College of Engineering

Drexel E-Repository and Archive (iDEA) <u>http://idea.library.drexel.edu/</u>

Drexel University Libraries www.library.drexel.edu

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations (Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may reproduce (print, download or make copies) the Material without prior permission. All copies must include any copyright notice originally included with the Material. You must seek permission from the authors or copyright owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The responsibility for making an independent legal assessment and securing any necessary permission rests with persons desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

file:///C//Documents%20and%20Settings/curry/Desktop/New%20Folder/Y2001-CAE-Eng-h-z/submitted/Halliwell/Metadata.txt

TITLE:

St Michaels Association for Special Education New Facility and Master Plan : Final Report

AUTHOR:

Halliwell, Thomas; Holsinger, Jeremy; Placeres, Angel; Ruby, Justin; Samala, Jeffery;

KEYWORDS:

Navajo, masonry bearing walls, KCS joists, pilasters, HVAC, grading, geotechnical, strip footings, homogeneous bilateral geogridgeosynthetics

SUBJECT:CAE-08

St Michaels Association for Special Education New Facility and Master Plan

Spring Term 2001 – Final Report CAE-08

Submitted by: Thomas Halliwell Jeremy Holsinger Angel Placeres Justin Ruby Jeffery Samala

Submitted to: Professor James Mitchell and the Senior Design Faculty

> Submitted on: The 21st Day of May 2001

Abstract

St. Michael's Association for Special Education, located near Window Rock, AZ, is an institution that has been established for the schooling and therapy of approximately 100 mentally and physically challenged Navajo children and adults. The existing school buildings are located on a 20 acre site are structurally unsound, crowded and poorly equipped to handle the daily functions of the school.

FBM has outlined criteria by which the ideal solution to the problems at St. Michael's may be resolved. The selected design alternative is a single, one story, 70,600 square foot multipurpose building that addresses site, structural, electrical, HVAC, plumbing, fire protection, and other concerns of the students, faculty, and staff of St. Michael's.

The building is located on the previously developed portion of St. Michael's site. The site is regraded in order to accommodate the building materials and methods chosen and to add to the long term stability of the structure. Architectural features of the building fall in line with the client's preferences. Masonry bearing walls and steel KCS joists make up the superstructure of the building and are supported by continuous footings. Pilasters are employed for lateral support. A ground source heat pump is employed for HVAC. Solar power supplements 509,000 kWh per year of electricity supplied to the building.

Our design brings about a safe, efficient building that promotes a healing and nurturing school environment at a cost of about \$7 million.

Table of Contents

roduction1

Systems Design

Site Development	1
Geotechnical	
Architectural	3
Structural	4
HVAC	5
Electrical	6
Plumbing	7
Constructibility	
Economic Analysis	8
Schedule	8

Appendices

Site Development	A
Geotechnical	
Architectural	C
Structural	D
HVAC	
Electrical	F
Plumbing	G
Economic Analysis	
Schedule	

Introduction

St. Michael's Association for special education (St. Michael's), located in the Navajo Nation near Window Rock, AZ, is a special education counterpart of St. Michael's School, located in the same town. St. Michael's is part of the original mission founded by Katherine Drexel, a recently canonized saint in the Roman Catholic Church and neice of Anthony J. Drexel, founder of Drexel University.

The special education school servesd the needs of approximately 87 children who are day students, about 12 of whom are infants. In addition, approximately 20 adults are enrolled in St. Michael's assisted living program. All of the students are Navajo Indians. About 140 total faculty and administrators are employed either full or part time by St. Michael's.

The 19 existing campus buildings cover approximately 32,000 sq. ft. of total building footprint. Several of these buildings show signs of structural damage due to apparent soil settlement. Most notably, the cafeteria has experienced settling of up to five in. across its floor span of about 85 ft. Many of the buildings are inefficient, exhibiting energy loads that are well above current design standards. Most of the buildings are cramped, having little space available for necessary daily activities. The disjointed buildings create ambulatory difficulties for the students.

St. Michael's does have the ability to improve its campus. If it provides state, federal, and Navajo Nation officials with preliminary engineering design plans for a new or augmented school facility, it will be able to apply for funding to do bring the project to completion.

FBM has considered many alternatives in designing each system of an ideal building for St. Michael's. Site development has been performed so that the placement of the building minimizes grading and drainage problems. The geotechnical design provides foundations that will support the building with minimal settlement. A masonry block retaining weall unifies grading on the site. The architectural design provides the amenities the faculty requested, while still conforming to the style of traditional Navajo architecture. The structural design provides adequate support for vertical as well as lateral loads, employing familiar, economical, and aesthetically pleasing building materials. Heating, ventilation, and air conditioning (HVAC) design employs a ground source heat pump system to handle building heating and cooling loads efficiently. The electrical system employs active solar energy systems to lessen electrical demand. The plumbing system provides potable water to all building fixtures.

Site Development

Proposed

FBM proposed to remedy many of St. Michael's settlement, space allocation, and stormwater problems through proper site development. The building was to be situated so that the students would experience a healthy, nurturing environment. The building location was to be on St. Michael's previously developed site. The building pad was to be elevated to maintain a 5% slope for a lateral distance of 15 ft. on all sides of the building to allow stormwater to move away. Parking was to be provided for all staff and administrators. Utilities were to be rerouted as necessary to connect with the new building.

Design Alternatives

A campus set up and a single building were considered for the new St. Michael's facility. A single building was selected based on the ability to provide for students needs, faculty preference, and cost. The building shape and orientation was chosen based on grading, geotechnical, architectural, and energy preferences noted in Appendices A, B, C, and F.

Final Design

The new building will be situated on the existing St. Michael's campus as shown on the site plan Appendix A. The existing cafeteria and "solar" classroom building will be removed to make room for the proposed building. The building will be oriented so that the main entrance faces east in accordance with Navajo custom. Principal hallways will be in the north/south direction, along an existing 1 to 2 percent slope, minimizing the amount of grading needed to provide a level building pad.

About 6500 CY of soil will be cut and deposited. No soil will be imported from off site. The cut/fill line will be initiated in the NW/SE orientation through the approximate middle of the building at an elevation of 6738 ft. Refer to Appendix for grading plan and associated calculations.

The natural landscape slope of between 4.1 and 5.5 percent to the east and west of the level building pad remains in order to provide a natural drainage path for stormwater. This natural slope dips to the south side of the building and will hold all stormwater for a minimum retention time of 5 hours. The fill soil is sloped 5% for a lateral distance of 15 ft. on all sides to allow runoff to be transported away from the building. Furthermore, four stormwater inlets are located 100 ft. apart on the east side of the building. Stormwater collected at these locations is transported beneath the building via 4 in. pipes and deposited on the building's west side. Refer to Appendix for stormwater calculations.

FBM will provide a 60 space parking lot located to the south of the proposed building. The lot will be gravel covered and underlain by a nonwoven geotextile. The lot is configured in a square "U" pattern and allows for two way travel in driveways. Overal parking lot dimensions are 140 ft. by 140 ft. The existing 3 percent slope in the earea of the proposed parking lot will be maintained to allow for adequate drainage. Refer to Appendix for parking lot details.

Water and sewer lines will be rerouted to the east and south of the proposed building. Refer to Appendix for site utility plan.

Geotechnical

Proposed

The proposed foundation system has been designed to support the superstructure of the building while minimizing settlement. A retaining wall has been designed to join existing and proposed grade lines.

Design Alternatives

A variety of shallow foundation types were considered for the proposed building, including spread footings, strip footings, and mat foundations. Strip footings were chosen as the best alternative based on the type of superstructure selected and loads expected.

Final Design

FBM presents a geotechnical design that will accommodate a 70,600 SF concrete masonry building. Continuous strip shallow footings with a base of 4 ft. wide located 4 ft. below the proposed building grade (6734 ft.) will be used to support the building's loads of about 3.5 kips per linear ft. This foundation will provide a factor of safety of 3.9 considering general shear failure. Refer to Appendix for bearing capacity calculations

Differential settlement is minimized, not exceeding one total in. at any location. This amount is reasonable to expect and acceptable for the size and type of the proposed building. Refer to Appendix for settlement calculations.

The concrete floor slab is 5 in. thick with steel wire mesh reinforcement. Construction joints are spaced every 40 ft. along the major axes of the building. The retaining wall will have a total length of 580 ft. around the proposed gymnasium to the north, east, and south, and will be a maximum of 15 ft. tall. The wall footing will be similar to the strip footing beneath the building, as detailed in the Appendix. It will be externally reinforced by a homogeneous bilateral geogrid with a tensile strength of no less than 10 kip/ft. An 18 in. permeable sand layer should be installed vertically behind the wall to carry water down to weep holes at the wall's base to alleviate hydrostatic pressure. Refer to Appendix for all foundation calculations.

A new boring location plan has been devised to determine soil properties in the exact location of the building. The plan may be viewed in Appendix.

The largest embankment on which a portion of the school will be built has been analyzed for slope stability. It has been determined that the slope is stable with the added surcharge weight of the building without external reinforcement such as geosynthetics. Refer to Appendix for calculations.

Architectural

Proposed

The architectural system proposed was one that could meet the varied and specific client needs. This design was to include a one story building composed of several wings. Each wing was to have a specific purpose (ie. Separate wings for classroom space and administration space). The overall building was estimated to be approximately 68,550 square feet. FBM also promised several features would be incorporated into each classroom space. An extensive list of rooms and areas that will be incorporated into the

design. The client also requested to have the adult classrooms distinctly separate from the other classrooms, but still in the same building.

Design Alternatives

The first alternative explored was a three-wing design with a central entry space in the shape of a Hogan. One wing was for administrative needs, one wing was for classroom spaces and the gymnasium, and one wing was for the other spaces in the building (nurse's office, sound therapy, pottery, and macramé) as well as the cafeteria (see appendix C). A rough plan was then submitted for client review. With the client's comments FBM has arrived at a final design.

Final Design

The final design is similar to the initial design in that it still has three wings arranged around a central entry space in the shape of a Hogan. Some of the major changes include the addition of two classrooms, a teacher resource room/computer room, two small conference rooms and an employee lounge. These additions increase the size of the overall building to 70,600 square feet. The adult classrooms were moved to a less central space to allow for more privacy, and the nurse's office and sound therapy rooms were moved into the classroom wing. Refer to the final floor plan in appendix C.

The wall construction used for most of the building was and 8" CMU wall, 2" air space, 2" insulation, and ½" drywall with a steel stud backup.

Structural

Proposed

The structural system was proposed to withstand all lateral and gravity loads placed upon it. It was to have a maximum bay size of 25 feet, and a maximum deflection of L/240 in the steel members. The only major refinement to the design was an increase in the proposed bay size. The 25 feet that was proposed obviously overlooked the gymnasium and cafeteria. The bay size was also increased in the classrooms to provide a more usable space. The final spans of the gymnasium, cafeteria, kitchen, and classrooms were increased to 60 feet, 54 feet, 44 feet, and 35 feet, respectively.

Design Alternatives

The four main alternatives considered were steel, concrete, masonry wall with a precast concrete roof, and masonry wall with a steel joist roof. These systems were weighed against criteria such as availability of materials, availability of skilled workers, and ability to withstand deflections. A complete list of these criteria is provided in appendix D.

Final Design

After evaluating the criteria, a masonry bearing wall structure with a steel joist roof was selected. The system will resist a total wind load of 6.25 PSF pressure on the windward wall, 3.88 PSF suction on the leeward wall, and 5.425 PSF suction on the roof. These loads will be resisted using a system of pilasters and cross walls spaced at a maximum of 12 feet apart.

KCS joists will support the roof for all spans between 10 and 15 feet. They were chosen because of their high versatility. Since the exact locations of mechanical units and solar panels has not been determined yet. The KCS joists have a constant resistance to shear along the entire length of the span. Long span joists will be used for the longer span. W8x10 beams will carry shorter spans. Loads will be transferred to the joists by metal roof deck fastened to the top of them.

HVAC System

Proposed

Initial specifications called for interior design conditions of 78 ± 3 F db temperature during the summer and 72 ± 5 F db temperature in the winter, with $50 \pm 10\%$ relative humidity year round. It was also stated that 15-20 CFM/person of fresh outdoor air shall be supplied to the interior zones. The design criteria established for this project during the proposal phase are as follows:

- Energy efficiency
- Low costs (operational/maintenance as well as initial)
- Comfortable temperature levels
- Adequate moisture content of air
- Air cleanliness
- Adequate supply of fresh outdoor air
- Proper air distribution and circulation
- Minimal noise intrusion during system operation

Design Alternatives

Several alternatives were considered for this project, each possessing numerous advantages and disadvantages. The options receiving the most consideration were:

- Ground source heat pump system
- Thermal ice storage system
- Radiant heating and cooling panels
- Fan coil units
- · Packaged rooftop air-conditioning units with baseboard heating

Thermal ice storage was eliminated from consideration once it was determined that there is not a large enough difference between electricity charges during peak demand periods versus off-peak demand periods. Radiant panel heating and cooling was eliminated because there have been many reports that the system has produced unreliable results in non-residential applications. Also, the lag-time (time for conditioned space to reach desired set-point temperature) involved with the system is high and a cause for concern. Fan coil units are highly maintenance intensive, can produce considerable noise intrusion in the conditioned space, and also require separate condensing units, resulting in additional maintenance requirements and added expense. The use of packaged rooftop units to satisfy the entire cooling load would be maintenance intensive and very expensive. For information on the systems listed above, refer to Appendix E, Section 'C'.

Final Design

The building loads were found to be 586.2 MBh for heating and 110 tons for cooling (see Appendix E, Section 'E'). The system selected for this project is a combination of two of the above-mentioned alternatives. Based on the design criteria, it has been determined that the use of ground source heat pumps in combination with packaged rooftop air-conditioning units is the best system to employ. This hybrid system offers many advantages, all of which are addressed in Appendix E of this report. The heat pump units will satisfy the heating and cooling requirements of each of the interior spaces within the building, including the classrooms, offices, and therapy rooms. 40 horizontal heat pumps shall be used, ranging from $1\frac{1}{2}$ to 5 tons of cooling capacity. The packaged rooftop units will be utilized as makeup air units, which means that they will condition only the outdoor air supplied to the spaces, and not the total air supplied to each space. 10 makeup air units shall be utilized for the total building ventilation requirements. In terms of the ground coupled heat exchanger, the loop will consist of 120 bores drilled to a depth of 300 feet. The bores will be 2³/₄" in diameter, and the pipes will be 1" in diameter. The total flow rate through the ground loop will be 330 GPM, requiring a loop supply and return main sized at 8". The pumps used to circulate the brine solution will be two 40 HP pumps. Refer to Appendix E for more information on the system design.

An annual energy consumption calculation was preformed through Energy 10. By simulating our building with a normal HVAC system and ground source heat pump, it was found that 5.2 kBtu/ sqft. Refer to Appendix E for more information on annual energy consumption.

<u>Electrical</u>

Proposed

The overall objective of FBM Design was to provide adequate power for all building applications in an energy efficient design. The emergency power supply must provide adequate power in case of a power outage. The use of multiple control panels will power the separate applications. Daylighting will also be maximized in the building. Lastly, all design and construction will abide by the national electrical code.

Design Alternatives

The design alternatives that FBM has explored include wind and solar energy. Both alternatives were chosen because they are currently implemented in the region and are efficient in producing energy. The need to provide alternative means of producing energy is caused by a high energy bill. Currently, the entire campus is powered using electricity. Therefore, these alternatives will be implemented into the design to ease the demand from the utility grid.

6

Final Design

The decisions made by FBM provide the most feasible and efficient electrical system. The chosen electrical system must be able to support 509,000 kWh per year. The electrical system consists of a primary 13,200-volt service coming in from the utility grid provided by the Navajo Tribal Utility Authority (NTUA). The service will then pass through the meter. After passing through the meter, the voltage will be stepped down via a 277/480-volt transformer. Once the power has been stepped down it will pass through a substation, breaking off to mechanical panel and a 120/208 transformer. All power both 277/480 and 120/208 or both 3 phases services, only at the switchboard were 120/240-volt service is separated using one of the legs of the 120/208 does the power become single phase. The switchboard has a lighting, auxiliary, and emergency panel. The system integrates the use of solar power at the switchboard to power the single-phase auxiliary power needs. Also lowering the demand from the utility grid are self-contained exterior light units, which are solar powered Also incorporated is a generator for the emergency power. A complete system schematic is viewable in the back of Appendix F along with detailed descriptions of its individual components.

Plumbing

Proposed

The plumbing system has been designed to serve approximately 250 St. Michael's students, faculty, and staff. The potable water system will deliver hot and cold potable water to the cafeteria, student restrooms located in the classrooms, faculty restrooms, and the therapy pools. The wastewater system will convey wastewater from the sinks, toilets, and floor drains to the public sewer system, and ultimately deposited into a wastewater treatment facility. Another function of the plumbing system is stormwater drainage. Pitched roofs and roof drains have been implemented to facilitate this process.

Design Alternatives

Most design alternatives pertain to the hot water supply system. The hot water distribution system can use tankless water heaters or a boiler and storage tank combination to supply sufficient hot water at the fixture. Since FBM plans to use solar energy to generate hot water, there must be a storage tank to hold the hot water generated. This decision eliminates the use of tankless water heaters for primary hot water generation. FBM has decided to use a water heater to both supply the hot water and store it. The large capacity water heater serves a dual purpose as heater and storage tank and appears to be more economical than a separate boiler and storage tank combination.

Final Design

The final water distribution system will enter the building in a 3 inch supply main at a flow rate of 142 gallons per minute and a velocity of 7 feet per second. The water service will then split to 126 gallons of cold water and 72.5 gallons of hot water each minute. An explanation of why the hot and cold do not add to the total flow rate is included in Appendix G. A 600 gallon electric water heater will supply/store the hot water. The hot water loop will be circulated by ³/₄ horsepower in-line centrifugal pump. The sanitary system will include vents and traps to safely prevent waste gases from

7

entering the building. The building sewer will be 4 inch diameter and slope of 1/4 inch per foot.

Constructibility

The phasing of construction for the proposed building has encountered a number of concerns. The process of construction is an inherently difficult issue from the nature of the project. St. Michael's is a year round institution; therefore, construction should be quick and quiet, occurring whenever possible at off peak times of the day so as not to disturb the daily work of the students and faculty at the school. All construction will ideally be completed in the summer when the student population is lowest.

The most important construction phasing issue is the cafeteria/kitchen area. Coincidentally, the existing and proposed kitchens lie almost exactly in the same place. Thus, the kitchen equipment should be moved out of the existing cafeteria into a temporary structure for most of the project. The proposed cafeteria/kitchen can be built first, although the grading for the whole site must be completed before the erection of any part of the permanent structure.

Economic Analysis

Three alternatives for the overall procedure of the project have been considered. Realizing that St. Michael's ideal building design, according to our building program outlined in the proposal stage of this project may exceed the estimated funding available, FBM could have cut back on the design so that the project would fall entirely within the expected funding value, design the structure in phases so that the whole project could be ultimately completed when more funding became available, or design the ideal building in the hope that more funding would become available sooner with a fallback on building in phases. FBM chose to design the ideal building.

After the design of all systems, FBM is under the projected ideal building budget. The building total is currently \$6.7 million, as opposed to the \$8.2 million estimated in the proposal. For a system breakdown of proposed budgets, refer to Appendix H.

Schedule

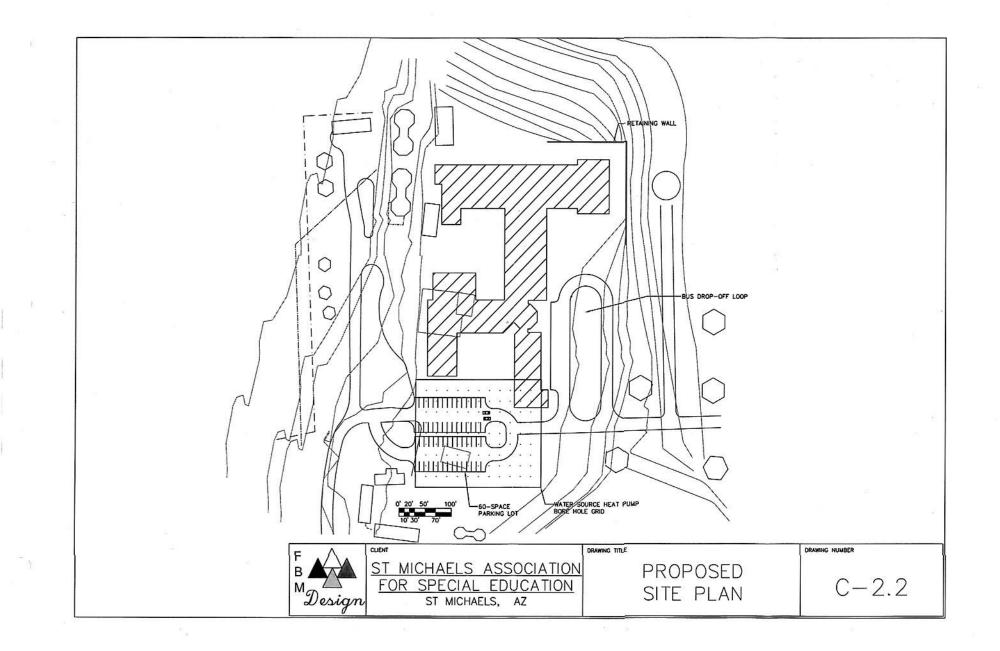
Research and preliminary system investigation took place beginning in June, 2000 and proceeded until December. System alternatives were evaluated and selected during January, 2001. Preliminary system design proceeded through February and March. Additions and alterations to the preliminary design have been performed through May. A detailed schedule is presented in Appendix I.

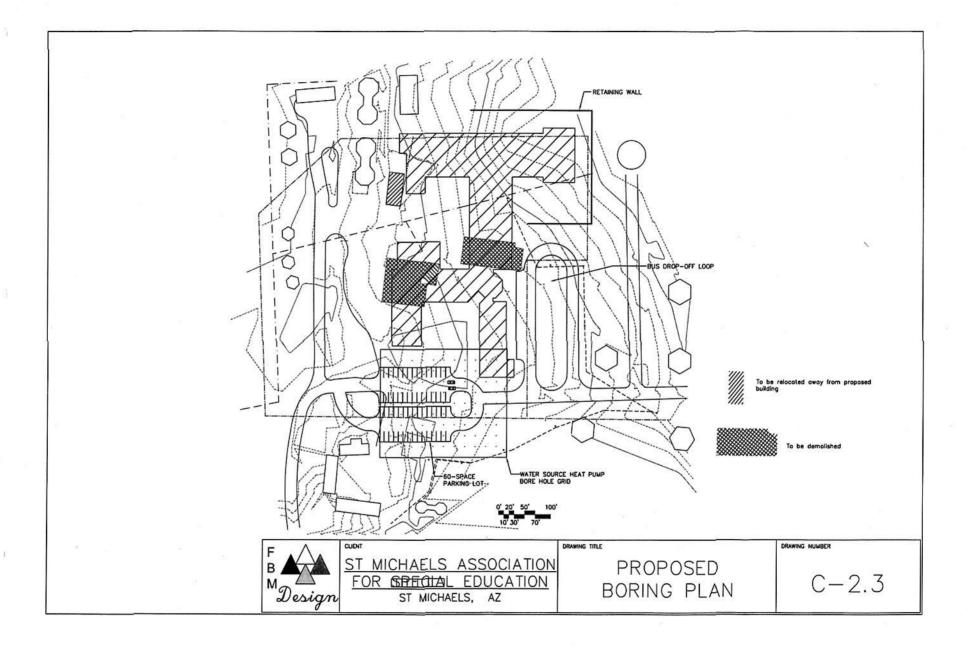
APPENDIX A: SITE DEVELOPMENT

•	SITE BACKGROUND
•	PROPOSED BUILDING LOCATION
•	PROPOSED GRADINGA-4
•	STORMWATER MANAGEMENTA-5
•	PARKINGA-6
•	SITE UTILITIESA-7
•	ALTERNATE SITE CONSIDERATION

Site Background

Saint Michael's Association for Special Education is located in the Navajo Nation, near Window Rock, AZ. At the southern tip of the Rocky Mountains, the landscape exhibits arid, desert like conditions.


The site exhibits a moderate grade of about six percent sloping downward toward the southwest. Grading operations for existing buildings were performed on an individual basis, not in combination with other buildings. The elevation of the existing buildings is approximately 6700 to 6750 feet above sea level.


Several existing buildings on St. Michael's site lie directly in a natural drainage swale area where occasional seasonal rains drench the area and result in water infiltration into buildings and erode soils. This activity has indirectly caused structural damage to buildings by compromising the integrity of the building footprints.

Proposed Building Location

The proposed building will be situated on St. Michael's existing site as shown on the site plan. The existing cafeteria and "solar" classroom buildings, two of the most outdated and structurally deficient buildings, will be demolished in order to create space for the new building, as shown on the demoition plan on page A-2.2. The elevation of the proposed building is 6738 ft.

The chosen site has several advantages over other site alternatives, including the preservation of St. Michael's undeveloped space on campus, the ability of the site to sustain architectural preferences of the client, and the minimal amount of grading that will have to be performed, as detailed on page A-3.

Proposed Grading

The proposed grading for St. Michael's provides a level building pad at 6738 ft. Approximately 7,000 cubic yards of earth will be cut and redistributed on site as shown on the site plan.

Three ft. outside each exterior wall of the building, an 8 ft. wide sidewalk is provided. Immediately beyond the sidewalk, the ground slopes away from the building at a 5% slope for a lateral distance of 15 ft. Embankment fill areas beneath the building on its west side are typically 2 to 5 ft. However, the maximum embankment height is 9 ft, located beneath theproposed cafeteria area.each embankment employs a 4H to 1V slope to join the existing and proposed grades.

An embankment stability analysis has been performed for the highest embankment under the greatest load (the embankment beneath the cafeteria). The results have shown that the slope is stable and external reinforcement of the slope by geosynthetics or similar materials is not necessary. Calculations can be found in Appendix B.

Approximately 7000 cu. yds. on soil will be extracted and redistributed as shown in the proposed site plan. this soil will be primarily clayey sand with a unit weight of about 109 pcf. Using a 3 cu. yd. backhoe, 250 cu yds. per hour can be excavated at a cost of about \$1 per cu. yd. Using three 20 cu. yd. dump trucks, 7.5 loads per hour can be transported to the appropriate fill area at a cost of about \$2.30 per cu.yd. A spreader will be used to level the building pad at a cost of about \$1.10 per cu. yd. Using these rates, the regrading process is estimated to take about two weeks and cost a total of about \$60,000.

A-4

Stormwater

The proposed stormwater drainage plan is designed to eliminate the drainage difficulties encountered on the eisting site, including the alleviation of large quantities of standing water that are present after storms and other drainage problems that are associated with building settlement as noted in Appendix B.

The level building pad is implemented at 6738 ft. The natural landscape slopes of about 4.2% to the southeast, 5.5% to the west and 6.0% to the northeast will remain in order to provide a natural drainage path around the proposed building. In addition, 4 stormwater inlets located along the east side of the building spaced about 75 ft. on center as shown on the site plan, will be implemented. These inlets will deliver stormwater to 4 in. diameter PVC pipes sloped at 8% that will transport water under the building to the west side.

All soil immediately outside of the sidewalk area around the building will be sloped 5% for a lateral distance of 15ft. to allow rainfall and roof runoff to flow away from the building as per the recommendation of Agra Inc., of Farmington, NM. On the west side of the building, a slope of 15% will be implemented as shown on the site plan to connect existing and proposed grade lines.

A 25 yr. storm for the geographic location of St. Michael's is 2 in. over 24 hrs (National Weather Serice data). Peak runoff has been determined using the rational method. Using C = 3.0 and a rainfall intensity of 1" per hour, peak runoff has been determined to be 6,600 cu ft. The capacity of the existing swale to the south and west of the proposed building exceeds this amount, providing a 25 yr. storm a retention time of 4.4 hrs, far above the design standard of 10 min. See the following page for stormwater calculations.

A-5

FBM Engineers Stormwater Calculations

> $Q_1 = kCiA = 1.008(0.3)(0.083)(18.5) = 0.47 CFS$ $Q_2 = kCiA = 1.008(0.9)(0.083)(1.5) = 0.11 CFS$ $Q_{peck} = 0.58 CFS$

 $t_{c} = t_{s} = \frac{107 n L^{0.33}}{5^{0.2}} = \frac{107 (0.1) (875)}{0.05^{0.2}} = 17,045 c_{c} = \frac{4.37 L_{e}}{37 L_{e}}$ $t_{p} = t_{L_{eq}} = \frac{t_{c}}{0.6} = 7.88 hrs$ $T_{b} = (t_{p} - t_{c}) 2 = 6.31 hrs$ $Q_{RO_{total}} = \frac{Q_{peak} T_{b}}{7} = \frac{6600 cF}{7}$

3/9/2001

FS > 1.5

Drainge to well i: Q = CiA = (3)(0.083)(5) = 1.245 CFS $\frac{1.245}{4} = 0.311 CFS/inldt$ $FS = \frac{q_{ollow}}{q_{oll}} = \frac{0.311}{0.21} = \overline{[1,5]}$ $q_{oll} = 0.311$ $for 4''_{pqe}, q_{oll} = 0.07$ $q_{ollow} = \pi RF_{q_{oll}} = 3.0(07) = 0.21$ Drainge to well here in retaining well: Q = CiA = 3(0.083)(2) < 1.245

Since 1.245 > grad with some area,

Parking

A square, 60 space parking lot with a U-shaped driveway located to the south of the proposed building is provided. the driveway of the parking lot is connected to the main access raod to the school at the east and west ends as shown in the site plan. Overall dimensions will be 140 ft. per side. Individual spaces will be 19 ft. long and 9 ft. wide. Four handicapped spaces, 19 ft. long and 13 ft. wide are also provided in accordance with ADA. Four rows of cars will be separated by two driveways as shown on the site plan. Driveways will be 22 ft. wide and will be made of the same base course material as the parking lot. Driveways will be orthogonal to the parking space orientation to allow for easy entry or exits from spaces when cars are traveling in either direction of the driveways.

The lot will be gravel underlain by a nonwoven geotextile applicable for the separation of soil and gravel particles. The existing grade will be maintained at about 5.1% to allow for adequate drainage as shown on the site plan.

Site Utilities

Potable water, sewer, and electrical utility lines currently exist as shown in the existing site plan. All utilities are provided by the Navaho Tribal Utility Authority. Utilities will continue to be supplied to the proposed building from this company.

Water and wastewater lines will be relocated around the proposed building as shown in the proposed utility plan. Both lines will be rerouted to the southand west of the building. The natural existing slope of about .5% will provide adequate gravity flow through the pipe. The electrical lines will be connected to the proposed building after construction.

A groundwater heat pump well grid will be drilled at the south of the proposed building area as shown on the site plan. It should be noted that the well grid is shown here only in order to give an idea of the relative size of the grid. The grid need not be laid out in a geometric square pattern as shown. For ease of maintenance, it would be better to not locate the grid directly under any part of the building. The exact location of the grid should be determined with regards to construction scheduling and landscape architecture, which are outside the scope of this project.

Alternate Site Consideration

At the presentation of the progress report to St, Michael's on March 20, 2001, an alternate site plan was discussed. The possibility was raised by H. John Sivroy, a private managerial consultant for St. Michael's, of removing the proposed retaining wall from the east side of the building, relocating it to the west side, and filling the entire area in the middle. Due to the magnitude of the task of determining the feasibility of this solution, FBM has decided not to explore the possibility during the completion of this Senior Design Project.

A number of issues would need to be investigated if this design was to move forward. First, the availability of the enormous volume of fill required to grade up the approximately four acre building area would have to be noted. This fill would have to be well graded non-plastic soil similar to that of the in-situ first 15 ft. of soil at St. Michael's in order for the proposed foundations to perform satisfactorily. The cost effectiveness of moving and adequately placing about 100,000 cu. yds. of such fill would then have to be evaluated.

The west side retaining wall would then have to be evaluated. Instead of a 14 ft. high retaining wall at the east side, the west side wall would be about 30 ft. high and would have to negotiate the added lateral earth pressure induced by the weight of the building behind it.

Because of the magnitude of the analysis needed to determine the feasibility of this task, and because of many obvious potential pitfalls including but not limited to the ones noted above, this alternative is rescinded for consideration of the St. Michael's board.

A-8

APPENDIX B: GEOTECHNICAL

•	SOIL SURVEYB-2
•	SOIL ANALYSISB-3
•	GEOLOGIC SURVEY AND CONCLUSIONSB-4
•	GEOTECHNICAL CONCLUSIONSB-5
•	PROPOSED FOUNDATIONSB-6
•	PROPOSED RETAINING WALLB-7
•	PROPOSED BORING PLAN AND NOTES

Soil Survey

This soil survey is based on a geotechnical study performed in 1997 by Agra Earth and Environmental Services, Inc., Farmington, NM. Nine test borings were performed inside and around the existing cafeteria building. Refer to page B-8 for the boring location plan.

The existing soil at St. Michael's exhibits four major strata at the following average depths:

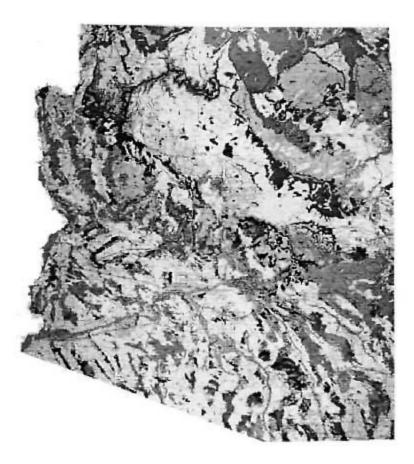
- · Fill, silty sand (SM), from average depths of 0 to 2 ft.,
- Clayey sand (SC), from average depths of 2 to 7.5 ft.
- Silty clay (CL), from average depths of 7.5 to 18.5 ft.
- Auger refusal occurs at an average depth of 18.5 ft. Spoon refusal occurs at an average depth of 20 ft.

No groundwater was found in any of the boring locations, although samples were generally moist.

Soil Analysis

Soil in stratum one (Fill) is comparable to the clayey sand layer beneath it in color and density. It is probable that the fill was taken from elsewhere on the 20 acre St. Michael's campus and compacted in place on the existing cafeteria building pad.

Soil in strata two and three (SC and CL, respectively) are normally consolidated residuals. These soils exhibit low densities averaging 104 pcf, medium plasticities with plasticity indexes averaging 20, and high compressibilities, averaging about 7 percent compression in-situ.


As a result, soils typically exhibit low ultimate bearing capacities at depths where foundations are located (0 to 2 ft. below the surface), averaging one tsf. Furthermore, stratum two exhibits a high primary consolidation number, although it is impossible to precisely calculate without building surcharge load data, which is unavailable.

Spoon refusal occurred at an average depth of 20 ft. No rock core samples were taken. From the geologic history of the area, it can be concluded that the area is underlain by moderately to slightly weathered sandstone.

Geologic Survey and Conclusions

Arizona has a complex geologic history that spans 1.8 billion years and resulted in the formation of three geologic provinces: the Colorado Plateau, Transition Zone, and Basin and Range Province. Our site lies in the Colorado Plateau in northern Arizona. It is a region of broad plateaus and mesas composed of picturesque sedimentary rocks deposited during the Paleozoic and Mesozoic Eras (570 to 245 million years ago). On the Geologic Map of Arizona, the Colorado Plateau includes the large region shown in light shades extending from the northwest corner south and east to the middle of the eastern boundary of the state. The Plateau is incised by deep canyons, such as the Canyon de Chelly, which are illustrated on the map by the purple and brown colors that represent deeper rocks exposed in the canyons.

It may be noted from the geologic history of the region and the fact that no buildings were built on St. Michael's site before the school's campus that soils on site are normally consolidated.

Geotechnical Conclusions

Based on observed structural conditions in St. Michael's existing buildings, the soil survey provided by Agra Inc., and accompanying soil lab testing and analysis, it can be concluded that several buildings on campus, especially the cafeteria have experienced building settlement. Most of this settlement has probably occurred as primary consolidation in the stratum three, the silty clay layer from average depths of 7.5 to 18.5 ft.

It can also be concluded that stormwater infiltration into the building area has exacerbated the consolidation settlement. Secondary consolidation may be a result of dissipation in pore water pressure below some buildings, which may result in further overall settlement.

It is estimated that parts of the cafeteria building may have settled between 0.5 and 1.0 in. since the current geotechnical survey being used for analysis was performed in 1997. Furthermore, it is likely that building settlement will continue in the if actions are not taken to remediate the situation.

The proposed geotechnical design considers low ultimate bearing capacities of approximately 1.0 tsf. In addition, differential building settlement should be minimized, with no part of the building experiencing more settlement than 1 in. total.

Proposed Foundation

The proposed foundation for the new St. Michael's Facility consists of continuous wall footings located under each load bearing concrete masonry wall (four along each axis of the building). The footings will be cast in place concrete four ft. wide and one ft. thick, with its bottom surface at Elevation 6733 ft., four ft. below the proposed grade of the building.

The footings will be used to support the building's vertical loads of 3.5 kips per linear ft, supplying a factor of safety of 3.9 against general shear failure. Furthermore, total building settlement of more than 1.0 in. will be prevented. Refer to the following sheets for calculations.

FBM Engineers 3/2/01 Geotecnical Calculations Bearing Capity ¢ ≝ 14° 8= 104.5 pcp N' = 9.31 Cy = 363.5 per Ng = 2.55 $\phi = t_{n-1} \left[\frac{N_F}{[12.2+26.3]} \left(\frac{\sigma_{w'}}{P_0} \right) \right]^{0.34} \approx 14^{\circ}$ N' = 0.48 $q_{1} = \frac{2}{3} c N_{c}' + q_{r} N_{q}' + \frac{1}{2} Y B N_{s}'$ (Terzaghi - modified) assuming Df = 4#, B = 4 ft = 3422 ¹⁶/42 fall = 3500 1/11 3500 = 875 1/42 B 4 = 875 1/42

 $FS = \frac{\frac{9}{10}}{\frac{9}{10}} = \frac{3422}{875} = 3.9$ (for general shear failure)

FBM Engineers Geotecnical Calculations

Electric Settlement in 15 ft. Clay Layer
H= 15 ft (ang volue)

$$E_e = \frac{2.5 \text{ Kip/ft}}{\frac{AH}{H}} = \frac{2500}{(\frac{5i}{15}\mu)} = 7500 \text{ psi} = 90,000 \text{ psf} (explicitly condition})$$

 $M_c = 0.4$

$$S_{e} = A_{1}A_{2}\frac{q}{F_{e}}B_{=} = 0.75(0.96)\left(\frac{3500}{4}\right)4_{=} = 0.467 \text{ inches}$$

$$E_{s} = \frac{10,75}{10,000} = 0.467 \text{ inches}$$

3/2/01

ţ

.

FBM Engineers Geotecnical Calculations

Secondary Settlement in 15 ft. clay layer

$$C_c = 0.009 (LL - 10) = 0.2565$$

 $\delta_d = \frac{V}{1+w_c} = \frac{104.5}{1+0.113} = 93.9 \frac{10}{1+3}$
 $V_{sat} = (1 - \frac{1}{G_s}) \delta_d + \delta_u = 122.2 \frac{10}{1+3}$
 $\delta_{sat} = (\frac{G_s + e_0}{1+e_0}) \delta_w$
 $1+e_0$
 $= > e_0 = 0.825$

...

m, = 1/8	2	$\frac{2}{2} = n$	I.	AP= 70 Ic (16/112)
100	7.5	3.75	0,176	154
100	7.5+15 15.0	7.5	0.084	76.25
100	7.5+15:25	11.25	0.058	50.75
		•		

$$= \frac{1}{6} H_{1} + \frac{1}{2} \frac{1}{2} \frac{1}{1045} (15) = 1579 \frac{16}{6} \frac{1}{6} \frac{1}{6} (159 + \frac{1}{4} \Delta P_{m} + \Delta P_{m})$$

$$= \frac{1}{6} (\Delta P_{2} + \frac{1}{4} \Delta P_{m} + \Delta P_{m})$$

$$= \frac{1}{6} (159 + \frac{1}{6} \frac{159}{6} + \frac{1}{6} \frac{1}{6} \frac{159}{6} + \frac{1}{6} \frac{1}{6}$$

$$S_{c} = \frac{C_{c}H_{c}}{1+e_{o}} l_{a} \frac{P_{o} + \Delta P_{ang}}{P_{o}}$$

$$= \frac{0.2565(15)}{1+0.825} l_{a} \left(\frac{1579+84.3}{1579}\right)$$

$$= 0.57'' = 0.6 \text{ melua}$$

$$S_{TOTAL} = S_{c} + S_{c} = 0.5 + 0.6$$

= II inches

$$G_{1s} = 2.75^{\circ}$$

 $P_0 = 1579 \frac{16}{44}^2$
 $LL = 38.5$
 $W_{2mg} = 11.3\%$
 $H_c = 1544$

d,

2

FBM Engineers Geotecnical Calculations

Concrete Floor Slab

$$K \cong 225 \ ^{16}/(4) = 0.175 \ \text{KSF}$$

$$FS = 1.7$$

$$E_c = 4000 \ \text{KS1}$$

$$V = 0.15$$

$$Sv_{0} : Stele thickness (t) = 6 \text{ in.}$$

$$\Rightarrow \text{fliphand thingth} = 1320 \text{ psi}$$
and $f'_{c} = \frac{1}{2}(\text{flip}) = 660 \text{ psi}$

$$\text{fliphand this } \frac{\text{Self-With}}{2} = 40^{4}$$

$$\text{fulle unth} = 8.25 \ \text{KsF} >> 9 \text{ gult}$$

$$\Rightarrow \text{ use } = \frac{t = 5^{-1}}{2} \text{ gut to have a substantial large } (FS >> 1.7)$$

3/2/01

÷

Embankment Stability

(No geosynthetic reinforcement)

2

ģ,

gamma (pcf) phi (deg) c (psî) =

٩

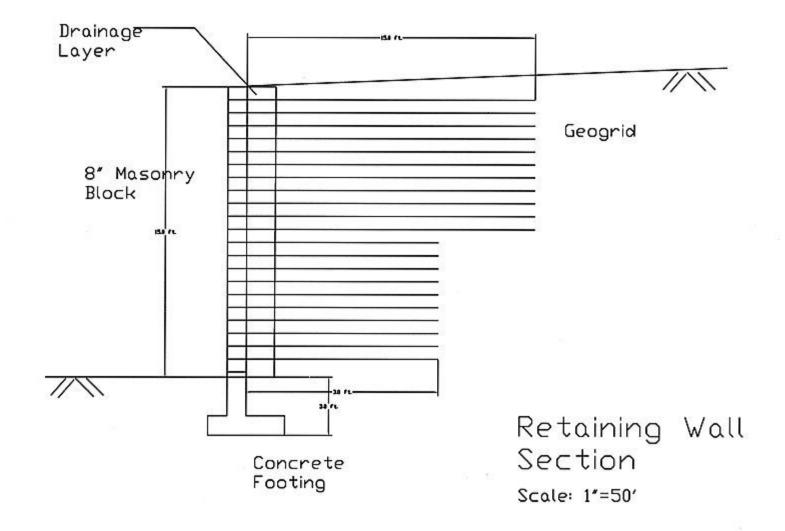
ì

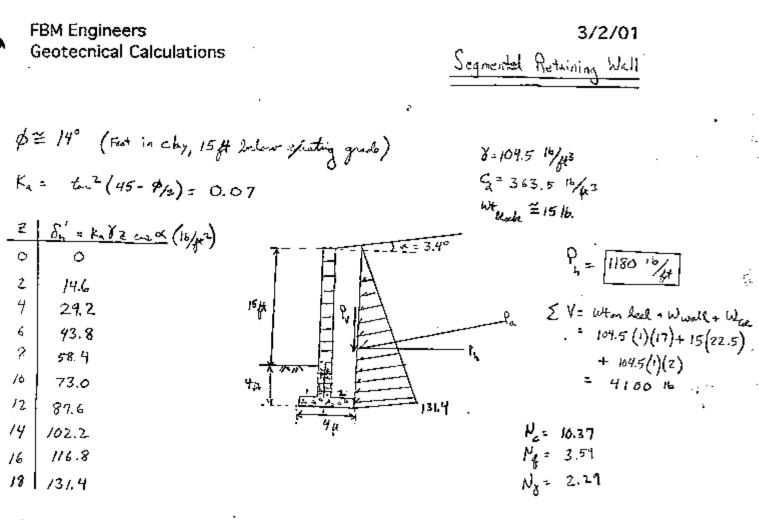
٩

104.5 14 **365**

slice	(n)	width of slice (ft)	length of slice	Area(ft^2)	Weight (lbs)	Theta (de	Thela (rads)	Ni (kN.m)
	1	10	1	10	1045	-25	-0. <u>4</u> 361111	947
	2	10	1	10	1045	-22	-0.3837778	969
	3	10	1.5	15	1567.5	-20	-0.3488889	1473
	_ 4	10	2.5	27.5	2873.75	-12	-0.2093333	2811
	5	10	3.5	37.5	3918.75	-9	-0.157	3871
	6	10	4	42,5	4441.25	0	Ö	4441
	7	10	4	42.5	4441.25	10	0.17444444	4374
	8	10	4	40	4180	15	0.26166667	4038
	9	10	4	40	4180	20	0.34888889	3928
	10	10	3.5	35	3657.5	25	0.43611111	3315
			sum	300.00	31350			30167

	[Ni*tan(phi)+c*li] (ft-lbs)	[Wi*sin(Ihetal)] (ft-lbs)	[W (surcharge)*sin (thetai)] (lbs)
-	266.0	9.2	30.9796
	271,5	-954.0	-3195.3
	397.1	841.1	1878.01
	730.5	-1184.3	-1442,4
	994.5	0.0	0
	1136.7	-2416.1	-1904.1
	1119.9	2888.1	2276.01
	1036.2	3816.1	3195.31
	1008.9	-553.2	-463.23
	7547.5	0.0	0
នយរព	14508.9	2446.8	375.273


Wî*sin(thetai)*R ⇒> 19574.49862


yi (ft)	Ti*yi (lb-ft)
0	0
· 0	0
0	0
0	0
0	0
D	Û
sum	<u> </u>

> Trial of critical section (mojim slace height, surchage) p = 8 $\frac{F_{\text{Resisting}}}{F_{\text{Driving}}} = \frac{\sum_{i=1}^{n} (N_i \tan \phi + c \Delta l_i) R + \sum_{i=1}^{n} T_{i} \sigma_i}{\frac{1}{2} (1 + c \Delta l_i) R + \sum_{i=1}^{n} T_{i} \sigma_i}$ FS= E (Wi sin Oi) R + W sin Oi = 14508.9+ 0 5.1 2446.8 + 375.3 = no external reinforcement required

Proposed Retaining Wall

The proposed retaining wall rises a maximum of 14 ft. above the proposed grade of Elevation 6738 ft. It will be constructed of 8 in. concrete masonry block, with a 3 ft. deep concrete footing, as shown in the following section. It will be reinforced with 10 and 15 ft. lengths of geogrid having a machine direction ultimate tensile strength of at least 10 kip/ft.. An 18 in. sand layer having a transmissivity of at least 0.01 cm/sec will be installed vertically behind the wall. Drainage will be through weep holes 4 sq. in. and spaced every 10 ft. along the base of the wall at a height of 1 ft. above the finished ground surface. Refer to the following sheets for diagrams and calculations.

$$\frac{Bearing \ Capacity}{e = \frac{B}{2} - L_{5e} = \frac{4}{2} - 1 = 1'$$

$$B' = B - 2e = 4 \cdot 2 = 2'$$

$$B' = B - 2e = 4 \cdot 2 = 2'$$

$$B = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 4 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2 \cdot 2 = 2'$$

$$F = B - 2e = 2'$$

$$F = B -$$

FBM Engineers Geotechnical Calculations

3/8/2001

....

Returning Wall - deternal Stelling

$$T_{4a} = \frac{T_{4}Bt}{T_{4}} = \frac{10}{2.8} \frac{\kappa_{T}/\mu}{2.8} = 2.6 \text{ Kig}/\mu$$

$$T_{6} = \frac{T_{6}Bt}{T_{6}t_{our}} = \frac{10}{2.62} = 3.8 \frac{t}{\mu}$$
(1) writing specing

$$T_{4a} = \frac{S_{our}}{C_{p}} \Rightarrow S_{r} = \frac{0.8(2.6)}{7.32} =$$

$$M_{our} depth for Sur = 3\frac{t}{2}$$

$$Sur = 1\frac{t}{2} + \frac{2}{2} = 0.8(2.6)$$

$$Z = 0.094 \frac{t}{4} (and equilize)$$

$$Sur = 1\frac{t}{2} + \frac{2}{2} = 0.8(2.6)$$

$$Z = 0.094 \frac{t}{4} (and equilize)$$

$$Sur = 1\frac{t}{2} + \frac{2}{2} = 0.8(2.6)$$

$$Z = 0.094 \frac{t}{4} (and equilize)$$

$$Sur = 0.66 \frac{t}{7.32(4.57)} = 0.92\frac{t}{2} + (and equilize)$$
(2) which and the formula is a first of the set of the set

FBM Engineers Geotechnical Calculations

3/8/2001

$$\frac{\text{traged Frageties}}{\text{Song Tubb} = 10000 \text{ W/M}}$$

$$\frac{2 \text{ OVERTURNING:}}{\text{trageties}} = 2 \text{ in trageties} = 2 \text{ in trageties} = 4 \text{ in trades sets} = 4 \text{ in trades sets} = 4 \text{ in trades sets} = 0.15 \text{ in trades se$$

3) No tension on footing :

$$C = \frac{M_{ov}}{W+qL} = \frac{5900}{8HL+qL} = \frac{5900}{104.5(15)(0)} = 0.376 \text{ ft}$$

$$C \leq \frac{L}{6} = \frac{10}{6} = 1.67$$

$$O.37 \leq 1.67 \text{ is ok - No tension on footing}$$

۲.

FBM Engineers Geotechnical Calculations

Layer Number	Depth (ft)	spacing (ft)	Le (ft)	Le min(ft)	Lr (ft)	Lcalc (ft)	Lrqd (ft)
21	0.93	0.67	0.36	0.5	14.27367	14.77367	15
20	1.6	0.67	0.36	0.5	13.7504	14.2504	15
19	2.27	0.67	0.36	0.5	13.22713	13.72713	15
18	2,94	0.67	0.36	0.5	12.70386	13.20386	15
17	3.61	0.67	0.36	0.5	12.18059	12.6805 9	15
16	4.28	0.67	0.36	0.5	11.65732	12.15732	15
15	4.95	0.67	0.36	0.5	11.13405	11.63405	15
14	5.62	0.67	0.36	0.5	10.61078	11.11078	15
13	6.29	0.67	0.36	0.5	10.08751	10.58751	15
12	6.96	0.67	0.36	0.5	9.56424	10.06424	15
11	7.63	0.67	0.36	0.5	9.04097	9.54097	15
10	8.3	0.67	0.36	0.5	8.5177	9.0177	10
8	8.97	0.67	0.36	- 0.5	7.93443	8.49443	10
8	9.64	0.67	0.36	0.5	7.47116	7.97116	10
· 7	10.31	0.67	0.36	0.5	6.94789	7.44789	10
6	10.98	0.67	0.36	0.5	6.42462	6.92462	10
5	11.65	0.67	0.36	0.5	5.90135	6.40135	10
4	12.32	0.67	0.36	0.5	5.37808	5.87808	10
3	12.99	0.67	0.36	0.5	4.85481	5.35481	10
2	13.66	0.67	0.36	0.5	4.33154	4.83154	10
1	14.33	0.67	0.36	0.5	3.80827	4.30827	10

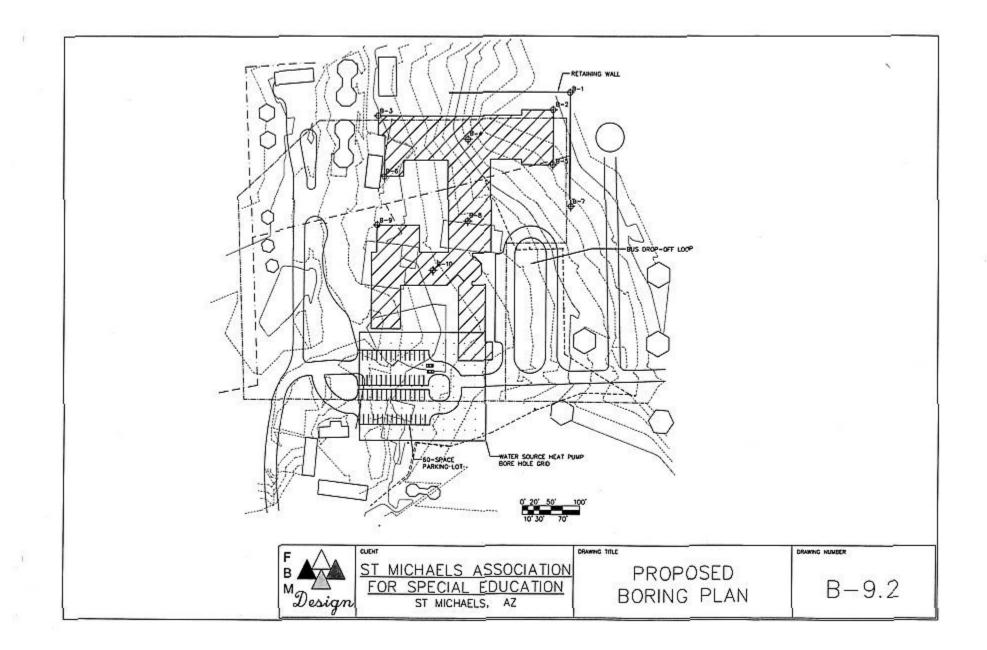
÷

• • 5

3/8/2001

1997 Boring Location Plan

Boring Plan Notes


The following boring location plan illustrates the locations of nine borings performed on St. Michael's campus during September, 1997. The information discovered during this site exploration is still valid for the proposed project. However, supplemental borings must be performed in order to generalize the findings for the rest of the proposed new building site.

Proposed Boring Location Plan

Boring Plan Notes

Proposed boring names and locations are noted on the following plan. Borings are spaced approximatley 200 ft. on center in major corridors of the building. Borings should be performed before any other action on the site, including the drilling of the ground source heat pump well grid.

No borings are proposed for the south side of the building because of its proximity to the area already explored by Agra, Inc. in 1997 and the proposed ground source heart pump well grid. After other borings have been performed, a field geotechnical engineer should observe the drilling of the wells and examine cuttings to determine similarities or differences versus the expected fill based on the results of previous sampling. If notable differences in strata are observed, additional borings in the area may be required.

Appendix C: Architectural Appendix

Wall Construction	C-2
Roof Construction	C-2
Acoustics	C-2
Overall Building Design	C-2
Calculations:	
Wall temperature and moisture gradients	
Drawings:	
Perspectives and Elevations	

Floor Plan	A-1.1
Office Wing	
Miscellaneous Wing	
Gymnasium and Cafeteria	A-2.3
Classroom Wing	A-2.4

Wall Construction

The wall construction for the majority of the building will be a 8" masonry wall, a 2" air space, 2" of insulation, and $\frac{1}{2}$ " drywall with a steel stud backup. Using this design, the winter conditions of the site require that a vapor barrier is added to keep moisture from accumulating in the wall. See the calculations later in this appendix.

Roof Construction

The roof construction will consist of built-up roofing on top of a layer of 2" insulation which is all supported by $1 \frac{1}{2}$ ", 20 gage metal roof deck. This whole construction will be supported by roof joists and beams which bear on the concrete masonry unit walls.

₹.

Acoustics

Acoustics is a concern in two areas of the building. The first area is in the sound therapy rooms. The students need a place free from distraction where they can have their hearing testing. FBM suggests a small booth where they are separate from the people doing the testing. A cut sheet has been provided later in this appendix for a room such as this. The other area where acoustics may be a concern is in the gymnasium. FBM suggests the implementation of sound absorbent materials placed in the ceiling to keep sound from echoing throughout the large space.

Overall Building Design

Great care was taken to be sure that the architectural program met the varied needs of the client. St Michaels was happy with the initial program, but had several suggestions for improvement:

- The main suggestion the client gave was an increase of the number of classrooms from six to nine. The client felt that the campus would have expanding needs and therefore need additional classrooms.
- They also expressed a possible need for additional meeting space so two additional conference rooms were added to the office wing. They also requested a 100-seat auditorium space, however FBM was unable to supply this. Instead the

Ç-2

cafeteria was equipped with a large stage area and versatile seating area so that it can be easily transformed into an auditorium setting if necessary.

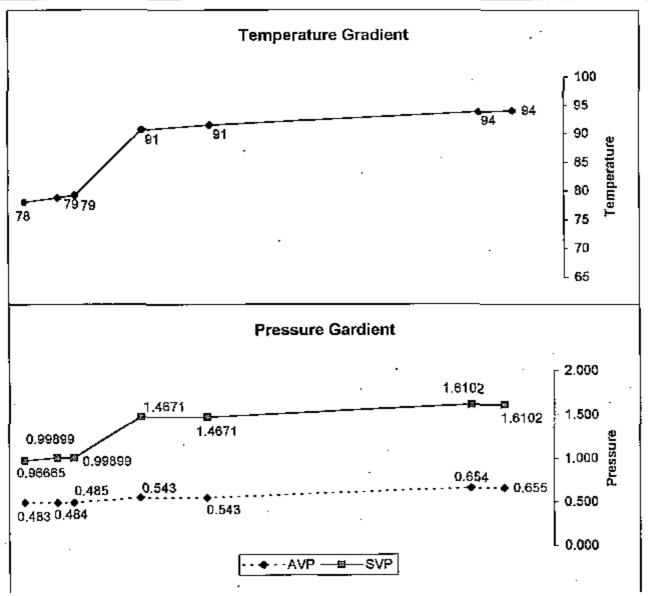
- St Michaels expressed a need for a computer/resource room for the teachers to utilize for email and Internet needs, so a room was added.
- The client wanted to see a staff lounge for their teachers to relax and get away from things for a while. This area should include a kitchenette, vending machines, and couches for seating. This room was also added.
- An expanded nursing staff is expected in the near future of the school, so they asked that the nurse's office be enlarged to accommodate three nurse's offices.
- A more detailed outline of the offices needed was provided to FBM to make the design of the office area easier. This new information made the office area grow. These offices include:
 - o Education Administration
 - Director of Education (with secretary)
 - Assistant to the Director of Education
 - Education compliance
 - Family services
 - Social Services
 - o Residential Administration
 - Director of Residential (with secretary)
 - Residential Supervisors (3 of them and I'm assuming they could all share an office)
 - <u>Developmental Supports Administration</u>
 - Director of Developmental Supports (with secretary)
 - 1 office for several part time workers

C-3

o Administration

- Executive Director (with secretary)
- o Information Technology
 - Director of Technology
 - Office for troubleshooter

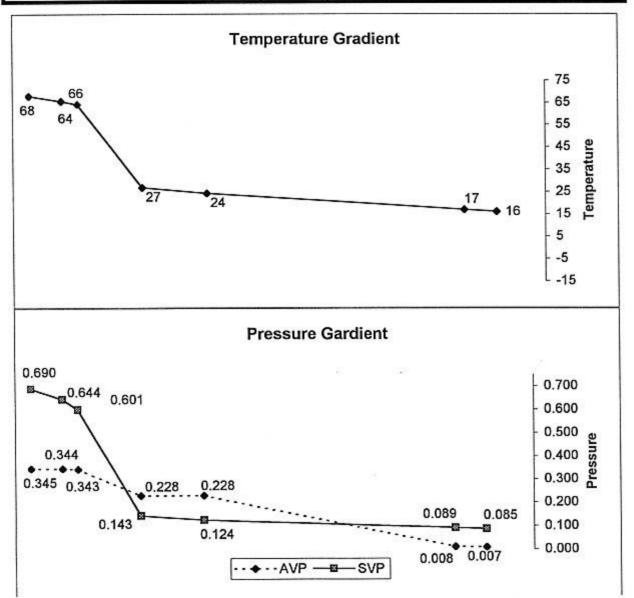
o Development Office


- Coordinator
- Large work area room
- <u>Business & Operations</u>
 - Director of Business & Operations
 - Assistant to the Director
 - Human Resources office
 - Accounts Receivable/Payable/Accounting Manager (3 people sharing 1 office)

Ł

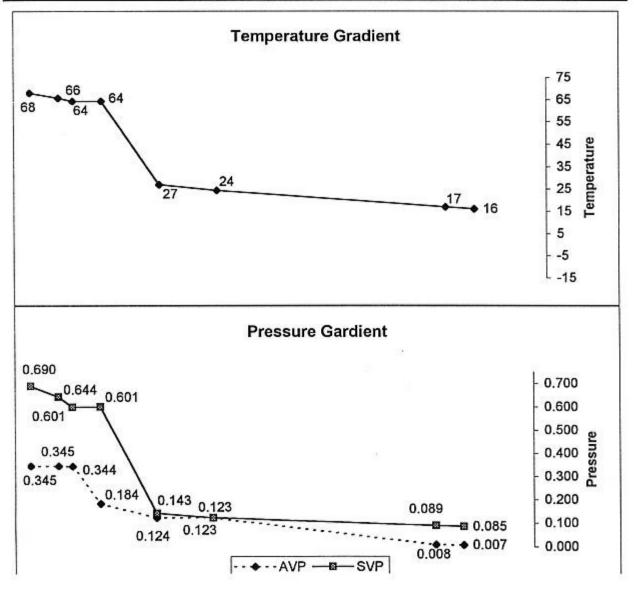
Justin Ruby AE 544 5/24/01

ŗ,


Summer Conditions							
Description	R	Delta T	Temp	SVP	Rep	Delta VP	AVP
Inside Air Temperature			78	0.96665			0,483
Inside Air Film	0.68	1	79	0,99899	0.008	0.000	0.484
1/2" Gypsum Wallboard	0.45	0	79	0.99899	0.02	0.001	0,485
2" Insulation	11	11	91	1.4671	1.25	0.058	0.543
2" Air Spa <u>ce</u>	0.77	1	91	1.4671	0.004	0.000	0.543
8" CMU Wall	2.2	2	94	1.6102	2.4	0.112	0.654
Outside Air Film	0,25	0	94	1.6102	0.008	0.000	0.655
Outside Air Temperature			94	1.6102			0.655
TOTAL	15.4	16			3,69	0.171	

Homework #3

Justin Ruby AE 544 5/24/01


Winter Conditions		-2001/1-0					
Description	R	Delta T	Temp	SVP	Rep	Delta VP	AVP
Inside Air Temperature			68	0.690			0.345
Inside Air Film	0.68	2	66	0.644	0.008	0.001	0.344
1/2" Gypsum Wallboard	0.45	2	64	0.601	0.02	0.002	0.343
2" Insulation	11	37	27	0.143	1.25	0.114	0.228
2" Air Space	0.77	3	24	0.124	0.004	0.000	0.228
8" CMU Wall	2.2	7	17	0.089	2.4	0.220	0.008
Outside Air Film	0.25	1	16	0.085	0.008	0.001	0.007
Outside Air Temperature			16	0.022			0.007
TOTAL	15.4	52			3.69	0.338	

Homework #3

Justin Ruby AE 544 5/24/01

Winter Conditions							
Description	R	Delta T	Temp	SVP	Rep	Delta VP	AVP
Inside Air Temperature			68	0.690			0.345
Inside Air Film	0.68	2	66	0.644	0.008	0.000	0.345
1/2" Gypsum Wallboard	0.45	2	64	0.601	0.02	0.001	0.344
6-mil Polyethylene Sheet	0	0	64	0.601	3.333	0.160	0.184
2" Insulation	11	37	27	0.143	1.25	0.060	0.123
2" Air Space	0.77	3	24	0.124	0.004	0.000	0.123
8" CMU Wall	2.2	7	17	0.089	2.4	0.115	0.008
Outside Air Film	0.25	1	16	0.085	0.008	0.000	0.007
Outside Air Temperature	_		16	0.022			0.007
TOTAL	15.4	52			7.024	0.338	

<u>Homework #4</u>

Justin Ruby AE 544

÷.,

	Mean	Saturated	Average	Average	Winter	Winter	Summer	Summer
Month	Outdoor	Vapor	Outdoor	Outdoor				
	Temp	Pressure	RH	VP	Wetting	Drying	Wetting	Drying
January	31.9	0.179542	42.5	0.07628	0.304068		0.165848	
February	39	0.23819	40	0.09525	0.24542		0.1072	
March	45.5	0.30604	36.5	0.11166	0.17757		0.03935	
April	53.3	0.409456	32	0,13098	0.074154			0.064066
May	62.3	0.565964	29,5	0.16692		0.399044		0.399044
June	72.2	0.796552	27	0.21525		0.581302		0.581302
July	78,2	0.973118	35.5	0.34579		0.627328		0.627328
August	75.7	0.895802	39.5	0,35415		0.541652		0.541652
September	68.2	0.695012	40.5	0,2817		0,413312		0.413312
October	56.2	0.455088	38.5	0,17532	0,028522			0.109698
November	43.9	0.287904	41.5	0.11944	0.195706		0.057486	
Decemb <u>er</u>	33.1	0.188458	45	0.08482	0.295152		0.156932	
Totals					1,320592	2,562638	0.526816	2,736402

Winter Indoor Design Conditions:	
Air Temperature:	78
Relative Humidity:	50
Vapor Pressure:	0.48361

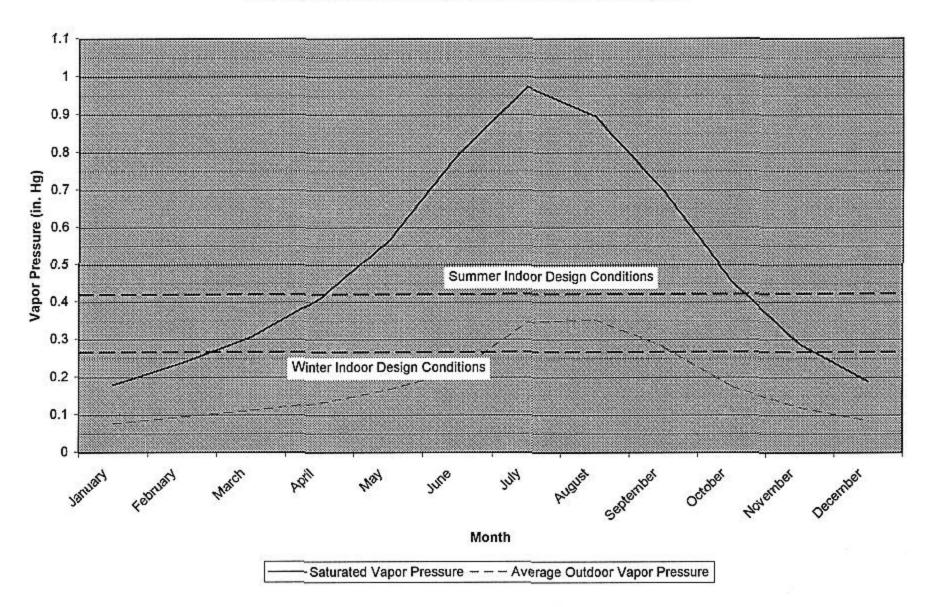
Summer Indoor Design Cor	ditions:
Air Temperature:	68
Relative Humidity;	50
Vapor Pressure:	0.34539

 Mean Outdoor Temperature Information Courtesy of:

 http://www.ncdc.noaa.gov/ol/climate/online/ccd/meantemp.html

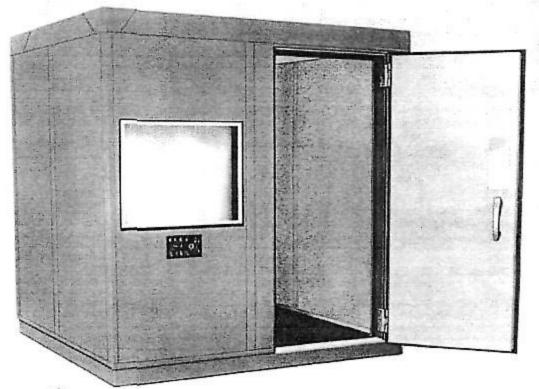
 Average Outdoor Relative Humidity Information Courtesy of:

 http://www.ncdc.noaa.gov/ol/climate/online/ccd/meantemp.html


 Average Outdoor Relative Humidity Information Courtesy of:

 http://www.ncdc.noaa.gov/ol/climate/online/ccd/avgrh.html

 Average Outdoor Vapor Pressure Calculated Using:


 http://www.linric.com/webpsy.htm

Philadelphia Industrial Building Wetting and Drying Cycles

....

ROOMS FOR THE MEDICAL AND LIFE SCIENCES

Fifth Fourth Generation IAC Sound Isolation Rooms Feature: • Textured Steel Finish — outside and inside surfaces

- Aluminum-Trim "Pressure-Sealed" acoustic window
- Interchangeable panels
- •"spaSAVER"" ventilation built into roof panels

•STATE OF THE ART NOISE REDUCTION DATA • TYPICAL REVERBERATION TIMES • FLUSH-MOUNTED DOORS • CAM-LIFT HINGES •GRAVITY THRESHOLD COMPRESSION SEALS • MAGNETIC DOUBLE NOISE-LOCK* PERIMETER SEALS • PROVEN PERFORMANCE

controlled environments for acoustics/r.f/60 cycle/vibration/temperature/humidity

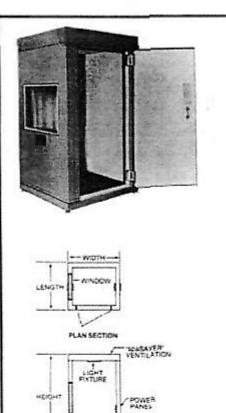
U.S. Patient No. 3 TER. Let

ac industrial acoustics company

400-A SERIES

IAC pioneered the development of prefabricated rooms for the Medical/Life Sciences. "400-A" Series Rooms are the most widely used rooms of their kind. Thousands are in successful operation throughout the United States and abroad.

All types of measurements requiring the exclusion of sound can be made inside these rooms. when located in areas of "normal" ambient. The definition of "normal" may vary with the type of measurements involved. Our Advisory Services, utilizing the latest sound measuring equipment, are available for consultation at no charge.


Rooms are constructed of 4 in. (102mm) modular panels and provide the required acoustic environment to conduct valid pure tone air and bone-conduction tests, speech tests, and audiological, psychological, heart sounds, auscultation and cardiography examination and research. Models are designed for either individual or multiple occupancy.

All rooms are supplied with top performance Noise-Lock® Doors with flush-mounted, cam-lift, butt-type hinges, double positive magnetic seals at head and jamb which effect a sound-absorbing labyrinth. Harnessing the principles of gravity and magnetism, these unique doors achieve reliable in-field acoustical performance. A sound-tight seal results as the carn action of IAC's unique hinges compress the bottom seal firmly against the sill eliminating a hazardous step into the room.

IAC "spaSAVER"** forced ventilation intake and discharge silencer systems are standard equipment and built into the roof panels. The ventilation system matches the acoustical environment provided by the room itself. Perfected after years of R&D in our own Aero Acoustic Laboratory. it is the finest and only one of its type.

Rooms may also be directly coupled to an existing air conditioning system via flexible connections. Additional packaged sound attenuators in the air conditioning intake and exhaust lines may be required and supplied.

More than 300 types of configurations and layouts are available. These provide for the interchangeability of window, door, root, power panels, and other components.

JACK

SOLATORS. SECTIONAL ELEVATION

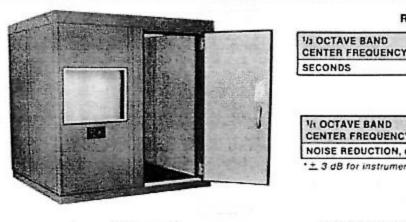
STANDARD ROOM FEATURES

- 1 IAC "spaSAVERIN" ceiling panels containing an all-in-one forced ventilation system with built-in intake and exhaust silencers.
- 2. Models 400-A and 401-A are available in two types of conligutations permitting door and window panel variations. Models 402-A. 403-A, 404-A, and 405-A are available in over 300 types and configurations
- 3. Four-inch-thick (102mm) durable non-combustible Noise-Lock steel panels with noise reduction coefficients of 0.95 (1.10) as tested in a recognized independent and approved acoustical laboratory
- 4. Acousti-Flote^{TV} floor on rubber vibration isolators Specially designed 2¹/₂ in thick (64mm) Noise-Lock Flush Mounted Cam-Lift Magnetic Seal Door.
- 6. Double-glazed 24 in: x 30 in: (610mm x 762mm) Noise-Lock window.
- 7 Jack Panel. See item 9 on back page of this Bulletin for detailed specifications on jack panel.
- 8. Recessed incandescent light fixtures prewired with power cord for connection to power panel.
- 9. Power panel (factory prewired and Hospital Grade) Interior -two (2) rocker switches for lights and fans -one (1) duplex receptacle
 - exterior -two (2) duplex receptacles to plug-in light and fans -one (1) 10 ft (3048mm) long power card for connection to standard 110 V outlet.
- 10 Carpet.
- 11. Color: Desert Sands.

OPTIONAL EQUIPMENT AVAILABLE AT ADDITIONAL COST

6. Quiet fluorescent lights with remote ballasts.

- 5. Light-tight shades with frames.
- 1. Noise-Lock double-glazed 12 in x 12 in. (305mm x 305mm) window in door.
- 2 Additional Noise-Lock double-glazed windows.
- 3 One-way glass Noise-Lock window substiluted for standard.
- 4 One-way Noise-Lock glass on sliding rails.

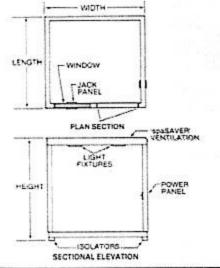

- 14. Recessed keyed locks.
- 17 U.L. fire-resistant panels and door construction

Crownert 1975, last revised October 1990 by INDUSTRIAL ACOUSTICS COMPANY

- Intercom system.
- B. RF and electrostatic shielding. 9. Power filters

7

- 10. Outside wood grain vinyl finish
- 11. Special outside or inside paint colors.
- 12. Special lack panels, cutouts and plugs.
- 13. Humidity and temperature control.
- 15. Teak formica shelves
- 16. Six-outlet plug-in power strip.


REVERBERATION TIMES

1/2 OCTAVE BAND CENTER FREQUENCY, Hz	125	Contraction of the local division of the	The other			17/2019/07	Service and the
SECONDS	0.24	0.19	0.11	(0.1	10.1	(0.1	(0.1

NOISE REDUCTION

VA OCTAVE BAND CENTER FREQUENCY, Hz	125	1000000000	Contraction of the	123.3496	00.029	102565	000000	10.002000
NOISE REDUCTION, dB*	28	36	48	57	61	61	57	50

± 3 dB for instrument accuracy

SELECTED DESIGN DATA - 400-A SERIES ROOMS

1		19.99	DIMEN:		ROOM	VENT		
MODEL		INSIDE		(UTSIDE		WT.	SYSTEM
Concernance -	W	L	н	W	L	H	tb kg	cfm m3min
400	3"-4" 1015	3'-0" 915		4'-0" 1220	3'-8" 1120		1,800 820	100 2.85
401	4°-0" 1220	3'-4" 1015		4'-8" 1425	4'-0" 1220		2,100 950	100 2.85
402	6'-4" 1900	5'-0" 1830	6'-6"	7'-0"	6'-8" 2035	7'-6"	3,475	200
403	7'-4"	7'-0" 2135	1	8'-0" 2440	7'-8" 2340		4,160 1,890	200 5.66
404	9'-0" 2745	8'-4" 2540		9'-8" 2945	9'-0" 2745		5,250 2,380	200 5.66
405	10'-0" 3050	9'-4" 2845	1	10'-8"	10'-0" 3050		6,125 2,780	300 8.50

ACOUSTICAL AND STRUCTURAL SPECIFICATIONS FOR IAC SERIES "400-A" EXAMINATION AND RESEARCH ROOMS

1. Medical Booms

Rooms shall be Model Number (insert as required) manufaclured by Industrial Acoustics Company, Inc., 1160 Commerce Avenue, Bronx, New York 10462.

