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Abstract—We present a novel framework for the identification of
a multiple-input multiple-output (MIMO) system driven by white,
mutually independent unobservable inputs. Samples of the system
frequency response are obtained based on parallel factorization
(PARAFAC) of three- or four-way tensors constructed based on,
respectively, third- or fourth-order cross spectra of the system out-
puts. The main difficulties in frequency-domain methods are fre-
quency-dependent permutation and filtering ambiguities. We show
that the information available in the higher order spectra allows
for the ambiguities to be resolved up to a constant scaling and per-
mutation ambiguities and a linear phase ambiguity. Important fea-
tures of the proposed approach are that it does not require channel
length information, needs no phase unwrapping, and unlike the
majority of existing methods, needs no prewhitening of the system
outputs.

Index Terms—Blind system identification, convolutive MIMO,
higher order statistics, multiple-input multiple-output (MIMO),
parallel factorization (PARAFAC).

I. INTRODUCTION

WE consider a linear time-invariant (LTI) multiple-input
multiple-output (MIMO) system driven by unobservable

inputs. Our goal is to identify the system function based on the
system outputs. MIMO models arise frequently in speech pro-
cessing, multiaccess communication, multitrack digital mag-
netic recording, and biomedical applications, [26], [34], [45].

The case of a memoryless (or scalar) system excited by white
inputs has been studied under the name of independent compo-
nent analysis (ICA) [14]. In this paper, we focus on the iden-
tification of convolutive MIMO systems. Among the possible
approaches, [15], [27], [39], [46], frequency-domain methods
offer certain advantages over time domain ones [5], [9], [12],
[16], [17]; they do not require system length information, and
also, their formulation can take advantage of existing results for
the memoryless MIMO problem. Indeed, in the frequency do-
main, at each frequency, the convolutive problem is transformed
into a scalar one. However, an additional step is required to re-
solve the frequency-dependent permutation, scaling and phase
ambiguities.
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Most of the blind convolutive MIMO system identification
methods in the literature exploit either second-order statistics
(SOS) or higher order statistics (HOS). SOS-based methods, as
opposed to HOS based ones, do not require long data in order to
obtain good estimates and involve low complexity. Examples of
SOS-based methods can be found in [2], [3], [5], [17], and [48].
All these methods require channel diversity, and they apply to
nonwhite inputs only. On the other hand, HOS-based methods
provide system information without requiring channel diversity
and also can deal with white inputs as long as they are non-
Gaussian. Examples of HOS MIMO methods can be found in
[12], [16], [20], [27], and [46].

In [16], a frequency-domain approach was proposed for
the convolutive MIMO case with white inputs. The system
response was obtained based on joint diagonalization of output
HOS slices. The result of the joint diagonalization contained a
frequency-domain scaling ambiguity, which could be reduced
to a constant scaling ambiguity by exploiting the redundancy
in the higher order cumulant domain. In order for joint diago-
nalization to be applicable, the system frequency response at
each frequency would need to be a unitary matrix. To guarantee
this, a prewhitening operation was applied to the system output.
Similar prewhitening is employed in the majority of HOS-based
blind MIMO estimation methods [3], [11], [12], [33]. However,
prewhitening is a sensitive process as it tends to lengthen the
global system response, and as a result increases complexity
and estimation errors. The obtained estimate contains the
contribution of both the whitening filter and the MIMO system,
and extracting the MIMO system response from this estimate
is a sensitive task.

The need for whitening can be obviated by another decompo-
sition that does not require unitary matrices. One such approach
is the PARAFAC decomposition, which is a low-rank decom-
position of three- or higher way arrays. It was first was devel-
oped in [13] in order to overcome the rotation problem which
exists in two-dimensional (2-D) arrays, and later generalized in
[10], [23]–[25], and [30]. The PARAFAC decomposition can be
thought as an extension of singular value decomposition to mul-
tiway arrays, where uniqueness is guaranteed even if the nondi-
agonal matrices involved are nonunitary.

In this paper, we show how the PARAFAC ideas can be used
in the frequency-domain framework of [16] to avoid the need for
prewhitening. The decomposition is applied on one or more ten-
sors that are formed based on HOS of the system output. Imme-
diately following the PARAFAC decomposition the system fre-
quency response matrix can be computed within a constant per-
mutation ambiguity and a frequency dependent diagonal scaling
ambiguity. The latter ambiguity can be reduced to a diagonal

1053-587X/$20.00 © 2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190329689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ACAR et al.: BLIND MIMO SYSTEM ESTIMATION 4157

constant scaling ambiguity and a diagonal linear phase ambi-
guity via an iterative scheme.

