are included 
in this study. Inclusion criteria such as age, severity of the condition and treatment status are also included. The samples are hybridized onto 
Affymetrix HGU133+2 platform with the exception of GSE63741 dataset which is hybridized onto PIQOR Skin 2.0 Microarray. a For the Merkel cell 
carcinoma dataset, U stands for tumor biopsies that tested negative for MCPyV and A stands for tumor biopsies that tested positive for MCPyV. b 
For the wound healing dataset, C stands for acute wound; U stands for biopsy at day 3 of healing process; and A stands for biopsy at day 7 of 
healing process. 
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The average rank of a significant gene for a given comparison was calculated based on the SAM 

fold changes in order to find the set of consistently upregulated and downregulated genes 

across multiple datasets of a condition. The top 25 genes from the significantly upregulated and 

downregulated psoriasis ranked sets were used as biomarker genes and their functional 

memberships were further characterized. The fold changes were clustered using hierarchical 

clustering to determine if the genes can be used to distinguish psoriasis from other skin 

conditions. 

The expression values of the disease samples hybridized onto PIQOR platform were compared 

against the control samples using SAM and RP methods in order to get significantly altered 

genes with a Benjamini cutoff of 0.01 and fold change cutoff of 1.5. The overlap of the two 

methods composed the disease profiles for the PIQOR platform, consistent with the steps taken 

to analyze Affymetrix datasets. 

Functional Analysis of Gene Signatures 

The pair wise gene signature intersections were quantified with Soerensen coefficient 

(SC=2∥A∩B∥/(∥A∥+∥B∥), where A and B are two separate sets) [54] to test the similarity 

between different conditions as well as the consistency between the datasets of the same 

condition. The Bioconductor GOstats package [55] was used for statistical enrichment of Gene 

Ontology Biological Process (GO-BP) [56] and the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways [57] in consensus signatures. The p-values were corrected with the Benjamini-

Hocheberg method [58] to account for false discovery. The representative condition 

enrichments were obtained by assigning the smallest identified p-value from the three 

comparisons (A/C, A/U, U/C). KEGG pathways were mapped into their BRITE categories [59], 
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which provided a hierarchical classification of pathways. The same enrichment steps were taken 

to perform functional annotation of the PIQOR significant gene lists. Significantly enriched KEGG 

pathways were annotated with virulence factors using the Virulence Factors Database (VfDB) 

[60, 61], while the viral and bacterial proteins that are known to bind with the human proteins 

were identified using Pathogen-Host Interaction Search Tool (PHISTO) [62]. 

Signature Comparison between Psoriasis and Wound Healing 

Due to the observed expression similarities between psoriasis lesions and wound healing 

process, the gene signatures of both conditions were further examined. The consensus A/C and 

A/U gene signature of psoriasis were overlapped with reconstructive (A/C) and inflammatory 

(U/C) gene signatures of wound healing process. The comparison of gene signatures were 

grouped as follows: reconstructive stage of wound healing genes overlapped with any psoriasis 

genes, inflammatory stage of wound healing genes overlapped with any psoriasis genes, 

common inflammatory and reconstructive stages of wound healing genes overlapped with any 

psoriasis genes, wound healing specific genes and psoriasis specific genes. The top five GO-BP 

Level 5 processes enriched were found. The gene signatures have also been projected onto the 

cytokine-cytokine receptor interaction KEGG pathway in order to visualize the differences in 

immune function in both processes. 

Signature Comparison between Affymetrix and PIQOR Platforms 

The gene signatures obtained for psoriasis, atopic dermatitis and allergic contact dermatitis 

were compared between Affymetrix and PIQOR platforms using hypergeometric test to evaluate 

the robustness of gene signatures across microarray platforms. For the test, only the genes that 
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are represented on both platforms have been considered. The KEGG, GO-BP and GO-MF 

enrichments (Benjamini < 0.01) of the gene signatures obtained from both platforms were also 

compared. 

 

Results 

Fourteen publicly available microarray datasets were analyzed for the host consisting of 977 

samples (Table 1). Each skin condition included samples from healthy controls (C), active 

uninvolved (U), and active involved (A) stages. Transcriptome datasets for five different skin 

conditions were utilized: psoriasis (PS) [19, 30, 34, 36], atopic dermatitis (AD) [63-66], allergic 

contact dermatitis (ACD) [67], Merkel cell carcinoma (MCC) [68], and wound healing (WND) [69].  

 

 

Figure 1 Flowchart of microarray analysis steps. The raw microarray samples are downloaded 
and normalized. Significant genes are obtained through statistical analysis and processed though 
functional annotation datasets. 
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Host Gene Signatures for Skin Diseases 

The microarray datasets shown in Table 1 were normalized and analyzed as described in 

Methods and summarized in Figure 1. The numbers of significant genes obtained for each 

microarray dataset, as well as the consensus signatures over all datasets for a given disease are 

shown in Table 2. Psoriasis signatures were highly similar across the six datasets yielding 801 

consensus upregulated and 578 downregulated genes in active/control (A/C) comparison among 

the 18,959 genes on the microarray chip. MCC had the largest significant gene list, a common 

feature of signatures associated with cancer [70]. 

    A/C A/U U/C 

Condition Dataset UP DWN UP DWN UP DWN 

PS 

GSE14905 1376 1317 1101 936 182 244 

GSE13355 1008 880 929 666 11 7 

GSE34248     956 1081     

GSE41663     1074 1266     

GSE41662     1359 1584     

GSE30999     1265 1187     

consensus 801 578 907 836 4 1 

GSE63741 197 169     

AD 

GSE32924 705 514 0 0 217 272 

GSE36842 2280 2175 0 0 1217 1513 

GSE27887     0 0     

GSE16161 759 720 
  

    

consensus 644 551 0 0 66 165 

GSE63741 104 72     

ACD 
GSE6281 790 1103  311 106   219 379  

GSE63741 168 139     
MCC GSE39612 2592 2873 538 566 2594 3108 

WND GSE28914 505 394 4 1 659 405 

 
Table 2 Gene signatures obtained from host microarray dataset comparisons. A: Active, U: 
Uninvolved, C: Control; UP: upregulated; DWN: downregulated. The numbers in the table 
indicate the number of genes with significantly altered expression in a comparison. The numbers 
of consensus genes for multiple Affymetrix datasets in the same comparison are shown in bold. 
All the datasets except for GSE63741 have been hybridized onto Affymetrix HGU 133 Plus 2 chip. 
Grey boxes indicate comparisons for which transcriptome data did not exist.  
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Similarity of gene signatures across datasets was considered by calculating the Soerensen 

coefficient (SC) [54] for the top 200 most significant genes from sets of pairwise gene signatures. 

Heatmap diagrams in Figure 2 point to high levels of similarity between the six psoriasis datasets 

in A/U and A/C comparisons. Averaging over the six datasets, SC was equal to 0.65 for 

upregulated and 0.45 for downregulated genes. Approximately half of the top 200 genes for 

psoriasis and for process of wound healing were the same. In contrast, atopic dermatitis gene 

signatures for A/C and U/C comparisons were more heterogeneous. Moreover there was little 

overlap between gene signatures of allergic contact dermatitis and Merkel cell carcinoma. 

 

 

 

Figure 2 Soerensen Coefficient for Pairs of Comparisons. Soerensen similarity coefficient 
calculated for the a) 200 upregulated and b) 200 downregulated genes with the highest fold 
change for each pair of gene signatures. Coefficient ranges in value from 0 (no overlap, shown in 
black) to 1 (perfect overlap, shown in white). The conditions under study are as follows: 
psoriasis (PS), atopic dermatitis (AD), allergic contact dermatitis (ACD), Merkel cell carcinoma 
(MCC) and wound healing (WND). A: Active involved, U: active uninvolved, C: healthy control 
samples 
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Biomarker Genes with Drastic Expression Changes in Psoriasis 

The top 25 most upregulated genes in the consensus list for psoriasis were altered up to a fold-

change of 300. As such, they comprised a candidate biomarker set for psoriasis. The fold change 

patterns of these genes were investigated across the six skin disorders being studied. Figure 3 

shows that biomarker candidate genes for psoriasis undergo much less dramatic expression 

changes in other skin disorders. Hierarchical clustering of the identified gene fold changes 

showed close clustering of A/U and A/C psoriasis comparisons confirming the distinctive role of 

those genes as psoriasis biomarkers. Wound healing U/C and A/C comparisons which represent 

the inflammatory and reconstructive stages of wound healing also cluster closely with psoriasis 

datasets.  

The upregulated biomarker genes in Figure 3 were previously associated with psoriasis through 

expression studies [33, 71-75]. However the downregulated genes identified (TSPAN8, 

SCGB1D2, C5orf46, IL37, RBP4, PPARGC1A, CA6, NR3C2, ZSCAN18, and GSTA3) have not been 

linked to psoriasis since the emphasis of previous studies were predominantly on upregulated 

genes as possible biomarkers. The top upregulated genes include those part of the epidermal 

differentiation complex (EDC) (S100A7A, S100A9, S100A12, SPRR2A, SPRR2C); antimicrobial 

peptides (LCN2, TMPRSS11D, PI3, S100A7A, S100A9, OASL), structural proteins (KRT6C, KRT16, 

GDA), metalloproteinases (ADAMDEC1, MMP12), and the serpine peptidase inhibitors 

(SERPINB3 and SERPINB4). Top downregulated genes including THRSP, H19, LPL, PPARGC1A, 

RBP4, and HSD11B1 play important roles in lipid processes. PPARGC1A, known to interact with 

PPARgamma has previously been associated with psoriasis [76]. PPARs are a family of genes that 

communicate between lipid metabolic disorders, Th17 response, and innate immunity [77]. 

HSD11B1 codes a microsomal enzyme that catalyzes the conversion of the stress hormone 
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cortisol to the inactive metabolite cortisone. The downregulated biomarkers showed similarities 

to Merkel cell carcinoma and wound healing.  

 

Figure 3 Top genes in psoriasis signature and the corresponding log 2 transformed fold 
changes in all comparisons. The upregulated genes are indicated with shades of red and the 
downregulated genes are indicated with shades of blue. The genes with epidermal 
differentiation complex (EDC), antimicrobial and lipid processing functions are marked in black. 
PS: psoriasis, AD: atopic dermatitis, ACD: allergic contact dermatitis, SA: sarcoidosis, MCC: 
Merkel cell carcinoma, WND: wound healing. A: Active involved, U: active uninvolved, C: healthy 
control samples 
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Functional Annotation of Gene Signatures 

The consensus gene lists obtained for each skin condition were annotated using statistical 

enrichment of KEGG pathways [57] and GO-BP [56]. Figure 4 shows KEGG pathways enriched 

with significantly upregulated (pink) and significantly downregulated (blue) genes in psoriasis, 

with a Benjamini cutoff of 0.05. The outer edge of the figure shows the pathways enriched for 

the other five skin conditions. The three most upregulated KEGG pathways for psoriasis are 

cytokine-cytokine receptor interaction, cell cycle, and NOD-like receptor signaling pathways. 

These three pathways illustrate the involvement of the innate and adaptive immune system 

mechanisms in psoriasis, as well as increased cell overturn in the progression of the flares. 

Functional enrichment of other skin conditions revealed adaptive and innate inflammatory 

pathways that are also commonly upregulated with psoriasis. The downregulated pathways in 

psoriasis include organismal pathways such as the PPAR signaling pathway, which is a hormone-

signaling pathway activated by fatty acids. The significantly downregulated pathways are 

typically psoriasis specific and show less commonality with other conditions.  