2. Roof and Wall Panels

Roof and Wall panels shall be made of not less than 14 gauge (1.9mm) cold rolled TEXTURED steel (CRS) outside surfaces and 22 gauge (0.76mm) galvanized perforated TEXTURED steel inside surfaces with Hig in. (2.36mm) diameter openings of 3/4 in. (4.76mm) staggered centers, reinforced with 18 gauge (121mm) CRS channels for rugged metal frame. Average weight to be not less than 8 lb/sq ft (39 kg/sq m).

3. Floor Construction

Acousti-Flote™ floor shall be 4 in. (102mm) thick with 11 gauge (3 04mm) hot rolled steel (HRS) upper surface and 16 gauge (1.52mm) CRS bottom sheets structurally reinforced All floors shall be covered with carpeling. Average weight to be not less than 10 ib/sq ft (49 kg/sq m). Floors shall float on

properly loaded isolators rated for natural frequency of 61/4 Hz for maximum elimination of structural noise.

4. Acoustic Infill

Infill for floors, walls, door, and roof panels shall be soundretardant, absorbing, inert, mildew-resistant, and verminproof. It shall have U.L. fire hazard classification of not less than: Flame Spread-0: Smoke Developed-5. Fuel Contributed-0. Heat transfer factor shall be no more than 0.07 BTU/hr ft:ºF

5. Door Construction

IAC Noise-Lock* Flush-Mounted Cam-Lift magnetic-seal doors shall be provided with clear opening of 33 in (838mm) wide x 73'r, in (1867mm) high. Door leaf shall be fabricated of 16 gauge (1.52mm) cold rolled TEXTURED steel, inner and outer sheets. Sides and head of door and frame shall receive two (2) sets of selfaligning MAGNETIC COMPRESSION SEALS. Acoustic labyrinth shall be created when door is in closed position. Bottom of door leaf shall contain continuous gravity activated seal which shall compress against floor as door is closed. RAISED SILL AND THRESHOLD DROP SEALS NOT PERMITTED.

Hardware shall include two (2) cam-lift butt-type hinges finished in U.S. 26-D satin chrome. SURFACE MOUNTED HINGES NOT ACCEPTABLE. Latches shall not be required or permitted to hold door closed or to achieve acoustic seal. Door leaf shall be held closed by the magnetic action of the acoustic seals.

6. Wall and Roof Panel "H" Members

Wall and roof panels shall be acoustically and structurally joined together by "H" members. One piece seamless, nonwelded, and roll formed "H" members, constructed of 20 gauge (0.91mm) CRS shall maintain the acoustical integrity of the room.

7. Window Construction

Windows shall be 24 in (610mm) x 30 in (762mm) doubleglazed 1/2 in (6.35mm) thick safety glass with "pressuresealed" ALUMINUM TRIM FRAME.

8. Jack Panel

A jack panel consisting of ten (10) Switchcraft 3-wire phonetype jacks with covers, one (1) each Cinch Jones Series No. 303 and 304 connectors, and two (2) 1-inch (25.4mm) ID grommeted holes shall be provided under the window. On Models 400-A and 401-A jack panel shall consist of six (6) Switchcraft and one (1) each Cinch Jones No. 303 and 304. Jack Panels shall be designed to preserve acoustical integrity of the room.

9. Electrical

All components shall be UL approved and Hospital Grade. All wiring shall be in accordance with the National Electric Code.

All Series rooms shall be provided with recessed incandescent lights and a factory wired "power panel" consisting of *Interior* – Two (2) rocker switches to control lights and fans independently. One (1) duplex cutlet. *Exterior* – Two (2) duplex cutlets to plug in lights and fans. One (1) 10 foot (3048mm) long power cord and plug for connection to a 110V/60 Hz power supply.

10. Ventilation Systems

spaSaver¹⁰ ceiling panels containing an all-in-one integrated Tranquil-Aire[®] ventilation system with built-in intake and exhaust silencers or a packaged Tranquil-Aire ventilation system, roof or wall mounted shall be provided. Where rooms are directly coupled through a flexible duct to a building AC system, supplementary IAC Quiet Duct Silencers (optional) are available for installation in the duct work by others.

11. Fire Rating- (Recommended Option)

Rooms shall be constructed of Fire-Noise-Lock* Panels fire rated by U.L. for 90 min, with sound absorptive surfaces facing fire inside room. Rating for solid surfaces facing fire outside room shall not be less than 60 min. Each Fire-Noise-Lock Panel shall bear a label with Listing Mark of Underwriters Laboratories, Inc. certifying dual ratings.

12. Noise Reduction*

The minimum allowable noise reduction of completely assembled rooms as tested in accordance with ASTM Designation: E 596 shall be as shown in table below:

1/1 Octave Band Center Frequency, Hz	125	250	500	1K	2K	4K	8K	NIC
Noise Reduction, dB**	28	36	48	57	61	61	57	50

*Defined as the difference between sound pressure level in a reverberation room outside the booth and that inside the booth. Copy of Laboratory Report available on request.

**.1. 3dB for field instrument accuracy

NIC — Note Isolation Class, single number rating system for noisereduction characteristics.

13. Reverberation Times (RTs)

Typical reverberation times as measured in a completely assembled room are as follows:

1/2 Octave Band Center Frequency, Hz.	125	250	500	1K	2K	4K	8K
Seconds	0.24	0 19	0.11	(01	(0.1	(0.1	(01

14. Finish

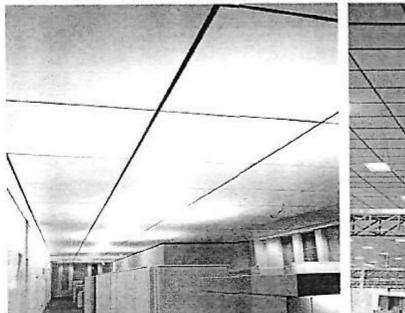
Degrease and clean all metal surfaces with welds ground smooth and filled as needed. Coat with rust inhibitive chromate modified alkyd primer. Finish with cellulose-nitrate polyester modified coating per quality standards of National Association of Architectural Metal Manufacturers, Color: Desert Sands.

15. Erection Procedure

Rooms shall be so engineered as to allow the installation of this equipment within 4 in. (102mm) of an existing wall.

16. Supplier's Experience

The contractor shall provide proof that he has trained personnel and his own shop facilities for performing the work under established quality-control procedures

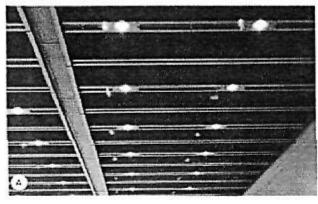

17. No Exception To This Specification Allowed.

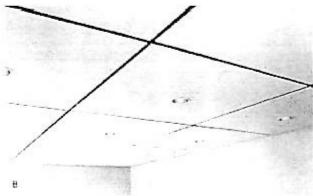
All designs and specifications subject to change without notice. Dimensions nominal

BULLETIN 3.0601.2

• SOUND ABSORPTION • TRANSMISSION LOSS • MODULAR FLEXIBILITY • CUSTOM AND STANDARD DESIGNS • FULLY ENGINEERED AND TESTED

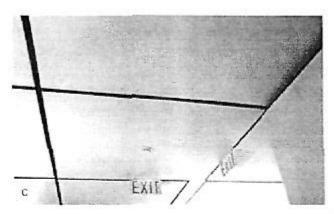
ATAT BUILDING NEW YORK NY JOHNSON BURGEE ARCHITECT &


AL REYNOLDS WINETON SALEM N.C. RUST INTERNATIONAL ARCHITECT & PHILIP MORRIS CONCORD N.C. MARGEL BREUER ASSOCIATES ARCHITECT 1



NOISE-LOCK' CUSTOM

Since 1949, IAC has been engaged in developing products and systems to solve noise control problems. These range from containing the high noise levels of jet engines to the design and construction of ultra-quiet anechoic chambers to measure noise levels below the threshold of human hearing. Working with owners, architects, and consultants, IAC has also been intensively involved in the design and installation of innovative integrated ceilings to meet the needs of our new space-age and high-technology society.


Utilizing the IAC Aero-Acoustic Laboratory, highly successful custom designs were developed and installed. In the following, we describe five of these Noise-Lock Ceiling Systems, from Mark I to V, and also the original Varitone™ I and II Systems. This experience and accumulated technology is available to solve your noise-control and sound-conditioning problems.

A Philip Morris Concord, North Carolina Designed to meet the story in reductments of tobacca Hamaladictions, this load bearing IAC Mark I integrated Celling, was developed for the care lind architect. Vie of Breact Arcor View it also supplied in tailors, table ded meddees on the form optic and versitial and fluxes approximately 26 to 7928mm of the 3046 mm with the 24 mm development mater. 26 to 7928mm of the 3046 mm with the 24 mm development respective translations. The table of each was an approximately development to allow to microtections of the 50 lang tervane includes the advantation of the undevelopment was an approximately above the advantation of the undevelopment was an approximately above the advantation of the undevelopment was the state of the development of the advantation of the undevelopment part table and states the state of the another activity of the scheduler of the state of based on tables. B Patienter International Princeton (NJ) Labs. AC, Mark II Celling Scheduler to the constance of the advantation of the Respersion of a states the state of the state of the scheduler.

A British based pharmaceutical company recurred a relind panel system that will diversely in earlier meet radit FDA requirements expected we construction and existences or back and be bearing in processing. Our adalitient devices the server meets and be dealing in processing our temperature in the data in the track of the dealers of the structure of the rule costed in the data in the track of the dealers of the track of the rule costed in the data in the track of the dealers of the track of the rule costed in the data in the track of the data will be track of the rule cost of the track of the track of the data will be track of the track of the track rule of the Mark IV period system and the data will be track of the standard relation coster will part to track of the standard of the s

C. AT&T New York, New York – Devenders to satisfy the rigid ferd veneratis of Johnson Burgee and AT\$T, the IAT Mark II Cound System a rotally mediated and the bar with power track to mark II Cound System a rotally mediated and the bar with power track to mark Byten and quert with 2018. This does not the test with the bar with bar with the bar with the bar with the

Other order a were rugged construction and resistance in duct and entage car Lation. An accustic bottle instent, was drive open which met all specifications and privided thermitim addiction from scuttere area and prometry, analy. The entagetion includes the includeration time from a discretion analy. The entagetion includes the includeration time from a discretion analy to an activitie of a neuronal frequency. The Convention Center can now schedule a great which of events without concern tranks to the accounting performance of schedules.

CCOPYRIGHT 1984, REVISED FEBRUARY 1993, LAST PRINTED OCTOBER 1996 BY INDUSTRIAL ACOUSTICS COMPANY

AEROACOUSTIC IAC LABORATORY

The IAC Acro-Acoustic Laboratory has generated a series of "firsts" in the development of noise-control equipment and engineering solutions to noise- and sound-control problems. These range from audiometric testing rooms for nospitals and doctors offices – studios for broadcasting and recording – music practice rooms for schools and universities to dissipative, reactive, and diffuser type noise suppressors for jet engines – Clean-Flow¹¹¹ ventilation silencers for hospitals and laboratories – security ceilings for correctional facilities – soundproof doors, panel and operable wall systems, and Quiet-Flow¹¹ Air Handling Units for commerce and industry

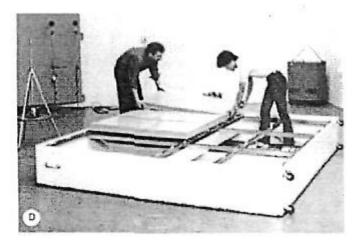
61

1

Other "firsts" in integrated acoustic ceilings and sound absorption systems are described on opposite page and illustrated below under development in the IAC Aero-Acoustic Laboratory. Owners, architects, and consultants are encouraged to bring their acoustic problems to

IAC If a standard product will not do the job, IAC will develop a custom solution and guarantee the result Research, development, and willingness to assume single-source turnkey responsibility is a continuous commitment at IAC 1. Removable hatch in roof for testing silencers up to 10 ft x 10 ft (3 05 m x 3 05 m cross section 2, 25 000 cfm (42,480 m³/hr) vaneaxial fan 3. Systemic silencer 4. Plenum with loudspeaker and flow diffuser 5. Test unit priot tube ports

6. Super-Noise-Lock housing 7. Test silence: 8. 10,000 ft³ (283 m³) reverberation tecering room 9. 3.000 ft³ (85 m³) reverberation source room 10.3 in. (76mm) impedance tube 11.24 m. x 24 m (610mm x 610mm) anectoic wedge impedance tunnel 12.14 tr x 9 ft (4.3 m x 2.7 m) test frame for transmission loss tests.



A. Mockup to demonstrate integration of services and accessibility for IAC Mark I Noise-Lock* Ceiling for Philip Morris. B. Mockup depicting downward accessibility of 60 in × 66 in ±1524mm × 1676mmi ceiling modules weighing 70 (b. 32 kg) for AT&T C. Mockup of intersol-allocad bearing IAC Mark IV Noise-Lock Ceiling module, 48 in × 60 in ±1219mm × 1524mmi.

supporting a concentrated load of over 250 ib (113 kg). Ceiling serves as work platform for maintenance of mechanical equipment loaded above **D**, IAC Mark V Noise-Lock Ceiling modules being installed in ASTM E 400 test frame to determine sound absorptive properces for R. J. Revnolds.

PAC CEILING SYSTEMS

IAC Standard Ceiling Systems are the result of custom research work which produced the standard designs now available for a great vanety of applications. These modules contain open or encased sound absorbing elements. Three types are described below. Each is an economical, all-metal, fire-resistant module manufactured on modern high-speed machinery which can be installed with most available grid, lighting, and diffuser systems.

The IAC Mark III, IV, and V designs can be furnished in designer demand dimensions of up to 60 in (1524mm) x 66 in: (1676mm) and in rectangular as well as special modules. The creative imagination of most designers can be satisfied with the great variety of materials/finishes available with IAC Standard Celling Systems. These include painted, vinyl coated, stanless steel, aluminum, solid or perforated in flat or rigidized sheets. IAC can provide a truly remarkable high-performance, acoustic, integrated celling system with custom features at lower than custom cost. Contact us for details, specifications, and application information. We have qualified representatives in most arces.

IAC NOISE-LOCK MARK

IAC Noise-Lock* Mark III Ceiling System – 2 in. (51mm) Thick — A lay-in or concealed grid metal panel system which provides sound absorption and optional sound transmission loss properties. Available in standard or moro-perforated patterns, the painted or viny' postor Mark III ceiling panel can be installed with conventional grid systems. Fights, and offlusers. Sound transmission loss data applies to backed panel only.

1		9				1.04	SOL	IND 1	RANS	MISSIC	N LOS	S					50	UND	ABS	ORPTI	ON CO	EFFICI	ENTS
					Verst	Ce	nter	Frequ	sency,	Hz 1/5 (Octave	Band	10.000				Ce	nter	Frequ	uency.	Hz 1/1 (Octave	Band
125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	STC	125	250	500	1000	2000	4000	NRC
22	27	27	21	22	25	29	29	32	36	38	38	42	42	43	42	33	63	71	98	1 11	1.03	1.08	0.95

fests per AMA. Two Room Method and ASTM E 413

Tests per ASTM C 423 and E 755 - Type E 400 Mounting

IAC NOISE-LOCK MARK

IAC Noise-Lock* Mark IV Interstitial System – 2% in, (64mm) Thick — A loadbearing panel module used to create an interstitial System – 2% in, (64mm) Thick — A loadbearing panel modules 48 in. (1219mm) × 60 in (1524mm) have been laboratoryand field-tested to support concentrated loads or 250 to (115kg) each. This hard surfaced steel or aluminum panel is highly abuse-resistant and can be futnished in easily-cleaned dist-resistant viry! Or painted surfaces. The contamination-free design is particularly suited to pharmaceutical, foco processing health care. If a science, clean- and computer-norm applications. (Acoustic data furnished on request.)

			14203	PANEL	STRUCTU	IRAL CHARACTERIST	ICS				
48 in. x 48 in.	(1219mm	x 1219	mm) par	nel simp	ly support	led - two sides only.	Concentra	ated load	over 1 sq	ft (.0929 :	sq m)
Load, Ib	160	240	320	400	480	Load, kg	72.56	108 84	145.12	181 40	217 58
Deflection, in.	024	035	044	054	650	Deflection, mm	610	889	1 119	1 372	1.600

If should be noted that as a load of 490 its (217,7 kg), the resultant deflection is substantially less than the most stringent deflection onlyine. For heavier loads and/or spane greater than 45 un. (1215mm), contact the home office

IAC NOISE-LOCK MARK

IAC Noise-Lock* Mark V Ceiling System – 2 in, (51mm) Thick Steel — A regressed grid panel system with the attractive shadow-line look provides high sound absorption with options for required sound transmission loss characteristics, protection against particulate matter contamination, and fre-resistance ratings. Available and micro-deflatated surfaces, the Mark V system also provides excellent low-frequency sound absorption and resistance to insect- and dust-information.

When used as a sound transmission loss element, or noise-control berrier, the Mark V panel system integrates with the IAC Moduline® celling-connected partitions to create an adoustically tight intersection. Bothersome above-celling sound partiers are not required and the partitions can be relocated with no loss in noise reduction and acoustical privacy. Sound Transmission loss data applies to backed panel only.

							SOL	IND 1	RANS	MISSIC	N LOS	S			2		SO	UND	ABS	ORPTI	ON CO	EFFICI	ENTS
						Ce	nter	Frequ	ency.	Hz 1/3 (Octave	Band					Ce	nter	Frequ	ency.	Hz 1/h (Octave	Band
125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	STC	125	250	500	1000	2000	4000	NRC
21	26	32	35	35	39	42	43	42	46	47	47	44	42	-47	53	43	57	90	118	1 17	102	82	0.95

Testa per AMA Two Room Method and ASTM E 412

Tests per ASTM C 423 and E 795 - Type E 400 Mounting

5

FEATURES

Designer Modularity/Versatility Permanent/Durable Economical/Low Life Cycle Costs Attractive Finish Options Abuse/Stain Resistant Interstitlal Load Bearing Designs Contamination/Dust Free Integrates Services/Partitions Ease of Access Superior Accustical Performance -Sound Absorption NRC 0.60-0.95 -Sound Transmission Loss STC 33-45

III CEILING SYSTEM

Detail below illustrates an unbacked panel which essentially provides sound ebsorptive performance only and backed panels which provide part sound absorption and transmission loss properties in normal practice, these panel types would not be planded together

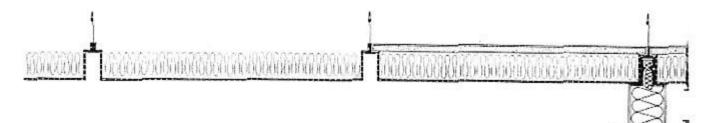
HENERYDDODODIOL

IV INTERSTITIAL SYSTEM

Defail below illustrates a typical interstitial load bearing banel supported on each side by continuous structural memoers. The Mark X Interstitial System can also be furnished with a sound absorptive exposed surface prividing acoust C procerbes Similar to those shown for the Mark V System described below

相相通

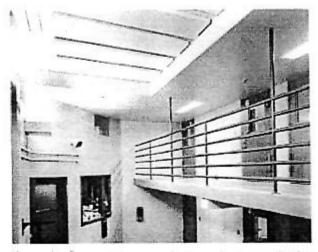
KH KA


计控制时间算机

计计算机

V CEILING SYSTEM

Detail below illustrates Unbacked panels which essentially provide sound absorptive beformance only and backed panels which provide both sound absorption and sound transmission loss properties, in normal practice, these panel types would not be bended together. The acoustic integration of the floor to being partition detail is recommended for applications where good sound transmission loss characteristics are required between two offices or rooms.



Industrial Acoustics Company's Varitorie'' Sound Absorption Systems feature acoustically engineered, architecturally compatible, rectangular modules for attachment to walls or for suspension from ceilings of enclosed or semenciosed areas to reduce distracting echotreverberation effects and thus create an acoustically softer, more pleasant ambience improving voice and audio communication.

Fabricated from 16-gauge (1.5 mm) to 22-gauge (0.76 mm) steel in standard widths, in modular lengths, and in thicknesses of two or four inches (51 or 102 mm). Varitone System modules containing acoustic/thermal fill have a higher degree of sound absorption, particularly in the hard-to-control low frequencies, than do light-weight-metal or fabric-covered designs. (We can supply the steel modules in heavier gauges for special applications.)

Fashioned with Interior-design appeal and for long-service life, Vantone modules can be installed easily as individual units, in clusters, or in series. No matter where or how this IAC System is applied, the modules exhibit the best in visually intractive, abuse-resistant, sound absorptive properties to meet the most demanding requirements of consultants, architects, and owners

Vantone I — Fabilitated intitugged pertonated steel in designer-Attractival acuse-resistant virus or painted finitivity the Vantone Employee and e daplied to the ways or technique an area. Available in 2 in 161 mm and 4 in 162 mm thickness in standard widths of 18 mm (467 mm) and 14 in 165 mm thickness in standard widths of 18 mm (467 mm) and 14 in 165 mm thickness in standard width openings and services in both result absorption and infegrates the due with openings and services in both news and existing the territory. Tables 1 and 2 on page 7 provide complete minimum on the employee of the Vantone Listerna Information chim who are in side a sprovided in page 8. Request Buttern 3.0701 for curver data is and opening.

Varitone II — This accusic, battle system provides sound absorption superior to conventional hat well-mounted or celling systems. Available in 22 gauge (0.76mm) attandard perforance or 26 gauge (0.5mm) motiopertorated gavenzed stee. Invalid or durates paint or virix, the rugged Varitone II module on the easily installed in new or existing buildings.

During laboratory rests, it was determined that the degree of sound absound achieved was influenced by the geometric array of the Vantone & modules. This data is stroken in Table 1 on right, with this intomation, the most efficient array can be selected relative to the frequency of interest and the interface of the Vantone & modules with other trusting services such as lights and vertilation. Request care history, Bulletin No. 3 (20) which describes now vorticine. If was successfully applied to aske a defficult revertieration problem at the Washington CC Ecoivention Center.

FEATURES/BENEFITS

engineered sound absorption
 reverberation control
 noise reduction
 modular flexibility
 designer finishes
 abuse, stain, and scratch resistant
 ease of installation

wall/ceiling mounted
 tamper and concealment resistant

VARITONEI

TABLE 1 - VARITONE I SOUND ABSORPTION COEFFICIENTS

	0	ctave I	Band C	Center	Frequ	ency.	Hz
Module	125	250	500	1K	2K	4K	NRC*
2 in. (61 mm)	0.35	0.65	1.20	1 21	1.07	0.92	1.00
4 in. (102 mm)	0.97	1 39	1 34	1.29	1.19	1.01	1.30

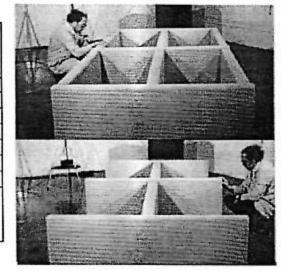
TABLE 2 - ABSORPTION UNITS IN SABINS RELATED TO DIMENSIONS OF IAC VARITONE I MODULES

thin Star		18 in.	(457 m	m) Wid	e - 2 i	n. (51 r	nm) Th	ick 1	14	in. (35	6 mm)	Wide -	- 4 in. (102 mr	n) Thic	:k
Length in.	Area			Freq	uency			*Elfective	Area ft2	1		*Effective				
(mm)	(m²)	125	250	500	1K	2K	4K	Average	(m²)	125	250	500	1K	2K	4K	Average
72 1829-	9 00 0 84	3.2	5.9	10.8	10.9	9.6	83	90	7.00 10.651	6.5	97	9.4	9.0	9.3	71	91
84 12134	10.56	3.7	6.8	12€	12.7	11.2	9.7	10.5	8.17 (0.76)	79	11.4	10.7	135	9.7	83	10.6
(2438)	12.05 (1.1.1	4.2	78	144	14.5	12.8	110	12.0	9.30 (0.86)	90	12.9	12.5	12.0	1.1	94	12 1
108 (2743)	13.50 11.254	4.7	8.8	16 2	.93	14 5	12.4	13 5	10.50 10.981	10.2	14.6	14.1	13.5	12.5	10.6	13.7
120 (3048)	15.00 (1.4.)	6.3	4 8	180	19.2	16.1	138	15.0	11,20	11.4	16.3	157	151	13.9	11.8	16.2

*Effective averages are based on NRC values

NOTES ON LABORATORY TEST DATA — The sound absorption coefficients and Sabin content shown above are based upon laboratory tests for Varione modules paced directly on the floor torsowing type 4 mounting procedure. The test modules were toucting each other and contained no hall encatement or apacer. The sound absorptive results of these tests will vary as the test modules are separated from each other. In a coustic field is encased in Diastic, and an acoustic spacer is used between the full and performed metal. Certified laboratory tests for a great variativity of other is und configurations are available upon results. Contact IAC to determine the laboratory test data best suited to your particular application.

VARITONE II


Tests were conducted in the IAC Aero-Acoustic Laboratory for an architect and his client to investigate the sound absorbive characteristics of Vantono II. It was observed that performance varied with the placement and array of the units tested. Some of this data is shown in table below. Awareness of this phenomenon is valuable in recommending solutions to noise.

and reventieration problems and in developing the most efficient baffle array and in the integration of the array with the toulding structure and services. Contact IAC to determine how Varitone II can best be utilized to solve your problems. Note: Numbers greater than one are based on edge diffraction effects dependent on panel size and configuration including vier-

note increasing externation are used on edge on action enects bependent on parter size and configuration incoding ve trical and for honzontal installation.

Configurations Sound Absorption Coefficients Frequency 125 0.59 0.87 104 0.83 250 1.29 1 26 1 28 1 21 1 59 167 500 1.22 161 1.07 1.46 1 57 1 44 1000 2000 1.02 1 38 1.57 1.30 4000 0.97 141 1.53 135 Notes 1, All panels nominally 24 in x 60 in x 4 in thick (610mm Ventral Panel x 1624mm x 102mm) Horizontal Panel 2. Tests conducted in accordance with ASTMIC 423

SOUND ABSORPTION OF 9 VARITONE II BAFFLES

7

APPLICATIONS

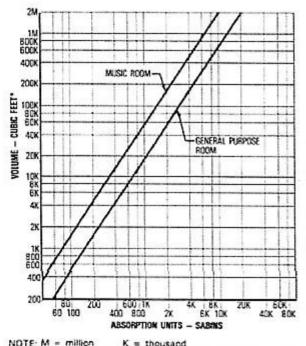
auditoriums
 gymnasiums
 convention centers

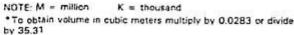
concert halls
 restaurants
 houses of worship

schools • theaters • swimming pools • broadcast

studios • jails and prisons • transit facilities • and other

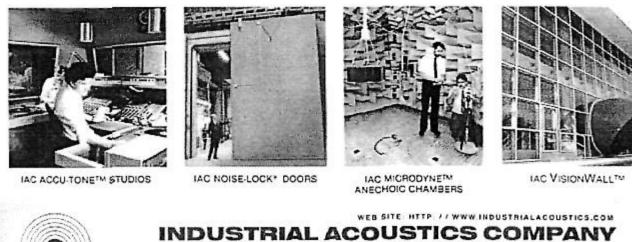
places of public accommodation

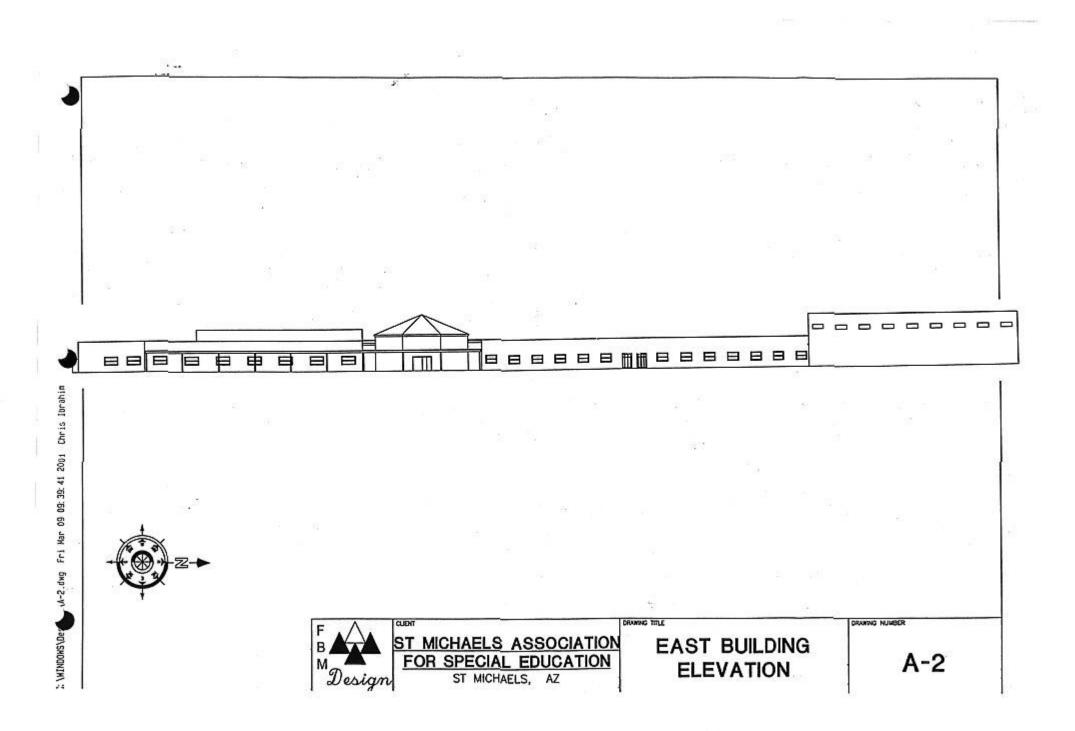

HOW TO USE VARITONE

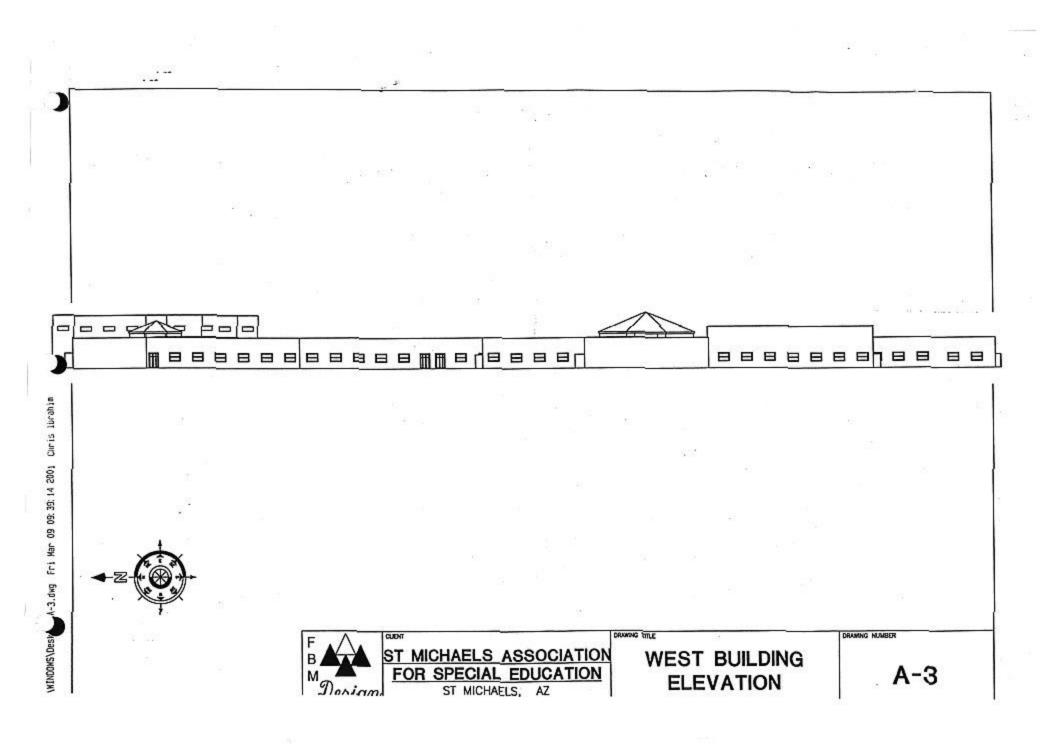

The reverberation characteristics of interior spaces largely determine their acoustic environment assuming that the noise-reduction design of the rooms is well executed.

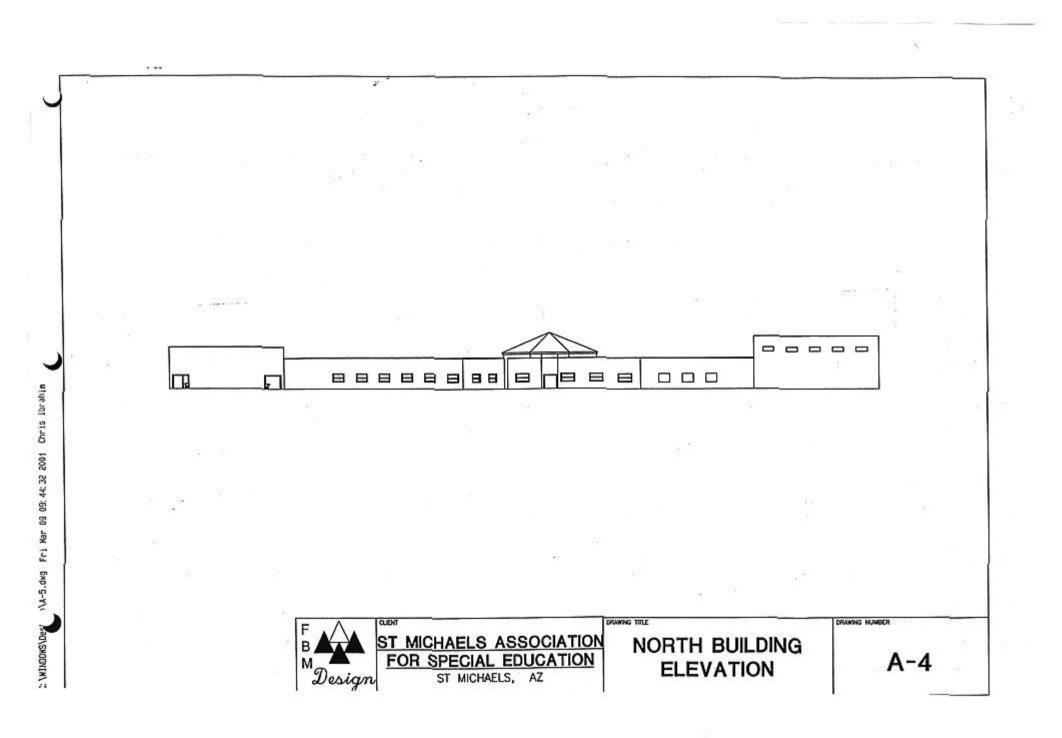
There are no ideal reverberation times. However, the quantity of absorptive units in Sabins shown in graph when added to a space results in obtaining commonly used satisfactory reverberation times. The graph is based on the assumption that the existing walls, ceiling and floor are acoustically reflective with a combined average sound absorption coefficient of approximately 0.075.

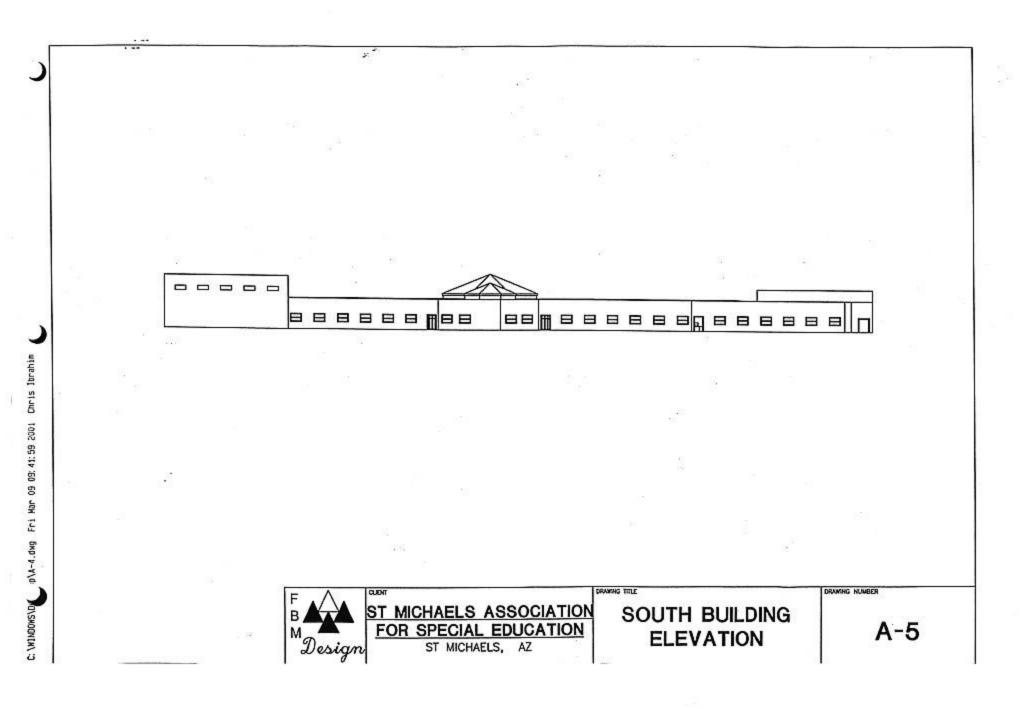
From the graph, find the required amount of sound absorption units (Sabins) to be added to the room. Use Table 2, page 7, which lists the number of Sabins for each size Varitone to calculate the number of modules needed to obtain the reduired amount of Sabins.

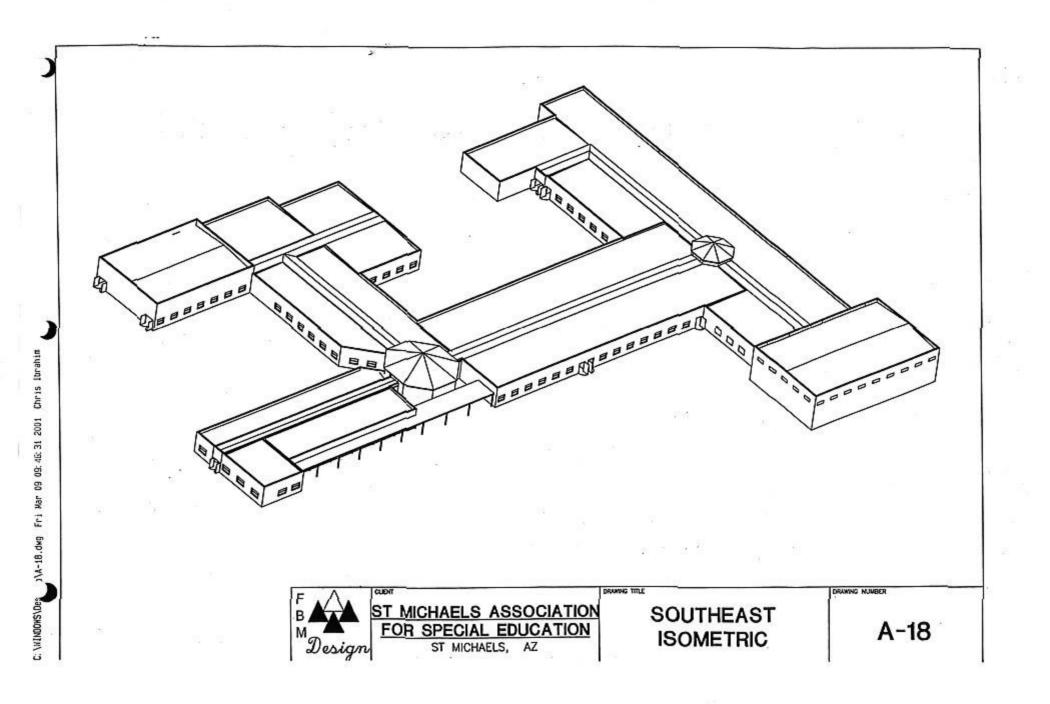

Allowance must be made for carpets, drapes and other sound absorptive materials, if any. Where low frequency "boorniness" is a problem, use 4 in. (102mm) thick modules Our architectural engineering department is available to assist you in these calculations.

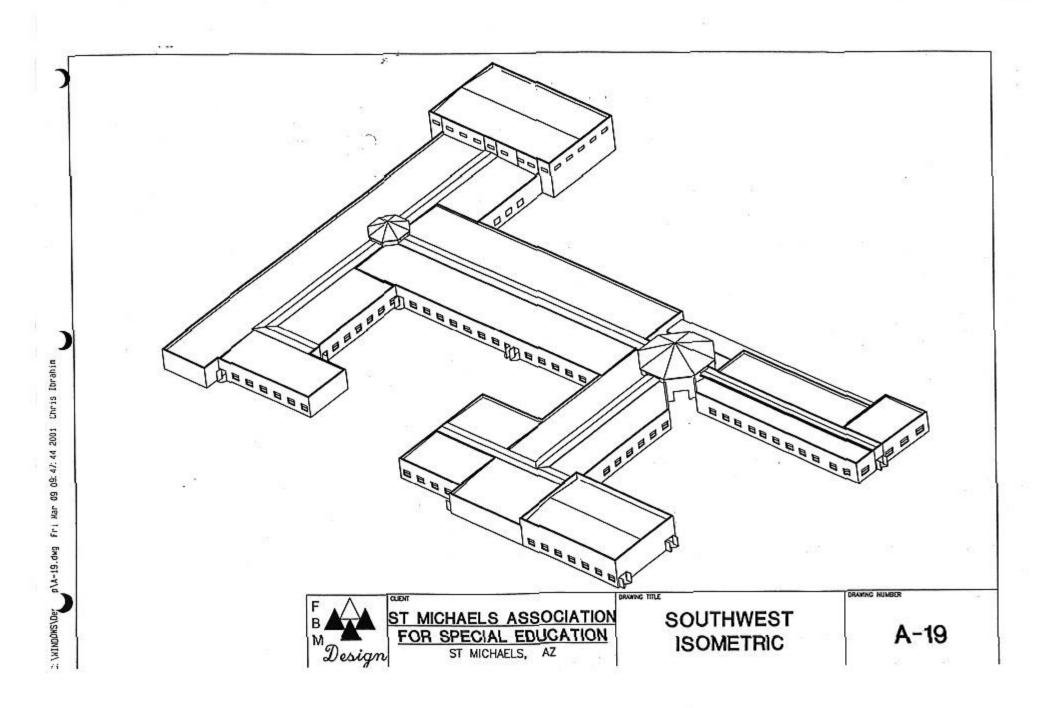

Industrial Acoustics Company is the foremost designer and manufacturer of Noise Control Products and Systems. The company, founded in 1949, has engaged in acoustical-engineering research leading to a wide range of products. from Medical Rooms that reduce sound levels to below the threshold of hearing and acoustically engineered. Music Practice Rooms and Broadcast/Recording Studios to silencers and enclosures to control the roar of jet engines...one of the loudest of manmade noises.

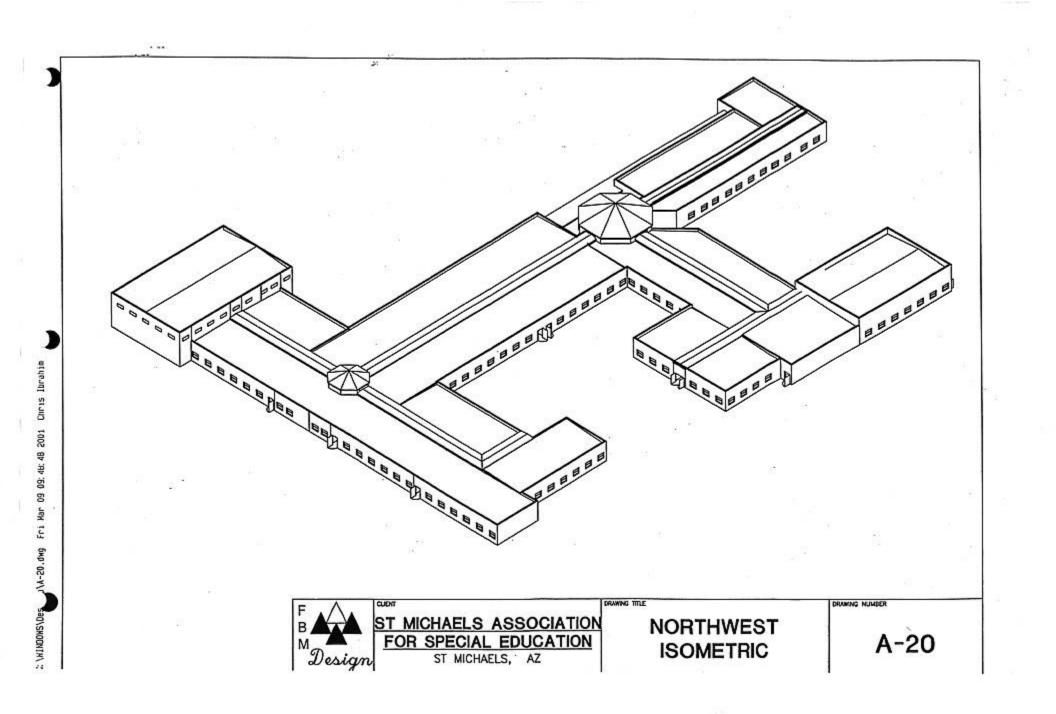

IAC designs and manufactures Anechoic Chambers and Reverberation Rooms for acoustic research and testing, soundproof doors, windows, ceilings, modular panels and silencers for almost every application including air conditioning and gas turbine systems. IAC highway and rail barriers reduce transportation noise and IAC sound-absorption systems help control noise levels in industrial and institutional buildings. At IAC the creation of new products for the needs of a fast-changing and increasingly noiseconscious society is a continuing process.

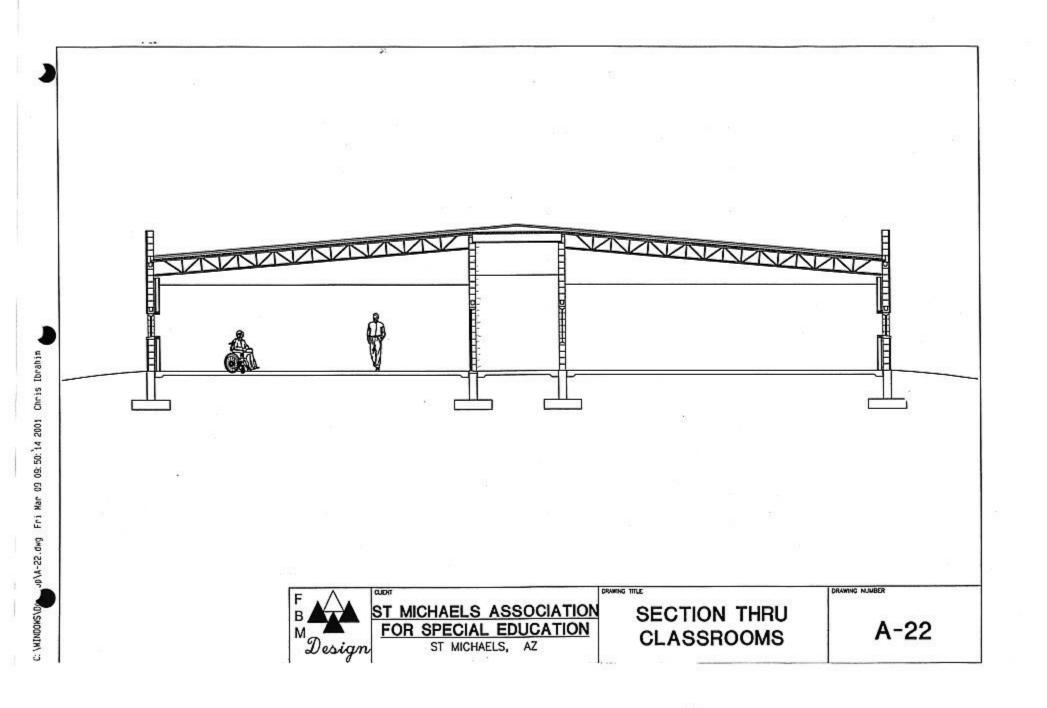


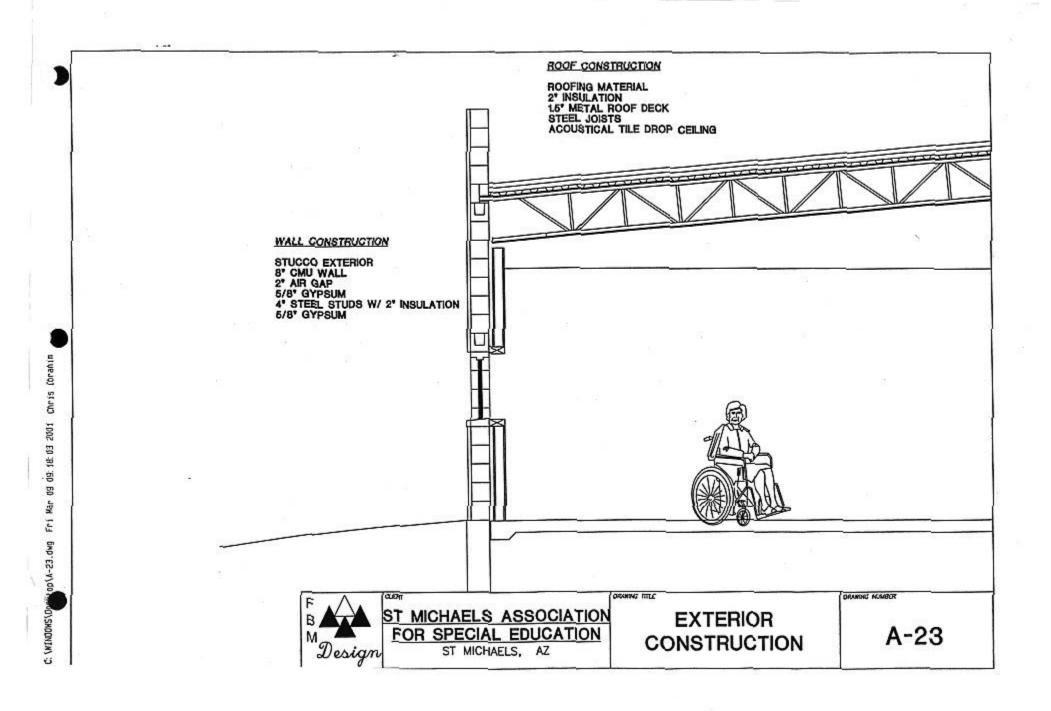



PRINTED IN U.S.A.









Appendix D: Structural Appendix

Lateral Loads
Gravity Loads
System Selection
Final System Selected
Wall Lateral Support RequirementsD-4
Control Joints
Total Roof Load CalculationsD-5
Joíst Design
Roof Deck Design D-6
SkylightsD-6
Steel Canopy Design
References
Typical Details and Sections:
Typical Wall Section
Typical Wall Section at Pilaster
Typical Thickened Slab Below Shear Walls
Typical Masonry Control Joint
Typical 8" CMU Pilaster
Typical 12" CMU Pilaster
Typical Corner Bond Beam
Typical Roof Section at Hallway
Typical Control Joint and Construction Joint Details
Calculations:
Wind Load Calculations
Control Joint Design
Roof Beam Design
Roof Joist Design
Steel Canopy Design
Drawings:
Roof Plan
Pilaster PlanS-1.2

The structural system proposed in the fall was promised to resist all lateral and gravity loads placed upon the structure.

Lateral Loads

The lateral loads are comprised of wind and seismic. The wind loads were calculated based upon the criteria set forth in the Uniform Building Code. The exact calculations follow in the subsequent pages. A wind pressure of 6.25 PSF was calculated for the windward walls and a suction of 3.875 PSF and 5.425 PSF were calculated for the leeward walls and roof, respectively. The seismic loads will be checked later after design when the overall weight of the building has been calculated.

Gravity Loads

The gravity loads on the roof include 6 PSF for roofing material, 0.8 PSF for insulation, and 2 PSF for the metal roof deck. A 10 PSF load was also added to the entire roof based on the approximate weight of the solar panels to be placed on the roof. The roof deck selected can withstand a span of about 5.5 feet when subjected to these loads.

System Selection

Three possible building alternatives for the wall system were explored. These were steel frame, concrete frame, masonry bearing wall with a precast concrete roof, and masonry bearing wall with a steel joist roof. Each of these was evaluated with an extensive list of criteria. Some of these criteria included:

- <u>Availability of Materials</u>: The St. Michaels campus is located in a very remote area so this criterion becomes a very important one. Most of the materials would be supplied from the nearest big city of Gallup, New Mexico. The city can probably supply most of these three materials since it appears to be a very industrious area, however masonry is probably the preferred system since it is the most likely material to be readily available.
- <u>Availability of Skilled Workers</u>: The area around St Michaels campus contains a very specific type of building. Although some of the buildings in the area are

built of steel, masonry is by far the prevailing construction method. This would lead FBM to believe that skilled workers are more available in masonry than any other building type.

- <u>Material Costs</u>: The upfront material cost is an important criterion because there is a very limited budget for construction. Steel is the most expensive building material in comparison. Concrete and Masonry have similar material costs.
- <u>Transportability</u>: The road back to the main campus is a very bumpy dirt road that cannot handle really heavy truckloads. Each of these materials can be very heavy to transport so transportability is not a really big factor. Concrete and Masonry would probably be the preferred systems because the amount that is carried in each truckload can be better controlled than steel.
- <u>Ability to Deflect</u>: The building material selected should be able to withstand minor deflections since the soil underneath the building is highly prone to differential settlement. Steel would be the most able to resist deflections, however if masonry is properly designed it could also pass.
- <u>Span Versatility</u>: In the case of the roof, the method of construction needs to be able to span a wide variety of distances from twenty-five feet to sixty feet. The roof will also need to be able to carry large loads from the mechanical units placed on the roof. Steel joists far surpass precast concrete in this criterion.
- <u>Engineer's Preference</u>: The engineer has experience is all three building types, so any of the building types pass this criterion. The engineer is however much more experienced in steel design than the other two wall types.
- <u>Client's Preference</u>: The client has a very good idea of the things that they would like to see in their building and also the materials they would like to see. They have expressed an interest in having a masonry bearing wall structure since that is what their current permanent buildings are constructed of.

Final System Selected

The final system selected was a masonry bearing wall structure with a steel joist roof. This system was selected because it fits all of the major criteria for the building. Concrete frame was clearly eliminated because it is not used readily in the area, not very able to deflect, cannot span large distances easily, and is difficult to design and detail. The masonry-bearing wall with a precast concrete roof was eliminated because it is not able to span long distances easily and it would be difficult to transport down the bumpy road to the site. Steel was eliminated because of the large construction expense and the availability of skilled workers and materials.

Wall Lateral Support Requirements

The minimum lateral support requirements (1/t) are given by Table 21-O in the 1997 Uniform Building Code.

Construction	Maximum l/t or h/t
Bearing Walls	
Solid or Solid Grouted	20
All other	18
Nonbearing Walls	·
Exterior	18
Interior	36

Lateral loads were resisted through the use of a combination of pilasters and cross walls. Several different types of walls occur in the building and as a result they have separate requirements.

1. 8" Thick Hollow Bearing Walls (1/t = 18):

Maximum Laterally Unsupported Length = $18(8) = 12^{\circ}-0^{\circ}$

2. 8" Thick Nonbearing Exterior Walls (1/t = 18):

Maximum Laterally Unsupported Length = $18(8) = 12^{\circ}-0^{\circ}$

3. 8" Thick Nonbearing Interior Walls (l/t = 36);

Maximum Laterally Unsupported Length = 36(8) = 24'-0"

4. 12" Thick Hollow Bearing Walls (1/t = 18):

Maximum Laterally Unsupported Length = 18(12) = 18'-0''

5. 12" Thick Nonbearing Exterior Walls (1/t = 18):

Maximum Laterally Unsupported Length = 18(12) = 18'-0"

Control Joints

Control joints will be placed in the masonry where the pilasters meet the main wall. A $\frac{1}{2}$ " control joint has the ability to span a maximum of twelve feet and so the span between each on the pilasters should be adequate enough. The sealant used is specified at a $\pm 25\%$ sealant movement and is supplied by Master Builders. See calculations and cut sheets for the control joints later in this appendix.

Total Roof Load Calculations

The factored roof load value will be calculated using the Load and Resistance Factor Design Method. The load will then be used to calculate the joist and beam sizes needed to adequately support the roof structure.

Load Description	Weight (psf)
Dead Loads	1.1.1.1.1.1
Built-up Roofing	6
2" Rigid Insulation	0.8
1/2" Metal Deck (20 Gage)	2.1
Solar Panels	10
TOTAL (D)	19
Roof Live Load (L _r)	20
Snow Load (S)	10
Wind Uplift Load (W)	5.5

LRFD Load Combinations:

1. 1.4D = 1.4(19) = 26.6 psf

2. $1.2D + 0.5L_{\tau} = 1.2(19) + 0.5(20) = 32.8 \text{ psf}$

3. $1.2D + 1.6L_{\tau} + 0.8W = 1.2(19) + 1.6(20) + 0.8(5.5) = 59.2 \text{ psf}$

4. $1.2D + 1.3W + 0.5L_r = 1.2(19) + 1.3(5.5) + 0.5(20) = 40.0 \text{ psf}$

5. 1.2D + 0.2S = 1.2(19) + 0.2(10) = 24.8 psf

6. 0.9D - 1.3W = 0.9(19) - 1.3(5.5) = 10.0 psf

The highest value of these load combinations is taken as the roof load; therefore the total factored roof load is 59.2 pounds per square foot.

Joist Design

KCS joists were used for spans less than 50 feet, and LH joists were used in the gymnasium where the span is greater than 50 feet. KCS joists will be used because general locations and weights of the solar panels and mechanical equipment on the roof are known. The KCS joists are so named because they are constant shear joists. They are capable of carrying the same value of shear across their entire length. As long as the point loads do not surpass the maximum shear specified on the design sheets, the joist will not fail. Refer to joist calculations and the joist plan later in this appendix. KCS joists are designed by calculating the ultimate shear and moment that the joist can hold. The KCS joist load table is then consulted to find the least size of joist that corresponds to the ultimate load and shear. This joist then needs to be checked for the specified deflection criteria of L/240. The final joist designs are between 10 and 20 inches deep.

e.

Roof Deck

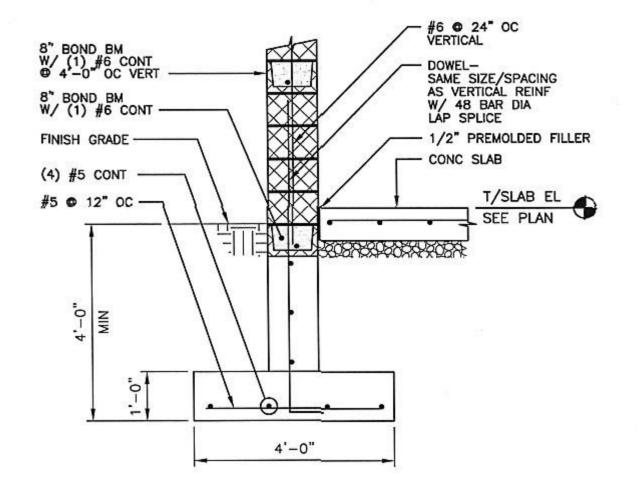
The roof will be covered by a United Steel Deck, Inc. Type "B" 20 gage wide rib deck. The USD catalog gives a maximum span between supports for this type of deck at 7'-6". This span will support up to 65 pounds per square foot and maintains the specified L/240 deflection criteria. See copy of the selection chart later in this appendix.

Skylights

The roof over the top of the atriums will be a skylight system made by Kalwall. The skylights will either be designed in an octagon shape or a pyramid shape. Two of each of these skylights will be needed. The base of the skylight will rest on steel beams and masonry walls depending on the location. Structural skylights may also be incorporated in to the roof of the cafeteria and gymnasium buildings. See cut sheets and details of the skylight system later in this appendix.

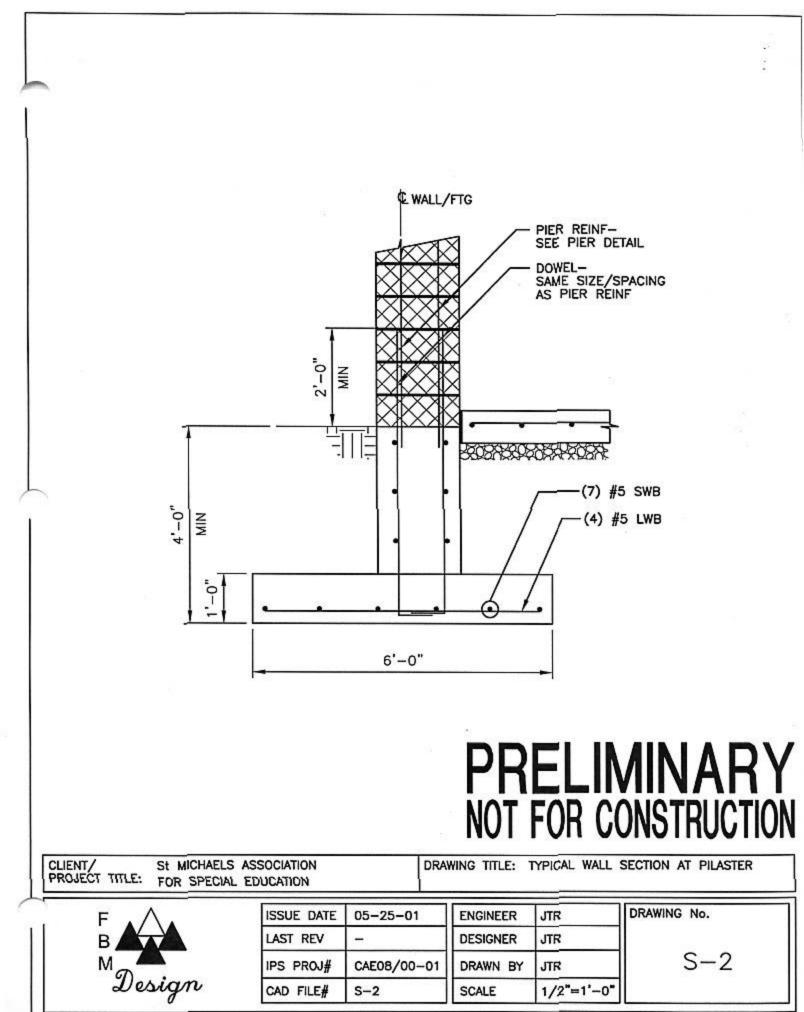
Steel Canopy Design

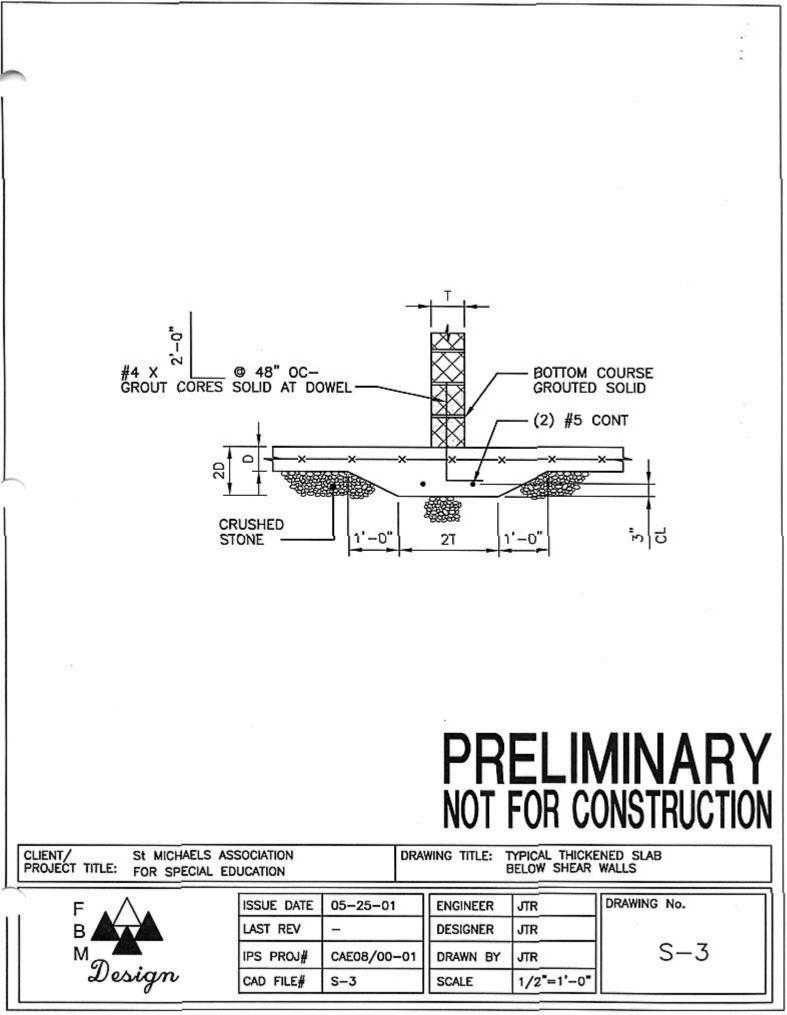
The front canopy over the entrance to the building is constructed of hollow stainless steel columns supporting a wide-flanged frame roof. The design of the canopy is shown later in this appendix.


D-6

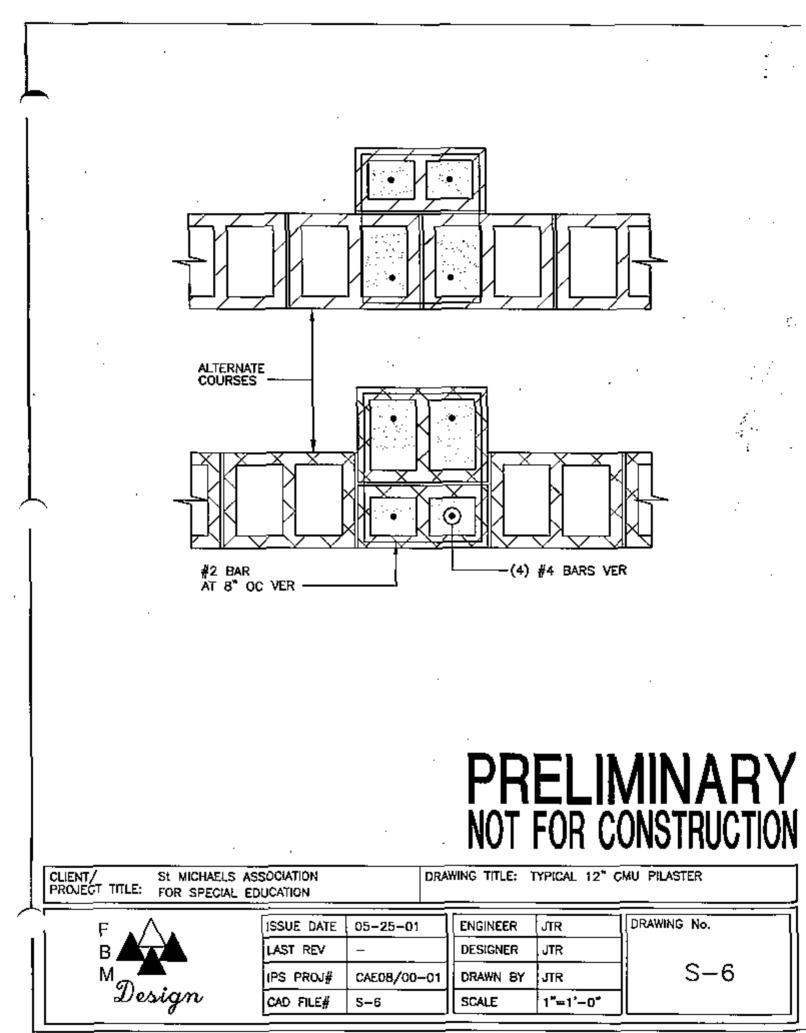
References

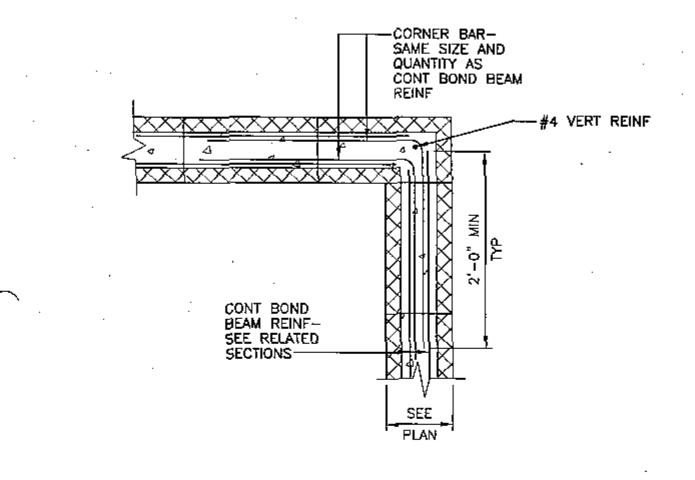
Fortieth Edition Standard Specifications Load Tables and Weight Tables for Steel Joist and Joist Girders. Steel Joist Institute, 1994.


Uniform Building Code.

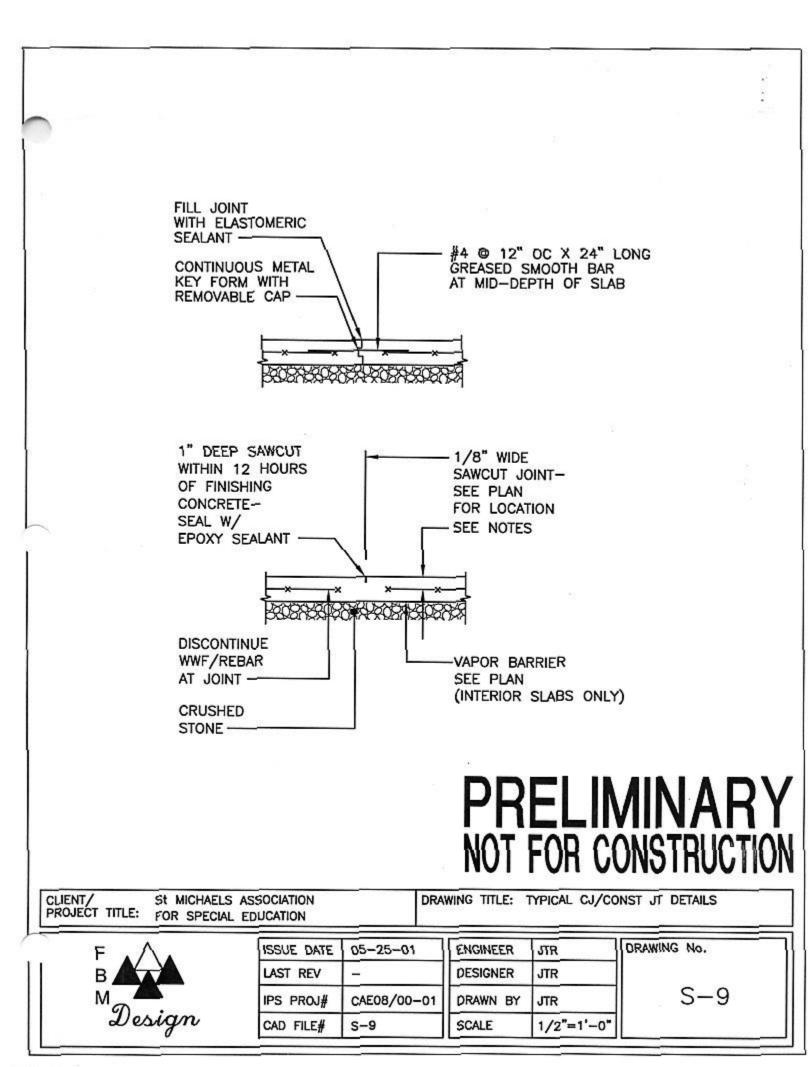

United Steel Deck design Manual and Catalog of Products. 1997.