The paper is organized as follows. In Section II, we summa-
rize the results on PARAFAC decomposition that we will need.
In Section III, we formulate the problem and list all required
assumptions. In Section IV, we present the main results based
on third-order statistics. In Section V, we extend the previous
results to employ fourth-order statistics. Implementation issues
are discussed in Section VI, and potential applications are dis-
cussed in Section VII. Simulation results on estimation perfor-
mance are given in Section VIII. Finally, concluding remarks
are made in Section IX.

Notation:
• Superscripts , , and denote transpose, Hermitian

transpose, and complex conjugate operations, respec-
tively.

• denotes the th-order cumulant of
the random variables .

• Boldface symbols denote matrices. Capital calligraphic
symbols denote tensors.

• denotes a diagonal matrix, whose diagonal contains
the th row of matrix .

• denotes a vector formed based on the diagonal
elements of matrix .

• is a diagonal matrix whose diagonal ele-
ments are .

• denotes modulo .

II. PARALLEL FACTORIZATION

Let us consider a three-way tensor with dimensions
, given that its element is indexed by , , , and the

-component decomposition [28]

(1)

Equation (1) expresses the three-way array as a sum of
rank-one three-way factors, each one of which is the outer
product of three factors.

In a compact form, can be expressed in terms of its slices
, as

(2)

where is an matrix with entries ; is a
matrix with entries ; is a matrix with entries .

Under certain conditions, the tensor can be decomposed
uniquely into matrices , , and . These conditions are based
on the notion of -rank [21], [25].

Definition 1: Consider an matrix . If rank
then contains linearly independent columns. The matrix
has -rank if every columns of are linearly
independent, but either , or there exist a collection of
linearly dependent columns in .

Note that the rank .

Theorem 1 [25], [30], [40]: Let be a tensor whose slice
is given as in (2). can be decomposed into , , and

uniquely up to permutation and scaling ambiguities if

(3)

The condition of (3) is sufficient but not necessary for the
unique decomposition of [4], [6], [7], [28].

Several algorithms exist for decomposing tensor into com-
ponents , and . [21]. The method that we use in this paper
is COMplex parallel FACtor analysis (COMFAC), which is a
fast least square PARAFAC algorithm applied on a compressed
version of the data [21], [29]. COMFAC consists of first com-
pressing the array, second initializing and fitting the PARAFAC
model on that compressed array, and finally decomposing and
refining the solution in the raw data space.

III. PROBLEM FORMULATION

Let us consider a -input -output LTI system. Let
n be a vector of inputs; the finite-

impulse-response (FIR) MIMO system impulse response ma-
trix whose element is denoted by ;

the vector of observations; and
observation noise. Here, de-

notes discrete time. All signals can be real or complex.
The MIMO system output equals

(4)

where is the length of the longest .
Let be the -point discrete Fourier trans-

form (DFT) of , i.e.,

(5)

where . Our goal is to estimate based on the system
output.

The problem contains inherent ambiguities. At best, we can
find such that [16]

(6)

where is a column permutation matrix, a constant diagonal
matrix and diagonal matrix with integer elements. Equiva-
lently, the impulse response matrix, at best, can be found within
a column permutation matrix, a constant diagonal matrix, and
a cyclic shift. We will refer to these ambiguities as trivial am-
biguities. Using DFT properties, it is easy to see that if such a
system estimate was used to recover the inputs, it would yield
each input within a scalar ambiguity and a circular shift. In ad-
dition, the inputs would be recovered in some unknown order
[16].

We next provide a list of all the assumptions considered in
this paper. The subset of assumptions that will be needed in each
case will be stated along with the proposed methods.
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A1) Each is a zero mean, nonsymmetrically dis-
tributed, independent identically distributed (i.i.d.),
stationary process with nonzero skewness, i.e.,

. The ’s are mu-
tually independent.

A2) The matrix is invertible for all .
A3) The -rank of satisfies .
A4) , are zero-mean Gaussian stationary

random processes with variance , mutually indepen-
dent and independent of the inputs.

A5) Each is a zero mean, i.i.d., stationary process with
nonzero kurtosis. The ’s are mutually independent.