Overall, the pathway enrichment results confirm previous findings [78, 79] and reveal new 

psoriasis enrichment results, including cytosolic DNA sensing and RIG-I like receptor signaling. In 

addition, as shown in Figure 4, a number of disease pathways were statistically enriched with 

psoriasis significant genes. These disease pathways include rheumatoid arthritis, malaria, and 

cardiovascular disease. The KEGG disease pathways annotated with psoriasis gene signatures 

can be seen in Appendix A and Appendix B. The latter of which were previously linked to 

psoriasis in the literature [19, 33]. Furthermore, malaria treatment has a risk of triggering 
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psoriasis [80]. Genes marked in these disease pathways shed light on the molecular mechanisms 

linking psoriasis to its comorbidities.  

 

 

Figure 4 Significantly upregulated (pink) and downregulated (blue) KEGG pathways 
(Benjamini<0.05) of the psoriasis microarray datasets of the host. The width of each slice is 
proportional to the ratio of significant genes in the pathway. The pathways are categorized 
according to KEGG-BRITE hierarchy (inner circle). Pathways significantly altered in other skin 
conditions are marked outside of the corresponding pathway slices. PS: psoriasis, AD: atopic 
dermatitis, ACD: allergic contact dermatitis, MCC: Merkel cell carcinoma, WND: wound healing 
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Functional enrichment analysis of the disease signatures for GO-BP [56] terms show 

upregulation of type I interferon signaling in all skin conditions except Merkel cell carcinoma. 

The GO annotations for downregulated genes show clear functional segregation, in which terms 

related to muscle development and cell adhesion are downregulated in psoriasis. Keratinization 

shows heterogeneity with respect to skin disease subtype, where it is upregulated in psoriasis 

and wound healing and downregulated in atopic dermatitis and Merkel cell carcinoma. GO-BP 

term for defense response to virus is enriched in significant gene lists for psoriasis, atopic 

dermatitis, allergic contact dermatitis, and sarcoidosis, pointing to potential pathogenic 

involvement in autoimmune conditions.  

Expression Similarities between Psoriasis and Wound Healing 

As observed in Figure 3, the fold change profiles of the reconstructive (A/C) and inflammatory 

(U/C) stages of the wound healing process clustered with psoriasis biomarker profiles. This was 

further investigated by comparing significantly expressed genes involved in wound healing and 

psoriasis gene signatures. The overlapping number of genes between the profiles and their top 

five significant GO-BP Level 5 enriched terms can be seen in Figure 5. There are 448 genes 

associated with wound healing that overlap between either A/C or A/U psoriasis gene 

signatures. The GO-BP annotations of these genes show functional differences depending on 

which wound gene signature they overlap with. The psoriasis gene signature that overlaps 

exclusively with A/C wound signature is mainly related to keratinization and epidermis 

development. This is consistent with epidermal regeneration that is observed in wound healing 

and high keratinization of psoriasis lesions. The genes that overlap with the U/C wound 

signature exclusively are related to T cell regulatory functions such as CD80, CD83, IL2RG and 

IL4R. The genes that are exclusive to wound healing have further regulation of inflammatory 
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response such as IL10, IL6, TNFRSF1B and TLR8. Finally the genes that are common between 

psoriasis gene signatures and both stages of wound healing have genes related to mitosis. This 

correlates to the high cell overturn that is observed in both conditions. The genes that are 

common for downregulated genes did not show functional coherence except for psoriasis 

exclusive genes, which were related to muscle development. 

 

 

Figure 5 Number of genes that are common between the consensus psoriasis gene signatures 
(A/C/ and A/U) and wound healing gene signatures (A/C and U/C) for a) upregulated and b) 
downregulated genes. The genes in the color coded regions have been annotated with GP-BP 
Level 5 terms. The top five enrichments are reported in their corresponding colored boxes. The 
colored regions that don’t have associated annotations provided did not have any significant 
enrichments (Benjamini < 0.01). 
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The psoriasis and wound healing gene signatures have been projected onto the cytokine-

cytokine receptor interaction pathway to visualize the expression of cytokines in both conditions 

as illustrated in Figure 6. Cytokines CXCL1, CXCL2, IL7R, and IL1B were expressed commonly 

between psoriasis and wound healing, whereas CXCL5, CXCL6, CCR1, IL6, IL10, IL24, and IL1A 

were expressed exclusively in wound healing, and CXCL9, CXCL11, IL12, IL19, IL20, IL26, and 

TNFSF10 were expressed exclusively in psoriasis lesions. 

 

Figure 6 Psoriasis (A/C, A/U) and wound (A/C, U/C) upregulated genes (Benjamini < 0.01 and 
fold change > 1.5) overlapped with the KEGG pathway cytokine-cytokine receptor interaction 
pathway. The cytokines that are commonly upregulated as well as the ones that are exclusive to 
one conditions can be seen. PS_AC: psoriasis A/C consensus gene signature, PS_AU: psoriasis 
A/U consensus gene signature, WND_AC: wound healing reconstructive stage gene signature, 
WND_UC: wound healing inflammatory stage gene signature. 
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Comparison of Gene Signatures between Affymetrix and PIQOR Datasets 

Even though Affymetrix Human Genome U133 Plus 2 is a comprehensive microarray chip that is 

widely used, other microarray technologies such as PIQOR have been used for skin studies. In 

order to assess the robustness of gene signatures across platforms, a study hybridized onto 

PIQOR array was analyzed. The microarray chip used for the GEO dataset GSE63741 [42] is 

PIQOR Skin 2.0 Microarray which represents 1542 skin specific genes. When the consensus gene 

signatures obtained from Affymetrix datasets were compared against PIQOR gene signatures for 

each condition, the hypergeometric tests were all significant with p-values smaller than 3e-4. 

This signifies that, among the genes that were common between the two platforms, the mRNA 

perturbations observed were equivalent.  

Between the two microarray platforms, there were discrepancies with the functional 

annotations done through KEGG and GO databases, most likely due to the reduced number of 

genes that the PIQOR chip covers. The details of the terms enriched can be seen in Table 3. For 

example if the upregulated gene signatures of psoriasis are considered, even though there were 

18 pathways that were enriched with Affymetrix obtained genes and four pathways that were 

enriched with PIQOR obtained genes, the only consensus between the two platforms were 

NOD-like receptor signaling pathway. There was a higher number of overlap for the GO-BP 

functional enrichments. For the psoriasis upregulated genes, the commonly enriched terms 

included keratinization, type I interferon-mediated signaling pathway, negative regulation of 

viral genome replication, and regulation of response to stress. 
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Database Direction Term PIQOR Affymetrix 

KEGG up NOD-like receptor signaling pathway 0.12 0.27 

GO-MF up interleukin-1 receptor binding 0.25 0.38 

GO-MF up serine-type endopeptidase inhibitor activity 0.08 0.15 

GO-MF up peptidase inhibitor activity 0.06 0.13 

GO-MF up endopeptidase regulator activity 0.06 0.13 

GO-MF down glutathione transferase activity 0.30 0.35 

GO-MF down heparin binding 0.06 0.13 

GO-BP up keratinization 0.36 0.50 

GO-BP up type I interferon-mediated signaling pathway 0.32 0.49 

GO-BP up peptide cross-linking 0.29 0.25 

GO-BP up response to type I interferon 0.17 0.30 

GO-BP up negative regulation of viral genome replication 0.16 0.37 

GO-BP up interferon-gamma-mediated signaling pathway 0.14 0.27 

GO-BP up negative regulation of endopeptidase activity 0.09 0.22 

GO-BP up regulation of response to stress 0.04 0.11 

GO-BP down extracellular matrix organization 0.07 0.13 

 

Table 3 Common significant enrichments (Benjamini < 0.01) between datasets hybridized onto 
PIQOR and Affymetrix platforms. The values represent the percentage of significant genes 
within the corresponding term. Up: upregulated genes, down: downregulated genes, KEGG: 
Kyoto Encyclopedia of Genes and Genomes, GO: Gene Ontology, BP: Biological Process, MF: 
Molecular Function 

 

Discussion 

Psoriasis is a complex autoimmune condition with a high economic and psychological burden on 

the patients. Microarray studies conducted on various skin conditions allow for a systems 

approach to mRNA perturbations. In this chapter, multiple psoriasis microarray studies have 

been analyzed in context of other skin conditions to compare and contrast their expression 

profiles.  

We find that psoriasis has robust and consistent upregulation of gene circuit patterns across a 

multitude of microarray datasets. Psoriasis signature was specific enough that the top 

upregulated genes could differentiate psoriasis accurately from other skin diseases based on 
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unsupervised clustering of fold changes. Psoriasis lesions, when compared to healthy controls, 

shared inflammatory and reconstructive processes with the process of wound healing, as 

evidenced by the shared upregulated biomarkers. 

Host pathways significantly enriched with upregulated genes in psoriasis corresponded to the 

immune system, cellular processes, environmental information processing, genetic information 

processing, and metabolic categories. Upregulated psoriasis genes were also significantly 

enriched in disease pathways of psoriasis comorbidities such as rheumatoid arthritis. For 

example, proteins related to the Th17 response [81] in rheumatoid arthritis pathway such as 

CXCL1, IL8, CCL20, CCL2, and CD80/86 are also upregulated in psoriasis. Shared inflammatory 

features in psoriasis and arthritis [82] suggest the presence of a cascade eventually causing joint 

degeneration [83]. Genes contributing to joint cartilage destruction such as MMP1/3 and CTSL 

are upregulated across psoriasis datasets. The genes that are commonly upregulated should be 

further investigated to better understand the link between psoriasis and its comorbidities. 

Host pathways enriched with downregulated psoriasis genes include a number of disease 

pathways such as dilated or hypertrophic cardiomyopathy as presented in Appendix A. In these 

pathways, genes coding the transmembrane protein sarcoglycan and contractility proteins actin, 

troponin, tropomyosin, and desmin are downregulated in psoriasis. The consequences of the 

downregulation of sets of transmembrane proteins in psoriasis are yet to be fully explored. 

This chapter shows genes involved in antimicrobial function are consistently upregulated in 

psoriasis. These findings are consistent with the skin's role as the major physical barrier between 

self and non-self, with these antimicrobial genes providing the first line of defense against 

bacterial and viral pathogens [84]. Antimicrobial genes provide defense against a multitude of 
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pathogens: gram positive and gram negative bacteria as well as viral agents [46, 85]. The 

upregulation in the antimicrobial peptides on the skin correlates with recent studies on 

perturbed skin microbial flora in psoriasis and other skin diseases [86-88]. Biopsy studies show 

bacterial presence in the lower levels of the skin [87] and in the blood of patients with psoriasis 

[89], suggesting pathogenic invasion. The upregulated Th17 response is crucial in host response 

to viral infection [90].  

