College of Information Science and Technology

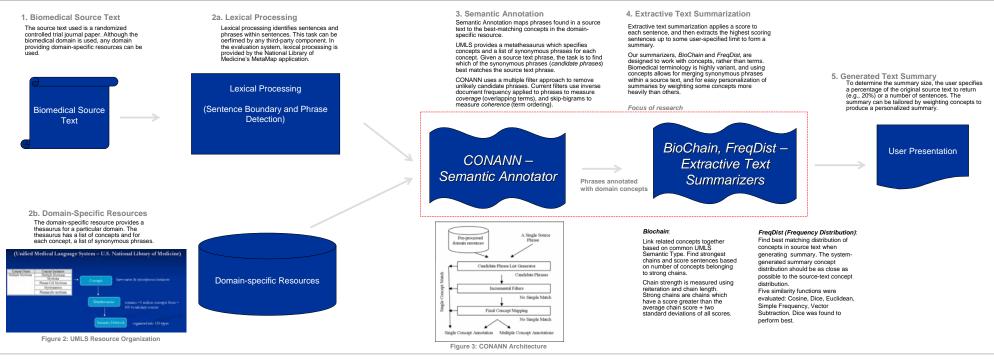
Drexel E-Repository and Archive (iDEA) <u>http://idea.library.drexel.edu/</u>

Drexel University Libraries www.library.drexel.edu

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations (Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may reproduce (print, download or make copies) the Material without prior permission. All copies must include any copyright notice originally included with the Material. You must seek permission from the authors or copyright owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The responsibility for making an independent legal assessment and securing any necessary permission rests with persons desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

Biomedical Text Annotation and Summarization


Lawrence H. Reeve¹, Hyoil Han¹, Ari D. Brooks²

¹ Drexel University, College of Information Science and Technology

² Drexel University, College of Medicine

Figure 1: Text Summarization System and Semantic Annotation system

Abstract: A two-part text summarization system is described which addresses the scalability of utilizing the large volume of text-based information in the biomedical field. The contributions of the system are a) it utilizes biomedical concepts rather than terms to find the main points of a text, b) it uses two new concept-based algorithms to find important areas of a text for extracting sentences to form a summary, and c) it is supported by a new semantic annotation sub-system, which identifies biomedical concepts found in biomedical text documents. The semantic annotation sub-system uses a novel multiple-filter system architecture for online matching of concepts defined by a biomedical metathesaurus. The goal of semantic annotation is to show online text-to-concept mapping can be performed without a significant loss of precision as compared to current offline systems. An evaluation shows the text summarization algorithms using concepts outperform existing summarization systems, and the semantic annotation system performs twenty times faster than a state-of-the-art system with no significant loss of precision.

Motivation, Hypothesis and Method

Motivation: Generate short summaries of biomedical texts (randomized controlled trials in oncology) to allow physicians and researchers to assimilate more information in less time.

Approach: Identify and extract sentences from the source text to form a summary. The problem is how to identify important sentences within the full source text to extract while simultaneously reducing information redundancy.

Hypothesis: Domain-specific concepts can be used to identify important areas with a text which can then be extracted to form a summary.

Method: Annotate biomedical source texts with biomedical concepts and then use two novel algorithms which utilize concepts rather than terms to identify sentences which express the main themes of the text.

Publications

Reeve, L., Han, H., & Brooks, A. D. (2006). Biomedical Text Summarization Using Concept Chains. *International Journal of Data Mining and Bioinformatics*, 1(4), 389-407.

Reeve, L. H., Han, H., & Brooks, A. D. (2007). The Use of Domain-Specific Concepts in Biomedical Text Summarization. To appear in the *Journal of Information Processing and Management, Special Issue on Summarization. Elsevier.*

Reeve, L. H. & Han, H. (2007). CONANN: An Online Biomedical Semantic Annotator. To appear in the *Proceedings of Data Integration in the Life Sciences.* June 27-29, 2007.