A6) The -rank of satisfies .
Discussion on Assumptions: Assumption A1) guarantees that

there are nonzero samples in the third-order cumulant sequence
of the system output. It will be used in the proposed methods
that involve third-order statistics. Assumption A2) requires that
the channel matrix is full column rank for all ’s. As it will
be seen later, this is the strongest channel assumption made by
the methods to be proposed, but still, it is less stringent than the
assumptions made in [16]. We note that time-domain methods
do not require such assumption; however, they require channel
length information and are sensitive to length mismatch. A ma-
trix whose columns are drawn independently from an absolutely
continuous distribution is both full rank and full -rank with
probability one [40]. Thus, if the elements of matrix are
independent for all , , and thus also , are full rank
and also full -rank. In the latter case, condition A3) is equiva-
lent to requiring that . For
A3) is satisfied for . Assumption A4) is needed in order
for additive noise to be suppressed in the higher order cumu-
lant domain. Assumption A5) requires that the fourth-order cu-
mulants of the inputs are not identically zero. Assumption A5),
unlike assumption A1), is satisfied by most communication sig-
nals. Under A2), and assuming that , A6) is satisfied
for .

IV. CHANNEL ESTIMATION

Under assumptions A1) and A4), the third-order cross cumu-
lants of the system outputs , , [35] equal

(7)

where .
The discrete-frequency cross bispectrum of ,

, and is the 2-D DFT of , and equals

(8)

For fixed and , can be viewed as the
th element of tensor . The

th slice of that tensor equals

(9)

where .
In the following, we will consider the tensors ,

, for some constant , , and show how they
can be used to recover for each . The choice of
, will affect the estimation result. The criterion for selection

of these parameters will be discussed in a later section.
Let us define

(10)

(11)

(12)

Under assumption A3) and via Theorem 1, the tensor
can be decomposed into

(13)
where is a permutation matrix, and is a complex diag-
onal matrix. Both and depend on and ; however,
since in the sequel we will only vary , that dependence is not
shown mainly for notational convenience.

If and are not coprime integers, then , , , ,
, and will be periodic with period . In that case, by

varying , or provide independent samples of the
system frequency response matrix. Since for the recovery of an
impulse response of length we only need frequency re-
sponse samples, as long as , we can still recover the
channel matrix. However, the more frequency-domain samples
we obtain, the lower the estimation error in the system impulse
response will be.

On the other hand, if , are coprime integers, and
are periodic with period . As takes values from 0 to ,

becomes equal to the samples of the channel matrix starting
from sample , and moving to the left in steps of . Due to
the periodic extension of the DFT, and since , are coprime,
eventually all samples of the channel matrix will be visited.
and will also be periodic; thus, , will be periodic
with period .

Proposition 1: Consider the PARAFAC decomposition of the
tensor into , , , as defined in (13).
Under assumption A3), it holds

(14)

The proof of Proposition 1 can be found in [25] and [40]. For
the reader’s convenience, it is also given in Appendix I.

According to Proposition 1, the decomposition of
results in the same permutation ambiguity, , in all three

terms, , , . Noting that is independent of (see
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(12)), it turns out that the permutation ambiguity in the decom-
position of for different ’s can be made in-
dependent of . Consider the operation that normalizes the el-
ements of matrix so that its first row consists of ones. The
normalized matrix equals . The permuta-

tion of with respect to equals .
Let us column-order , , and according to the order

of columns of for all . The column-ordered components are

(15)

(16)

(17)

where is a constant permutation matrix.

A. Channel Estimation Based on Decomposition of
Multiple Tensors: Multiple PARAFAC Decomposition (MPD)
Approach

Equation (15) indicates that, under assumption A3), the de-
composition of tensors , ,
followed by column-ordering of the matrix components yields

, within a constant per-
mutation ambiguity and a diagonal scalar ambiguity . As
a result of the latter ambiguity, all elements of the th column
of will be recovered within the same filtering ambiguity.
We will refer to this estimation approach as MPD-FA (muliple
PARAFAC decomposition with filtering ambiguity). The latter
ambiguity would be reflected as filtering ambiguity on each
input and could be resolved using a single-input single-output
(SISO) blind channel estimation approach.