Psoriasis has been defined as aberrant wound healing due to abnormal thickening of the 

epidermis [29]. As with psoriasis, wound healing has an inflammatory and a reconstructive 

component. The results of this chapter show that there are differences in the immune responses 

mounted between psoriasis and wound healing processes. Understanding the differences 

between the two can be beneficial in developing psoriasis drugs with more mild side effects. For 

example an immunosuppressive agent, Sirolimus, has been investigated to treat psoriasis with 

positive results [91]. However one of the side effects is impaired wound healing and wound 

dehiscence [92]. Treatments with wound healing specific genes and agonists for psoriasis 

specific genes can mitigate the side effects of therapies and provide a healthier inflammatory 

response. IL-10 which is exclusive to wound healing has been associated with decreased 

inflammatory response in wound healing and reduced scar formation [93]. IL10 treatment for 

psoriasis has already been underway to test its effectiveness [94]. Even though IL6 expression 

was exclusive to wound healing in our analysis and can possibly be a drug target for psoriasis 

treatment, there is evidence of IL6 expression in both psoriasis and wound healing in literature 

[95, 96]. It is claimed that the high expression of the gene prevents T cells from responding to 

regulation in psoriasis. As for the psoriasis specific genes, there are already prescriptions for IL-

12 agonist [97]. IL-20 has been explored as psoriasis treatment with no efficacy [Clinical Trials: 
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NCT01261767]. On the other hand IL-19, CXCL9 and CXCL11 have not yet been explored as drug 

targets.  
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Specific Aim II: Functional Perturbations in Psoriasis Microbiome 

The primary aim of this chapter is to identify the microbiome perturbations of the psoriatic skin 

compared to healthy control to identify the bacterial Operational Taxonomic Units (OTUs) and 

the functional perturbations that are significantly altered in psoriatic lesions. The microbiome of 

each individual is likely to contribute to the psoriasis phenotype. The second hypothesis is that 

the functional changes in the microbiome will be mirrored by the processes occurring in the 

host skin. Despite the varying OTUs across the sampled body sites, core orthologs in the 

psoriasis microbiome is expected to become altered. 

 

Introduction 

Psoriasis has been evaluated through genetic, epigenetic, transcriptome, and microbiome 

assays. However, the functional perturbations of the host and the microbiome has not yet been 

bridged. In this chapter the transcriptome gene signature of the host along with the functional 

perturbations on the microbiome side are studied to further the understanding of the host-

microbiome interactions on psoriatic skin. 

Bacterial culture based studies showed correlations of certain bacterial infections and increased 

severity of psoriasis. A study done by Gudjonsson et al showed that patients with psoriasis were 

more likely to contract Streptococcus infections, which in turn exacerbated plaque psoriasis 

[98]. A similar study demonstrated that even though the prevalence of H. pylori was not higher 

in psoriasis than in the control group, those infected by it had a greater severity of plaque 
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psoriasis [99]. The strain of the bacteria colonization is also significant in the severity of psoriasis 

plaques. Patients with psoriasis that were colonized with enterotoxin positive Staphylococcus 

aureus bacteria had higher severity scores than toxin negative psoriasis patients or patients 

without S. aureus colonization [100]. These observations were further supported clinically, with 

patients showing better recovery when they were prescribed antibiotics as part of their 

treatment regimen [99]. Even though culture based studies capture the perturbations of well-

known pathogens, they can miss the effects of non-culturable bacteria on psoriasis severity or 

pathogenesis. It is also unclear whether skin microbiome perturbations have an effect on the 

abundance of virulence factors known to cause human disease. 

In stark contrast to culture-based studies, recent advancements in high throughput sequencing 

technologies and enhanced RNA extraction methods have enabled large-scale 16S based 

microbiome studies, evaluating alterations in bacterial abundance on psoriatic skin. The current 

16S microbiome studies have concluded that the diversity and composition of bacterial flora is 

altered on psoriasis flares. Phylum level abundance differences can be observed for Firmicutes, 

Actinobacteria, and Proteobacteria [86, 87, 101]. The studies that focus on analyzing 

Operational Taxonomic Units (OTUs) alone do not allude the undergoing functional differences 

of the microbiome. The microbiome differences between individuals [102] also make it difficult 

to evaluate the contributions of low-abundance bacteria.  

Even though whole genome shotgun metagenomics sequencing of the skin microbiome would 

provide a more complete picture of bacterial abundance and diversity, such a study has not yet 

been reported and the skin microbiome studies have been limited to 16S data. This is due to the 

low number of reference genomes for the skin isolates, difficulty in culturing certain skin specific 

bacteria, and the challenges in obtaining sterile host DNA samples [102]. Therefore this chapter 
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focuses on extrapolating 16S OTU level abundance data using the database of decoded bacterial 

genomes to predict the ortholog composition of the samples. This provides a preview of the 

functional perturbations that are observed on the skin and is applicable to study cross talk 

interactions in other skin diseases with suspected microbiome involvement such as atopic 

dermatitis [101]. A follow up study can be conducted once robust methods have been 

developed for skin whole genome shotgun metagenomics sequencing.  

 

Methods 

Obtaining the Microbiome Datasets 

NCBI Short Read Archive (SRA) [103] was queried with the search terms “skin metagenome 

psoriasis” or “skin microbiome psoriasis”. This resulted in two datasets (before June 2014) 

belonging to the Human Microbiome Project [23, 25] and the American Gut Project [104]. The 

number of samples present in each of these datasets is recorded in Table 4.  

Analogous to the samples obtained for the microarrays in Chapter 1, the Human Microbiome 

Project samples represented swabs from active psoriasis lesions (A), uninvolved contralateral 

skin (U), and from subjects without any skin conditions (C). The dataset represented samples 

from 14 body sites. Among the body sites of origin only the elbow, knee, back, forearm, and leg 

had five or more samples each from at least two categories (A, U or C). Skin microbiome 

composition is highly dependent on the body site [102]. Therefore the analyses were conducted 

separately for each body site containing enough samples. The V1-3 regions of the 16S rRNA 

bacterial sequences were extracted and sequenced with Roche 454 GS FLX System. Eligible 
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patients had moderate to severe psoriasis. The control samples were age matched to patients 

with psoriasis (18-75 years). Eligibility criteria excluded subjects with systemic antibiotics, 

corticosteroids, cytokine treatments, large consumption of probiotics one month prior to the 

study, and topical antibiotic or steroid applications one week prior. 

American Gut Project samples consisted of swabs from subjects with no skin condition (C) and 

with psoriasis (U). The samples were collected from the hands and forehead. However only the 

forehead samples had more than five samples in both C and U categories. 16S rRNA reads from 

bacterial rDNA V4 regions sequenced on Illumina MiSeq platforms were downloaded from the 

NCBI Short Read Archive (SRA) database [103]. 

 

Body 

Site 

Number of Samples (Usable Samples / Total) Dataset 16S Region 

Control  Uninvolved 

Psoriasis 

Active 

Psoriasis 

Total 

Elbow 35/37 21/22 23/23 79/82 HMP V1-3 

Knee 28/28 11/11 11/11 50/50 HMP V1-3 

Back 0 12/13 12/13 24/26 HMP V1-3 

Leg 0 8/8 8/8 16/16 HMP V1-3 

Forearm 1/1 7/7 7/7 15/15 HMP V1-3 

Other 12/15 15/15 15/15 42/45 HMP V1-3 

Forehead 46/69 5/5 0 51/74 AGP V4 

Total 122/150 79/81 76/77 277/308  

 

Table 4: The number of distinct tissue samples with 16S rRNA sequence datasets presented by 
the Human Microbiome Project (HMP) and American Gut Project (AGP). The 16S rRNA 
sequence reads obtained from skin swabs of active psoriasis lesions, uninvolved contralateral 
skin from psoriatic patients, and subjects without any skin conditions (Control) were included in 
the analysis. The remaining samples used for further analysis after quality control steps (Usable 
Samples) as well as the total number of samples in the dataset before the quality control step 
(Total) are reported. 
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Processing the Microbiome Reads 

From the samples that were included in this study, low quality sequences were filtered with the 

Quantitative Insights into Microbial Ecology (QIIME) [105] tool. Since the two datasets were 

sequenced with different technologies, optimal quality control procedures were followed as 

described in QIIME pipelines for each dataset. The sequences from HMP samples, sequenced 

with the Roche 454 platform, were selected for further processing if they were above an 

average Phred score of 25, and if the sequence lengths were between 200 and 1000 amino 

acids. For the AGP dataset, sequenced with the Illumina MiSeq platform, the quality threshold 

was set at a Phred score of 20. The sequences were truncated after every three consecutive low 

quality reads. After the truncation step, if 75% of the consecutive reads passed the quality 

threshold, the sequence was kept for further processing. 

The sequences retained after the quality control step were assigned Operational Taxonomic 

Units (OTUs) with 97% identity using the 16S reference database: Green Genes version 13_5 

[106]. The samples in the AGP dataset were then rarefied with an OTU threshold of 15,000. 

Samples in the HMP were rarefied to an OTU threshold of 1500 to have uniform sequencing 

depth. These threshold values were chosen to retain sufficient samples while preserving 

diversity of the skin flora.  

The abundance of the OTUs in active psoriasis samples were compared to healthy control 

samples with Mann-Whitney U test for all the body sites combined. The significance test was 

then repeated for each body site separately to see the contribution of individual body sites to 

the OTU significance. 
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Metagenome Prediction 

The OTU tables for each body site were fed into the Phylogenetic Investigation of Communities 

by Reconstruction of Unobserved States (PICRUST) [107] pipeline for further analysis. The 

abundances were normalized with this pipeline to account for 16S copy number variations for 

each OTU. The metagenomes were then inferred by multiplying the normalized OTU 

abundances with the precalculated gene content predictions. The process resulted in 

estimations of the ortholog gene contents of the microbiome and subsequent categorization by 

KEGG pathways. The accuracy of the metagenome predictions were calculated with Nearest 

Sequenced Taxon Index (NSTI) scores. The ortholog genes that were significantly altered in A/C, 

A/U, and U/C comparisons were identified using Mann-Whitney U test with a p-value threshold 

of 0.01. Mann-Whitney U test [108] was also used for A/C, A/U, and U/C comparisons for each 

body site to identify the KEGG Pathways with significantly different abundance levels. 

The fold change of the metagenome predictions of the mentioned comparisons were calculated 

to evaluate the set of orthologs that are commonly altered across body sites. The resulting fold 

changes of each comparison were ranked. The top ranking 25 high and 25 low abundance 

orthologs were visualized.  

Commonly Altered Genes between the Host and the Microbiome 

Expression profiles of the host have been obtained from the meta-analysis of psoriasis studies 

hybridized onto the Affymetrix platform, as described in the previous chapter. Gene signatures 

from active involved versus active uninvolved (A/U), active involved versus healthy controls 

(A/C), and active uninvolved versus healthy controls (U/C) comparisons have been used in this 
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chapter. The gene expression of psoriatic skin does not correlate with body site or age onset 

[109], therefore the psoriasis samples from microarray have been annotated as either 

uninvolved (U) or active (A) regardless of body site. 

To find the genes that were commonly altered between the host and the microbiome, the 

corresponding Entrez IDs of the KEGG orthologs were extracted from the KEGG database. The 

genes that have been significantly altered (p < 0.01) both in the host and the microbiome were 

recorded. 

 

Results 

Psoriasis is an autoimmune condition with suspected microbial involvement. In an effort to 

explore the perturbations of bacterial composition, the 16S sequences extracted from the 

psoriasis lesions, uninvolved and healthy skin, have been sequenced in previous studies as part 

of the Human Microbiome Project [25] and the American Gut Project [104]. This chapter utilizes 

the mentioned studies and the annotated bacterial genomes to extrapolate from OTU 

abundances to microbial gene contents and functional perturbations in psoriasis lesions. 

Alterations of the microbiome’s orthologous gene content in psoriasis lesions were analyzed 

using QIIME [105] and PICRUST [107] packages. The overview of the methods is illustrated on 

the flowchart in Figure 7. 
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Figure 7 Flowchart of microbiome analysis steps. The 16S rRNA sequence reads were 
downloaded, passed through quality control steps and assigned to OTUs. The metagenome was 
predicted through PICRUST package. The host gene expression signatures obtained for the first 
specific aim have been used to find the commonly altered genes in both the host and the 
microbiome. 