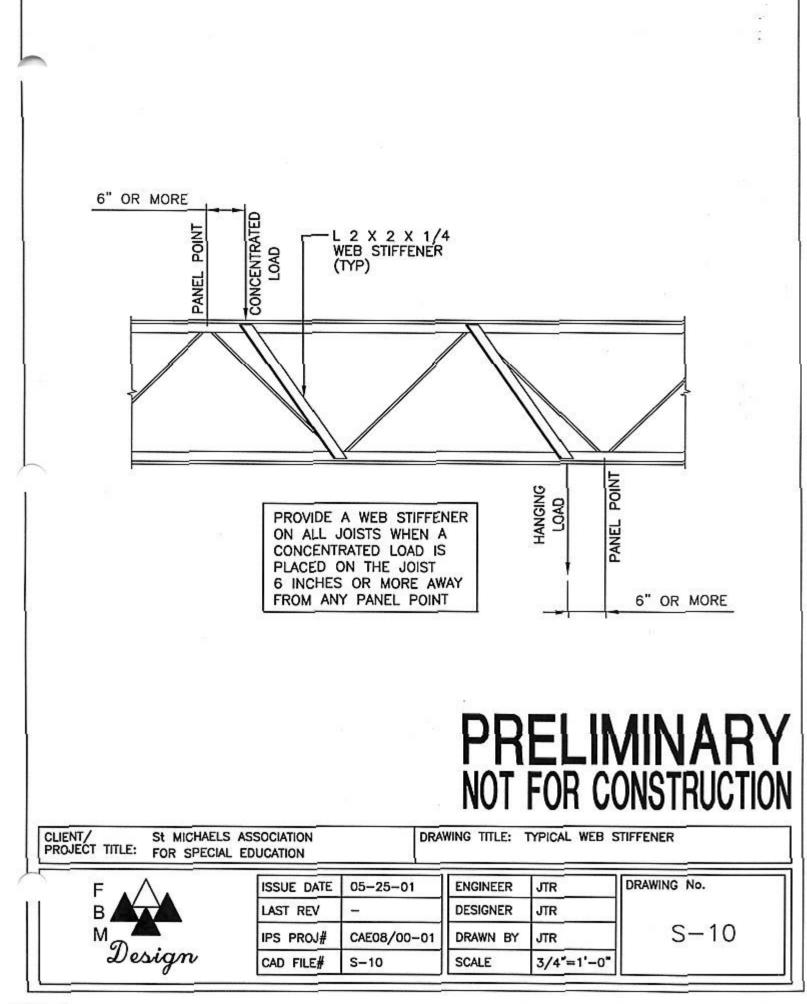
PRELIMINARY NOT FOR CONSTRUCTION

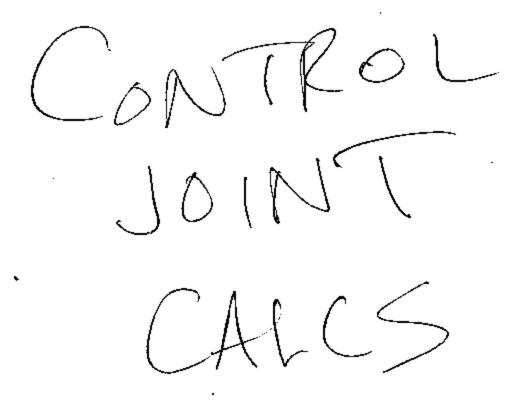

DDA IFAT TITLE.	S ASSOCIATION	DR	AWING TITLE:	TYPICAL WALL	SECTION
F.A.	ISSUE DATE	05-25-01	ENGINEER	JTR	DRAWING No.
в	LAST REV	-	DESIGNER	JTR	
M	IPS PROJ#	CAE08/00-01	DRAWN BY	JTR	S-1
Design	CAD FILE#	S-1	SCALE	1/2"=1'-0"	


	12				:
1 – #3 BAR 24 JOINT @ 16" 00 15# PAPER WRA SIDE)	2" CONTROL		-1/2"	ANT JOINT E PREM FILLE	.M.U. WALL TYPE EVERY
	FOCIATION		NOT	FOR CO	MINARY ONSTRUCTION
F		05-25-01	ENGINEER		DRAWING No.
B M Design	LAST REV IPS PROJ# CAD FILE#	- CAE08/00-01 S-4	DESIGNER DRAWN BY SCALE	JTR JTR 1/2"≔1'−0"	S-4

		É
ALTERNATE		UT CELLS
6 GAGE WIR AT 8" OC	<u>PLAN</u>	
	PF NOT	RELIMINARY FOR CONSTRUCTION
CLIENT/ St MICHAELS AS PROJECT TITLE: FOR SPECIAL ED	지역 가슴 전 가슴을	: TYPICAL 8" CMU PILASTER
F B M Design	ISSUE DATE 05-25-01 ENGINEER LAST REV - DESIGNER IPS PROJ# CAE08/00-01 DRAWN E CAD FILE# S-5 SCALE	




PRELIMINARY NOT FOR CONSTRUCTION


CLIENT/ St MICHAELS A PROJECT TITLE: FOR SPECIAL E		DRA	WING TITLE:	TYPICAL CORM	NER BOND BEAM
F A A	ISSUE DATE	05-25-01	ENGINEER	 រាក	DRAWING No.
B	LAST REV	-	DESIGNER	אדע	
м ₀ —.	IPS PROJ#	CAE08/00-01	DRAWN BY	រាក	S-7
"Design	CAD FILE#	\$ - 7	SCALE	1"=1'-0"	

SLOP Control of the second sec			PR	RAMING BEAN "X4"X3/8"X6 /8"Ø HILTI H T-A ROD AN 'X12"X1" BE/ ATE W/ ANG ' BOND BEAN) #5 CONT ' CMU WALL ELIN	M CMU ED SOLID ROOF DECK M-SEE PLAN 6" LONG W/ IT HY20 ICHOR ARING CHORS M W/
CLIENT/ St MICHAELS AS PROJECT TITLE: FOR SPECIAL ED		DRA	WING TITLE: 1	WALL SECTION	AT HALLWAY
F A A	ISSUE DATE	05-25-01	ENGINEER	JTR	DRAWING No.
В	LAST REV	-	DESIGNER	JTR	
Design	IPS PROJ# CAD FILE#	CAE08/00-01	DRAWN BY SCALE	JTR 3/4"=1'-0"	S-8
<i>a</i>					

-

MASTERFLEX 700 - High performance, elastomeric joint sealant, (gun and pouring grades) Page 1 of 5

Master Builders Technologies

MASTERFLEX® 700

High performance, elastomeric joint sealant, (gun and pouring grades)

Description

MASTERFLEX 700 is a high grade, polysulphide based sealant possessing outstanding resistance to deterioration due to weathering, ozone, ultra-violet light and attack by chemicals present in industrial atmospheres. It has the ability to withstand repeated cycles of compression and extension over a wide temperature range, and has excellent adhesion properties to all materials commonly employed in building and construction work.

MASTERFLEX 700 can be supplied in pouring and gun grade for sealing horizontal and vertical joints where movement is expected, or where the performance specification is too rigorous for most common mastic and joint sealers. It is ideal for use in expansion joints in reinforced concrete structures such as bridges, reservoirs, water treatment works, sea walls and roads, etc. It can also be used in floors subject to heavy usage where a high resistance to damage is required.

Typical properties

Colour:	grey
Solid content %:	> 99%
Viscosity:	thixotropic paste
Tack free at 20°C:	24 hours
Staining:	none
Slump gun grade:	nil
Resistance to ozone:	non-crack
Hardness shore A:	25
Operating temperature:	-30°C to 90°C
Recommended Movement:	transverse ±25% M.A.F. (Movement Accommodation Factor)

Packaging

Gun Grade: 3 litre sealed containers

Pouring Grade: 3 litre sealed containers

Standards

http://www.mbt-middle-east.com/datasheet/html/joint/mflex700.html

MASTERFLEX 700 - High performance, elastomeric joint sealant, (gun and pouring grades) Page 2 of 5

ASTM C920 - 79

BS 4254 - 83

8S 5212 - 90

WRC For use in Potable Water (Grey)

US Federal Specification

TT-S-00227E

SS-S-200D

Typical set and cure times

Property	5°C	10°C	25°C	40°C
Pot life	24 hrs	18 hrs	2 hrs	1 hr
Initial set	5 days	72 hrs	24 hrs	5 hrs
Full cure	8 wks	5 wks	2 wks	7 days

Joint size

Joint size may range from a minimum of 5mm to a maximum of 50mm wide. Joints with cyclic movements should have a width:depth ratio 2:1 and designed so total movement does not exceed the 25% M.A.F, related to the joint width. Sealant depth shall not exceed joint width.

Minimum sealant depth recommended:

- 5mm for metals, glass and other impervious surfaces.
- 10mm for all porous surfaces,
- 20mm for joints exposed to hydroslatic pressures.
- 5mm below flush for joints exposed to traffic.

Application procedure

Joint preparation surface treatment:

Concrete & Masonry	Surfaces must be clean and dry. Wire brush thoroughly and remove dust and all contaminants.
Metals	Remove any corrosion or millscale by grit or shotblast, wirebrush, grinder or chemical remover. De-grease the surfaces with clean cloths soaked in oil- free cleansing solvent.
Wood (bare)	Wood surfaces must be clean

MASTERFLEX 700 - High performance, elastomeric joint sealant, (gun and pouring grades) Page 3 of 5

	and dry, cut back or abrade where necessary to sound timber.
Glass and glazed materials	Thoroughly clean the surfaces with clean cloths soaked in oil- free cleansing solvent.
Coating surfaces	Coating should be removed and the surfaces treated as above.

Where required, a bond breaking tape should be applied before priming.

Priming:

The correct primer must always be used.

Surface application:

Porous surfaces (such as concrete and masonry)	MASTERFLEX PRIMER NO
Non-porous surfaces (such as metals, glass and glazed surfaces)	MASTERFLEX PRIMER NO 2

- Application of primer should not be carried out below 4°C.
- A single coat of primer should be applied by brush in accordance with the instructions on the primer tins. The primer must be allowed to dry to a tack free state before applying MASTERFLEX 700.
- MASTERFLEX 700 should be applied within 3 hours of primer, otherwise repriming will be necessary.

Application temperatures:

MASTERFLEX 700 should be applied when the ambient temperature is between 4°C and 50°C. When the temperature is below 10°C storage at room temperature for several hours will ease mixing and application.

Mixing MASTERFLEX 700:

- Mix and use one complete unit at a time. Do not sub-divide.
- Gun grade is supplied in a single can. Pouring grade is supplied in separate tins with the curing agent contained in a smaller tin.
- Mix for 5 10 minutes using a sultable paddle fitted to a 500 rpm electric drill moving the paddle completely through the mass of the material. The sides and base of the container should be periodically scraped down with a palette knife to ensure all of the curing agent is completely blended with the base compound.
- Failure to completely disperse curing agent throughout the base compound will result in uncured sealant. Once mixed MASTERFLEX 700 should be used immediately.

Application:

MASTERFLEX 700 - High performance, elastomeric joint sealant, (gun and pouring grades) Page 4 of 5

- MASTERFLEX 700 is formulated to be applied using a sealant gun but may be applied by trowel if required.
- Sealant guns are fitted with conical nozzles which can be cut to suit the joint width.
- The sealant should be gunned into the joint using an even trigger pressure, cleaning the nozzle occasionally to avoid contamination. Deep joints should be filled in two or more runs, to prevent air entrapment.
- Once the sealant has been applied, a small timber spatula, soaked in soapy water, should be used to compact the sealant into the joints and to achieve a smooth polished finish. Any masking tape which has been applied should be removed before the sealant cures,
- Mixing and application equipment should be cleaned immediately.

Coverage

MASTERFLEX 700 (length of joint in metres filled per 1 litre of material)

Deplh of joint	Width of joint mm							
mm	10	15	20	25	30			
10	10	6.7	5	4	3.33			
15		4.45	3.33	2.67	2,23			
20			2.5	2	1.67			
25		1		1,6	1.33			

Storage

Store under cover out of direct sunlight and protect from extremes of temperature. In tropical climates the product must be stored in an air conditioned environment. Shelf life is at least 12 months when stored between 5°C and 35°C.

Safety precautions

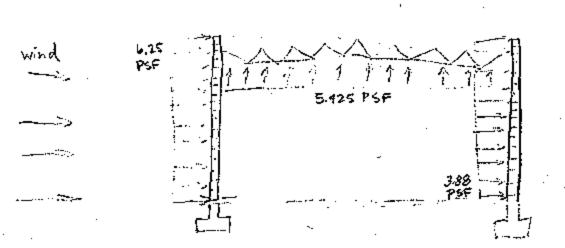
The components and mixed sealant should not be left in contact with skin for prolonged periods. Gloves should be worn and the use of a barrier cream is strongly recommended. Solvent must not be used for cleaning the hands. Use an industrial cleaner and wash with soap and water. For further information including disposal instructions refer to the Material Safety Data Sheet.

Note

Field service, where provided, does not constitute supervisory responsibility. For additional information contact your local MBT representative.

MBT reserves the right to have the true cause of any difficulty determined by accepted test methods.

MASTERFLEX 700 - High performance, elastomeric joint sealant, (gun and pouring grades) Page 5 of 5


Quality and care

All products originating from MBT's Dubal, UAE facility are manufactured under a management system independently certified to conform to the requirements of the quality, environmental and occupational health & safety standards ISO 9000, ISO 14001 and OHSAS 18001.

11/93 MBT-ME revised 01/2001

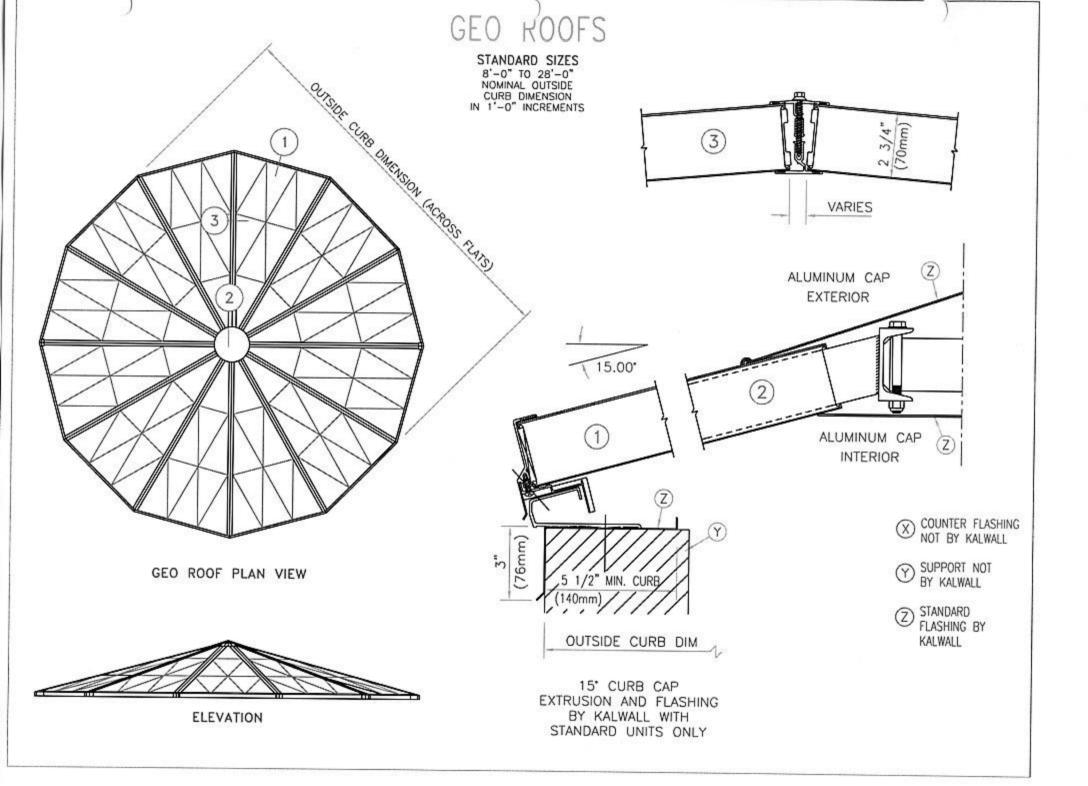
home | about | products | projects | distributors | cd-rom] anguire | naws | links | vacancies] search <u>©1998 MBT Middle East.</u> Programming & Design, <u>EMS</u>.

Calculations Wind Load Wind Pressure : P= Ce Cq qs Iw Ce=0.62 [415' wall, exposure level B] Iw= 1.0 [Category 3 occupancy] Qs = 12.6 psf [Basic wind speed of TOMPH] Gg= 0.8 inward (windward wall) 0.5 outward (leeward wall) 0.7 outward (roof) windward wall= P= (0.62)(0.8) (12.6 PSF)(1.0) = 6.2 = PSF leeward wall. P=(0.62)(0.5)(12.5 PSF)(1.0)= 3.88 PSF roof: P= (0.62) (0.7) (12.5 PSF) (1.0) = 5.425 PSF

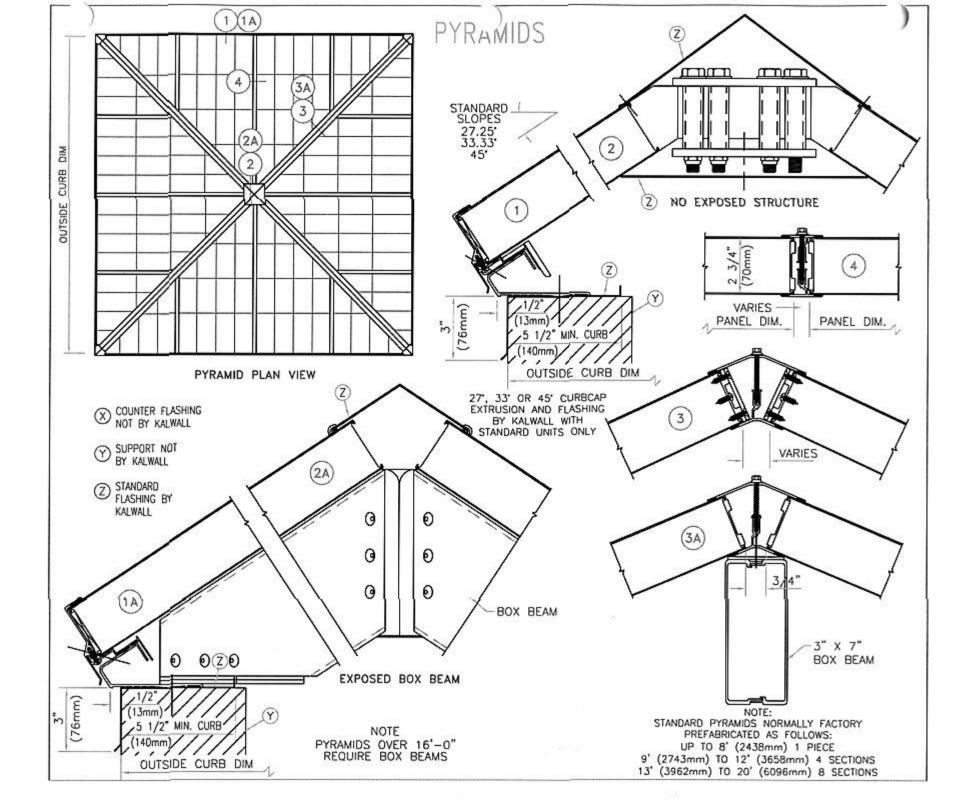
Control Joint Lalcula Tions

.

X=75 (High Heat Capacity Material)
S=0.60 (Medium / Light Buff Bricks)
Ta=94°F
Tw=12°F
Ct=5.2×10⁻⁶ in/in/°F (Normal Weight Masonry)
Sm=25
L=12'-0" (trial-spacing of pilasters)
Ts=Ta+XS = 94+75(0.6)=139°F
AT=Ts-Tw=139-12=127°F
Mt=Ct ATL=(5.2×10⁻⁶)(127)(144)=0.957 in
Nt=
$$(\frac{100}{0.85m})$$
Mt= $(\frac{100}{0.8(25)})$ 0.0951=0.475 in
Jm=CmL=(-0.0006)(144)=-0.0864 in
Joint Width= 0.475-0.0864 + Jc=0.5 in]


Long Span Joist Lesign
Cofeteria: Span = 56'-0"
Load =
$$\frac{(6.67)(59.2)}{0.9(1.65)} = 265.8 \frac{105}{Ft}$$

Choose: 32 LH 07
Choose: 32 LH 07
Check A: I = 26.767(162)(56.67)³(10)^{-b} = 789 in⁴
 $\Delta = \frac{5(265.8 + \frac{1.2(16)}{0.9(1.65)})(56(12))^{4}}{384(29\times10^{b})(789)(12)} = 2.7 in (\frac{1}{249}) OE$


Kitchen:

Span: 44.5ft
Load =
$$\frac{6(59.2)}{0.9(1.65)}$$
 = 239.2

Choose: 242404 Check A: I= 301 in+

Gymnasium: Needs to resist weight of KCS Joists


```
RAMSBEAM V2.0 - Load Diagram
Licensed to: Intergrated Project Services
Job: SR DESIGN Steel Code: LRFD
Beam Size = W8X10
Span information (ft):
Length = 10.00, Left Support at 0.00, Right Support at 10.00
```

WH						₩ ²
Load	Dist	DL	LL+	LL-	Max Tot	
W1 W2	0.00	0.153 0.153	0.150 0.150	0.000 0.000	0.303 0.303	

RAMSBEAM V2. Licensed to: Job: SR DESI	Intergrate	-	_		Steel (Code: LRI	FD	
Total Be Mp (kip-	ATION: e (Optimum) am Length () ft) = 36 ge Braced B	ft) = 1 .96	0.00	Fy =	50.0 ks	i		
LOADS: Sel Line Loads	s (k/ft):		-					
		DL1	DL2	Pre DL1	Pre DL2			LL2
0.00	10.00 0.	142	0.142	0.000	0.000	0.15	0 0.	150
SHEAR (Ultim	nate): Max	Vu 1.2	DL+1.6I	L (kips)	= 2. 12	0.900	n ≃ 36.	22
MOMENTS:								
Span Cone	l LoadCas		Mu	0	Lb	Cb	Phi	Phi*Mn
			kip-ft		ft			kip-ft
Center Max				5.0				32.95
Controlling	1.2DL+1	.6LL	5.3	5.0	0.0	1.00	0.90	32.95
DEACTIONS (1	Infactored)	(kipe).		Left	Rig	h⊦		; · ;
DL react		(vibe).		0.76	0.			
	L reaction			0.75	0.			
Max + to	otal reactio	n		1.51	1.	51		
DEFLECTIONS			_					
	ad (in)			= -0.03		L/D =	3122	• · · ·
	ad (in)			= -0.03		L/D =	-	
Total 1	oad (in)	at 5	.UV It	= -0.07	6	L/D =	1574 >	270 64

.

, ·

-

.

.

.

.

•

Anchoring Systems

HIT HY20 for Masonry Construction

HIT HY20 Allowable Loads for Threaded HIT-A Rods in Hollow Concrete Block, Lightweight Concrete Block, Brick with Holes, Clay Tile

	Anakan	HIT-A Short 2" (51	HIT-A Standard 33/8" (86mm) Embedment				
Anchor Type in. (mm)		L/W or N/W Hollo	w Concrete Block	Brick wi	th Holes	Clay Tile	
	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	
	1/4 *	255	340	365	305	130	100
	(6.4) *	(1.1)	(1.5)	(1.6)	(1.4)	(0.6)	(0.4)
HIT-A	5/16	370	505	565	530	150	220
Rod	(7.9)	(1.6)	(2.2)	(2.5)	(2.4)	(0.7)	(1.0)
Anchor	^{3/8}	525	790	775	930	150	220
	(9.5)	(2.3)	(3.5)	(3.4)	(4.1)	(0.7)	(2.2)
	1/2	525	1230	775	1375	150	500
	(12.7)	(2.3)	(5.5)	(3.4)	(6.1)	(0.7)	(2.2)

* 1/4" anchor diameter installed at 2" embedment in brick with holes and clay tile.

HIT HY20 Allowable Loads for Threaded HIT-I Inserts in Hollow Concrete Block, Lightweight Concrete Block, Brick with Holes, Clay Tile

Anabas		HIT Short 2" (51r	nm) Embedment	HIT Standard 33/8" (86mm) Embedment				
Anchor Diameter	L/W or N/W Hollo	w Concrete Block	Brick wi	th Holes	Clay Tile			
Type in. (mm)		Tension	Shear	Tension	Shear	Tension	Shear	
		Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	
	No 14 screw w/insert- (6.4) *	240 (1.1)	510 (2.3)	300 (1.3)	530 (2.4)	85 (0.4)	150 (0.7)	
HIT-I	5/16	400	780	585	750	175	220	
Insert	(7.9)	(1.8)	(3.5)	(2.6)	(3.3)	(0.8)	(1.0)	
Anchor	3/8	400	1425	1160	1380	185	435	
	(9.5)	(1.8)	(6.3)	(5.2)	(6.1)	(0.8)	(1.9)	
1/2	1/2	400	1800	1160	1635	185	500	
	(12.7)	(1.8)	(8.0)	(5.2)	(7.3)	(0.8)	(2.2)	

* 1/4" anchor diameter installed at 2" embedment in brick with holes and clay tile.

Anchor Spacing and Edge Distance Guidelines

Influence of Anchor Spacing and Edge Distance

Brick with Holes and Multi-Wythe Brick Walls

Spacing:

 $s_{er} = s_{min} = Two$ (2) complete bricks in any direction

Edge Distance:

c_{er} = c_{min} = Two (2) complete bricks, or 16 inches (406 mm) in any direction (whichever is less.)

Clay Tile

Spacing:

ser = smin = One (1) anchor per tile cell

Edge Distance: $c_{cr} = c_{mn} = 12$ inches (305 mm) from free edge

Hollow, Normal Weight and Lightweight Concrete Block

Spacing: $s_{cr} = s_{min} = One (1)$ anchor per block cell

Edge Distance: $c_{cr} = c_{min} = 12'$ (305 mm) minimum from free edge 4.2.3

Joist Design Summary

	Tributary Area	Span	Design	Number	Cost
Joist Number 1	4.92	29.60	18KCS2	2	\$452.94
Joist Number 2	7.08	34.00	24KCS3	2	\$722.50
Joist Number 3	6.67	35.33	24KCS3	21	\$7,883.01
Joist Number 4	6.67	34.00	22KCS3	14	\$5,057.50
Joist Number 5	5.67	34.00	22KCS3	4	\$1,445.00
Joist Number 6	5.00	35.33	22KCS3	2	\$750.83
Joist Number 7	6.17	34.00	22KCS3	6	\$2,167.50
Joist Number 8	7.33	35.33	24KCS3	8	\$3,003.33
Joist Number 9	7.00	34.00	24KCS3	6	\$2,167.50
Joist Number 10	5.75	34.00	22KCS3	4	\$1,445.00
Joist Number 11	4.83	34.33	20KCS3	2	\$729.58
Joist Number 12	3.42	34.33	20KCS2	2	\$554.48
Joist Number 13	6.50	34.00	22KCS3	3	\$1,083.75
Joist Number 14	6.33	35.33	24KCS3	23	\$8,634.58
Joist Number 15	4.04	26.00	14KCS2	1	\$176.80
Joist Number 16	5.75	26.00	16KCS2	1	\$187.85
Joist Number 17	6.67	24.67	16KCS2	8	\$1,425.73
Joist Number 18	6.67	26.00	18KCS2	6	\$1,193.40
Joist Number 19	6.33	24.67	16KCS2	1	\$178.22
Joist Number 20	6.00	26.00	18KCS2	1	\$198.90
Joist Number 21	3.67	26.00	14KCS2	1	\$176.80
Joist Number 22	1.71	32.00	14KCS1	2	\$353.60
Joist Number 23	5.83	32.00	20KCS3	1	\$312.80
Joist Number 24	6.67	31.33	20KCS3	3	\$918.85
Joist Number 25	5.83	31.33	22KCS2	1	\$266.33
Joist Number 26	3.92	16.00	12KCS1	1	\$81.60
Joist Number 27	5.83	16.00	12KCS1	2	\$163.20
Joist Number 28	5.92	14.67	12KCS1	2	\$149.60
Joist Number 29	6.00	16.00	12KCS1	6	\$489.60
Joist Number 30	5.75	16.00	12KCS1	1	\$81.60
Joist Number 31	5.92	16.00	12KCS1	1	\$81.60
Joist Number 32	6.13	14.67	12KCS1	1	\$74.80
Joist Number 33	6.50	16.00	12KCS1	1	\$81.60
Joist Number 34	6.33	16.00	12KCS1	1	\$81.60
Joist Number 35	6.17	16.00	12KCS1	1	\$81.60
Joist Number 36	6.33	14.67	12KCS1	2	\$149.60
Joist Number 37	6.33	16.00	12KCS1	1	\$81.60
Joist Number 38	6.50	14.67	12KCS1	1	\$74.80

Joist Design Summary

	Tributary Area	Span	Design	Number	Cost
Joist Number 39	6.67	16.00	12KCS1	1	\$81.60
Joist Number 40	6.75	13.15	12KCS1	1	\$67.04
Joist Number 41	3.25	24.67	14KCS1	1	\$136.28
Joist Number 42	4.50	24.67	14KCS2	1	\$167.76
Joist Number 43	5.08	23.33	14KCS2	1	\$158.67
Joist Number 44	5.67	24.67	16KCS2	5	\$891.08
Joist Number 45	5.67	23.33	14KCS2	2	\$317.33
Joist Number 46	5.83	23.33	14KCS2	1	\$158.67
Joist Number 47	6.00	24.67	16KCS2	4	\$712.87
Joist Number 48	6.33	23.33	14KCS2	1	\$158.67
Joist Number 49	6.67	23.33	16KCS2	1	\$168.58
Joist Number 50	6.67	23.67	16KCS2	1	\$170.99
Joist Number 51	6.42	16.27	12KCS1	1	\$82.98
Joist Number 52	3.42	24.67	14KCS1	1	\$136.28
Joist Number 53	4.83	24.67	14KCS2	1	\$167.73
Joist Number 54	5.25	23.33	14KCS2	1	\$158.67
Joist Number 55	5.75	23.33	14KCS2	2	\$317.33
Joist Number 56	5.83	24.67	16KCS2	1	\$178.22
Joist Number 57	5.50	24.67	14KCS2	1	\$167.73
Joist Number 58	6.08	23.33	14KCS2	1	\$158.67
Joist Number 59	6.17	24.67	16KCS2	3	\$534.65
Joist Number 60	6.42	23.33	14KCS2	1	\$158.67
Joist Number 61	7.00	24.00	16KCS2	2	\$346.80
Joist Number 62	6.67	18.83	14KCS1	1	\$104.05
Joist Number 63	5.67	34.67	24KCS3	4	\$1,473.33
Joist Number 64	5.50	33.33	20KCS3	4	\$1,303.33
Joist Number 65	6.33	33.33	24KCS3	6	\$2,125.00
Joist Number 66	6.33	34.67	24KCS3	4	\$1,473.33
Joist Number 67	2.67	35.33	16KCS3	1	\$315.35
Joist Number 68	5.17	35.33	24KCS3	3	\$1,126.25
Joist Number 69	5.67	35.33	24KCS3	2	\$750.83
Joist Number 70	5.83	34.00	24KCS3	1	\$361.25
Joist Number 71	6.00	35.33	24KCS3	5	\$1,877.08
Joist Number 72	6.75	34.00	24KCS3	1	\$361.25
Joist Number 73	4.08	35.33	20KCS3	1	\$345.38
Joist Number 74	3.58	35.33	20KCS2	2	\$570.63
Joist Number 75	6.33	34.00	24KCS3	16	\$5,780.00
Joist Number 76	5.75	34.33	24KCS3	2	\$729.58

Joist Design Summary

	Tributary Area	Span	Design	Number	Cost
Joist Number 77	3.08	35.33	20KCS2	3	\$855.95
Joist Number 78	5.83	35.33	24KCS3	1	\$375.42
Joist Number 79	6.00	34.00	24KCS3	2	\$722.50
Joist Number 80	5.67	35.33	24KCS3	4	\$1,501.67
Joist Number 81	6.50	34.00	24KCS3	1	\$361.25
Joist Number 82	6.67	30.00	20KCS3	2	\$586.50
Joist Number 83	6.67	27.58	20KCS2	1	\$222.74
Joist Number 84	5.92	34.33	24KCS3	1	\$364.79
Joist Number 85	3.75	34.33	20KCS2	1	\$277.24
				216	\$72,444.34

KCS JOIST LOAD TABLE

(U.S. CUSTOMARY)

JOIST DESIGNATION	DEPTH (inches)	MOMENT CAPACITY* (inch-kips)	SHEAR CAPACITY* (lbs)	APPROX. WEIGHT** (lbs/lt)	GROSS MOMENT OF INERTIA (in ⁴)	BRIDG. TABLE SECT. NO.
10KCS1	10	172	2000	6.0	29	1
10KCS2	10	225	2500	7.5	37	1
10KCS3	10	296	3000	10.0	47	1
12KCS1	12	209	2400	6.0	43	3
12KCS2	12	274	3000	8.0	55	5
12KCS3	12	362	3500	10.0	71	5
14KCS1	14	247	2900	6.5	59	4
14KCS2	14	324	3400	8.0	77	6
14KCS3	14	428	3900	10.0	99	6
16KCS2	16	349	4000	8.5	99	6
16KCS3	16	470	4800	10.5	128	9
16KCS4	16	720	5300	14.5	192	9
16KCS5	16	934	5800	18.0	245	9
18KCS2	18	395	4700	9.0	127	6
18KCS3	18	532	5200	11.0	164	9
18KCS4	18	817	5700	15.0	247	10
18KCS5	18	1062	6200	18.5	316	10
20KCS2	20	442	5200	9.5	159	6
20KCS3	20	595	6000	11.5	205	9
20KCS4	20	914	7900	16.5	308	10
20KCS5	20	1191	8400	20.0	396	10
22KCS2	22	488	5900	10.0	194	5
22KCS3	22	658	6600	12.5	251	9
22KCS4	22	1012	7900	16.5	377	11
22KCS5	22	1319	8600	20.5	485	11
24KCS2	24	534	6300	10.0	232	6
24KCS3	24	720	7200	12.5	301	9
24KCS4	24	1108	8400	16.5	453	12
24KCS5	24	1448	8900	20.5	584	12
26KCS2	26	580	6500	10.0	274	6
26KCS3	26	783	7800	12.5	355	9
26KCS4	26	1206	8500	16.5	536	12
26KCS5	26	1576	9200	20.5	691	12
28KCS2	28	626	6900	10.5	320	6
28KCS3	28	846	8000	12.5	414	9
28KCS4	28	1303	8500	16.5	626	12
28KCS5	28	1704	9200	20.5	808	12
30KCS3	30	908	8000	13.0	478	9
30KCS4	30	1400	8500	16.5	722	12
30KCS5	30	1833	9200	21.0	934	12

*MAXIMUM UNIFORMLY DISTRIBUTED LOAD CAPACITY IS 550 PLF AND SINGLE CONCENTRATED LOAD CANNOT EXCEED SHEAR CAPACITY. **DOES NOT INCLUDE ACCESSORIES

Joist Design Selection

· · · ·

Joist Number 1			
Tributary Width	1 1	4.92 ft	
Span	L	29.60 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	291.07 lbs/ft	Wtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	396.84 kip-in	Mmax=(0.125*(\u00fct+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4468.3 lbs	Vmax=(\u03c6tot+1.2*\u03c6jst)*(L/2)
Depth	d	18 in	
Joist Selection	1	8KCS2	
Weight	ωjst	9 lbs/ft	
Moment of Inertia	I	127 in^4	
Moment Capacity (Table)		395 kip-in	
Moment Capacity (LRFD)	Mall	586.6 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4700 lbs	
Shear Capacity (LRFD)	Vall	7064.1 lbs	Vall>Vmax OK
Maximum Deflection		1.4165 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 251	$\Delta > L/240$ OK
Number of Joists	n	2	
Cost per Pound	C	\$0.85	
Total Cost	C	\$452,94	C=wjst*L*c*n

Joist Number 2			
Tributary Width		7.08 ft	
Span	L	34.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	419.33 lbs/ft	ω _{tot} =LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	753.13 kip-in	Mmax=(0.125*(ωιοt+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	7383.7 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
Depth		24 in	
Joist Selection	2	4KCS3	
Denth	L d L	24 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)		720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.4961 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 273	∆>L/240 OK
Number of Joists	n	2	
Cost per Pound	C	\$0.85	
Total Cost	C	\$722.50	C=ωjst*L*c*n

1

10.00

Joist Design Selection

1.1.1.2.

Tributon Midth		6 67 8		
Tributary Width	+	6.67 ft		
Span		35.33 ft		
Total Load	P	59.20 psf		
Linear Load	Wtot	394.67 lbs/ft	ωtot=LP	B
			ωtot<550 lbs/ft	
Maximum Moment	Mmax	767.02 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	7236.8 lbs	Vmax=(wtot+1.2	2*ωjst)*(L/2)
Depth	d	24 in		
Weight	ωjst	12.5 lbs/ft		
Moment of Inertia	I	301 in^4		
Moment Capacity (Table)		720 kip-in		
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax	OK
Shear Capacity (Table)		7200 lbs		
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax	ок
		1 8450 in	A =/ E*/	···· */1 *4 2\\A\\//29 4*2000000+-*42\
Maximum Deflection	Δ	1.6452 in		ωjst)*(L*12)^4)/(384*29000000*I*12)
	Δ	1.6452 in L/ 258	Δ=(5*(ωtot+1.2* Δ>L/240	ω _{jst})*(L*12)^4)/(384*29000000*I*12)
		L/ 258		
Maximum Deflection		L/ 258		

Joist Design Selection

1.000

Joist Number 4			
Tributary Width		6.67 ft	
Span	L	34.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	394.67 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	710.36 kip-in	Mmax=(0.125*(ωιot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6964.3 lbs	Vmax=(\u03c6tet1.2*\u03c6jst)*(L/2)
	1 1		
	,,		
Depth	d	22 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	251 in^4	
Moment Capacity (Table)		658 kip-in	
Moment Capacity (LRFD)	Mall	977.1 kíp-ín	Mall>Mmax OK
Shear Capacity (Table)		6600 lbs	
Shear Capacity (LRFD)	Vall	9919.8 lbs	Vall>Vmax OK
Maximum Deflection		1.6922 in	Δ≈(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 241	∆>L/240 ок
Number of Joists	n	14	
Cost per Pound	C	\$0.85	
Total Cost	C	\$5,057.50	C≈ωjst*L*c*n

Joist Number 5			
Trib, dam (Mildle	1 1	5.07 ft	
Tributary Width		5.67 ft	
Span		34.00 ft	
Total Load	Р	59.20 psf	
Linear Load	ωtot	335.47 lbs/ft	ωtot≑LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	607.71 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	5957.9 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Denth	Ь	22 in	
Joist Selection		22KCS3	
Depth	d	22 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	251 in^4	
Moment Capacity (Table)		658 kip-in	
Moment Capacity (LRFD)	Mall	977.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		6600 lbs	
Shear Capacity (LRFD)	Vall	9919.8 lbs	Vall>Vmax OK
Maximum Deflection		1.4477 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*1*12)
		L/ 282	∆>L/240 ОК
Number of Joists	n	4	
Cost per Pound	C	\$0.85	
Total Cost	C	\$1,445.00	C=ω _{jst} *L*c*n

)

Joist Number 6			
Tributary Width	T T	5.00 ft	
Span		35.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	296.00 lbs/ft	ωtot=LP
<u></u>			wtot<550 lbs/ft OK
Maximum Moment	Mmax	582.40 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	5494.3 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Depth	d	22 in 12 5 lbs/ft	
Joist Selection	2	2KCS3	
	d		
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	251 in^4	
Moment Capacity (Table)		658 kip-in	
Moment Capacity (LRFD)	Mall	977.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		6600 lbs	
Shear Capacity (LRFD)	Vall	9919.8 lbs	Vall>Vmax OK
Maximum Deflection		1.4983 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 283	∆>L/240 ØK
Number of Joists	n	2	
Cost per Pound	С	\$0.85	
Total Cost	C	\$750.83	C=wjst*L*c*n

Joist Design Selection

Joist Number 7			
		0.47.0	
Tributary Width		6.17 ft	
Span		34.00 ft	
Total Load	Р	59.20 psf	
Linear Load	ωtot	365.07 lbs/ft	wtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	659.04 kip-in	Mmax≈(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6461.1 lbs	$Vmax=(\omega tot+1.2*\omega jst)*(L/2)$
Depth	d	22 in	
Joist Selection		22KCS3	
Death		22 in	
Weight		12.5 lbs/ft	
	ωjst T		
Moment of Inertia	I	251 in^4	
Moment Capacity (Table)	A A a H	658 kip-in	
Moment Capacity (LRFD)	Mall	977.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		6600 lbs	
Shear Capacity (LRFD)	Vall	9919.8 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.5700 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 260	∆>L/240 OK
Number of Joists	n	6	
Cost per Pound	с	\$0.85	
Total Cost	C	\$2,167.50	C=ωjst*L*c*n

....

Joist Design Selection

Joist Number 8			
Tributary Width		7.33 ft	
Span	1	35.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	434.11 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	841.04 kip-in	Mmax=(0.125*(wtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	7934.3 lbs	$Vmax = (\omega_{tot} + 1.2^* \omega_{jst})^* (L/2)$
Depth Weight	d ωjst	24 in 12.5 lbs/ft	
Joist Selection		24KCS3	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)		720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection		1.8043 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 235	∆>L/240 NO GOOD
Number of Joists	n	8	
Cost per Pound	C	\$0.85	
Total Cost	C	\$3,003.33	C=ωjst*L*c*n

)

1.1.1.

Joist Design Selection

Joist Number 9				
	1			
Tributary Width		7.00 ft		
Span	L	34.00 ft		
Total Load	Р	59.20 psf		
Linear Load	Wtot	414.40 lbs/ft	ωtot=LP	
			ωtot<550 lbs/ft	OK
Maximum Moment	Mmax	744.58 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	7299.8 lbs	Vmax=(wtot+1.2	*wjst)*(L/2)
Depth	d	24 in		
Joist Selection		24KCS3		
Depth	d	24 in		
Weight	wjst	12.5 lbs/ft		
Moment of Inertia	I	301 in^4		
Moment Capacity (Table)	-	720 kip-in		
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax	ок
Shear Capacity (Table)	$T \rightarrow T$	7200 lbs		
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax	OK
Maximum Deflection		1.4791 in	Δ=(5*(ωtot+1.2*)	ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 276	∆>L/240	ок
				<u>kzantaniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</u>
Number of Joists	n	6		
Cost per Pound	С	\$0.85		
Total Cost	C	\$2,167.50	C=ωjst*L*c*n	

Ŀ

5

· · · .

Joist Number 10				
Tributary Width	1 1	5.75 ft		
Span	L	34.00 ft		
Total Load	P	59.20 psf		
Linear Load	ωtot	340.40 lbs/ft	ωtot=LP	
			ωtot<550 lbs/ft	OK
Maximum Moment	Mmax	616.26 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6041.8 lbs	Vmax=(wtot+1.2	
Joist Selection		22KCS3		
Depth	d	22 in		
Weight	ωjst	12.5 lbs/ft		
Moment of Inertia	I	251 in^4		
Moment Capacity (Table)	12	658 kip-in		
Moment Capacity (LRFD)	Mall	977.1 kip-in	Mall>Mmax	OK
Shear Capacity (Table)		6600 lbs		
Shear Capacity (LRFD)	Vall	9919.8 lbs	Vall>Vmax	ок
Maximum Deflection	Δ	1.4681 in		ωjst)*(L*12)^4)/(384*29000000*I*12)
		∟/ 278	∆>L/240	ок
Number of Joists	n	4		
Cost per Pound	C	\$0.85		
Total Cost	C	\$1,445.00	C=ωjst*L*c*n	

÷.

Joist Design Selection

 $\{i,j\}_{i\in \mathbb{N}}$

Joist Number 11				
	1			
Tributary Width		4.83 ft		
Span	L	34.33 ft		
Total Load	P	59.20 psf		
Linear Load	Wtot	286.13 lbs/ft	ωtot=LP	
	0.5		ωtot<550 lbs/ft	OK
Maximum Moment	Mmax	532.45 kip-in	Mmax=(0.125*(a	Utat+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	5169.5 lbs	Vmax=(wtot+1.2*	'ωjst)*(L/2)
Donth		20 in		
Joist Selection	-	0KCS3		
Depth	d	20 in		
Weight	Wjst	12.5 lbs/ft		
Moment of Inertia	I	205 in^4		
Moment Capacity (Table)		595 kip-in	12	
Moment Capacity (LRFD)	Mall	883.6 kip-in	Mall>Mmax	OK
Shear Capacity (Table)		6000 lbs		
Shear Capacity (LRFD)	Vall	9018.0 lbs	Vall>Vmax	ОК
Maximum Deflection	Δ	1.5836 in	Δ=(5*(ωtot+1.2*a	Jjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 260	∆>L/240	ок
Number of Joists	n	2		
Cost per Pound	C	\$0.85		
Total Cost	C	\$729.58	C=wjst*L*c*n	

Joist Design Selection

1.000

Joist Number 12			
Tributary Width		3.42 ft	
Span	L	34.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	202.27 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	377.80 kip-in	Mmax=(0.125*(Qtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	3667.9 lbs	$Vmax=(\omega_{tot}+1.2*\omega_{jst})*(L/2)$
	-		
Joist Selection		0KCS2	
Depth	d	18 in	
Weight	ωjst	9.5 lbs/ft	
Moment of Inertia	I	159 in^4	
Moment Capacity (Table)		442 kip-in	
Moment Capacity (LRFD)	Mall	656.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		5200 lbs	
Shear Capacity (LRFD)	Vall	7815.6 lbs	Vall>Vmax OK
D.C.	-	4 4407 :	
Maximum Deflection	Δ	1.4487 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 284	∆>L/240 OK
Number of Joists	n	2	
Number of Joists Cost per Pound	n c	2 \$0.85	

Joist Number 13			
Tributary Width		6.50 ft	
Span	L	34.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	384.80 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	693.25 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6796.6 lbs	$Vmax = (\omega_{tot} + 1.2^* \omega_{jst})^* (L/2)$
Depth Weight	d	22 in 12 5 lbs/ft	
Joist Selection		22KCS3	
Weight	C Wjst	12.5 lbs/ft	
Moment of Inertia	I	251 in^4	
Moment Capacity (Table)		658 kip-in	
Moment Capacity (LRFD)	Mall	977.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		6600 lbs	
Shear Capacity (LRFD)	Vall	9919.8 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.6515 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		∟/ 247	∆>L/240 OK
Number of Joists	n	3	
Cost per Pound	С	\$0.85	
Total Cost	C	\$1,083.75	C=wjst*L*c*n

Ì

Joist Design Selection

Joist Number 14			
Tributary Width		6.33 ft	
Span	L	35.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	374.93 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	730.21 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	6888.8 lbs	Vmax=(\u03c6tot+1.2*\u03c6jst)*(L/2)
Joist Selection		24KCS3	
Depth	d	24 in	
Weight	Wjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)		720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.5666 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 271	∆>L/240 OK
Number of Joists	n	23	
Cost per Pound	С	\$0.85	
Total Cost	C	\$8,634.58	C=ωjst*L*c*n

Joist Design Selection

1.234

Joist Number 15			
Tributary Width		4.04 ft	
Span	L	26.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	239.27 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	252.35 kip-in	Mmax=(0.125*(\u00fct+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3235.3 lbs	Vmax=(\u03c6tet+1.2*\u03c6jst)*(L/2)
Depth Weight	d <i>ω</i> jst	14 in 8 lbs/ft	
Joist Selection	1	4KCS2	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)		324 kip-in	F. COLUMN
Moment Capacity (LRFD)	Malí	481.1 kip-in	Mail>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.1459 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}2900000^{*}I^{*}12)$
		L/ 272	∆>L/240 ОК
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$176.80	C=ωjst*L*c*n

<u>Joist Number 16</u>			
Tributary Width		5.75 ft	
Span	L	26.00 ft	
Total Load	Р	59.20 psf	
Linear Load	Wtot	340.40 lbs/ft	ωtot=LP
	1.50.50		ωtot<550 lbs/ft OK
Maximum Moment	Mmax	355.51 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	4557.8 lbs	Vmax=(\u03c6tet+1.2*\u03c6jst)*(L/2)
Depth	d	16 in	
Joist Selection	1	6KCS2	
Depth	d	16 in	
Weight	ωjst	8.5 lbs/ft	
Moment of Inertia	I	99 in^4	
Moment Capacity (Table)	1.13	349 kip-in	
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4000 lbs	
Shear Capacity (LRFD)	Vall	6012.0 lbs	Vall>Vmax OK
Maximum Deflection		1.2556 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 248	∆>L/240 ОК
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$187.85	C=ωjst*L*c*n

. . .

Joist Number 17			
Tributary Width		6.67 ft	
Span	L	24.67 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	394.67 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft GK
Maximum Moment	Mmax	369.51 kip-in	Mmax=(0.125*(ωιot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4993.4 lbs	Vmax=(\u00fctvt+1.2*\u00fctjst)*(L/2)
Depth	d	16 in	
Joist Selection		16KCS2	
Depth		16 in	
Weight		8.5 lbs/ft	
Moment of Inertia	ωjst ⊤	99 in^4	
Moment Capacity (Table)	I	349 kip-in	
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax OK
Shear Capacity (Table)	Trian	4000 lbs	
Shear Capacity (LRFD)	Vall	6012.0 lbs	Vall>Vmax OK
Maximum Deflection		1.1746 in	Δ=(5*(ωtot+1,2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 252	∆>L/240 OK
Number of Joists	n	8	
Cost per Pound	C	\$0.85	
Total Cost	C	\$1,425.73	C= ω_{jst} *L*c*n

Joist Design Selection

Joist Number 18			
Tributary Width		6.67 ft	
Span	1	26.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	394.67 lbs/ft	ωtot=LP
			wtot<550 lbs/ft OK
Maximum Moment	Mmax	411.14 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	5271.1 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Depth	d	18 in	
Joist Selection		18KCS2	
Weight	ωjst	9 lbs/ft	
Moment of Inertia	I	127 in^4	
Moment Capacity (Table)		395 kip-in	
Moment Capacity (LRFD)	Mall	586.6 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4700 lbs	
Shear Capacity (LRFD)	Vall	7064.1 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.1320 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 276	∆>L/240 ок
Number of Joists	n	6	
Cost per Pound	С	\$0.85	
Total Cost	C	\$1,193.40	C=ωjst*L*c*n

•••

Joist Design Selection

. . .

Joist Number 19				
JOIST NUMBER 13				
Tributary Width		6.33 ft		
Span	L	24.67 ft		
Total Load	P	59.20 psf		
Linear Load	ωtot	374.93 lbs/ft	ωtot=LP	
			ωtot<550 lbs/ft	OK
Maximum Moment	Mmax	351.50 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4750.0 lbs	Vmax=(wtot+1.2	*ωjst)*(L/2)
Joist Selection	1	6KCS2		
Depth	d	16 in		
Weight	ωjst	8.5 lbs/ft		
Moment of Inertia	I	99 in^4		
Moment Capacity (Table)	S = #	349 kip-in		
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax	OK
Shear Capacity (Table)		4000 lbs		
Shear Capacity (LRFD)	Vall	6012.0 lbs	Vall>Vmax	OK
Maximum Deflection	Δ	1.1174 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}))$	ωjst)*(L*12)^4)/(384*29000000*ェ*12)
		L/ 265	∆>L/240	OK
Number of Joists	n	1		
Cost per Pound	С	\$0.85		
Total Cost	C	\$178.22	C=ω _{jst} *L*c*n	

1.1.1.1

<u>Joist Number 20</u>	23		
Tributary Width		6.00 ft	
Span	+	26.00 ft	
Total Load	P -	59.20 psf	
Linear Load	ωtot	355.20 lbs/ft	ωtot≈LP
Linear Loau		333.20 IDS/IT	ωtot<550 lbs/ft OK
Maximum Moment	Mmax	371.12 kip-in	Mmax=(0.125*(\u00fctot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4758.0 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Depth Weight	 ωjst	18 in 9 lbs/ft	
Joist Selection	1	8KCS2	
Depth	d	18 in	
Moment of Inertia	I	127 in^4	
Moment Capacity (Table)		395 kip-in	
Moment Capacity (LRFD)	Mall	586.6 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4700 lbs	
Shear Capacity (LRFD)	Vall	7064.1 lbs	Vall>Vmax OK
Maximum Deflection		1.0218 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*⊥*12)
Bolloodon		L/ 305	Δ>L/240 ΟΚ
	•		
Number of Joists	n	1	
Cost per Pound	с	\$0.85	
Total Cost	C	\$198.90	$C = \omega_{jst} L^* c^* n$

.

Joist Number 21			
Tributary Width		3.67 ft	
Span	L	26.00 ft	
Total Load	Р	59.20 psf	
Linear Load	Wtot	217.07 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	229.84 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	2946.7 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Joist Selection	1	4KCS2	
Depth	d	14 in	
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)		324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.0437 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*1*12)
		L/ 299	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$176.80	$C = \omega_{jst} L^* c^* n$

A 4 . A

Joist Number 22			
Tributary Width		1.71 ft	
Span	L	32.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	101.13 lbs/ft	ωtot=LP
	19 Aug 2011 11 2011 11 2011		ωtot<550 lbs/ft OK
Maximum Moment	Mmax	167.32 kip-in	Mmax=(0.125*(\u00fctot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	1742.9 lbs	$Vmax=(\omega tot+1.2*\omega jst)*(L/2)$
Joist Selection	1	4KCS1	
Depth	d	14 in	
Weight	ωjst	6.5 lbs/ft	
Moment of Inertia	I	59 in^4	
Moment Capacity (Table)	1	247 kip-in	
Moment Capacity (LRFD)	Mall	366.8 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2900 lbs	
Shear Capacity (LRFD)	Vall	4358.7 lbs	Vall>Vmax OK
Maximum Deflection		1.5021 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*1*12)
Maximum Denection		L/ 256	
		L/ 200	∆>L/240 OK
Number of Joists	n	2	
Cost per Pound	С	\$0.85	
Total Cost	C	\$353.60	C=ωjst*L*c*n

Joist Design Selection

398 R ₁₀

Joist Number 23			
Tributary Width		5.83 ft	
Span	L	32.00 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	345.33 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	551.63 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	5746.1 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Joist Selection	2	OKCS3	
Depth	d	20 in	
Weight	ωjst	11.5 lbs/ft	
Moment of Inertia	I	205 in^4	
Moment Capacity (Table)		595 kip-in	
Moment Capacity (LRFD)	Mall	883.6 kip-in	Mall>Mmax OK
Shear Capacity (Table)		6000 lbs	
Shear Capacity (LRFD)	Vall	9018.0 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.4252 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 269	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$312.80	C=ωjst*L*c*n

Joist Design Selec. Jn

1909. S

Joist Number 24			
	-		
Tributary Width		6.67 ft	
Span	L	31.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	394.69 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	601.56 kip-in	Mmax=(0.125*(ωιοι+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6399.6 lbs	Vmax=(\u03c6tet+1.2*\u03c6jst)*(L/2)
Joist Selection	- -	0KCS3	
Depth	d	20 in	
Weight	ωjst	11.5 lbs/ft	
Moment of Inertia	I	205 in^4	
Moment Capacity (Table)		595 kip-in	
Moment Capacity (LRFD)	Mall	883.6 kip-in	Mall>Mmax OK
Shear Capacity (Table)		6000 lbs	
Shear Capacity (LRFD)	Vall	9018.0 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.4902 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*1*12)
8		L/ 252	∆>L/240 OK
Number of Joists	n	3	
Cost per Pound	c	\$0.85	
Total Cost	C	\$918.85	C=ωjst*L*c*n

Joist Number 25			
Tributary Width		5.83 ft	
Span	L	31.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	345.31 lbs/ft	ω _{tot} =LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	526.19 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	5597.9 lbs	Vmax=(ωtot+1.2*ωjst)*(L/2)
Joist Selection	2	2KCS2	
Depth	d	22 in	
Weight	ωjst	10 lbs/ft	
Moment of Inertia	I	194 in^4	
Moment Capacity (Table)		488 kip-in	
Moment Capacity (LRFD)	Mall	724.7 kip-in	Mall>Mmax OK
Shear Capacity (Table)		5900 lbs	
Shear Capacity (LRFD)	Vall	8867.7 lbs	Vall>Vmax OK
Maximum Deflection		1.3773 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 273	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$266.33	C=ω _{jst} *L*c*n

Joist Design Selection

Joist Number 26	505		
Tributary Width	T	3.92 ft	
Span		16.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	231.87 lbs/ft	
	<u> </u>		ωtot<550 lbs/ft OK
Maximum Moment	Mmax	91.80 kip-in	Mmax=(0.125*(ωια+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	1912.5 lbs	Vmax=(\u03c6tet+1.2*\u03c6jst)*(L/2)
Depth	d	12 in	
Joist Selection	12	2KCS1	
Depth	d	12 in	
Weight	Wjst	6 lbs/ft	
Moment of Inertia	II	43 in^4	
Moment Capacity (Table)	10	209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vali	3607.2 lbs	Vall>Vmax OK
Maximum Deflection		0.2827 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 679	∆>L/240 ØK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$81.60	C=ω _{jst} *L*c*n

Joist Design Selection

35 S S

<u>Joist Number 27</u>			
Tributary Width	Г	5.83 ft	
Span	L	16.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	345.33 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	135.37 kip-in	Mmax=(0.125*(ωιοt+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	2820.3 lbs	Vmax=(\u00fctet+1.2*\u00fcjst)*(L/2)
Joist Selection	1	2KCS1	
Depth	d	12 in	
Weight	ωjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)	1	209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.4169 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*±*12)
		L/ 461	∆>L/240 סג
Number of Joists	n	2	
Cost per Pound	C	\$0.85	
Total Cost	C	\$163.20	C= ω_{jst} *L*c*n

Joist Design Selection

39 A.,

Joist Number 28			
Tributary Width		5.92 ft	
Span	L	14.67 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	350.27 lbs/ft	wtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	115.34 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	2621.4 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
	- <u> </u>	(Q.)	
Depth	d	12 in	
Weight	ωjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.2985 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*⊥*12)
		L/ 590	∆>L/240 ок
Number of Joists	n	2	
Cost per Pound	С	\$0.85	
Total Cost	C	\$149.60	C=ωjst*L*c*n

Joist Design Selection

1.0

Joist Number 29			
Tributary Width		6.00 ft	
Span	L	16.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	355.20 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	139.16 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	2899.2 lbs	Vmax=(wtot+1.2*wjst)*(L/2)
Depth	d	12 in	
Joist Selection	1	2KCS1	
Denth		10 :-	
Weight	Wjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.4285 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 448	∆>L/240 ок
Number of Joists	n	6	
Cost per Pound	c	\$0.85	
Total Cost	Č	\$489.60	C=ω _{jst} *L*c*n

Joist Design Selection

1.11.1

Joist Number 30			
Tributary Width	T T	5.75 ft	
Span		16.00 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	340.40 lbs/ft	ωtot=LP
	1		Wtot<550 lbs/ft OK
Maximum Moment	Mmax	133.48 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	2780.8 lbs	$Vmax = (\omega_{tot} + 1.2^* \omega_{jst})^* (L/2)$
Depth	d	12 in	
Joist Selection	1.	2KCS1	
	d		
Weight	ωjst	6 lbs/ft	-
Moment of Inertia	I	43 in^4	
Moment Capacity (Table) Moment Capacity (LRFD)	Mall	209 kip-in	Mall>Mmax OK
Shear Capacity (Table)	wan	310.4 kip-in 2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Shear Capacity (LRFD)	Vall	3007.2 105	
Maximum Deflection	Δ	0.4110 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 467	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	c	\$0.85	
Total Cost	C	\$81.60	C=ω _{jst} *L*c*n

Joist Design Selection

•• •

Joist Number 31			
Tributary Width		5.92 ft	
Span	L	16.00 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	350.46 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	137.34 kíp-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	2861.3 lbs	Vmax=(\u03c6tet+1.2*\u03c6jst)*(L/2)
Depth	d	12 in	
Joist Selection		2KCS1	
	d	the second se	
Weight	ωjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>MmaxOK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.4229 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 454	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$81.60	C=ω _{jst} *L*c*n

Joist Design Selection

-

toos T

Joist Number 32	i.v		
Tributary Width		6.13 ft	
Span	L	14.67 ft	
Total Load	Р	59.20 psf	
Linear Load	ωtot	362.60 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	119.32 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	2711.9 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
Depth	d	12 in	
Weight	ωjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.3088 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
	·	L/ 570	∆>L/240 ОК
Number of Jointo		41	
Number of Joists	n	<u> </u>	
Cost per Pound	C	\$0.85	
Total Cost	C	\$74.80	$C = \omega_{jst} L^{*} C^{*} n$

Joist Number 33			
Tributary Width		6.50 ft	
Span	L	16.00 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	384.80 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	150.53 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3136.0 lbs	Vmax=(\u03c6tet+1.2*\u03c6jst)*(L/2)
Depth	d	12 in	
Joist Selection	1:	2KCS1	
Depth	b	12 in	
Weight	Wjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.4635 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 414	Δ>L/240 OK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$81.60	C=wjst*L*c*n

Joist Number 34			
Tributary Width		6.33 ft	
Span	L	16.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	374.93 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	146.74 kip-in	Mmax=(0.125*(wtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3057.1 lbs	Vmax=(\u00fct+1.2*\u00fcjst)*(L/2)
Depth	T a T	12 in	
Joist Selection	1	2KCS1	
Depth	d	12 in	
Weight	€Jjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vali>Vmax OK
Maximum Deflection		0.4519 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 425	∆>L/240 ок
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$81.60	C=ωjst*L*c*n

Joist Design Selection

1.1 10

Joist Number 35			
Tributary Width		6.17 ft	
Span	L	16.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	365.07 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	142.95 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	2978.1 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Inlah Calcotter	4.4	N/OC4	
Joist Selection	1:	2KCS1	
Depth	d	12 in	
Weight	ωjst	6 lbs/ft	
Moment of Inertia	I	143 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.1324 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 1451	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	c	\$0.85	
Total Cost	C	\$81.60	C=wjst*L*c*n

Tributary Width		6.33 ft	
Span	L	14.67 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	374.93 lbs/ft	ωtor=LP
123			ωtot<550 lbs/ft DK
Maximum Moment	Mmax	123.30 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	2802.3 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Weight	ωjst	6 lbs/ft	
Depth	d	12 in	
Weight	ωjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.3190 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 552	∆>L/240 oκ
N			
Number of Joists	n	2	
Cost per Pound	С	\$0.85	
Total Cost	C	\$149.60	C=ωjst*L*c*n

Joist Number 37			
Tributary Width		6.33 ft	
Span	L	16.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	374.93 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	146.74 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3057.1 lbs	$Vmax=(\omega tot+1.2^*\omega jst)^*(L/2)$
Depth	в	12 in	
Joist Selection	1	2KCS1	
Death		12 in	
Weight	ωjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.4519 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 425	∆>L/240 ок
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$81.60	C=ωjst*L*c*n

.

Joist Number 38			
Tributary Width		6.50 ft	
Span	L	14.67 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	384.80 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	126.48 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	2874.7 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Depth	d	12 in	
Joist Selection	1:	2KCS1	
Denth		12 in	
Weight	ωjst	6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)	9	209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.3273 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
	·	L/ 538	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$74.80	C=ω _{jst} *L*c*n

Tributary Width		6.67 ft	
Span	L	16.00 ft	
Total Load	Р	59.20 psf	
Linear Load	Wiot	394.67 lbs/ft	wint=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	154.32 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3214.9 lbs	Vmax=(ωtot+1.2*ωjst)*(L/2)
Weight	⊖	the second se	
Depth	d	<u>12 in</u> 6 lbs/ft	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Malí	310.4 kip-in	Mali>Mmax OK
Shear Capacity (Table)		2400 lbs	
Shear Capacity (LRFD)	Vall	3607.2 lbs	Vall>Vmax OK
<u></u>			
Maximum Deflection	Δ	0.4752 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}2900000^{*}T^{*}12)$
	Δ	0.4752 in L/ 404	$\frac{\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}2900000^{*}I^{*}12)}{\Delta > L/240}$
	<u>Δ</u>		
Maximum Deflection			

Joist Design Selection

1.7.1

Joist Number 42			
JOIST NUMBER 42			
Tributary Width		4.50 ft	
Span	L	24.67 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	266.40 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	251.96 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3404.5 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Joist Selection	1	4KCS2	
Joist Selection	1	4KCS2	
Depth	d	14 in	
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)	Ø	324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.0301 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 287	∆>L/240 ок
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$167.76	C=wjst*L*c*n

Joist Design Selection

1.1

Joist Number 43			
Tributary Width		5.08 ft	
Span	L	23.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	300.93 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	253.60 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3622.9 lbs	Vmax=(ωtot+1.2*ωjst)*(L/2)
Joist Selection	14	4KCS2	
Depth	d	14 in	
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)	<u>غا</u> ر	324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.9275 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*1*12)
		L/ 302	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$158.67	C=ωjst*L*c*n

** * ...

Tríbutary Width		5.67 ft		
Span	L	24.67 ft		
Total Load	Р	59.20 psf		
Linear Load	Wtot	335.47 lbs/ft	ωtot=LP	
17			ωtot<550 lbs/ft	OK
Maximum Moment	Mmax	315.48 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4263.2 lbs	Vmax=(wtot+1.2	!*ωjst)*(L/2)
Weight	ωjst	8.5 lbs/ft		
Depth	d	16 in		
Moment of Inertia	I	99 in^4		
Moment Capacity (Table)	60 E	349 kip-in		*
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax	ок
	1	4000 lbs		
Shear Capacity (Table)				
	Vall	6012.0 lbs	Vall>Vmax	ок
Shear Capacity (LRFD)				
Shear Capacity (Table) Shear Capacity (LRFD) Maximum Deflection	Vall 🛛	1.0029 in	$\Delta = (5^*(\omega_{tot}+1.2^*))$	ωjst)*(L*12)^4)/(384*29000000*I*12)
Shear Capacity (LRFD)				Formation
Shear Capacity (LRFD) Maximum Deflection		1.0029 in	$\Delta = (5^*(\omega_{tot}+1.2^*))$	ωjst)*(L*12)^4)/(384*29000000*I*12)
Shear Capacity (LRFD)	Δ	1.0029 in L/ 295	$\Delta = (5^*(\omega_{tot}+1.2^*))$	ωjst)*(L*12)^4)/(384*29000000*I*12)

Joist Number 45			
Tributary Width		5.67 ft	
Span	L	23.33 ft	
Total Load	Р	59.20 psf	
Linear Load	ωtot	335.47 lbs/ft	ພ _{ເຫ} =LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	281.80 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	4025.8 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Death		14 in	
Joist Selection		4KCS2	
Depth	d	14 in	
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)		324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.0306 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 272	∆>L/240 OK
Number of Joists	n	2	
Cost per Pound	C	\$0.85	
Total Cost	C	\$317.33	C=ωjst*L*c*n

Joist Number 46	32		
	T		
Tributary Width		5.83 ft	
Span	L	23.33 ft	
Total Load	Р	59.20 psf	
Linear Load	ωtot	345.33 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	289.86 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4140.9 lbs	$Vmax=(\omega tot+1.2*\omega jst)*(L/2)$
Depth	d	14 in	
	T		
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)	+	324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection		1.0601 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}2900000^{*}I^{*}12)$
		L/ 264	∆>L/240 ОК
Number of Joists	T	1	
	n	\$0.85	
Cost per Pound Total Cost	C C	\$158.67	C=ω _{jst} *L*c*n
Total COSt		φ100.07	

Joist Design Selection

Joist Number 47			3/
Tributon Midth		6.00 ft	
Tributary Width	++	24.67 ft	
Span Total Load	P P	59.20 psf	
	+		
Linear Load	ωtot	355.20 lbs/ft	Wtot=LP
			ωtot<550 lbs/ft Οκ
Maximum Moment	Mmax	333.49 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4506.6 lbs	Vmax=(ωtot+1.2*ωjst)*(L/2)
Joist Selection		I6KCS2	
Depth	d	16 in	
Weight	ωjst	8.5 lbs/ft	
Moment of Inertia	I	99 in^4	
Moment Capacity (Table)		349 kip-in	
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4000 lbs	
Shear Capacity (LRFD)	Vall	6012.0 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.0601 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 279	∆>L/240 ©K
Number of Joists	n	4	
Cost per Pound	C	\$0.85	
Total Cost	C	\$712.87	C=ω _{jst} *L*c*n

9

· 6 . 1

Joist Design Selection

Joist Number 48			
Tributary Width		6.33 ft	
Span	L	23.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	374.93 lbs/ft	ωtot=LP
			ωτοτ<550 lbs/ft OK
Maximum Moment	Mmax	314.04 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4486.2 lbs	$Vmax=(\omega tot+1.2^*\omega jst)^*(L/2)$
Joist Selection	1	4KCS2	
Depth	d	14 in	
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)		324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.1485 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 244	∆>L/240 ОК
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$158.67	C= ω_{jst} *L*c*n

Joist Number 49			
Tributary Width	T T	6.67 ft	
Span	L	23.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	394.67 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	330.64 kip-in	Mmax=(0.125*(ωιοι+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4723.4 lbs	Vmax=(ωtot+1.2*ωjst)*(L/2)
Joist Selection	1	6KCS2	
Depth	d	16 in	
Weight	Wjst	8.5 lbs/ft	
Moment of Inertia	I	99 in^4	
Moment Capacity (Table)	1	349 kip-in	
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4000 lbs	
Shear Capacity (LRFD)	Vall	6012.0 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.9405 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 298	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	c	\$0.85	
Total Cost	C	\$168.58	C=ωjst*L*c*n

Joist Design Selection

Joist Number 50			
Tributary Width	ГГ	6.67 ft	
Span	L	23.67 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	394.67 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	340.16 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4790.9 lbs	Vmax=(\u03c6tet+1.2*\u03c6jst)*(L/2)
Depth	d	16 in	
Joist Selection		6KCS2	
	d		
Weight	ωjst	8.5 lbs/ft	
Moment of Inertia	I	99 in^4	
Moment Capacity (Table)		349 kip-in	
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4000 lbs	
Shear Capacity (LRFD)	Vall	6012.0 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.9954 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 285	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	c	\$0.85	
Total Cost	C	\$170.99	C=ωjst*L*c*n
10101 0031		ψ170.00	

1

38 8 8

T 1 I NAC JAL	T T	0.40.0	
Tributary Width	<u> </u>	6.42 ft	
Span		16.27 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	379.87 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	153.71 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3148.9 lbs	$Vmax = (\omega_{tot} + 1.2^* \omega_{jst})^* (L/2)$
Weight	ωjst	6 lbs/ft	
Depth	d	12 in	
Moment of Inertia	I	43 in^4	
Moment Capacity (Table)		209 kip-in	
Moment Capacity (LRFD)	Mall	310.4 kip-in	Mall>Mmax OK
Chase Cassoity (Table)		2400 lbs	
Snear Capacity (Table)		0007.0 // -	Vall>Vmax OK
Shear Capacity (Table) Shear Capacity (LRFD)	Vall	3607.2 lbs	
	Vall	3607.2 Ibs	
	Vall	0.4895 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
Shear Capacity (LRFD)			
Shear Capacity (LRFD)		0.4895 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
Shear Capacity (LRFD) Maximum Deflection		0.4895 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
Shear Capacity (LRFD)		0.4895 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$

Joist Number 52			
Tallerdana Marakh	T	0.40.6	
Tributary Width		3.42 ft	
Span		24.67 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	202.27 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft GK
Maximum Moment	Mmax	191.72 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	2590.8 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
Depth Weight	b	14 in 6.5 lbs/ft	
Joist Selection	•	4KCS1	
Moment of Inertia	ωjst		
	I	59 in^4	
Moment Capacity (Table)	M-11	247 kip-in	
Moment Capacity (LRFD)	Mall	366.8 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2900 lbs	
Shear Capacity (LRFD)	Vall	4358.7 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.0227 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 289	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$136.28	C=wjst*L*c*n

Joist Design Selec....n

Joist Number 53	170-17138		
Tributary Width		4.83 ft	
Span	L	24.67 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	286.13 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	269.91 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3647.4 lbs	Vmax=(ωtot+1.2*ωjst)*(L/2)
Joist Selection	1	4KCS2	
Depth	d	14 in	
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)		324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.1032 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 268	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$167.73	C=ω _{jst} *L*c*n

23 × ...

<u>Joist Number 54</u>			
Tributary Width		5.25 ft	
Span	L	23.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	310.80 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	261.66 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3738.0 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Joist Selection		4KCS2	
Depth	d	14 in	
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)	10	324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	0.9570 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 293	∆>L/240 ок
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$158.67	C=ω _{jst} *L*c*n

	5.75 ft	
L	23.33 ft	
P	59.20 psf	
ωtot	340.40 lbs/ft	ωtot=LP
		ωtot<550 lbs/ft OK
Mmax	285.83 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Vmax	4083.3 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
		na se de la companya de la companya de la contra de la La contra de la contra
1.	4KCS2	
d	14 in	
ωjst	8 lbs/ft	
I	77 in^4	
	324 kip-in	
Mall	481.1 kip-in	Mall>Mmax OK
	3400 lbs	
Vall	5110.2 lbs	Vall>Vmax OK
Δ	1.0454 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}2900000^{*}I^{*}12)$
	L/ 268	∆>L/240 ©K
	2	
		$C = \omega_{jst} L^* c^* n$
	Mmax Vmax 1 d wjst I Mall Vall	L 23.33 ft P 59.20 psf ωtot 340.40 lbs/ft Mmax 285.83 kip-in Vmax 4083.3 lbs 14KCS2 d 14 in ωjst 8 lbs/ft I 77 in^4 · 324 kip-in Mall 481.1 kip-in 3400 lbs 3400 lbs Vall 5110.2 lbs Δ 1.0454 in L/ 268 268

Joist Number 56			
Tributary Width		5.83 ft	
Span	L	24.67 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	345.33 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	324.48 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4384.9 lbs	Vmax=(\u03c6tet+1.2*\u03c6jst)*(L/2)
Joist Selection	1	6KCS2	
			4
Depth	d	16 in	
Weight	ωjst	8.5 lbs/ft	
Moment of Inertia	I	99 in^4	
Moment Capacity (Table)	10	349 kip-in	
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4000 lbs	
Shear Capacity (LRFD)	Vall	6012.0 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.0315 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 287	∆>L/240 OK
Number of Joists	l n l	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$178.22	C=ω _{jst} *L*c*n

Joist Number 57					
Tributary Width		5.50 ft			
Span	L	24.67 ft			
Total Load	P	59.20 psf			
Linear Load	Wtot	325.60 lbs/ft		ωtot=LP	
				ωtot<550 lbs/ft	OK
Maximum Moment	Mmax	305.93 kip-in		Mmax=(0.125*((ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4134.1 lbs		Vmax=(wtot+1.2	2*ωjst)*(L/2)
Depth	d	14 in			
Joist Selection	1	4KCS2			
Depth	d	14 in	3		
Weight	ωjst	8 lbs/ft			
Moment of Inertia	I	77 in^4		C	
Moment Capacity (Table)	*	324 kip-in			
Moment Capacity (LRFD)	Mall	481.1 kip-in		Mall>Mmax	OK
Shear Capacity (Table)		3400 lbs			
Shear Capacity (LRFD)	Vall	5110.2 lbs		Vall>Vmax	OK
Maximum Deflection	Δ	1.2504 in		Δ=(5*(ωtot+1.2*	ωjst)*(L*12)^4)/(384*29000000*ェ*12)
		L/ 237		∆>L/240	NO GOOD
Number of Joists	n	1			
Cost per Pound	с	\$0.85			
Total Cost	C	\$167.73		C=ωjst*L*c*n	

Joist Design Selection

11 K.

Joist Number 58			
	1 1		
Tributary Width		6.08 ft	
Span	L	23.33 ft	
Total Load	Р	59.20 psf	
Linear Load	Wtot	360.13 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	301.95 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4313.6 lbs	Vmax=(\u03c6tot+1.2*\u03c6jst)*(L/2)
Depth	d	14 in	
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)		324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.1043 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 254	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$158.67	C=ω _{jst} *L*c*n

Joist Design Selection

Joist Number 59			
Tributary Width		6.17 ft	
Span	L	24.67 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	365.07 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	342.49 kip-in	Mmax=(0.125*(ωισ+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4628.3 lbs	Vmax=(\u03c6tot+1.2*\u03c6jst)*(L/2)
Depth	d	16 in	
Joist Selection	1	6KCS2	
	d	16 in	
Weight	ωjst	8.5 lbs/ft	
Moment of Inertia	I	99 in^4	
Moment Capacity (Table)		349 kip-in	
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4000 lbs	
Shear Capacity (LRFD)	Vall	6012.0 lbs	Vall>Vmax OK
Maximum Deflection		1.0888 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 272	$\Delta > L/240$ OK
		LI 212	
Number of Joists	n	3	
Cost per Pound	С	\$0.85	
Total Cost	C	\$534.65	C=ωjst*L*c*n

d.