Summarization Evaluation

Basic Idea

- Generate model summaries from domain experts
- Generate system summaries
- Use ROUGE to compare system and model summaries

Semantic Annotation Evaluation

Intrinsic

- Use NLM's MetaMap application to generate baseline of singly-mapped noun phrases
- Pass this set of phrases to CONANN
- Compare precision and time-to-annotate

Extrinsic

 Compare MetaMap vs. CONANN in text summarization performance using FreqDist and SumBasic summarizers

Observations

- CONANN Annotator:
- Performs 20x faster than state-of-the-art system
 Small loss of precision, acceptable in a user task
- Sinali loss of precision, acceptable in a use
- BioChain, FreqDist Summarizers:
- Concepts perform closely with terms
- Concepts can be used to personalize summaries

Semantic Annotation Results

Figure 4: Average Phrase Annotation Time

10 05 07 06 07 06 05 04 05 04 05 04 05 04 05 04 05 04 05 04 05 04 05 04 05 04 05 04 05 05 05 05 05 05 05 05 05 05 05 05 05	~	>	r	•
0.10		Coverage	Coverage+Conerence	Converse+Coverage
One Concept	0.62	0.64	0.84	0.90
 Top Five Concepts 	0.62	0.69	0.89	0.95

Figure 5: Annotator Precision

Summarization Method	ROUGE-2 Score	ROUGE-SU4 Score
FreqDist using MetaMap	0.1207	0.2200
FreqDist using CONANN	0.1192	0.2161
SumBasic using CONANN	0.1178	0.2098
SumBasic using MetaMap	0.1094	0.2003

Figure 6: ROUGE Scores (extrinsic evaluation)

Text Summarization Results

Summarizer	ROUGE-2	Summarizer	ROUGE-SU4
FreqDist-Term-Dice	0.13323	FreqDist-Term-Dice	0.23005
SumBasic-Term	0.12711	SumBasic Term	0.22169
FreqDist-ConceptMMTX-Dice	0.12080	FregDist-ConceptMMTX-Dice	0 21864
FreqDist-ConceptDUIST-Dice	0.11943	FreqDist-ConceptDUIST-Dice	0.21407
SumBasic ConceptDUIST	0.11827	SumBasic-ConceptDUIST	0.20894
SumBasic ConceptMMTX	0.10920	BiochainPlusFregDist	0.19977
Lenue MMR		SumBasic-ConceptMMTX	0.19868
BiochainPlusFregDist	0.10637	.emus-MMR	0.19737
Biochain-MostFrequentStrongChainConcept	0.10419	Biochain-MostFrequentStrongChainConcept	0.19010
Biochain-AllStrongChainConcepts		Biochain-AllStrongChainConcepts	0.18329
Mead	0.09160	Mead	0.17368
Baseline-Random	0.07913	Baseline-Random	0.16100
MSWord	0.07849	MSWord	0.14886
SweSum	0.07430	SweSum	0.14848
OTS	0.07364	OTS	0.14646
Baseline-Lead	0.07112	Baseline-Lead	0.13706
Authon Abstract	0.02951	Author-Abstract	0.06309
Expert-Summary	0.01462	Expert-Summary	0.02771

Figure 7: ROUGE-2 and ROUGE-SU4 scores for text summarization

wrowa oingle Factor, HOOUL-2						
SUMMARY						
Groupst	Court	Sum	Average	Variance		
Externel Summarizens	0	0.01948	0.00831111			
FreqDat Sortmarians)	0.37340	0.124400007	5.7ME-00		
ANOVA						
Source of Variation	88	8	ARS	1	P-value	Test
Between Groups	0.000909467	1 E	0.000969467	10.100901	0.009616	4.96450
Within Groups	0.006838871	10	0.000683887			
Tolal	0.013808338	11	2014201111			
Ansk Tingk Factor - ROUGE-SUA						
NUMBER OF CONTRACT						
Graye Ditensi Summaripen	Cant	Jan	Average	Variance		
FredDid Summarizers		8 1 20371 3 8 46358		166 E.00280 667 E.25E-8		
ANCYA						
Source of Variation	35	đ	Ars.	. P.	Putter	Fort
Between Groupe Within Groups		7253340 1 3344518 10	6.647265 8.667265		0.001446	4.96459
ingen crodes		North 10	0.054.005	*54		

Figure 8: ANOVA: FreqDist vs. Other summarizers