 

Significantly Altered OTUs 

After the quality control steps, OTUs were assigned through the QIIME software package. The 

average relative frequencies of the phyla that are found in the microbiome are shown in Figure 

8. The majority of the skin microbiome phyla in both control subjects and microbiome samples 

consisted of Proteobacteria, Firmicutes, and Actinobacteria. Even though the abundance levels 

of the phyla showed minor perturbations, the differences were not statistically significant 

between psoriasis and healthy control samples for individual body sites. Figure 9 shows the class 

level breakdown of the samples collected from the elbow. There are ten main classes of bacteria 

that are commonly present in all samples with varying abundance levels. The abundance 

perturbations of these major phyla or classes in any of the body sites were not significant 

according to the Mann-Whitney U test with a p-value of 0.01. 
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Figure 8: Average bacterial phylum level abundance of microbiome in patients with active 
psoriasis, contralateral uninvolved skin and healthy controls from different body sites. The 
phyla Actinobacteria, Firmicutes and Proteobacteria dominate each body site. 

 

 

Figure 9 Bacterial class level abundance of microbiome in patients with psoriasis and healthy 
controls for only the elbow samples based on the Human Microbiome Project data. Bacterial 
classes that have more than 10% abundance in more than one sample were labeled in the bar 
graph. The rest of the classes are categorized as “other”. The bacterial classes that are shown 
were annotated with their respective phylum memberships. 
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Significant differences in bacterial OTU abundance can be observed between psoriasis lesions 

and healthy skin as quantified by the non-parametric Mann-Whitney U test and corrected for 

false discovery rate with the Benjamini false discovery rate correction method. When the 

samples from each studied body site were pooled and tested for significance, all but two OTUs 

belonged to the phylum Proteobacteria. Within the Proteobacteria phylum, multiple OTUs 

belonging to the Methylobacteriaceae family had significantly lower abundance in psoriasis 

microbiome. The combined phylogenetic tree of the significantly altered OTUs can be seen in 

Figure 10. Most of the body sites in the HMP dataset had less than five samples for each 

category. Therefore the same significance test was repeated excluding the body sites that didn’t 

have enough samples. When the test was repeated with only the pooled samples from elbow, 

knee, back, leg, and forearm body sites, the OTUs belonging to the family Methylobacteriaceae 

continued to be in low abundance in psoriasis active flares compared to healthy controls. 
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Figure 10: The OTUs significantly altered (Benjamini < 0.05) in psoriasis lesions compared to 

healthy controls in the human skin microbiome for the pooled samples from all body sites. All the 

OTUs were lower in abundance in psoriasis lesions. The OTUs that are statistically significant 

(Benjamini < 0.05) for the non-singleton body sites (elbow, knee, back, leg, forearm) are labeled with 

red stars.  

 

Due to the bacterial composition differences across body sites [102], the significance of the 

OTUs were tested separately for each body site. Most differences involved higher abundance of 

OTUs on the knee and lower abundance in the elbow for psoriasis lesions compared to healthy 

controls. The OTUs, such as the ones belonging to the genus Corynebacterium and 

Staphylococcus were known opportunistic bacteria with respect to infection. Although there 

was no OTU commonly altered in more than one skin site, their toxonomy converged at a higher 

phylum level. They belonged to the phyla Firmicutes, Proteobacteria, and Actinobacteria. The 

OTUs that are altered in specific body sites are visualized in Figure 11. 
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Figure 11: The OTUs significantly altered (p<0.01) in psoriasis lesions compared to healthy controls 

in the human skin microbiome. The nodes are labeled with Green Genes OTU numbers, the phyla, 

and the most specific level of categorization that is available with the OTUs such as species (s), genus 

(g), and family (f). The abundance perturbations are noted with an up arrow for higher abundance in 

psoriasis and a down arrow for lower abundance OTUs. The colors represent the body site where the 

OTU is significant (red: elbow, blue: knee). 

 

Metagenome Predictions 

OTU level abundance data alone does not indicate functional alterations that are present in the 

microbiome. Ideally, whole genome shotgun metagenomics of the microbiome need to be 

carried out in order to map the composition of the genes. However, such data is not yet 

available due to technical limitations of sequencing technologies and DNA extraction methods 

[102]. Nonetheless, the genomes that have already been decoded can provide an estimation of 

the gene content of the microbiome [107]. This idea has been implemented in the PICRUST 

software package and utilized in this study. 
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The assigned OTUs have been processed with the PICRUST metagenome prediction package. 

The availability of nearby genome representatives for each microbiome samples were quantified 

with the Nearest Sequenced Taxon Index (NSTI), which is based on the phylogenetic distance of 

each organism in the OTU table to its nearest relative sequenced reference genome [107]. The 

NSTI values quantify the error that is introduced with the prediction algorithm. The average NSTI 

values for each category is shown in Table 5. All NSTI values were within acceptable ranges for 

accurate predictions (NSTI<0.17) according to PICRUST publication [107].  

 

Body Site NSTI values (average ± standard deviation) 
Control Uninvolved Psoriasis Active Psoriasis 

Elbow 0.082±0.052 0.065±0.026 0.078±0.052 

Knee 0.078±0.034 0.092±0.033 0.072±0.023 

Back NA 0.048±0.037 0.040±0.020 

Leg NA 0.068±0.024 0.050±0.021 

Forearm NA 0.045±0.015 0.055±0.019 

Forehead 0.088±0.044 0.151±0.070 NA 

 

Table 5 Average Nearest Sequenced Taxon Index (NSTI) for the microbiome datasets based on 
the phylogenetic distance for each organism in the OTU table to its nearest relative sequenced 
reference genome. All values were within an acceptable range for accurate prediction. 

 

Even though the OTU abundance profiles varied with body site, the gene content of the 

microbiome as a whole demonstrated consistent alterations across the sampled sites. These 

genes were identified by calculating the rank product of the abundance fold changes. The top 25 

orthologs with high abundance and top 25 orthologs with low abundance obtained are 

illustrated in Figure 12. The genes that were commonly altered between the body sites include 

pathogenic genes that were higher in abundance such as yeeJ (adhesion / invasion), yscF, sctF, 

yscW, sctW (type III secretion proteins), pagC (putative virulence related protein), pla, ompT 
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(plasminogen related genes), gspS (type II secretion proteins), and acfC (accessory colonization 

factor). On the other hand, iga (Type V secretion system) and rtxB (Type I secretion system) 

were in lower abundance in psoriasis microbiome.  

The rest of the genes were involved in various metabolic processes. For example, the high 

abundance orthologs RRM1 (ribonucleoside-diphosphate reductase subunit 1) and yjjG (5’-

nucleotidase) and lower abundance orthologs NUDT2 (bis(5’ nuxleosidyl)-tetraphosphatase) are 

part of the pyrimidine and purine metabolism pathways. ACLY is involved in citrare cycle. 

Orthologs that belong to the fructooligosaccharide transport system (msmE, msmF, msmG) 

were in lower abundance. 
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Figure 12 the orthologous genes that are consistently altered in the microbiome comparisons. 
The values represent the log2 transformed fold changes of the metagenome predicted through 
PICRUST software package. The high abundance genes are indicated with shades of red and the 
low abundance genes are indicated with shades of blue. 



60 
 

 

Significantly Altered Pathways in Psoriasis Microbiome 

The pathways with top altered abundance in psoriasis microbiome were identified using the 

Mann-Whitney U test [108]. Statistical significance of vibrio cholera infection, amoebiasis and 

beta-lactam resistance pathways suggest an increase in disease causing orthologs in the 

psoriasis microbiome. (Table 6). Other pathways with increased gene abundance were xylene 

degradation and sporulation. 

Body Site Comparison KEGG Pathway P value Fold Change 

Elbow U/C Vibrio cholera infection 0.0047 1.10 

Knee U/C Xylene degradation 0.0087 1.30 

Forehead U/C Sporulation 0.0064 1.63 

Forehead U/C Amoebiasis 0.0086 2.32 

Forehead U/C Beta-Lactam resistance 0.0094 1.83 

 

Table 6 KEGG pathways that have significantly different (p < 0.01) abundance levels in 
psoriasis microbiome compared to controls calculated with PICRUST [107]. The significance 
was only observed in the microbiome comparisons between uninvolved skin (U) and healthy 
controls (C). The table shows for each listed KEGG pathway, the p-value calculated using the 
Mann-Whitney U test and the abundance fold changes. 

 

Orthologous Genes that are Commonly Altered between Host and the Microbiome 

The orthologs that were commonly altered both on the host and the microbiome pointed to 

common processes in psoriasis. Orthologous genes with significant abundance changes in 

psoriasis microbiome and the host compared to healthy controls are shown in Table 7. ATOX1 is 

a copper chaperone that also functions as antioxidant. AMD1 is involved in polyamine synthesis, 
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GMPPB catalyzes the conversion of mannose1phosphate to GDPmannose, and AKR1B10 is a 

member of the aldo/keto reductase superfamily.  

Comparison Symbol 
Body 
Site 

FC 
Microbiome 

FC 
Host 

KEGG Pathways 

AC ATOX1 elbow 0.71 1.94 Mineral absorption 

  

AU 

AMD1 knee 0.61 1.89 
Cysteine and methionine 
metabolism, Arginine and proline 
metabolism  

GMPPB knee 0.66 1.67 

Fructose and mannose 
metabolism, Amino sugar and 
nucleotide sugar metabolism, 
Biosynthesis of secondary 
metabolites  

AKR1B10 forearm 0.17 20.82 

Pentose and glucuronate 
interconversions, Fructose and 
mannose metabolism, Galactose 
metabolism, Glycerolipid 
metabolism  

 

Table 7: Significantly over- and under-represented genes in psoriasis in the host and the 

microbiome for the A/C and A/U comparisons (p<0.01 for host and p<0.05 for microbiome). 

No commonalities were observed for the U/C comparison. The table reflects the fold changes of 

the commonly altered genes in the microbiome and the host, and p-values resulting from Mann-

Whitney U test. A: active involved skin, U: active uninvolved skin, C: control skin, FC: fold 

change. 

 

Altered KEGG Pathway Expression for Bacterial Invasion of Epithelial Cells in Relation to Skin 

Disease Host Genes 

Bacterial invasion of epithelial cells KEGG pathway [57] depicts mechanisms that bacteria use to 

hijack the actin structure of the cell. Using the Virulence Factor Database (VfDB) [60], bacterial 

genes with pathogenic potential were identified within the pathway, enabling the annotation of 

crosstalk linkages between the host and the psoriasis microbiome. Figure 13 shows the 

pathway, annotated with color markers for upregulated and downregulated genes. Host genes 
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Cbl, SHC1, and ARP 2/3 were upregulated in psoriasis whereas Dynamin, SHC4, PI3K, and Septin 

were downregulated. The pathogenic orthologs that bind to fibronectin (FnBPA, FnBPB, Pfb, 

Sfb1, invasin) used by Staphylococcus, Streptococcus, and Yersinia species were in high 

abundance in psoriasis microbiome, potentially indicating an increase in virulence factors in the 

psoriasis microbiome. 

 

Figure 13 Bacterial invasion of epithelial cells KEGG pathway annotated with the up and 
downregulated gene signatures for psoriasis. The genes targeted by bacteria (blue) and viruses 
(red) obtained from PHISTO database are indicated with lines under the gene boxes. The 
virulence factors obtained from VfDB database are indicated with red stars. The over and 
underrepresented microbial genes obtained from metagenome analysis of the psoriasis 
microbiome are marked with red arrows. PS: psoriasis, up: upregulated genes, down: 
downregulated genes, target_bac: bacterial target, target_vir: viral target.  
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Discussion 

Psoriasis is an autoimmune disease with suspected microbial involvement. The gene contents of 

skin microbiome were predicted from 16S sequencing data in order to understand the 

functional perturbations in psoriasis flares across different body sites. The altered metagenome 

was compared with the microarray gene signatures obtained in Specific Aim 1 to draw parallels 

between the two sides of the coin. 