It is interesting to note that MPD-FA also applies to MIMO
systems that have more inputs than outputs. In such cases
is a fat matrix. Assuming that the channel matrix elements are
random and independent, then the -rank of would be

and requirement A3) would become

(18)

In other words, there are values of , for which PARAFAC
still yields unique decomposition, e.g., , or

, .
If, in addition to A3), assumption A2) is also satisfied, then

the diagonal frequency-dependent scaling ambiguity can be
reduced to a fixed diagonal scaling ambiguity. This can be
achieved via the iteration defined in the following proposition.
We should note that A2) cannot be satisfied by a MIMO system
with more inputs than outputs.

Proposition 2: For some fixed , in , , co-
prime, and under assumptions A1)–A4), consider the PARAFAC
decomposition of tensors , .
Let , , be the corresponding column reordered com-
ponents. For

(19)

(20)

it holds

(21)
where , are diagonal matrices with positive elements,
and , are diagonal matrices.

The proof of Proposition 2 is given in Appendix II.
Equation (21) provides within a fixed permu-

tation matrix, a diagonal matrix that assumes a different fixed
value depending on whether is odd or even, and a phase diag-
onal ambiguity that depends on . Since the DFT domain con-
tains enough redundancy, using the even or odd samples of the
channel matrix would suffice for recovering the system impulse
response, as long as .

Considering (21) for even (or odd), and comparing to (15),
we can see that there is a frequency-dependent diagonal ambi-
guity in both (i.e., and , respectively) but in (21)
that ambiguity has unit modulus. Although both ambiguities can
be resolved using a SISO approach, as will be shown next, there
is a simpler way to compensate for the unit modulus one.

We next show that the phase term can actually be com-
puted within an integer multiple of and/or an integer mul-
tiple of .

Consider for some as given in (21).
For , coprime, it holds

(22)

(23)

Combining (22) and (23), we get

(24)

Thus, is a diagonal matrix; if is even, it has
unit modulus; otherwise, its modulus depends on whether is
odd or even.

Let us consider to be even, and to be coprime to .
Under A1)–A4), can be obtained within trivial
ambiguities as

(25)

(26)

where is some integer in ; integer; and

, i.e., it is a diag-
onal matrix with positive elements taking two different values
depending on whether is even or odd.

At the starting point of the iteration of Proposition 2, is
needed. This is a function of . Therefore, we can
choose so that we start the iteration with a well-conditioned
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Fig. 1. MPD approach.

matrix. Let us take , where is some integer. Then
(25) can be written as

(27)

(28)

where .
Let us reorder the samples of ,

, i.e., form , Applying
an -point inverse DFT (IDFT) on the even samples of the
latter sequence, we get

(29)

which is an upsampled by version of circularly shifted
by . By downsampling by , we can get a circularly
shifted version of .

We will refer to the above channel estimation methods as the
multiple PARAFAC decomposition (MPD) approach. A sum-
mary of MPD is given in Fig. 1.

B. Channel Estimation Based on a Single PARAFAC
Decomposition: SPD Approach

Proposition 3: Assume that A1–A4) hold and that
with . For some , with , coprime,
consider the PARAFAC decomposition of tensor re-
sulting in components , , and .

For , define

(30)

Fig. 2. SPD approach.

where

(31)

(32)

It holds

(33)

where , are diagonal matrices and , are diagonal
matrices with positive elements.

The phase ambiguity can be solved along the lines of (24),
where is replaced with .

Again, taking , where is some integer, we get

(34)

(35)

where .
Finally, the channel impulse response matrix can be obtained

as in (29).
The above proposition provides a method for estimating the

system response. We will refer to that methods as the single
PARAFAC decomposition (SPD) method, a summary of which
is given in Fig. 2. We should note that the channel assumptions
for this approach are just a subset of those in [16].

The SPD method is computationally simpler than the MPD
approach.
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V. EXTENSIONS TO FOURTH-ORDER STATISTICS

The ideas presented above can be extended to HOS. We next
discuss the extension to fourth-order statistics.

Based on the assumption A4) and A5), the fourth-order cross
cumulant of the received signals equals [35]

(36)

where is the
fourth-order cumulant of . The discretized fourth-order
cross spectrum, defined as the three-dimensional (3-D) DFT of

equals [35]

(37)

There are two approaches one could follow. The first is based
on a trilinear decomposition of a three-way tensor formed
based on fourth-order spectra given by (37), where , , ,
and are fixed. Let denote a 3-D tensor whose

th element is equal to . Its th slice
equals

(38)

where . Equation (38) is similar to
(9), so the results presented in the previous section are directly
applicable.