Joist Design Selection

<u>Joist Number 60</u>			
Tributary Width		6.42 ft	
Span	L	23.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	379.87 lbs/ft	ω _{tot} =LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	318.06 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	4543.8 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
Depth	d	14 in	
Joist Selection	1.	4KCS2	
Depth	d	14 in	
Weight	ωjst	8 lbs/ft	
Moment of Inertia	I	77 in^4	
Moment Capacity (Table)	3	324 kip-in	
Moment Capacity (LRFD)	Mall	481.1 kip-in	Mall>Mmax OK
Shear Capacity (Table)		3400 lbs	
Shear Capacity (LRFD)	Vall	5110.2 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.1632 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 241	∆>L/240 ØK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$158.67	C=ω _{jst} *L*c*n

Joist Number 61			
Tributary Width		7.00 ft	
Span	L	24.00 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	414.40 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	366.85 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	5095.2 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
Joist Selection		I6KCS2	
Depth	d	16 in	
Weight	ωjst	8.5 lbs/ft	
Moment of Inertia	I	99 in^4	
Moment Capacity (Table)		349 kip-in	
Moment Capacity (LRFD)	Mall	518.3 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4000 lbs	
Shear Capacity (LRFD)	Vall	6012.0 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.1040 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 261	∆>L/240 OK
Number of Joists	n	2	<i>k</i> .
Cost per Pound	C	\$0.85	
Total Cost	C	\$346.80	$C = \omega_{jst} L^* c^* n$

Joist Number 62			
	28 - 62 -		
Tributary Width		6.67 ft	
Span	L	18.83 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	394.67 lbs/ft	ω _{tot} =LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	214.13 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3789.9 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Joist Selection	1	4KCS1	· ·
Depth	d	14 in	
Weight	ωjst	6.5 lbs/ft	
Moment of Inertia	I	59 in^4	
Moment Capacity (Table)	1	247 kip-in	
Moment Capacity (LRFD)	Mall	366.8 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2900 lbs	
Shear Capacity (LRFD)	Vall	4358.7 lbs	Vall>Vmax OK
Maximum Deflection		0.6658 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 339	∆>L/240 ок
Number of Joists		1	
	n	\$0.85	
Cost per Pound	C C	\$104.05	C=ωjst*L*c*n
Total Cost		\$104.05	

<u>Joist Number 63</u>			
Tributary Width	ТТ	5.67 ft	
Span		34.67 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	335.47 lbs/ft	ωtot=LP
			wtot<550 lbs/ft OK
Maximum Moment	Mmax	631.77 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6074.8 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
Depth	d	24 in	
Joist Selection		24KCS3	
Depth	d	24 in	
Weight	Wjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)	1	720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection		1.3047 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 319	∆>L/240 ØK
Number of Joists	n	4	
Cost per Pound	C	\$0.85	
Total Cost	C	\$1,473.33	C=wjst*L*c*n

Joist Number 64			
Tributary Width		5.50 ft	
Span	L	33.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	325.60 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	565.67 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	5656.7 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
Joist Selection		20KCS3	
Depth	d	20 in	
Weight	ωjst	11.5 lbs/ft	
Moment of Inertia	I	205 in^4	
Moment Capacity (Table)		595 kip-in	
Moment Capacity (LRFD)	Mall	883.6 kip-in	Mall>Mmax OK
Shear Capacity (Table)		6000 lbs	
Shear Capacity (LRFD)	Vall	9018.0 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1,5858 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 252	∆>L/240 ОК
Number of Joists	n	4	
Cost per Pound	С	\$0.85	
Total Cost	C	\$1,303.33	C=wjst*L*c*n

Joist Design Selection

Tributary Width		6.33 ft	67 <u>6</u> 7
Span	L	33.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	374.93 lbs/ft	ωtot=LP
			Wtot<550 lbs/ft DK
Maximum Moment	Mmax	649.89 kip-in	Mmax=(0.125*(\u00fct+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	6498.9 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Weight	ωjst	12.5 lbs/ft	
Depth	d	24 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)	22	720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection		1.2409 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
Maximum Deneedon		L/ 322	△>L/240 OK
		LI 322	
Number of Joists	n	6	
Cost per Pound	С	\$0.85 \$2,125.00	C=ω _{jst} *L*c*n
Total Cost	C		

Joist Design Selection

Tributon (Midth	T	6 22 4	
Tributary Width	++	6.33 ft	
Span		34.67 ft	
Total Load	Р	59.20 psf	
Linear Load	ωtot	374.93 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	702.92 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	6758.8 lbs	$Vmax=(\omega tot+1.2^*\omega jst)^*(L/2)$
	ωjst		
Depth	d	24 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)	1 · 1	720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.4516 in	$\Delta = (5^{(\omega_{tot}+1.2^{\omega_{jst}})^{(L*12)^{4})/(384^{2}900000^{I*12})}$
Maximum Deflection	Δ	1.4516 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}2900000^{*}I^{*}12)$ $\Delta > L/240$
Maximum Deflection	Δ		Louis and the second se
			Contraction of the Contraction o
Maximum Deflection Number of Joists Cost per Pound			Louis and the second se

J

Joist Design Selection

Joist Number 67			
		0.07.0	
Tributary Width		2.67 ft	
Span	L	35.33 ft	
Total Load	Р	59.20 psf	
Linear Load	ωtot	157.87 lbs/ft	wiel=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	319.23 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3011.6 lbs	Vmax=(ωtot+1.2*ωjst)*(L/2)
Depth	d	16 in	
Joist Selection	1	6KCS3	
Death		16 in	
Weight	ωjst	10.5 lbs/ft	
Moment of Inertia	I	128 in^4	
Moment Capacity (Table)		470 kip-in	
Moment Capacity (LRFD)	Mall	698.0 kip-in	Mall>Mmax OK
Shear Capacity (Table)		4800 lbs	
Shear Capacity (LRFD)	Vall	7214.4 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.6105 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 263	∆>L/240 ОК
Number of Joists	n [1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$315.35	$C = \omega_{jst} L^* c^* n$

Joist Design Selection

1.6.6

Joist Number 68			
Tributary Width		5.17 ft	
Span	L	35.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	305.87 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	600.88 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	5668.6 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
Dopth		24 in	
Joist Selection		24KCS3	
Depth	d	24 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)		720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.2891 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 329	∆>L/240 ОК
Number of Joists	n	3	
Cost per Pound	C	\$0.85	
Total Cost	C	\$1,126.25	$C = \omega_{jst} L^* c^* n$

Joist Design Selection

Tributary Width		5.67 ft		
Span	L	35.33 ft		
Total Load	P	59.20 psf		
Linear Load	Wtot	335.47 lbs/ft	ωtot=LP	
			ωtot<550 lbs/ft	OK
Maximum Moment	Mmax	656.31 kip-in	Mmax=(0.125*(a	⊌tot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6191.6 lbs	Vmax=(wtot+1.2*	*ωjst)*(L/2)
	ωjst			
Depth	d	24 in		
Weight	ωjst	12.5 lbs/ft		
Moment of Inertia	I	301 in^4		
Moment Capacity (Table)	<u> </u>	720 kip-in		C
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax	OK
Shear Capacity (Table)		7200 lbs		
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax	ок
Maximum Deflection	Δ	1.4080 in	A=(5*(c)tot+1 2*c	⊌jst)*(L*12)^4)/(384*29000000*I*12)
		L/ 301	△>L/240	ok
		2/001		
	n	2		
Number of Joists Cost per Pound Total Cost	n c C	\$0.85 \$750.83	C=ωjst*L*c*n	

×

Joist Design Selection

Joist Number 70			
Tributary Width		5.83 ft	
Span	L	34.00 ft	
Total Load	Р	59.20 psf	
Linear Load	ωtot	345.33 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	624.82 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	6125.7 lbs	Vmax≓(ωtot+1.2*ωjst)*(L/2)
Dopth			
Depth	d	24 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)		720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.2412 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 329	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$361.25	C=ω _{jst} *L*c*n

...

Joist Number 71			
THE REAL PROPERTY OF THE REAL		2.02 (1	
Tributary Width		6.00 ft	
Span	L	35.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	355.20 lbs/ft	ωtot=LP
	NO		ωtot<550 lbs/ft OK
Maximum Moment	Mmax	693.26 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	6540.2 lbs	Vmax=(\u00fctot+1.2*\u00fcjst)*(L/2)
Joist Selection		24KCS3	
Depth	d	24 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	II	301 in^4	
Moment Capacity (Table)	5	720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.4873 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 285	∆>L/240 OK
Number of Joists	n	5	
Cost per Pound	С	\$0.85	
Total Cost	C	\$1,877.08	C=ωjst*L*c*n

Joist Design Selection

Joist Number 72			
Tributary Width	Т	6.75 ft	
Span	L	34.00 ft	
Total Load	Р	59.20 psf	
Linear Load	Wtot	399.60 lbs/ft	ωιor=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	718.92 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	7048.2 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Weight	ω jst	12.5 lbs/ft	
Joist Selection		4KCS3	
Depth Weight	d	24 in	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)		720 kip-in	<u></u>
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection		1.4281 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 286	∆>L/240 OK
Number of Joists	l n l	1	
Cost per Pound	c	\$0.85	
Total Cost	C	\$361.25	$C = \omega_{jst} L^* c^* n$

Joist Number 73			
Tributary Width		4.08 ft	
Span	L	35.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	241.73 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	478.53 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4514.4 lbs	$Vmax = (\omega tot + 1.2^* \omega_{jst})^* (L/2)$
Joist Selection		0KCS3	
Depth	d	20 in	
Weight	Wjst	11.5 lbs/ft	
Moment of Inertia	I	205 in^4	
Moment Capacity (Table)		595 kip-in	
Moment Capacity (LRFD)	Mall	883.6 kip-in	Mall>Mmax OK
Shear Capacity (Table)		6000 lbs	
Shear Capacity (LRFD)	Vall	9018.0 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.5074 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 281	∆>L/240 ОК
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$345.38	C=ω _{jst} *L*c*n

Joist Number 74			
Tributary Width		3,58 ft	
Span	L	35.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	212.13 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	418.60 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	3949.1 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Joist Selection	2	0KCS2	
Depth	d	20 in	
Weight	Wist	9.5 lbs/ft	
Moment of Inertia	I	159 in^4	
Moment Capacity (Table)	· · · ·	442 kip-in	
Moment Capacity (LRFD)	Mall	656.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		5200 lbs	
Shear Capacity (LRFD)	Vall	7815.6 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.7001 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 249	∆>L/240 OK
Number of Joists	n	2	
Cost per Pound	С	\$0.85	
Total Cost	C	\$570.63	$C = \omega_{jst} L^{*} C^{*} n$

1. A. A.

Joist Number 75				
		93		
Tributary Width		6.33 ft		
Span	L	34.00 ft		
Total Load	Р	59.20 psf		
Linear Load	Wtot	374.93 lbs/ft	ωtot=LP	
			ωtot<550 lbs/ft	OK
Maximum Moment	Mmax	676.14 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6628.9 lbs	Vmax=(wtot+1.2	*ω _{jst})*(L/2)
Joist Selection		24KCS3		
Depth	d	24 in		
Weight	ωjst	12.5 lbs/ft		
Moment of Inertia	I	301 in^4		
Moment Capacity (Table)	10.00	720 kip-in		
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax	OK
Shear Capacity (Table)		7200 lbs		
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax	OK
Maximum Deflection		1.3431 in	Δ=(5*(ωtot+1.2*	ωjst)*(L*12)^4)/(384*29000000*1*12)
		L/ 304	∆>L/240	ОК
Number of Joists		16		
	n	\$0.85		
Cost per Pound	C C		C=()*! *0*0	
Total Cost	C	\$5,780.00	C=ωjst*L*c*n	

Joist Design Selection

Joist Number 76			
Tributary Width		5.75 ft	
Span	L	34.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	340.40 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	628.41 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6101.0 lbs	Vmax=(wtot+1.2*wjst)*(L/2)
Depth	d	24 in	
Joist Selection	2	4KCS3	
Deeth			
North Control of Contr			
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)	- Contraction	720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection		1.2729 in	A = (5*(
Maximum Denection			$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}2900000^{*}I^{*}12)$
		L/ 324	∆>L/240 OK
Number of Joists	n	2	
Cost per Pound	C	\$0.85	
Total Cost	C	\$729.58	C=wjst*L*c*n

	0.00.0		
L	and the second se		
Р	59.20 psf		2
ωtot	182.53 lbs/ft	ωtot=LP	
_		ωtot<550 lbs/ft OK	
Mmax	363.17 kip-in	Mmax=(0.125*(wtot+1.2*Wjst)*	L^2*12)/1000
Vmax	3426.2 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$	
d	20 in		
2	0KCS2		
d	20 in		
ωjst	9.5 lbs/ft		
I	159 in^4		
+	442 kip-in		
Mall	656.4 kip-in	Mall>Mmax OK	
	5200 lbs		·
Vall	7815.6 lbs	Vall>Vmax OK	
Δ	1.4750 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*1*12)
	L/ 287	∆>L/240 OK	
T n I	3		
			Net and the second s
		C=wist*L*c*n	
	Mmax Vmax 2 d wjst I Mall Vall	ωtot 182.53 lbs/ft Mmax 363.17 kip-in Vmax 3426.2 lbs 20KCS2 d 20 in ωjst 9.5 lbs/ft I 159 in^4 42 kip-in Mall 656.4 kip-in 5200 lbs Vall 7815.6 lbs Δ 1.4750 in L/ 287 n 3 c \$0.85	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Joist Design Selection

Joist Number 78			
Tributary Width		5.83 ft	
Span	L	35.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	345.33 lbs/ft	wtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	674.78 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6365.9 lbs	Vmax=(\u03c6tot+1.2*\u03c6jst)*(L/2)
Depth Weight	d Wjst	24 in 12.5 lbs/ft	
Joist Selection	2	4KCS3	
Moment of Inertia	I	251 in^4	
Moment Capacity (Table)		720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.7360 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 244	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$375.42	C=wjst*L*c*n

)

Joist Number 79			
Tributary Width	1 1	6.00 ft	
Span	L	34.00 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	355.20 lbs/ft	ωtot=LP
		000.20 10011	ωτοt<550 lbs/ft ΟΚ
Maximum Moment	Mmax	641.93 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6293.4 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Joist Selection	2	4KCS3	
	_		
Depth	d	24 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)	1	720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection	Δ	1.2752 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 320	∆>L/240 OK
Number of Joists	n	2	
Cost per Pound	c	\$0.85	
Total Cost	C	\$722.50	C=wjst*L*c*n

Joist Design Selec. Jn

Joist Number 80			
Tributary Width	<u> </u>	5.67 ft	
Span		35.33 ft	
Total Load	P	59.20 psf	
Linear Load	ωtot	335.47 lbs/ft	ωtot=LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	656.31 kip-in	Mmax=(0.125*(wtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6191.6 lbs	$Vmax=(\omega_{tot}+1.2^*\omega_{jst})^*(L/2)$
Depth		24 in	
Joist Selection		24KCS3	*
Depth		24 in	
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	II	301 in^4	
Moment Capacity (Table)		720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection		1.4080 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*1*12)
		L/ 301	∆>L/240 ОК
Number of Joists	n	4	
Cost per Pound	С	\$0.85	
Total Cost	C	\$1,501.67	C=ωjst*L*c*n

J

Joist Number 81			
Tributary Width	- -	6.50 ft	
Span	L	34.00 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	384.80 lbs/ft	wtot=LP
			wtot<550 lbs/ft OK
Maximum Moment	Mmax	693.25 kip-in	Mmax=(0.125*(ωtot+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	6796.6 lbs	Vmax=(\u03c6tot+1.2*\u03c6jst)*(L/2)
Depth Weight	d	24 in	
Joist Selection		4KCS3	
	+		
Weight	ωjst	12.5 lbs/ft	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)		720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>MmaxOK
Shear Capacity (Table)	T	7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
20.000	14-22-2		
Maximum Deflection	Δ	1.3771 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}2900000^{*}I^{*}12)$
		L/ 296	∆>L/240 ОК
Number of Joists	n	1	
Cost per Pound	С	\$0.85	
Total Cost	C	\$361.25	C=wjst*L*c*n

Joist Design Selection

Tributary Width		6.67 ft		
Span	L	30.00 ft		
Total Load	P	59.20 psf		
Linear Load	Wtot	394.67 lbs/ft	wtot=LP	
			ωtot<550 lbs/ft OK	
Maximum Moment	Mmax	551.43 kip-in	Mmax=(0.125*(wtot+1.2*Wjst)*L^2*12)/10	000
Maximum Shear	Vmax	6127.0 lbs	Vmax=(\u03c6tet+1.2*\u03c6jst)*(L/2)	
Weight	ωjst	11.5 lbs/ft		
	d	20 in		
Depth Weight	1 1			
Moment of Inertia	I	205 in^4		
Moment Capacity (Table)		595 kip-in		
Moment Capacity (LRFD)	Mall	883.6 kip-in	Mall>Mmax OK	
Shear Capacity (Table)		6000 lbs		
Shear Capacity (LRFD)	Vall	9018.0 lbs	Vall>Vmax OK	
Maximum Deflection		1.2522 in	∆=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*290	00000*1*12)
		L/ 287	∆>L/240 OK	
				2010 - 11 - 11 - 11 - 11 - 11 - 11 - 11
Number of Joists	n	2		
Cost per Pound	C	\$0.85		
Total Cost			$C = \omega_{jst} L^* c^* n$	

Ţ

Joist Design Select.

Tributary Width		6.67 ft		
	+			
Span	+ P	27.58 ft		
Total Load		59.20 psf		
Linear Load	ωtot	394.67 lbs/ft	ωtot=LP	
			ωtot<550 lbs/ft	ok
Maximum Moment	Mmax	463.43 kip-in		Wtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	5600.3 lbs	Vmax=(wtot+1.2)	*ωjst)*(L/2)
Depth	d	20 in	a Chicolail and	
Weight	ωjst	9.5 lbs/ft		
Moment of Inertia	I	159 in^4	2011-0254 Bits	
Moment Capacity (Table)		442 kip-in		
Moment Capacity (LRFD)	Mall	656.4 kip-in	Mall>Mmax	OK
Shear Capacity (Table)		5200 lbs		
Shear Capacity (LRFD)	Vall	7815.6 lbs	Vall>Vmax	OK
Maximum Deflection	Δ	1.1470 in	Δ=(5*(ωtot+1.2*α	Wjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 289	∆>L/240	OK
Number of Joists		1		
Number of Joists Cost per Pound	n c	1 \$0.85		

Joist Design Selection

Joist Number 84			
Tributary Width	TT	5.92 ft	
Span	L	34.33 ft	
Total Load	Р	59.20 psf	
Linear Load	Wtot	350.27 lbs/ft	whot=LP
			wtot<550 lbs/ft OK
Maximum Moment	Mmax	645.85 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	6270.4 lbs	$Vmax = (\omega_{tot} + 1.2^* \omega_{jst})^* (L/2)$
Weight	ωjst	12.5 lbs/ft	
Joist Selection		4KCS3	
Depth	d	24 in	
Moment of Inertia	I	301 in^4	
Moment Capacity (Table)		720 kip-in	
Moment Capacity (LRFD)	Mall	1069.2 kip-in	Mall>Mmax OK
Shear Capacity (Table)		7200 lbs	
Shear Capacity (LRFD)	Vall	10821.6 lbs	Vall>Vmax OK
Maximum Deflection		1,3083 in	$\Delta = (5^{*}(\omega_{tot}+1.2^{*}\omega_{jst})^{*}(L^{*}12)^{4})/(384^{*}29000000^{*}I^{*}12)$
		L/ 315	∆>L/240 OK
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$364.79	C=wjst*L*c*n

J

Joist Design Selection

Joist Number 85			
Tributary Width		3.75 ft	
Span		34.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	222.00 lbs/ft	wtot=LP
	<u> </u>		ωtot<550 lbs/ft OK
Maximum Moment	Mmax	412.69 kip-in	Mmax=(0.125*(\u00fct+1.2*wjst)*L^2*12)/1000
Maximum Shear	Vmax	4006.7 lbs	$Vmax = (\omega_{tot} + 1.2^* \omega_{jst})^* (L/2)$
Depth	d	20 in	
Joist Selection	2	OKCS2	
Dooth		20 in	
Weight	ωjst	9.5 lbs/ft	
Moment of Inertia	I	159 in^4	
Moment Capacity (Table)		442 kip-in	
Moment Capacity (LRFD)	Mall	656.4 kip-in	Mall>Mmax OK
Shear Capacity (Table)		5200 lbs	Provide and a second se
Shear Capacity (LRFD)	Vall	7815.6 lbs	Vall>Vmax OK
Maximum Deflection		1.5825 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*I*12)
		L/ 260	∆>L/240 OK
			I Foregoing and the second second
Number of Joists	n	1	
Cost per Pound	C	\$0.85	
Total Cost	C	\$277.24	C=\u03bbist*L*c*n

Joist Design Selection

St. Michael's Association for Special Education New Facility Design

Joist Number 86			
Tributary Width		7.08 ft	
Span	L	19.33 ft	
Total Load	P	59.20 psf	
Linear Load	Wtot	419.33 lbs/ft	ω _{tot} =LP
			ωtot<550 lbs/ft OK
Maximum Moment	Mmax	239.48 kip-in	Mmax=(0.125*(ωtot+1.2*Wjst)*L^2*12)/1000
Maximum Shear	Vmax	4129.0 lbs	Vmax=(ωtot+1.2*ωjst)*(L/2)
· · · · · · · · · · · · · · · · · · ·			
Joist Selection		14KCS1	
Depth	d	14 in	
Weight	ωjst	6.5 lbs/ft	
Moment of Inertia	I	59 in^4	
Moment Capacity (Table)		247 kip-in	
Moment Capacity (LRFD)	Mall	366.8 kip-in	Mall>Mmax OK
Shear Capacity (Table)		2900 lbs	
Shear Capacity (LRFD)	Vall	4358.7 lbs	Vall>Vmax OK
Maximum Deflection		0.7847 in	Δ=(5*(ωtot+1.2*ωjst)*(L*12)^4)/(384*29000000*±*12)
		L/ 296	∆>L/240 OK
Number of Joists	n	54	
Cost per Pound	С	\$0.85	
Total Cost	C	\$5,768.10	C=ω _{jst} *L*c*n

STANDARD LOAD TABLE/LONGSPAN STEEL JOISTS, LH-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

and a second	2.252																			
Joist Designation	Approx. Wt. in Lbs. per	Depth in Inches	in	LOAD* Lbs. ween						C	LEAR	SPAN	I IN FE	ET						
E.	Linear Ft.	menes		-32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
24LH03	11	24		500	342 235	339 226	336	323	307 188	293 175	279 162	267 152	255 141	244	234 124	224	215 109	207	199	191 90
24LH04	12	24	14	100	419 288	398 265	379	360 227	343 210	327	312	298 169	285 158	273	262 138	251 130	241 122	231	222 107	214 101
24LH05	13	24	15	100	449 308	446 297	440 285	419 264	399 244	380 226	363 210	347	331 182	317	304	291 150	280	269	258	248 117
24LH06	16	24	20	300	604 411	579 382	555 356	530 331	504 306	480 284	457 263	437 245	417 228	399 211	381 197	364 184	348 172	334 161	320 152	307 142
24LH07	17	24	22	300	665 452	638 421	613	588 367	565 343	541 320	516 297	491 276	468 257	446 239	426 223	407 208	389 195	373 182	357	343 161
24LH08	18	24	23	800	707 480	677 447	393 649 416	622	597	572 338	545 314	520 292	497 272	475	455 238	435 222	417 208	400	384 184	369 173
24LH09	21	24	28	000	832 562	808 530	785	388 764 460	362 731 424	696 393	663 363	632 337	602 313	574	548 272	524 254	501 238	480	460 209	441
24LH10	23	24	29	600	882 596	856 559	501 832 528	809 500	424 788 474	768	737 406	702 378	668	292 637 326	608 304	582 285	556 266	533 249	511 234	490 220
24LH11	25	24	31	200	927 624	900 588	528 875 555	851 525	829 498	807 472	787	768	351 734 388	701 361	671 337	642 315	616 294	590 276	567 259	544 243
			33	-40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56
28LH05	13	28	14	000	337 219	323 205	310 192	297 180	286	275 159	265	255 142	245	237 126	228	220	213	206	199	193 92
28LH06	16	28	18	600	448	429 270	412 253	395 238	379	364 209	350 197	337	324 175	313	301	291 148	281	271	262	253 120
28LH07	17	28	21	000	505 326	484	464	445	427	410 236	394 222	379 209	365	352 186	339 176	327	316	305 150	295	285 135
28LH08	18	28	22	500	540	517	496	475	456	438	420	403	387	371	357	344	331	319;	308	297
28LH09	21	28	27	700	348 667	325 639	305 612	285	268	252 540 309	236	222	209	196 463	185	175	165	156	1'48 387	140 374
28LH10	23	28	30	300	428	400	375 679	351 651	329 625	600	291 576	274	258	243 513	228	216	204	193	183	173 415
28LH11	25	28	32	500	466	439	414	388	364 682	342 655	322 629	303	285	269	255 540	241	228	215	204	193 453
28LH12	27	28	35	5700	498 857	475	448 818	423 800	397 782	373	351 737	331 709	312 682	294 656	27P 632	263	249	236 566 270	223	212 527
28LH13	30	28	37	200	545 895	520 874	496 854	476 835	454 816	435	408	383	361 751	340	321 694	303	285	620	256	243
			38-46	47-48	49	543 50	518	495	472	452	433	415	396	373 58	352 59	332 60	314 61	297	281	266
32LH06	14	32	16700	16700	338 211	326 199	315	304	294 169	284	275	266	257	249 131	242	234 119	227	220	214	208 99
32LH07	16	32	18800	18800	379	366	353	341	329	318	308 170	298 162	288 154	279 146	271	262	254	247	240	233
32LH08	17	32	20400	20400	411 255	397	383	369	357	345 194	333	322	312 167	302 159	293 151	284	127 275 137	121 267 131	259	111 252 120
32LH09	21	32	25600	25600	516 319	498 302	480 285	463	447	432 243	418 230	404 219	391 208	379 198	367 189	356 180	345 172	335 164	325 157	315 149
32LH10	21	32	28300	28300	571 352	550 332	531 315	512 297	495	478	462 254	445	430	416	402 206	389 196	376 186	364 178	353 169	342 162
32LH11	24	32	31000	31000	625 385	602 363	580	560	541 308	522 292	505	488	473	458	443	429 216	416 206	403	390 187	378
32LH12	27	32	36400	36400	734	712	688 406	664 384	641 364	619 345	598 327	578 311	559 295	541 281	524 267	508 255	492 243	477 232	463 221	449 211
32LH13	30	32	40600	40600	817	801 480	785	771	742	715	690 376	666 354	643 336	621 319	600 304	581	562	544 262	527 249	511 238
32LH14	33	32	41800	41800	843 515	826	810	795 458	780	766	738	713	688 355	665 337	643 321	622 304	602 290	583	564 264	547 251
32LH15	35	32	43200	43200	870 532	853	837	821	805	791	776	763	750	725	701	678 338	656	635		597 279
			42-46	47-56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
36LH07	16	36	16800	16800	292	283	274	266	258	251	244	237	230	224	218	212	207	201	196 95	191
36LH08	18	36	18500	18500	177.	168	160	153 293	146 284	140 276	134 268	128 260	122 253	246	112 239	107	227	221 109	215	209
36LH09	21	36	23700	23700	194 411	185 398	176	168 374	160 363	153	146	140 333	134 323	128	123	118 297	113 289	282	104	100
36LH10	21	36	26100	26100	247 454	235	224 426	214 413	204 401	195 389	186 378	179 367	171 357	163	157 338 173	150 328	144 320 159	138	133	127 295
36LH11	23	36	28500	28500	273 495	260 480	248 465	236 451	225 438	215 425	206	197 401	188 389 205	180 378	173 368 188	165 358	348	1 339	146	140
36LH12	25	36	34100	34100	297 593	283 575	269	257 540	246 523	234 508	224	478	464	196 450	188 437 222	180 424	412	166	389	153 378
36LH13	30	36	40100	40100	354 697	338	322	307	292	279	267	255	243 546	232	516	1 502	204	195	187	451
36LH14	36	36	44200	44200	415 768	395 755	376	359 706	342 683	327 661	312	298	285	273	262 567 283	251 551	240	231	222	213
36LH15	36	36	46600	46600	456 809	434	412	392 769	373	356	339 698	323	309	295	618	1 600	535 259 583	247 567	237	492 228 536
					480	464	448	434	413	394	375	35B	342	327	312	299	583 286	274	263	536 252

RAM Steel V6.2 Gravity Beam Design Takeoff Integrated Project Services

DataBase: temp 02/26/01 12:10:03 Building Code: BOCA Steel Code: ASD 9th Ed.

Floor Type: Overhang Story Level 1

Steel Grade: 50

Y

ý

SIZE	#	LENGTH (ft)	WEIGHT (lbs)
WSX10	25	309.00	3112.32
W10X12	5	96.33	1160.42
W12X14	5	86.67	1226.82
		• _	
	35		5499.56

€.,

Total Number of Studs = 0

RAM Steel V6.2 Gravity Beam Design Summary --Integrated Project Services

DataBase: temp Building Code: BOCA 02/26/01 12:23:41 Steel Code: ASD 9th Ed.

Floor Type: Overhang

Beam #	Length	+M	-м	Seff	Fy	Beam Size	Studs
	ft	kip-ft	kip-ft	in3	ksī		
1	14.50	14.3	0. 0	7.8	50. 0	W8X10	
6	19.17	10.3	0.0	7.8	50 .0	. W9X10	
66	19.17	18.3	0.0	14.9	50.0	W12X14	
9	19,17	9.7	0.0	7.8	50.0	W8X10	
2	14,50	27.6	0.0	14.9	50.0	W12X14	
7	19.00	10.1	0.0	7.8	50.0	WBX10	
65		18.0	0.0	10,9	50.0	W10X12	•
10	19.00	9.5	0.0	7.B	50.0	W8X10	
. 3	14.50	27.8	0.0	14.9	50.0	W12X14	
9	19.50	10.7	0.0	10.9	50.0	W10X12	
64	19.50	19.0	0.0	14.9	50.0	• W12X14	
11	19,50	10.0	0.0	7.8	50.0	W8X10	
4	7,50	0.0	0.0	7.8	50,0	W8X10	
5	7.00	0.0	0.0	7.8	50,0	W8X10	
18	15.00	5.9	0.0	7.8	50.0	W8X10	
24	15.00	5.9	0. 0	7.8	50.0	W8X10	
12	7.00	0.0	0.0	7.8	50.0	W8X10	
19	15,00	5.9	0.0	7.8	50.0	W8X10	
A 25	15.00	5.9	0.0	7.8	50.0	W8X10	
' 13	7.00	0.0	0.0	7.8	50.0	W8X10	
20	15.00	5,9	0.0	7.8	50.0	W8X10	
26	15.00		0.0	7.8	50.0	W6X10	
14	7.00		0.0	7.8	50.0	W8X10	
21	15.00		0.0	7.8		W8X10	
27	15.00		0.0	7.8	50,0	W8X10	
15	7.00		0.0	7.8		W8X10	
22	15.00			7.8		W8X10	
28	15,00		0.0	7.8	50.0	. W8X10	
16	7.00			7.8	50.0	W8X10	
· 23	15.00			7.8	50.0	W8X10	
29	15.00			7.8	50.0	, W8X10	
17	7.00			7.8	50.0	W8X10	
50	16.00			7.8	50.0	. W8X10	
48	16.00			.7.8	50.0	W6X10	
49	7.00	0.0	0.0	7.8		W8X10	

* after Size denotes beam failed stress/capacity criteria. # after Size denotes beam failed deflection criteria, u after Size denotes this size has been assigned by the User.

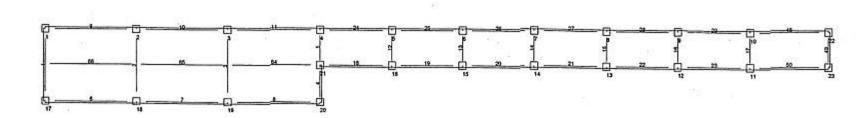
۰.

:

RAM Steel V6.2 - Column Load Summary Page 2 Integrated Project Services

DataBase: temp 02/26/01 12:23:41 Building Code: BOCA Steel Code: ASD 9th Ed. LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang59.002.30.50.90.02.83.7 Column Line 6 - B LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang159.002.30.50.90.02.83.7 Column Line 6 - C LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang69.002.30.50.90.02.83.7 Column Line 7 - B LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang149.002.30.50.90.02.83.7 Column Line 7 - C LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang79.002.30.50.90.02.83.7 Column Line 8 - B LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang139.002.30.50.90.02.83.7 Column Line 8 - C LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang89.002.30.50.90.02.83.7 Column Line 9 - B LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang129.002.30.50.90.02.83.7 Level 3.7 Column Line 9 - C LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang99.002.30.50.90.02.83.7 Column Line 10 - B LevelCol# HeightDeadSelf+Live-LiveMinTotMaxTotOverhang119.002.40.50.90.02.93.8 3.8 Column Line 10 - C Level Col# Height Dead Self +Live -Live MinTot MaxTot 0.5 10 9.00 2.4 Overhang 0.9 0.0 2.9 3.8

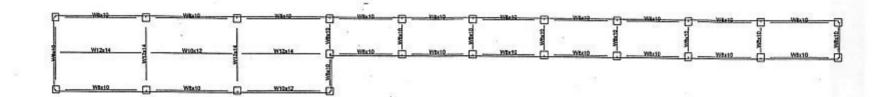
Column Line 11 - B


RAM Steel V6.2 - Column Load Summary Integrated Project Services

DataBase: t Building Co		A			12:23:41 ASD 9th 1	Ed.			
Level Overhang	Col# 23	Height 9.00	Dead 1.3	Self 0.5	+Live 0.5	-Live 0.0	MinTot 1.8	MaxTot 2.3	
Column Line	11 - C			*	*				
Level Overhang	Col# 22	Height 9.00	Dead 1.3	Self 0.5	+Live	-Live 0.0	MinTot 1.8	MaxTot	

Page 3

RAM Steel V6.2 Floor Map DataBase: temp Building Code: BOCA Floor Type: Overhang


02/26/01 12:23:41

RAM Steel V6.2 Floor Map DataBase: temp Building Code: BOCA Floor Type: Overhang

02/26/01 12:23:41

x

.

HVAC Appendix

List of Sections:

A. Design Conditions

• •

- **B.** Design Criteria
- C. System Alternatives
- **D.** Envelope Construction
- E. Load Calculations (Summary)
- F. System Design
- G. Economics
- H. Energy Optimization Strategies
- I. Case Studies (Summary)
- K. Energy Analysis
- L. Equipment Cut Sheets
- M. System Details
- N. Case Studies (Articles)
- O. Load Calculations (Trace 700 Tables)
- P. References

HVAC Appendix

A. Design Conditions

	1 1			W	inter			
Lat.	Long.	Elev. (ft)	Std P (psia)	Heating DB (F)	Extreme Wind Speed (mph)	Cooling DB (F)	Cooling WB (F)	Range of DB (F)
				99%	2.5%	1%	1%	.,
35.52	108.78	6470	11.57	5	20	87	56	30.6

Table 1: Exterior Design Conditions (Source: 1997 ASHRAE Fundamentals Handbook)

Table 1 displays the outdoor design conditions for Gallup, New Mexico, which, at a distance of approximately 25 miles away, is the closest major city to St. Michaels.

Interior Design Temperatures: Summer: dry bulb temperature = 78 F, wet bulb temperature = 65 F Winter: 68 F

These interior design conditions were selected based on ASHRAE design standards to ensure comfortable conditions while reducing energy use.

B. Design Criteria

As was mentioned earlier in this report, the design goals for the HVAC system are as follows:

- Energy efficiency
- · Low costs (operational/maintenance as well as initial)
- Comfortable temperature levels
- Adequate moisture content of air
- Air cleanliness
- Adequate supply of fresh outdoor air
- Proper air distribution and circulation
- · No noise intrusion during system operation

C. System Alternatives

- Thermal Ice Storage
- Radiant Panel Heating and Cooling
- Fan Coil Units
- Rooftop PTACs & Baseboard Heating
- Water Source Heat Pumps with Ground Loop Heat Exchanger

Thermal ice storage system

System Description: Ice storage systems function by using manufactured ice to satisfy the building cooling loads. Chillers are used to make the ice at night when electricity rates are

lowest, and the ice is stored in modular ice tanks. The chillers are turned off during the day when utility rates are high, and the ice is used to cool a water-glycol solution which is pumped to the cooling coils of the air-handling equipment.

System Advantages: This system can result in decreased energy expense. The system is also relatively easy to install and requires limited maintenance, since the tanks are factory assembled and contain no moving parts.

System Disadvantages: The primary justification for this type of system is the on-peak versus off-peak utility rate of electricity. As long as the charge for electricity is much less at night during the off-peak time period, than there will be significant savings in operational costs. However, according to the Navajo Tribal Utility Authority (NTUA), there is no difference in the utility rates during the night versus during the day. The NTUA does not manufacture the electricity distributed across the Navajo Nation. Instead, the electricity is purchased from an outside source and then distributed. Also, while the tanks themselves require limited maintenance, the chillers required to generate the ice would be huge (over 100 tons of cooling required), and would be maintenance intensive. Finally, while the system can be very effective during the cooling season, it is useless during the winter months when heating is required.

Radiant heating and cooling panels

System Description: A radiant panel system is composed of panels mounted on the floor, walls, or ceiling. These panels are temperature controlled using some medium to deliver heat such as water, air, or electric current.

System Advantages: This type of system can potentially produce optimum comfort because the heat is radiated directly to the occupied space. The amount of supply air is usually dependant on the requirement for ventilation and humidification only, meaning the air handling units are small compared to other system types, and there is less concern of draftiness. No mechanical equipment is placed in the occupied space, which is an enormous advantage for projects where space is at a premium. The system produces very little if any noise intrusion to the conditioned space.

System Disadvantages: The time required for the space to reach a comfortable temperature level (lag-time) can be very lengthy for this type of system. Also, the response time can be slow as well. Meaning, if conditions fluctuate throughout the day, this system may not be capable of producing a thermally comfortable environment. Improper installation can result in non-uniform surface temperatures and insufficient heating capacity.

Fan coil units

System Description: Fan coil units provide cooling and heating by forcing air across a coil and channeling it to the space to be conditioned. The air then returns back to the unit, mixes with outdoor air, passes across the coil, and again is redistributed to the space. The units rely on chilled or hot water, and therefore separate components (i.e. condensers for chilled water; boiler(s) for hot water) are also required with the system.

System Advantages: This type of system requires little space for ductwork. Individual temperature control can be achieved using fan coil units. Also, the units can provide heat using low-temperature water, which is an attractive feature if the use of solar energy or heat recovery refrigeration equipment is incorporated in the design.

System Disadvantages: Fan coil units are much more maintenance intensive than other types of HVAC systems. Also, the maintenance usually must occur in the conditioned space, resulting in a disturbance to those occupying the room. The filters used in fan coil units are generally small and inefficient. Finally, fan coil units are not very energy efficient and they can result in high levels of noise intrusion.

Packaged rooftop air-conditioning units with baseboard heating

System Description: A packaged rooftop unit has the compressor and condenser already built into it, thus eliminating the need for a separate cooling tower or chiller. The unit brings in outdoor air and mixes it with return air, filters it, and then passes the air across a heating or cooling coil before it is channeled to the conditioned spaces. A boiler would be needed to supply hot water to the hot water coils in the rooftop units, and also supply hot water to the baseboard heaters. The baseboard heaters would be used to account for the heat loss at the perimeter of all the spaces through the exterior walls.

System Advantages: Packaged rooftop units are generally very easy to install, as the units are factory assembled and arrive on site ready to operate. The existing facility at St. Michaels makes use of an air-handling unit for the solar building, so there is a history of use of this type of system at the site. In addition, electrical baseboard heating is common throughout the existing campus, which again demonstrates that the system can be implemented at this facility.

System Disadvantages: This type of system is fairly maintenance intensive and expensive to install and operate.

Ground source heat pump

System Description: A ground source heat pump utilizes the earth as both a source of heat during the cooling stage, and as a place to reject heat during the cooling season. The components of the system are a series of underground, plastic piping channeled in either a vertical or horizontal configuration. The buried pipes contain a water/glycol solution or brine. This solution is used to transfer heat either to or from the refrigerant in the water-to-refrigerant heat exchanger. The refrigerant is then piped to the various terminal heat pump units within the spaces to be conditioned.

System Advantages: This system can be very energy efficient, resulting in lower operational costs. There are limited maintenance requirements since a boiler and a chiller are not required. There is very little ductwork incorporated in the system. The terminal units can be fit for outside air intakes, which would negate the requirement of a separate ventilation system.

System Disadvantages: This system, due to the amount of digging and/or trenching involved, can be very expensive to install. Also, if not properly designed, the system will not perform as expected, which is true for any HVAC system.

	Thermal Ice Storage	Radiant Panels	Fan Coil Units	PTACs & Baseboard	GSHP
Energy Efficiency	•	•			•
Initial Cost			•		
Maintenance		•			•
Ind. Temp. Control	•	•	•	•	•
Humidity Control	•		•	•	•
Ventilation		181	•	•	•
Air Filtering	•		•	•	
Air Distribution	•		•	•	•
Noise Intrusion	•	•		•	•
Heating Capability			•	•	•
Cooling Capability	•	8.	•	•	•

Table 2: HVAC System-Design Criteria Matrix

Table 2 displays each system alternative and whether or not certain parameters are satisfied by the system. The matrix clearly indicates that the ground source heat pump system is capable of satisfying all of the important design considerations. The only major drawback of the system is the increased cost of installation.

D. Envelope Construction

The building envelope plays a pivotal role in terms of the heat gain/loss in a building. Of particular concern is the amount of glazing or window area on the exterior facades of the building. Typically, the largest cooling loads are generated via solar heat gain through the windows. Therefore, from an energy saving standpoint, the following window area distribution was established:

north facade: max 50% window area w/respect to wall south facade: max 20% window area w/respect to wall east facade: max 40% window area w/respect to wall west facade: max 30% window area w/respect to wall

The north façade typically receives the least exposure to direct sunlight, which is a maximum of 50% window area with respect to the wall area was allowed on the north side. Conversely, the south side of a building typically receives the greatest amount of exposure to the sun. Thus, a maximum of 20% window area with respect to the wall area on the south side was allotted. The

glazing for the east, west, and south facades will be a clear, triple-coated, ¼ inch glass, and for the north façade the glazing will be clear, double-coated ¼ inch glass. Since it was determined that tinted windows was not a desirable option at the school, a coated glazing was selected in order to provide high resistance to heat transfer as well as help reduce the solar heat gain during the summer.

In terms of the rest of the building envelope construction, their heat transfer coefficients are as follows:

Wall construction: $U = 0.022982 \text{ BTU/hr-ft}^2\text{-F}$ Roof construction: $U = 0.04684 \text{ BTU/hr-ft}^2\text{-F}$ Floor construction: $U = 0.143336 \text{ BTU/hr-ft}^2\text{-F}$

Refer to Section 'M' of this appendix for the envelope construction diagrams.

E. Load Calculations

The values presented in this section for heating and cooling loads were obtained using Trace Load 700, a building load-calculating software produced by Trane. In the program, the site of the building is identified, which allows the software to utilize the proper weather characteristics of the desired location; the HVAC system is specified and modeled; and each room in the building is modeled according to room dimensions, envelope construction, number of occupants, level of activity, schedule of occupancy, and lighting and other miscellaneous equipment types and usage. Refer to the Trace Load 700 tables in Section 'O' of this appendix for the results generated by the software. Below is a summary of the peak building loads and along with the peak loads of some spaces.

	Cooling (tons)	Heating (MBh)
Peak Building Loads:	110	586.2
Average Classroom (11 total):	4.8	30.2
Cafeteria:	11.0	58.2
Kitchen:	2.0	11.3
Average Physical Therapy (2 total):	3.0	19.4
Administration Area:	5.0	25.0
Conference Room (3 total):	2.0	8.8
Macramé Room:	2.0	13.6
Nurse's Office:	2.0	17.5
Pottery Room:	3.3	19.2
Average Office (4 total):	1.5	4.3

As is usually the case in warm climates such as Arizona and New Mexico, the building peak cooling load of 110 tons (1,320 MBh) is more than twice the peak heating load (586.2 MBh). Therefore, the HVAC system must be sized to accommodate the cooling load, with the assumption being that, as long as the cooling load is larger than the heating load, a system sized for the peak cooling load will easily be able to offset the heating load.

F. System Design

It has been determined that the system best suited for the new multi-purpose facility at St. Michaels is a hybrid HVAC system consisting of a ground source heat pump system and

packaged rooftop makeup air units. Refer to Section 'M' in this appendix for a ground source heat pump system schematic.

Ground Source Heat Exchanger

The type of soil at the site can be a critical factor in determining whether or not a ground loop system is a viable option. Some of the more important characteristics in terms of this type of system are soil temperature, moisture content, thermal conductivity/resistance, and soil and rock hardness. The following soil characteristics exist at the site of St. Michaels:

Soil classification:	moist, clayey sand
Thermal conductivity:	0.8 - 1.2 BTU/hr-ft-°F
Thermal resistance:	1.25 - 0.833 hr-ft-°F/BTU
Subsurface soil temperature:	- 59 °F

The required size of the underground heat exchanger can be approximated based on the above soil characteristics, the outside design conditions, and the peak cooling and heating loads of the building. GeoDesigner 3.0, produced by ClimateMaster, is a software program used to design ground source heat pump systems. Though it is intended for use in residential applications, it was determined that this software would be satisfactory for this project. The following results were obtained using GeoDesigner 3.0:

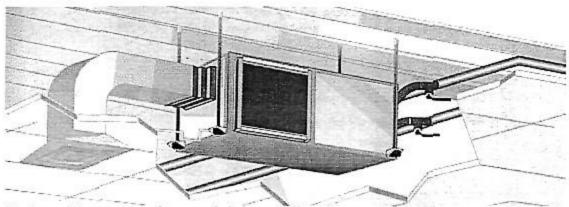
Required bore length = 36,000 ft Selected bore depth = 300 ft/bore Selected pipe diameter = 1 in

Typical requirements for bore lengths for ground source heat pump systems ranges from 125 ft/ton for cold climates to 300 ft/ton for warm climates. Based on the peak cooling load of 110 tons, and the calculated required bore length of 36,000 ft, that results in a bore length of 327.3 ft/ton. Therefore, since it exceeds the typical value for a warm climate, it can be said that our initial calculation for required bore length is a conservative estimate. The error probably results due to the fact that the intended use of the GeoDesigner software is for residential applications, and not large commercial buildings such as the one we are designing. The load patterns seen in a commercial building are more complex and varied compared to the loads in a residential building. Once the bore length have been determined, the number of bores required along with the surface area required for the ground loop field can be determined.

120 boreholes, spaced on 20 foot centers 12 column by 10 row layout Total surface area of ground loop field = $48,000 \text{ ft}^2 = 1.1 \text{ acre}$

48,000 ft² might seem like a great deal of surface area, and actually it would be difficult to provide that much area if our site was located in an urban setting. However, such is not the case, and providing the needed area for the ground loop field should not be a problem. The proposed location of the ground loop is directly beneath the new proposed parking lot to the south of the proposed building. There are no hazards or concerns associated with locating the pipes beneath the parking lot. If needed, the loop field could be buried directly beneath the building without cause for concern.

The fluid flowing through the ground loop piping will be a brine solution consisting of a glycol ethylene mixture. To promote high efficiency, the liquid flow rate for the system will be between 2.0 and 3.0 gpm/ton. Therefore, total flow rate thru the ground loop piping is equal to:

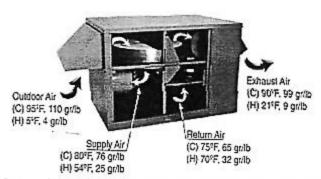

(3.0 gpm/ton) x (110 tons) = 330 gpm

And if we consider that there will be 120 bores, flow rate through each pipe is equal to:

(330 gpm)/(120 bores) = 2.75 gpm in each bore

At a flow rate of 330 gpm, and an equivalent head loss of over 300 feet, sizing of the pumps becomes a critical factor in the performance of the buried heat exchanger. In an effort to reduce the risk of drastically over-sizing the pump, the concept of using two pumps sized at less than peak capacity has been implemented. Therefore, while one 75 HP pump would be needed during peak conditions, we shall specify two 40 HP pumps instead. In doing so, one of the pumps will ordinarily function on a stand-by basis during moderate periods. One of the 40 HP pumps will function on a continuous basis to circulate the brine solution during periods of off-peak building loads. As the load approaches peak cooling requirements, the standby 40 HP pump will activate and help to generate the flow rate necessary for peak system operation. Using one 40 HP pump at close to maximum capacity during the majority of the time is more energy efficient than using a 75 HP pump at half of its capacity for the majority of the time. For additional information on our pump selection, refer to Section 'L' (selection made using Bell & Gossett pump selection web page).

Interior Units


Horizontal heat pump unit suspended above ceiling. (Source: 2000 Climatemaster Catalog)

The interior units for the HVAC system will consist of high efficiency, extended range water source heat pumps. There are a variety of different types of heat pump orientations available, including horizontal units, vertical units, vertical stacked units (more compact than typical vertical units), console units, large commercial units, and rooftop units. Our initial choice for the type of orientation to use consisted of the classroom console unit. To satisfy the average classroom load of approximately 5 tons, three 1.5-ton console units could be placed in each classroom. One might observe that this would only produce 4.5 tons of cooling and argue that this is not sufficient to ensure comfort. While this may seem like a valid argument, the designer for these types of system is encouraged to undersize the equipment in order to increase operating efficiency. An oversized unit will never function at full efficiency, and energy along with money

paid upfront will be wasted. However, due to the size of the classrooms (typical area equals 2600 ft²) and also the various divisions within each classroom, there were concerns regarding proper air distribution. Therefore it was decided that the water source heat pumps will be horizontal units located above the ceiling. The air will be supplied to the spaces to be conditioned via supply air ductwork and diffusers, and the air will be returned to the unit via return ductwork and return grilles. The major concern with this type of design is to ensure that there is enough space above the ceiling to locate the heat pump unit and corresponding ductwork, the makeup air unit and corresponding ductwork, as well as piping, conduit, structural members, etc. This should not be a problem for this particular project, however, due to the minimum 36" between the suspended ceiling and the roof construction throughout the building. Refer to Section 'L' for cut sheets and performance data of heat pumps we are specifying.

Estimated number of horizontal units: 40 Capacity range: 1-½ to 5 tons. Fluid flow rates: 4.5 – 15.0 GPM Entering Fluid Temperatures: Summer- 60°F - 75°F; Winter- 45°F – 60°F Air flow rates: 600 – 2000 CFM Expected Efficiencies: Cooling-EER = 14 - 16; Heating-COP = 3.8 - 4.5

Makeup Air Units

Rooftop makeup air unit. Source: Semco Product Catalog

Ventilation to all of the conditioned spaces is to be accomplished via rooftop makeup air units. Though it is possible to handle outside air requirements using the heat pump units, the decision to use rooftop units for ventilation came about for two primary reasons. First, by breaking out the outside air load from the total building load, the ground heat exchanger loop could be sized smaller, thus reducing initial expense. Also, the number of heat pump units utilized in the building would increase significantly in order to be able to handle the additional load brought on by conditioning the outside air, thus resulting in greater demand for maintenance. A better solution to the ventilation requirements is to locate several rooftop units for multiple zones throughout the building. The responsibility of the makeup air units will be to condition the incoming outside air and supply the required 20 CFM/person of outdoor air. Outside air volumes supplied to the spaces will be controlled via CO₂ monitors, which will allow the unit to supply the required amount of air based on room occupancy. The outside air will be supplied at a temperature of $80 \pm 5^{\circ}$ F all year round. The total number of makeup air units required for our building has been estimated to be around 10 units, each sized between 3000 and 5000 CFM. Refer to pages Section 'L' for cut sheets and performance data of rooftop units we are specifying.

G. Economics

Installation costs:

Drilling and Piping for Ground Loop:	\$250,000
Heat pumps, Rooftop Units, Ductwork, Pumps, etc.:	\$687,750
Total:	$$937,750 = $13.4/ft^2$

H. Energy Optimization Strategies

Energy Recovery Wheel in Makeup Air Units

The roof-mounted makeup air units will supply 100% outdoor air to the spaces within the building. Since the units are required to supply the ventilation air at 80 F, 50% RH on a yearround basis regardless of outside conditions, obviously these units can use up an exorbitant amount of energy, particularly during the heating season when the outside temperature may be less than 10 F and the air temperature has to be increased 70 F to meet satisfactory levels. However, there is a way to reduce the wasted energy associated with 100% outdoor air systems. The solution is to incorporate an energy recovery wheel within each of the units. The device works very much as the name suggests, recovering both sensible (temperature) and latent (moisture) energy from the return air and distributing it to the supply air.

Digital Control System

The purpose of the digital control system is to modulate various aspect of the HVAC system to ensure that there exists a comfortable environment within the building. Components of the system shall include thermostats (for monitoring temperature), humidistats (for monitoring humidity level), and CO_2 sensors (for monitoring occupancy levels via the amount of carbon dioxide in the air). These monitoring devices are connected to a central control panel which is also connected to a computer terminal. Based on the feedback from the various sensors, the system can send a signal to various components of the HVAC system (such as the heat pumps, air handing units, and end-suction pumps circulating the brine solution) to modulate airflow or fluid flow, as the case may be. The presence of this type of control system will allow for energy savings by eliminating the chance of excess cooling or heating, and also by shutting down the system when the school is not in operation or during times when certain spaces within the building are not being occupied.

Heat Pumps used to Preheat Domestic Water

One of the advantages in using a heat pump system to condition a building is the opportunity to use the units to heat the domestic hot water. Though a special heat pump unit is required to handle this task, it functions in the same manner as the water source heat pumps that are discussed earlier in this appendix. Heat energy is extracted from the ground loop, and is then transferred to the domestic water. Due to the rather large peak demand for this building (approximately 1400 gal/hr), the heat pumps would not be used to heat the domestic water

entirely. Instead, the heat pumps would be used to pre-heat the water and thus reduce the amount of energy used by the boiler to heat the water to the required temperature.

I. Case Studies

Throughout this term, much research was conducted on ground source heat pump systems. Of particular interest to our design team was gathering information which supported the notion of using the ground source heat pump technology for a commercial school building. In years past, the technology was used primarily in residential applications. However, in recent years as the understanding of how the system works has increased, along with its impressive performance, ground source heat pumps have gained recognition as a design solution for commercial buildings as well.

In this section, two case studies are presented for two schools. Daniel Boone High School, located in Washington County, Tennessee, is a 160,000 square foot facility with a cooling load of 300 tons. The HVAC system installed at the school consists of a closed loop, vertical ground source heat pump system. The loop field is comprised of 320 bores, each at a depth of 150 feet and containing ³/₄" polyethylene piping. The study discusses the many merits of the ground source heat pump system and clearly demonstrates the type of potential for success for this type of system. It also presents the idea of using variable flow pumping of the brine solution through the ground loop as well as to the units to reduce energy use. Refer to Section 'N' in this appendix for the case study article.

Paint Lick Elementary School is located in Garrard County, Kentucky. The building covers just under 40,000 square feet and has a cooling load of 120 tons. The loop field consists of a total of 144 bores ranging in depth from 163 feet deep to 188 feet deep. This installation served as a "pilot project," meaning that it was one of the first installations of this type for a commercial building in the state of Kentucky. The project was such a success that the school received an Engineering Excellence Award. Refer to Section 'N' in this appendix for the case study article.

These case studies are just two examples out of many that indicate how well ground source heat pumps can work in a commercial setting. It is our belief that the same type of results in terms of energy savings and system performance can be attained at St. Michaels.

K. Annual Energy Consumption

The operational cost of occupying and maintaining a school may sometimes be even more important than the up front cost of constructing the building. Many factors can influence the operational cost of a school, such as: the climate, the construction of the building envelope, and selection of an HVAC system to name a few. FBM has decided to model the school in Energy 10, a software that uses climatory data and complex equations to calculate annual energy usage.

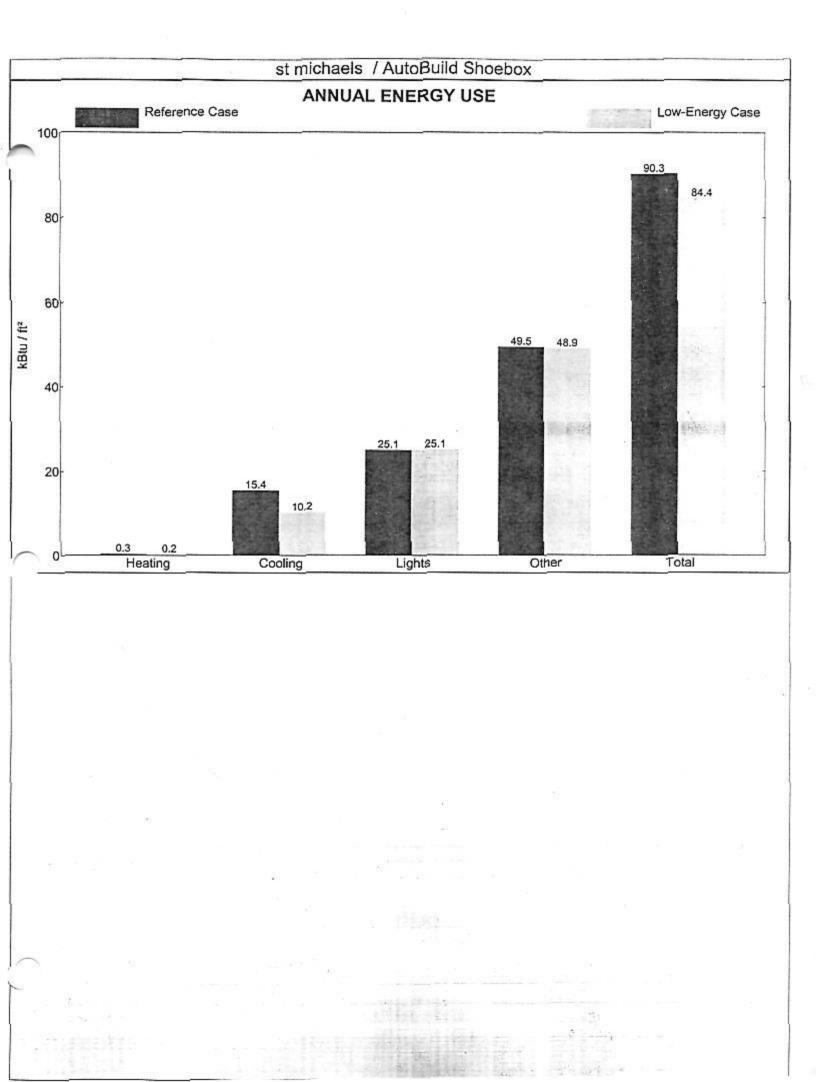
The first simulation compares our building with a traditional HVAC system to our building with a ground source heat pump. The traditional system picked is a PTAC heat pump with electric reheat backup. This system operates at a COP of 3.3 and an EER of 10. FBM is predicting a COP of 4.5 and an EER of 15. As you can see, the difference in the overall energy usage is mainly due to the energy saved in cooling (see variant 1), 5.2 kBtu/sqft.

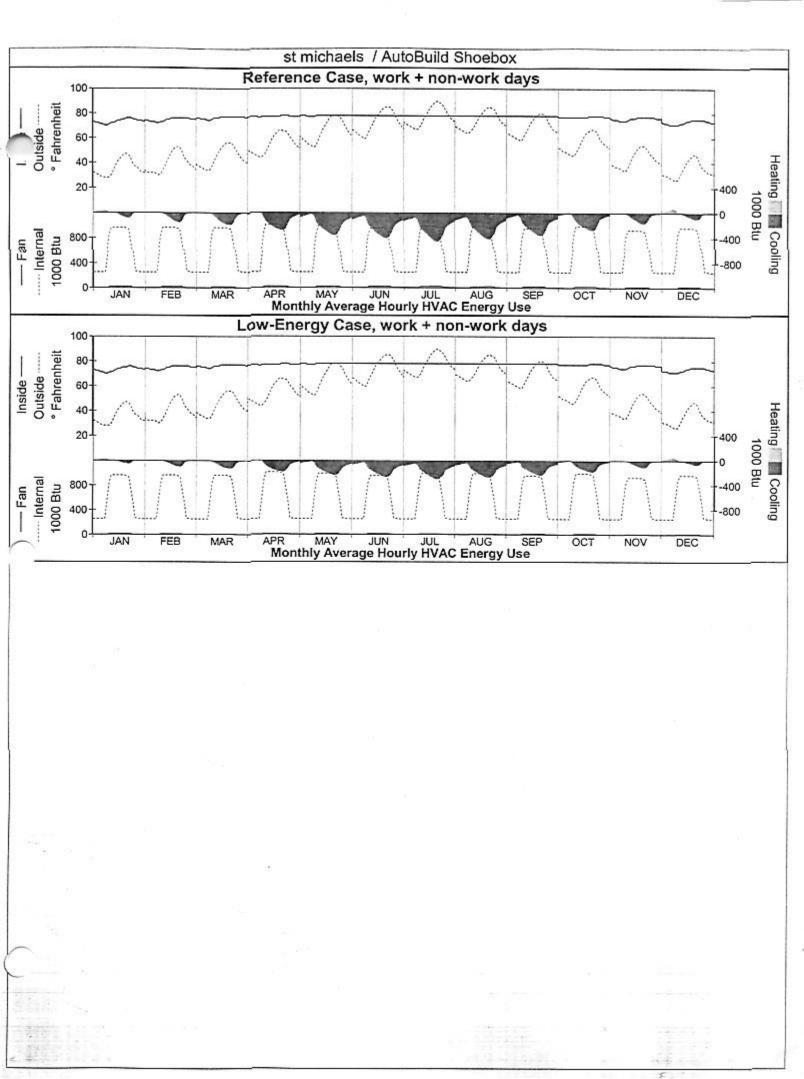
The second simulation is an attempt to tighten the building envelope and building systems. Better insulation was used. Energy efficient lights were installed. Air infiltration through the building envelope was reduced. Also the HVAC system was tuned. An economizer cycle was utilized in conjunction with heating and cooling setbacks. Duct leakage was kept to a minimum. Variant 5 shows a reduction of 6.3 kBtu/sqft for lights and 3.5 kBtu/sqft for cooling.

The third simulation incorporates shading as well as different glazing into St. Michael's. The U value for the window was reduced by half but, the energy for cooling only declined .3 kBtu /sq ft.

FBM has been concerned about the amount of daylight in each classroom. The fourth simulation increases the size of window from the standard 4'x6' to a 6'x6', a window area increase of 33%.

May 11, 2001 Weather file: albqrque.et1 Saved as X:\ENERGY10, Var. 1


Low-Energy Case 72000.0 515295.0 1080000.0 8.16 15322.1 0.030 steelstud 4, R=43.5 flat, r-19, R=21.0 Slab on Grade, Reff=73.0 4060 double, alum, U=0.70 None 371295 72000 72000 3360 34/37/26/43:0 double, U=0.49

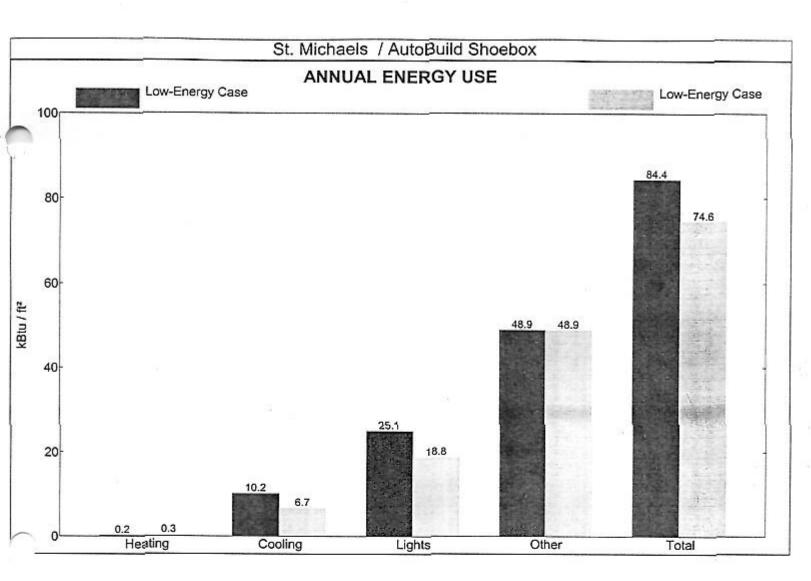

PTAC AA Heat Pump/ER Backup 1076/1499/1998 98537/0 68.0 °F, no setback 78.0 °F, no setup COP=4.5,EER=15.0 no/NA 0/0 2.00/0.05/0.36/3.00 none no ELA=2185.4

> 01-Jan to 31-Dec valid/NA 6078905 109389 NA 1781469 514483/14717 4664/214840/16241 4657/7 109756/906768 478.6 0/0/0 2394294/14074/7304

St. Michaels Energy-10 Summary Page Variant: AutoBuild Shoebox Comments:

Description: Reference Case r Area, ft2 72000.0 ourface Area, ft2 515295.0 Volume, ft3 1080000.0 Surface Area Ratio 8.16 Total Conduction UA, Btu/h-F 15322.1 Average U-value, Btu/hr-ft2-F 0.030 Wall Construction steelstud 4, R=43.5 Roof Construction flat, r-19, R=21.0 Floor type, insulation Slab on Grade, Reff=73.0 Window Construction 4060 double, alum, U=0.70 Window Shading None Wall total gross area, ft2 371295 Roof total gross area, ft2 72000 Ground total gross area, ft2 72000 Window total gross area, ft2 3360 Windows (N/E/S/W:Roof) 34/37/26/43:0 Glazing name double, U=0.49 Operating parameters for zone 1 HVAC system PTAC AA Heat Pump/ER Backup Rated Output (Heat/SCool/TCool),kBtuh 1068/1509/2012 Rated Air Flow/MOOA,cfm 98514/0 Heating thermostat 68.0 °F, no setback 78.0 °F, no setup Cooling thermostat Heat/cool performance COP=3.3.EER=10.0 Economizer?/type no/NA leaks/conduction losses, total % 0/0 reak Gains; IL,EL,HW,OT; W/ft2 2.00/0.05/0.36/3.00 Added mass? none Daylighting? no Infiltration, in2 ELA=2185.4 Results: (Energy cost: 0.400 \$/Therm, 0.054 \$/kWh, 2.470 \$/kW) Simulation dates 01-Jan to 31-Dec valid/NA Simulation status, Thermal/DL Energy use, kBtu 6499127 Energy cost, \$ 117400 Saved by daylighting, kWh NA Total Electric, kWh 1904618 Internal/External lights, kWh 514483/14717 Heating/Cooling/Fan, kWh 6436/325411/27048 Elec. Res./Heat Pump, kWh 6429/7 Hot water/Other, kWh 109756/906768 Peak Electric, kW 540.9 Fuel, hw/heat/total, kBtu 0/0/0 Emissions, CO2/SO2/NOx, lbs 2559806/15046/7809

St. Michaels Energy-10 Summary Page Variant: AutoBuild Shoebox Comments:


Description: Low-Energy Case or Arca, ft² 72000.0 Jace Area, ft² 515295.0 Volume, ft² 1080000.0 Surface Area Ratio 8.16 Total Conduction UA, Btu/h-F 15322,1 Average U-value, Btu/hr-ft2-F 0.030 Wall Construction steelstud 4, R=43,5 Roof Construction flat, r-19, R=21.0 Floor type, insulation Slab on Grade, Reff=73.0 Window Construction 4060 double, alum, U=0.70 Window Shading None Wall total gross area, ft² 371295 Roof total gross area, ft² 72000 Ground total gross area, ft² 72000 Window total gross area, ft² 3360 Windows (N/E/S/W:Roof) 34/37/26/43:0 Glazing name double, U=0.49 Operating parameters for zone 1 HVAC system PTAC AA Heat Pump/ER Backup Rated Output (Heat/SCool/TCool),kBtuh 1076/1499/1998 Rated Air Flow/MOOA,cfm 98537/0 68.0 °F, no setback Heating thermostat Cooling thermostat 78.0 °F, no setup Heat/cool performance COP=4.5,EER=15.0 Economizer?/type no/NA leaks/conduction losses, total % 0/0.k Gains; IL, EL, HW, OT; W/ft2 2.00/0.05/0.36/3.00 Added mass? none Daylighting? ъØ Infiltration, in2 ELA=2185.4 Results:

May 12, 2001 Weather file: alborque.et1 Saved as X:\ENERGY10, Var.+ S

Low-Energy Case 72000.0 **5**15295.0 1080000.0 8.16 15322.1 0.030 steelstud 4, R=43.5 flat, r-19, R=21.0 Slab on Grade, Reff=73.0 4060 double, alum, U=0.70 None 371295 72000 72000 3360 34/37/26/43:0 double, U=0.49 PTAC AA Heat Pump/ER Backup

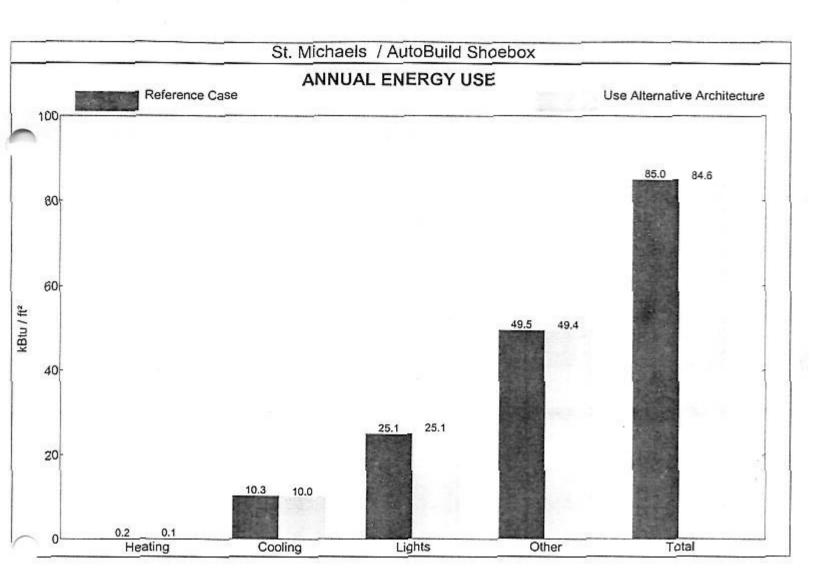
1264/1439/1919 92672/0 68.0 °F, setback to 63.0 °F 78.0 °F, setup to 83.0 °F COP=4.5,EER=15.0 ycs/fixed dry bulb, 60.0 °F 0/0 1.50/0.04/0.36/3.00 uone po ELA=1500.0

(Energy cost: 0.400 S/Therm, 0.054 S/kWh, 2.470 S/kW) Simulation dates 01-Jan to 31-Dec. 01-Jan to 31-Dec Simulation status, Thermal/DL valid/NA valid/NA Energy use, kBtu 5374008 6078905 Energy cost, \$ 109389 97488 Saved by daylighting, kWh NA NA Total Electric, kWh 1781469 1574893 Internal/External lights, kWh 514483/14717 385862/11038 Heating/Cooling/Fan, kWh 4664/214840/16241 6243/140955/14271 Elec. Res./Heat Pump, kWh 4657/7 5648/596 Hot water/Other, kWh 109756/906768 109756/906768 Peak Electric, kW 478.6 452.7 Fuel, hw/heat/total, kBtu 0/0/0 0/0/0 Emissions, CO2/SO2/NOx, lbs 2394294/14074/7304 2116656/12442/6457

.

St. Michaels Energy-10 Summary Page Variant: AutoBuild Shoebox Comments:

Description: Reference Case r Area, ft² 72000.0 Surface Area, ft² 515295.0 Volume, ft³ 1080000.0 Surface Area Ratio 8.16 Total Conduction UA, Bhi/h-F 15322.1 Average U-value, Btu/hr-ft2-F 0.030 Wall Construction steelstud 4, R=43.5 Roof Construction flat, r-19, R=21.0 Slab on Grade, Reff=73.0 Floor type, insulation Window Construction 4060 double, alum, U=0.70 Window Shading None Wall total gross area, ft² 371295 Roof total gross area, ft² 72000 Ground total gross area, ft² 72000 Window total gross area, ft² 3360 Windows (N/E/S/W:Roof) 34/37/26/43:0 Glazing name double, U=0.49


Operating parameters for zone 1 HVAC system PTAC AA Heat Pump/ER Backup Rated Output (Heat/SCool/TCool),kBtuh 1068/1509/2012 Rated Air Flow/MOOA.cfm 98514/0 Heating thermostat 68.0 °F, no setback Cooling thermostat 78.0 °F, no sctup Heat/cool performance COP=4.5,EER=15.0 Feonomizer?/type no/NA leaks/conduction losses, total % 0/0 r cak Gains; IL,EL,HW,OT; W/ft² 2.00/0.05/0.36/3.00 Added mass? none Daylighting? по Infiltration, in² ELA=2185.4

May 12, 2001 Weather file: albqrque.ct1 Saved as X:\ENERGY10, Var. 3

Use Alternative Architecture 72000.0 515295.0 1080000.0 8.16 14011.7 0.027steelstud 4, R=43.5 flat, r-19, R=21.0 Slab on Grade, Reff=73.0 4060 low-e al/b, U=0.31,etc 52 deg latitude 371295 72000 72000 3360 34/37/26/43:0 double low-e, U=0.26

PTAC AA Heat Pump/ER Backup 1002/1437/1917 93211/0 68.0 °F, no setback 78.0 °F, no setback 78.0 °F, no setup COP=4.5,EER=15.0 no/NA 0/0 2.00/0.05/0.36/3.00 none no ELA=2185.4

Results: (Energy cost: 0.400 \$/Therm, 0.05	4 \$/kWh, 2.470 \$/kW)
Simulation dates	01-Jan to 31-Dec	01-Jan 10 31-Dec
Simulation status, Thermal/D	DL valid/NA	valid/NA
Energy use, kBt#	6122522	6090450
Energy cost, 5	110190	109549
Saved by daylighting, kWb	NA	· NA
Total Electric, kWh	. 1794251	1784852
Internal/External lights, kW	Vh 514483/14717	514483/14717
Heating/Cooling/Fan, kWh	4539/216940/27048	2569/210959/25600
Elec. Res./Heat Pump, kW	b 4532/7	2565/4
Hot water/Other, kWh	109756/906768	. 109756/906768
Peak Electric, kW	482.6	476.3
Fuel, hw/heat/total, kBtu	0/0/0	0/0/0
Emissions, CO2/SO2/NOx, I	bs 2411473/14175/7356	2398841/14100/7318

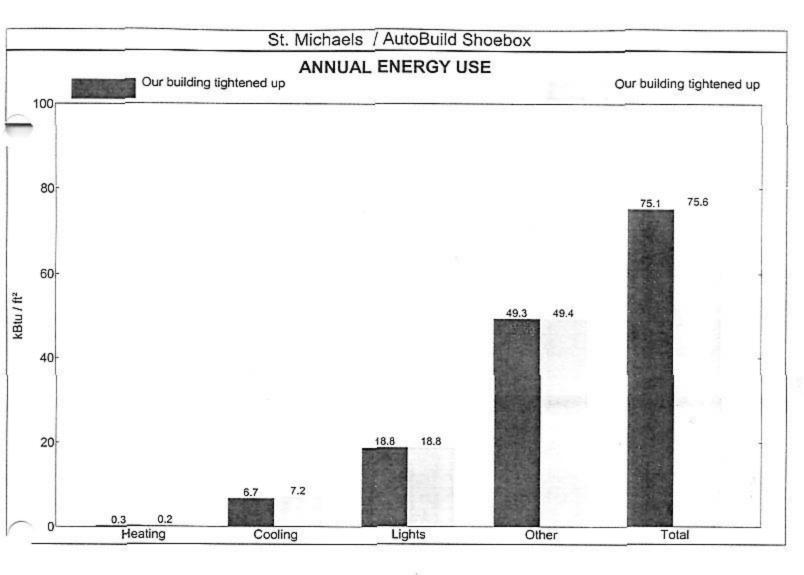
S.