The OTUs that were significantly altered were members of the phyla, Proteobacteria, Firmicutes, 

Actinobacteria, and Bacteriodetes. The higher abundances of opportunistic pathogens belonging 

to these phyla in psoriasis microbiome suggest pathogenic contributions to the maintenance of 

the psoriatic lesions. For example, Staphylococcus epidermidis had significantly higher 

abundance in knee psoriasis microbiome compared to healthy controls. Even though it is usually 

labeled as a skin commensal, recent evidence shows that due to intravenous catheter insertions 

S. epidermidis is responsible for 22% of the bloodstream infections of the intensive care unit 

patients and is capable of forming biofilms on medical device surfaces [110]. Streptococcus 

genus, which had high abundance in the knee psoriasis microbiome, is notorious for having 

pathogenic strains. Another opportunistic pathogen with high abundance was Anaerococcus, 

which has been observed in chronic diabetic wounds, suggesting the involvement of bacteria in 

chronic skin conditions [111]. The pathogenic membership of the bacteria can only be 

determined accurately with strain level information which can’t be obtained with 16S data. 

However, the genus level information was suggestive of pathogenic contributions to psoriasis. 

The OTUs that were significantly altered in the psoriasis microbiome such as Kochuria, 

Methylobacterium, and Schlegelella are commonly found in soil [112, 113]. Soil associated 
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bacteria have previously been found on the hand microbiome of Tanzanian women and not on 

women residing in the United States. This implicates the effect of environment in shaping the 

microbial skin communities [114]. The abundance differences of soil associated bacteria on 

psoriasis lesions suggests involvement of environmental factors in psoriasis. 

Pathogenic contributions can also be observed in the commonly altered bacterial orthologs 

across different body sites. While selected members of Type II and Type III Secretion Systems 

were among the higher abundance orthologs, Type I and Type V Secretion System orthologs 

were in lower abundance. Type III secretion system utilizes needle like proteins to secrete 

bacterial proteins to its host. The highly abundant orthologs in psoriasis YscF is a protein that 

influences the host immune response [115] and is recognized by Toll-like receptors [116]. As 

mentioned in the first chapter, Toll-like receptor pathway is upregulated in the host psoriasis 

gene signature. Another high abundance protein YscW is responsible for inducing 

immunodeficiency during infection as shown in mice [117]. It is also required for the biogenesis 

of bacterial protein secretion [118]. Type II secretion system is composed of gated channels in 

the outer membrane and require pilotin proteins to assemble around the channels [119]. A 

pilotin protein GspS was consistently altered in the psoriasis microbiome. The virulence 

membrane protein pagC was also highly abundant in psoriasis microbiome. It is regulated by 

phoP-phoQ and is an essential protein in the pathogenesis process [120]. It is also indirectly 

involved in the serum resistance of bacteria [121]. Finally, the genes related to plasminogen 

were in high abundance such as pla and ompT. During infection, pla cleaves the host protein 

plasminogen activator inhibitor (PAI-1). The gene PAI-1 regulates plasminogen which dissolves 

fibrin in clots and degrades laminin. However coagulation activates immune response and may 

help restrain bacteria. Hence, cleaving PAI-1 helps the bacteria hinder the immune system of the 
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host [122]. The pathogenic genes that were consistently in high abundance in the psoriasis 

microbiome suggest mechanisms as to how the immune system may be triggered due to 

dysbiosis of the microbiome. 

On the host side, bacterial invasion of epithelial cells pathway was crowded with significantly 

altered psoriasis genes, consistent with the microbiome signatures observed. For example, the 

ARP2/3 complex was elevated in psoriasis. The complex, involved in actin polymerization, has 

been associated with cell crawling motility with the help of N-WASP and WAVE [123], especially 

for migration of immune cells [124]. ARP2/3 is also significant in organizing tight junctions and 

maintaining epidermal integrity [125]. ARP2/3 upregulation potentially points to hijacking the 

host mechanism of bacterial protein transport using actin structures [126, 127]. The high 

abundance of microbiome genes in this pathway also suggest microbiome involvement. A 

pathogenic component to psoriasis is also suggested by the shared immune response with 

Staphylococcus [128, 129] and Streptococcus [130] skin invasions. Together, these results point 

to a pivotal role the microbial agents play in the initiation and maintenance of psoriatic 

phenotypes.  

The genes that are commonly altered between the host and the microbiome involved metabolic 

genes. GMPPB and AKR1B10 are both involved in the fructose and mannose metabolism 

pathway. They were upregulated in the host and were in low abundance in psoriasis 

microbiome. This finding suggests metabolic competition of the host and the microbiome on the 

skin. Another metabolic gene commonly altered was AMD1, which is an intermediary enzyme to 

produce spermidine. This polyamine spermidine, responsible for keratinocyte proliferation, was 

shown to be significantly higher in psoriasis patients [131]. The analysis also showed that 

microbiome mirrors and complements the oxidative stress of the host. The gene ATOX1 plays a 
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role in copper homeostasis. The alteration of the gene’s expression can be resulting in elevated 

copper levels in the serum of psoriasis patients [132]. 

The OTU and metagenome alterations in the psoriasis microbiome allude to a higher abundance 

of virulence factors, which can be responsible for triggering or the maintaining the immune 

response observed in psoriasis flares. The metabolic contributions of the microbiome and the 

crosstalk should be further evaluated with metabolic analyses. 
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Specific Aim III: Positive Selection Signals in Psoriasis 

The goal of this chapter is to map the selection patterns on the HLA region for populations with 

different ethnic backgrounds. Due to the geographic differences, populations are subject to 

different evolutionary pressures. The HLA region is highly involved with immune response and is 

linked to psoriasis phenotype. I hypothesize that there are population subtype specific regions 

that are under positive selection. Those regions can be the key to explaining the susceptibility 

differences that are observed in psoriasis prevalence. 

 

Introduction 

Susceptibility to disease is dependent on population history in many cases. GWA studies provide 

insight into genetic loci responsible for disease pathogenesis. National databases curate GWAS 

results in order to provide a global view of disease associated polymorphisms [133, 134]. Human 

Leukocyte Antigen (HLA) region, a 4 Mb long region located on the chromosomal position 6p21, 

is crowded with immune genes [135] and multiple polymorphisms [136], which creates and 

extensive repertoire for pathogen identification during immune defense. The region is 

associated with a multitude of conditions through GWA studies. These associations mainly 

consist of autoimmune disorders such as psoriasis [137], rheumatoid arthritis [138] and 

ulcerative colitis [139] as well as infectious diseases such as Hepatitis B [140]and HIV [141, 142]. 

However, GWA studies are typically limited to a small number of patient ethnic population as 

representative subjects, which do not capture susceptibility differences between ethnic 

populations. In this study we investigated the interplay between the SNPs, diseases and 
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population subtypes within the HLA region using open access genomics datasets and 

computational tools. 

Psoriasis has a strong genetic component. Twin studies show that genetic factors explain 68% of 

the variation in psoriasis susceptibility and concordance is higher in monozygotic twins than 

dizygotic twins [143]. Online Mendelian Inheritance in Man (OMIM) [144] has curated 15 

regions associated with psoriasis including the HLA region. Within the different HLA haplotypes, 

HLA-Cw6 and HLA-Bw7 have specifically been associated with psoriasis susceptibility [145]. 

Prevalence differences in psoriasis can be observed in people with different ethnic and genetic 

background. A study done on the United States psoriasis patient population shows that 

Caucasians have the highest prevalence of 3.6%, followed by African Americans with 1.9% and 

Hispanics with 1.4% prevalence [146]. The susceptibility differences are also reflected in global 

studies with lowest incidence in Taiwan (0%) and highest in Denmark (8.5%) [4]. These observed 

susceptibility differences between ethnic populations lead to questions about the selection 

pressures behind the genetic component of diseases. This can be achieved by understanding the 

population history of the highly disease associated HLA region in different ethnic populations.  

Identifying disease causing SNPs in the HLA region in GWAS studies can be misleading due to 

high linkage disequilibrium (LD) in the region [147, 148]. Recombination hotspots have been 

established using linkage disequilibrium based tests in North European [149-151], East Asian 

[152] and African [153] populations. An integrative study has shown that recombination 

hotspots vary for different populations, which explains the high diversity of haplotypes [148] as 

well as the susceptibility differences between populations. This is a comparative study that 
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follows up on those findings and focuses on identifying positive selection in the HLA region by 

making use of the haplotype backgrounds of SNPs typed in different ethnic populations. 

Recent advances have enabled whole genome sequencing, and SNP detection to be cheaper and 

faster, which led to large scale projects to catalog common human genetic variants. The 

HapMap Project provides genotype information on 11 ethnic populations with African, 

European and Asian ancestry [21, 154]. The main objective of the project was to identify the 

haplotypes in different ethnic populations to aid in more accurate association results in GWA 

studies. The diversity of population backgrounds in HapMap make it ideal to study susceptibility 

differences based on haplotype based statistical tests. 

It has been observed by Sabeti et al. that under neutral evolution, low frequency alleles are on 

longer haplotypes and high frequency alleles are on short haplotypes since haplotypes are 

broken down by recombination over time as the allele frequencies rise. The long range 

haplotype test is a method which identifies alleles that have risen to moderate frequency and 

are on unusual length haplotype blocks [155]. Voight et al. has standardized the detection of 

positive selection by comparing the heterozygosity of a SNP to the other SNPs in the genome 

that fall within the same frequency bin [156]. Tang et al. has utilized these ideas to detect 

positions on the genome that have different selection histories in pairwise population 

comparisons [157]. In this study, these tests have been utilized to identify alleles of interest in 

the HLA region. 

In this study, SNPs undergoing recent positive selection in a population and SNPs that have 

different recombination backgrounds in pairwise population comparisons were identified. In 

order to explore this, polymorphisms typed in Phase III HapMap populations [21, 154] were 
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analyzed. Pairwise population comparisons were conducted to find SNPs that were statistically 

significant between populations in order to illuminate prevalence differences. The resulting 

regions of interest were annotated with disease associations through literature searches. The 

results are novel as it produces new insights into the effect of positive selection on disease 

susceptibility in different populations as well as annotation of the HLA region with different 

evolutionary histories through pairwise population comparisons. 

 

Methods 

Identifying Gene Lists 

Genes in the HLA region and their sub-region annotations of class I, class II, extended class II and 

class III were obtained from Shiina et al. [158]. The genomic coordinates of these sub-regions 

obtained from the hg19 build of the human genome [159] can be seen in Table 8. The 

Bioconductor GOstats package [55] was used for statistical enrichment of Gene Ontology 

Biological Process (GO-BP), Gene Ontology Molecular Function (GO-MF) [56] and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways [57] for the genes in the whole HLA 

region and genes in each sub-region. 
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HLA class Genic Region (hg19) 
on Chr 6 

# of SNPs in Phased 
Data 

# of SNPs with Ancestral 
Allele Information 

Class I 29680000-31480000 2723 1611 

Class III 31480000-32400000 1216 1161 

Class II 32400000-33100000 1141 766 

Class II extended 33100000-33378000 204 201 

Total 29680000-33378000 5284 3739 

 

Table 8: The HLA region coordinates on chromosome 6 partitioned according to their 

functional class annotations as described in Shiina et al. The coordinates are based on the hg19 

build of the genome. The number of SNPs included in the phased genotypes of the HapMap 

populations as well as the number of phased SNPs that have ancestral annotations according to 

the EPO pipeline. 