However, the above approach does not exploit all informa-
tion available in fourth order statistics. Alternatively, we can use
four-dimensional PARAFAC decomposition.

Consider a four-way tensor with dimensions
and the -component decomposition

(39)

for , , , .
Let , , , and be matrices with elements , , ,
and , respectively. Given , the matrices , , , and
are unique up to permutation and complex scaling of columns
provided that [41]

(40)

In a compact form, can be expressed in terms of its slices
as

(41)

For our case, let us consider the four-way tensor
whose th element equals

, and define

(42)

(43)

(44)

(45)

The PARAFAC decomposition on yields

(46)

As in the third-order cumulant case, it can be shown that

(47)

Proposition 4: Assume A2), A4), A5), , and .
For some fixed , , in , with ,
coprime, consider the tensor . Let , , ,
and be the components of its PARAFAC decomposition.

For , define

(48)

(49)

Construct

(50)

(51)

It holds

(52)
where , are constant diagonal matrices, and and
are diagonal matrices with positive elements.

The proof is given in Appendix IV.
By setting and , (52) can be

rewritten as

(53)

Similar to (33), (53) provides the even- or odd-indexed sam-
ples of the system frequency response within a phase and con-
stant permutation and ambiguities. We should take to be an
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integer multiple of to facilitate resolution along the line of
(33).

Proposition 4 provides a method to obtain the MIMO system
response using fourth-order statistics. We will refer to this
method as the fourth-order SPD method.

VI. IMPLEMENTATION ISSUES

As already discussed, , should be taken to be coprime. To
facilitate phase recovery, should be taken to be even. Also,

should be taken as an integer multiple of .
When implementing the MPD method, to facilitate the

column reordering step, we should pick so that it maximizes
the minimum Euclidean distance between the columns of

(normalized ).
In both MPD and third-order-cumulants-based SPD, since we

are using the inverse of , we should pick so that the smallest
eigenvalue of is as large as possible. Also, should be
a well-conditioned matrix. Although there is no formal way to
ensure the above, simulations suggest that, in the case where
all cross channels occupy approximately the same frequency
range, the following ad hoc method can be used. We can es-
timate the trace of the power spectrum matrix corresponding
to the system output. Then, we can experiment with different
values of selected from the high-energy region of the trace,
that is, perform PARAFAC decomposition of and
check whether the resulting and satisfy the above con-
ditions.

For the fourth-order-cumulants-based estimation, we set
and . Equation (48) requires the inverse of

in each iteration, and the inverse of
at the first step. In order to enable phase recovery,

should be an integer multiple of . Thus, we can always set
and choose and , where

and lie in the high-energy area of the power spectrum trace.

VII. POTENTIAL APPLICATIONS

MIMO problems that can be solved using third-order statis-
tics arise in polarimetric calibration of radar images, where in-
puts corresponding to several transmit–receive pairs of polar-
izations are observed through FIR distortion filters [18], [38].
Synthetic aperture imaging (STA) is a technique that has shown
promise in medical imaging applications [19]. In STA, an image
is created by making a number of consecutive defocused trans-
missions from different locations of the aperture, and an image
is formed from every single element transmission. Again here,
image recovery can be formulated as a MIMO problem [22].
Separation of two or more speakers based on the output of mul-
tiple microphones can also be posed as a MIMO problem. In this
case, the channels represent acoustic impulse responses. Site re-
sponse analysis based on free surface recordings can be viewed
as a MIMO problem. The channels represent path reflectivities
and the inputs are seismic signals at some depth [49].

When applying the proposed third-order-statistics-based
methods to the aforementioned cases, a point of concern is
the validity of assumption A2), i.e., the condition number of
matrix for each . In cases where the channel coefficients

represent attenuation of various paths, e.g., speaker separation,
site response analysis, it is reasonable to assume that A2) will
hold.

Due to complexity considerations, one would employ
fourth-order statistics for MIMO system estimation only in
cases where third-order statistics are not applicable. Multiuser
multipath communications is one such case [31], [36]. Since
most communications signals are symmetrically distributed,
their third-order cumulants are identically zero. Again, the
elements of channel matrix represent attenuation of various
paths and can be assumed independent [40] thus satisfying
assumption A2).