May 12, 2001 Weather file: albqrque.et] Saved as X:\ENERGY10, Var. 2

Our building tightened up 72000.0 515295.0 1080000.0 8.16 15345.6 0.030 steelstud 4, R=43.5 flat, r-19, R=21.0 Slab on Grade, Reff=73.0 6060 double, low e, U=0.48,etc None 371295 72000 72000 5040 34/37/26/43:0 double, U=0.49

PTAC AA Heat Pump/ER Backup 1271/1512/2016 96710/0 68.0 °F, setback to 63.0 °F 78.0 °F, setup to 83.0 °F COP=4.5,EER=15.0 yes/fixed dry bulb, 60.0 °F 0/0 1.50/0.04/0.36/3.00 none no ELA=1500.0

ELA=1500.0 Results: (Energy cost: 0.400 \$/Therm, 0.054 \$/kWh, 2.470 \$/kW) 01-Jan to 31-Dec Simulation dates 01-Jan to 31-Dec Simulation status, Thermal/DL valid/NA valid/NA Energy use, kBtu 5410165 5444208 Energy cost, \$ 98153 98786 Saved by daylighting, kWh NA Total Electric, kWh 1585489 1595466 Internal/External lights, kWh 385862/11038 385862/11773 Heating/Cooling/Fan, kWh 6019/142281/23766 4713/151697/24896 Elec. Rcs./Heat Pump, kWh 5462/558 4353/360 109756/906768 Hot water/Other, kWh t 09756/906768 Peak Electric, kW 456.3 461.4 Fuel, hw/heat/total, kBtu 0/0/0 Emissions, CO2/SO2/NOx, lbs 2130898/12525/6501 2144306/12604/6541


St. Michaels Energy-10 Summary Page Variant: AutoBuild Shoebox Comments:

Description: Our building tightened up r Arca, ft² 72000.0 , face Area, ft2 515295.0 Valume, ft 0.0000801 Surface Atea Ratio 8.16 Total Conduction UA, Btu/h-F 15322.1 Average U-value, Btu/hr-ft2-F 0.030Wall Construction steelstud 4, R=43.5 flat, r-19, R=21.0 Roof Construction Floor type, insulation Slab on Grade, Reff=73.0 Window Construction 4060 double, alum, U=0.70 Window Shading None Wali total gross area, ft² 371295 Roof total gross area, ft² 72000 Ground total gross area, ft² 72000 Window total gross area, ft2 3360 Windows (N/E/S/W:Roof) 34/37/26/43:0 Glazing name double, U=0.49

Operating parameters for zone 1 HVAC system PTAC AA Heat Pump/ER Backup Rated Output (Heat/SCool/TCool),kBtuh 1255/1448/1931 Rated Air Flow/MOOA.cfm 92651/0 Heating thermostat 68.0 °F, setback to 63.0 °F Cooling thermostat 78.0 °F, setup to 83.0 °F Heat/cool performance COP=4.5,EER=15.0 yes/fixed dry buib, 60.0 °F Economizer?/type leaks/conduction losses, total % 0/0 Gains; iL,EL,HW,OT; W/ft² 1.50/0.04/0.36/3.00 Added mass? none Daylighting? no Infiltration, in²

NA

0/0/0

St. Michaels Energy-10 Summary Page Variant: AutoBuild Shoebox Comments:

Description: Reference Case ': Area, ft² 72000.0 Surface Area, ft2 515295.0 Volume, ft³ 1080000.0 Surface Area Ratio 8.16 Total Conduction UA, Btu/h-F 15322.1 Average U-value, Btu/hr-ft2-F 0.030 Wall Construction steelstud 4, R=43.5 Roof Construction flat, r-19, R=21.0 Floor type, insulation Slab on Grade, Reff=73.0 Window Construction 4060 double, alum. U≃0.70 Window Shading None Wall total gross area, ft² 371295 Roof total gross area, fl² 72000 Ground total gross area, ft² 72000 Window total gross area, ft² 3360 Windows (N/E/S/W:Roof) 34/37/26/43:0 Glazing name double, U=0.49 Operating parameters for zone 1 HVAC system PTAC AA Heat Pump/ER Backup 1065/1509/2012 Rated Output (Heat/SCool/TCool),kBtuh 98514/0 Rated Air Flow/MOOA,cfm Heating thermostat 68.0 °F, no setback Cooling thermostat 78.0 °F, no setup Heat/cool performance COP=4.5,EER=15.0 Economizer?/type no/NA leaks/conduction losses, total % 0/0Fuak Gains; IL, EL, HW, OT; W/ft2 2.00/0.05/0.36/3.00 Added mass? none Daylighting? DO Infiltration, in2 ELA=2185.4

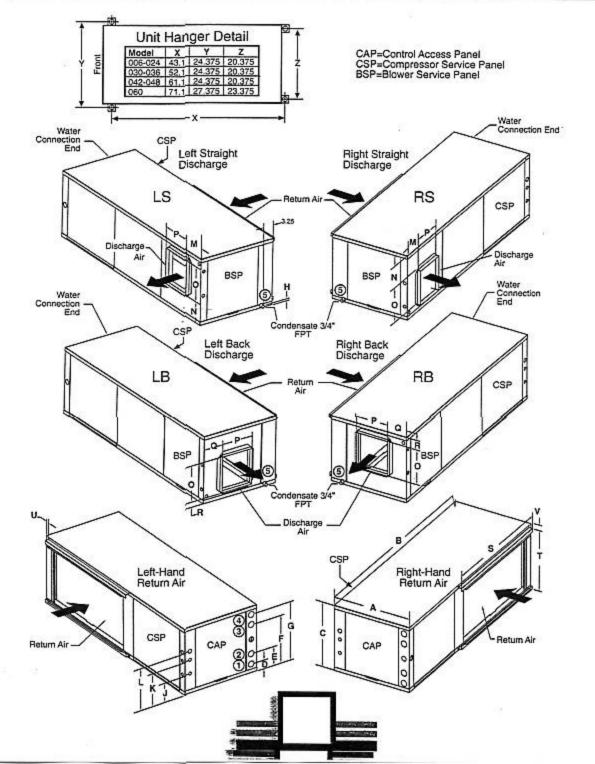
May 11, 2001 Weather file: albgrque.et1 Saved as XAENERGY10, Var. 2

> Our building tightened up 72000.0 \$15295.0 1080000.0 8.16 15322.1 0.030 steelstud 4, R=43.5 flat, r-19, R=21.0 Slab on Grade, Reff=73.0 4060 double, alum, U=0.70 None 371295 72000 72000 3360 34/37/26/43:0 double, U=0.49

PTAC AA Heat Pump/ER Backup 1255/1448/1931 92651/0 68.0 °F, setback to 63.0 °F 78.0 °F, setup to 83.0 °F COP=4.5,EER=15.0 yes/fixed dry bulb, 60.0 °F 0/0 1.50/0.04/0.36/3.00 none no ELA=1500.0

Results:	(Energy cost: 0.400 \$/Therm, 0.05	4 S/kWh, 2.470 \$/kW)
Simulation dates	01-Jan to 31-Dec	01-Jan to 31-Dec
Simulation status, Thermal/	DL valid/NA	valid/NA
Energy use, kBtu	6122522	5410165
Energy cost, \$	110190	98153
Saved by daylighting, kWh	NA	NA
Total Electric, kWh	1794251	1585489
Internal/External lights, k	Wh 514483/14717	385862/11038
Heating/Cooling/Fan, kW	h 4539/216940/27048	6019/142281/23766
Elec. Res./Heat Pump, kV	/h 4532/7	5462/558
Hot water/Other, kWh	109756/906768	109756/906768
Peak Electric, kW	482.6	456.3
Fucl, hw/heat/total, kBtu	0/0/0	/ 0/0/0
Emissions, CO2/SO2/NOx,	lbs 2411473/14175/7356	2130898/12525/6501

L. Equipment Cut Sheets


Refer to subsequent pages.

32

. ----

Horizontal Dimensions

GR	1		OVERA				WAT	ERCO	NNECTI	ONS"			ELECTRICAL		1 3	DISC	HARGE	CONNECT	TION		RETURN CONNECTION			
HORIZ			CABIN	ET	1	2	3	4	5	LOOP		KNOCKOUTS												
MODEL	- 1	A WIDTH	8 DEPTH	C HEIGHT	D N	e out		G HWG CUT	H COND- ENSATE	WATER	HWG FPT	LOW VOLTAGE	ĸ	POWER SUPPLY	м	N	SUPPLY WIDTH	P SUPPLY DEPTH	a	R	S RETURN DEPTH	T RETURN HEIGHT	U	v
006-012	IN	22.4	43.1	11.3	2.4	5.4	NA	N/A	0,6	0.5	0.5	3.5	5.5	8.0	5.8	4.0	5.8	8.0	5.8	1.5	20.0	8.0	1.0	1.0
015-024	IN	22.4	43.1	17.3	2.4	5.4	11.9	14.9	0.6	0.75	0.5	3.5	7.5	10.0	5.0	5.4	10,4	9.4	5.0	1.5	20.0	14.0	1.0	1.0
030	IN	22.4	52.1	19.3	2.4	5.4	13.9	16.9	0.6	0,75	0.5	6.0	9.5	12.0	5.0	6.8	10.4	9.4	5.0	2.1	22.1	17.0	2.5	1.0
036	IN	22.4	52.1	19.3	2.4	5,4	13.9	16.9	0.6	0.75	0.5	6.0	9.5	12.0	2.9	3.8	13.5	13.1	29	1.9	22.1	17.0	2.5	-
042-048	IN	22.4	61.1	19.3	2.4	5.4	13.9	16.9	0.6	1.0	0.5	6.0	9.5	12.0	2.9	3.8	13.5	13.1	2.9	1.9	31.1	17.0	3.5	1.0
060	IN	25.4	71.1	21.3	2,4	5.4	15.9	18.9	0.6	1.0	0.5	8.0	11.5	14.0	5.8	5.0	13.5	13.1	5.8	2.9	36.1	19.0	25	1.0

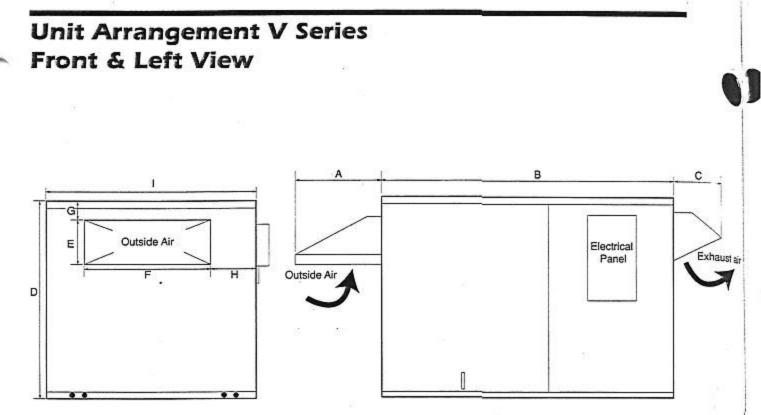
Table does not reflect fan or pump power ISO corrections

* ISO Certified @ 59,000 Btuh and 12.8 EER in cooling and 68,000 Btuh and 4.2 COP in heating.

		w	PD		cc	OLING - EA	AT 80.6/6	5.2 °F			HEATI	NG - EA	T 68°F	
EWT °F	GPM	PSI	FT	тс	SC	Sens/Tot Ratio	ĸw	HR	EER	HC	кw	HE	LAT	COP
	7.5	3.0	7.0										1.000	-00-0-1755
20	11.3	5.9	13.6		Ope	ration Not Re	ecommen	ded						
	15.0	9.7	22.4							38.7	3.87	25.5	87.9	2.93
	7.5	2.9	6.8	54.0	40.0	0.74	3.28	65.2	16.4	43.3	3.93	29.9	90.1	3.2
30	11.3	5.7	13.2	54.1	40.2	0.74	3.18	65.0	17.0	44.0	3.97	30.5	90.4	3.2
	15.0	9.4	21.7	54.3	40.3	0.74	3.07	64.8	17.7	44.7	4.00	31.1	90.7	3.2
	7.5	2.8	6.5	62.3	47.2	0.76	3.63	74.7	17.2	49.5	4.07	35.6	92.9	3.5
40	11.3	5.5	12.7	62.5	47.4	0.76	3.51	74.5	17.8	50.3	4.11	36.3	93.3	3.5
	15.0	9.1	20.9	62.6	47.5	0.76	3.39	74.2	18.5	51.1	4.15	37.0	93.7	3.6
	7.5	2.7	6.3	65.0	50.1	0.77	3.92	78.4	16.6	56.1	4.24	41.6	96.0	3.8
50	11.3	5.3	12.3	65.2	50.3	0.77	3.80	78.2	17.2	57.0	4.28	42.4	96.4	3.9
38	15.0	8.7	20.2	65.4	50.4	0.77	3.67	77.9	17.8	57.9	4.31	43.2	96.8	3.9
	7.5	2.6	6.1	64.6	50.4	0.78	4.20	78.9	15.4	62.8	4.41	47.7	99.1	4.1
60	11.3	5.1	11.8	64.8	50.6	0.78	4.07	78.6	15.9	63.7	4.45	48.6	99.5	4.1
	15.0	8.4	19.4	64.9	50.7	0.78	3.93	78.3	16.5	64.7	4.49	49.4	100.0	4.2
	7.5	2.5	5.8	62.7	49.6	0.79	4.49	78.0	14.0	68.9	4.58	53.3	101.9	4.4
70	11.3	4.9	11.4	62.9	49.7	0.79	4.35	77.7	14.5	70.0	4.62	54.2	102.4	4.4
	15.0	8.1	18.7	63.0	49.9	0.79	4.20	77.4	15.0	71.1	4.67	55.2	102.9	4.4
	7.5	2.5	5.7	60.5	48.3	0.80	4.82	77.0	12.5	73.7	4.72	57.6	104.1	4.5
80	11.3	4.8	11.1	60.7	48.5	0.80	4.66	76.6	13.0	74.9	4.76	58.7	104.7	4.6
	15.0	7.9	18.2	60.8	48.6	0.80	4.51	76.2	13.5	76.1	4.80	59.7	105.2	4.6
5	7.5	2.4	5.5	58.4	47.2	0.81	5.21	76.1	11.2	76.0	4.77	59.7	105.2	4.6
90	11.3	4.7	10.8	58.5	47.3	0.81	5.04	75.7	11.6	77.2	4.82	60.8	105.8	4.7
	15.0	7.7	17.7	58.7	47.4	0.81	4.87	75.3	12.1	78.4	4.86	61.8	106.3	4.7
100.000	7.5	2.3	5.4	56.1	45.9	0.82	5.66	75.4	9.9					
100	11.3	4.5	10.5	56.2	46.1	0.82	5.48	74.9	10.3					
	15.0	7.5	17.3	56.4	46.2	0.82	5.29	74.4	10.6					
	7.5	2.3	5.2	52.7	44.1	0.84	6.19	73.8	8.5	C	peration	Not Red	commend	led
110	11.3	4.4	10.2	52.8	44.3	0.84	5.99	73.3	8.8	1				
1000000	15.0	7.3	16.8	53.0	44.4	0.84	5.79	72.7	9.1	2				

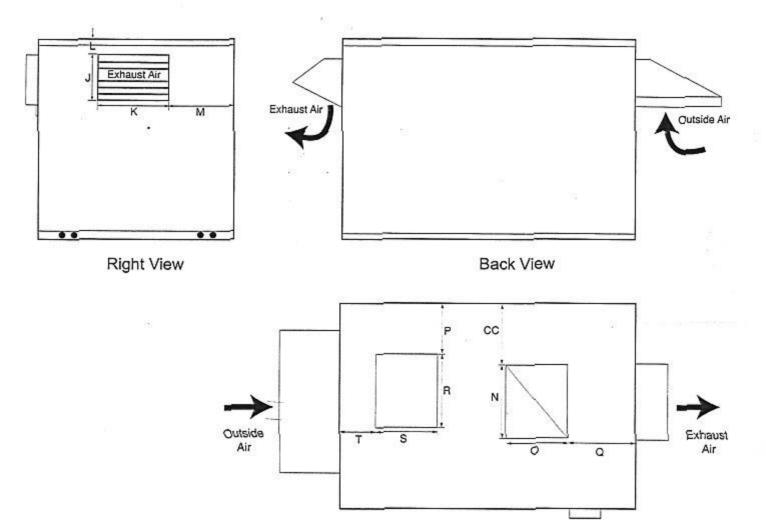
Interpolation is permissable. Extrapolation is not.

All entering air conditions are 80.6 °F DB and 66.2°F WB in cooling and 68°F DB and 59°F WB in heating


All performance data is based upon the lower voltage of dual voltage rated units

ISO Certified conditions are 86 °F EWT, 80.6 °F DB and 66.2 °F WB in cooling and 68°F EWT, 68 °F DB and 59°F WB in heating.
 Operation below 60°F EWT requires optional insulated water circuit.

See Performance Data Correction Tables for operation conditions other than those listed above.


Left View

Front View

10-1-14	Net Weight		Dimensions (inches)									
Model#	(lbs.)	A	В	c	D	E	F	G	H	ł		
FV-1000V	500	16.3	44.4	8.7	31	8	23.1	2.4	2.9	29		
FV-2000V	550	20.4	51.5	13.8	32.4	10.7	31.1	2.8	3	37		
FV-3000V	1000	20.4	64.8	10.7	47.7	14.8	39	4.2	3.1	45		
FV-5000V	1150	33	78.7	10.7	51.5	16.5	48	2.8	3.2	54		

FV Preconditioner Series Technical Guide

Unit Arrangement V Series Back, Right & Bottom View

Bottom View

Mod	-14	Net Wt. (lbs.)												
MOG	el#		L	к	L	M	N	٥	P	a	R	s	т	сс
FV-10	00V	500	10.3	9.2	3.5	9.9	11.2	10	7	14.3	10.2	9.3	5.3	9
FV-20	00V	550	11.4	13.1	5	12.5	23	7.8	7	18.5	10.3	11.8	4	7
FV-30	00V	1000	11.4	13.1	10.5	16	24	12	7	16.7	11.4	13.1	7.4	7
FV-50	00V	1150	15.9	18.6	9.3	17.6	20	19	7	20.7	15.9	18.6	5.2	12

FV Preconditioner Series Technical Guide .

FV-5000 Supply Fan Data

Airflow	an a	External Static Pressure (in.wg.)*											
(scfm)	-0.3	-0.1	0.†	0.3	0.5	0.75	. 1.0	1.25	1.50				
		614 - 414 - 42 199	Mata	or Brake Hor	sepower/RP	PM**		1.5 +1					
2600	.15/288	.24/389	.36/488	.43/565	.63/639	721723		-	-				
3000		.39/440	.48/522	.62/598	74/663	.89/737	1.14/810						
3400	.41/420	.50/489	.64/561	.76/627	.90/687	1.10/757	1.32/830	1.52/901	1.71/963				
3800	.61/468	.69/541	81/602	1.00/661	1.17/717	1.37/785	1.55/853	1.79/917	2.01/979				
4200	78/518	9/581	1.08/633	1.25/692	1.40/745	1.6/811	1.82/874	2.08/933	2.33/991				
4600	1.03/568	1.18/624	1.39/676	1.52/729	1.72/781	1.89/844	2.19/895	2.47/945	2.71/1008				
5000	1.29/592	1.48/650	1.64/696	1.81/751	2.00/793	2.21/869	2.55/922	2.84/976	-				

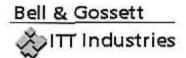
Note: For power draw see standard motor in Table 6 on page 32.

Supplied Motor:

0.75 hp, 1725 rpm

2.00 hp, 1725 rpm

10221	1.50 hp, 1725 rpm
Г	3.00 hp. 1725 rpm


FV-5000 Exhaust Fan Data

Airflow	2.20	External Static Pressure (in.wg.)*											
(scfm)	-0.3	-0.1	0.1	0.3	0.5	0.75	1.0	1.25	1.50				
a tan	ارد. ایندار در اینده می		Mo	tor Brake He	orsepower/R	PM**							
2600	.18/356	.29/450	.41/573	.54/614	.65/683	.84/760	-						
3000	.32/418	.43/504	.62/579	.72/647	.81/708	1.03/781	1.23/857						
3400	.49/485	.63/558	.75/624	.89/685	1.06/741	1.27/813	1.48/885	1.69/949					
3800	.71/542	.83/605	1.02/664	1.18/720	1.32/774	1.50/842	1.76/907	1.98/969	2.17/1031				
4200	.93/596	1.13/651	1.27/705	1.45/758	1.60/810	1.82/874	2.08/933	2.33/991	2.60/1049				
4600	1.27/647	1.40/683	1.62/752	1.77/803	1.93/851	2.24/909	2.50/965	2.78/1021					
5000	1.56/701	1.76/744	1.92/795	2.16/842	2.41/886	2.68/940	2.91/993						

Note: For power draw see standard motor in Table 6 on page 32.

* Positive statics reference external static pressures that work against the FV unit fan. Negative statics would work with the FV unit fan. For example, an FV preconditioner that is blowing into a mixing section of another air handling unit (AHU) with a -0.3" static pressure in the AHU mixing section would have an FV supply fan static of -0.3" and an exhaust fan static of +0.3". All statics internal to the FV Unit are already included in the selection.

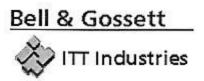
**Motors showing RPM are for belt drive.

ESP-PLUS Pump Selection Results Version \$1.92

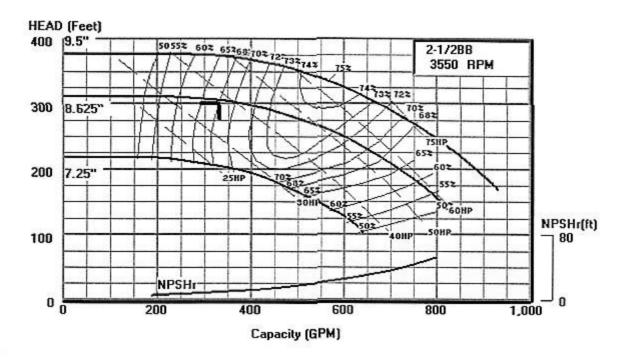
The state	 <u>1510 Product Literature</u> View Pump Specification
HLL	 Download 1510 Entire Curve Booklet (PDF File)

				SUM	MAR	Y						
	System	Capacity	= 330 GPM		Total Developed Head = 300 Feet							
Pump Series	Model	Speed (RPM)	Pump Efficiency	Duty Point (BHP)	Motor Size (HP)	Impeller Size(in)	Weight (lbs)	Cost Index	Quote Request			
1510	<u>2-</u> 1/2BB	3550	67.98	37.12	40	8.625	**	**	۲			
1510	2BC	3550	65.64	38.16	40	8.875	**	**	0			
1510	3BC	3500	56.15	44.47	50	8.625	**	**	0			
1510	4BC	3550	46.71	54.09	60	8.875	**	**	0			
				Submit Qu	iote Requ	est						

** This information is only available in the enhanced version

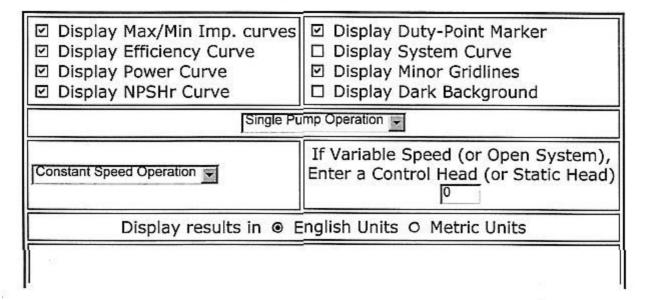

PUMP DETAILS

1510 2-1/2BB


		-/	
Flow Rate (GPM)	330	Pump Head (Feet)	300
Speed (RPM)	3550	NPSHr (Feet)	9.2
Weight (lbs)	**	Cost Index	**
Suction Size (in.)	3	Suction Velocity (fps)	14.3
Discharge Size (in.)	2-1/2	Discharge Velocity (fps)	22.1
Impeller Size (in.)	8.625	Pump Efficiency (%)	67.98
Max. Flow (GPM)	814	Duty Flow/Max Flow (%)	40.5
Flow @ BEP (GPM)	492	Min. Rec. Flow (GPM)	123.0
Selected Motor Size (HP)	40	Selected Motor Size (kw)	29.83
Duty-Point Power (BHP)	37.12	Duty-Point Power (kw)	27.68
Maximum Power (BHP)	56.87	Maximum Power (kw)	42.41
Motor Manufacturer	**	Full Load Amps	**

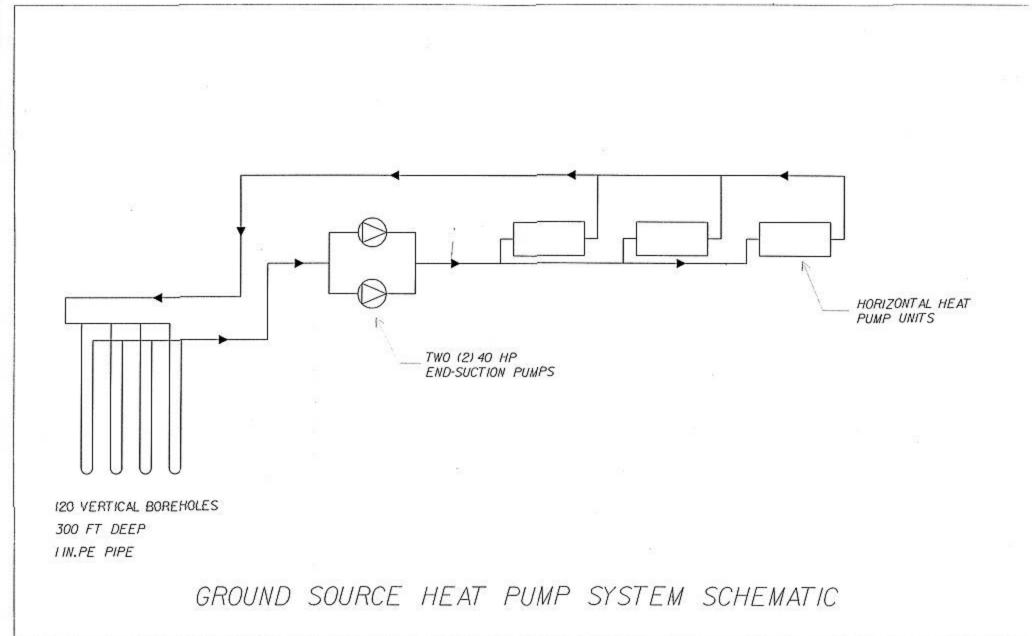
ESP-PLUS ON-LINE

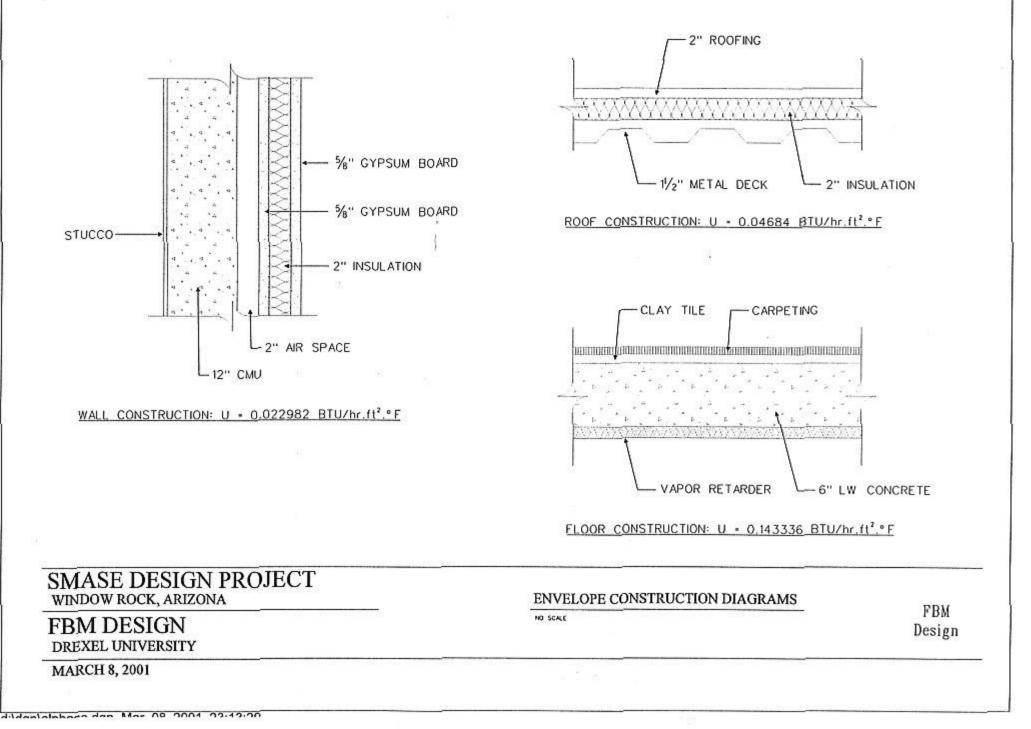
Page 1 of 2

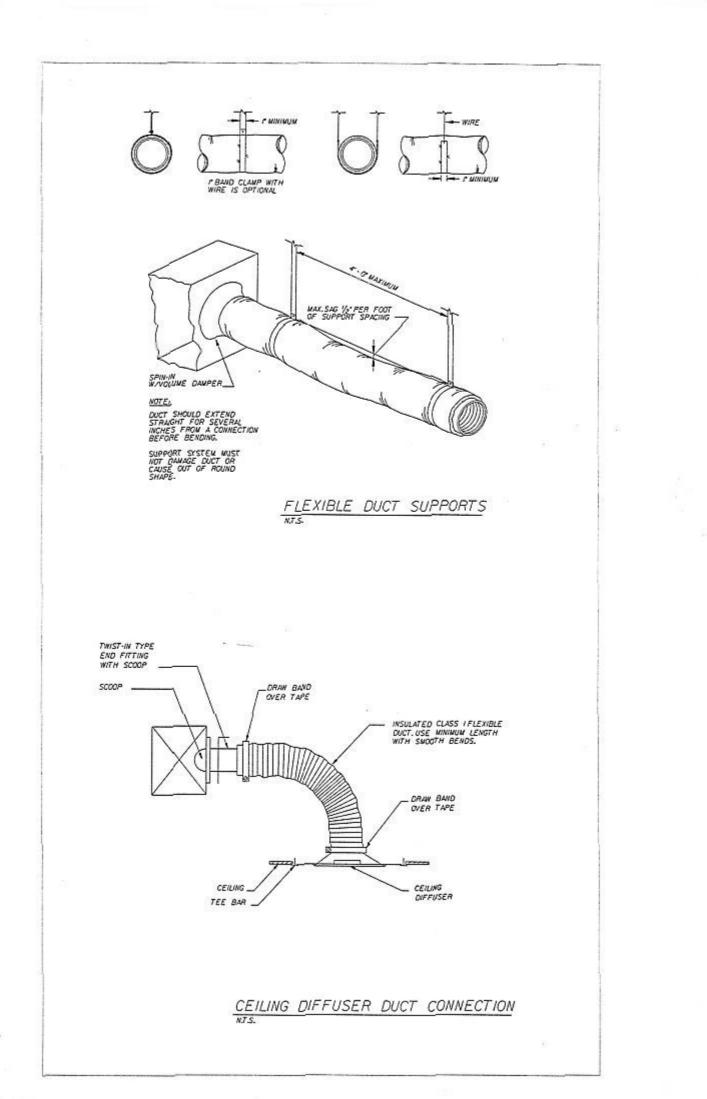

Curve Generation Version C1.16

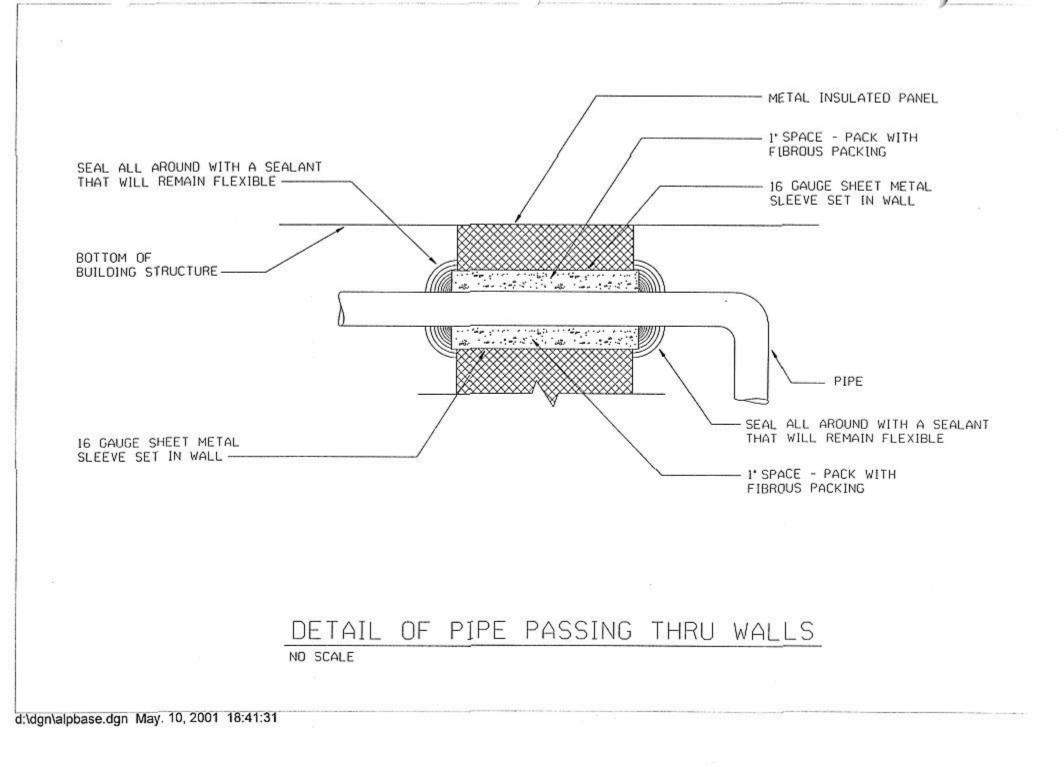
Pump Series: 1510	Min Imp Dia = 7.25 "	Design Capacity =330.0
Suction Size = 3 "	Max Imp Dia = 9.5 "	Design Head = 300.0
Discharge Size = 2.5 "	Cut Dia = 8.625 "	Motor Size =40 HP

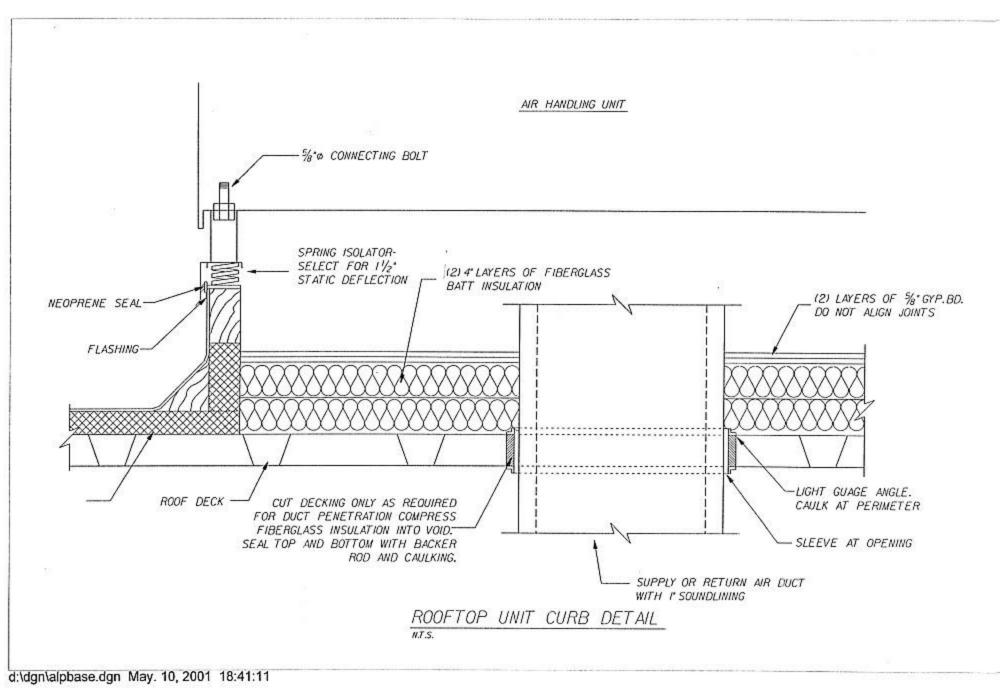
ITT Bell & Gossett 8200 N. Austin Morton Grove, II 60053

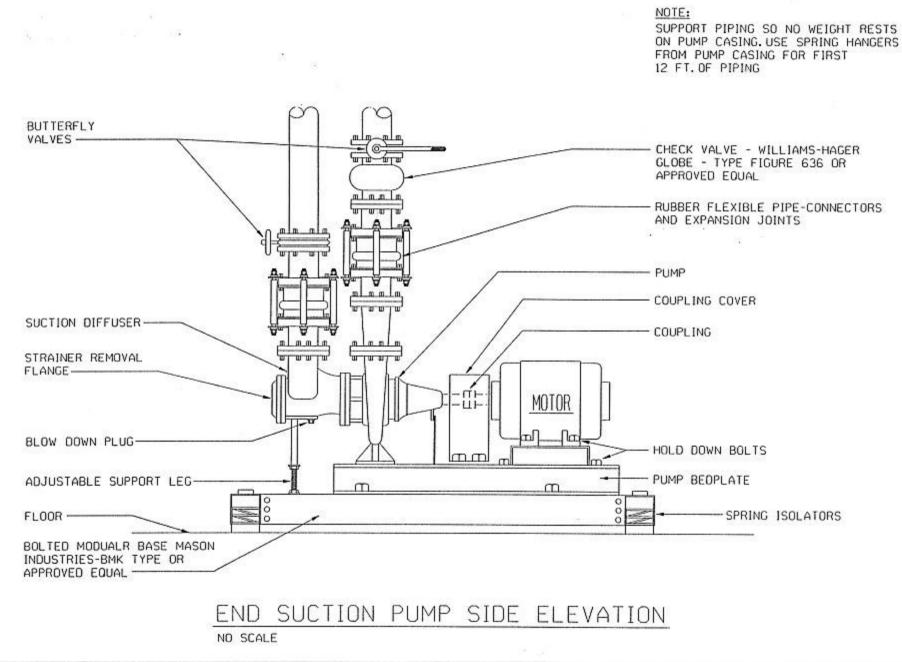

Generate Another Pump Curve

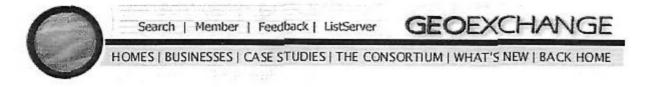

M. System Details


Refer to subsequent pages. (Note: all details with exception of Ground Source Heat Pump System Schematic and Envelope Construction Diagrams obtained courtesy of Burt Hill Kosar Rittelmann, Associates.)


•




d:\dgn\alpbase.dgn Mar. 04, 2001 17:58:23



d:\dgn\alpbase.dgn May. 10, 2001 18:41:21

N. Case Studies (Articles)

Refer to subsequent pages.

Case Study

Daniel Boone High School, Washington County, Tennessee

Courtesy of Tennessee Valley Authority

- Project
- Facility
- Location
- Contact Information
- Figure 1
- Figure 2
- Figure 3

Project

Daniel Boone High School, which serves over 1,100 students, recently underwent renovation for a new heating and cooling system, a GeoExchange System. Located in Washington County, Tennessee, the system serves the entire school including classrooms, kitchen, cafeteria, auditorium and a gym. Constructed in 1971, the original design utilized a two-pipe chilled water system for cooling and electric resistance heat for the 160,000 square foot school.

When renovation of the heating and cooling system was first discussed, the following design options were considered by the owner:

- · Water loop heat pump (WLHP) with electric boiler
- · WLHP with gas boiler
- WLHP with electric thermal storage
- 4 pipe system using a natural gas engine-driven chiller and boiler
- A WLHP with a closed loop GeoExchange system.

Energy savings from variable flow pumping were considered for all WLHP options.

Based on the analysis of the proposed systems, Washington County Schools chose the GeoExchange system with variable flow pumping for many reasons.

Energy Efficiency: Prior to the renovation, total energy costs for the school ranged from \$181,000 to \$240,000 per year. The GeoExchange system uses high efficiency water loop heat pumps which exceed ASHRAE Standard 90.1 requirements

The combination of high efficiency heat pumps with a geothermal heat exchanger provides a very efficient retrofit. Annual energy costs were projected to be \$135,000, with annual energy use estimated at 2,232 mWh (kWh X 10³).

Although the system renovation was scheduled for completion during the summer of 1995, a delay allowed for only two thirds of the heat exchanger to be installed before the 1995-96 winter heating season. The system operated through the very cold winter on a partial ground loop. The ground loop was completed in April 1996. Energy use for the 1996-97 school year (July - June), the first year of operation on the completed retrofit, was 2,298 mWh. **Figure 1** shows the relationship of energy usage to degree days for two years prior to retrofit, and two years after (including the one year with the partial heat exchanger).

Indoor Air Quality and Thermal Comfort: The original school design had provisions for adequate outside air but no significant indoor air quality issues were identified. The redesign incorporated the existing ventilation as it met ASHRAE standards. The GeoExchange system has the ability to provide simultaneous heating and cooling in any zone. The building is controlled using a direct digital control system, with individual zone setpoints ensuring a high level of thermal comfort.

Innovation: Daniel Boone High School is the first known school within the State of Tennessee to use a WHLP system incorporating a geothermal heat exchanger and variable flow pumping.

The geothermal heat exchanger consists of 320 boreholes, each 150 feet depth. Each borehole contains 300 feet of 34 inch diameter polyethylene pipe. The boreholes are placed in sections of 20 holes at 15 foot centers, and 20 foot spacing between sections. Each section is valved to facilitate purging and to allow isolation in the unlikely event a leak should occur. The 8 inch system supply and return lines enter the school through the existing mechanical equipment room.

Parasitic pumping in WLHP and geothermal heat pump systems is an area with considerable potential for energy savings. Traditional designs incorporate constant operation of circulation pumps. This can substantially increase energy use, resulting in lower overall system efficiency. This system utilizes a pair of two-speed circulating pumps, each pump sized at approximately 80% of the system capacity (at full speed). The circulation pumps are staged as follows: Stage 1 -

one pump @ 1150 rpm; Stage 2 - one pump @ 1750 rpm; Stage 3 - two pumps @ 1750 rpm.

To ensure adequate system flow and optimum performance, the pumps are controlled by a combination of loop flow and system differential pressure using a programmable logic controller.

Each terminal heat pump unit uses a two-way valve to stop flow through the heat exchanger when heating or cooling is not required. (A small amount of bypass in the loop is maintained by eliminating the two-way valves on several small, strategically placed units.) As building load decreases, heat pumps cycle off. The flow rate is then reduced and the loop pumps ride up the pump curve. This increases the differential pressure until the controller reduces the pumping by one stage. As building load increases, the flow rate increases and differential pressure decreases. An additional pumping stage is then brought on. The system design provides variable flow pumping capability without the complexity and cost of variable speed drives. In all but peak conditions one pump on high speed will carry the building, providing acceptable system redundancy. The basic system schematic is illustrated in Figure 2.

Operation and Maintenance: The original system utilized a 300 ton CFC-11 chiller, and a cooling tower. Terminal unit ventilators with electric resistance heat served each zone. The new system contains high efficiency water loop heat pumps using HCFC-22. The chiller and cooling tower have been eliminated. Chemical treatment and make-up water requirements for the cooling tower have also been eliminated.

Should an individual heat pump require service, it would only impact a single zone rather than the whole building. The dual pumping arrangement provides an adequate level of redundancy in the event a pump requires servicing. Similarly, portions of the heat exchanger (sections of 20 boreholes) can be isolated from the system in the unlikely event that a leak (or other system damage) occurs, without major impact on system performance. Other considered systems would have included a boiler and a cooling tower, which have higher maintenance requirements than the GeoExchange system.

System Design: The system was designed anticipating the potential for changes in the use and occupancy of the school. Accordingly the ground loop was sized to allow additions and modifications. The school maintenance staff have converted a non-conditioned shop area in to a fitness center, and an abandoned indoor pool is being converted to a second gym area. The maintenance staff have been very impressed with the ability to simply tie additional heat pumps into the loop. The flexibility afforded by the design allows these type of modifications very easily. Another recent modification illustrating system flexibility was the addition of a water-to-water heat pump to handle the domestic hot water loads. This addition was completed in June, 1997 and supplements the existing 144 kW electric resistance water heater which provides back up water heating.

The system also provides flexibility for heating and cooling of individual zones when the school is unoccupied for vacations and holidays. Thus individual zones can be cooled without operating a central chiller plant as in the old system, or a boiler/cooling tower as in the base case retrofit system.

Cost Effectiveness: Water loop heat pumps were chosen as a base case for the retrofit conditions in order to provide simultaneous heating and cooling with a 2-pipe system. The traditional design approach would utilize a boiler and a cooling tower to control the loop temperature using a constant volume pumping system.

Energy costs for the base case were estimated at \$164,000 per year. Analyses of the base case and alternate systems were accomplished using an hourly analysis model. The model was calibrated to actual energy use and weather data prior to the renovation. The energy costs for the installed system were estimated at \$135,000 per year, for an energy savings of \$29,000 per year over the base case.

A preliminary feasibility study estimated the maintenance cost for the GeoExchange system to be \$0.05 per square foot per year less than the boiler/tower design. This \$8,000 savings would include boiler, cooling tower, and heat exchanger maintenance as well as tower chemicals and makeup water usage. Total annual energy and maintenance savings were estimated at \$37,000/yr. Using the actual energy costs of \$139,000 for the 1996-97 school year, the annual savings would be \$33,000 per year over the base case. Based on the energy costs for 1996-97 of \$139,000 (with 4455 heating degree days) the system should be able to meet the original projection of \$135,000 per year for a normal year (4143 degree days for Bristol, Tennessee area.) **Figure 3** shows the relationship of energy costs to degree days before and after retrofit. (Electric utility rates were constant for the period.)

The heat exchanger cost was \$451,000 including a \$100,000 change order to cover unexpected casing costs. Tennessee Valley Authority agreed to co-fund the as a research project in order to demonstrate and evaluate the GeoExchange system, particularly the variable flow pumping and the loop sizing. TVA provided \$104,000 in direct funding plus the system monitoring costs. The costs for a conventional boiler, cooling tower, plate-frame heat exchanger, and associated pumping and controls were estimated at \$150,000. The incremental cost to the school system was \$197,000.

Using the estimated operations and maintenance savings of \$8,000 and the actual 1996-97 energy costs savings (compared to a boiler/tower base case) a simple payback of 6 years is achieved. Using the projected costs for a normalized weather year reduces the payback to 5.3 years. The system is presently being monitored to validate its operation and maintenance costs. The detailed monitoring system was commissioned in May 1997.

The data is also being used to fine tune the system performance. It is anticipated that further optimization of the system operation (such as pump staging control

http://www.geoexchange.org/cases/cs0090.htm

2/23/2001

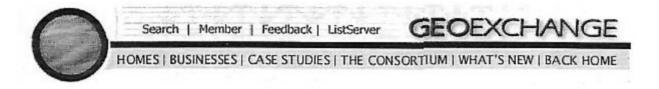
points and strategy and building setback/ demand control) will reduce the annual energy consumption further, thus shortening the payback.

Note: This school like many others are moving to a year round usage. An example is the conversion of one shop area into a fitness center which is open all year. The effect of this increased usage will increase the relative energy use over previous years. However, from an overall energy impact this system responds very well to this type of use by allowing individual zones to be operated without operating a central plant. The heat exchanger at part load conditions will operate at cooler summer temperatures (or warmer winter temperatures) which will increase the heat pump efficiency and reduce utility costs.

Closing: This project offers an opportunity to demonstrate the marriage of two energy efficient technologies, variable flow pumping and geothermal heat pumps. This project was useful in introducing the closed loop ground heat exchanger and variable flow pumping concepts to regional well drillers and mechanical contractors. The school system is so pleased with the system that they have employed the technology in at least two other locations. It should also be pointed out that in a new construction application, a significant credit could be taken for a substantial reduction in mechanical equipment room requirements which would further reduce the system payback.

The school's system will be monitored to validate ground heat exchanger sizing programs and methods, and provide information on system pumping costs.

Facility


- 160,000 square foot
- 300 ton
- Closed loop geothermal heat exchanger
- 320 boreholes, each 150 feet depth
- Each borehole contains 300 feet of 34 inch diameter polyethylene pipe.
- Boreholes are placed in sections of 20 holes at 15 foot centers, and 20 foot spacing between sections.

Location

The Daniel Boone High School is located in Washington County, Tennessee.

Contact Information

Paint Lick Elementary School, Kentucky

Case Study

Paint Lick Elementary School, Kentucky

Click on thumbnail for Full Size Photo.

Paint Lick Elementary School, Kentucky

Index

- Background
- Key Players
- System Description
- Costs
- <u>Savings</u>
- · Financing, Rebates, and Guarantees
- System Benefits
- Award-Winning Design
- Lessons Learned/Subsequent Experience
- Conclusion
- Sources
- Expected Annual Savings
- Electricity Use Table

Return to Teleconference Book

Return to Home Page

http://www.geoexchange.org/cases/cs0053.htm

2/23/2001

Background

Paint Lick Elementary School in Garrard County, Kentucky, was the first newly constructed school in Kentucky to be heated and cooled by geothermal heat pumps. According to Conn Abnee, Assistant Marketing Manager for East Kentucky Power Cooperative, a joint effort by the electric utilities and the heat pump manufacturer demonstrated geothermal to be the best choice for the new school.

State school board officials were skeptical about GHPs when the idea was initially proposed. "The theory is great, but we wanted proof that the equipment was adequate to meet the theory," said Michael Luscher, Director of the Division of Facilities Management. Because of the concerns of the local and state school board officials, advocates for the system went to great lengths to ensure that everyone would be satisfied. WaterFurnace International, Inc., the GHP manufacturer, even offered an unconditional guarantee on the system for two years.

"We look at each technology and each installation on an individual basis," said Mr. Luscher. "In this case, it appeared we were at a point when the technology had caught up with the theory. For that reason, we stepped into a pilot project with some assurances from the utilities and WaterFurnace."

The GHP system has become a learning tool for the Kentucky Department of Education and Paint Lick students. Completed in June of 1992, the highly efficient Paint Lick Elementary School project was envisioned as a pilot project for future school construction. The Department of Education's goal was to reduce energy consumption, operating costs, and system upkeep. "As educators, we try to encourage our children to make wise use of the environment, and I think this will be something that they [the students] will be able to look back on as adults," said Mary A. Davis, principal of Paint Lick Elementary School.

The architectural firm of Clotfelter-Samokar, specializing in educational facilities, welcomed the opportunity to become involved in the project. "We worked with geothermal in residential and commercial applications, but this was our first experience with geothermal in a school, and we were excited about its potential," said David Samokar, principal of the firm. Mr. Samokar has maintained his enthusiasm for geothermal heat pumps in schools, as evidenced by Clotfelter-Samokar's six subsequent designs of GHP schools.

Key Players

Facility

Paint Lick Elementary School Garrard County Lancaster, Kentucky

http://www.geoexchange.org/cases/cs0053.htm

2/23/2001

Paint Lick Elementary School, Kentucky

Ms. Mary A. Davis, Principal Dr. William Wesley, Superintendent Garrard County School District Phone: (606) 792-3018

Architect:

Clotfelter-Samokar, PCS 228 East Reynolds Road, Suite 1 Lexington, Kentucky 40517 David Samokar, Principal Phone: (606) 273-3700

Engineer:

Kaiser-Taulbee and Associates 190 Jefferson Lexington, Kentucky 40508 Bob Kaiser Phone: (606) 253-2459

Mechanical Contractor:

Green Mechanical Construction 2277 Danforth Drive Lexington, Kentucky 40511 Glenn True, Vice President Phone: (606) 252-4646

Electrical Contractor:

Cutter-Pulliam Electric Company 857 Contract Street Lexington, Kentucky 40505 Bill Hosetler, President Phone: (606) 252-7546

Manufacturer:

WaterFurnace International, Inc. 9000 Conservation Way Fort Wayne, Indiana 46809 Phone: (219) 478-5667 Jim Smith, Commercial Phone: (219) 478-5667

Loop Installer:

Ground Loop Systems of Kentucky Tim Fencer

Paint Lick Elementary School, Kentucky

Page 4 of 10

Electric Utilities: Inter-County Rural Electric Cooperative Corporation Box 87 Danville, Kentucky 40423 Jim Jacobus, Vice President Member Services and Marketing Phone: (606) 792-4619

East Kentucky Power Cooperative 4758 Lexington Road P.O. Box 707 Lexington, Kentucky 40392-0707 Conn Abnee, Assistant Marketing Manager Phone: (606) 744-4812 E-mail: conn@ekpc.com

System Description

Paint Lick Elementary School measures 39,564 square feet and is conditioned by 120 tons of WaterFurnace Premier AT Series geothermal heat pumps. The GHP system consists of six 1-ton units, two 2-ton units, nineteen 3-ton units, two 5-ton units, two 6.5-ton units, and four 7.5-ton units.

Underground heat transfer is provided by a vertical closed-loop pipe configuration constructed of PE3408 high-density polyethylene pipe. The loop field consists of five sets of 16 vertical loops, 163 feet deep, and four sets of 16 vertical loops, each 188 feet deep, cumulatively resulting in almost 10 miles of pipe buried behind the school, according to Tim Fencer of Ground Loop Systems of Kentucky.

The building loop is separated into multiple zones with separate pumps that operate only on demand in order to minimize pumping energy requirements.

Mr. Fencer, whose home also has a geothermal system, is confident about the school board's decision to go with geothermal technology. "It's the most efficient. It's the only way to go," said Fencer.

Costs

Total school construction cost was \$2,339,111, which translates into a cost of \$59.12 per square foot of school floorspace. The WaterFurnace geothermal system

cost \$380,000, or \$9.60 per square foot, a very attractive figure for heating and air conditioning with individual temperature control in every room. Of the total GHP system cost, \$272,887 (\$6.90 per square foot) represents HVAC cost and \$107,123 (\$2.70 per square foot) went to the ground loop.

Savings

The reduction in energy consumption was projected to be 37% to 40%, a savings of 296,000 kWh at an electricity rate of 5¢/kWh. Other savings are achieved by avoiding a cooling tower and its costs for chemicals, maintenance, and general deterioration.

Financing, Rebates, and Guarantees

The school project was financed by the Kentucky Bond Authority through the Kentucky School Facilities Construction Commission with 20-year bonds. Inter-County Rural Electric Cooperative Corporation (IRECC) and its generation and transmission supplier, East Kentucky Power Cooperative (EKPC), shared the cost of a \$125/ton rebate, which was a total incentive of \$15,000. EKPC and WaterFurnace International, Inc. supplied technical assistance in the form of energy and cost savings estimates and attendance at two or three meetings to explain GHPs and their benefits to the school board.

"We always have an interest in our end-users, and that interest is that we want them to have a system with the lowest operating cost possible," said Leo Hill, IRECC. "And at this time, we know that there isn't a system that can do better than this one [geothermal]."

WaterFurnace demonstrated their faith in their product's performance and reliability by offering an unconditional guarantee on the GHP system for two years. If the Kentucky Department of Education was not satisfied with the geothermal system during that time, WaterFurnace would replace it with another heating and cooling system of the school board's choice. This guarantee was backed by a \$100,000 bond to further illustrate the company's belief in geothermal technology. After four years of operation, the GHP system is still in place and running flawlessly.

Andy Taussig, who at that time headed the marketing department at WaterFurnace, explained that the company has complete confidence in its equipment and is interested in exploring opportunities for geothermal applications throughout the state. "We know that with geothermal, the Paint Lick School will save money, and those savings can be passed along to help benefit the teachers

http://www.geoexchange.org/cases/cs0053.htm

2/23/2001

Paint Lick Elementary School, Kentucky

and the kids, which is really what's important here," Taussig said. "It just makes good economic sense. It's a win-win situation no matter how you look at it."

Another barrier WaterFurnace hoped to pull down was the lack of information available about geothermal. "By guaranteeing this system, we took the risk away from the school board and we believed once they saw what this system could do, awareness and acceptance of the technology will be our reward," Taussig explained. The strategy appears to have worked. Kentucky now has 15 schools with geothermal heat pump systems.

System Benefits

Having 35 separate heat pumps throughout the school allows each of the 20 classrooms, the library, cafeteria, offices, and the gym to have individual thermostats. The principal and teachers at Paint Lick Elementary could not be happier with the comfort and flexibility of the geothermal system. Dr. William Wesley, superintendent of the Garrard County School District, said the geothermal system provides a financial cost savings in terms of service, because alternative systems are more labor intensive and require continual custodial care.

In addition to the enhanced comfort levels and energy savings, the system has provided the school with several other benefits: the elimination of unsightly outdoor equipment such as cooling towers or rooftop units and a reduction in mechanical space requirements due to the elimination of boilers.

Award-Winning Design

The entire pilot project for Paint Lick Elementary School included other energy saving design characteristics, such as efficient lighting, and energy conserving architectural design and construction. These features, combined with the geo-thermal system, account for the school's attainment of an Engineering Excellence Award given by the National Society of Professional Engineers.

Lessons Learned/Subsequent Experience

Pilot projects are intended to teach lessons that will benefit future geothermal projects. The geothermal pilot project at the Paint Lick Elementary School has been no exception. When asked about any problems experienced with the Paint Lick GHP system, maintenance personnel could identify only one--the difficulty of changing filters. While this largely positive response points to the reliability of the

system, it also suggests some design changes for future geothermal heat pump systems.

The horizontal GHP units at Paint Lick Elementary are hung from the 12-foot-high structural steel members, well above the 8-foot suspended ceilings. To minimize duct runs, the units were placed at the center of each classroom. To change filters, maintenance personnel must move students and desks to clear enough floorspace in the middle of the classroom to place a step ladder to remove suspended ceiling tiles. Then they must change ladders to climb the 12 feet to the GHP unit. Had Paint Lick's geothermal system been designed today, vertical GHP units would probably be designed with filter access from the hallway. Console units might be another choice.

After completion of the Paint Lick project, Kentucky instituted the Building Officials and Code Administrators (BOCA) code for ventilation air requirements that mandate 15-cubic-feet-per-minute of outside air for each building occupant. This ventilation requirement increases HVAC energy consumption, since much more outside air must be heated or cooled. However, David Samokar, architect for the Paint Lick project, is using some provisions in the code for new projects that reduce the energy penalties associated with the new ventilation requirements. These code provisions allow pre-conditioning spaces prior to occupancy without drawing outside air and using the time lag at the end of the day. In large spaces, Mr. Samokar has controlled the percentage of outside air drawn into the space with CO₂ sensors.

Conclusion

Although the children who attend Paint Lick Elementary School may not fully realize it now, they are learning and experiencing a valuable lesson in preserving the environment, and soon, other children will too. The school board has approved the use of geothermal in another new school, Camp Dick Robinson Elementary School, scheduled to be built this fall. I think there is no better [example] that a school board can set than to encourage students to protect the ecology of our region," Garrard County Superintendent Wesley said.

News of the benefits of using GHPs in schools is spreading across the country. Over 200 schools now use geothermal heating and cooling. Officials from the Bay District Schools in Panama City, Florida, recently visited the Paint Lick Elementary School to learn more about the cost savings and energy efficiency associated with the school's geothermal heating and cooling system. "Kentucky and its electric cooperatives are leaders in geothermal technology," said Claude Warren a commercial energy consultant with Gulf Power and the trip's organizer. "We decided that if we wanted to learn more about the benefits of geothermal, we might as well go right to the experts."

Paint Lick Elementary School, Kentucky

Another "center of GHP excellence" is located in Texas. The Austin Independent School District, considered by some to have started the GHP trend in schools, has built or retrofitted approximately 60 schools with geothermal heat pump systems.

Many northern schools are getting in the loop with geothermal as well. Based on the success of Minnesota's first school GHP system in Perham, Minnesota, many other schools in the area have been built or are being planned with geothermal systems. Approximately 40 schools in Minnesota are enjoying the benefits of geothermal systems. For example, the 140,000-square-foot West Central Area Secondary School in Barrett, Minnesota, uses 575 tons of Florida Heat Pump GHPs for space heating and cooling, domestic water heating, and ventilation air tempering.

Geothermal systems also have found their way into larger educational complexes, such as The Richard Stockton College of New Jersey. This GHP system is one of the largest in the country. The original renovation totaled about 1,400 tons of Trane GHP units, and approximately 200 tons of GHPs have been added recently.

As geothermal enters the classrooms of today's students, tomorrow's leaders may leave a little wiser about energy, ecology, and economy--a lesson to last a lifetime. *

Sources

Elementary school teaches lesson in efficiency, WaterFurnace Case Study #2, WaterFurnace International, Inc.

Jim Jacobus, Inter-County Rural Electric Cooperative Corporation, energy bills, July 1992 - August 1996.

Jim Jacobus, Inter-County Rural Electric Cooperative Corporation, draft write-up.

State approves new school for Paint Lick area, newspaper article, The Advocate-Messenger, Vicki Story Stevens, September 11, 1991.

Florida School Officials Get a Lesson in Geothermal, article, Power Partners (EKPC newsletter), East Kentucky Power Cooperative, Spring 1996.

David Samokar, Clotfelter-Samokar, phone conversation, October 1996.

Jim Jacobus, Inter-County Rural Electric Cooperative Corporation, phone conversation, October 1996.

Dr. William Wesley, Superintendent, Garrard County School District, phone

http://www.geoexchange.org/cases/cs0053.htm

2/23/2001

Paint Lick Elementary School, Kentucky

conversation, October 1996.

Bob Halvorson, HVAC Reps, Inc., Loretto, Minnesota, fact sheets and phone conversation, October 1996.

Expected Annual Savings

Evaporative Cooling Tower Fan Power	\$750
Cooling Tower Make-Up Water	\$250
Labor	\$1,000
Chemicals (Cooling Tower Water Treatment)	\$250
Geothermal System Winter Booster Energy (296,000 kWh at 5¢/kWh)	\$14,000
Total	<u>\$16,250</u>

* Information obtained from Kaiser-Taulbee and Associates Inc., the mechanical and electrical firm for the project

Electricity Use Table

Electricity use, 1992-1996

	1992-19	93 Electr	icity Use	1993-19	94 Electr	icity Use	1994-19	95 Electr
Month	kWh Usage	kW Demand	Cost	kWh Usage	kW Demand	Cost	kWh Usage	kW Demand
August	27,120	93.6	\$1,527	28,560	186.0	\$1,608	29,880	163.2
September	33,840	199.2	\$1,905	34,200	165.5	\$1,925	31,920	158.4
October	33,360	192.0	\$1,878	34,320	174.0	\$1,932	33,000	195.6
November	34,320	216.0	\$1,932	41,760	206.4	\$2,351	37,920	199.2
December	51,960	234.0	\$2,925	52,560	208.8	\$2,959	39,720	219.6
January	50,640	246.0	\$2,851	54,240	225.6	\$3,053	58,440	254.4

http://www.geoexchange.org/cases/cs0053.htm

2/23/2001

Paint Lick Elementary School, Kentucky

February	42,840	242.4	\$2,411	48,840	231.6	\$2,749	55,080	241.2
March	54,240	219.6	\$3,053	46,440	217.2	\$2,614	36,840	230.4
April	34,200	196.8	\$1,925	34,200	180.0	\$1,925	33,840	196.8
Мау	29,880	164.4	\$1,682	33,360	159.6	\$1,878	29,520	169.2
June	20,760	134.4	\$1,169	19,800	148.8	\$1,115	22,320	105.6
July	23,520	104.4	\$1,324	21,120	103.2	\$1,189	21,960	114.0
12-Month Total	436,680	2,242.8	\$24,581	449,400	2,206.8	\$25,297	430,440	2,247.6
Monthly Average	36,390	186.9	\$2,048	37,450	183.9	\$2,108	35,870	187.3
Annual kWh/ft ²	11.04			11.36	7+1	•	10.88	
Annual \$/ft ²	\$0.62			\$0.64	•	5	\$0.58	·

* 1995-1996 cost based on Inter-County RECC's All-Electric School rate of 5.88 c/kWh with no demand charge.

BACKTOTOP

HOMES I BUSINESSES I CASE STUDIES I CONSORTIUM I SEARCH I FEEDBACK I MEMBERS I LIST SERVER | BACK HOME

O. Load Calculations (Trace 700 Tables)

0.08

Refer to subsequent pages.

Room Che jsums By BHKKA

Accounting

	COOL	NG COIL	PEAK			CLG SPAC	E PEAK	(HEATING C	OIL PEA	ĸ		TEMPE	RATUR	ES	
	at Time: tside Air: Space Sens. + Lat. Btuh	OA Ret. Air Sensible Btuh	DB/WB/HR:	7 / 10 73 / 51 / 3 Net Total Btuh	Percent	Mo/Hr: OADB: Space Sensible Btuh		Sp	Mo/Hr: 1 OADB: ace Peak ace Sens Btuh	3 / 1 5 Coll Peak Tot Sens Btuh		Pie Re Re Fn	DB enum turn t/OA MtrTD BIdTD	68.0 7 78.0 6 78.0 6 78.0 6 78.0 6	Itg 2.0 3.0 3.0 3.0 0.0 0.0	
Skylite Solr	0	0		0	0.00	0	0.00		0	0	0.00	Fn	Frict	0.0	0.0	11222
Skylite Cond	0	0		0	0.00	0	0.00	2.5	0	0	0.00	[AUDE	1 0100		
Roof Cond	677	0		677	5.64	677	4.49		-1,416	-1,416	23.65		AIR	LOWS		
Glass Solar	6,600	0		6,600	55.01	6,600	43.81		0	0	0.00					
Glass Cond Wall Cond	-89 24	0		-89 24	-0.74 0.20	-09	-0.59		-1,084 -203	-1,084	18.09 3.38	Vent	Co	200	Heatin	-
Partition	24	U		24	0.20	. 0	0.00		-203	-203	0.00	Infil		48	20	18
Exposed Floor	0			0	0.00	0	0.00		ŏ	0	0.00	Supply		1,661	1,66	
Infiltration	-1,213			-1.213	-10.11	-232	-1.54		-2,743	-2,743	45.79	Mincfr		0	1,00	0
Sub Total ==>	5,999	0		5,999	50.00	6,979	46.33		-5.446	-5,446	90.91	Return		1,909	1,90	-
Internal Loads	0,000			0,000		0,010			0,110	5,115	55.51	Exhau		248	24	
Lights	4,096	0		4,096	34.14	4,096	27.19		0	0	0.00	Rm Ex	h	0		0
People	4,500			4,500	37.51	2,500	16.60		0	0	0.00	Auxil		0		0
Misc	2,457	0	0	2,457	20.48	2,457	16.31	1	0	0	0.00			-		
Sub Total ==>	11,053	0	0	11,053	92.12	9,053	60.10		0	0	0.00	E	NGINEE	RING (CKS	
Ceiling Load	0	0		0	0.00	0	0.00		0	0	0.00					
Outside Air	-5,054	0	0	-5,054	-42.12	-968	-6.43		-544	-544	9.09		- 9	Cooling	Heatin	g
Sup. Fan Heat				0	0.00		0.00			0	0.00	% OA		12.0	12.	0
Ret. Fan Heat		0		0	0.00		0.00	1.1.4		0	0.00	cfm/s		3.46	3.4	6
Duct Heat Pkup		0		0	0.00		0.00	C		0	0.00	cfm/to		,407.31		
OV/UNDR Sizing	0			0	0.00	0	0.00		0	0	0.00	sq ft/t		406.77		
Exhaust Heat		0	0	0	0.00		0.00			0	0.00	Btu/hr		29.50	-48.8	7
Terminal Bypass		0	U	U	0.00		0.00			0	0.00	No. Pe	eople	10		
Grand Total ==>	11,998	0	0	11,998	100.00	15,064	100.00		-5,990	-5,990	100.00	HEAT	ING CO	OIL SEL	ECTIO	DN
	C	COOLING	COIL SEL	ECTION					ARE	AS			Capacity			nt Lv
	otal Capacity	Sens Cap.	Coil Airfl	Enter D	B/WB/HR	Leave DB/	WB/HR		Gross Tota	al Gli	ass	Main Htg	MBh -6.0		fm 61 68	F 0 72.
	ons MBh	MBh	cfm	F	F gr/lb		0 0000000000000000000000000000000000000			S	qft (%)	Aux Htg	0.0)	0 0	0 0.
	10 100	45.4	1.004	78.0 6	0.2 67.1	69.0 57.5	70.2	Floor	480			Preheat	0.0		0 0	
	1.0 12.0 0.0 0.0	15.1 0.0	1,661		0.2 67.1		0.0	Part ExFir	0			Reheat Humidif	0.0		9 E - E	0 0.
		2.2	200		6.0 32.7			Roof	480		0 0		-6.6 -10.9		93 31	5 50.
Opt Vent	0.2 2.2	2.2	200	01.0 5	0.0 32.7	75.0 51.7	32.0	Wall	200		T	Opt Vent	-10.9	2	00 5	0 65.
Totals	1.2 14.2							Wall	200		50	Total	-23.5			
01013	1.2 17.2											Lious	-20.0			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Checksums

By BHI

Administration Area

	COOL	ING COIL	PEAK			CLG SPAC	E PEAK	(HEATING	COIL PEA	к	TE	PERAT	JRES		
	at Time: Itside Air:	OA	Ma/Hr: DB/WB/HR:		5	Mo/Hr: OADB:			Ma/Hr. OADB:		l	SADB		72.0		
	Space Sens. + Lat Btul	Sensible	Latent	Net Total Btuh		Space Sensible Btuh	Percent Of Total (%)	Sp	bace Peak bace Sens Btuh	Coil Peak Tot Sens Bluh		Return Ret/O/ Fn Mtr	78.0 78.0 TD 0.0	68.0 68.0 0.0		
Envelope Loads Skylite Solr Skylite Cond	0			0	0.00	0	0.00		0 0 -	0	0.00	Fn Blo Fn Fri			- 2	
Roof Cond Glass Solar	2,910	0		2,910 28,380	5.56 54.25	2,910 28,380	4.63 45.20	s [-6,091 0	-6,091 0	24.31 0.00		AIRFLOW	VS		
Glass Cond Wall Cond Partition Exposed Floor	-383 102 0	0		-383 102 0	-0.73 0.20 0.00 0.00	-383 102 0	-0.61 0.16 0.00 0.00		-4,659 -872 0 0	-4,659 -872 0 0	18.60 3.48 0.00 0.00	Vent Infil Supply	Cooling 600 206 6,921		ating 600 206 6,921	
Infiltration Sub Total ==> Internal Loads	-5,215 25,794	0		-5,215 25,794	-9.97 49.31	-999 30,010	-1.59 47.80)	-11,795 -23,417	-11,795 -23,417	47.09 93.48	Mincfm Return Exhaust	0 7,728 806		0 7,728 806	
Lights People Misc	17,611 13,500 10,567			17,611 13,500 10,567	33.67 25.81 20.20	17,611 7,500 10,567	28.05 11.95 16.83		0 0 0	000	0.00 0.00 0.00	Rm Exh Auxil	0		0	
Sub Total ==> Ceiling Load	41,678	0	1.07	41,678 0	79.67 0.00	35,678 0	56.83 0.00)	o o	0 D	0.00 00.0	ENG	NEERIN	1999-1997 1997-1997 1997-1997		
Outside Air Sup. Fan Heat Ret. Fan Heat	-15,161	0		-15,161 0 0	-28.98 0.00 0.00	-2,904	-4.63 0.00 0.00) [-1,633	-1,633 0 0	6.52 0.00 0.00	% OA cfm/sg ft		ng Hea .7	8.7 3.35	
Duct Heat Pkup OV/UNDR Sizing	c	0		0	0.00 0.00		0.00		0	0	0.00 0.00	cfm/ton sq ft/ton	1,412.9 421.3	55 24		
Exhaust Heat Terminal Bypass		0		0	0.00 0.00		0.00			0	0.00 0.00	Btu/hr-sq No. Peopl		19 -3 30	38.33	
Grand Total ==>	52,311	0	0	52,311	100.00	62,784	100.00		-25,050	-25,050	100.00	HEATING	GOIL S	ELEC	TION	I
		COOLING	COIL SEL	ECTION					ARE	AS		Caj	100 C	Airfl	Ent	2 - 17 Y.
	Fotal Capacity ons MBh	Sens Cap. MBh	Coil Airfl cfm	Enter D F	B/WB/HR F gr/lÞ	Leave DBA F F	100000000000000000000000000000000000000	Floor	Gross Tot 2,06	S	ass qft (%)	Main Htg Aux Htg Preheat	MBh -25.1 0.0 0.0	cfm 6,921 0 0	F 68.0 0.0 0.0	72.0 0.0
Aux Clg	4.4 52.3 0.0 0.0	62.8 0.0	6,921 0	0.0	0.3 67.6 0.0 0.0	68.0 57.5 0.0 0.0	0.0	Part ExFlr		0		Reheat Humidif	0.0 -21.4	0 806	0.0 3.5	0.0 50.0
Opt Vent	0.5 6.5 4.9 58.8	6.5	600	87.0 5	6.0 32.7	75.0 51.7	32.8	Roof Wall	2,06 86		1 1 2 C 2 C 2 C 2	Opt Vent	-32.7 -79.1	600	5.0	65.0
Fotals	4.9 00.8										27	Total	-79.1		-	

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Cherksums By BH...A

Adult Classroom No. 1

	COOL	ING COIL	PEAK			CLG SPAC	CE PEAK		HEATING	COIL PEA	ĸ	1	EMPE	RATUR	ES	
	d at Time: utside Air: Space Sens. + Lat. Btuh 0	OA Ret. Air Sensible Btuh 0	Latent Bluh		Percent	Sensible		Sp	Mo/Hr: OADB: ace Peak ace Sens Btuh 0			Ple Re Re Fn Fn	DB turn t/OA MtrTD BldTD Frict	68.0 73 78.0 64 78.0 64 78.0 64 78.0 64 0.0 0	itg 3.4 3.0 3.0 3.0 0.0 0.0 0.0	
Skylite Cond	0	0		0	0.00	0	0.00		ő	0	0.00		FILL	0.0 0	0.0	
Roof Cond	2,467	0		2,467	6.69	2,467	5.61	1	-5,164	-5,164	21.66	1	AIRE	LOWS		1
Glass Solar Glass Cond Wall Cond Partition Exposed Floor Infiltration Sub Total ==>	2,467 19,380 -557 63 0 -4,422 16,932	0000		19,380 -557 63 0 -4,422 16,932	52.53 -1.51 0.17 0.00	19,380 -557 63 0 -847 20,507	44.03 -1.26 0.14 0.00 0.00 -1.92 46.59		-5,104 0 -6,888 -861 0 0 -10,001 -22,914	-5,164 0 -6,888 -861 0 0 -10,001 -22,914	0.00 28.89 3.61 0.00 0.00 41.95 96.12	Vent Infil Supply Mincfn Return	Co	ooling 340 175 4,852 0 5,367	Heatin 34 17 4,85 5,36	0 5 2 0
Internal Loads	10,552	U		10,002	40.00	20,001	40.00	÷.	-22,314	-22,314	50.12	Exhaus		515	5,50	
Lights People Misc	14,932 7,650 5,973	0		14,932 7,650 5,973	40.47 20.73 16.19	14,932 4,250 5,973	33.92 9.66 13.57		000	000	0.00 0.00 0.00	Rm Exi Auxii		0	100	0
Sub Total ==>	28,555	0		28,555	77.39	25,155	57.15	a -	õ	o	0.00	EN	GINE	RING C	We.	_
	20,000	0		20,000	0.00	20,100	0.00	1	D	ő	0.00		ONLL	ANING C	in o	
Ceiling Load Outside Air Sup. Fan Heat	-8,591	0	0	-8,591 0	-23.28 0.00	-1,646	-3.74 0.00	1	-925	-925 0	3.88 0.00	% OA		Cooling 7.0	7.0)
Ret. Fan Heat		0		0	0.00		0.00			0	0.00	cfm/sc	2 C	2.77	2.7	7
Duct Heat Pkup	10 (1 <u>0</u>	0		0	0.00		0.00			0	0.00	cfm/to		,435.18		
OV/UNDR Sizing Exhaust Heat Terminal Bypas		0		0	0.00 0.00 0.00	0	0.00 0.00 0.00		0	0000	0.00 0.00 0.00	sq ft/to Btu/hr No. Pe	-sq ft	517.61 23.18 17	-32.01	li.
Grand Total ==>	36,895	0	0	36,895	100.00	44,016	100.00		-23,840	-23,840	100.00	HEAT	ING CC	IL SEL	ECTIC	N
	C	COOLING	COIL SEL	ECTION					ARI	EAS			Capacity			
	Total Capacity ons MBh	Sens Cap. MBh	Coil Airfl cfm	Enter D F	B/WB/HR F gr/lib	0 7.00000000000000	WB/HR	Floor	Grøss To 1,7	S	ass Agît (%)	Main Htg Aux Htg Preheat	MBh -23.8 0.0	4,8	52 68. 0 0.	0 0.1
Main Clg	3.1 36.9	44.0	4,852	78.0 6	0.3 67.7	68.0 57.5	5 70.2	Part	1,73	0		Reheat	0.0		0 0.	· · · · · · · · · · · · · · · · · · ·
Aux Clg	0.0 0.0	0.0	4,052		0.0 0.0	S		ExFir		0 0		Humidif	-13.7		15 3.	C
Opt Vent	0.3 3.7	3.7	340		6.0 32.7			Roof	1,7:	50 (0 0 5 30	Opt Vent	-18.5	3	40 5.	
Totals	3.4 40.6						11				2000	Total	-56.0			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Cherksums