 

Obtaining Population Level Data 

The phased genotypes and frequency data were downloaded for each ethnic population typed 

in Phase III of the HapMap [21, 154] project. The HapMap database includes populations with 

East Asian ancestry (Japanese in Tokyo-JPT (91 samples), Han Chinese in Beijing-CHB (90 

samples), Chinese in Denver-CHD (100 samples)), European ancestry (Europeans of Northern 

and Western Ancestry-CEU (180 samples) and Toscana- TSI(100 samples)), African ancestry 

(Yorubans-YRI (180 samples), Masaai-MKK (180 samples), Luhya-LWK (100 samples), and African 

Americans-ASW(90 samples)) and other ethnic groups (Gujaratis in Houston-GIH (100 samples), 

and Mexicans in Los Angeles-MEX(90 samples)), making it ideal for identifying susceptibility 

SNPs. The SNP positions were lifted over from hg18 to hg19 build using UCSC tools [160]. The 

hg19 build of the human ancestral genome was acquired from the 6-way primate genome 

alignment using the Enredo-Pecan-Ortheus (EPO) pipeline [22, 161, 162]. 
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Population Differences 

The SNPs that are common between all populations were extracted from the frequency data. 

For each pair of populations, pairwise allele frequency distribution for each subclass as well as 

for the whole HLA region were calculated with Kolmogorov-Smirnov (KS) test [163]. The p values 

were corrected for false discovery rate (FDR) using Benjamini-Hocheberg correction [58]. The 

same test was carried out for 20 concatenated autosomal loci that are under neutral selection 

as described by Wall et al. [164] in order to observe neutral estimate of allelic variation and to 

establish that the frequency differences seen at the HLA regions are not a result of demographic 

forces but signify selection. 

For a population, the Integrated Extended Haplotype Homozygosity (IHH) [155] and the 

Integrated Site-specific EHH (iES) [157] of the ancestral and derived alleles were calculated for 

each typed SNP in order to find the transmission of extended haplotypes without 

recombination. The IHH of a SNP was standardized with respect to the results from the whole 

genome that fall within the same 0.025 frequency bin using the Standardized IHH (iHS) test 

[156]. SNPs with a minor allele frequency of 0.05 were discarded from the analysis since the iHS 

method is not applicable for alleles that are fixed or almost fixed in a population. Finally 

standardized ratio of iES from pairwise populations (Rsb) were calculated for each SNP [157]. 

The resulting p values of the iHS and Rsb tests were adjusted for multiple testing using 

Benjamini-Hochberg FDR correction [58]. The HLA region of interest was then extracted from 

the whole genome analyses. 
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Polymorphism Annotations 

The SNPs were annotated according to their location as intergenic, intron, coding, UTR and 

promoter [165]. The intergenic SNPs were annotated with genes present within a 20 Kb 

upstream and downstream window. The SNPs that are under positive selection and the genes 

they are on are also cross-referenced with diseases they are associated with through MalaCards 

[166] and National Human Genome Research Institute GWAS Catalog [133]. 

 

Results 

This study presents a systematic approach to detect positive selection in the extended HLA 

region in order to explain demographic susceptibility differences of HLA linked conditions. The 

SNPs that are associated with a condition can be hitchhiking on the haplotype blocks that are 

under selection. By detecting the driving SNPs on the haplotype blocks, more information on the 

hitchhiking SNPs can be obtained. 

The analysis utilizes genotypes of 11 HapMap populations [21, 154] consisting of 2022 

haplotypes with 12622 typed SNPs in the HLA region. Among these typed SNPs, 5284 of them 

have phased data and 3739 have ancestral alleles deduced from the EPO pipeline [22, 161, 162]. 

The definitions of the sub-classes of the HLA region as well as the breakdown of the number of 

SNPs typed in each sub-region can be seen in Table 8. The phased data of the SNPs are then 

used to find positive selection in each HapMap population, as well as to find SNPs that have 

significantly different population histories. The resulting SNPs of interest are then annotated 
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with diseases they are associated with through GWA studies. The overall workflow is 

summarized in Figure 14. 

 

 

Figure 14 Flowchart of the analysis shows the steps taken to obtain the SNPs that are under 

positive selection in the HLA region for each population as well as identifying the SNPs that have 

significantly different population histories.  

 

Functional Annotation of the HLA Region 

The HLA is a dense genic region with exclusive immune function. This is represented by the 

functional annotations of genes in this region through Gene Ontology [56] and KEGG pathways 

[57]. The KEGG annotations are represented in the Table 9. KEGG pathways that are enriched 

with genes in the HLA region are involved in autoimmune conditions such as type-I diabetes, 

asthma and rheumatoid arthritis as well as infections such as Leshmanaiasis, Staphylococcus 

aureus and Toxoplasmosis. The biological processes they are involved in include interferon-

gamma-mediated signaling pathway, antigen processing and presentation and positive 

regulation of immune response. Top molecular function terms that are enriched with HLA genes 

include peptide antigen binding, MHC class II receptor activity and amide binding. The 
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annotations are primarily for the Class I and Class II, while Class III and extended Class II region 

do not have any significant terms associated with them. 

 

Pathways Class I Class II all HLA 

Antigen processing and presentation 0.08 0.18 0.33 

Allograft rejection 0.16 0.32 0.51 

Autoimmune thyroid disease 0.12 0.23 0.35 

Cell adhesion molecules (CAMs) 0.05 0.09 0.14 

Graft-versus-host disease 0.15 0.29 0.46 

Phagosome 0.05 0.09 0.14 

Type I diabetes mellitus 0.14 0.28 0.47 

Viral myocarditis 0.09 0.17 0.26 

Asthma  0.40 0.43 

Endocytosis 0.03  0.04 

Intestinal immune network for IgA production  0.25 0.25 

Leishmaniasis  0.17 0.18 

Natural killer cell mediated cytotoxicity 0.04  0.06 

Rheumatoid arthritis  0.13 0.16 

Staphylococcus aureus infection  0.22 0.27 

Systemic lupus erythematosus  0.09 0.11 

Toxoplasmosis  0.09 0.12 

ABC transporters  0.05  

Hematopoietic cell lineage  0.03  

Primary immunodeficiency  0.06  

Proteasome  0.05  

Spliceosome    

 

Table 9: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that are enriched with 
all HLA genes and sub-classes of genes. The terms are significant (Benjamini < 0.01) in at least 1 
gene list. The terms are listed as most commonly enriched to region specific terms. The values 
represent the ratio of genes in the term that overlap with the gene list. The cells that are left 
blank signifies that the corresponding term is not enriched for that gene list. There were no 
terms enriched for extended class II region, hence its corresponding column is not shown. 
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Allele Frequency Distributions of HLA sub-Region 

The allele frequency distributions of the HLA region were compared between populations with 

Kolmogorov-Smirnov (KS) test in order to find the populations that have distinguishing patterns 

of allele histories. The –log10 of the Benjamini corrected p values of pairwise tests are 

represented as heatmaps in Figure 15. The results for the whole HLA region show significantly 

different allele frequency distributions for CEU, TSI and JPT populations compared to all other 

ethnic populations. When the HLS region is broken down into sub-regions, it is seen that each 

sub-region has a different population history, Class I region being the greatest contributor to 

frequency distribution diversity between populations. European ancestry (CEU and TSI) 

difference is apparent in Class I region whereas East Asian (JPT+CHB+CHD) and CEU difference 

dominates in the Class II region. In the extended Class II region, regional coherence patterns can 

be observed where the allele frequency distributions are similar within African, East Asian and 

European descent populations. When the test is applied to neutrally evolving autosomal regions 

in the genome [164], there were no significant differences between the populations. This 

signifies that the allele frequency distribution variations are not a result of population 

demography but can explain different selection signals in populations. 
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All HLA Region Class I Class III 

   
Class II Class II-Extended  

   
 

Figure 15: Heatmaps of pairwise SNP allele frequency distribution comparisons using the 

Kolmogorov-Smirnov (KS) test for each cluster. The values represent the -log10 of the Benjamini 

FDR corrected KS-test p values. The comparisons that are not significant (Benjamini >0.05) are in 

black. 

 

Polymorphisms on the HLA that are Under Positive Selection 

To further investigate the selection signals, recent positive selection on the HLA variants that 

have not yet reached fixation have been calculated with the iHS test. The –log10 of the 

corrected p values for different ethnic populations have been overlapped on the scatter plot in 

Figure 15. A complete and more detailed annotations of the significant SNPs, as well as the 

genes they fall within are provided in Appendix C. The tests are also able to detect if the 

selection is on the ancestral or the derived allele. With the exception of five SNPs, selection 

signals are on derived alleles. Similar to the results obtained from the KS heatmaps, there are 
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European ancestry specific selection peaks in Class I region. Coding and intronic SNPs that are on 

PSORS1C1, TCF19, MUC22, TRIM10 and TRIM15 are under positive selection with a Benjamini 

cutoff of 0.01. The polymorphisms with the highest significance value, rs3130557, is driving the 

selection in both CEU and TSI populations. The SNP is located on the intronic region on the 

PSORS1C1 gene. In the Class III region, there is positive selection signals for the East Asian 

populations, especially on the genes NOTCH4, C6orf10 and BTNL2. The driving polymorphism 

across populations are rs3132946, rs3830041, rs8192565 and rs12055568 which are intronic or 

promoter SNPs on the NOTCH4 gene. The East Asian specificity continues on to the Class II genes 

with positive selection on TAP2. There is African ancestry specific positive selection signals on 

Class II genes, specifically HLA-DOA and HLA-DPA, both HLA class II alpha chain paralogues 

expressed in antigen presenting cells. The driving SNPs in this region are rs3129304, rs3129303 

and rs10947368 which are found on 3’ UTR and coding region of the HLA-DOA gene. The SNPs of 

interest from the iHS test and the genes that they fall under have been annotated through the 

MalaCards database and summarized in Table 10. The associations range from autoimmune 

conditions such as psoriasis, rheumatoid arthritis and celiac disease to infections such as HIV-I.  

The tests were followed up with pairwise population comparisons of haplotype background 

using the Rsb test. The SNPs that are statistically significant between populations from different 

geographical backgrounds are visualized in Figure 17. The results from the iHS test have been 

confirmed with the Rsb test. The SNPs that distinguished between ethnic regions were on 

PSORS1C1, NOTCH4, C6orf10 and HLA-DOA. The SNP rs3130557 on PSORS1C1 gene that is under 

positive selection for the European populations show differences in ASW and TSI populations. 

The SNPs that are on HLA-DOA gene under positive selection for the LWK population also shows 

significant difference with the TSI population. These SNPs can be responsible for the 
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susceptibility differences that is observed between populations for the diseases associated with 

the genes. 

 

 

Figure 16: Superposition of –log10 of the Benjamini corrected iHS p-values of all HapMap 

populations along the HLA region. The horizontal red line represents cutoff for significance 

(Benjamini < 0.01). Class I region shows evidence of positive selection with European (CEU, TSI) 

specificity, non-specific ethnic background positive selection in Class III, African (LWK, YRI) 

specificity in the Class II region and no positive selection in extended Class II region. 
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Figure 17: The SNPs with significantly different evolutionary backgrounds between at least 

two populations belonging to different geographical regions (Benjamini < 0.01). The 

standardized ratio of integrated site-specific EHH from pairwise populations (Rsb) on the HLA 

region were calculated. Each box represents a gene annotated with the SNPs that have 

significantly different evolutionary backgrounds. The genes are labeled with the HLA sub-regions 

they belong to. 