VIII. SIMULATIONS

In this section, we demonstrate the performance of the pro-
posed approaches.

In all cases, the additive noise processes were white, zero-
mean, complex Gaussian with identical variances and they were
independent of the source signals.

The sample cross-cumulant estimates were windowed by a
Hamming window of size for third-order cumulants,
or for fourth-order cumulants, where is an
upper bound for the channel length . The data length
used to obtain the cross-cumulant estimates is denoted by .
The channel impulse response was obtained as the -samples
long segment (modulo ) with the maximum energy.

In most practical applications, the channels are bandpass sig-
nals. For this reason we conducted our simulations using chan-
nels generated as

(54)

where the ’s are zero-mean Gaussian random variables. By
varying the ’s, we can generate multiple bandpass channels
and the performance of the proposed methods can be looked at
as the average of the performance of all different channels.

We should note that bandpass channels represent challenging
cases for the proposed methods, since for certain frequencies,

can have a large condition number.
For each channel estimation, we performed Monte Carlo

simulations. The normalized mean-square error (NMSE) was
used as a performance index, i.e.,

NMSE (55)

where denotes the cross-channel estimate. The latter was
extracted as the -sample long segment (its lags taken modulo

) that corresponded to the maximum correlation with the
true .

The overall NMSE (ONMSE) was then obtained by averaging
over all subchannels, i.e.,

ONMSE NMSE (56)
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The PARAFAC decomposition was performed using the
MATLAB code downloaded from http://www.ece.umn.edu/
users/nikos/public_html/3SPICE/code.html.

A. Estimation Using Third-Order Statistics

Here, the inputs were taken to be i.i.d. single-sided and ex-
ponentially distributed. The cross-third-order spectrum was es-
timated via the indirect class method [35]. The MPD and SPD
methods were applied as described in Figs. 1 and 2. To avoid
getting a reversed version of we used negative .

When applying the SPD method, instead of (30), the fol-
lowing equation was implemented:

(57)

Although theoretically the same as (30), (57) resulted in better
performance since, for the case where the bispectrum
estimate contains less errors than the estimate
of . If , is no longer invertible
and one would still use (30).

Decoupling of Inputs Followed by SISO Equalization: We
mentioned in Proposition (1) that the channel estimate of
(10) can be used to decouple the input signals, leaving a filtering
ambiguity in each input. Then, we can apply a SISO equalizer
to solve for that ambiguity. This was implemented as follows.
Based on the system estimate we applied a zero-forcing equal-
izer to the system outputs. We then used the SISO simplification
of the MIMO approach of [46] in order to cancel the filtering
ambiguity in each recovered input. We chose the method of [46]
mainly because it is one of the few time domain methods that
are not sensitive to the channel length overestimation.

The channel was subsequently estimated by cross-
correlating the recovered input vector with the output
vector for various values of .

1) Example 1—Selection of Parameters: In the following we
discuss parameter selection and show the effect of various pa-
rameters on estimation performance.

We considered a 2 2 MIMO channel of length
produced based on (54). The channel taps were

(58)

We used data length , signal-to-noise ratio
SNR 20 dB, , . We performed PARAFAC
decomposition of for and all the allowable

Fig. 3. Minimum distance between the columns of the normalized ^C , and the
power spectrum trace. Both are used to select the parameter � (Example 1).

Fig. 4. ONMSE performance of the SPD approach for different values of m,
� (Example 1).

values of ’s, i.e., and com-
puted the minimum Euclidean distance between the columns
of . The average of that distance corresponding
to five independent input realizations is shown in Fig. 3.
The true minimum distance, which was calculated based on

, is also shown on the same figure. Fig. 3(b)
shows the power spectrum trace of the system output, and
also the true power spectrum trace, i.e., .
Comparing Fig. 3(a) and (b), we see that the estimate of the
distance corresponding to a taken in the low power spectrum
trace region is not always accurate. Therefore, it is preferable
to always choose from the high power spectrum trace region.
Based on Fig. (3), one can see that the best value for is 11.

To illustrate the effect of choosing different ’s and ’s, we
show in Fig. 4 the ONMSE for the SPD method corresponding
to different combinations of , , where was always taken
to be an integer multiple of . It can be seen that the selection
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Fig. 5. ONMSE performance comparison of the proposed methods (Example
1).

Fig. 6. ONMSE performance of the proposed methods with different Le and
N (Example 1).

of is more critical than that of . The behavior of the MPD
approach with , was very similar to that of Fig. 4.