By BH....A

Adult Classroom No. 2

	1	COOLI	NG COIL F	PEAK				CLG S	PAC	E PEAK	C	HEATING	COIL PEA	АK		TEMPE	RATUR	ES	
	ed at Tim Jutside A		OAI	Mo/Hr: DB/WB/HR:		/ 33			o/Hr: ADB:			Mo/Hr: OADB:				ADB lenum	68.0 72	ltg 2.5 3.0	
	Sen	Space s. + Lat. Btuh	Ret. Air Sensible Btuh	Ret. Air Latent Btuh	Ne Tota Btu	al Of	Total (%)	Sen	pace sible Btuh	Percent Of Total (%)	I Sp	bace Peak bace Sens Bluh	Coil Peak Tot Sens Btuh	Of Total	R	eturn et/OA n MtrTD	78.0 68 78.0 68	8.0 8.0 0.0	
Envelope Loads		Dian	Dian	Dian	Die		(1.5)		Dian	(70)		Didit	Dian	(10)		n BldTD		0.0	
Skylite Solr		0	0			0	0.00	ļ	0	0.00)	0	0	0.00	2.52	n Frict		0.0	
Skylite Cond		0	0			0	0.00		0	0.00		0	0		L			1.12	
Roof Cond		7,689	0		7.68	9	17.17	7	.689	14.66		-5.164	-5,164			AIRE	LOWS		
Glass Solar		18,105	o		18,10		40.43		105	34.51		0	0,104	122202020200000		7.11.1	20110		
Glass Solar Glass Cond		945	0		94		2.11		945	1.80		-6.888	-6,888			C	olind	Heating	~
Wall Cond		59	o			9	0.13		59	0.11		-861	-861	3.61	Vent		340	34	-
		0	U			0	0.00		0	0.00		-001	0	20.022.011.0	Infil		175	17	-
Partition Exposed Floor		0				õ	0.00		õ	0.00		ő	0	0.00	Supp	he.	5,783	5,78	-
Infiltration		-2,344			-2,34	-	-5.23	1 ° 9	,429	2.72		-10,001	-10.001	41.95	Mincf		0		0
Sub Total ==>		24,454	0		24,45		54.61		226	53.81		-22,914	-22,914	96.12	Retur		6,298	6,29	*
Internal Loads		24,404	v		24,45	-	01.01		1220	00.01	3	-22,314	-22,014	50.12	Exha		515	51	
Lights		14,932	0		14,93	2	33.34	14	,932	28.47		0	0	0.00	RmE		0		0
People		7,650			7,65		17.08	c 0.0	.250	8.10		0	õ	0.00	Auxil		õ		õ
Misc		5,973	0	0	5,97		13.34		5,973	11.39		0	0	0.00		- Cointe			-
Sub Total ==>		28,555	0	0	28,55		63.76	25	,155	47.95		0	0	0.00	E	NGINE	RING C	KS	
Ceiling Load		0	o		2000	0	0.00	1 0.00	0	0.00		0	0						
Outside Air		-8,227	0	0	-8.22	- Training - 1	-18.37		-925	-1.76		-925	-925			1	Cooling	Heating	2
Sup. Fan Heat		-0,221	U	U		0	0.00		010	0.00		-525	0		% OA		5.9	5.9	
Ret. Fan Heat			0			õ	0.00			0.00			õ	0.00	cfm/s		3.30	3.30	
Duct Heat Pkup			D			n i	0.00			0.00			õ	0.00	cfm/t		,432.04		
OV/UNDR Sizin		0				ñ	0.00		0	0.00		0	ō		sq ft/		433.37		
Exhaust Heat	8		0	0		õ	0.00		-	0.00		Č.	0	0.00		r-sq ft	27.69	-32.01	
Terminal Bypas	s		ő	ō		õ	0.00			0.00			ō	0.00		eople	17	0	
Grand Total ==:	•	44,781	0	0	44,78	1 1	00.00	52	,456	100.00		-23,840	-23,840	100.00	HEA	TING CC	IL SEL	ECTIO	N
	3	с	OOLING	OIL SEL	ECTIO	N						ARI	EAS			Capacity			1
	10171-0104	3 3225 3	1997) - 1995) 1997)	1202232124	2000000000	1000		1211100				(1 <u>0</u> 0)	5.12 3923	0226	2 2012/2012 1 2015	MBh			F F
	Total C		Sens Cap.	Coil Airfl			VB/HR		DBM			Gross To		ass	Main Htg	-23.8			
	tons	MBh	MBh	cfm	F	F	gr/ib	F	F	gr/lb				sq ft (%)	Aux Htg	0.0		0 0.0	
1010 1020		02222					00.0		em 6.		Floor	1,75			Preheat	0.0		0 0.0	
Main Clg	3.7	44.8	52.5	5,783	78.0	60.3					Part		0		Reheat	0.0		0 0.0	
Aux Clg	0.0	0.0	0.0	0	0.0	0.0			0.0	0.0	ExFir	2015	0	a al	Humidif	-13.7	0.023	15 3.	
Opt Vent	0.3	3.7	3.7	340	87.0	56.0	32.7	75.0	51.7	32.8	Roof Wall	1,7		0 0 5 30	Opt Vent	-18.5	3	40 5.0	0 65.0
Totals	4.0	48.5													Total	-56.0	ē		

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

By Bhinch

Atrium No. 1

		COOLI	NG COIL I	PEAK			CLG SPAC	CE PEAK		HEATING	COIL PEA	ĸ	т	EMPER	ATURE	S	
Pe	eaked at Outsid		OA	Mo/Hr: DB/WB/HR:		4	Mo/Hr: OADB:			Mo/Hr: OADB:	13/1 5		SAI		Cig Hi 68.0 71 78.0 68	5	
	s	Space ens. + Lat. Btuh	Ret. Air Sensible Bluh	Ret. Air Latent Btuh	Net Total Btuh		Space Sensible Bluh	Percent Of Total (%)	Sp	ace Peak ace Sens Bluh	Coil Peak Tot Sens Btuh		Ret	urn	78.0 68 78.0 68 78.0 68	0	
Envelope Lo	oads	Dian	Dian	Dian	Bran	(10)	Dian	(10)	1	Dian	Dian	(14)		BIdTD	0.0 0	50 C	
Skylite Soli Skylite Con	r	99,792 2,062	0		99,792 2,062	99.13 2.05	99,792 2,062	89.80 1.86		0 -21,355	0 -21,355	0.00		Frict	0.0 0		
Roof Cond		1,878	0		1,878	1.87	1,878	1.69	1	-1,320	-1,320	3,42		AIRFI	LOWS		
Glass Sola		3,971	0		3,971	3.94	3,971	3.57		0	0	0.00					
Glass Con	d	492	0		492		492	0.44	1	-5,099	-5,099	13,21	0.000	Co	oling	Heating	1
Wall Cond		32	0		32		· 32	0.03		-303	-303	0,78	Vent		336	336	5
Partition		0			0		1 0	0.00		0	0	0.00	Infil		168	168	
Exposed F	loor	0			0		0	0.00		0	0	0.00	Supply		2,250	12,250	
Infiltration		-2,546			-2,546	-2.53	942	0.85		-9,601	-9,601	24.88	Mincfm		0	C	
Sub Total =		105,682	0		105,682	104.98	109,170	98.24		-37,678	-37,678	97.63	Return		2,754	12,754	
Internal Loa	Ids		0		0.007	3.95	0.007	0.50	1			0.00	Exhaus		504	504	
Lights		2,867	U		2,867	2.85	2,867 0	2.58		0	0	0.00	Rm Ext Auxil	1	0	0	5 - C
People Misc		0	0	0	0		0	0.00		ŏ	o	0.00	Auxii		U		·
Sub Total =		2.867	0	0	2,867	2.85	2,867	2.58		o	0	0.00	EN	GINEE		Ke	
		26.35	0		2,007	0.00	2,007	0.00		0	0	0.00		OINEE	NING C	NO	
Ceiling Load Outside Air		0 -7,879	0	0	-7,879	-7.83	-914	-0.82		-914	-914	2.37		0	ooling H	laating	
Sup. Fan He		-1,013	Ŭ		0	0.00	- 314	0.00		-514	-514	0.00	% OA	Ŭ	2.7	2.7	
Ret. Fan Hei			0		0			0.00			ŏ	0.00	cfm/sq	ft	7.29	7.29	
Duct Heat P			0		0	0.00		0.00			0	0.00	cfm/tor		409.37		
OV/UNDR S		0			0	0.00	0	0.00		0	0	0.00	sq ft/to		193.28		
Exhaust Hea	at		0	0	0	0.00		0.00	1		0	0.00	Btu/hr-	sq ft	62.08	-41.82	
Terminal By	pass		0	0	0	0.00		0.00	-		0	0.00	No. Pe	ople	0		x George
Grand Total	==>	100,669	0	0	100,669	100.00	111,122	100.00		-38,592	-38,592	100.00	HEAT	NG CO	IL SELE	CTIO	N
		С	OOLING	COIL SEL	ECTION					ARI	EAS			Capacity	Coil Air		8 - Col
	Tota	I Capacity	Sens Cap.	Coil Airfl	Enter D	B/WB/HR	Leave DB/	WB/HR		Gross To	tal Gia	155	Main Htg	MBh -38.6	cfr 12,25		
	tons	MBh	MBh	cfm	F	F gr/lb		gr/lb	-	080,000,000 000	S	q ft (%)	Aux Htg	0.0	20042.00	0 0.0	0.0
Main Clg	8.4	100.7	111.1	12,250	78.0 6	0.5 68.8	68.0 57.5	70.2	Floor Part	1,68	0		Preheat Reheat	0.0		0 0.0	
Aux Clg	0.0	0.0	0.0	12,200		0.0 0.0	0.0 0.0	22 300 777 0 10	ExFlr		0		Humidif	-13.4	50		
Opt Vent	0.3	3.6	3.7	336		6.0 32.7	75.0 51.7	2 Sec. 1 Sec. 1 Sec. 1	Roof	1,68	1.77.93	90	Opt Vent	-18.3	33		
opracin	0.5	5.0	0.4	000	5115 6		10.0 01.1		Wall	57		202 S.A.C.C.	- pr tont	-10.5	55	5.0	05.
Totals	8.7	104.3							1000				Total	-70.3			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Checksums

By Bh. A

Atrium No. 2

	COOL	ING COIL I	PEAK			CLG SP/	ACE PEA	ĸ	HEATING	COIL PEA	ĸ	TEN	PERAT	URES		
	at Time: tside Air: Space	Ret. Air	DB/WB/HR: Ret. Air	Net	Percent	OAD Spac			Mo/Hr: OADB: pace Peak	5 Coil Peak		SADB Plenum Return	78.0	71.1 68.0 68.0		
	Sens. + Lat. Bluh	Sensible Btuh	Latent Btuh	Total Btuh	Of Total (%)	Sensibl Btu	27. The second sec		pace Sens Btuh	Tot Sens Btuh	Of Total (%)	Ret/O/				
Envelope Loads	Diuli	Diuli	Diun	Diun	(70)	Bu	n (7	"	Diuli	Blun	(70)	Fn Mtr Fn Bld				
Skylite Solr	28,690	0	에 문화 문화	28,690	103.76	28.69	0 93.5	9	0	0	0.00	Fn Frid	NTRA - 0007			
Skylite Cond	593	õ		593	2.14		(T)) (B)(2)		-6,140	-6,140	64.34		0.0	0.0		1
Roof Cond	540	0		540	1.95	4 (TC	ST 1078		-380	-380	3.98		IRFLO	VS		
Glass Solar	0	0		0	0.00	A	0 0.0		0	0	0.00					
Glass Cond	0	Ő		õ	0.00		0 0.0		ŏ	ő	0.00		Cooling	H	eating	
Wall Cond	o	ő		0			0 0.0		ŏ	ő	0.00	Vent	97		97	
Partition	õ	v		õ		C 100 US	0 0.0	0.01	ŏ	ő	0.00	Infil	48		48	
Exposed Floor	0			0			0 0.0		õ	õ	0.00	Supply	3,379		3,379	
Infiltration	-732			-732	-2.65	27			-2,760	-2,760	28.93	Mincfm	(0	
Sub Total ==>	29,091	0		29,091	105.21	30,09			-9,280	-9,280	97.25	Return	3,524		3,524	
Internal Loads	1000					- 10			1220	1.50	10.225	Exhaust	145		145	
Lights	824	0		824	2.98	82	4 2.6	9	0	0	0.00	Rm Exh	0)	0	
People	0			0	0.00	1	0.0	0 :	0	0	0.00	Auxil	C)	0	
Misc	0	0	0	0	0.00		0.0	0	0	0	0.00					
Sub Total ==>	824	0	0	824	2.98	82	4 2.6	9 :	0	0	0.00	ENG	NEERIN	G CK	S	
Ceiling Load	0	0		0	0.00		0 0.0		0	0	0.00	1.000				
Outside Air	-2,265	0	0	-2,265	-8.19	-26	The country of the second s	6 :	-263	-263	2.75		Cooli	ng He	ating	
Sup. Fan Heat				0	0.00		0.00	D		0	0.00	% OA		.9	2.9	
Ret. Fan Heat		0		0	0.00		0.00	0 1		0	0.00	cfm/sq ft	7.	00	7.00	
Duct Heat Pkup		0		0	0.00		0.00	0		0	0.00	cfm/ton	1,413.	27		
OV/UNDR Sizing	0			0	0.00		0.00	0	0	0	0.00	sq ft/ton	201.	99		
Exhaust Heat		0	0	0	0.00		0.00	0 :		0	0.00	Btu/hr-sg	ft 59.4	41 -3	38.61	
Termìnaì Bypass	i.	0	0	0	00.0		0.0	0		D	00.0	No. People	Ð	D		
Grand Total ==>	27,650	0	0	27,650	100.00	30,65	5 100.0	0	-9,542	-9,542	100.00	HEATING	G COIL S	ELEC	TION	1
		COOLING	COIL SEL	ECTION					AR	EAS		Cap		il Airfi	Ent	
. 8	fotal Capacity	Sens Cap.	Coil Airfl	Enter D	B/WB/HR	Leave D	B/WB/HR		Gross To	otal Gl	ass	Main Htg	MBh -9.5	cfm 3,379	F 68.0	71.
	ons MBh	MBh	cfm	F	F gr/lb		F gr/lb	Floor			qft (%)	Aux Htg	0.0	0	0.0	0.0
Main Clg	2.3 27.7	30.7	3,379	78.0 6	0.5 68.7	68.0 5	7.5 70.2	Part	4	0		Preheat Reheat	0.0 0.0	0	0.0	0. 0.
	0.0 0.0	0.0	3,379		0.0 0.0		0.0 0.0	ExFir		0		Humidif	-3.9	145	3.5	0. 50.
Contraction (1997) (199	0.0 0.0	1.1	97		6.0 32.7		1.7 32.8	Roof	4	83 435	90	Opt Vent	-5.3	97	5.0	50.
opt vent	0.1	1.1	31	01.0	0.0 04.1	10.0 0	01.0	Wall		0 (202	oprivent	0.0	31	5.0	05.
Totals	2.4 28.7									• •		Total	-18.6			
01013	A.T							L				- Juli		141		

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

By Bhis A

Cafeteria

	COOLI	NG COIL I	PEAK			CLG SPAC	E PEAK		HEATING	COIL PEA	ĸ	Т	EMPER	ATURE	S	
10	at Time: side Air: Space Sens. + Lat. Btuh		Mo/Hr: DB/WB/HR: Ret. Air Latent Btuh			Mo/Hr: OADB: Space Sensible Btuh		Sp	Mo/Hr: OADB: bace Peak bace Sens Btuh	13 / 1 5 Coil Peak Tot Sens Bluh			DB (num) urn) OA) MtrTD	Clg Hts 58.0 72.4 78.0 68.4 78.0 68.4 78.0 68.4 78.0 68.4 0.0 0.4	4 0 0 0	
Envelope Loads	0	0	1.4	0	0.00	0	0.00		0	0	0.00	C 205.5 (c)	BIdTD Frict	0.0 0.0	5.2 C	
Skylite Solr Skylite Cond	0	0		ŏ	0.00	0	0.00		ŏ	o	0.00	FII.1	nut	0.0 0.0	, 	
Roof Cond	16,941	0		16,941	15.29	19,332	14.61	2	-12,984	-12,984	22.30		AIRFL	.ows	Line and	
Glass Solar	41,700	0		41,700	37.64	40,310	30.46		0	0	0.00					
Glass Cond	234	0		234	0.21	1,751	1.32		-12,552	-12,552	21.56	1	Coo	ling H	leating	
Wall Cond	64	0		64	0.06	· 234	0.18		-2,106	-2,106	3.62	Vent	2	,000	2,000	
Partition	0			0	0.00	0	0.00		0	0	0.00	Infil		440	440	
Exposed Floor	0			0	0.00	0	0.00		0	0	0.00	Supply	14		14,588	
Infiltration	-7,295			-7,295	-6.59 46.62	3,592	2.71	1	-25,145	-25,145	43.18	Mincfm		0	0	
Sub Total ==>	51,643	0		51,643	40.02	65,219	49.29		-52,787	-52,787	90.65	Return Exhaus		,028	17,028	
Internal Loads Lights	37,543	0		37,543	33.89	37,543	28.37		0	0	0.00	Rm Exh		,440	2,440	
People	55,000	v		55,000	49.65	27,500	20.78	1	ŏ	õ	0.00	Auxil		ŏ	o	
Misc	7,509	0	0	7,509	6.78	7,509	5.67	1	0	0	0.00			<u>.</u>		2
Sub Total ==>	100.052	0	0	100,052	90.32	72,552	54.83		0	0	0.00	EN	GINEEF	RING CH	(S	
Ceiling Load	0	0		0	0.00	0	0.00		0	0	0.00					
Outside Air	-40,919	0	0	-40,919	-36.94	-5,443	-4.11		-5,443	-5,443	9.35	00000000	C	ooling H	eating	
Sup. Fan Heat				0	0.00		0.00			0	0.00	% OA		13.7	13.7	
Ret. Fan Heat		0		0	0.00		0.00	1		0	0.00	cfm/sq	0.01	3.32	3.32	
Duct Heat Pkup		0		0	0.00		0.00			0	0.00	cfm/tor		322.17		
OV/UNDR Sizing	0	0	0	0	0.00	0	0.00	1	0	0	0.00	sq ft/to Btu/hr-		30.09	-52.69	
Exhaust Heat Terminal Bypass		0	0	ő	0.00		0.00	-		0	0.00	No. Peo		100	-52.69	
Grand Total ≕>	110,776	0	0	110,776	100.00	132,328	100.00		-58,230	-58,230	100.00	HEATI	NG COI	L SELE	CTION	4
	c	OOLING	COIL SEL	ECTION					AR	EAS) (apacity	Coll Air	l Ent	Lv
-		Come Com	Call Aluf	Enter D	DANDULD	Lonus DDA			Green T-	tal O		Main Life	MBh	cfn		· · · · · · · · ·
	otal Capacity ns MBh	Sens Cap. MBh	Coll Airfi cfm	F	B/WB/HR F gr/lb	Leave DBA F F			Gross To	37.5	ass gft (%)	Main Htg Aux Htg	-58.2	14,588		
to	na won	MDU	CIIII	JE.	, Aug	To F	givito	Floor	4,40		q n (70)	Preheat	0.0			
Main Clg S	.2 110.8	126.5	14,588	78.0 6	0.2 67.3	68.0 57.5	69.8	Part		0		Reheat	0.0			
	0.0 0.0	0.0	0		0.0 0.0	0.0 0.0		ExFir		0		Humidif	-64.8	2,440		
	.8 21.6	21.8	2,000	87.0 5	6.0 32.7	75.0 51.7	32.8	Roof	4,40	00 0	0 0	Opt Vent	-108.9	2,000		
x								Wall	2,1	50 695	5 32	15175428				
Totals 11	.0 132.4							1.8705/84			C 2060	Total	-231.9			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

By BH....A

Classroom No. 1

	COOL	ING COIL	PEAK			CLG SPAC	CE PEAK	(HEATING C	OIL PEA	к	TEN	IPERATU	IRES		
	l at Time: Itside Air:	OA	Mo/Hr: DB/WB/HR:		3	Mo/Hr: OADB:			Mo/Hr: 13 OADB: 5			SADB	Clg 68.0 n 78.0	Htg 74.0 68.0		
	Space Sens. + Lat. Btuh	Sensible		Nøt Total Btuh		Sensible	Percent Of Total (%)	Sp		Coil Peak Tot Sens Btuh		Return Ret/O/ Fn Mtr	78.0 78.0 TD 0.0	68.0 68.0 0.0		
Envelope Loads Skylite Solr Skylite Cond	0			0	0.00	 20070 	0.00		0	0	0.00 0.00	Fn Bld Fn Frid		0.0 0.0		
Roof Cond	11,533	0		11,533	24.78	11,533	20.56		-7,746	-7,746	23.20	1	IRFLOW	S		
Glass Solar Glass Cond Wall Cond Partition	6,525 1,215 -1 0			6,525 1,215 -1 0 0	14.02 2.61 0.00 0.00 0.00	· -1	11.63 2.17 0.00 0.00 0.00		0 -8,951 -760 0	0 -8,951 -760 0	0.00 26.81 2.28 0.00	Vent Infil	Cooling 340 263		ting 340 263	
Exposed Floor Infiltration Sub Total ==> Internal Loads	-3,515 15,756	0		-3,515 15,756	-7.55 33.86	2,143 21,415	3.82 38.18		-15,001 -32,458	-15,001 -32,458	0.00 44.94 97.23	Supply Mincfm Return Exhaust	6,184 0 6,787 603		,184 0 ,787 603	
Lights People Misc	22,398 7,650 8,959		o	22,398 7,650 8,959	48.13 16.44 19.25	22,398 4,250 8,959	39.93 7.58 15.97		0	000	0.00 0.00 0.00	Rm Exh Auxil	0		0	
Sub Total ==>	39,007	0	Ő	39,007	83.82 0.00	35,607	63.47 0.00		0	0	0.00	ENG	NEERING	CKS		
Outside Air Sup. Fan Heat	-8,227	0	0	-8,227	-17.68 0.00	-925	-1.65 0.00		-925	-925 0	2.77 0.00	% OA	Coolin 5.	5	5.5	
Ret. Fan Heat Duct Heat Pkup OV/UNDR Sizing	. 0	0		000	0.00 0.00 0.00	*	0.00 0.00 0.00		0	000	0.00	cfm/sq ft cfm/ton sq ft/ton	2.3 1,477.9 627.3	2	2.36	
Exhaust Heat Terminal Bypass	500 2092	0	0 0	0	0.00		0.00			0	0.00	Btu/hr-sq No. Peopl	ft 19.1	3 -25	5.86	
Grand Total ==>	46,536	0	0	46,536	100.00	56,097	100.00		-33,383	-33,383	100.00	HEATING	COIL SI	ELECI	ION	1
		COOLING	COIL SEL	ECTION					AREA	\S		Car	102.41. * .	Airfl	Ent	Lvg
28 28	Total Capacity ons MBh	Sens Cap. MBh	Coil Airfl cfm	Enter D F	B/WB/HR F gr/lb		WB/HR gr/lb	Floor	Gross Total 2,625		uss qft (%)	Main Htg Aux Htg Preheat	0.0	cfm 6,184 0 0	0.0	F 74.0 0.0
	3.9 46.5 0.0 0.0	56.1 0.0	6,184 0		0.3 67.6	68.0 57.5 0.0 0.0	5 70.2 0 0.0	Part ExFir	2,025			Reheat	0.0	0	0.0	0.0
	0.0 0.0 0.3 3.7	3.7	340		6.0 32.7	75.0 51.7	5 T A T C C	Roof	2,625 750	225			-16.0 -18.5	603 340		50.0 65.0
Totals	4.2 50.2]					Total	-67.9			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

By BHKKA

Classroom No. 2

	COOL	NG COIL	PEAK			CLG SPAC	CE PEAK	<	HEATING	COIL PEA	ĸ	TE	IPERA	URES	;	
2.01.0	l at Time: Itside Air: Space	OA Ret. Air	Mo/Hr: DB/WB/HR: Ret. Air	87/56/3	3 Percent	Mo/Hr: OADB: Space		t Sp	Mo/Hr: 1 OADB: ace Peak	13 / 1 5 Coil Peak	Percent	SADB Plenui Returr	n 78.	0 74.0 0 68.0		
	Sens. + Lat-	Sensible	Latent	Total	Of Total	Sensible	Of Total	I Sp	ace Sens	Tot Sens		Ret/O/		68.0		
	Btuh	Btuh	Btuh	Btuh	(%)	Btuh	(%))	Btuh	Btuh	(%)	Fn Mt	TD 0.	0.0		
Envelope Loads											1897-2655	Fn Blo		0.0		
Skylite Solr	0	0		0	0.00	0	0.00		0	0	0.00	Fn Fri	ct 0.	0.0		
Skylite Cond	0	0		0	0.00	0	0.00) <u>:</u>	0	0	0.00					_
Roof Cond	11.533	0		11,533	24.78	11,533	20.56	3	-7,746	-7,746	23.20		AIRFLO	WS		
Glass Solar	6,525	0		6,525	14.02	6,525	11.63	3	0	0	0.00					
Glass Cond	1,215	0		1,215	2.61	1,215	2.17	7 1	-8,951	-8,951	26.81	1	Coolin	a H	eating	
Wall Cond	-1	0		-1	0.00	-1	0.00		-760	-760	2.28	Vent	34		340	
Partition	o			0	0.00	. 0	0.00		0	0	0.00	Infil	26	-	263	
Exposed Floor	õ			0	0.00	o l	0.00		õ	õ	0.00	Supply	6,18		6.184	
Infiltration	-3.515			-3,515	-7.55	2,143	3.82		-15,001	-15,001	44.94	Mincfm	102.403	ō	0,104	
Sub Total ==>	15,756	0		15,756	33.86	21,415	38.18		-32,458	-32,458	97.23	Return	6,78		6.787	
Internal Loads	10,700	v		10,100	00.00	21,410	00.10		02,400	-52,450	01.20	Exhaust	60		603	
Lights	22,398	0		22,398	48.13	22,398	39.93		0	0	0.00	Rm Exh		0	003	
People	7.650	U		7,650	16.44	4,250	7.58		ŏ	0	0.00	Auxil		0	0	
	8,959	0	0	8,959	19.25	8,959	15.97		ő	0	0.00	Auxii		U	U	-
Misc	2.557 T			39,007		(c)	0.050.002		Ö		100.000.0000	ENC	NEERIN		•	1
Sub Total ==>	39,007	0	0	1	83.82	35,607	63.47	() ()		0	0.00	ENG	NEEKIP	GCA	5	
Ceiling Load	0	0	8	0	0.00	0	0.00		0	0	0.00					
Outside Air	-8,227	0	0	-8,227	-17.68	-925	-1.65		-925	-925	2.77	W2286288		ing He		
Sup, Fan Heat				0	0.00		0.00			Q	0.00	% QA		5.5	5.5	
Ret. Fan Heat		0		0	0.00	:	0.00	0.0020		0	0.00	cfm/sq ft		.36	2.36	
Duct Heat Pkup		0	· · ·	0	0.00		0.00	CO. # 0	0.20	0	0.00	cfm/ton	1,477			
OV/UNDR Sizing	0			0	0.00	0	0.00		0	0	0.00	sq ft/ton	627			
Exhaust Heat		0	0	0	0.00		0.00			0	0.00	Btu/hr-sq	ft 19	.13 -	25.86	
Terminal Bypass	E.	0	0	0	0.00		0.00)		0	0.00	No. Peopl	0	17		
Grand Total ==>	46,536	0	0	46,536	100.00	56,097	100.00)	-33,383	-33,383	100.00	HEATIN	GCOIL	SELEC	TION	ĺ.
	C	OOLING	COIL SEL	ECTION					ARE	AS		Car		oil Airfi	Ent	
	Total Capacity	Sens Cap.	Coil Airfl	Enter D	B/WB/HR		WB/HR		Gross Tot		ISS	Main Htg	MBh -33.4	cfm 6,184	F 68.0	F 74.0
	ons MBh	MBh	cfm	F	F gr/lb	FI	= gr/lb	Floor	2,62		qft (%)	Aux Htg Preheat	0.0	0	0.0	0.0
Main Clg	3.9 46.5	56.1	6.184	78.0 6	0.3 67.6	68.0 57.5	5 70.2	Part	0.0000000000000000000000000000000000000	a		Reheat	0.0	ő	0.0	0.0
	0.0 0.0	0.0	0,104		0.0 0.0	0.0 0.0	C C C C C C C C C C C C C C C C C C C	ExFir		õ		Humidif	-16.0	603	3.5	50.0
	0.3 3.7	3.7	340		6.0 32.7	75.0 51.3		Roof	2,62		0	Opt Vent	-18.5	340	5.0	65.0
option	0.0 0.1	5.7	540		and And	10.0 01.1		Wall	75		0.0	Sprienc	10.0	040	0.0	00.0
Totals	4.2 50.2							- Tan	750	220		Total	-67.9			
lotars	4.6 00.2												-01.0			_

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Checksums

By BHI ... A

Classroom No. 3

		COOLI	NG COIL I	PEAK			CLG SPAC	CE PEAK	(HEATING	COIL PEA	ĸ	Т	EMPER	ATURE	s	
Pea	aked at 7 Outside		OA	Mo/Hr: DB/WB/HR:	87 / 56 / 3		Mo/Hr: OADB:	87		Mo/Hr: OADB;	5	the Set	SAI	num	Clg Ht 68.0 74. 78.0 68.	1 0	
	S	Space ens. + Lat.	Ret. Air Sensible	Ret. Air Latent	Net Total		Space Sensible	Percent Of Total		ace Peak	Coil Peak Tot Sens		Ret		78.0 68. 78.0 68.		
		Btuh	Btuh	Btuh	Btuh	(%)	Btuh	(%)		Btuh	Btuh	(%)	Fn	MtrTD	0.0 0.	0	
Envelope Loa	ads	19186567	1212253			0.000	1,000,000,000						Fn	BIdTD	0.0 0.	0	
Skylite Solr		0	0		0	0.00	0	0.00		0	0	0.00	Fn	Frict	0.0 0.	0	
Skylite Cond	d	0	0		0	0.00	0	0.00		0	0	0.00					-
Roof Cond		11,533	0		11,533	22.00	11,533	18.61		-7,746	-7,746	20.55		AIRFL	OWS		
Glass Solar	2	11,880	0		11,880	22.66	11,880	19.17	1	0	0	0.00	1				
Glass Cond	É.	1,688	0		1,688	3.22	1,688	2.72	2	-12,394	-12,394	32.89		Co	oling	leating	1
Wall Cond		62	0		62	0.12		0.10		-1,621	-1,621	4.30	Vent		340	340)
Partition		0			0	0.00		0.00		0	0	0.00	Infil		263	263	
Exposed Flo	oor	0			0		3 11 11 11 11 11 11 11 11 11 11 11 11 11	0.00		0	0	0.00	Supply		5,833	6,833	
Infiltration		-3,515	125		-3,515	-6.71	2,143	3.46		-15,001	-15,001	39.80	Mincfm		0	0	C
Sub Total =:		21,647	0		21,647	41.29	27,306	44.05		-36,763	-36,763	97.54	Return		,436	7,436	
Internal Load	ds				00.000	40.70	00.000	00.40					Exhaus	-	603	603	
Lights		22,398	0		22,398 7,650	42.72 14.59	22,398 4,250	36.13		0	0	0.00	Rm Ext	£	0	0	
People Misc		7,650 8,959	0	0	8,959	17.09	8,959	14.45		0	0	0.00	Auxil		U	0	·
			0	ő	39,007	74.40	35,607	57.44	1941	0	0	7 1013202000	EN	CINEE	RING C	/0	
Sub Total ==		39,007		U	39,007	0.00	35,007	0.00		0	0	0.00		OINEE		13	
Ceiling Load	6	0	0	0	-8,227	-15.69	-925	-1.49		-925	-925	0.00		~	ooling H	eating	
Outside Air Sup. Fan Hea		-8,227	U	v	-0,227	0.00	-925	0.00		-920	-925	0.00	% OA	L.	5.0	5.0	
Ret. Fan Hea			0		õ	0.00		0.00			ő	0.00	cfm/sq	ft	2.60	2.60	
Duct Heat Pk	1000		o o		õ	0.00		0.00			0	0.00	cfm/tor		461.64	2.00	
OV/UNDR Siz		0			0	0.00	0	0.00		0	õ	0.00	sq ft/to		561.47		
Exhaust Heat			0	0	0	0.00		0.00			0	0.00	Btu/hr-		21.37	-27.50	
Terminal Byp			0	0	0	0.00		0.00			0	0.00	No. Pe	ple	17		
Grand Total :	==>	52,426	0	o	52,426	100.00	61,987	100.00		-37,688	-37,688	100.00	HEAT	NG CO	L SELE	стю	N
		С	OOLING	COIL SEL	ECTION					ARI	EAS				Coil Air		
	-			Call Al-O	Enter D	DOMONIC	Lasure DDd	MOULD		6		10481		MBh	cfr		
38			Sens Cap.	Coil Airfl cfm	F	B/WB/HR F gr/lb	Leave DB/ F			Gross To		ass (%)	Main Htg	-37.7	6,83		
	tons	MBh	MBh	Cim		r ginb	r t	= gr/lb	Floor	2,62		qft (%)	Aux Htg Preheat	0.0		0.0	
Main Clg	4.4	52.4	62.0	6,833	78.0 6	0.3 67.8	68.0 57.5	5 70.2	Part	2,04	0		Reheat	0.0			
Aux Clg	0.0	0.0	0.0	0,000		0.0 0.0	0.0 0.0		ExFir		ő		Humidif	-16.0	60		
Opt Vent	0.3	3.7	3.7	340		6.0 32.7	75.0 51.7		Roof	2,62	15 I I I I I I I I I I I I I I I I I I I		Opt Vent	-18.5	340		
operone	0.0	0.1	0.7	1000	121200	100 0000		0.705350	Wall	1,45			a providence	10.0		0.0	00.0
Totals	4.7	56.1							122.9453		24		Total	-72.2			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Cherksums

By BHANA

Classroom No. 4

	COOL	ING COIL	PEAK			CLG SPAC	CE PEAK	<	HEATING	COIL PEA	ĸ		TEMPE	RATUR	ES	
Q Envelope Loads		Ret. Air Sensible Btuh	Btuh	76 / 53 / 3 Net Total Btuh	Percent Of Total (%)	Sensible Btuh	76 Percen Of Tota (%	i sp)	Mo/Hr: OADB: Dace Peak Dace Sens Bluh	5 Coil Peak Tot Sens Btuh	Of Total (%)	PI Ri Ri Fi Fi	ADB enum eturn et/OA n MtrTD n BIdTD	68.0 72 78.0 6 78.0 6 78.0 6 78.0 6 0.0 6 0.0 6	ltg 2.4 3.0 3.0 3.0 0.0 0.0	
Skylite Solr	0	0		0	0.00	0	0.00		0	0	0.00	L Fr	Frict	0.0	0.0	
Skylite Cond					0.00000	8,644	13.28		-7,746			[AIDE	LOWS	_	
Roof Cond	8,644	0		8,644	15.35	22,275	34.21		2012 S. 02 S. 22	-7,746	27.18		AIR	LOWS		
Glass Solar	22,275 -107	0		22,275 -107	39.56	-107	-0.16		-4.064	0 -4,064	0.00		C.	poling	Heatin	-
Glass Cond Wall Cond	-107	0		-107	0.02	 Articles 	0.01		-4,084	-4,064	2.67	Vent	C	340	Heatin 34	
Partition	0	U		0	0.02	8 ES ESTR	0.00		0	-700	0.00	Infil		263	26	
Exposed Floor	o			o	0.00	1 N E	0.00		ő	0	0.00	Suppl	u .	7,177	7,17	
Infiltration	-5,712			-5,712	-10.14	-397	-0.61		-15,001	-15,001	52.64	Mincf		0		0
Sub Total ==>	25,109	0		25,109	44.59	30,424	46.73		-27,571	-27,571	96.75	Return		7.780	7,78	
Internal Loads	20,100			20,100	44.00	00,121	40.74	1	21,011	-21,511	30.15	Exhau		603	60	
Lights	22,398	0		22,398	39.78	22,398	34.40)	0	0	0.00	Rm Ex		0		0
People	7,650	· ·		7,650	13.59	4,250	6.53		o	õ	0.00	Auxil		ŏ		0
Misc	8,959	0	0	8,959	15.91	8,959	13.76		ō	õ	0.00			· ·		•
Sub Total ==>	39,007	0		39,007	69.27	35,607	54.69	C	0	0	0.00	E	NGINEE	RING	KS	
Ceiling Load	00,001	0		0	0.00	0	0.00		0	õ	0.00					
Outside Air	-7,806	0		-7.806	-13.86	-925	-1.42		-925	-925	3.25			Cooling	Heating	2
Sup. Fan Heat	-1,000			0.000	0.00		0.00		010	0	0.00	% QA		4.7	4.	
Ret. Fan Heat		0	2	0	0.00		0.00			0	0.00	cfm/s		2.73	2.7	
Duct Heat Pkup		o		0	0.00		0.00			Ő	0.00	cfm/t		,435.79		
OV/UNDR Sizing	0			0	0.00	i 0	0.00		0	0	0.00	sq ft/		525.13		
Exhaust Heat		0	0	0	0.00		0.00			0	0.00	1000 C C C C C C C C C C C C C C C C C C	r-sq ft	22.85	-24.0	D
Terminal Bypas	5	0		0	0.00		0.00			0	0.00	No. P	CONTRACTOR OF THE OWNER	17		
Grand Total ==>	56,310	0	0	56,310	100.00	65,106	100.00)	-28,496	-28,496	100.00	HEAT	TING CO	DIL SEL	ЕСТІС	N
		COOLING	COIL SEL	ECTION					ARE	AS]		Capacity		302 0.CTV	201 - HOGO
21	Total Capacity	Sens Cap.	Coil Airfl	Enter D	B/WB/HR	Leave DB/	WB/HR		Gross Tot	al Gl	ass	Main Htg	MBI -28.5			F F
	ons MBh	MBh	cfm	F	F gr/lb	FF	= gr/lb	Floor	2,62	S	iqft (%)	Aux Htg Preheat	0.0)	0 0.	0 0.0
Main Clg	4.7 56.3	65.1	7,177	78.0 6	0.4 68.1	68.0 57.5	5 70.2	Part		0		Reheat	0.0		0 0.	
Aux Clg	0.0 0.0	0.0	0		0.0 0.0			ExFir		0		Humidif	-16.0		03 3.	
Opt Vent	0.3 3.7	3.7	340		6.0 32.7		100 100 TO 000 100	Roof	2,62		o ol	Opt Vent	-18.5		40 5.	
operation	0.0	5.7						Wall	75	50						0.00.0
Totals	5.0 60.0							12121253		0.0		Total	-63.0	r		

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS TRACE® Load 700 v2.3 calculated at 10:45 AM on 02/25/2001

1

Room Che ksums

By BHK. A

Classroom No. 5

	COOL	NG COIL	PEAK			CLG SPAC	CE PEAP	<	HEATING	COIL PEA	к	1	EMPE	RATURE	S	
	at Time: tside Air:	3073 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Mo/Hr: DB/WB/HR:	73/51/3	10) - 14 - 19 - 19 - 19 - 19 - 19 - 19 - 19	Mo/Hr: OADB:	73		. 10.000	5		Ple	DB num	Clg H 68.0 72 78.0 68	.7 .0	
	Space Sens. + Lat.	Ret. Air Sensible	Latent	Net Total	Of Total	Space Sensible	Percent Of Total	l Sp	ace Peak ace Sens	Coll Peak Tot Sens	Of Total	Re	turn t/OA	78.0 68 78.0 68	.0	
	Btuh	Btuh	Btuh	Btuh	(%)	Btuh	(%))	Btuh	Btuh	(%)	61033	MtrTD		.0	
Envelope Loads		33		10	1000		537	1		823	1000	D 2043	BIdTD		0.	
Skylite Solr	0	0		0		0	0.00		0	0	0.00	Fn	Frict	0.0 0	.0	
Skylite Cond	0	0		0	10.15.7	0	0.00		0	0	0.00	-				_
Roof Cond	3,701	0		3,701	7.12	3,701	6.08	3	-7,746	-7,746	27.18		AIRE	LOWS		
Glass Solar	24,750	0		24,750	47.61	24,750	40.64	4	0	0	0.00					
Glass Cond	-334	0		-334	-0.64	-334	-0.55	5	-4,064	-4,064	14.26		C	ooling	Heating	E .
Wall Cond	89	0		89	0.17	. 89	0.15	5	-760	-760	2.67	Vent		340	340	
Partition	0	35		0	0.00		0.00	2002	0	0	0.00	Infil		263	263	
Exposed Floor	0			0	0.00		0.00	5	0	0	0.00	Supply	S	6,713	6,713	
Infiltration	-6,633			-6,633	-12.76	-1,271	-2.09	CO. 0.4.1.1	-15,001	-15,001	52.64	Mincfn		0	0	
Sub Total ==>	21,574	0		21,574	41.50	26,936	44.23		-27,571	-27,571	96.75	Return		7,316	7,316	500
Internal Loads	21,014								2.1,011			Exhau		603	603	
Lights	22,398	0		22,398	43.08	22,398	36.78	1	0	0	0.00	Rm Ex	2.2	0	0	
People	7.650			7,650	14.71	4,250	6.98		õ	õ	0.00	Auxil	100	õ	0	
Misc	8,959	0	0	8,959	17.23	8,959	14.71		ő	ŏ	0.00			<u> </u>		0
STATES TO BE SHOWN IN A SHOWN IN A		0 0		39,007	75.03	35,607	58.47		ő	0	0.00	E	CINE	RING C	ve	
Sub Total ==>	39,007	17. T	U	S10.00 C8204	10373073	10 10 10 10 10 10 10 10 10 10 10 10 10 1			3/2	0.0	253333	-	GINE	ERING C	no	
Ceiling Load	0	0		0	0.00	0	0.00		0	0	0.00			21322	1.111	
Outside Air	-8,591	0	0	-8,591	-16.52	-1,646	-2.70	100 B 000	-925	-925	3.25			Cooling I		
Sup. Fan Heat		2		0	0.00	1	0.00	Contraction of the second		0	0.00	% OA	1.1	5.1	5.1	
Ret. Fan Heat		0		0	0.00	1	0.00			0	0.00	cfm/so	(3) (3)	2.56	2.56	
Duct Heat Pkup		0		0	0.00		0.00		-	0	0.00	cfm/to		,447.21		
OV/UNDR Sizing	0	12		0	0.00	0	0.00		0	0	0.00	sq ft/te		565.88	02151252	
Exhaust Heat		0	0	0	0.00		0.00			0	0.00	Btu/hr		21.21	-24.00	
Terminal Bypass	C.	0	0	0	0.00		0.00)		0	0.00	No. Pe	ople	17		
Grand Total ==>	51,989	0	0	51,989	100.00	60,897	100.00)	-28,496	-28,496	100.00	HEAT	ING CO	DIL SELE	CTIO	N
	C	OOLING	COIL SEL	ECTION					ARE	AS		1	Capacity			
т	otal Capacity	Sens Cap.	Coil Airfi	Enter D	B/WB/HR	Leave DB/	WB/HR		Gross Tot	al Gla	ISS	Main Htg	MBh -28.5			
	ons MBh	MBh	cfm	F	F gr/lb	FF	= gr/lb	Floor	2,62	S	qft (%)	Aux Htg	0.0) '	0 0.0	0.
Inin Cla	4.3 52.0	60.9	6.713	78.0 6	0.3 68.0	68.0 57.4	5 70.2	Floor		0		Preheat Reheat	0.0		0.0 0.0	
	4.5 52.0	0.0	0,113	0.0	0.0 0.0			ExFir		ñ	1	Humidif	-16.0			
		3.7	340		6.0 32.7			Roof	2,62	-	0	Opt Vent	100000	1.0		
Opt Vent	0.3 3.7	3.7	540	07.0 3	0.0 32.1	75.0 51.	52.0	Wall	2,62		10.000	optvent	-18.5	5 34	0 5.0	65.
T. 1.1.	4.6 55.7							wan	19	225	30	Total	-63.0			
Totals	4.6 55.7										100000000000000000000000000000000000000	Total	-03.0			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Cherksums

By BHI ... A

Classroom No. 6

	COOL	NG COIL	PEAK			CLG SPAC	E PEAK	C	HEATING	COIL PEA	к		ГЕМРЕ	RATUR	ES	
	l at Time: Itside Air:	OA	Mo/Hr: DB/WB/HR:	7/15 87/56/3	3	Mo/Hr: OADB:	C 100 C 1		Mo/Hr: OADB:	13/1 5			.DB anum	68.0 7	tg 2.0	
	Space Sens. + Lat. Btuh	Ret. Air Sensible Btuh	Ret. Air Latent Btuh	Net Total Btuh	Percent Of Total (%)	Space Sensible Bluh	Percent Of Total (%)	Sp Sp	bace Peak bace Sens Btuh	Coil Peak Tot Sens Btuh	Contraction of the second s	Re	turn t/OA MtrTD	78.0 60 78.0 60	3.0 3.0	
Envelope Loads	et et et et											625720	BIdTD		0.0	
Skyline Solr	0	0		0	0.00	0	0.00		0	0	0.00	5 Fr	Frict	0.0	0.0	
Skylite Cond	0	0		0	0.00	0	0.00		0	0	0.00					00.055
Roof Cond	11,533	0	12	11,533	18.62	11,533	16.13	3	-7,746	-7,746	27.18		AIRF	LOWS		
Glass Solar	22,500	0		22,500	36.32	22,500	31.46		0	0	0.00		12/2007/04	19201200-000		
Glass Cond	567	ō		567	0.92	A Constraint of the second se second second sec	0.79		-4,064	-4.064	14.26		C	ooling	Heatin	a
Wall Cond	89	0		89	0.14	, 89	0.12		-760	-760	2.67	Vent		340		0
Partition	0			0	0.00	. 0	0.00	5.0.2ml	0	0	0.00	Infil		263	20	
Exposed Floor	ő			Ō	0.00	i o	0.00		ŏ	õ	0.00	Suppl	,	7,884	7,8	
Infiltration	-3,515			-3,515	-5.67	2,143	3.00		-15,001	-15.001	52.64	Mincfr		0	1,01	Ó
Sub Total ==>	31,174	0		31,174	50.32	36,833	51.50		-27,571	-27,571	96.75	Return		8.486	8.48	
Internal Loads		-						1				Exhau	1000	603	60	
Lights	22,398	0		22,398	36.15	22,398	31.32		0	0	0.00	Rm Ex	h	0		0
People	7,650	100		7,650	12.35	4,250	5.94		0	0	0.00	Auxil	588 1	Ó		0
Misc	8,959	0	0	8,959	14.46	8,959	12.53		0	0	0.00	L				-
Sub Total ==>	39,007	0	0	39,007	62.96	35,607	49.79		0	0	0.00	E	NGINE	RING (KS	
Ceiling Load	0	D		D	0.00	0	0.00	1.00	0	0	0.00		0000077		1992	
Outside Air	-8.227	ō	0	-8,227	-13.28	-925	-1.29		-925	-925	3.25			Cooling	Heatin	
Sup. Fan Heat	C in the s		10	0	0.00		0.00			0	0.00	% OA		4.3	4.	
Ret. Fan Heat		0		0	0.00	8	0.00			0	0.00	cfm/s	a ft	3.00	3.0	50
Duct Heat Pkup		0		0	0.00	1	0.00			0	0.00	cfm/to		.441.49		
OV/UNDR Sizing	0			0	0.00	0	0.00	11	0	0	0.00	sq ft/t		479.97		
Exhaust Heat	() () () () () () () () () ()	0	0	0	0.00		0.00	1	17	0	0.00	Btu/h		25.00	-24.0	C
Terminal Bypass		0	0	0	0.00		0.00			0	0.00	No. Po		17		
Grand Total ==>	61,953	0	0	61,953	100.00	71,514	100.00		-28,496	-28,496	100.00	HEAT	ING CC	IL SEL	ECTIC	N
nden der Gebenden – A	C	OOLING	COIL SEL	ECTION					ARE	AS			Capacity			nt Lvg
		Sens Cap.	Coll Ale	Enter D	B/WB/HR	Leave DBA			Gross Tot	al Gla		Main Lite	MBh		m	F I
		Sens Cap. MBh	con Aim cfm	F	F gr/lb				Gross 10t		aft (%)	Main Htg	-28.5			
to	ons MBh	MON	cin		e ano	5 5	gr/lb	Floor	2,62		(11 (70)	Aux Htg Preheat	0.0		0 0	
Main Clg	5.2 62.0	71.5	7,884	78.0 6	0.4 68.2	68.0 57.5	70.2	Part		0		Reheat	0.0		0 0	
	0.0 0.0	0.0	7,004	1997 C 1998 - 197	0.4 00.2			ExFir		0		Humidif	-16.0			
	0.0 0.0	3.7	340		6.0 32.7	75.0 51.7		Roof	2,62	T) 2	0	Opt Vent	-18.5	92 .		
Opt Vent	0.3 3.7	3.1	540	01.0 5	0.0 02.1	75.0 51.7	32.0	Wall	2,62	5		Optivent	-10.5	3	10 5	0 65.0
Totala	5.5 65.6							wwatt	15	0 220	30	Total	-63.0	2		
Totals	0.0 00.0											Total	-03.0			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Che 'sums

By BHKINA

Classroom No. 7

1

	COOL	ING COIL	PEAK			CLG SPAC	E PEAK		HEATING	COIL PEA	ĸ	TEN	PERA	TURES	3	
	l at Time: tside Air:	OA	Mo/Hr: DB/WB/HR:		5	Mo/Hr: OADB:	5 (S. 1997) (S. 1997)		Mo/Hr: OADB:	13/1 5		SADB	C 68 n 78	.0 72.7		
	Space Sens. + Lat. Bluh	Ret. Air Sensible Btuh	Ret. Air Latent Btuh	Net Total Bluh		Space Sensible Btuh	Percent Of Total (%)	Sp	ace Peak ace Sens Btuh	Coil Peak Tot Sens Btuh		Return Ret/O/ Fn Mtr	A 78		1	
Envelope Loads			Dian		UR-STR.						000000	Fn Blo	TD 0	.0 0.0	1	
Skylite Solr Skylite Cond	0	0		0	0.00	0	0.00		0	0	0.00	Fn Fri	ct O	.0 0.0	1	
Roof Cond	3,701	0		3,701	7.12	3,701	6.08		-7,746	-7,746	27.18		AIRFLO	ws		
Glass Solar	24,750	0		24,750	47.61	24,750	40.64		0	0	0.00			10110-1793) 11		
Glass Cond	-334	0		-334	-0.64	-334	-0.55		-4,064	-4,064	14.26	Artic 10.000 at 10.000	Cooli	ng H	eating	
Wall Cond	89	0		89	0.17	- 89	0.15		-760	-760	2.67	Vent		40	340	
Partition	0			0	0.00		0.00		0	0	0.00	Infil		63	263	
Exposed Floor Infiltration	-6,633			-6,633	-12.76	-1,271	-2.09		-15,001	0 -15,001	0.00	Supply Mincfm	6,7	0	6,713 0	
Sub Total ==>	21,574	0		21,574	41.50	26,936	44.23	1	-27,571	-27,571	96.75	Return	7,3		7,316	
Internal Loads	1000					20,000		1		21,011	55.10	Exhaust		03	603	
Lights	22,398	0		22,398	43.08	22,398	36.78	1	0	0	0.00	Rm Exh		0	0	
People	7,650		-	7,650	14.71	4,250	6.98	1	0	0	0.00	Auxil		0	0	
Misc	8,959	0	0	8,959	17.23	8,959	14.71		0	0	0.00					
Sub Total ==>	39,007	0	0	39,007	75.03	35,607	58.47		0	0	0.00	ENG	NEERI	NG CK	S	
Ceiling Load	0	0	2	0	0.00	0	0.00		0	0	0.00		1203		1002	
Outside Air	-8,591	0	0	-8,591	-16.52	-1,646	-2.70		-925	-925	3.25	% OA	Coo	ling He 5.1	ating 5.1	
Sup. Fan Heat Ret. Fan Heat		0		0	0.00		0.00	1		0	0.00	cfm/sq ft		2.56	2.56	
Duct Heat Pkup		ŏ		ŏ	0.00		0.00	1		ő	0.00	cfm/ton	1,442		2.00	
OV/UNDR Sizing	0			Ō	0.00	0	0.00	1	0	õ	0.00	sq ft/ton		5.88		
Exhaust Heat		0	0	0	0.00		0.00	1		0	0.00	Btu/hr-sq	ft 21	1.21 -	24.00	
Terminal Bypass		0	0	O	0.00		00.00			0	00.0	No. Peopl	e	17		
Grand Total ==>	51,989	0	0	51,989	100.00	60,897	100.00		-28,496	-28,496	100.00	HEATING	S COIL	SELE	CTIO	N
	(COOLING	COIL SEL	ECTION][AR	EAS		Car		oil Airfi	0.000	
. 1	fotal Capacity	Sens Cap.	Coil Airfl	Enter D	B/WB/HR	Leave DB/V			Gross To	tal Gl	ass	Main Htg	MBh -28.5	cfm 6,713	1.0.000	72.1
	ons MBh	MBh	cfm	F	F gr/lb	FF		Floor	2.0	S	qft (%)	Aux Htg	0.0	0	0.0	0.0
Main Clg	4.3 52.0	60.9	6,713	78.0 6	0.3 68.0	68.0 57.5	70.2	Ploor	2,6	0		Preheat Reheat	0.0	0		0.0
	0.0 0.0	0.0	0		0.0 0.0	0.0 0.0	1000 C	ExFir		ŏ		Humidif	-16.0	603		50.0
	0.3 3.7	3.7	340		6.0 32.7	75.0 51.7		Roof Wall	2,6 7			Opt Vent	-18.5	340		65.0
Totals	4.6 55.7											Total	-63.0			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Ch cksums

By BhinRA

Classroom No. 8

	C	DOLI	NG COIL F	PEAK				CLG S	PAC	E PEAK	<	HEATING	COIL PEA	к	TEN	PERAT	JRES		
	d at Time: lutside Air:		OAI	Mo/Hr: DB/WB/HR:		/ 33			o/Hr: ADB:			Mo/Hr: OADB:	13/1 5		SADB Plenun	Cig 68.0 1 78.0	Htg 72.0 68.0		
	Sens. +	pace Lat. Btuh	Ret. Air Sensible Btuh	Ret. Air Latent Btuh	Not Tot Blu	al O	ercent f Total (%)	Sens	pace sible Btuh	Percen Of Tota (%	I Sp	ace Peak ace Sens Btuh	Coil Peak Tot Sens Btuh		Return Ret/OA Fn Mtr	78.0 78.0	68.0 68.0 0.0		
Envelope Loads	5									1.12					Fn Bld	D 0.0	0.0		
Skylite Solr		0	0			0	0.00		0	0.00		0	0	0.00	Fn Fric	t 0.0	0.0		
Skylite Cond		D	0			0	0.00		0	0.00	0	0	0	0.00					_
Roof Cond	1	1,533	0		11,53	3	18.62	11	,533	16.13	3	-7,746	-7,746	27.18	A 4	IRFLOW	S		
Glass Solar		2,500	0		22,50	0	36.32	22	.500	31.46	5	0	0	0.00					
Glass Cond	1904	567	0		56		0.92	Sec. 6	567	0.79		-4,064	-4.064	14.26		Cooling	He	ating	
Wall Cond		89	0		8	9	0.14		89	0.12	2	-760	-760	2.67	Vent	340		340	
Partition		0				0	0.00	1	0	0.00		0	0	0.00	Infil	263		263	
Exposed Floor		0				0	0.00		0	0.00		0	0	0.00	Supply	7,884		7,884	
Infiltration		3,515			-3,51	5	-5.67	2	143	3.00		-15,001	-15,001	52.64	Mincfm	0		0	
Sub Total ==>		1,174	0		31,17		50.32	36	833	51.50		-27,571	-27,571	96.75	Return	8,486		8,486	
Internal Loads		1983-001			2.11.2				1220		1	10111111111	1204030	100100	Exhaust	603		603	
Lights	2	2,398	0		22,35	8	36.15	22	,398	31.3	2	0	0	0.00	Rm Exh	0		0	
People		7,650			7,65		12.35	4	,250	5.94	4 :	0	0	0.00	Auxil	0		0	
Misc		8,959	0	0	8,95	9	14.46	8	,959	12.53	3	0	0	0.00					
Sub Total ==>	3	9,007	0	0	39,00	17	62.96	35	.607	49.79	9	0	0	0.00	ENG	NEERIN	G CK	S	
Ceiling Load		0	0		1000 C	0	0.00	692592	0	0.00	o i	0	0	0.00	10000000				
Outside Air	-4	8,227	0	0	-8,22	7	-13.28		-925	-1.29	5.000 C	-925	-925	3.25		Coolir	a He	ating	
Sup. Fan Heat						0	0.00			0.00			0	0.00	% OA		.3	4.3	
Ret. Fan Heat			0			0	0.00			0.00			0	0.00	cfm/sa ft	3.0	00	3.00	
Duct Heat Pkup			D			0	0.00			0.00) i		0	0.00	cfm/ton	1,441.4	9		
OV/UNDR Sizin		0				0	0.00		0	0.00		. 0	0	0.00	sq ft/ton	479.9			
Exhaust Heat		1.50	0	0		0	0.00			0.00			0	0.00	Btu/hr-sq f			24.00	
Terminal Bypas	s		0	0		0	0.00			0.00)		0	0.00	No. People		7		
Grand Total ==>	• 61	1,953	0	0	61,95	3	100.00	71	,514	100.00)	-28,496	-28,496	100.00	HEATING	COIL S	ELEC	TION	1
		С	OOLING C	OIL SEL	ECTIO	N	V.5-940 C.5					AR	EAS		1. (ROUGH)		Airfi	Ent	Lvg
	Total Cap	acity	Sens Cap.	Coil Airfi	Enter	DB	WBIHR		DBN	VBIHR	l	Gross To	itali Gi	ass		MBh -28.5	cfm 7,884	F 68.0	F 72.0
		MBh	MBh	cfm	F	I	= gr/lb	F	F	gr/lb	Floor	2,62		qft (%)	Aux Htg Preheat	0.0	0	0.0	0.
Main Clg	5.2	62.0	71.5	7.884	78.0	60.4	68.2	68.0	57.5	70.2	Part	2,0	0		Reheat	0.0	ŏ	0.0	0.
Aux Clg	0.0	0.0	0.0	0	0.0	0.0		0.0	0.0	0.0	ExFir		0			16.0	603	3.5	50.
Opt Vent	0.3	3.7	3.7	340	87.0	56.0		75.0			Roof	2,63		0 0		18.5	340	5.0	65.
operation		222							1		Wall		50 22	CV 100375-1			010	0.0	00.
Totals	5.5	65.6													Total	63.0			
		1000				0.										so/200			_

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

TRACE® Load 700 v2.3 calculated at 10:45 AM on 02/25/2001

1

Room Ch cksums By BhinRA

Classroom No. 9

	COOLI	NG COIL I	PEAK			CLG SPAC	E PEAK	(HEATING	COIL PEA	ĸ	TEN	PERAT	JRES		
	at Time: tside Air:		Mo/Hr: DB/WB/HR:	87/56/3		Mo/Hr: OADB:	87		Mo/Hr: OADB:	5		SADB		68.0		
	Space Sens. + Lat. Btuh	Ret. Air Sensible Btuh	Ret. Air Latent Btuh	Net Total Bluh	Percent Of Total (%)	Space Sensible Btuh	Percent Of Total (%)	Sp	ace Peak ace Sens Bluh	Coil Peak Tot Sens Btuh		Return Ret/OA Fn Mtr	78.0 TD 0.0	68.0 68.0 0.0		
Envelope Loads Skylite Solr Skylite Cond	0	0		0	0.00	0	0.00		0	0	0.00	Fn Bld Fn Frid		0.0 0.0		
Roof Cond	11,533	0		11,533	18.23	11,533	15.83	-	-7,746	-7,746	25.73		IRFLOV	IS		
Glass Solar Glass Cond	23,660 725	0		23,660 725	37.39 1.14	23,660 725	32.48 0.99		0 -5,216	0 -5,216	0.00 17.33		Cooling	Hea	ating	
Wall Cond Partition Exposed Floor	100 0 0	O		100 0 0	0.16 0.00 0.00	100 0 0	0.14 0.00 0.00		-1,216 0 0	-1,216 0 0	4.04 0.00 0.00	Vent Infil Supply	340 263 8,030	E	340 263 3,030	
Infiltration Sub Total ==> Internal Loads	-3,515 32,503	0		-3,515 32,503	-5.56 51.36	2,143 38,161	2.94 52.39		-15,001 -29,180	-15,001 -29,180	49.83 96.93	Mincfm Return Exhaust	0 8,633 603	8	0 3,633 603	
Lights People Misc	22,398 7,650 8,959	0 0	0	22,398 7,650 8,959	35.39 12.09 14.16	22,398 4,250 8,959	30.75 5.83 12.30	1	0	0 0 0	0.00 0.00 0.00	Rm Exh Auxíl	0		0 0	
Sub Total ==>	39,007	0	õ	39,007	61.64	35,607	48.88		0	õ	0.00	ENG	NEERIN	G CKS	5	
Ceiling Load	0	0	85	0	0.00	0	0.00		0	0	0.00	10000000				
Outside Air Sup. Fan Heat	-8,227	0	0	-8,227	-13.00 0.00	-925	-1.27 0.00	1	-925	-925 0	3.07 0.00	% OA	4	ng Hea .2	4.2	
Ret. Fan Heat Duct Heat Pkup OV/UNDR Sizing	0	0		0	0.00 0.00 0.00	0	0.00 0.00 0.00		0	0 0	0.00 0.00 0.00	cfm/sq ft cfm/ton sg ft/ton	3.0 1,439.1 470.4	4	3.06	
Exhaust Heat Terminal Bypass	0	0	0	0 0	0.00	Ū	0.00		U	00	0.00 0.00	Btu/hr-sq No. People	t 25.5		4.61	
Grand Total ==>	63,282	0	0	63,282	100.00	72,843	100.00		-30,105	-30,105	100.00	HEATING	COIL S	ELEC.	TION	
	C	OOLING	COIL SEL	ECTION					ARE	AS		Cap	Concernant and the	l Airfi	Ent	510.0
	otal Capacity	Sens Cap. MBh	Coil Airfl cfm	Enter D F	B/WB/HR F gr/lb			Floor	Gross Tot 2,62	S	ass iqft (%)	Main Htg Aux Htg Preheat	MBh -30.1 0.0 0.0	cfm 8,030 0 0	F 68.0 0.0 0.0	72. 0.0
Main Clg	5.3 63.3	72.8	8,030	78.0 E	60.4 68.2	68.0 57.5	70.2	Part		0		Reheat	0.0	0	0.0	0.0
Aux Clg	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0 0.0		ExFir		0		1.1	-16.0	603	3.5	50.0
Opt Vent	0.3 3.7	3.7	340	87.0 5	6.0 32.7	75.0 51.7	32.8	Roof Wall	2,62 1,10			Sec. Sec.	-18.5	340	5.0	65.0
Totals	5.6 67.0											Total	-64.6		<u>en en 19</u> 2	

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Charksums

By BhaRA

Conference Room No. 3

	COOL	NG COIL	PEAK			CLG SPAC	E PEAK		HEATING	COIL PEA	к		FEMPER	RATURI	ES	
Ou Envelope Loads	at Time: tside Air: Space Sens. + Lat. Btuh	Ret. Air Sensible Btuh	Mo/Hr: DB/WB/HR: Ret. Air Latent Btuh	79 / 55 / 3 Net Total Btuh	Percent Of Total (%)	Sensible	77 Percent Of Total (%)	Spi	Mo/Hr: OADB: ace Peak ace Sens Btuh	5 Coll Peak Tot Sens Btuh	Of Total (%)	Pic Re Re Fn Fn	DB enum turn VOA MtrTD BIdTD	68.0 71 78.0 68 78.0 68 78.0 68 78.0 68 0.0 00	3.0 3.0 3.0 0.0 0.0	
Skylite Solr	0	0		0	0.00	0	0.00		0	0	0.00	Fn	Frict	0.0 0	0.0	
Skylite Cond	2,233	0		2,233	11.47	1,910	7.86	2 C	-1,712	0.7	19.54		AIDE	LOWS		1
Roof Cond Glass Solar	10,416	0		10,416	53.50	11,648	47.92		-1,712	-1,712 0	0.00		AIRE	LUWS		
Glass Cond Wall Cond	38	0		38	0.19	-31	-0.13		-2,023 -620	-2,023 -620	23.10 7.08	Vent	Co	oling 400	Heating 40	
Partition Exposed Floor Infiltration Sub Total ==>	0 0 -962 11,724	0		0 0 -962 11,724	0.00 0.00 -4.94 60.22	0 0 -51 13,465	0.00 0.00 -0.21 55.40		0 0 -3,315 -7,668	-3,315 -7,668	0.00 0.00 37.85 87.57	Infil Supply Mincfn Return	n	58 2,679 0 3,137	51 2,67	3 9 0
Internal Loads						00102030		1			000000	Exhau	E. (7)	458	45	3
Lights People	4,949 9,000	0	•	4,949 9,000	25.42 46.23	4,949 5,000	20.36 20.57		0	0	0.00	Rm Ex Auxil	h	0))
Misc	1,980	0	0	1,980	10.17	1,980	8.14	1	0	0	0.00			DINC	1/0	
Sub Total ==>	15,928	0	0	15,928	81.81	11,928	49.08	1	0	0	0.00		IGINEE	RING C	NS	
Ceiling Load Outside Air	0 -8,184	0	0	Q -8,184	0.00 -42.04	0 -1,089	0.00 -4.48		Q -1,089	0 -1,089	0.00	1	(Cooling		
Sup. Fan Heat Ret. Fan Heat Duct Heat Pkup		0		0000	0.00 0.00 0.00		0.00 0.00 0.00			0 0	0.00 0.00 0.00	% OA cfm/se cfm/to		14.9 4.62 .351.34	14.9 4.62	
OV/UNDR Sizing Exhaust Heat	0	0	0	0	0.00 0.00		0.00 0.00		0	0	0.00 0.00	sq ft/t Btu/hr	on -sqft	292.52 41.02	-73.60	
Terminal Bypass		0	0	0	0.00		0.00			0	0.00	No. Pe	eople	20		_
Grand Total ==>	19,469	0	0	19,469	100.00	24,305	100.00		-8,757	-8,757	100.00	HEAT	ING CO	IL SEL	ЕСТЮ	N
	0	OOLING	COIL SEL	ECTION					ARE	AS			Capacity			
0	otal Capacity ons MBh	Sens Cap. MBh	Coil Airfl cfm	Enter D F	B/WB/HR F gr/lb	Leave DB/V F F	02002000	Floor	Gross Tot	5	ass qft (%)	Main Htg Aux Htg Preheat	MBh -8.8 0.0 0.0	2,6	m F 79 68.0 0 0.0	0.0
Main Clg	1.6 19.5	23.6	2.679	78.0 6	0.1 66.7	68.0 57.4	69.8	Part		0		Reheat	0.0		0 0.0	
	0.0 0.0	0.0	0		0.0 0.0	0.0 0.0		ExFlr		0		Humidif	-12.2			
	0.4 4.3	4.3	400		6.0 32.7	75.0 51.7	32.8	Roof Wall	58 54		SV 0.0	Opt Vent	-21.8	40	0 5.0	
Totals	2.0 23.8						11				100 C	Total	-42.7			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Ch ksums By BHKRA

Gymnasium

	COOLI	NG COIL F	PEAK			CLG SPAC	E PEAK		HEATING	COIL PEA	к	TE	MPER	ATUR	S	
	at Time: tside Air:	OA	MoiHr: DB/WB/HR:		33	Mo/Hr: OADB:			Mo/Hr: OADB:	13/1 5		SAD		Clg H 55.0 94 80.0 70		
	Space Sens. + Lat. Btuh	Ret. Air Sensible Btuh	Ret. Air Latent Btuh	Net Total Btuh		Space Sensible Btuh	Percent Of Total (%)	Sp	pace Peak bace Sens Btuh	Coil Peak Tot Sens Btuh		Retu Ret/C Fn M	m DA trTD	80.0 70 80.7 63 0.0 0	.0 .3 .0	
Envelope Loads Skylite Solr Skylite Cond	0	0		0		0	0.00		0	0	0.00	Fn B Fn F			0.0 0.0	
Roof Cond	25,350 15,400	0		25,350 15,400	15.95	25,350 15,400	19.34 11.75		-18,268	-18,268	11.20 0.00		AIRF	LOWS		×
Glass Solar Glass Cond Wall Cond Partition Exposed Floor	15,400 2,728 349 0	0		2,728 349 0	1.72 0.22 0.00	2,728 349 0	2.08 0.27 0.00 0.00		-31,196 -7,558 0 0	-31,196 -7,558 0	19.12 4.63 0.00 0.00	Vent Infil Supply		oling 600 1,200 5,781	Heatin 60 1,20 5,78	0
Infiltration Sub Total ==> Internal Loads	-231 43,596	0		-231 43,596	-0.15 27.43	6,784 50,610	5.17 38.61		-70,755 -127,777	-70,755 -127,777	43.37 78.32	Mincfm Return Exhaust	(0 5,981 1,800	6,98 1,80	0 1 0
Lights People Misc	51,195 54,000 10,239	0	0	51,195 54,000 10,239	32.22 33.98 6.44	51,195 19,050 10,239	39.05 14.53 7.81		0 0 0	000	0.00 0.00 0.00	Rm Exh Auxil		0		0 0
Sub Total ==> Ceiling Load	115,434 0	0	0	115,434 0		80,484 0	61.39 0.00		0	0	0.00	ENC	SINEE	RING C	KS	
Outside Air Sup. Fan Heat	0	0	0	-115 0 0	0.00	0	0.00 0.00 0.00	1	0	-35,378 0 0	21.68 0.00 0.00	% OA cfm/sq f		ooling 10.4 0.96	Heating 10.4 0.96	1
Ret. Fan Heat Duct Heat Pkup OV/UNDR Sizing	0	o o	0	0	0.00 0.00	0	0.00		0	0000	0.00 0.00 0.00 0.00	cfm/ton sq ft/ton Btu/hr-s	6	436.51 453.07 26.49	-34.4	
Exhaust Heat Terminal Bypass		0	ő	0			0.00			0	0.00	No. Peo		30	-34.4	
Grand Total ==>	159,030	0	0	158,915	100.00	131,094	100.00		-127,777	-163,154	100.00	HEATIN	IG CO	IL SEL	ECTIC	N
	c	OOLING	OIL SEL	ECTION					ARE	AS		c	apacity			
	otal Capacity ons MBh	Sens Cap. MBh	Coil Airfl cfm	Enter (F	B/WB/HR F gr/lb			Floor	Gross Tol	5	ass qft (%)	Main Htg Aux Htg Preheat	MBh -206.4 0.0 0.0	5,7i		0 94.4 0 0.0
Aux Clg	3.2 158.9 0.0 0.0	134.5 0.0	5,781 0	0.0	55.8 41.7 0.0 0.0	0.0 0.0	12 Disc. Conc. 1	Part ExFir		0		Reheat Humidif	0.0 0.0		0 0. 0 0.	0 0.0
	0.0 0.0 3.2 158.9	0.0	0	0.0	0.0 0.0	0.0 0.0	0.0	Roof Wall	6,00 5,50			Opt Vent	0.0		0 0.	0 0.0
otals 1	3.2 158.9						(Total	-200.4	00000000		110001-02