 

Overall, the study shows that there are discrete patterns of selection for populations that 

belong to different geographical regions. Selections signals are concentrated in the Class I region 

for the European descent populations and Class II for the African descent populations. 
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Gene 

Associated Disease 

autoimmune infection inherited cancer other 

C
la

s
s
 I
 

TRIM31 
 

lymphocytic 
choriomeningitis    

TRIM26 
   

endodermal sinus tumor seizure disorder 

HCG22 
   

follicular lymphoma 
 

CDSN guttate psoriasis 
 

hypotrichosis simplex, 
peeling skin syndrome   

C6orf15 
   

follicular lymphoma 
 

PSORS1C1 
psoriasis, epidermal necrolysis, stevens-johnson 

syndrome, rheumatoid arthritis     

CCHCR1 psoriasis 
    

TCF19 
  

tetraploidy 
  

PSORS1C3 psoriasis 
    

POU5F1 
   

Pineoblastoma, 
germinoma, teratoma 

seborrheic keratosis 

C
la

s
s
 I

II
 

DDX39B rheumatoid arthritis 
    

LST1 
    

hyperbilirubinemia 

PRRC2A rheumatoid arthritis, diabetes mellitus 
   

coronary artery aneurysm 

APOM type 2 diabetes mellitus 
   

limb ischemia 

CSNK2B egg allergy 
    

NOTCH4 
   

salivary gland tumor 
schizophrenia, 

pseudobulbar palsy 

BTNL2 sarcoidosis, wegener's granulomatosis 
    

C
la

s
s
 I

I 

TAP2 
wegener-like granulomatosis, ankylosing spondylitis, 

cardiac sarcoidosis, celiac 
echinococcosis 

type I bare lymphocyte 
syndrome 

melanoma 
 

HLA-DOA 
 

HIV-I 
   

HLA-DPA1 
chronic berylliosis, wegener's granulomatosis, myelitis, 

neonatal lupus erythematosus, rheumatoid arthritis 
rubella 

  
pulmonary hypertension 

HLA-DPB1 
  

dysplasia 
  

Table 10: Diseases that are associated with the genes under positive selection (iHS Benjamini < 0.01) in at least one HapMap population. The 

diseases associated with the gene under positive selection are separated as autoimmune, infection, inherited, cancer and other. Genes are 

sorted according to their genomic positions. The associated diseases are obtained through the MalaCards database.  
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Discussion 

Psoriasis is a skin condition with a strong genetic component. HLA region has shown associations 

with the condition through GWAS studies. In this chapter, the SNPs that are undergoing positive 

selection in the HLA region have been identified through haplotype based statistical methods. 

The overall results showed partitioning of the positive selection signals according to ethnic 

background of populations. Positive selection on the Class I region was observed exclusively in 

populations with European background. Genes that are on the MHC Class I region are mainly to 

differentiate self from non-self. Hence they are highly associated with autoimmune conditions. 

Positive selection on the Class II region could be observed in populations with African ancestry. 

Genes on this region are necessary for establishing an immune response. The positive selection 

patterns are consistent with the infection based evolutionary pressures that are present in the 

African ancestry populations [167]. 

The SNPs that are on the intronic region of PSORS1C1 are undergoing positive selection in the 

European ancestry populations. The gene has been associated with psoriasis [168] and its 

comorbidity rheumatoid arthritis [169]. These results are consistent with the observation that 

psoriasis has a higher prevalence in the Caucasian ethnic population than African ancestry 

populations [4]. The driving SNP with the highest p value for positive selection signal is also on 

the PSORS1C1 gene. The SNP rs3130557 is associated with multiple autoimmune conditions 

such as ulcerative colitis [170], Crohn’s [171] and coeliac diseases [134] as well as association 

with glycemic traits [172]. It also shows significant difference between the TSI and ASW 

populations according to the cross population test performed. The positive selection in the 
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region may be the driving force behind the high psoriasis rates in the Caucasian population 

through genetic hitchhiking. 

The gene undergoing positive selection in the East Asian ancestry populations is NOTCH4. It is a 

gene that is responsible for cell fate regulation. NOTCH4 has been associated with schizophrenia 

in the Chinese Zhuang and Chinese Han population for the SNP rs3131296 [173]. Even though 

that SNP is not significant in our analysis, it is within 20kb of the positively selected region. This 

may again indicate that the SNP that is associated with a condition may be a result of positive 

selection in the neighboring regions for a population. 

Genes that are under positive selection in the African population comprise of HLA-DOA. It is a 

gene that is expressed in B cells. Even though the nucleotide sequences are well conserved 

among these species in order to conserve function [174], positive selection has been observed 

in the African ancestry population. It has also been associated with HIV [166] which poses as a 

recent environmental pressure in the geographical region. 

A limitation of this method is the dependence of the calculations on the ancestral genome build. 

The ancestral genome obtained from the EPO pipeline is not mapped for genes such as HLA-C 

and HLA-B genes potentially due to the high variance in those genes. Therefore the selection 

signatures on the coding regions of those genes could not be obtained. However, positive 

selection detected on the non-coding regions can contribute to the regulation of the genes and 

provide equally valuable information. 
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Overall, the positive selection signatures on the HLA region can help understand the driving 

pressures behind susceptibility to conditions in different ethnic populations, including a complex 

disease with genetic origins such as psoriasis. 
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Conclusions 

Psoriasis is a complex disease with genetic and environmental dimensions. Psoriasis is linked to 

a combination of multiple risk factors such as the genetic susceptibility polymorphisms in the 

HLA region and the suspected microbial involvement. In order to understand the interplay 

between the different factors, an integrated survey of the high throughput datasets need to be 

conducted. This thesis presents the first study to integrate the microarray and microbiome 

results for psoriasis in order to evaluate the cross talk between the host and the microbiome. It 

is also the first study to provide a metagenome analysis of the skin microbiome even if the gene 

content was predicted from 16S abundance data.  

In this thesis, psoriasis transcriptome was studied using open source mRNA microarray datasets 

which provided a large cohort of samples to analyze psoriasis in the context of other 

inflammatory skin conditions, skin cancer, and wound healing. Psoriasis transcriptome was 

highly consistent across different studies which suggests that the manifestation of the disease is 

uniform across different patient cohorts and the technologies that have been used were 

reliable. The genes that are consistently altered across different datasets provided a distinctive 

signature for psoriasis from other inflammatory skin conditions. On the other hand, 

transcriptome similarities could be observed between psoriasis and wound healing. This was 

consistent with clinical observations that psoriasis is a disease of hyper-proliferating 

keratinocytes with an inflammatory component. The pathways that were enriched with 

significantly altered psoriasis genes showed inflammatory signatures. The genes that are 

exclusive to either psoriasis or wound healing such as IL-19, CXCL9, and CXCL11 can be explored 

as drug targets. This would reduce the side effects and balance between the healthy 
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inflammatory responses needed for healing and the inflammatory response that is responsible 

for the autoimmune aspect. Psoriasis gene signature also suggested a pathogenic component to 

the disease. Its gene signature overlapped with pathogenic KEGG pathways such as bacterial 

invasion of epithelial cells. The upregulation of immune response and antimicrobial genes as 

well as their overlap with pathogenic pathways required a microbiome analysis to illuminate the 

role of crosstalk between the host and the microbiome in the maintenance of psoriatic flares. 

The microbiome of psoriasis has been evaluated through multiple 16S studies to compare the 

psoriasis flares as well as healthy control cohorts. Even though 16S data is very useful in 

understanding the bacterial composition of the skin, 16S alone does not answer questions about 

the functional perturbations. Until the DNA extraction and technologies are developed to 

reliably conduct a metagenomics analysis of the skin microbiome, 16S and previously annotated 

bacterial genomes can be used to predict the genomic content of a microbial community. This 

thesis provides a novel approach to understand the functional perturbations caused by the 

microbiome in psoriasis flares. The results from the analysis of open source 16S psoriasis 

datasets show overabundance of opportunistic bacteria such as the OTUs belonging to the 

genera Corynebacterium and Staphylococcus in the psoriasis microbiome. The functional 

perturbations that are common across different body sites show an overabundance of virulence 

factors in the psoriasis microbiome such as yeeJ (adhesion / invasion), yscF, sctF, yscW, sctW 

(type III secretion proteins), pagC (putative virulence related protein), pla, ompT (plasminogen 

related genes), gspS (type II secretion proteins), and acfC. The overabundance of the virulence 

factors and their intersection with the bacterial invasion of epithelial cells pathway suggests 

virulence factors affecting the pathogenesis or maintenance of the psoriasis flares. 
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Aside from the environmental factors affecting psoriasis, genetic factors also play great part in 

the susceptibility to psoriasis. Extended HLA is a 4 Mb long region located on the chromosomal 

position 6p21. It is a gene dense region with critical immune functions for initiating the adaptive 

immune response and distinguishing self from non-self. Single nucleotide polymorphisms (SNPs) 

and genes in this region have been associated in literature with many conditions, including 

psoriasis. In order to identify susceptibility SNPs in the HLA region, the SNPs typed in the 

HapMap data (11 ethnic populations) within the HLA region have been analyzed using extended 

haplotype homozygosity based tests to identify positive selection on polymorphisms that have 

not yet reached fixation. Results show regional specificity of positive selection signals on the 

sub-classes of HLA. The positive selection signals in Class I sub-region show European ancestry 

specificity with intronic SNPs on genes PSORS1C1, TCF19, MUC22, TRIM10 and TRIM15. In the 

Class III region, there is positive selection signals for the East Asian populations, especially on 

the genes NOTCH4, C6orf10 and BTNL2. Finally, there is African ancestry specific positive 

selection signals on Class II genes, specifically HLA-DOA and HLA-DPA; both HLA class II alpha 

chain paralogues expressed in antigen presenting cells. The cross population tests show there 

are more haplotype differences within the same geographical populations than between. Similar 

to single population tests, cross population test results show that the significant SNPs are 

concentrated in the Class II region for African ancestry populations, whereas for European 

ancestry populations, they are concentrated in the Class I region. 

Three techniques were developed and applied in this thesis to explore a complex skin condition. 

The methods used in the microarray analysis of psoriasis revealed that psoriasis had consistent 

gene signatures that showed upregulation of immune function, keratinization, and antimicrobial 

activity. The microbiome analysis showed that there were composition differences in psoriasis 
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patients compared to healthy cohorts. The analysis also demonstrated that the functional 

perturbations presented an overabundance of virulence factors. Scanning the HLA region for 

positive selection across populations with different ethnic backgrounds indicated that there are 

region specific signals for each class of HLA genes. Together, these approaches comprise a 

systems biology approach to tackle complex diseases. The methods that are explored in this 

thesis can be applied to other conditions to better understand their mechanisms, explore the 

environmental effects, and identify new drug targets. 
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Future Work 

This research describes a pipeline to evaluate the gene expression and microbiome 

perturbations linked to psoriasis as well as the genetic implications of a complex disease. The 

explained pipeline can be extended to evaluate other autoimmune disease and complex 

conditions as more open source data accumulates.  