In Fig. 5, we show the ONMSE performance based on 50
Monte Carlo runs for the MPD and SPD methods. We used

, , , and for all
the cases. As a reference point, we also show the error corre-
sponding to the channel estimate for the case of known input.
The channel estimate, referred to as the ideal channel estimate,
was found by cross-correlating the system output vector with
the known input vector. The corresponding ONMSE was taken
here as the lower bound. One can see that the SPD method yields
lower error as compared with the MPD one and is of course less
computationally intensive.

The estimation and cancellation of (see (24)) is sometimes
a sensitive step that leaves some diagonal filtering ambiguity
in the channel matrix. This can be mitigated by using a SISO
method. In Fig. 5, we also show the results for the MPD and
SPD method followed by the SISO equalizer of [46], where one
can see the improvement in performance. The equalizer length
was set to 15 taps in all cases.

In Fig. 6, we show the ONMSE as a function of SNR for both
MPD and SPD methods for different values of and . It can
be concluded from the figure that the estimation improves by

Fig. 7. Cumulative distribution of ONMSEs for SPD and the methods of [16]
and [46] (Example 2).

TABLE I
ONMSE COMPARISON

increasing the data length . As for the extended channel length,
we can see that although the error is smaller when

, the difference is not significant, indicating that the proposed
methods do not depend critically on channel length information.

2) Example 2—Performance Over a Large Number of Chan-
nels and Comparison With Existing Methods: To render the
comparisons independent of the channel, we tested performance
based on 100 2 2 bandpass channels of length , sim-
ulated according to (54), with the ’s taken to be independent
Gaussian random variables with zero mean and unit variance.
Each time domain subchannel was normalized to have a max-
imum absolute channel tap equal to 1. For each channel we
performed 50 Monte Carlo runs. For all the methods, we took

, . For the proposed method, we used
, .

We compared the performance of the SPD approach against
that of the frequency-domain approach of [16] and also the time-
domain method of [46]. According to [16], a closed-form so-
lution for the system frequency response is obtained based on
joint diagonalization of matrices constructed based on slices of
higher order polyspectra of the system output. Prewhitening is
used to make the system matrix unitary. The method of [46]
is a deflation-type approach, where the input sequences are ex-
tracted and removed one by one. At the end, the system is esti-
mated based on the system output and the estimated input. We
choose this method mainly because it is one of the few time do-
main methods that are not sensitive to the channel length .

In Fig. 7, we show the cumulative probability function of the
ONMSE for (I) the proposed SPD method; (II) the method of
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TABLE II
COMPLEXITY COMPARISON

[16]; (III) the method of [46]; and (IV) the ideal channel estima-
tion. The graph shows that for the SPD method the probability
that during the 100 runs the ONMSE will remain below 10 db
is much higher than for the other two comparison methods. On
the other hand, the method of [46] exhibits a lower error floor.

For the SPD method, the errors are caused because at some
frequencies, , due to the bandlimited nature of the channel,
matrix has large condition number.

The average ONMSE during the 100 runs and its standard
deviation are shown in Table I.

Regarding complexity, it is not simple to determine the com-
plexity of COMFAC based PARAFAC decomposition. For an

tensor and an component decomposition the com-
plexity of each iteration is . However, the number of
iterations depends on the data to be decomposed [8], [40]. No
analysis results are available except for very simple cases. To
give an idea of the complexity involved, we show in Table II
the average running time of each method for 100 Monte Carlo
runs for one channel realization as described in (54). We can see
that the running time of the SPD method is lower than that of
the joint diagonalization method of [16] and the time domain
method of [46]. In general, the complexity of MPD is one order
of magnitude higher that that of the SPD.

We should note that for the proposed approach and also for
the method of [16], 2 s of the total running time were taken up
by the bispectrum estimation step.

B. Estimation Using Fourth-Order Statistics

The inputs here were taken to be BPSK with unit power, and
the independent between the users.

The code for fourth-order cumulants estimation was down-
loaded from http://www.mathworks.com/matlabcentral/fileex-
change/loadFile.do?objectId=3013 [43].