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Chooksums By Br...RA

Kitchen

	coc	LIN	IG COIL F	PEAK			CLG SP	PAC	E PEAK		HEATING	COIL PEA	ĸ	Т	MPE	RATU	RES		
	ed at Time: Jutside Air:		OAI	Mo/Hr: DB/WB/HR:		39		Hr: 7 DB:	7 / 15 87		Mo/Hr: OADB:	13/1 5		SAD	5.0000		Htg 72.6 68.0		
	Space Sens. + La	at.	Ret. Air Sensible Btuh	Ret. Air Latent Btuh	Net Total Btuh		Spa Sensit		Percent Of Total	Sp	ace Peak ace Sens Btuh	Coil Peak Tot Sens Bluh		Ret/	rn	78.0	68.0 68.0		
Envelope Load	Btu	JU	Blun	Blun	Blun	(%)		un	(%)	1	Btun	Blun	(%)		IdTD	0.0	0.0		
Skylite Solr	•	0	0		0	0.00	8	0	0.00	1	0	0	0.00	Fn F		0.0	0.0		
Skylite Cond		õ	0		0			0	0.00		ŏ	0	0.00			0.0	0.0		
Roof Cond	2,8		0		2,830	14.89	3,2	29	13.04		-2,169	-2,169	19.11		AIRF	LOWS	S		
Glass Solar	4,1		0		4,118		4,1		16.62		0	0	0.00						
Glass Cond		37	0		37			78	1.12	10.00	-2,033	-2,033	17.92		Co	ooling	Hea	ting	
Wall Cond	-1:		0		-121			94	0.38	1	-1,857	-1,857	16.36	Vent	0000	400		400	
Partition		0			0		1	0	0.00		0	0	0.00	Infil		74		74	
Exposed Floor		0			0			0	0.00		0	0	0.00	Supply		2,731	2	,731	
Infiltration	-1,2		75123		-1,219			00	2.42	1	-4,200	-4,200	37.02	Mincfm		0		0	
Sub Total ==>	5,6	15	0		5,645	29.70	8,3	19	33.58	1	-10,259	-10,259	90.41	Return		3,205	3	,205	
Internal Loads			0		6,271	33.00	6,2	74	05.04		٥	0	0.00	Exhaust		474		474	
Lights	6,2		U		9,000		5,0		25.31 20.18		0	0	0.00	Rm Exh Auxil		0		0	
People Misc	6,2		0	0	6,271		6,2		25.31		0	o	0.00	Auxii		U		v	
Sub Total ==>	21,54		0	0	21,543		17,5		70.81	1	õ	0	0.00	EN	GINE	RING	CKS	1	23 8 8
Ceiling Load	21,5	0	õ	•	0			0	0.00	1	õ	ő	0.00				0110		
Outside Air	-8,18	- T	õ	0	-8,184		-1,0		-4.39	3	-1,089	-1.089	9.59			Cooling	Heat	ina	
Sup. Fan Heat		2015	1920	05255	0	0.00	C. 10	0.02	0.00	1		0	0.00	% OA		14.6		4.6	
Ret. Fan Heat			0	10	0	0.00			0.00			0	0.00	cfm/sq	ft	3.72	3	3.72	
Duct Heat Pkup			0		0				0.00	1		0	0.00	cfm/ton	1	,404.81			
OV/UNDR Sizin	9	0			0			0	0.00	1	0	0	0.00	sq ft/tor		378.08			
Exhaust Heat			0	0	0				0.00	1		0	0.00	Btu/hr-s		31.74		2.16	
Terminal Bypas	s		0	0	0	0.00			0.00	1		0	0.00	No. Peo	ple	20			
Grand Total ==	> 19,00)4	0	0	19,004	100.00	24,7	74	100.00		-11,348	-11,348	100.00	HEATI	IG CC	DIL SE	LECT	ION	I
		cc	OLING	OIL SEL	ECTION						AR	EAS		c	apacity			Ent	
	Total Capacit		ens Cap.	Coll Airfl	Enter	B/WB/HR	Leave [DR/M	B/HP		Gross To	ital Gl	iss	Main Htg	MBh -11.4		cfm 731	F 68.0	F 72.6
æ	tons MB		MBh	cfm	F	F gr/lb		F	gr/lb		01055 10	1995 (1995)	q ft (%)	Aux Htg	0.0		0	0.0	0.0
	iono mo				3	3.10		1	3	Floor	7	35	1. (.5)	Preheat	0.0		õ	0.0	0.0
Main Cla	1.6 19.	0	23.4	2,731	78.0 6	0.0 66.3	68.0	57.5	70.0	Part		0		Reheat	0.0		õ	0.0	0.0
Aux Clg	0.0 0.	-	0.0	0	0.0	0.0 0.0	0.0	0.0	0.0	ExFir		0		Humidif	-12.6		474	3.5	50.0
Opt Vent	0.4 4	3	4.3	400	87.0	56.0 32.7	75.0	51.7	32.8	Roof Wall	7 1,3		0 0	Opt Vent	-21.8		400	5.0	65.0
Totals	1.9 23	3									1.5			Total	-45.7	,			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

By Br...RA

Locker rooms

	COOL	NG COIL I	PEAK			CLG SPAC	E PEAK	(HEATING	COIL PEA	ĸ	TEN	PERAT	URES	6	
Peaked Out	at Time: side Air:	OAI	Mo/Hr: DB/WB/HR:	1 T T T T T T T T T T T T T T T T T T T	3	Mo/Hr: OADB:			Mo/Hr: OADB:	5		SADB Plenur) 94.4) 70.0		
Envelope Loads	Space Sens. + Lat. Bluh	Ret. Air Sensible Btuh	Ret. Air Latent Bluh	Net Total Btuh		Space Sensible Btuh	Percent Of Total (%)	Sp	ace Peak ace Sens Btuh	Coll Peak Tot Sens Btuh	- CONSTRUCTION (CONSTRUCT)	Ret/O/ Ret/O/ Fn Mtr Fn Bld	83. TD 0.0	5 37.2 0 0.0	:	
Skylite Solr Skylite Cond	0	0		0	0.00	0 0	0.00		0	0	0.00	Fn Frie				
Roof Cond	3,160	0		3,160	13.02	3,160	17.56		-2,238	-2,238	5.44		IRFLO	WS		
Glass Solar Glass Cond Wall Cond	487 71 -10	0		487 71 -10	2.01 0.29 -0.04	487 71 -10	2.71 0.39 -0.06		0 -689 -289	0 -689 -289	0.00 1.68 0.70	Vent	Coolin 40	gн	eating 400	
Partition Exposed Floor Infiltration	0 0 37	ų		0 0 37	0.00 0.00 0.15	0 0 467	0.00 0.00 2.59		0 0 -4,334	0 0 -4,334	0.00 0.00 10.54	Infii Supply Mincfm	7 79	4	74 794 0	
Sub Total ==> Internal Loads Lights	3,745 6,271	0		3,745 6,271	15.43 25.84	4,175 6,271	23.19 34.84		-7,550 0	-7,550 0	18.36 0.00	Return Exhaust Rm Exh	86 47		867 474 0	
People Misc	12,800 1,254	0	0	12,800 1,254	52.74 5.17	6,300 1,254	35.00 6.97	1	0 0	0 0	0.00 0.00	Auxil		0	0	
Sub Total ==> Ceiling Load	20,326 0	a O	Q	20,326 0	83.75 0.00	13,826 0	76.81 0.00	4	0 Q	0 0	0.00 00.0	ENG	NEERIN			
Outside Air Sup. Fan Heat	0	0	0	200 0 0	0.82 0.00 0.00	0	0.00 0.00 0.00	1	0	-23,585 0 0	57.34 0.00	% OA cfm/sq ft	5	ing He 0.4 .08	50.4	
Ret. Fan Heat Duct Heat Pkup OV/UNDR Sizing	0	0		0	0.00	0	0.00		-9,995	0 -9,995	0.00 0.00 24.30	cfm/ton sq ft/ton	392 363	46	1.08	
Exhaust Heat Terminal Bypass		0	0	0	0.00 0.00		0.00 0.00			0	0.00 0.00	Btu/hr-sq No. People		02 - 20	55.96	
Grand Total ==>	24,070	0	0	24,270	100.00	18,000	100.00		-17,545	-41,130	100.00	HEATING	COIL :	SELE	CTION	4
		OOLING	COIL SEL	ECTION					ARE	EAS		Сар	1.000 Million - 0000	il Airfl		Lvg
	otal Capacity ns MBh	Sens Cap. MBh	Coll Airfi cím	Enter D F	B/WB/HR F gr/lb	Leave DBA F F		Floor	Gross To	S	ass qft (%)	Aux Htg	MBh -28.4 0.0	cfm 794 0 794	55.0 0.0	0.0
Main Clg 2	.0 24.3	20.5	794		5.9 37.6	55.0 42.4		Part	0	0		Reheat	-12.8 0.0	194		55.0 0.0
	0.0 0.0	0.0	0		0.0 0.0	0.0 0.0		ExFir		0		Humidif	0.0	0		0.0
	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0 0.0	0.0	Roof Wall	73 21		525	Opt Vent	0.0	0	0.0	0.0
Totals 2	2.0 24.3							1	2		1999.00198	Total	-41.1			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Chocksums By B....RA

Macrame Room

	COOLI	NG COIL	PEAK			CLG SPA	CE PEAK	K	HEATING	COIL PEA	K	TE	MPERA	TURES	6	
Ou Envelope Loads	at Time: tside Air: Space Sens. + Lat. Btuh	Ret. Air Sensible Bluh	Mo/Hr: DB/WB/HR: Ret. Air Latent Btuh	87 / 56 / 3 Net Total Btuh	Percent Of Total (%)	OADB Space Sensible Btuh	Percen Of Tota (%	l Sp)	oace Peak bace Sens Btuh	5 Coil Peak Tot Sens Btuh	Of Total (%)	SADI Plent Retu Ret/C Fn M Fn B	um 78 m 78 A 78 trTD 0 dTD 0	.0 73.2 .0 68.0 .0 68.0 .0 68.0 .0 68.0 .0 0.0		
Skylite Solr	0	0		0	0.00	0	0.00		0	0	0.00	Fn Fi	ict 0	.0 0.0	F	
Skylite Cond	0				1.535.555		0.00				0.00	5	AIRFLO	-		
Roof Cond	5,154	0		5,154	23.94	5,154	19.5		-3,461	-3,461	25.53		AIRFLU	1442		
Glass Solar Glass Cond Wall Cond Partition	1,914 356 0 0	0 0		1,914 356 0 0	8.89 1.66 0.00 0.00	1,914 356 0	7.20 1.31 0.00 0.00	5	0 -2,625 -223 0	0 -2,625 -223 0	0.00 19.37 1.64 0.00	Vent Infil		ng H 00 17	eating 200 117	
Exposed Floor	0			0	0.00	0	0.0	0	0	0	0.00	Supply	2,9	05	2,905	
Infiltration	-1,571			-1,571	-7.30	958	3.63	3 :	-6,704	-6,704	49.44	Mincfm		0	0	
Sub Total ==>	5,853	0		5,853	27.19	8,381	31.8	1	-13,013	-13,013	95.99	Return	3,2		3,222	
Internal Loads												Exhaust	3	17	317	
Lights	10,009	0		10,009	46.49	10,009	37.90		0	0	0.00	Rm Exh		0	0	
People	4,500			4,500	20.90	2,500	9.49		0	0	0.00	Auxil		0	0	
Misc	6,005	0		6,005	27.90	6,005	22.79		0	0	0.00					-
Sub Total ==>	20,514	0		20,514	95.29	18,514	70.26	6	0	0	0.00	ENC	SINEERI	NG CK	S	
Ceiling Load	0	0		0	0.00	0	0.00	0	0	0	0.00					
Outside Air	-4,840	0	0	-4,840	-22.48	-544	-2.07	7	-544	-544	4.01		Coo	ling He	eating	
Sup. Fan Heat				0	0.00		0.00			0	0.00	% OA		6.9	6.9	
Ret. Fan Heat		0		0	0.00		0.00	5 C		0	0.00	cfm/sq f		2.48	2.48	
Duct Heat Pkup		0		0	0.00		0.00			0	0.00	cfm/ton	1,47			
OV/UNDR Sizing	0	37	420	0	0.00	0	0.00		0	0	0.00	sq ft/ton		4.20		
Exhaust Heat		0	0	0	0.00		0.00			0	0.00	Btu/hr-s			28.02	
Terminal Bypass		0	0	0	0.00		0.00	•		0	0.00	No. Peop	le	10		
Grand Total ==>	21,527	0	0	21,527	100.00	26,351	100.00	0	-13,558	-13,558	100.00	HEATIN	G COIL	SELE	OITC	1
	c	OOLING	COIL SEL	ECTION					ARE	AS		Ca	•	oil Airfl		
	fotal Capacity ons MBh	Sens Cap. MBh	Coll Airfl cfm	Enter D F	B/WB/HR F gr/lb	Leave DB/ F	WB/HR F gr/lb	Floor	Gross Tot	S	ass oqft (%)	Main Htg Aux Htg Preheat	MBh -13.6 0.0 0.0	cfm 2,905 0 0		73.2 0.0
Main Clg	1.8 21.5	26.4	2,905	78.0 6	0.2 67.4	68.0 57.	5 70.2	Part		0		Reheat	0.0	0	0.0	0.0
	0.0 0.0	0.0	2,300		0.0 0.0	0.0 0.0		ExFir		0		Humidif	-8.4	317	3.5	50.
	0.0 0.0	2.2	200		6.0 32.7	75.0 51.		Roof	1,17	*	0 0	Opt Vent	-10.9	200	5.0	50. 65.
0.61		2.2	200	01.0 0	0.0 02.1	10.0 01.	52.0	Wall	22		D. 1996 See	1.5		200	5.0	00.
Totals	2.0 23.7	1000 1000 1000 1000 1000 1000 1000 100									and the second	Total	-32.9			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Ch sksums

By BhinRA

Nurse

	COOLI	NG COIL I	PEAK			CLG SPA	CE PEAK	(HEATING	COIL PEA	ĸ	TE	MPER	ATUR	ES	
	at Time: tside Air: Space	Ret. Air	DB/WB/HR: Ret. Air	Net	Percent	Mo/Hr: OADB: Space	87 Percent		Mo/Hr: OADB: bace Peak	5 Coll Peak		SAD Plen Retu	um Irn	68.0 74 78.0 60 78.0 6	ltg 4.1 3.0 8.0	
	Sens. + Lat. Bluh	Sensible Btuh	Latent Bluh	Total Btuh	Of Total (%)	Sensible Btuh	Of Tota (%)		ace Sens Btuh	Tot Sens Btuh	Of Total (%)	Ret/	0A MtrTD		8.0 0.0	
Envelope Loads								1			02037	Fn B	IdTD		0.0	
Skylite Solr Skylite Cond	0	0		0	0.00	0	0.00		0	0	0.00	Fn F	rict	0.0	0.0	
Roof Cond	5,536	o	8	5,536	23.54	5,536	19.41	0.10	-3,718	-3,718	21.24		AIRFI	LOWS		
Glass Solar	4,176	0		4,176	17.76	4,176	14.64	C	0	0	0.00	2.				
Glass Cond	778	0		778	3.31	778	2.73		-5,728	-5,728	32.73	5	Cod	oling	Heatin	g
Wall Cond	-1	0		-1	0.00	-1	0.00	0.0 2 C	-313	-313	1.79	Vent		200	20	
Partition Exposed Floor	0			0	0.00		0.00		0	0	0.00	Infil		126 3,145	12 3,14	-
Infiltration	-1,687			-1,687	-7.18	1.029	3.61		-7,201	-7,201	41.14	Supply Mincfm		0		0
Sub Total ==>	8,802	0		8,802	37.43	11,518	40.38	02.00	-16,960	-16,960	96.89	Return	3	3,471	3,47	~
Internal Loads					÷(25		Exhaust		326	32	-
Lights	10,751	0		10,751	45.72	10,751	37.69	20.00	0	0	0.00	Rm Exh		0		0
People Misc	4,500 4,300	0	0	4,500	19.14 18.29	2,500 4,300	8.76	(C.) # (F	0	0	0.00	Auxil	2	0		0
Sub Total ==>	19,551	ő	ő	19,551	83.15	17,551	61.53	0020	o	0	0.00	EN	GINEE	RING	KS	
Ceiling Load	0	Ő	č	0	0.00	0	0.00		ŏ	õ	0.00		Ginter			
Outside Air	-4,840	0	0	-4,840	-20.58	-544	-1.91		-544	-544	3.11		С	ooling	Heating	1
Sup. Fan Heat				0	0.00		0.00			0	0.00	% OA		6.4	6.4	
Ret. Fan Heat		0		0	0.00		0.00			0	0.00	cfm/sq f		2.50 469.68	2.50)
Duct Heat Pkup OV/UNDR Sizing	0	0		0	0.00	0	0.00		0	0	0.00	cfm/ton sq ft/tor		409.00 588.89		
Exhaust Heat		0	0	0	0.00	, v	0.00			0	0.00	Btu/hr-s		20.38	-29.40)
Terminal Bypass		σ	σ	D	00.0		0.00			0	0.00	No. Peo		10		
Grand Total ==>	23,513	0	0	23,513	100.00	28,525	100.00		-17,504	-17,504	100.00	HEATI	NG CO	IL SEL	ECTIC	N
	C	OOLING	COIL SEL	ECTION		50 			AR	EAS		c	apacity			
1	otal Capacity	Sens Cap.	Coil Airfl	Enter D	B/WB/HR	Leave DB/	WB/HR	1	Gross To	tal Gla	ass	Main Htg	MBh -17.5	c 3.1		F I 0 74.
	ons MBh	MBh	cfm	F	F gr/lb		F gr/lb	Floor		s	qft (%)	Aux Htg	0.0	0,1	0 0.	0 0.0
Main Clg	2.0 23.5	28.5	3,145	78.0 6	0.3 67.5	68.0 57.	5 70.2	Floor Part	1,26	0		Preheat Reheat	0.0		0 0. 0 0.	
	0.0 0.0	0.0	0		0.0 0.0	0.0 0.0		ExFir		õ	1	Humidif	-8.7	3	26 3.	
	0.2 2.2	2.2	200	87.0 5	6.0 32.7	75.0 51.		Roof Wall	1,26		S (10.5.2)	Opt Vent	-10.9		00 5.	
Totals	2.1 25.7							100000000				Total	-37.0			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

By BL...A

PT/OT No. 1

	COOL	ING COIL	PEAK			CLG SPAC	CE PEAI	ĸ	HEATING	COIL PEA	ĸ	TEI	IPERAT	URES		
	at Time: tside Air:	OA	Mo/Hr: .DB/WB/HR:		3	Mo/Hr: OADB:			Mo/Hr: OADB:	13/1 5	2000 - 00 ² -	SADB		73.0		
bin ann	Space Sens. + Lat. Btuh	Sensible	Latent	Net Total Bluh	Percent Of Total (%)	Space Sensible Btuh	Percen Of Tota (%	I Sp	pace Peak bace Sens Bluh	Coil Peak Tot Sens Btuh		Return Ret/O Fn Mt	A 78.0	68.0 0.0		
Envelope Loads Skylite Solr	0			0	0.00	0	0.0 0.0		0	0	0.00	Fn Blo Fn Fri	33.77 () () () ()			
Skylite Cond Roof Cond	8,611	0		8,611	28.59	8,611	22.1	2	-5,784	-5,784	29.78		AIRFLO	NS		
Glass Solar Glass Cond Wall Cond Partition Exposed Floor Infiltration Sub Total ==>	1,197 159 42 0 -2,625 7,384	0		1,197 159 42 0 -2,625 7,384	3.97 0.53 0.14 0.00 0.00 -8.72 24.52	1,197 159 42 0 1,600 11,609	3.0 0.4 0.1 0.0 0.0 4.1 29.8	1 1 0 1	0 -1,138 -213 0 0 -11,201 -18,335	0 -1,138 -213 0 0 -11,201 -18,335	0.00 5.86 1.10 0.00 0.00 57.67 94.40	Vent Infil Supply Mincfm Return	Cooling 40 19 4,29 (4,88	5 2 2	eating 400 196 4,292 0 4,888	
Internal Loads Lights People Misc	16,724 9,000 6,689	o		16,724 9,000 6,689	55.53 29.88 22.21	16,724 5,000 6,689	42.9 12.8 17.1	5	0 0 0	0 0 0	0.00 0.00 0.00	Exhaust Rm Exh Auxil	596	5	596 0 0	
Sub Total ==> Ceiling Load	32,413		0	32,413 0	107.62	28,413	72.9	8	0	0	0.00	ENG	INEERIN	G CK	S	
Outside Air Sup. Fan Heat	-9,679		12	-9,679 0	-32.14	-1,089	-2.8	D	-1,089	-1,089 0	5.60 0.00	% OA	5	ng He 9.3	9.3	
Ret. Fan Heat Duct Heat Pkup OV/UNDR Sizing	0	0		0 0	0.00 0.00 0.00	0	0.0	b	0	0 0 0	0.00 0.00 0.00	cfm/sq ft cfm/ton sq ft/ton	2. 1,495. 682.		2.19	
Exhaust Heat Terminal Bypass	s	0		0	0.00		0.00	0		0	0.00 0.00	Btu/hr-sq No. Peop	ft 17.		29.09	
Grand Total ==>	30,118	0	0	30,118	100.00	38,934	100.00	2	-19,424	-19,424	100.00	HEATIN	G COIL S	ELEC	TION	4
		COOLING	COIL SEL	ECTION					ARE	AS		Ca	0.55530.550	il Airfi	Ent	
	otal Capacity	Sens Cap. MBh	Coll Airfl cfm	Enter D F	B/WB/HR F gr/lb	Leave DB/ F F		Floor	Gross Tol 1,96	S	ass qft (%)	Main Htg Aux Htg Preheat	MBh -19.4 0.0 0.0	cfm 4,292 0	F 68.0 0.0	73.0
	2.5 30.1 0.0 0.0	38.9 0.0	4,292 0		0.1 66.7	68.0 57.5 0.0 0.0	10 0 C C C C C C C C C C C C C C C C C C	Part		0		Reheat	0.0	0 0 596	0.0 0.0 3.5	0.0
Opt Vent	0.4 4.3	4.3	400	10000 ACC 11-000	6.0 32.7	75.0 51.7		Roof Wall	1,96 21		0 0 3 30	Opt Vent	-21.8	400	5.0	
Totals	2.9 34.4											Total	-57.0			-

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Ch~çksums By BrinRA

PT/OT No. 2

		COOLI	NG COIL F	PEAK			CLG SPAC	E PEAK		HEATING	COIL PEA	K	Т	EMPER	RATUR	ES	
	93 100000		OAI Ret. Air Sensible Btuh	Mo/Hr: DB/WB/HR: Ret. Air Latent Btuh	87/56/3	Percent Of Total	Mo/Hr: OADB: Space Sensible Btuh		Sp	Mo/Hr: OADB: bace Peak bace Sens Btuh				um Jrn OA MtrTD	68.0 72 78.0 68 78.0 68 78.0 68 78.0 68 0.0 0	8.0 8.0 8.0 9.0	
Envelope Loa Skylite Solr	105	0	0		0	0.00	0	0.00		0	0	0.00	00025585	BldTD Frict		0.0 0.0	
Skylite Cond	Ê.	0	0		0	0.00	0	0.00		0	0	0.00					-
Roof Cond		8,611	0		8,611	24.46	8,611	19.56		-5,784	-5,784	29.78		AIRF	LOWS		
Glass Solar		6,300	0		6,300	17.90	6,300	14.31		0	0	0.00					
Glass Cond		159	0		159		159	0.36		-1,138	-1,138	5.86	20200000	Co	oling	Heatin	-
Wall Cond		25	0		25		- 25	0.06		-213	-213	1.10	Vent		400	40	
Partition		0			0		0	0.00		0	0	0.00	Infil		196	15	
Exposed Flo	or	0 -2,625			0 -2,625		1,600	3.64		-11,201	0 -11,201	57.67	Supply Mincfm		4,853 0	4,85	0
Infiltration Sub Total ==	~	12,470	0		12,470		16,695	37.93		-18,335	-18,335	94.40	Return		5.449	5.44	
Internal Load		12,470	0		12,470	00.42	10,000	01.00		-10,000	-10,000	34.40	Exhaus		596	59	
Lights		16,724	0		16,724	47.50	16,724	37.99		0	0	0.00	Rm Exh		0		0
People		9,000	#1		9,000	25.57	5,000	11.36		0	0	0.00	Auxil		0		0
Misc		6,689	0	0	6,689	19.00	6,689	15.20		0	0	0.00			_		_
Sub Total ==	:>	32,413	0	0	32,413	92.07	28,413	64.55	-	0	0	0.00	EN	GINEE	RING C	KS	
Celling Load		0	0		0	0.00	0	0.00	1	0	0	0.00					
Outside Air		-9,679	0	0	-9,679		-1,089	-2.47	4	-1,089	-1,089	5.60	1	(Cooling		
Sup. Fan Hea			22		0	0.00		0.00			0	0.00	% OA	S	8.2	8.	
Ret. Fan Heat			0	48	0	0.00		0.00			0	0.00	cfm/sq cfm/tor	22 A.M.	2.48	2.4	8
Duct Heat Pki		0	U		0		0	0.00		0	0	0.00	sq ft/to		,473.18 595.01		
OV/UNDR Siz Exhaust Heat	-	U	0	0	0		Č	0.00	0.01	Ŭ.	0	0.00	Btu/hr-		20.17	-29.0	9
Terminal Byp			õ	õ	Ő			0.00			õ	0.00	No. Peo		20	20.0	
Grand Total =	=>	35,204	0	0	35,204	100.00	44,020	100.00		-19,424	-19,424	100.00	HEATI	NG CO	IL SEL	ЕСТІС	DN
		C	OOLING	COIL SEL	ECTION					AR	EAS			apacity	Coll Ai	rfl E	nt Lvç
	Tota	I Capacity	Sens Cap.	Coll Airfl	Enter D	B/WB/HR	Leave DBA	NB/HR		Gross To	tal GI	ass	Main Htg	MBh -19,4		fm 53 68	F F
(na	tons	MBh	MBh	cfm	F	F gr/lb	FF				5	qft (%)	Aux Htg	0.0	(j. 32	0 0.	0 0.0
		35.2	44.0	4,853	78.0 6	50.2 67.1	68.0 57.5	70.2	Floor Part	1,96	50 0		Preheat Reheat	0.0		0 0	
Main Clg	2.9	0.0	44.0	4,853		0.0 0.0	0.0 0.0	109 J 200 J 10 J	ExFlr		0		Humidif	0.0 -15.8		0 0.	
Aux Clg Opt Vent	0.0	4.3	4.3	400		6.0 32.7	75.0 51.7	3. Construction 1. Construc	Roof	1,96	•	0 0	Opt Vent	-15.6	0.070	00 5.	
Opt von	0.4		4.0	400	01.0	0.0 02.1	10.0 01.1		Wall		10 6	10 90%-001	oprivent	-21.0	4	5.	0 05.0
Totals	3.3	39.5							Contra State	-		a (1997).	Total	-57.0			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Chocksums By Bi ... RA

Pottery Room

	COOL	ING COIL I	PEAK			CLG SPAC	E PEAK		HEATING	COIL PEA	ĸ	TE	MPERA	TURE	S	
Ou Envelope Load≶ Skylite Solr	l at Time: Itside Air: Space Sens. + Lat. Btuh 0	Ret. Air Sensible Btuh	Mo/Hr: DB/WB/HR: Ret. Air Latent Btuh	68 / 49 / 3 Net Total Btuh	Percent Of Total (%)	Mo/Hr: OADB: Space Sensible Btuh	68 Percent Of Total (%) 0.00	Sp	Mo/Hr: OADB: bace Peak bace Sens Btuh 0	5 Coil Peak Tot Sens Bluh	Of Total (%) 0.00	SADE Plent Retur Ret/C Fn M Fn Bl Fn Fr	8 68 im 78 in 78 iA 78 trTD (dTD (Cig Http://www.science.com/science/sci	5)))	
Skylite Cond	0	0		0	0.00	0	0.00		0	0	0.00					
Roof Cond	1,579	0		1,579	4.24	1,579	3.80		-3,199	-3,199	16.68		AIRFLO	ows		
Glass Solar Glass Cond Wall Cond Partition Exposed Floor Infiltration	17,947 -658 4,492 0 0 -3,194	0 0 0		17,947 -658 4,492 0 0 -3,194	48.15 -1.77 12.05 0.00 0.00 -8.57	17,947 -658 4,492 0 0 -985	43.19 -1.58 10.81 0.00 0.00 -2.37		0 -4,397 -4,846 0 0 -6,195	0 -4,397 -4,846 0 0 -6,195	0.00 22.93 25.26 0.00 0.00 32.30	Vent Infil Supply Mincfm		ing H 200 108 581 0	leating 200 108 4,581 0	
Sub Total ==>	20,165	0		20,165	54.11	22,374	53.84		-18,637	-18,637	97.16	Return		389 308	4,889	
Internal Loads Lights People Misc	9,249 4,500 9,249	0 0	0	9,249 4,500 9,249	24.82 12.07 24.82	9,249 2,500 9,249	22.26 6.02 22.26		0	0	0.00 0.00 0.00	Exhaust Rm Exh Auxil		0	308 0 0	
Sub Total ==>	22,998	0	ő	22,998	61.71	20,998	50.53		0	0	0.00	ENG	INEER	ING CI	(S	
Ceiling Load Outside Air Sup. Fan Heat	0 -5,893	0	0	0 -5,893 0	0.00 -15.81 0.00	0 -1,818	0.00 -4.37 0.00		0 -544	0 -544 0	0.00 2.84 0.00	% OA	Co	oling H 4.4	eating 4.4	
Ret. Fan Heat Duct Heat Pkup OV/UNDR Sizing	0	0 0		000	0.00 0.00 0.00	0	0.00 0.00 0.00		o	0 0	0.00 0.00 0.00	cfm/sq ft cfm/ton sq ft/ton	1,39	4.23 94.07 29.88	4.23	
Exhaust Heat Terminal Bypass		0 0	0 C	0	0.00 0.00		0.00		·	0	0.00 0.00	Btu/hr-so No. Peop	ft 3		-35.29	
Grand Total ==>	37,270	0	o	37,270	100.00	41,555	100.00		-19,181	-19,181	100.00	HEATIN	G COIL	. SELE	CTION	1
	C	COOLING	OIL SEL	ECTION	_		.]		ARE	AS		Ca	1.000.000	Coil Airf		
	Fotal Capacity ons MBh	Sens Cap. MBh	Coil Airfl cfm	Enter D F	Ø/WB/HR F gr/lb	Leave DB/V F F		Floor	Gross Tot	s	ass qft (%)	Main Htg Aux Htg Preheat	MBh -19.2 0.0 0.0	cfn 4,581 0	68.0 0.0	72.6 0.0
Main Clg	3.1 37.3	41.6	4,581	78.0 6	0.5 68.6	68.0 57.5	70.2	Part		0		Reheat	0.0			0.0
	0.0 0.0	0.0	0	100 C C C C C C C C C C C C C C C C C C	0.0 0.0	0.0 0.0		ExFir		0		Humidif	-8.2	308		
	0.2 2.2	2.2	200	87.0 5	6.0 32.7	75.0 51.7	32.8	Roof Wall	1,08 52			Opt Vent	-10.9	200		
Totals	3.3 39.4											Total	-38.3			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Chocksums By B....RA

Residential Office

		COOLI	NG COIL I	PEAK			CLG SP	ACE	PEAK		HEATING (COIL PEA	к	Т	EMPE	RATUR	ES	
	ed at Ti Outside		OA	Mo/Hr: DB/WB/HR:	9 / 14 76 / 53 / 3	35		Hr: 10 DB: 74			Mo/Hr: 1 OADB:			SAE)B num	68.0 7	ltg 1.6 8.0	
	Se	Space ns. + Lat. Bluh	Ret. Air Sensible Btuh	Latent	Net Total Btuh	Of Total	Sensil		Percent Of Total (%)	Sp	ace Peak ace Sens Btuh	Coll Peak Tot Sens Btuh		Ret	urn	78.0 6 78.0 6	8.0 8.0 0.0	
Envelope Load	ds					100	1		10000	1			33, 33	Fnl	BIdTD	0.0	0.0	
Skylite Solr		0	0		0	0.00	1	0	0.00		0	0	0.00	Fn I	Frict	0.0	0.0	
Skylite Cond		0	0		0	0.00	1	0	0.00		0	0	0.00					
Roof Cond		1,054	0		1,054	11.25	: 7	66	6.23	1	-944	-944	21.73		AIRF	LOWS		
Glass Solar		4,752	0		4,752		14	76	43.70		0	0	0.00					
Glass Cond		-23	Ő		-23		A	-51	-0.42		-867	-867	19.95		Co	oling	Heatin	a
Wall Cond		2	0		2			-3	-0.02	1	-162	-162	3.73	Vent		200	20	
Partition		0			0			0	0.00		0	0	0.00	Infil		32	3	
Exposed Floo	r	õ			0			0	0.00		Ō	õ	0.00	Supply		1,340	1.34	
Infiltration		-696			-696			10	-0.90	1	-1,829	-1,829	42.08	Mincfm		0		ŏ
Sub Total ==:	>	5,089	0		5,089		0.000	78	48.59		-3,802	-3,802	87.48	Return		1,572	1,57	7. S.
Internal Loads						100	1			1			1000	Exhaust		232	23	
Lights		2,730	0		2,730	29.15	2.7	30	22.19	1	0	0	0.00	Rm Exh		0		0
People		4,500			4,500				20.32	1	0	0	0.00	Auxil		0		0
Misc		1,638	0	0	1,638		1,6		13.32	1	0	0	0.00	L				
Sub Total ==>		8,869	0	0	8,869	94.70	6,8	69	55.83	1	0	0	0.00	EN	GINEE	RING (CKS	
Ceiling Load		0	0		0		1. State 1	0	0.00	1	0	0	0.00	0.35385		0.000.0000.000	1212001	
Outside Air		-4,592	0	0	-4,592		20 ID	44	-4.42	1	-544	-544	12.52		(Cooling	Heating	8
Sup. Fan Heat					0				0.00	1		0	0.00	% OA		14.9	14.5	5. S.
Ret. Fan Heat			0		0				0.00			0	0.00	cfm/sq	77	4.19	4.19	
Duct Heat Pku	D		0		0				0.00	1		0	0.00	cfm/tor		,395.11		22
OV/UNDR Sizi		0			0	0.00	1	0	0.00		0	0	0.00	sq ft/to		333.12		
Exhaust Heat			0	0	0	0.00	1		0.00	1		0	0.00	Btu/hr-	sq ft	36.02	-66.84	
Terminal Bypa	155		0	0	0	0.00			0.00			0	0.00	No. Peo		10		
Grand Total ==	•>	9,365	0	0	9,365	100.00	12,3	02	100.00		-4,346	-4,346	100.00	HEATI	NG CC	IL SEL	ECTIC	N
		C	OOLING	COIL SEL	ECTION						ARE	AS			apacity			
	Total	Capacity	Sens Cap.	Coil Airfl	Enter [B/WB/HR	Leave f	DB/WB	HR		Gross Tot	al Gla	iss	Main Htg	MBh -4.3			F I
15	tons	MBh	MBh	cfm	F	F gr/lb			gr/lb	Floor	32	s	qft (%)	Aux Htg Preheat	0.0	1	0 0.	0 0.
Main Clg	0.8	9.4	12.1	1,340	78.0 (50.1 66.6	68.0	57.5	70.2	Part		0		Reheat	0.0		0 0.	
Aux Clg	0.0	0.0	0.0	1,540	0.0	0.0 0.0		0.0	0.0	ExFir		0		Humidif	-6.2		32 3.	
Opt Vent	0.2	2.2	2.2	200		56.0 32.7		51.7 3		Roof	32	201	0	Opt Vent	-10.2		00 5.	
optivent	0.2	E .E	2.2	200	01.0	0.0 02.1	10.0			Wall	160	73. X		operation	10.9	4	JU 3.	00.0
Totals	1.0	11.5									10		50	Total	-21.4			
otoro	1.0																	

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Chocksums By Br....RA

Social

	COOLI	NG COIL I	PEAK			CLG SPAC	E PEAK	۲ I	IEATING	COIL PEA	ĸ	TI	MPER	ATUR	ES	
Peaked a Outs	at Time: side Air:	OAI	Mo/Hr: DB/WB/HR:		9	Mo/Hr: OADB:			Mo/Hr: OADB:			SAD	B (68.0 7	tg .5	
	Space Sens. + Lat.	Ret. Air Sensible	Ret. Air Latent	1000 Sec. 7.	Percent Of Total	Space Sensible	Percent Of Total	CONTRACTOR CONTRACTOR	e Peak e Sens	Coll Peak Tot Sens		Retu	In	78.0 6	3.0 3.0	
	Btuh	Btuh	Btuh	Btuh	(%)		(%)		Btuh	Btuh	(%)		ItrTD		0.0	
Envelope Loads						0.000000	190300	1			CARES.	1.5.0000	IdTD	0.0	0.0	
Skylite Solr	0	0		0	0.00	0	0.00		0	0	0.00	Fn F	rict	0.0	0.0	
Skylite Cond	0	0		0	0.00	0	0.00		0	0	0.00					
Roof Cond	2,310	0		2,310	13.20	2,636	12.75		-1,771	-1,771	24.30		AIRFL	_OWS		
Glass Solar	7,560	0		7,560	43.20	7,200	34.81		0	0	0.00					
Glass Cond	24	Ō		24	0.14	181	0.88		-1,300	-1,300	17.84		Coc	oling	Heating	1
Wall Cond	3	0		3	0.02	29	0.14		-243	-243	3.34	Vent	200	200	20	
Partition	0			0	0.00	, 0	0.00		0	0	0.00	Infil		60	6	
Exposed Floor	0			0	0.00	0	0.00		0	0	0.00	Supply	2	,280	2,28	
Infiltration	-995			-995	-5.68	490	2.37	1	-3,429	-3,429	47.05	Mincfm		0	100000	
Sub Total ==>	8,902	0		8,902	50.87	10,536	50.94	1	-6,743	-6,743	92.53	Return	2	,540	2.54	3
Internal Loads	2000-0000000			1000					1000	0.000		Exhaust		260	26)
Lights	5,120	0		5,120	29.25	5,120	24.75		0	0	0.00	Rm Exh		0	10000)
People	4,500			4,500	25.71	2,500	12.09	1	0	0	0.00	Auxil		0)
Misc	3,072	0	0	3,072	17.55	3,072	14.85	-	0	0	0.00					
Sub Total ==>	12,691	0	0	12,691	72.51	10,691	51.69	i i	0	0	0.00	EN	GINEER	RING C	KS	
Ceiling Load	0	0		0	0.00	0	0.00	1	0	0	0.00		-			
Outside Air	-4,092	0	0	-4.092	-23.38	-544	-2.63	1	-544	-544	7.47		C	ooling	Heating	
Sup. Fan Heat	21.390.83			0	0.00	10.000	0.00	1		0	0.00	% OA		8.8	8.8	
Ret. Fan Heat		0		0	0.00		0.00	1		0	0.00	cfm/sq t	t	3.80	3.80	
Duct Heat Pkup		0		0	0.00		0.00			0	0.00	cfm/ton		391.43		
OV/UNDR Sizing	0			0	0.00	0	0.00	1	0	0	0.00	sq ft/tor		366.15		
Exhaust Heat		0	0	0	0.00		0.00	÷		0	0.00	Btu/hr-s	q ft	32.77	-41.79	
Terminal Bypass		0	0	0	0.00		0.00			0	0.00	No. Peo		10		
Grand Total ==>	17,502	0	0	17,502	100.00	20,683	100.00		-7,287	-7,287	100.00	HEATI	G CO	IL SEL	ECTIO	N
	C	OOLING	COIL SEL	ECTION					AR	EAS		c	apacity			
- 22	1.1.0	Cana Car	Coll Al-P	Cates D	DANDUID				Create T-	tal 01			MBh		fm F	S
	otal Capacity	Sens Cap.	Coil Airfl		B/WB/HR	Leave DB/V			Gross To	-C	ass (W)	Main Htg	-7.3	2,2		
tor	ns MBh	MBh	cfm	F	F gr/lb	FF	gr/lb	Floor	60		qft (%)	Aux Htg	0.0		0 0.0	
	5 17.5	20.1	2,280	78.0 6	0.3 67.5	68.0 57.5	69.9	Part		0		Preheat Reheat	0.0		0 0.0	
	1 TO	20.1	2,260		0.0 0.0	0.0 0.0		ExFir		0		Humidif	-6.9		-	
		2.2	200		6.0 32.7	75.0 51.7	2 A 10 A 1	Roof	60	(C)() 24V	ام ر				50 3.5 00 5.0	
Opt Vent 0	.2 2.2	2.2	200	07.0 5	0.0 32.7	75.0 51.7	34.0	Wall	24	5706 - CC		Opt Vent	-10.9	2	00 5.0	65.
Tatala d	.6 19.7						- 11	wan	24	10 14	. 50	Total	-25.1			
Totals 1	.0 13.7											Total	-23.1			200

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

Room Chacksums By B. ...RA

Staff Lounge

	COOL	NG COIL I	PEAK			CLG SPAC	E PEAK	(HEATING	COIL PEA	ĸ	TE	MPERAT	URES	5	
	at Time: side Air:		Mo/Hr: DB/WB/HR:	79/55/4		Mo/Hr: OADB:	76		Mo/Hr: OADB:	5		SADB Plenu	m 78.	0 72.6 0 68.0		
	Space Sens. + Lat. Btuh	Ret. Air Sensible Bluh	Ret. Air Latent Btuh	Net Total Btuh	Percent Of Total (%)	Space Sensible Btuh	Percent Of Total (%)	Sp	ace Peak ace Sens Btuh	Coil Peak Tot Sens Btuh		Return Ret/O. Fn Mt	A 78.	0 68.0		
Envelope Loads	10000		Dian			1000000	0.000000	1				Fn Blo	ITD 0.	0.0		
Skylite Solr Skylite Cond	D O	0 0		0 0	00.0 0.00	0	00.0 0.00		D O	о o	0.00	FnFri	ct D.	0 0.0	2	
Roof Cond	3,808	0		3,808	20.18	3,293	14.51		-2,951	-2,951	28.23		AIRFLO	WS		10.566
Glass Solar Glass Cond	2,640 6	0 0	t -	2,640 6	13.99 0.03	3,960 -19	17.45 -0.08	1	0 -722	0 -722	0.00 6.91		Coolin		eating	
Wall Cond Partition	-12 0	0		-12	-0.06 0.00 0.00	7 0 0	0.03		-521 0	-521 0 0	4.99	Vent Infil	20	0	200	
Exposed Floor Infiltration Sub Total ==>	0 -1,687 4,755	0		0 -1,687 4,755	-8.94 25.19	-151 7,089	0.00 -0.67 31.23		-5,715 -9,909	-5,715 -9,909	0.00 54.67 94.79	Supply Mincfm Return	2,50	0	2,502 0 2,802	
Internal Loads	23 2.225	0 (#4)		1000000		10/2306/24		3			Sister	Exhaust	30	0	300	
Lights People	8,533 4,500	0	0	8,533 4,500	45.21 23.84 27.12	8,533 2,500 5,120	37.59 11.01 22.56		0 0	0	0.00	Rm Exh Auxil		0	0	
Misc Sub Total ==>	5,120 18,152	0	0	5,120 18,152	96.17	16,152	71.16		0	0	0.00	ENG	INEERI	IG CK	S	
Ceiling Load	0	0		0	0.00	0	0.00		0	0	0.00				-	
Outside Air Sup. Fan Heat	-4,032	0	0	-4,032 0	-21.36 0.00	-544	-2.40 0.00		-544	-544	5.21 0.00	% OA		ing He 8.0	8.0	
Ret. Fan Heat Duct Heat Pkup		0 0		0	0.00 0.00 0.00	0	0.00	1	0	0 0 0	0.00	cfm/sq ft cfm/ton	1,427		2.50	
OV/UNDR Sizing Exhaust Heat Terminal Bypass	0	0	0	0	0.00	U	0.00 0.00 0.00	-	U	0	0.00 0.00 0.00	sq ft/ton Btu/hr-sq No, Peop			29.30	
Grand Total ==>	18,875	0	0	18,875	100.00	22,697	100.00	1	-10,454	-10,454	100.00	HEATIN			TION	J
		COOLING				11,001	11		ARE			0.00	257	oil Airfi		-
	· ·	OULING (JUIL OLL	LOHON					AN	-40		Ca	MBh	on Aim cfm	Ent F	Lvg F
	otal Capacity ns MBh	Sens Cap. MBh	Coil Airfl cfm	Enter D F	B/WB/HR F gr/lb	Leave DBA F F		Floor	Gross Tol	S	ass qft (%)	Main Htg Aux Htg	-10.5	2,502	0.0	0.0
Main Clg	.6 18.9	22.1	2,502	78.0 6	0.2 67.4	68.0 57.5	70.1	Part	1,00	0		Preheat Reheat	0.0 0.0	0	0.0	0.0
Aux Clg (0.0 0.0	0.0	0		0.0 0.0	0.0 0.0		ExFir		0		Humidif	-8.0	300	3.5	50.0
	0.2 2.2	2.2	200	87.0 5	6.0 32.7	75.0 51.7	32.8	Roof Wall	1,00 40			Opt Vent	-10.9	200	5.0	65.0
Totals	1.8 21.0											Total	-29.3			2.178

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

By BhirRA

Therapy Pools

	COOL	ING COIL	PEAK			CLG SPA	CE PEAI	<	HEATING	COIL PEA	ĸ	L I	EMPER	RATURE	S	
Ou Envelope Loads	l at Time: Itside Air: Space Sens. + Lat. Btuh	Ret. Air Sensible Btuh	Mo/Hr: DB/WB/HR: Ret. Air Latent Btuh	87 / 56 / 3 Net Total Btuh	Percent Of Total (%)	OADE Space Sensible Btuh	Percen Of Tota (%	i sp)	pace Peak pace Sens Bluh	5 Coil Peak Tot Sens Btuh	Of Total (%)	Rei Rei Fn	num urn /OA MtrTD BIdTD		4 0 3 0	
Skylite Solr	0			0	0.00				0	0	0.00	Fn	Frict	0.0 0	.0	
Skylite Cond	0	2 23				: 5	S		10.000	2005	1 200-01+40000 F		AIDE	LOWS		-
Roof Cond	8,428			8,428				C	-5,967	-5,967	13.32		AIRF	LUWS		
Glass Solar Glass Cond Wall Cond Partition	896 55 -5 0	0		896 55 -5 0	2.49 0.15 -0.01 0.00	49 11	0.14 -0.03 0 0.04	4 3 0	0 -521 -795 0	0 -521 -795 0	0.00 1.16 1.77 0.00	Vent Infil		200 196	Heating 200 196	5
Exposed Floor Infiltration Sub Total ==> Internal Loads	0 98 9,472	0		0 98 9,472	0.00 0.27 26.28	1,108 10,631	3.2 31.4	7	0 -11,557 -18,840	0 -11,557 -18,840	0.00 25.80 42.07	Supply Mincfm Return Exhaus	i it	1,493 0 1,689 396	1,493 (1,689 396)
Lights People Misc	16,724 6,400 3,345	0	0	16,724 6,400 3,345	46.40 17.76 9.28		9.3	1	0	0 0 0	0.00 0.00 0.00	Rm Ex Auxil	ו 	0	0	
Sub Total ==>	26,468	0	0	26,468	73.44	23,218			0	0	0.00	EN	GINEE	RING C	KS	
Ceiling Load	20,100	0		0	0.00				ō	0	0.00					
Outside Air Sup. Fan Heat	õ	0	0	100 0	0.28 0.00	0	0.00		ō	-11,793 0	26.33 0.00	% OA		Cooling H 13.4	13.4	
Ret. Fan Heat Duct Heat Pkup OV/UNDR Sizing	O	0 0		0	0.00 0.00 0.00	C	0.00		-14,152	0 0 -14,152	0.00 0.00 31.60	cfm/sc cfm/to sq ft/to	n	0.76 496.98 652.61	0.76	
Exhaust Heat Terminal Bypass		0	0 0	0	0.00	, v	0.00	0	-14,125	0	0.00	Btu/hr- No. Pe	sq ft	18.39 10	-27.19	
Grand Total ==>	35,940	0	0	36,040	100.00	33,849	100.00)	-32,992	-44,785	100.00	HEAT	NG CO	IL SELE	CTIO	N
	(COOLING	COIL SEL	ECTION					AR	EAS			Capacity			0.000
	Fotal Capacity ons MBh	Sens Cap. MBh	Coil Airfl cfm	Enter D F	B/WB/HR F gr/lb		/WB/HR F gr/lb	Floor	Grøss To 1,9	S	ass qft (%)	Main Htg Aux Htg Preheat	MBh -53.3 0.0 0.0	1,49		94.4
Main Clg	3.0 36.0	35.1	1,493	80.9 5	5.8 41.4	55.0 45	.4 40.0	Part	1,0	0		Reheat	0.0		0 0.0	
	0.0 0.0	0.0	0		0.0 0.0		.0 0.0	ExFir		0		Humidif	0.0		0 0.0	
	0.0 0.0	0.0	0	0.0	0.0 0.0		.0 0.0	Roof Wall	1,9 5	60 (60 28	0 0 8 5	Opt Vent	0.0		0 0.0	
Totals	3.0 36.0							1.1.2820.8287N			na 56.	Total	-53.3			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

By BhaRA

Transportation Office

						,										
	COOL	ING COIL	PEAK			CLG SPAC	E PEAK		HEATING	COIL PEA	к	Т	EMPER	RATURE	S	
Ou Envelope Loads	l at Time: Itside Air: Space Sens. + Lat. Btuh	Ret. Air Sensible Btuh	Latent Bluh	67 / 51 / 4 Net Total Btuh	Percent Of Total (%)	Mo/Hr: OADB: Space Sensible Btuh	73 Percent Of Total (%)	Spi	ace Peak ace Sens Bluh	5 Coil Peak Tot Sens Btuh	Of Total (%)	Ret Ret Fn Fn	num urn IOA MtrTD BIdTD	0.0 0	.3 .0 .0 .0 .0	
Skylite Solr	0	9 9 0 0		0	0.00	0	0.00		0	0	0.00	Fn	Frict	0.0 0	.0	
Skylite Cond	262	A		262	3.05	395	4.13		-826	-826	18.88		AIDE	LOWS		1
Roof Cond					67.80	3. 10 Sector 200 Se	4.13		-020	-020-	0.00		AIRE	LOWS		
Glass Solar Glass Cond	5,829 -208			5,829 -208	-2.42	5,293 -99	-1.04		-1,210	-1,210	27.65		Co	oling	Heating	1
Wall Cond	3			3	0.03	. 30	0.32		-468	-468	10.69	Vent		100	100	
Partition	0			0	0.00	, 0	0.00		0	0	0.00	Infil		28	28	
Exposed Floor	0			0	0.00	0	0.00	1	0	0	0.00	Supply		1,110	1,110	C
Infiltration	-735			-735	-8.55	-136	-1.42		-1,600	-1,600	36.56	Mincfm		0	(0
Sub Total ==>	5,151	0		5,151	59.91	5,483	57.40	1	-4,104	-4,104	93.78	Return		1,238	1,238	
Internal Loads						44555455		4			22322	Exhaus	t	128	128	3
Lights	2,389			2,389	27.79	2,389	25.01	1	0	0	0.00	Rm Exh	ĩ.	0	(
People	2,250			2,250	26.17	1,250	13.09	2.4	0	0	0.00	Auxil		0	9)
Misc	1,433		0	1,433	16.67	1,433	15.01	1. A.	0	0	0.00					
Sub Total ==>	6,073	0	0	6,073	70.64	5,073	53.10		0	0	0.00	EN	GINEE	RING C	KS	
Ceiling Load	0	0		0	0.00	0	0.00	1	0	0	0.00	2				
Outside Air	-2,626	0	0	-2,626	-30.55	-1,004	-10.51		-272	-272	6.22		C	cooling	leating	
Sup. Fan Heat				0	0.00		0.00			0	0.00	% OA		9.0	9.0	
Ret. Fan Heat		0		0	0.00		0.00			0	0.00	cfm/sq	ft	3.97	3.97	
Duct Heat Pkup		0		0	0.00	0950	0.00			0	0.00	cfm/tor		376.67		
OV/UNDR Sizing	0			0	0.00	0	0.00		0	0	0.00	sq ft/to		347.17		
Exhaust Heat		0	0	0	0.00		0.00			0	0.00	Btu/hr-		34.56	-47.20	
Terminal Bypass		0	0	0	0.00		0.00	1		0	0.00	No. Pe	ople	5		
Grand Total ==>	8,597	0	0	8,597	100.00	9,552	100.00	<u> </u>	-4,376	-4,376	100.00	HEATI	NG CO	IL SELE	стю	N
		COOLING	COIL SEL	ECTION	1				ARE	AS			Capacity			
	Total Capacity ons MBh	Sens Cap. MBh	Coil Airfi cfm	Enter D F	B/WB/HR F gr/lb			Floor	Gross Tot	S	ass qft (%)	Main Htg Aux Htg Preheat	MBh -4.4 0.0 0.0	1,11	100 CO	0 72.3
Main Clg	0.7 8.6	9.7	1,110	78.0 6	0.3 67.7	68.0 57.5	70.0	Part		0		Reheat	0.0		0 0.0	
	0.0 0.0	0.0	0		0.0 0.0	7.73773	C	ExFir		0		Humidif	-3.4	12	-	
	0.1 1.1	1.1	100		6.0 32.7			Roof	28	7594 AUC		Opt Vent	-5.4	10		
83								Wall	39	0 67	17					
Totals	0.8 9.7										336NS	Total	-13.2			

Project Name: School for St. Michaels Dataset Name: C:\CDS\LOAD700\PROJECTS\SMASE.LDS

P. References

2000 ASHRAE Systems and Equipment Handbook

1999 ASHRAE Applications Handbook

1997 ASHRAE Fundamentals Handbook

Beall, Christine. Thermal and Moisture Protection Manual. McGraw, Hill. New York. 1999

ASHRAE Design/Data Manual for Closed-Loop Ground-Coupled Heat Pump Systems. 1985

1

2000 Carrier Residential and Light Commercial Products and Systems Catalog

2000 ClimateMaster Product Catalog

2000 Calmac Product Catalog

2000 Semco Product Catalog

Websites:

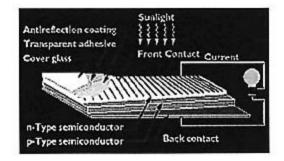
www.geoexchange.org www.soundgt.com www.pnl.gov

www.globalchange.org

www.bellgossett.com

Electrical System Appendix

Table of Contents

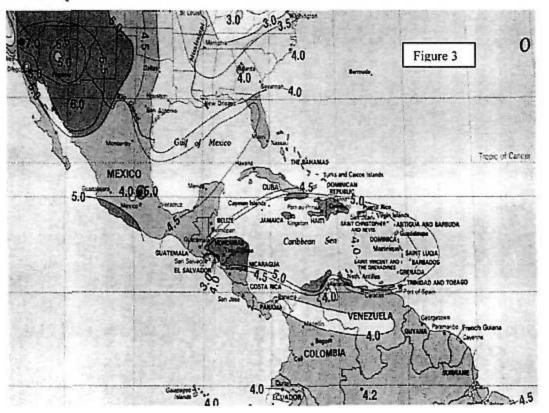

Introduction
Solar Energy
Photovoltaic Concepts
Solar Cell Materials2
System Components2
Solar Map3
Electrical System Design
Integrated Solar System
Exterior Solar Powered Lighting4
Emergency Power4
Total Building Load Calculations5
Solar Load Calculations
Cost Estimate
Electrical Schematic
Lighting
Resources/References

÷

Solar Cell Materials

The solar cells consist of two semiconductor layers that are used to produce the electron current. The detail in Figure 1 shows the components of each individual cell. A

metal grid is adhered to the top of the semiconducting layers where it collects the electrons that are produced from the semiconductors. The electrons are then transferred to the desired building load and returned to the back of the contact layer. The back contact layer is necessary to


complete the circuit. The glass cover is used to prevent any damage to the cell. The antireflective coating is used to prevent light from being reflected away from the cell.

System Components

There are several components of a photovoltaic system that are required to produce energy shown in Figure 2. The system starts with an array of photovoltaic cells that produce electricity. The electricity is transferred through the charge controller and stored in the batteries. The charge controller is used to eliminate the flow to the battery once the battery has reached its maximum capacity. The downfall of photovoltaic cells is they only produce direct current electricity. Direct current electricity (DC) is useful in powering the outdoor lighting. For all building applications and appliances alternating current electricity (AC) must be used. An inverter is used to convert the DC electricity to AC electricity where it can be used and supplied throughout the building.

For solar power to be a worthwhile investment your location must have a high solar insolation value, for St. Michael's the value is 5.5. The values for the Southern United States can be viewed on the map above in Figure 3.

Electrical System Design

The decisions made by FBM Design for our client, St. Michael's Association for Special Education, Inc., provide the most feasible and efficient electrical system. The initial costs were compared with the long-term maintenance costs and a final system design was chosen. The chosen electrical system must be able to support 509,051.7 kWh per year. The electrical system consists of a primary 13,200 volt service coming in from the utility grid provided by the Navajo Tribal Utility Authority (NTUA). The service will then pass through the meter. After passing through the meter, the voltage will be stepped down via a 277/480 volt transformer. Once the power has been stepped down it will pass through a substation, breaking off to mechanical panel and a 120/208 transformer. Keep in mind all power both 277/480 and 120/208 or both 3 phases services, only at the switchboard were 120/240 volt service is separated using one of the legs of the 120/208

does the power become single phase. The switchboard has a lighting, auxiliary, and emergency panel. The system also integrates the use of solar power at the switchboard to power the single-phase auxiliary power needs. Also incorporated is a generator for the emergency power. A complete system schematic is viewable in the back of this appendix.

Integrated Solar Powered System

The solar powered system will be used to power just the single-phase auxiliary power as mentioned above. The needs of the systems to do so are 310 solar panels, 68 batteries and 8 inverters. The system will store energy in the batteries when the auxiliary power does not require the total amount of energy supplied from the panels.

Solar Powered Exterior Lighting

The exterior solar lighting is a feasible alternative because it required direct current power. The photovoltaic cells generate the DC power, eliminating the need for an inverter allowing it to be cost effective. The solar power generated during the day is stored in batteries and used to power the lights at night. These self-contained units will meet St. Michael's needs and will be implemented in the parking lot and also the sides of the building.

Emergency Back-up Power

The emergency power will use a 6500 watt generator if power fails in the building. The system begins with an automatic transfer switch (ATS) that controls if no power is coming through the utility grid it will switch to emergency power and the generator will be turned on. Once the generator is supplying power it will pass through the emergency panel and will be used for powering the emergency lighting and any other applications that SMASE specifies.

Introduction

This appendix will contain detailed literature on the final electrical system design to be used at St. Michael's, Arizona. Included is a brief overview of how photovoltaics produce energy and how this phenomenon can be used to benefit St. Michaels. An electrical schematic will also be included to help present the layout of the electrical system. Emergency Power and Solar Powered Exterior Lighting will also be discussed. Lastly, a cost estimate will be included as well as all the building's solar, non-solar and lighting calculations.

Solar Energy

Photovoltaic Concepts

Photovoltaics are a technology that uses solar energy to produce electricity directly from sunlight. The largest benefit of using photovoltaics is that it is a clean way to produce energy. The cost of installing these solar panels are not expensive because they come prepackaged ready to implement, eliminating the need for skilled labor. They also have no moving parts eliminating the need for maintenance. Also new panels can be installed increase power in the existing systems. One downfall of photovoltaics is that there is not enough hard evidence to prove the durability to withstand extremes in the environment. A question that is asked is, "will the system produce enough energy to be worth the cost of installation." The answer to that question is dependent on the location. Also the current cost of a module is ranging from \$4.00 to \$10.00 per peak watt. A peak watt is the amount of electricity produced by a single cell when bright sunlight is available. The current photovoltaic cells are functioning at only 12% efficiency but the new silicon solar cells are more than 30% efficient. With the time frame for possible construction, the cells are a very possible alternative.

Total Building Load Calculations

The calculations for the total building load were calculated from the summation of common household appliances and mechanical system components that will be found in our building. The electrical loads for the appliances were found at www.homepower.com. The mechanical loads are educated guesses from comparable cutsheets found on the Internet. The running time duration for all mechanical equipment is estimated to be operating at 24 hours a day, 7 days a week to obtain the total maximum load. A detailed breakdown is shown on the following page.

Total Building Consumption

Quantity	Inverter Powered Appliance	P?	Run Watts	Start Watts	Hours/Day	Days/Week	W-hrs/day
1	Well Pump	1	1300	3900	•		10400.0
1	19 ft^3 Fridge/Freezer	1	120	240	10.00	7.00	1200.0
12	Televisions	0	75	200	4.00	5.00	2571.4
	VCRs	0		40		5.00	685.7
35	Computers, Monitors, Peripherals	1	200	400		5.00	40000.0
20	Stereos	i 1	25	25		5.00	2857.1
2000	Compact Flourescent Lights	1	15	15		7.00	360000.0
1	Scanner	0	20	50			0.7
10	Printers	0		100			1428.6
12	Microwave Ovens	1	1000	2000		5.00	2142.9
4	Vacuum Cleaner	0		2700			771.4
3	Washing Machine	1	300	525	· · ·	5.00	803.6
3	Dryer	1	300			·	803.6
1	Fax	1	5	5	j · · · – – – – – – – – – – – – – – – –		120.0
10	Power Tools		1350	2700		2.00	771.4
4	Coffee Maker	io					
3	Vending Machines	1					57600.0
<u> </u>	Toaster	0	i				42.9
1	Ni-Cad Battery Recharger	1	2		• •		51.4
2	Copier						3000.0
1	Sewing Machines			150	_		28.6
1	Blender	Ť					12.5
1	Coffee Grinder			300	<u></u>	· · · · ·	5.4
1	Garbage Dispossal	Ŏ					160.7
1	Dishwasher	Ť					1428.6
1	Deep Freezer						12000.0
1	Wireless Network Equipment	1					2400.0
1	Water Heater	1					120000.0
1	Recirculation Pump (3/4)	1					9600.0
40	Water Source Heat Pumps	1		525			384000.0
2	Therapy Pools		1500				
10	Make-up Air Units	1	1000				240000.0
2	Refrigerant Pumps				•	·	
8	Exhaust Fans	1 1			-		
3	Kitchen Hoods						
1	Back-up Boiler						
1	HVAC Controls		1				
$\frac{1}{1}$	Controls						
1	Phase Converter						
1	L&I Kiln J18X	1					
		I 1		0000			1398493.7

* Kitchen Ovens and Stoves will be powered by gas

1398493.7

¢

Total Building Load 509051.7 kWh/yr

Solar Load Calculations

FBM Design used a spreadsheet provided online by www.homepower.com to perform all solar load calculations. Initially, the building load must be known to determine the quantities of solar panels and inverters along with the number of trackers. The initial calculation used the entire building load to determine the quantities of solar equipment. To power the whole building using solar, the total building would exceed 585,150 kWh for both AC and DC. The building would require 2244 panels, 480 batteries and has an initial cost of bardware exceeding \$1.53 million.

We found this alternative not to be feasible. We feel that the solar power could provide sufficient power for all single-phase power needs. After running the simulation based on just single-phase AC loads, the building would require just 310 panels and 68 batteries and would cost \$264,150.00. We feel this alternative is feasible and this will be implemented into our design. The actual load calculations can be found on the following pages.

- 7 -

TOTAL BUILDING LOAD CALCULATIONS

INVERTER SUPPLIED 120 VAC APPLIANCE POWER CONSUMPTION ESTIMATE Energy Efficient Home System Date: 3/1/2001

AC Wall-hrs. Used Daily 1594726

	ower Magazine
St Mich	eets, Arizone
Phone #	

Please note: this is an estimate and is only as good as the information supplied.

All Appliances on the list below are powered by 120 Volt - AC from the inverter

No.	Inverter Powered Appliance	P7	Run Watts	Start Watte	Hours /Day	Week	W-hrsiday	*
1	Well Pump 1/2 hp. 120 VAC	1	1300	3900	1.25	7.00	1625.0	0.10%
1	19 cu ft Fridge/Freezer	1	120	240	10.00	7.00	1200.0	0.07%
12	TV	0	75	200	4,00	5.00	2571.4	0.16%
12	VCRs	0	40	40	2.00	5.00	685.7	0.04%
35	Computer, Monitor, Peripherals	1	200	400	8.00	5.00	40000.0	2.50%
20	Siereos	1	25	25	8.00	5.00	2857.1	0.18%
000	Compet Fluorescent Lights	11	15	15	12.00	7.00	360000.0	22.46%
1	Scanney	0	20	50	0.25	1.00	0.7	0.00%
10	Printers	0	100	100	2.00	5.00	1428.6	0.09%
12	Microwave Oven	1	1000	2000	0.25	5.00	2142.9	0.13%
4	Vecuum Cleaner	0	1350	2700	0.50	2.00	771.4	0.05%
3	Washing Machine	1	300	525	1.25	5.00	803.6	0.05%
3	Dryw	i	300	525	1.25	5.00	603.6	0.05%
1	Fax	1	5	5	24.00	7.00	120.0	0.01%
10	Power Tools	0	1350	2700	0.20	2.00	771.4	0.05%
4	Coffee Maker	0	1200	1200	0.50	5.00	1714.3	0.119
з	Vending Machines	1	800	1000	24.00	7.00	57600.0	3.59%
1	Toaster	0	1200	1200	0.25	1,00	42.9	0.005
1	Ni-Cad Battery Recharger	1	20	20	6.00	3.00	51.4	0.005
2	Coovers	TT I	700	1200	3.00	5.00	3000.0	0.195
1	Serving Machine	0	50	160	5.00	0.50	28.6	0.00%
1	Blender	0	350	700	0.05	5.00	12.5	0.00%
1	Coffee Grinder	0	150	300	0.05	5.00	5.4	0.00%
1	Garbege Dispossal	0	900	900	0.25	5.00	160.7	0.017
1	Dishwaher	0	1000	1000	2.00	5.00	1428.6	
1	Deep Freezer	1	500	1500	24.00	7.00	12000.0	0.75%
1	Wirelets Network Equipment	1	100	100	24,00	7.00	2400.0	0.157
1	Water Healer	0	5000	5000	24.00	7.00	120000.0	7,495
1	Recirculation Pump (1/8)	1	275	400	24.00	7.00	6600.0	0.419
40	Water Source Heat Pump	1	400	525	24.00	7.00	384000.0	23.951
2	Therapy Pools	1	1500	2000	8.00	4.50	15428.6	0.967
10	Make-up Air Units	1	1000	1500	24.00	7.00	240000.0	14.979
2	Relingerant Pump	1	400	600	24.00	7.00		
8	Estavat Fana	\square	250	400	24.00	7.00		2.999
3	Kichen Hoods	1	200	350	2.00	5.00	857.1	0.057
1	Back-up Boller	1	5000	5000	0.25	1.00	178.6	0.019
1	HVAC Controls	1	100	100	24.00	7.00		0.159
1	Controls	1	100	100	24.00	7.00		0.159
1	Phase Converter	1	250	400	24.00	7.00		
1	L&L Kin J18X	1	6300	8300	8.00	5.00	47428.6	2.967

DC APPLIANCE POWER CONSUMPTION ESTIMATE Energy Efficient Home System Dela: 3/1/2001 ** Energy Efficient Home System Home Power Magazine St. Michaels, Arizone DC W.-hrs. Used Daily Phone # 8424

All appliances on the list below are DC powered directly from the batteries

No.	DC Powered Appliance	Wattage	On Time Wa	d-hm/dar	*
27	Inverter idle draw (on)	13	24	8424	0.5%
0	0	0	0	0	0.0%
0	0	0	0	0	0.0%
0	0	0	0	0	0.0%
0	0	0	0	0	0.0%
0	aa	0	1 0	đ	0.0%
0	0	0	0	0	0.0%
0	0	0	0	0	0.0%
0	0	0	0	0	0.0%
0	0	0	0	0	0.0%
0	0	0	0	0	0.0%
0	0	0	0	0	0.0%
0	0			0	0.0%
0	0	0	0	0	0.0%
0	0			0	0.0%
0	0	0	0	0	0.0%

Total DC Watt-hours Consumed Daily

8424

Inverter surge Wattage needed Inverter priority Wattage needed

10 Total estimated energy consumption dely-both DC and AC 1603150.36 West-hours per day Consumption for Link 1603150.36 West-hours dely Inverter Presence? 1 1 is yes and 0 is no Inverter surge Westage needed 80000 Wests 147720 Watta

.

TOTAL BUILDING LOAD CALCULATIONS

.

Energy Efficient : Nome Power Ma St. Michaels, Arb Phone #	gazine Line	Date 3	1/2001
	*** THE FACTS OF THE MA fined Data (see 4 on Users) 1.603,150 Watthours/da 24 Vota 2 Pands 574 Pands 224000 Watta	Consumption Estimat	148,500 Walls 148,500 Walls 42,000 Ampere-hours 2244 Parols 2916 Parols 5.5 Rount per day
		WITROLS	****
Battery Serage	0.5 4473	OC Generator	0 Watta
AC Generator	8500 W -01	Solar	2240 Peneta
		Tracker?	I tif true, else 0
*******	THE BOTTOM LIN	E ******	
Becary Storage	0.50 days	Average Storage	2.20 days
System Op Coat,	\$32.61,16 per moren	Generalize Time	296 Hours year
Leitover Power	163,300 Weda	Solar Power	99.90% of Contompton

Initial Cost: \$1,531,211,00 Cost per year - \$195,735.07 Cost per month - \$19,311,28	🕼 10 year basis	Operating Cost Power Cost	per year per kWihr.
Totel Cost \$1,957,350,71			

RENEWABLE ENERGY SYSTEM HARDWARE COST ESTIMATE IN Energy Efficient Home System Home Power Magazine St. Michaets, Arizona

Phone #

Cele: 3/1/2001

0

Power Consumption 1503150.4 Wett-hours/day

Initial Cost Estimate \$1531211.00

No.	tern Oescription	Type	Unit Price	s was	Nem Totel	X of Cost
2240	Stemens PV modules	SR 100	\$525.00	50.00	\$1,175,000.00	76.60%
12	Trace inverter	5144024	\$3.000.00	\$0.00	\$36,000.00	2.15%
450	Trojan Battanes	L-15	\$150.00	\$0.00	\$72,000.00	4,70%
_1	AC Generator	6500	\$3,000,00	2000	\$3.000.00	0.20%
1000	Instalation Labor per man-hour	esämule	\$50.00	20.00	\$50,000.00	3,27%
	_					
360	PV Mounding Reck	4-SR 100	\$220.00	\$0.00	1173,200.00	8.05%
27	Sear Boost Charge Controller	S850	\$330.00	\$0.00	\$5,910.00	0.58%
1	Wire, Conduit, Fittings	enditate	\$50,000,00	\$0.00	\$50,000,00	1.27%
27	Battery Revenuer Fused Descon.	OC-250	\$329.00	\$0.00	\$6,883,00	0.54%
652	640anj/kwantar Cables	estimate	\$300.00	00.02	\$300.00	0.02%
1	Bettery Amp-hour Meter	E-Metor	\$200.00	\$0.00	200.00	0.01%
2	Fused PV Descented	So. D	\$60.00	\$0.00	\$120.00	0.01%
27	Invener Conduit Box	\$WC8	\$94.00	\$0.00	\$2,535,00	0.17%
					i	
2	DC Lightning America	0	\$30.00	\$0.00	· \$60.00	0.00%
5)	10.00	50.00	0.00%
0			1	\$0.00	\$0.00	0.00%
			1	\$0.00	\$0.00	0.00%

Total Initial Mantenare Cost Estimate 51,501,211,00

FEASIBLE BUILDING LOAD CALCULATIONS

INVERTER SUPPLIED 120 VAC APPLIANCE POWER CONSUMPTION ESTIMATE Energy Efficient Home System Data: 3/1/2001 Mome Power Magazine St. Nignets. Auzona Phone F Acc Was-bra. Used Daty 215765

Please note: this is an estimate and is only as good as the information supplied,

As Applement on the list below are powered by 120 Voll - AC from the investor from Start House Own

			Run	51.ml	Hours	Oins		
Na.	Inverter Powered Applance	P7	Watta.	Wetta	<u>. Day</u>		W-hrs-day	*
(-	Weil Pump 1/2 hp. 120 VAC	1	1300	3900	1.25	7.00	1625.0	0.74%
	18 cu & Freine Freezer		521	240	10.00	7.00	1200.0	3.55
(12	TV	0	- 75	200	4,00	5.00	2571.4	1.475
12	VCR	Ð	40	. 40	2.00	5.00	\$55.7	0.21%
35	Comparter, Monder, Peopherals	1	200	400	0.00	5.00	40000,0	10.2
20	Stareo	I	25	25	8.00	5.00	2657.1	1.105
2000	Completi Fluorescord Ugha	i î		15	12.00	7.00	0,0	0.00%
Г 1	Scandf	Q.	20	50	0.25	1,00	0.7	0.00%
10	Print 7	Q	100	100	2.00	5.00	1428.6	0.65X
12	Microweve Oven	1	1000	2000	0.25	5.00	2142.9	0.95%
4	Vacuum Cleaner	a	1350	2700	0.50	2.00	171.4	0,35%
1	Washing Mechine	1	300	525	1.25	5.00	803.6	0.373
-3	Dryer	1	300	325	1.25	5.00	803.6	0.37%
ſ	Fex	1	5	<u> </u>	21.00	7,00	120.0	0.05%
10	Power Tools	0	1350	2700	0.20	2.00	771,4	0.35%
4	Collee Maker	0	1200	1200	0.50	5.00	1714.3	0.70%
1	Vendarg Mechanes	1	600	1000	24,00	7.00	37600.0	26.27%
1	Toest	Q.	1200	1200	0.25	1.00	42.9	0.07%
1	No.Cad Battery Recharger	1	20	20		3.DQ		0.0Z%
2	Соре		001	1200	i 3.00	5.00		1,375
1	Seven@ Machine	Q	8	160	5,00	0.50		0.01%
1	Elencio*	D	350	700	0.06	\$.00	12.5	0.01%
[. 1	Coffee Groder	Ó	150	300	0.05	5.00	5,4	0.00%
<u>1</u>	Garbege Disposaal	LO	900	500	0.25		160,7	
1	Clahershor	Q	1000	1000	2.00(<u>5.</u> 00	1428.6	0,65%
1	Deep Freezer	t	500	1500	24,001	7.00		5.47%
1	Wirelast Network Equipment	1	100	100	24.00	7,00		1.05%
	Water Hester	Û		5000	24.00	7.00		0.0 ⁰ X
<u> </u>	Recorduation Pump (3/4)	ĩ		400	24,00	7.00		0.00%
4Q	Weter Source Heat Pump	1		525	24.00	7.90		0.00%
1	Therepy Pools	1		2000	8.00	4,50		0.00%
10	Makadap Ar Units	ī	1	1500	24.00	7.00		0.00%
2	Refroemant Pump	1		<u> 600</u>		7.00		0.00%
4	Exhault Fans	1	<u> </u>	400	24.00	7.00		0.00%
-	Kitchen Hoods	1	203	350	2.00	5.00		0,000
<u></u>	Beck-up Boler	ļ ï		5000	0.25	1.00		0.00%
1	HVAC Controls	1		100	21.00	7,00		0.00%
1	Conrel4	1		TON		7.00		0.00%
	Phase Converter	Ţ,	250	400		7.00		2.74%
	LAL XIN 116X	1	8300	0000	. 100	5.00	47428.6	21,63

OC APPLIANCE POWER CONSUMPTION ESTIMATE Energy Efficient Horr# System Delet 3/1/2001 Home Power Magaz/4 St. Michaels, Artzma Phone # OC W.-Ins. Used Dely 2496

All appliances on the list below are DC powered directly from the baltaries

è

No,	DC Powered Applance	Watage	On Time	Wag hisker	*
8	Inverter (Se drew (on)	13	24	2460	1,1%
\$	<u> </u>	3			α л ч
Ó	0	0	i O	0	ά Π Χ
	·		L		
Ó	0				0.0X
	0	Ď	0	Q1	0.0%
Ó	0	0	[<u> </u>	a	0.0
đ	o	· 0	0	oi	0.0%
	0	0) Ó	0	0.07
0	0	0	0	0	0.0 %
Q	0	0	0	Ó	0.0%
á	0	0	0	0	0.0%
o	D D	. ¢	0	0	0.0%
0	0	i d	Ő	q	0.0%
Q	0	0	0		0.0%
	0	0	0		_0.6%
•	0	0	-0	0	0.0%

Total DC Wed-hours Consulted Daily

2496

Total estimated energy consumption dely-both DC and AC

Consumption for Link Inverter Presence? Invenier surge Wattage needed Invenier priority Wettage needed 219284.14 Wat-hours per day 219284.14 Wat-hours per day 1 1 is yes and () is no 600000 Watts 35345 Walts

10

5. -

ς.