The biomarkers for psoriasis expression in the host that have been identified through 

computational analysis need to be validated for accuracy and efficacy in patient population. The 

microbiome genes identified through metagenome prediction in the second chapter also need 

to be validated through deep sequencing, preferably for the same patient population. These 

require a large patient cohort, IRB approval and assay development, which is beyond the scope 

of the project.  
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Appendices 

Appendix A 

Psoriasis upregulated genes (Benjamini < 0.01 and fold change > 1.5) overlapped with 

Rheumatoid Arthritis KEGG pathway. Genes belonging to IL-17 immune response are commonly 

altered between psoriasis and rheumatoid arthritis. AC_down: psoriasis A/C consensus 

downregulated gene signature, AC_up: psoriasis A/C consensus upregulated gene signature, 

AU_down: psoriasis A/U downregulated consensus gene signature, AU_up: psoriasis A/U 

upregulated consensus gene signature. 
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Appendix B 

Psoriasis upregulated genes (Benjamini < 0.01 and fold change > 1.5) overlapped with Dilated 

Cardiomyopathy KEGG pathway. The pathway is crowded with downregulated genes in psoriasis 

transcriptome. AC_down: psoriasis A/C consensus downregulated gene signature, AC_up: 

psoriasis A/C consensus upregulated gene signature, AU_down: psoriasis A/U downregulated 

consensus gene signature, AU_up: psoriasis A/U upregulated consensus gene signature. 
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Appendix C 

The average frequencies of the HLA alleles that are under positive selection (iHS Benjamini < 0.01) in at least one population. The SNPs under 

positive selection are in bold. The SNPs are labeled according to the sub-regions they are located on (Class I, Class III, Class II). The allele column 

represents if the selection is on the ancestral allele (A) or derived allele (D). The SNPs are sorted according to their genomic positions. They are 

also annotated with the gene they are located on (intron, coding, UTR, promoter) or around (intergenic within 20K basepairs). The iHS is not 

calculated for frequencies above 0.95 and below 0.05. The SNPs that don't have any frequency data for a population are left blank. 

 

   Average Frequencies of the Alleles under Selection    For intergenic SNPs 

 
SNPs 

All
ele 

mkk lwk yri asw chb jpt chd ceu tsi gih mex position location 
Gene 

Symbol 
Preceding 

Gene 
Following 

Gene 

C
la

s
s
 I

 

rs9261434 D 0.042 0.023 0.044 0.026 0.004 0.033 0.009 0.106 0.123 0.079 0.052 30087776 intergenic 
 

TRIM40 TRIM31 

rs3094134 D   0.005 0 0.009 0 0.015 0.009 0.093 0.108 0.03 0.043 30122154 coding TRIM10 
  

rs1573296 D 0.042 0.005 0 
 

0 0 
 

0.111 0.049 
 

0.026 30127805 intron TRIM10 
  

rs2523729 D 0.022 0.064 0.058 0.035 0 0 
 

0.111 0.049 
 

0.017 30137387 intron TRIM15 
  

rs9261538 D   0.005 
 

0.009 
 

0.015 0.009 0.088 0.103 0.035 0.043 30143491 intergenic 
 

TRIM26 
TRIM10, 
TRIM15 

rs3129988 D   
 

0 0.009 0 0 
 

0.084 0.059 0.005 0.026 30769478 
    

rs1264361 D 0.01 0.023 0.02 0.053 
 

0.007 0.005 0.128 0.049 0.015 0.043 30777498 
    

rs886424 D 0.01 0.023 0.021 0.053 0 0.007 0.005 0.128 0.05 0.015 0.043 30782002 
    

rs1264353 D   
 

0.024 
 

0 0 
 

0.172 
  

  30787762 
    

rs1264350 D 0.013 0.027 0.02 0.061 0.004 0.044 0.037 0.125 0.083 0.005 0.043 30796545 
    

rs1634721 D 0.006 0.018 0.003 
 

0 0 
 

0.116 0.044 
 

0.026 30977680 intron MUC22 
  

rs9357105 D   
 

0.014 
 

0.066 0.117 0.101 0 0.005 0.005 0.009 31003923 intergenic 
 

HCG22 MUC22 

rs3130544 D   0.018 0.003 
 

0 0 
 

0.115 0.054 
 

0.026 31058340 
    



102 
 

rs2256962 D   
  

0.018 
   

0.102 0.054 0.005 0.035 31065620 intergenic 
 

CDSN, 
PSORS1C1, 

C6orf15 
 

rs2233956 D 0.029 0.023 0.01 0.053 0.009 0.026 0.028 0.204 0.137 0.208 0.086 31081205 promoter 
PSORS1C

1   

rs4410768 D 0.026 0.041 0.003 0.018 0.106 0.022 0.014 0.009 0.005 0.094 0.009 31089708 intron 
PSORS1C

1   

rs3130557 D   0.032 0.024 0.035 0 0 
 

0.115 0.069 
 

0.026 31094703 intron 
PSORS1C

1   

rs28732100 D 0.022 
  

0.018 0.009 0.029 0.028 0.084 0.049 0.198 0.017 31104593 intron 
PSORS1C

1   

rs2233952 D   
 

0 0.035 0.031 0.069 0.046 0.133 0.098 0.059 0.086 31105891 intron 
PSORS1C

1   

rs1265097 D 0.101 
 

0.222 0.102 0.022 0.102 0.043 0.099 0.167 0.126 0.245 31106459 coding 
PSORS1C

1   

rs1265083 D 0.022 0.009 0.054 
 

0 0 
 

0.004 0.015 
 

0.069 31111347 intron CCHCR1 
  

rs130072 D 0.019 0.05 0.082 0.026 0.022 0.077 0.041 0.071 0.137 0.1 0.147 31112484 coding CCHCR1 
  

rs7750641 D 0.013 0.023 0.003 
 

0.004 0.004 0.005 0.112 0.059 0.005 0.034 31129310 coding TCF19 
  

rs2073724 D 0.019 0.05 0.092 0.035 0.022 0.077 0.041 0.071 0.137 0.099 0.147 31129707 coding TCF19 
  

rs17190776 D 0.019 0.05 0.092 0.035 0.022 0.077 0.041 0.071 0.137 0.099 0.147 31130865 threeUTR TCF19 
  

rs3130933 D 0.048 
 

0 0.026 0.062 0.029 0.009 0.159 0.093 0.03 0.043 31132085 intergenic NA 
PSORS1C3, 

POU5F1 
CCHCR1, 

TCF19 

C
la

s
s
 I
II

 

rs9267487 D 0.157 0.068 0.017 0.061 0.018 0.033 0.018 0.066 0.064 0.163 0.121 31511350 promoter DDX39B 
  

rs28732144 D 0.105 0.055 0.003 0.018 
 

0.018 0.014 0.058 0.029 0.158 0.034 31556205 intron LST1 
  

rs17207190 D 0.099 0.055 0.003 0.018 
 

0.018 0.009 0.053 0.029 0.15 0.034 31569520 intergenic 
 

AIF1, 
PRRC2A 

NCR3, 
LTB, LST1 

rs35502919 D   
  

0.018 
   

0.058 0.01 
 

  31604355 coding PRRC2A 
  

rs3117582 D 0.048 0.014 0.041 0.026 0 0 
 

0.08 0.064 
 

0.026 31620520 intron APOM 
  

rs3132449 D 0.049 0.023 0.044 0.026 
   

0.08 0.064 
 

0.035 31626013 intergenic 
 

CSNK2B, 
C6orf47, 
LY6G5B, 
GPANK1, 
LY6G5C 

APOM, 
BAG6 

rs9267531 D 0.045 0.023 0.048 0.026 0 0 
 

0.08 0.064 
 

0.034 31636742 threeUTR CSNK2B 
  

rs2854050 D 0.042 0.037 0.027 0.035 0.221 0.199 0.174 0.062 0.034 0.069 0.123 32185605 intron NOTCH4 
  

rs2071282 D   0.005 0.003 
 

0.102 0.062 0.032 0.004 
 

0.01 0.018 32188943 coding NOTCH4 
  

rs3132946 D   
 

0.007 0.018 0 0.018 0.009 0.168 0.074 0.03 0.052 32190028 intron NOTCH4 
  

rs3830041 D 0.256 0.2 0.218 0.123 0.195 0.12 0.092 0.084 0.108 0.183 0.121 32191339 intron NOTCH4 
  

rs8192565 D 0.035 0.005 0.031 0.079 0.133 0.088 0.096 0.075 0.113 0.153 0.052 32191607 intron NOTCH4 
  

rs12055568 D 0.074 0.046 0.007 
 

0.128 0.193 0.197 0.013 0.039 0.005 0.121 32192083 promoter NOTCH4 
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rs549182 D 0.105 0.138 0.106 0.096 0.15 0.106 0.069 0.009 0.044 0.11 0.086 32205045 intergenic 
  

NOTCH4 

rs549270 D 0.125 0.164 0.126 0.158 0.15 0.109 0.087 0.013 0.07 0.149 0.138 32205072 intergenic 
  

NOTCH4 

rs2073047 A   
 

0 
 

0.084 0.15 0.156 0 
  

0.026 32335899 intron C6orf10 
  

rs2076535 D 0.003 0.005 
  

0.181 0.077 0.018 0.004 0.005 0.054 0.017 32339511 fiveUTR C6orf10 
  

rs3763309 D 0.077 0.041 0.071 0.088 0.084 0.102 0.11 0.265 0.162 0.198 0.267 32375973 promoter BTNL2 
  

rs3763310 D   
 

0 
 

0.066 0.047 0.046 0 
  

  32376103 promoter BTNL2 
  

rs3763312 D 0.077 0.036 0.071 0.088 0.085 0.103 0.11 0.265 0.158 0.198 0.267 32376348 promoter BTNL2 
  

C
la

s
s
 I
I 

rs9784876 A 0.154 0.195 0.272 0.246 0.106 0.018 0.009 0.058 0.094 0.104 0.086 32788878 intron TAP2 
  

rs4148876 D 0.064 
 

0 0.018 0.167 0.085 0.042 0.093 0.049 0.035 0.103 32796793 intron TAP2 
  

rs2228391 D 0.006 0.005 
  

0.049 0.089 0.087 
  

0.045   32797773 coding TAP2 
  

rs3128935 D 0.157 0.359 0.293 0.228 0.164 0.172 0.165 0.04 0.054 0.104 0.095 32972404 threeUTR HLA-DOA 
  

rs3129304 D 0.053 0.252 0.219 0.205 0.04 0.084 0.041 0.159 0.114 0.03 0.371 32973743 threeUTR HLA-DOA 
  

rs3129303 D 0.074 0.264 0.221 0.211 0.04 0.088 0.046 0.159 0.114 0.03 0.371 32973878 threeUTR HLA-DOA 
  

rs10947368 D 0.051 0.243 0.221 0.105 0 0 
 

0 
  

  32975341 coding HLA-DOA 
  

rs364950 A 0.087 0.405 0.299 0.193 0 0 
 

0.04 0.044 
 

0.034 32975896 coding HLA-DOA 
  

rs404557 D 0.087 0.405 0.306 0.193 0 0 
 

0.04 0.044 
 

0.034 32976927 intron HLA-DOA 
  

rs3763342 A 0.201 0.366 0.4 0.36 0.354 0.233 0.192 0.133 0.213 0.273 0.172 32978997 promoter HLA-DOA 
  

rs3763341 A 0.125 0.268 0.226 0.184 0.353 0.19 0.154 0.106 0.153 0.267 0.112 32979020 promoter HLA-DOA 
  

rs2116263 D 0.056 0.255 0.243 0.158 0.465 0.471 0.573 0.031 0.02 0.079 0.017 33025493 intergenic 
 

HLA-DPA1, 
HLA-DPB1  

rs4551215 D 0.099 0.257 0.252 0.184 0.465 0.533 0.61 0.04 0.025 0.149 0.026 33025700 intergenic 
 

HLA-DPA1, 
HLA-DPB1  

rs4582419 D 0.055 0.257 0.245 0.184 0.478 0.537 0.602 0.045 0.025 0.149 0.034 33040138 intron HLA-DPA1 
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