1) Example 3—Selection of Parameters: We considered a 2
2 MIMO bandlimited channel of length 4 generated based on

(54). The channel taps were

(59)

Fig. 8 illustrates the effect of parameters , and . Note
that in the figure, . We set and took both

to lie in the high energy area of the power
spectrum of the output. Based on Fig. 8 the choice ,

and results in the best performance.
Fig. 9 shows ONMSE performance of the SPD method for

different values of and as a function of SNR. As expected,

Fig. 8. ONMSE performance for different values of k , k of the fourth-order
SDP method (Example 3).

Fig. 9. ONMSE performance for different values of T and Le of the fourth-
order SDP method (Example 3).

the estimation improves as the data length increases. As for the
extended channel length, we can see that, although the error is
smaller when , the difference is not significant,
indicating that the proposed method does not depend critically
on channel length information.

2) Example 4—Performance Based on Many Channels and
Comparison With Existing Methods: To render the comparisons
independent of the channel we tested performance based on
50 2 2 bandpass channels of length , simulated ac-
cording to (54), with the ’s taken to be independent Gaussian
random variables with zero mean and unit variance. Each time
domain subchannel was normalized to have a maximum abso-
lute channel tap equal to 1. For each channel, we performed 30
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Fig. 10. Cumulative distribution of ONMSEs for the fourth-order SPD method
(Example 4).

Monte Carlo runs. We used , , and the output
cross cumulants were estimated using the same parameters (cu-
mulant window and segment sizes).

Fig. 10 shows the cumulative ONMSE of the fourth-order
SPD and also the lower bound.

The performance of the fourth-order SPD approach was also
compared to that of [31]. In [31], the MIMO system is esti-
mated from the common nullspace of a set of fourth-order cu-
mulant matrices of the system output. As a subspace approach,
the method of [31] requires exact channel length knowledge. We
repeated Example 1 of [31] for quadrature phase-shift keying
(QPSK) inputs. The performance was comparable to that in
[31], even when the length was overestimated by 1.

IX. CONCLUSION

We presented a new frequency-domain framework for the
identification of a MIMO system driven by white, mutually in-
dependent unobservable inputs.

The MPD approach requires multiple PARAFAC decompo-
sitions, while SPD requires a single decomposition. In the first
step, all methods produce an estimate of the system frequency
response matrix within a constant permutation and a diagonal
frequency dependent scaling ambiguity. The latter ambiguity is
reduced to a diagonal linear phase ambiguity after an iterative
scheme.

The MPD involves much higher complexity than the SPD.
Results showed that the ONMSE performance of the two
methods is very similar, with the SPD method resulting is lower
ONMSE as the data length increases. The basis of the multiple
PARAFAC decompositions method can be used to estimate a
MIMO system with more inputs than outputs within a filtering
ambiguity. However, the iteration of the MPD method does not
apply in this case to resolve the ambiguity.

The SPD approach compares favorably to existing methods,
and can further improve by via use of a SISO method applied
on each recovered input.

APPENDIX I
PROOF OF PROPOSITION 1

Since both and satisfy (9) for
, , it holds

(60)

Substituting (10)–(12) into the above equation, and after
some cancellations, we get

(61)

(62)

(63)

where it was taken into account that
.

Note that is a diagonal matrix, whose diag-
onal elements are those of in an order permuted ac-
cording to . For the right-hand side of (63) to be diagonal, it
must hold that . Furthermore, for it to be equal to the
left-hand side of (63) for all ’s, it must hold
and .

APPENDIX II
PROOF OF PROPOSITION 2

It holds

(64)

Based on the PARAFAC decomposition of ,
, and by recalling

(65)

it holds

(66)

(67)

where

for odd

for even
(68)
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APPENDIX III
PROOF OF PROPOSITION 3

(69)

It can be seen that is a diagonal matrix.
Based on , for , and placing the

diagonal elements of at the th row of , we get

(70)

Similarly, based on , we can compute
along the lines of (69) and then construct by placing as its
th row the diagonal elements of . It holds

(71)

which can be written as

(72)

where

for odd

for even
(73)

APPENDIX IV
PROOF OF PROPOSITION 4

Due to assumption A2) and also and , As-
sumption A6) is also valid. This allows the PARAFAC decom-
position of tensor .

(74)

By varying of from 1 to , we get
as

(75)
After multiplying the above equation with and varying of

from 1 to for all , we get

(76)

If we take the complex conjugate of and using equation
(47), we get

(77)

Similarly, based on , we can com-
pute for as

(78)

It can be shown that

(79)

where

for odd

for even
(80)
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