FEASIBLE BUILDING LOAD CALCULATIONS

	THE CONTRO							
Energy Engled		ET:	Onle 3/1/2001					
Home Power J	erezene -							
St. Mohanin, A								
Fhore #								
		CTS OF THE M	ATTER *******					
Computer Det			Consumption Es	Kenter and				
Consumption		Well-hours/day		44,000	Walls			
Sectory Voltage		Vota	Battery Cacacity		Arrown-hours			
Solar Increment	2	Panela	Optimum Solar		Penels			
Cr20 Solar	- 96	Panela	land Alone Solar		Panela			
Solar Watte	31000	Watta	Soler ineciation	-	hours per day			
		NPUT-THE		<u> </u>	•			
Battery Storage		¢eye	OC Generator	0	Wate			
AC Generator	6500	Wett	Schar	310	Panola			
			Tracker?		1 if true, else Q			
		НЕ ВОТТОМ ЦА	NE					
Senery Storage			Average Storage	2.29	days.			
System Op Cost		per month	Generator Time	2499	Hourstyper			
Laftower Power	27,950	Wette	Solar Power		of Consumption			
Inital Cost	\$264,150.00	for herdware	Operating Cost	\$4619.59	Ord water			
		@19 year bask	Power Cost		per kW.av.			
-								

Cost per month \$2,752.48 @10 year basis Total Goal \$330,345.92 @10 year basis

RENEWABLE ENERGY BYSTEM HARDWARE COST ESTIMATE for Energy Efficient Home System Home Power Magazine SL. Methadi, Alizone Power Consumption 219264,14 Wat-hours/day Phone #

.

Dete: 3/1/2001

ί.

Ś ٠.

Initial Cost Estimate \$264150.00

		_	_			
No.	Re ^m Ossemption	Тура	Unit Price	Sheens Gi	lien Tole	X of Cost
310	Siemona PV modules	SR 100	\$525.00	1000 j	\$162,750.00	61.61 ¥
	Traca Invarian	SW4024	\$3,000.00	i so.co;	\$24,000,00	9.09%
66	Trojan Ballanos	- G16	\$150.00	\$0.00	10,200,00	3,55%
1	AC General	6500	\$3.000.00	30.00	\$3,000,00	1.14%
320	Instalation Labor per man-hour	estattèle	\$50.00	\$0.00	\$16,000.00	5.05%
		•				
75	PV Mounting Rack	4-\$R 100	\$220.00	10.00	117,660.00	0.50%
2	Soler Boosi Charge Controller	\$850	\$\$30.00	\$0.00	\$560.00	025%
1	Wire, Conduit, Fillings	osbroate	\$25,000.00	\$0.00	\$25,000.00	9.46%
12	Batterynwerter Fused Olacon.	DC-250	\$329.00	\$0.00	\$3,948.00	1.49%
59	Ballery/www.mer Cables	6107-698	\$300.00	\$0.00	\$300.00	0.11%
1	Battery Amp-hour Meler	E-Meter	\$200.00	\$0.00	1200 00	0.06%
1 2	Fused PV Disconnect	\$q, 🗘	\$60.00	50.00	\$120.00	0.05%
ð	Inverter Candul Box	SWCB	\$94.00	<u>. 5000</u>	\$752.00	0.26%
2	DC Lignwing Arrestor	Delta	\$30.00	\$0.00	\$80.00	0.02 4
0	· · ·			\$0.00	\$0.00	0.00%
0				10.00	\$0.00	0.00%
0	<u> </u>			\$0.00	\$0.00	0.00%

Yotal Initial Marchware Cost Estimate 5754,150.00

- •

.

Cost Estimate

The cost estimate is based on the hardware determined and specified on the spreadsheet. These products and any useful information can be viewable at www.solar4power.com. The following is a summary from the calculated simulation.

Initial Cost of Solar Power	\$264,150.00	
Estimated Cost of Overall I	Electrical	
System w/o Solar Power		<u>\$200,000.00</u>
	TOTAL	\$465,150.00

The following numbers are a direct relation to the initial cost of the solar-powered system. Such as, the operating cost totaling \$551.43 per month. The power cost is equal to \$0.413 per kWh. Finally, an excess power wattage of 27,980 watts will be in excess.

Insert

Electrical Schematic

Here

Lighting

Preliminary lighting calculations were made using the zonal cavity method. The specified fluorescent lamp has the following characteristics:

32 watts, T-8, 4100 K, 85 CRI, 2900 design lumens The luminaire selected was the Simkar prismatic lens.

Room Demensions: Typical Classroom - 75' x 35' Ceiling Height - 10' Work Surface Height - 2.5' RCR = [5*(CH-WSH)(L+W)]/(L*W)= [5*(10-2.5)(75+35)]/(75*35). = 1.57 From Simkar Lighting Catalog: @RCR = 1, CU = 80

@RCR = 2, CU = 71

Linear Interpolation:

(2-1.57)/(2-1) = (71-CU)/(71-80) CU = 72.9# Luminaires = (fc*area)/[(lumens/lamp)(lamps/luminaire)(CU)(LLF)] = (75*2625)/[(2900)(4)(0.73)(.7)] = 32.2 = 33

This calculation shows that 33 luminaires will be required in a typical classroom with a cost of \$0.55 watt/SF.

1

Resources/References

- 1. www.pvpower.com
- 2. www.solar4power.com
- 3. www.solarenergy.com
- 4. www.flasolar.com
- 5. www.eren.doe.gov/power/
- 6. www.seia.org
- 7. www.solarelectric.com
- 8. www.eren.gov/wind/
- 9, www.cogreenpower.org
- 10. www.homepower.com
- 11. www.solarlighting.com
- 12. www.hotkilns.com
- 13. www.powerq.com/watt.htm
- 14. www.angelfire.com/nc2
- 15. http://www.sandia.gov/media/NewsRel/nr2000/navajos.htm
- 16. 1997 Simkar Lighting Catalog
- 17. 1998 Osram Sylvania Lamp and Ballast Catalog

Electrical System Appendix

,

Table of Contents

Introduction1
Solar Energy
Photovoltaic ConceptsI
Solar Cell Materials2
System Components
Solar Map
Electrical System Design
Integrated Solar System4
Exterior Solar Powered Lighting4
Emergency Power4
Total Building Load Calculations
Solar Load Calculations
Cost Estimate12
Electrical Schematic
Lighting
Resources/References

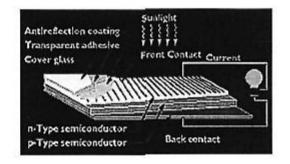
ť

Introduction

This appendix will contain detailed literature on the final electrical system design to be used at St. Michael's, Arizona. Included is a brief overview of how photovoltaics produce energy and how this phenomenon can be used to benefit St. Michaels. An electrical schematic will also be included to help present the layout of the electrical system. Emergency Power and Solar Powered Exterior Lighting will also be discussed. Lastly, a cost estimate will be included as well as all the building's solar, non-solar and lighting calculations.

Solar Energy

Photovoltaic Concepts

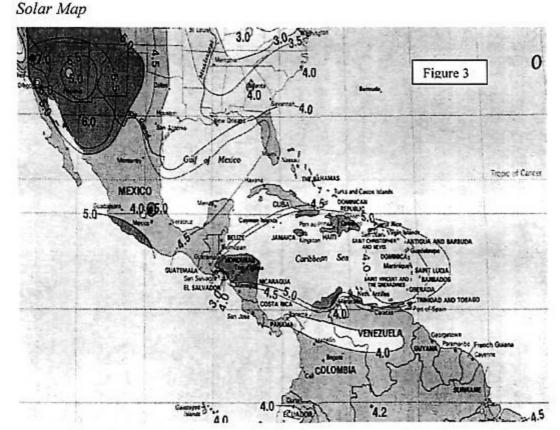

Photovoltaics are a technology that uses solar energy to produce electricity directly from sunlight. The largest benefit of using photovoltaics is that it is a clean way to produce energy. The cost of installing these solar panels are not expensive because they come prepackaged ready to implement, eliminating the need for skilled labor. They also have no moving parts eliminating the need for maintenance. Also new panels can be installed increase power in the existing systems. One downfall of photovoltaics is that there is not enough hard evidence to prove the durability to withstand extremes in the environment. A question that is asked is, "will the system produce enough energy to be worth the cost of installation." The answer to that question is dependent on the location. Also the current cost of a module is ranging from \$4.00 to \$10.00 per peak watt. A peak watt is the amount of electricity produced by a single cell when bright sunlight is available. The current photovoltaic cells are functioning at only 12% efficiency but the new silicon solar cells are more than 30% efficient. With the time frame for possible construction, the cells are a very possible alternative.

-1-

Solar Cell Materials

The solar cells consist of two semiconductor layers that are used to produce the electron current. The detail in Figure 1 shows the components of each individual cell. A metal grid is adhered to the top of the

semiconducting layers where it collects the electrons that are produced from the semiconductors. The electrons are then transferred to the desired building load and returned to the back of the contact layer. The back contact layer is necessary to



complete the circuit. The glass cover is used to prevent any damage to the cell. The antireflective coating is used to prevent light from being reflected away from the cell.

System Components

There are several components of a photovoltaic system that are required to produce energy shown in Figure 2. The system starts with an array of photovoltaic cells that produce electricity. The electricity is transferred through the charge controller and stored in the batteries. The charge controller is used to eliminate the flow to the battery once the battery has reached its maximum capacity. The downfall of photovoltaic cells is they only produce direct current electricity. Direct current electricity (DC) is useful in powering the outdoor lighting. For all building applications and appliances alternating current electricity (AC) must be used. An inverter is used to convert the DC electricity to AC electricity where it can be used and supplied throughout the building.

For solar power to be a worthwhile investment your location must have a high solar insolation value, for St. Michael's the value is 5.5. The values for the Southern United States can be viewed on the map above in Figure 3.

Electrical System Design

The decisions made by FBM Design for our client, St. Michael's Association for Special Education, Inc., provide the most feasible and efficient electrical system. The initial costs were compared with the long-term maintenance costs and a final system design was chosen. The chosen electrical system must be able to support 509,051.7 kWh per year. The electrical system consists of a primary 13,200 volt service coming in from the utility grid provided by the Navajo Tribal Utility Authority (NTUA). The service will then pass through the meter. After passing through the meter, the voltage will be stepped down via a 277/480 volt transformer. Once the power has been stepped down it will pass through a substation, breaking off to mechanical panel and a 120/208 transformer. Keep in mind all power both 277/480 and 120/208 or both 3 phases services, only at the switchboard were 120/240 volt service is separated using one of the legs of the 120/208

does the power become single phase. The switchboard has a lighting, auxiliary, and emergency panel. The system also integrates the use of solar power at the switchboard to power the single-phase auxiliary power needs. Also incorporated is a generator for the emergency power. A complete system schematic is viewable in the back of this appendix.

Integrated Solar Powered System

The solar powered system will be used to power just the single-phase auxiliary power as mentioned above. The needs of the systems to do so are 310 solar panels, 68 batteries and 8 inverters. The system will store energy in the batteries when the auxiliary power does not require the total amount of energy supplied from the panels.

Solar Powered Exterior Lighting

The exterior solar lighting is a feasible alternative because it required direct current power. The photovoltaic cells generate the DC power, eliminating the need for an inverter allowing it to be cost effective. The solar power generated during the day is stored in batteries and used to power the lights at night. These self-contained units will meet St. Michael's needs and will be implemented in the parking lot and also the sides of the building.

Emergency Back-up Power

The emergency power will use a 6500 watt generator if power fails in the building. The system begins with an automatic transfer switch (ATS) that controls if no power is coming through the utility grid it will switch to emergency power and the generator will be turned on. Once the generator is supplying power it will pass through the emergency panel and will be used for powering the emergency lighting and any other applications that SMASE specifies.

Total Building Load Calculations

The calculations for the total building load were calculated from the summation of common household appliances and mechanical system components that will be found in our building. The electrical loads for the appliances were found at www.homepower.com. The mechanical loads are educated guesses from comparable cutsheets found on the Internet. The running time duration for all mechanical equipment is estimated to be operating at 24 hours a day, 7 days a week to obtain the total maximum load. A detailed breakdown is shown on the following page.

Total Building Consumption

.

1 Well Pump 1 1300 3900 8.00 7.00 1044 1 19 fh3 Fridge/Freezer 1 120 240 10.00 7.00 122 12 Televisions 0 75 200 4.00 5.00 265 12 VCRs 0 400 2.00 5.00 400 20 Stereos 1 25 25 8.00 5.00 400 2000 Compact Flourescent Lights 1 15 15 12.00 7.00 36000 10 Printers 0 100 100 2.00 5.00 144 100 Printers 0 1000 2000 0.50 2.00 77 12 Microwave Ovens 1 1000 2000 0.50 2.00 77 3 Washing Machine 1 300 525 1.25 5.00 86 3 Dryer 1 300 525 </th <th>Quantity</th> <th>Inverter Powered Appliance</th> <th>P?</th> <th>Run Watts</th> <th>Start Watts</th> <th>Hours/Day</th> <th>Days/Week</th> <th>W-hrs/day</th>	Quantity	Inverter Powered Appliance	P?	Run Watts	Start Watts	Hours/Day	Days/Week	W-hrs/day
12 Televisions 0 75 200 4.00 5.00 255 12 VCRs 0 40 40 2.00 5.00 68 20 Stereos 1 25 25 8.00 5.00 28 200 Compact Flourescent Lights 1 15 15 12.00 7.00 36000 10 Printers 0 100 100 2.05 0.025 1.00 10 Printers 0 1000 2.00 2.70 3.00 2.50 2.14 Vacuum Cleaner 0 1350 2700 0.50 2.00 77 3 Washing Machine 1 300 525 1.25 5.00 86 3 Dryer 1 300 525 1.25 5.00 66 3 Dryer 1 300 525 1.25 5.00 67 4 Coffee Maker 0 1350 270	1	Well Pump	1					10400.0
12 VCRs 0 40 40 200 5.00 68 35 Computers, Monitors, Peripherals 1 200 400 8.00 5.00 400 20 Stereos 1 25 25 8.00 5.00 28 2000 Compact Flourescent Lights 1 15 15 15 12 0.00 200 100 100 2.00 5.00 28 10 Printers 0 1000 2000 2.05 5.00 214 4 Vacuum Cleaner 0 1350 2700 0.50 2.00 77 3 Washing Machine 1 300 525 1.25 5.00 86 3 Dryer 1 300 525 1.25 5.00 87 10 Power Tools 0 1350 2700 0.20 2.00 77 3 Vending Machines 1 800 1000 24.00	1	19 ft^3 Fridge/Freezer	1	120	240	10.00	7.00	1200.0
12 VCRs 0 40 40 2.00 5.00 68 35 Computers, Monitors, Peripherals 1 200 8.00 5.00 400 20 Stereos 1 25 25 8.00 5.00 28 2000 Compact Flourescent Lights 1 15 15 12.00 7.00 38000 10 Printers 0 100 100 2.00 5.00 2.44 12 Microwave Ovens 1 1000 2000 0.25 5.00 2.44 4 Vacuum Cleaner 0 1350 2700 0.50 2.00 77 3 Washing Machine 1 300 525 1.25 5.00 86 3 Dryer 1 300 525 1.25 5.00 87 1 Fax 1 5 2.400 7.00 17 4 Coffee Maker 0 1200 1200	12	Televísions	0	75	200	4.00	5.00	2571.4
35 Computers, Monitors, Peripherals 1 200 400 8.00 5.00 4000 20 Stereos 1 25 25 8.00 5.00 288 2000 Compact Flourescent Lights 1 15 15 12.00 7.00 36000 1 Scanner 0 200 5.00 142 Microwave Ovens 1 1000 200 0.25 5.00 214 Vacuum Cleaner 0 1350 2700 6.60 2.00 7.7 3 Washing Machine 1 300 525 1.25 5.00 86 3 Dryer 1 300 525 1.25 5.00 86 10 Power Tools 0 1350 2700 0.20 2.00 7.7 3 Vending Machines 1 600 1000 24.00 7.00 17 3 Vending Machines 0 800 1000 2.00	12	VCRs						685.7
20 Stereos 1 25 26 8.00 5.00 283 2000 Compact Flourescent Lights 1 15 12.00 7.00 38000 1 Scanner 0 200 50 0.25 1.00 10 Printers 0 1000 1000 2.00 5.00 214 12 Microwave Ovens 1 1000 2000 0.25 5.00 214 4 Vacuum Cleaner 0 1350 2700 0.50 2.00 77 3 Washing Machine 1 300 525 1.25 5.00 80 1 Fax 1 5 5 24.00 7.00 11 10 Power Tools 0 1350 2700 0.20 2.00 77 3 Vending Machines 1 600 1000 24.00 7.00 12 1 Toaster 0 1200 1200 3.00 <td>35</td> <td>Computers, Monitors, Peripherals</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>40000.0</td>	35	Computers, Monitors, Peripherals	1					40000.0
1 Scanner 0 20 50 0.25 1.00 10 Printers 0 100 100 2.00 5.00 144 12 Microwave Ovens 1 1000 2000 0.25 5.00 214 4 Vacuum Cleaner 0 1350 2700 0.55 2.00 77 3 Washing Machine 1 300 525 1.25 5.00 86 3 Dryer 1 300 525 1.25 5.00 11 10 Power Tools 0 1350 2700 0.20 2.00 77 3 Vending Machines 1 800 1000 24.00 7.00 5766 1 Toaster 0 1200 1200 0.25 1.00 4 2 Copier 1 700 1200 3.00 5.00 1 1 Ni-Cad Battery Recharger 0 360 700	20		1	25	25	8.00	5.00	2857.1
1 Scanner 0 20 50 0.25 1.00 10 Printers 0 100 100 2.00 5.00 144 12 Microwave Ovens 1 1000 2000 0.25 5.00 214 4 Vacuum Cleaner 0 1350 2700 0.55 2.00 77 3 Washing Machine 1 300 525 1.25 5.00 86 3 Dryer 1 300 525 1.25 5.00 86 1 Fax 1 5 5 24.00 7.00 11 10 Power Tools 0 1350 2700 0.25 5.00 17 3 Vending Machines 1 800 1000 24.00 7.00 5766 1 Toaster 0 1200 1200 0.25 1.00 4 2 Copier 1 700 1200 3.00	2000	Compact Flourescent Lights	1	15	15	12.00	7.00	360000.0
12 Microwave Ovens 1 1000 2000 0.25 5.00 214 4 Vacuum Cleaner 0 1350 2700 0.65 2.09 77 3 Washing Machine 1 300 525 1.25 5.00 66 3 Dryer 1 300 525 1.25 5.00 66 1 Fax 1 5 5 24.00 7.00 17 10 Power Tools 0 1350 2700 0.20 2.00 77 4 Coffee Maker 0 1200 1200 0.20 2.00 77 3 Vending Machines 1 800 1000 24.00 7.00 177 3 Vending Machines 1 800 1000 24.00 7.00 120 4 Optier 1 700 1200 3.00 5.00 16 2 Copier 1 700 12	1		0	20	50	0.25	1.00	0.7
4 Vacuum Cleaner 0 1350 2700 0.50 2.00 77 3 Washing Machine 1 300 525 1.25 5.00 66 3 Dryer 1 300 525 1.25 5.00 66 1 Fax 1 5 5 24.00 7.00 12 10 Power Tools 0 1350 2700 0.20 2.00 77 4 Coffee Maker 0 1200 1200 0.50 5.00 17 3 Vending Machines 1 800 1000 24.00 7.00 5760 1 Toaster 0 1200 1200 0.25 1.00 4 2 Copier 1 700 1200 3.00 5.00 30 1 Sewing Machines 0 80 160 5.00 0.50 30 1 Sewing Machines 0 150 300	10	Printers	0	100	100	2.00	5.00	1428.6
3 Washing Machine 1 300 525 1.25 5.00 86 3 Dryer 1 300 525 1.25 5.00 60 1 Fax 1 5 5 24.00 7.00 11 10 Power Tools 0 1350 2700 0.20 2.00 77 4 Coffee Maker 0 1200 1200 0.50 5.00 17 3 Vending Machines 1 800 1000 24.00 7.00 576 1 Toaster 0 1200 1200 0.25 1.00 4 1 Ni-Cad Battery Recharger 1 20 6.00 3.00 5.00 3.00 1 2 Copier 1 700 1200 3.00 5.00 3.00 1.05 3.00 5.00 1 1.010 1.00 0.05 5.00 1 1.010 1.005 5.00 1.1 1.	12	Microwave Ovens	; 1	1000	2000	0.25	5.00	2142.9
3 Dryer 1 300 525 1.25 5.00 86 1 Fax 1 5 5 24.00 7.00 11 10 Power Tools 0 1350 2700 0.20 2.00 77 4 Coffee Maker 0 1200 1200 0.50 5.00 177 3 Vending Machines 1 800 1000 24.00 7.00 5760 1 Toaster 0 1200 0.25 1.00 4 1 Ni-Cad Battery Recharger 1 20 6.00 3.00 5.00 2 Copier 1 700 1200 3.00 5.00 300 1 Blender 0 350 700 0.25 5.00 1 1 Coffee Grinder 0 150 300 0.06 5.00 14 1 Dishwasher 0 1000 1000 2.00 7.00	4	Vacuum Cleaner	0	1350	2700	0.50	2.00	771.4
1 Fax 1 5 5 24.00 7.00 11 10 Power Tools 0 1350 2700 0.20 2.00 77 4 Coffee Maker 0 1200 1200 0.50 5.00 17 3 Vending Machines 1 800 1000 24.00 7.00 5760 1 Toaster 0 1200 1200 0.25 1.00 4 1 Ni-Cad Battery Recharger 1 20 20 6.00 3.00 4 2 Copier 1 700 1200 3.00 5.00 300 1 Blender 0 350 700 0.05 5.00 1 1 Coffee Grinder 0 150 300 0.06 5.00 14 1 Deep Freezer 1 500 1600 2.00 5.00 14 1 Deep Freezer 1 500 1600 </td <td>3</td> <td>Washing Machine</td> <td>1</td> <td>300</td> <td>525</td> <td>1.25</td> <td>5.00</td> <td>803.6</td>	3	Washing Machine	1	300	525	1.25	5.00	803.6
1 Fax 1 5 5 24.00 7.00 11 10 Power Tools 0 1350 2700 0.20 2.00 77 4 Coffee Maker 0 1200 1200 0.50 5.00 17 3 Vending Machines 1 800 1000 24.00 7.00 5760 1 Toaster 0 1200 1200 0.25 1.00 4 1 Ni-Cad Battery Recharger 1 20 20 6.00 3.00 4 2 Copier 1 700 1200 3.00 5.00 300 1 Blender 0 350 700 0.05 5.00 1 1 Coffee Grinder 0 150 300 0.06 5.00 14 1 Deep Freezer 1 500 1600 2.00 5.00 14 1 Deep Freezer 1 500 1600 </td <td>З</td> <td></td> <td>1</td> <td>300</td> <td></td> <td></td> <td>•</td> <td>803.6</td>	З		1	300			•	803.6
4 Coffee Maker 0 1200 1200 0.50 5.00 177 3 Vending Machines 1 800 1000 24.00 7.00 5760 1 Toaster 0 1200 1200 0.25 1.00 4 1 Ni-Cad Battery Recharger 1 20 20 6.00 3.00 5 2 Copier 1 700 1200 3.00 5.00 300 1 Sewing Machines 0 80 160 5.00 0.50 2 1 Blender 0 350 700 0.05 5.00 1 1 Garbage Dispossal 0 900 900 0.25 5.00 14 1 Dishwasher 0 1000 1000 2.00 7.00 1200 1 Wireless Network Equipment 1 100 100 24.00 7.00 1200 1 Recirculation Pump (3/4) 1	1	Fax	1	5	5	24.00	7.00	120.0
4 Coffee Maker 0 1200 1200 0.50 5.00 177 3 Vending Machines 1 800 1000 24.00 7.00 5760 1 Toaster 0 1200 1200 0.25 1.00 4 1 Ni-Cad Battery Recharger 1 20 20 6.00 3.00 5.00 2 Copier 1 700 1200 3.00 5.00 300 1 Sewing Machines 0 80 160 5.00 0.50 2 1 Blender 0 350 700 0.05 5.00 1 1 Garbage Dispossal 0 900 900 0.25 5.00 14 1 Dishwasher 0 1000 1000 2.00 5.00 14 1 Deep Freezer 1 500 1500 24.00 7.00 1200 1 Water Heater 1 5000 </td <td>10</td> <td>Power Tools</td> <td>0</td> <td>1350</td> <td>2700</td> <td>0.20</td> <td>2.00</td> <td>771.4</td>	10	Power Tools	0	1350	2700	0.20	2.00	771.4
1 Toaster 0 1200 1200 0.25 1.00 4 1 Ni-Cad Battery Recharger 1 20 20 6.00 3.00 <t< td=""><td>4</td><td>Coffee Maker</td><td>0</td><td></td><td>1200</td><td>0.50</td><td>5.00</td><td>1714.3</td></t<>	4	Coffee Maker	0		1200	0.50	5.00	1714.3
1 Toaster 0 1200 1200 0.25 1.00 4 1 Ni-Cad Battery Recharger 1 20 20 6.00 3.00 <t< td=""><td>3</td><td>Vending Machines</td><td>1</td><td>800</td><td>1000</td><td>24,00</td><td>7.00</td><td>57600.0</td></t<>	3	Vending Machines	1	800	1000	24,00	7.00	57600.0
1 Ni-Cad Battery Recharger 1 20 20 6.00 3.00 3.00 2 Copier 1 700 1200 3.00 5.00 300 1 Sewing Machines 0 80 160 5.00 0.50 300 1 Blender 0 350 700 0.05 5.00 1 1 Coffee Grinder 0 150 300 0.05 5.00 11 1 Carbage Dispossal 0 900 900 0.25 5.00 114 1 Dishwasher 0 1000 1000 2.00 5.00 144 1 Deep Freezer 1 500 1500 24.00 7.00 1200 1 Water Heater 1 500 5000 24.00 7.00 1200 1 Recirculation Pump (3/4) 1 400 500 24.00 7.00 3840 2 Therapy Pools 1	1		0	1200	1200	0.25	1.00	42.9
2 Copier 1 700 1200 3.00 5.00 300 1 Sewing Machines 0 80 160 5.00 0.50 2 1 Blender 0 350 700 0.05 5.00 2 1 Coffee Grinder 0 150 300 0.05 5.00 1 1 Garbage Dispossal 0 900 900 0.25 5.00 14 1 Dishwasher 0 1000 1000 2.00 5.00 144 1 Deep Freezer 1 500 1500 24.00 7.00 1200 1 Water Heater 1 5000 5000 24.00 7.00 1200 1 Water Source Heat Pumps 1 400 600 24.00 7.00 3840 2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1	1	Ni-Cad Battery Recharger	1					51.4
1 Sewing Machines 0 80 160 5.00 0.50 2 1 Blender 0 350 700 0.05 5.00 1 1 Coffee Grinder 0 150 300 0.06 5.00 1 Garbage Dispossal 0 900 900 0.25 5.00 14 1 Dishwasher 0 1000 1000 2.00 5.00 144 1 Deep Freezer 1 500 1500 24.00 7.00 1200 1 Wireless Network Equipment 1 100 100 24.00 7.00 24.00 1 Water Heater 1 5000 5000 24.00 7.00 1200 1 Recirculation Pump (3/4) 1 400 600 24.00 7.00 3840 2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1	2		1		1200			3000.0
1 Blender 0 350 700 0.05 5.00 1 Coffee Grinder 0 150 300 0.06 5.00 1 Garbage Dispossal 0 900 900 0.25 5.00 14 1 Dishwasher 0 1000 1000 2.00 5.00 144 1 Deep Freezer 1 500 1500 24.00 7.00 1200 1 Wireless Network Equipment 1 100 100 24.00 7.00 244 1 Water Heater 1 5000 5000 24.00 7.00 1200 1 Recirculation Pump (3/4) 1 400 600 24.00 7.00 1800 2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1 1000 1500 24.00 7.00 1922 2 Refrigerant Pumps 1 4	1	Sewing Machines	0			2	0.50	28.6
1 Coffee Grinder 0 150 300 0.05 5.00 1 Garbage Dispossal 0 900 900 0.25 5.00 14 1 Dishwasher 0 1000 1000 2.00 5.00 144 1 Deep Freezer 1 500 1500 24.00 7.00 1200 1 Wireless Network Equipment 1 100 100 24.00 7.00 2400 1 Water Heater 1 5000 5000 24.00 7.00 1200 1 Water Heater 1 5000 5000 24.00 7.00 1200 1 Recirculation Pump (3/4) 1 400 600 24.00 7.00 1960 2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1 1000 1500 24.00 7.00 1920 2 Refrigerant Pumps	1		<u> </u>		700			12.5
1 Garbage Dispossal 0 900 900 0.25 5.00 14 1 Dishwasher 0 1000 1000 2.00 5.00 144 1 Deep Freezer 1 500 1500 24.00 7.00 1200 1 Wireless Network Equipment 1 100 100 24.00 7.00 2440 1 Water Heater 1 5000 5000 24.00 7.00 2440 1 Water Heater 1 5000 5000 24.00 7.00 1200 1 Recirculation Pump (3/4) 1 400 600 24.00 7.00 964 40 Water Source Heat Pumps 1 400 525 24.00 7.00 38404 2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1 1000 1500 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 1921 </td <td>1</td> <td>Coffee Grinder</td> <td></td> <td></td> <td>300</td> <td></td> <td></td> <td>5.4</td>	1	Coffee Grinder			300			5.4
1 Dishwasher 0 1000 1000 2.00 5.00 144 1 Deep Freezer 1 500 1500 24.00 7.00 1200 1 Wireless Network Equipment 1 100 100 24.00 7.00 2400 1 Water Reater 1 5000 5000 24.00 7.00 2400 1 Water Heater 1 5000 5000 24.00 7.00 12000 1 Recirculation Pump (3/4) 1 400 600 24.00 7.00 960 40 Water Source Heat Pumps 1 400 525 24.00 7.00 38400 2 Therapy Pools 1 1500 2000 8.00 4.50 1543 10 Make-up Air Units 1 1000 1500 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 4800 3	i 1		—	í—————			5.00	160.7
1 Wireless Network Equipment 1 100 100 24.00 7.00 24.00 1 Water Heater 1 5000 5000 24.00 7.00 12000 1 Recirculation Pump (3/4) 1 400 600 24.00 7.00 960 40 Water Source Heat Pumps 1 400 525 24.00 7.00 38400 2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1 1000 1500 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 2400 2 Refrigerant Pumps 1 1000 1500 24.00 7.00 1920 8 Exhaust Fans 1 250 400 24.00 7.00 4800 3 Kitchen Hoods 1 200 3500 2.00 5.00 89 1	1		0	1000	1000	•		1428.6
1 Water Heater 1 5000 5000 24.00 7.00 12000 1 Recirculation Pump (3/4) 1 400 600 24.00 7.00 960 40 Water Source Heat Pumps 1 400 525 24.00 7.00 3840 2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1 1000 1500 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 192 8 Exhaust Fans 1 250 400 24.00 7.00 4800 3 Kitchen Hoods 1 200 350 2.00 5.00 89 1 Back-up Boiler 1 5000 5000 0.25 1.00 11 1	1	Deep Freezer	1	500	1500	24.00	7.00	12000.0
1 Water Heater 1 5000 5000 24.00 7.00 12000 1 Recirculation Pump (3/4) 1 400 600 24.00 7.00 960 40 Water Source Heat Pumps 1 400 525 24.00 7.00 3840 2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1 1000 1500 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 192 8 Exhaust Fans 1 250 400 24.00 7.00 4800 3 Kitchen Hoods 1 200 350 2.00 5.00 89 1 Back-up Boiler 1 5000 5000 0.25 1.00 11 1	1	Wireless Network Equipment	1	100	100	24.00	7.00	2400.0
1 Recirculation Pump (3/4) 1 400 600 24.00 7.00 964 40 Water Source Heat Pumps 1 400 525 24.00 7.00 3840 2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1 1000 1500 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 192 8 Exhaust Fans 1 250 400 24.00 7.00 4800 3 Kitchen Hoods 1 200 350 2.00 5.00 85 1 Back-up Boiler 1 5000 5000 0.25 1.00 1 1 HVAC Controls 1 100 100 24.00 7.00 2400 1 Pha	1		1	5000	5000	24.00	7.00	120000.0
2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1 1000 1500 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 192 8 Exhaust Fans 1 200 350 24.00 7.00 4800 3 Kitchen Hoods 1 200 350 2.00 5.00 85 1 Back-up Boiler 1 5000 5000 0.25 1.00 1 1 HVAC Controls 1 100 100 24.00 7.00 2400 1 Phase Converter 1 200 300 0.25 1.00 1 1 Phase Converter 1 250 400 24.00 7.00 240	1	Recirculation Pump (3/4)	1	400	600	24.00	7.00	9600.0
2 Therapy Pools 1 1500 2000 8.00 4.50 1542 10 Make-up Air Units 1 1000 1500 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 192 8 Exhaust Fans 1 250 400 24.00 7.00 4800 3 Kitchen Hoods 1 200 350 2.00 5.00 85 1 Back-up Boiler 1 5000 5000 0.25 1.00 11 1 HVAC Controls 1 100 100 24.00 7.00 2400 1 Controls 1 100 100 24.00 7.00 2400 1 Phase Converter 1 250 400 24.00 7.00 2400	40	Water Source Heat Pumps	1	400	525	24.00	7.00	384000.0
10 Make-up Air Units 1 1000 1500 24.00 7.00 2400 2 Refrigerant Pumps 1 400 600 24.00 7.00 192 8 Exhaust Fans 1 200 360 24.00 7.00 4800 3 Kitchen Hoods 1 200 350 2.00 5.00 88 1 Back-up Boiler 1 5000 5000 0.25 1.00 1 1 HVAC Controls 1 100 100 24.00 7.00 2400 1 Controls 1 100 100 24.00 7.00 2400 1 Phase Converter 1 250 400 24.00 7.00 2400	2	Therapy Pools	1	1500	2000			15428,6
2 Refrigerant Pumps 1 400 600 24.00 7.00 192 8 Exhaust Fans 1 250 400 24.00 7.00 4800 3 Kitchen Hoods 1 200 350 2.00 5.00 88 1 Back-up Boiler 1 5000 5000 0.25 1.00 1 1 HVAC Controls 1 100 100 24.00 7.00 240 1 Controls 1 100 100 24.00 7.00 240 1 Phase Converter 1 250 400 24.00 7.00 240			1					
8 Exhaust Fans 1 250 400 24.00 7.00 4800 3 Kitchen Hoods 1 200 350 2.00 5.00 8800 1 Back-up Boiler 1 200 350 2.00 5.00 8800 1 Back-up Boiler 1 5000 5000 0.25 1.00 11 1 HVAC Controls 1 100 100 24.00 7.00 2400 1 Controls 1 100 100 24.00 7.00 2400 1 Phase Converter 1 250 400 24.00 7.00	2		1 1			24.00	7.00	19200.0
3 Kitchen Hoods 1 200 350 2.00 5.00 84 1 Back-up Boiler 1 5000 5000 0.25 1.00 1 1 HVAC Controls 1 100 100 24.00 7.00 240 1 Controls 1 100 100 24.00 7.00 240 1 Phase Converter 1 250 400 24.00 7.00 600	8	Exhaust Fans			400	24.00	7.00	48000.0
1 Back-up Boiler 1 5000 5000 0.25 1.00 1 1 HVAC Controls 1 100 100 24.00 7.00 240 1 Controls 1 100 100 24.00 7.00 240 1 Phase Converter 1 250 400 24.00 7.00 600			<u></u>			· · ·		857.1
1 HVAC Controls 1 100 100 24.00 7.00 240 1 Controls 1 100 100 24.00 7.00 240 1 Phase Converter 1 250 400 24.00 7.00 600	1		<u> </u>				1.00	178.6
1 Controls 1 100 100 24.00 7.00 240 1 Phase Converter 1 250 400 24.00 7.00 600	1	· · · · · · · · · · · · · · · · · · ·	1					
1 Phase Converter 1 250 400 24.00 7.00 600	1		1					2400.0
	1	Phase Converter					7.00	6000.0
	1	L&I Kiln J18X	1			8.00	5.00	47428.6

* Kitchen Ovens and Stoves will be powered by gas

1398493.7

ŀ

۰, i

Total Building Load 509051.7 kWh/yr

•

Solar Load Calculations

FBM Design used a spreadsheet provided online by www.homepower.com to perform all solar load calculations. Initially, the building load must be known to determine the quantities of solar panels and inverters along with the number of trackers. The initial calculation used the entire building load to determine the quantities of solar equipment. To power the whole building using solar, the total building would exceed 585,150 kWh for both AC and DC. The building would require 2244 panels, 480 batteries and has an initial cost of hardware exceeding \$1.53 million.

We found this alternative not to be feasible. We feel that the solar power could provide sufficient power for all single-phase power needs. After running the simulation based on just single-phase AC loads, the building would require just 310 panels and 68 batteries and would cost \$264,150.00. We feel this alternative is feasible and this will be implemented into our design. The actual load calculations can be found on the following pages.

- 7 -

Ŀ,

TOTAL BUILDING LOAD CALCULATIONS

INVERTER SUPPLIED 120 VAC APPLIANCE POWER CONSUMPTION ESTIMATE Energy Efficient Home System

Home Power	Magazine
Home Power	Arizone
Phone d	

AC Wein-his, Used Daily 1594726

Please note: this is an aximital and is only as good as the information supplied.

	All Appliances on the list below		Powered by	120 Vel			urier 👘	
			Run	Stari	Hours	Oxiye		
No.	Inverter Powered Appliance	P7	VY a Cat	YY sha	JO ey		White the	<u>×</u>
1	Well Pump 1/2 hp. 120 VAC	1	1300	3920	1,25	7.00	1625.0	0.10%
1	19 C) it Friday Freezer	1	120	240	10.00	7.00	i 200.0	0.07%
	TY -	Û.	15	200	4,00	5_D0	2571.4]	0.18%
12	VCR	¢.	40	40	2.00	5.00	665.7	0.04%
35	Computer, Mandor, Panpherals	П,	200	400	8,00	5,00	40000.0	2,50%
20	Sienece	Т	24	25	0.00	5,00	2647.1	0.16%
	Compact Fluorescent Lights	11	15	15	12.00	7.00	360000.0	22.46%
1	Scenner	Q	20	. 50	0.25	1,00	Ó.7	0.00%
10	Prontana	α	100	100	2.00	5.DQ	1428.6	0.09%
12	ARCTOWING CARE		0001	2007	9.25	5 ot	21-2.2	C. (3X)
4	Vectory Cleaner	9	1350	2700	0.50	2,00	771,4	0.05%
3	Westing Machine	1	300	325	1.25	5,00	603.6	0.05%
3	Dryer	Т		525	1.25	5.00	6001.6	0.05%
1	Fax	ī	5		24.00	7.00	120.0	0.01%
10	Power Tools	0	1350	2700	0.20	2.00	7714	0.05%
	Collee Maker	0	1700	1200	0.50	5,00	1714.3	D.11%
3	Vendeng Machines	1		1000	24.00	2.00	57600.0	1.58%
1	Tonslar	aï	1200	1200	0.25	1.00	2.9	0.00%
	NI-Cad Barlery Recharger	1	20	20	6.00	3.00	51.4	0.00%
2	Coperts	t	700	1200	3.00	5.00	3000.0	0.19%
	Severa Mechania	Q		160	5.00	0.50	28.6	0.00%
1	Biender	0	150	700	0.05	\$,00	12.5	0.00%
1	Collee Great		150	300	0.05	3.00	5.5	0.00%
	Gerbege Dispossel	0	600	900	미즈	5.00	160.7	0.01%
1	Distrivener	0	1000	1003	2.00	5.00	1425.6	0.09%
1	Desp Freezer	1	500	1500	24.00	7.00	12000.0	0.757
1	Winness Network Equipment	Ĩ.	100	100	24.00	00.5	2400.0	0.15%
1	Weber Heater	Û	5000	\$000		7.00	120000.0	7,45%
1	Recirculation Pump (1/6)	1	275	400		7,00	\$500.0	0.41%
	Weter Source Heat Pump	١	400	525		7.00	384000.0	
ΞŻ	Therepy Pools	1	1500	2000		1.50		
10	Maka-up Air Units	1	1000	1500			240000 D	
1	Reingerant Purre	-	499	600				
1	Extransit Fam	1	250	400		T.00	40000.0	2.99%
3	Kitthen Hoods	1	200	150		5.90	857.1	0.05%
1	Back-up Boder	1	\$300	5000		1.00		
-	HVAC Controls	L	103	190		7,00		
	Control	ĩ	102	100		7.00	2400.0	
	Phase Converser	1	250	400		1.00	00000	
۱]	L61 Kin J18X	1	6300	6,300	- a.co	5.00	47426.6	2.96 X

DC APPLIANCE POWER CONSUMPTION ESTRATE Dale: 3/1/2001 ... Energy Efficient Home System Home Power Megazine St, Mictualit, Anzone OC Wyley, Used Delly Phone 4 5424

All exclances on the list below are DC powered directly from the batteries.

N a.	DC Powered Applitude	Waters	On Type	Veti-hrakter	Χ.
271	Investor site draw (on)	13	24	8424	0_1
0	Q		0		0.0%
D		. 0	D	\$	¢
a		ā l	<u> </u>	Ģ	0.0%
0	Q	Q	0	0	0.07
0	0	0	- Q	Ó	0.0
	D	. O	. P	4	0.0
0		0	0	Þ	0.0%
a		o	0	- а	8.0%
0		. 0	ġ	0	0.0%
9		9	Ó	ol	0.0%
D	- 0	¢	Q	0	0.DX
0	D	Q		_0	0.0%
0	0	Ģ		. 0	0.0%
Q	o				0.0%
Q		0	0		0.0

Total DC Wad-hours Consumed Bally

6424

10

٢.

Inventer store Vistage needed Inventer priority Vistage needed

10 Total estimated energy consumption dely-both CC and AC 1803150.35 Welthours per day Consumption for Link 1503150.36 Welthours per day Inverse internat Presence? I t is yet and 0 is no Inverse visuage insected 80000 Welts Inverse priority Wettage needed 147720 Wetta

s. .

TOTAL BUILDING LOAD CALCULATIONS

Energy Efficient Home Power M. St. Michaels, An Phone #	egazine toona THE FACT		TEB	3/1/2001	_
Computer Deem	mined Deta be	Lind on User's C	onsumption Exter	-	
Consumption	1.603.150	Wathhoursides	Rivertar Size		
Bellery Volgoe			Bellery Cecedity		Wette
Solar increment		Panela	Openum Solar		Amport-hours
C/20 Solar		-	Land Alone Solar		Penels
Solar Wette	224000		Solar Insciation		Panala
				2.	hours per day
Badary Storage AC Generator	0.5	PUT-THE CO Maya Wata	OC Generator Solar		Wats. Pereis
	0.5 6500	daya Wata	OC Generalor Solar Tracker?		
AC Generator	0.5 6500	kaya Waka BOTTOM LINE	OC Generator Solar Tracter?	2240	Parais 1 if true, size ()
AC Generator	0.5 6500 7.6 0.50	Kaya Weks BOTTOM LINE Gaya /	OC Generator Solar Tracter?	2240	Panais 1 if true, sise () days
AC Generator Bettery Storage System Cp Cost	0.5 6500 71-6 0.50 \$3551.16	klaya Watta BOTTOM Love daya / Ser month	OC Generator Solar Tractus? Average Storage Generator Time	2240	Parais 1 if true, size ()
AC Generator	0.5 6500 7.6 0.50	klaya Watta BOTTOM Love daya / Ser month	OC Generator Solar Tracter?	2240 2.20 2595	Panais 1 if true, sise () days
AC Generator Bettery Storage System Dp Cost Leftover Power Swial Cost \$	0.5 6500 71-6 0.50 \$3551.16 153.300	klays Weits BOTTOM Love days per month Weits	OC Generator Solar Tractue?? Average Storage Generator Time Solar Power	2240 2.20 2595 99.90%	Panala 1 if true, also () days Houndyson of Contemption
AC Generator Battery Storage System Dp Cost Leftover Power Initial Cost \$	0.5 6500 71-6 0.50 \$3551.16 153.300	kaya Wets BOTTOM Ling daya ; ser month Watts for hardware	OC Generator Solar Tracker? Average Storage Generator Time Solar Power Operating Ceat	2240 2.20 2595 39.90% \$42643.97	Panela 1 if true, etse () days Houns/year of Contemption Per year
AC Generator Battery Storage System Dp Cost Leftover Power Initial Cost \$	0.5 6500 53551.16 153.300 1.531,211.00 \$195,735.07	klays Weits BOTTOM Love days per month Weits	OC Generator Solar Tractuer? Average Storage Generator Time Solar Power Operating Cost Power Cost	2240 2.20 2595 39.90% \$42643.97	Panala 1 if true, also () days Houndyson of Contemption

RENEWABLE ENERGY SYSTEM HARDWARE COST ESTIMATE IN Energy Efficient Home System Home Power Megazine St. Michaels, Arazona

Phone #

Dele: 3/1/2001

ĉ,

12

.÷ .

Power Consumption 1503150.4 Welt-hours/day

Initial Cost Estimate \$1531211.00

NO.	liam Description	Туре	Unit Price	Shipping (2)	Item Total	N of Cost
2240	Siemens PV modules	_SR 100	\$525.00	\$0.00	\$1,176,000.00	70.00%
_12	Trace krivester	594024	53.000.00	\$0.00	\$36,000.00	2.35%
460	Trojan Sedenes	L-18	\$150,00	50.00	\$72,000.00	4.70%
1	AC Generator	6500	\$3.000.00	\$9.00	\$3.000.00	0.20%
1DQ0	instaliation Labor per man-hour	estimate	\$50.00	50 CC -	\$50,000.00	3,273
	-					
_560	PV Mounting Ruck	+-SR100	\$220.00	\$0.00	\$173,200,00	8.05%
27	Solar Boost Charge Controller	\$850	\$330.00	50.00	\$5.910.00	0.55%
1	Wire, Conduit, Filtings		\$50,000.00	50.00	\$50,000.00	3.27%
27	Beltery/invener Fused On.con.	DC-250	\$129.00	\$0.00	\$5,553.00	0.55%
652	Battery Soverer Cables	estruaie	\$300.00	\$0.00	\$300.00	0.02%
	Battery Amp-hour Meter	E-Malar	1200.00	\$0.03	\$200.00	0.01%
2	Fused PV Deconsed	Sq. D	500.00	\$0.00	\$120.00	0.01%
27	Inverter Conduit Bas	SWCB	\$94.00	50.00	\$2,538.00	0.17%
2	OC Liphowng American	Detta	\$30.00	1000	\$60.00	0.00%
L ¢				\$0.001	£0.03	0.00%
0				\$0.00	\$0.00	0.00%
¢				50.00	50.00	0.00%

Total Initial Hardware Cost Estimate 51.531.211.00

FEASIBLE BUILDING LOAD CALCULATIONS

INVERTER SUPPLIED 121 VAC APPLIANCE POWER CONSUMPTION ESTIMATE Energy Exclusi Home System

Home Power M	10.27
SL Michaels, A	
Phone #	

Ļ

AC Web-hes, Used Daily 216788

Please note: this is an estimate and is only as good as the information supplied-

All Appliances on the list below are powered by 120 Voll - AC from the inverter Box Start Movies Dave

			Para	Sect	HOUR I	Dint		
NO.	Inverter Powered Applance	P?	Wette.	Watte	Ωeγ	Week	Warden,	*
1	Well Pump 1/2 np. 120 VAC	1	1,300	3900	1,25	7.00	(125.0)	0,74%
1	19 cu il Fridge/Emeter	1	120	240	10,00	7.00	200.0	0.55%
12	TV	â	75	500	4.00	5.00	2,71.4	1,173
12	VCR.	۵	40	40	2.90	5.00	(85.7	0.31%
35	Computer, Man/lor, Peroneralit	1	200	403	B.QQ.	5.00	40,000.0	18,24%
20	Slerect	1	25	25	8.001	5.00	2657.1	1.30%
2000	Compact Fluorencent Light	1		15	12.00	7,00	0.0	0.00%
1	Scenter	٥	20	50	0.25	1.00	0,7	0.00%
10	Protect	Q	100	100	2.00	5.00	426.6	0.65%
12	Microveye Over	1	1000	2000	0.25	5.00	Z142.9	0.06%
4	Vector Cleaner	á	1350	2700	0.50	2.00	171.4	0.35%
3	Washing Machine	1	300	575	1.25	5.00	,03.6	0.37%
- 3	Oryer	1	300	525	1.25	5.00	603.6	0.37%
1	Fax	1	5	5	24.00	7.00	120.0	0.05 %
10	Power Toola		1350	2700	0.20	2.00	71.4	0,35%
4	Coffee Maker	Ô,	1200	1200	0.50	5.00	14.3	0,76%
з	Vending Macna Ht	1	600	1000	24.00	7,00	57600.0	20.27%
1	Toester	0	1200	1200	0.25	1.00	42.9	0.02 %
1	Ni-Cad Salvery Recharger	1	20	20	6.00	3.00	51.4	0.02%
7	Copiera	1	700	1200	3.00	5.00	3003.0	1.37%
רי.	Seveng Wechane	3	80	ຼາກຈັ	5.00	0-20	20.0	0.ຫາກ)
1	Blender		350	700		5.DQ	12.5	0.01%
• 1	Coffee Grinder	D	150	300		5.00	5.4	0.00 X
1	Garbege Dispersion	0	200	900	0.25	5.00	160.7	0.07X
[1	Distriction	Q	1000	1000	2.00	5.00	1/28.6	0.65%
1	Doop Freezer	. 1	\$	1500	_24.00	7.03	12000.0	5.47%
1	Windless Network Equipment	1	100	100	24.00	7.00	2400.0	1,095
<u> </u>	Weler Hiseer	0		5000	24.00	7.8	0.0	0.00%
1	Reportulation Pump (3/4)	1		400	74,00	7,00	0.0	0.0016
-10	Water Source Heat Putto	1		525	24.00	7.00	0.0	0.00%
2	Therapy Poon	1		2030	4.00	1		0.00%
1Q	Make-up Air Unda	<u> </u>		1500	24.00	7.00	0.D	0.00%
Ź	Reingerant Pury			600	Z4.00	7,00	<u>0.</u> 0	0.07%
6	Extremel Fens	1		400	24.00	7.00	0.0	0.00%
3	Kilchen Hoods	-	200	250	2.00	5.00	857,1	0.39%
	Beck-up Boder	Т		5000	0.25	<u>t.00</u>	Ó.D	0.00%
	MVAC Controls	1		100	Z4.D0	7,00	0.0	0.00%
t	Control	1		100	24.00	00.K	Q.C	0.00%
<u>t</u>	Phase Converter	1	250	ŝ	24,00	7,00	6,000.0	2,74%
ī.	LÁL Kiin J16X	ľ	6300	8300	8.Q0	5.00	47420.0	21.53%

DC APPLIANCE POWER CONS	UMPTION ESTIMATE		
Energy Efficient Home System	Gam: 3/1/2001		
Home Power Magazine		-	
St. Michaels, Artzons			
Phone #	OC WIve, Used Dally		2408

All appliances on the list below are OC powered directly from the betteries

1

5

No.	DC Powered Appliance	Watage	On Time	Wett-hrafder	*
đ	inverter idle onev (on)	13	24	2496	1,17
٥	0	0	- 0	0	0.0%
٩	0		0	0	0.0 %
٥	0	a	Ģ	0	0.0%
Ō	0	Ó	D D	0	0.0%
٥		0	0	0	0.0%
â	9	-Ó	0	Ċ.	0.0%
â		0	Ď.	0	0.0%
Ċ	. 9		(<u> </u>		0.0%
٥				0	0.07
0	6	•	Q	0	0.07
ď		¢		Q	0.0%
<u> </u>		Ó	0		0.D.X
٥		6	·0		0.0%
٥	0	¢	0	0	0.0%
٥	0	¢	Q.	Ū	0.0%

Total DC Watt-hours Consumed Dary

2496

Total estimated energy consumption dely-both DC and AC.

- Consumption for Line 219204 219244 Investor Presence 7 Investor surge Watege needed 50 Investor prionty Weitage needed 35
- 219284.14 Watt-bours per day 219284.14 Watt-bours day 1 tis yes and 0 is no 50000 Watts 26345 Watts

6-

- 10 -

FEASIBLE BUILDING LOAD CALCULATIONS

	THE CONTR									
Energy Efficient				eta 3/1/2001						
Home Power M										
St. Michaele, Ar										
Phone #										
			MATTER							
Companier Deep	ronine@ Date 1	based on Use	r's Consumption	i Estimate						
Consumption		Wet-hours/d	4) Inverter \$							
Satisfy Votege		Volt	Sellery Cape		Ampere hours					
oler increment C/20 Sober	-	Panela	Optimum Sc		Panala					
Solar Water		Panela Wata	4446 Alone So		Panela					
	51000		Boler Inecial	ion 9.5	hours per day					
	USER	INPUT-THE	CONTROLS							
алогу баргада 🖡		dena	DC Genera		Watte					
AC Generator		Wate			Panels					
			Track		11 if bitat, sites (
		HE BOTTOM	LINE "							
ettery Storage		daya	Average Store	2.29	days					
Nen Op Cost		jeni montin	Generator D		Hourshaw					
efforter Power	27,980		Solar Pox		of Consumption					
				-						
initei Cost 1				041 56819.59	DAY LOAD					
				011 10113.39						
Cost per year	\$33,034,59	G10 year bai	F Power C		perkW.4v,					
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	F PowerC							
Cost per year 249 per month	\$33,034,59 \$2,7\$2,68	G10 year bai	le PowerC es. és	ost \$0,413 RENEWABLE 6	perkw	HARDWAR	RE COST ES	TIMATE for		
Cost per year 249 per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	t⊭r PowerC as as	ost \$0,413 RENEWABLE E Energy Efficient Home Power M St. Michaelts, Ar	perkW.dw, ENERGY SYSTEM Home System Agazine				Ome: Wathours/day	3/1/2001
Cost per year 249 per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	t⊭r PowerC as as	ost \$0.413 RENEWABLE B Energy Efficient Home Power M	perkW.dw, ENERGY SYSTEM Home System Agazine		Consumption	219254,14		
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	k≕ PowerC na mis	ost \$0,413 RENEWABLE E Energy Efficient Home Power M St. Michaelis, Ar Phone W	perkW.dw, ENERGY SYSTEM Home System Agazine	Power (Consumption Southal C	219254,14 col Estenato	Weit-hours/day \$264150.00	
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	ter PowerC ca. min.	ost \$0,413 RENEWABLE E Energy Efficient Home Power M St. Michaelis, Ar Phone W	perkW-Av, ENERGY SYSTEX Home System égazine tiona esonption	Power (Consumption	219254,14 col Estenato	Weit-hours/day \$264150.00 hem Total	% of Cos
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	ter PowerC es. <u>No.</u> <u>310</u>	ost \$0.413 RENEWABLE 5 Energy Efficient Home Power M St. Michaels, Ar Phone #	perkW-Av, ENERGY SYSTEX Home System égazine tiona esonption	Power (7)pe 58 100 59/4024	Consumption Statistic Unit Pales \$525.00 \$3.000.00	219264.14 coll Estimate Shipping (2 \$0.00 \$0.00	Watt-hours/day \$254150.00 Rem Total \$167 750.00 \$24 000.00	% of Cos 61.61% 9.09%
Cost per year ost per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	Ma. 310 68	ost \$0.413 RENEWABLE 5 Energy Efficient Home Power M SL Michaels, Ar Phone 8 Stemans, Phone 8 Stemans, Phone 8 Trace threads Trace threads	perkW-hv, ENERGY SYSTEM Home System égazine tatima esanption 20.465	Power (7100 5R 100 5W4024 L-16	Consumption Solital C Unit Prices \$525.00 \$3,000.00 \$150.00	219264.14 en/ Estenate Shipping (P Se.00 Se.00 Se.00	Watt-hours/day \$254150.00 \$167 750.00 \$167 750.00 \$167 000.00 \$10,200.00	% of Cot 61.61% 9.09% 3.66%
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. 1 310 5 1	ost \$0.413 RENEWABLE 5 Energy Efficient Home Power M St. Michaels, Ar Phone # <u>hom D</u> Siomens PV mic Trace by effect	perkW-Av, ENERGY SYSTEX Home System égazine taona esanption 20.4es	Power (7100 5R 100 5W4024 L-16 5500	Consumption anital C <u>Unit Prica</u> \$3,000.00 \$150.00 \$150.00	219254.14 evi Estimate Seco \$0:00 \$0:00 \$0:00 \$0:00 \$0:00	Wats-hours/day \$264150.00 \$167 750.00 \$24 000.00 \$10,200.00 \$10,200.00 \$30,000.00	% of Cos 61.61% 9.09% 0.66% 1.14%
Cost per year ost per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. 1 310 5 1	ost \$0.413 RENEWABLE 5 Energy Efficient Home Power M St. Michaels, Ar Phone # <u>hom D</u> Siomens PV mic Trace by effect	perkW-hv, ENERGY SYSTEM Home System égazine tatima esanption 20.465	Power (7100 5R 100 5W4024 L-16	Consumption Solital C Unit Prices \$525.00 \$3,000.00 \$150.00	219264.14 en/ Estenate Shipping (P Se.00 Se.00 Se.00	Watt-hours/day \$254150.00 \$167 750.00 \$167 750.00 \$167 000.00 \$10,200.00	% of Cor 61.61% 9.03% 3.66% 1.14%
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. 1 No. 1 310 68 1 1 320	ost \$0.413 RENEWABLE E Energy Efficient Home Power M St. Michaett, Ar Phone II <u>hem D</u> Steman PV my Trace bytefter Troyan Battenen AC Generator Instatenen Labo	per kW-Av, ENERGY SYSTEM Home System égazine titiona escoption poures per man-hour	Power (5R 100 5W4024 L-16 6500 esemate	Consumption anitial C Unit Prices \$525.00 \$3,000.00 \$150.00 \$3,000.00 \$3,000.00 \$3,000.00	219254.14 cel Estenabe Stipping (P) S0.00 S0.00 S0.00	Wath-hours/day \$254150.00 \$1027550.00 \$1027550.00 \$10,200.00 \$10,200.00 \$10,000.00	% of Cos 61.61% 9.09% 1.14% 8.08%
Cost per year ost per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	Ma. 310 68 68 68 1 320 76	ost \$0.413 RENEWABLE 5 Energy Efficient Home Power M St. Michaelts, Ar Phone 8 Stemans, PV my Trops Referen AC Gamerator Installation Labo	per kW-Av, ENERGY SYSTEM Home System égazine tzona escoption spare tzona	Power (5.R 100) 5.W 4024 L-16 5500 eternata	Consumption antitial C <u>Unit Prica</u> \$150.00.00 \$150.00 \$150.00 \$2,000.00 \$2,000.00 \$2,000.00 \$2,000.00	219264.14 end Estenable Shipping (2) \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00	Watt-hours/day \$254150.00 hem Total \$152750.00 \$10250.00 \$10250.00 \$10500.00 \$105.000.00 \$175.000.00	% of Con 61.61% 9.03% 3.66% 1.14% 8.06%
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ost \$0.413 RENEWABLE 5 Energy Efficient Home Power M St. Michaels, Ar Phone 8 Stomars PV my Trace by effect Trace by effect Tr	per KW-Av, ENERGY SYSTEM Home System égazine taona escoption spåres er per men-hour esk arge Controller	Power (5R 100 5W4024 6 5500 escrute escrute (•-SR100 \$830	Consumption antital C <u>Unit Prica</u> \$57 <u>500</u> \$150.00 \$150.00 \$3,000.00 \$3,000.00 \$3,000.00 \$3,000.00 \$3,000.00 \$3,000.00 \$3,000.00	219254.14 ent Estimate Shipping (P) 50.00 50.00 50.00 50.00 50.00 50.00 50.00	Wath-hours/day \$2\$4150.00 3em Total \$162 750.00 310 200.00 \$3,000.00 \$16,000.00 \$17,150.00 \$860.00	% of Con 61.61% 9.09% 1.14% 8.00% 8.50% 9.25%
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. 310 8 08 1 320 70 2 1	ost \$0.413 RENEWABLE E Energy Efficient Horne Prover M Stormers PV m Trace bracks Tropia Estimat AC Gargenia Installation Labor PV Moorting R Solar Boost Ch Wire, Conclus	per kW-Av, ENERGY SYSTEM Home System égazite tationa escongéon spuére tationa escongéon spuére solutiona escongéon spuére solutiona escongéon spuére solutiona escongéon spuére solutiona	Power 6 5R 100 5W 4024 L-16 5500 exemate 8500 exemate 8530 exemate 8830 2833	Consumption sultial C <u>Unit Prica</u> <u>\$525.00</u> <u>\$150.00</u> <u>\$150.00</u> <u>\$150.00</u> <u>\$150.00</u> <u>\$150.00</u> <u>\$220.00</u> <u>\$220.00</u> <u>\$3300.00</u> <u>\$220.00</u>	219264.14 ent Estimate Shipping (2) \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00	Watt-hours/day \$254150.00 \$407 Total \$107 750.00 \$24 000.00 \$10,200.00 \$3,000.00 \$15,000.00 \$17,150.00 \$40,000 \$25,000.00	% of Con 61.61% 9.09% 1.14% 8.06% 8.50% 9.25% 9.46%
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. 310 8 8 8 8 8 8 8 1 320 78 2 1 12	ost \$0.413 RENEWABLE E Energy Efficient Home Power M St. Movel M Stemma PV my Stemma PV my Trace bryether Trace bryether Trace bryether Trace bryether Trace bryether Trace bryether Trace bryether Statement Act Generator PV Moveling R Solar Boozt Ch. Batterrythyterler	per kW-Av, ENERGY SYSTEM Home System égazine titona esonption poures esonption esono	Power (5R 100 5W 102 5W 100 5W 100 5W 100 5W 100 5W 100 5W 100 5W 100 5W 100 5W 100 5	Consumption antitual C Unit Prices \$1,000,00 \$1,000,00 \$3,000,00 \$50,000 \$3,000,00 \$50,000 \$32,000,00 \$220,00 \$32,000,00 \$25,000,00 \$32,20,00	219264.14 eni Estenato 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	Wats-hours/day \$254150.00 hem Total \$152750.00 \$24 000.00 \$3000.00 \$15000.00 \$15000.00 \$15000.00 \$35000.00 \$35000.00 \$35000.00 \$33,948,00	% of Cot (3.61% 9.09% 3.66% 1.14% 8.08% 8.08% 9.46% 1.49%
Cost per year 29 per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	Ma. 310 68 68 76 2 1 12 99	ost \$0.413 RENEWABLE 5 Energy Efficient Home Power M St. Michaelts, Ar Phone 8 Stemans, PV my Troop the Michaelts, Ar Phone 8 Stemans, PV my Troop the Michaelts Troop the Michaelts Troop the Michaelts Troop the Michaelts Troop the Michaelts Troop the Michaelts Network Michaelts Better Michaelts	perkW-hv, ENERGY SYSTEM Home System spazine tzona esception spare tzona esception spare esception spare esception spare esception spare sp	Power (58 100) 59/4024 1-16 5500 exprnata 4-58100 5850 exprnata 9850 8350 8450 8450 8450 8450 8450 8450 8450 84	Consumption antitial C <u>Unit Prices</u> \$3,000,00 \$150,00 \$3,900,00 \$2,500,00 \$250,00 \$250,00 \$250,00 \$250,00	219254.14 Shipping (2) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	Watt-hours/day \$254150.00 \$102750.00 \$102750.00 \$102200.00 \$10200.00 \$15.000.00 \$15.000.00 \$17.160.00 \$35.000.00 \$39.400 \$39.400 \$300.00	% of Con 61.61% 9.05% 9.06% 8.06% 9.66% 9.46% 1.49% 9.46% 1.49% 9.46%
Cost per year 29 per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	He Power C as No. 310 50 1 1 2 1 12 99 1	ost \$0.413 RENEWABLE E Energy Efficient Home Prover M Stemans PV m Trace brender Trace Briteney Ac Generator Installation Labo PV Mounting R Bolar Boar Ch Wire, Cannal, Becary Archer	Per KW-Av, ENERGY SYSTEM Home System agazine toma escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption system escoption es	Power 6 5R 100 5V/4024 L-16 5500 esomata esomata esomata esomata E-44gar	Consumption antital C <u>Unit Prices</u> \$525.00 \$150.00 \$150.00 \$150.00 \$3300.00 \$220.00 \$330.00 \$220.00 \$330.00 \$220.00 \$320.00 \$220.00	219254.14 evil Estimate Shipping (P) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	With-hours/day \$2\$4150.00 3em Total \$162 750.00 310 200.00 \$3,000.00 \$16,000.00 \$17,150.00 \$35,000.00 \$17,150.00 \$35,000.00 \$30,00 \$3,000.000 \$3,000.00 \$3,000.0000\$3,000000000\$3,00000000	% of Con 61.61% 9.03% 9.03% 9.06% 1.14% 8.50% 9.66% 9.46% 1.40% 9.46%
Cost per year 29 per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. No. 310 8 8 8 8 8 8 8 8 8 8 8 9 78 2 1 12 99 1 2	ost \$0.413 RENEWABLE I Energy Efficient Home Power M St. Michaelts, Ar Phone II Siemans PV my Trace byents Trace byents Trace byents Trace byents Trace byents Renerator Trace byents Solar Boost Ch. Battery Inventor Battery Inventor Battery Inventor	Per KW-Av, ENERGY SYSTEM Home System space space space esception escep	Power (5R 100) 5W 4024 L-16 5500 estimate 4-SR 100 5830 estimate 2-SS0 5830 5830 5830 5830 5830 5830 5830 583	Consumption antitual C Unit Prices \$3,000,00 \$1,000,00 \$3,000,00 \$3,000,00 \$50,00 \$330,00 \$220,00 \$330,00 \$320,00 \$300,00 \$320,00 \$300,000 \$300,0000\$ \$300,0000\$ \$300,0000\$ \$300,0000\$ \$30	219264.14 col Estenato Shipping (2) So.00	Watt-hours/day \$254150.00 \$407 Total \$102 750.00 \$24 000.00 \$10,200.00 \$3,000.00 \$15,000.00 \$17,150.00 \$25,000.00 \$17,150.00 \$3,948,00 \$3,948,00 \$3,948,00 \$3,948,00 \$200.00 \$120,000	% of Col 61.61% 9.03% 1.14% 8.06% 9.46% 1.40% 9.46% 1.40% 0.25%
Cost per year 29 per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. No. 310 8 8 8 8 8 8 8 8 8 8 8 9 78 2 1 12 99 1 2	ost \$0.413 RENEWABLE E Energy Efficient Home Prover M Stemans PV m Trace brender Trace Briteney Ac Generator Installation Labo PV Mounting R Bolar Boar Ch Wire, Cannal, Becary Archer	Per KW-Av, ENERGY SYSTEM Home System space space space esception escep	Power 6 5R 100 5V/4024 L-16 5500 esomata esomata esomata esomata E-44gar	Consumption antital C <u>Unit Prices</u> \$525.00 \$150.00 \$150.00 \$150.00 \$3300.00 \$220.00 \$330.00 \$220.00 \$330.00 \$220.00 \$330.00 \$220.00 \$320.00	219254.14 evil Estimate Shipping (P) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	With-hours/day \$2\$4150.00 3em Total \$162 750.00 310 200.00 \$3,000.00 \$16,000.00 \$17,150.00 \$35,000.00 \$17,150.00 \$35,000.00 \$30,00 \$3,000.000 \$3,000.00 \$3,000.0000\$3,000000000\$3,00000000	% of Col 61.61% 9.03% 1.14% 8.06% 9.46% 1.40% 9.46% 1.40% 0.25%
Cost per year ost per month	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	Her Power C as No. 310 58 68 1 320 76 2 1 12 99 12 6 1 2	ost \$0.413 RENEWABLE I Energy Efficient Home Power M St. Michaelts, Ar Phone II Semana, PV my Trace Develop Trace Deve	per kW-Av, ENERGY SYSTEM Home System égazine tzona esception source escept	Power (5R 100 5W 4024 L-16 5500 exemute exemute exemute exemute exemute state state Sta	Consumption antitial C <u>Unit Prices</u> \$525.00 \$150.00 \$150.00 \$3,000.00 \$3,000.00 \$3,000.00 \$250.00 \$220.00 \$220.00 \$220.00 \$200.00 \$200.00	219254.14 Shipping (2) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	Watt-hours/day \$2\$4150.00 3em Total \$162.750.00 \$10,200.00 \$10,200.00 \$10,200.00 \$10,200.00 \$10,200.00 \$10,200.00 \$17,150.00 \$30,00 \$17,150.00 \$30,00 \$120,00 \$120,00 \$120,00	% of Cot 61.61% 9.03% 9.03% 1.14% 8.06% 9.25% 9.46% 1.49% 9.46% 1.49% 0.05% 0.05%
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. 310 310 2 1 12 99 1 2 1 12 8 2 1 1 2 2 1 1 2 2 1 1 2 2 1	ost \$0.413 RENEWABLE I Energy Efficient Home Power M St. Michaelts, Ar Phone II Siemans PV my Trace byents Trace byents Trace byents Trace byents Trace byents Renerator Trace byents Solar Boost Ch. Battery Inventor Battery Inventor Battery Inventor	per kW-Av, ENERGY SYSTEM Home System égazine tzona esception source escept	Power (5R 100) 5W 4024 L-16 5500 estimate 4-SR 100 5830 estimate 2-SS0 estimate 54,00 54,00	Consumption antitual C Unit Prices \$3,000,00 \$1,000,00 \$3,000,00 \$3,000,00 \$50,00 \$330,00 \$220,00 \$330,00 \$3200,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$320,00 \$300,00 \$320,00 \$300,000 \$300,0000 \$300,0000 \$300,0000\$00000\$0000	219254.14 col Estimate Shipping (P) So.00	Watt-hours/day \$254150.00 \$167,750.00 \$24,000.00 \$162,250.00 \$10,200.00 \$10,200.00 \$15,000.00 \$17,150.00 \$16,000.00 \$17,150.00 \$25,000.00 \$17,150.00 \$120,0000 \$120,0000 \$120,000 \$1	% of Con 51.61% 9.03% 1.14% 8.06% 9.46% 9.46% 1.49% 9.46% 1.49% 0.10% 0.05% 0.05% 0.02%
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. No. 310 8 8 8 1 78 2 1 12 99 1 2 6 2 2 9 1 2 2 9 1 2 2 9 1 2 2 9 1 2 2 9 1 2 2 9 1 2 2 9 1 2 2 9 1 2 2 2 2 2 2 2 2 2 2 2 2 2	ost \$0.413 RENEWABLE I Energy Efficient Home Power M St. Michaelts, Ar Phone II Semana, PV my Trace Develop Trace Deve	per kW-Av, ENERGY SYSTEM Home System égazine tzona esception source escept	Power (5R 100 5W 4024 L-16 5500 exemute exemute exemute exemute exemute state state Sta	Consumption antitial C <u>Unit Prices</u> \$525.00 \$150.00 \$150.00 \$3,000.00 \$3,000.00 \$3,000.00 \$250.00 \$220.00 \$220.00 \$220.00 \$200.00 \$200.00	219264.14 col Estenato Shipping (2) Seco Sec	Watt-hours/day \$2564150.00 \$107750.00 \$107250.00 \$107250.00 \$107250.00 \$107250.00 \$1050000 \$1050000 \$105000 \$105000 \$1050000 \$1050000 \$1050000 \$1050000 \$1050000 \$1050000 \$1050000 \$1050000 \$1050000 \$10500000 \$10500000000 \$10500000000000000000000000000000000000	% of Cos 61.61% 9.05% 1.14% 8.50% 9.46% 9.46% 0.25% 9.46% 0.25% 0.02% 0.02%
Cost per year	\$33,034,59 \$2,7\$2,68	©10 year bai ©10 year bai	No. 310 310 2 1 12 99 1 2 1 12 8 2 1 1 2 2 1 1 2 2 1 1 2 2 1	ost \$0.413 RENEWABLE I Energy Efficient Home Power M St. Michaelts, Ar Phone II Semana, PV my Trace Develop Trace Deve	per kW-Av, ENERGY SYSTEM Home System égazine tzona esception source escept	Power (5R 100 5W 4024 L-16 5500 exemute exemute exemute exemute exemute state state Sta	Consumption antitial C <u>Unit Prices</u> \$525.00 \$150.00 \$150.00 \$3,000.00 \$3,000.00 \$3,000.00 \$250.00 \$220.00 \$220.00 \$220.00 \$200.00 \$200.00	219254.14 col Estimate Shipping (P) So.00	Watt-hours/day \$254150.00 \$167,750.00 \$24,000.00 \$162,250.00 \$10,200.00 \$10,200.00 \$15,000.00 \$17,150.00 \$16,000.00 \$17,150.00 \$25,000.00 \$17,150.00 \$120,0000 \$120,0000 \$120,000 \$1	% of Cost 61.61% 9.03% 9.03% 1.14% 8.08% 9.46% 9.46% 9.46% 9.46% 9.46% 9.03% 0.05% 0.05% 0.02%

Total Indel Hardware Cost Estimate \$254,150.00

R,


Cost Estimate

The cost estimate is based on the hardware determined and specified on the spreadsheet. These products and any useful information can be viewable at www.solar4power.com. The following is a summary from the calculated simulation.

Initial Cost of Solar Powere	\$264,150.00							
Estimated Cost of Overall Electrical								
System w/o Solar Power		<u>\$200,000.00</u>						
	TOTAL	\$465,150.00						

The following numbers are a direct relation to the initial cost of the solar-powered system. Such as, the operating cost totaling \$551.43 per month. The power cost is equal to \$0.413 per kWh. Finally, an excess power wattage of 27,980 watts will be in excess.

e.

Mech Lighting ux,

Lighting

Preliminary lighting calculations were made using the zonal cavity method. The specified fluorescent lamp has the following characteristics:

32 watts, T-8, 4100 K, 85 CRI, 2900 design lumens The luminaire selected was the Simkar prismatic lens.

Room Demensions: Typical Classroom – 75' x 35' Ceiling Height – 10' Work Surface Height – 2.5' RCR = [5*(CH-WSH)(L+W)]/(L*W)= [5*(10-2.5)(75+35)]/(75*35). = 1.57 From Simkar Lighting Catalog: @RCR = 1, CU = 80 @RCR = 2, CU = 71

Linear Interpolation:

(2-1.57)/(2-1) = (71-CU)/(71-80) CU = 72.9# Luminaires = (fc*area)/[(lumens/lamp)(lamps/luminaire)(CU)(LLF)] = (75*2625)/[(2900)(4)(0.73)(.7)] = 32.2 = 33

This calculation shows that 33 luminaires will be required in a typical classroom with a cost of \$0.55 watt/SF.

Resources/References

- 1. www.pvpower.com
- 2. www.solar4power.com
- 3. www.solarenergy.com
- 4. www.flasolar.com
- 5. www.eren.doe.gov/power/
- 6. www.seia.org
- 7. www.solarelectric.com
- 8. www.eren.gov/wind/
- 9. www.cogreenpower.org
- 10. www.homepower.com
- 11. www.solarlighting.com
- 12. www.hotkilns.com
- 13. www.powerq.com/watt.htm
- 14. www.angelfire.com/nc2
- 15. http://www.sandia.gov/media/NewsRel/nr2000/navajos.htm
- 16. 1997 Simkar Lighting Catalog
- 17, 1998 Osram Sylvania Lamp and Ballast Catalog

Appendix G: Plumbing System Design

Water Supply

The bulk of the plumbing design begins after the architectural design is completed. The first task of the plumbing engineer is to total the building loads by summing the fixture units for each respective system; cold water supply, and hot water supply. Fixture units area tabulated by various resources and are dependent on use and type of fixture i.e. public water closet, private lavatory, private bathtub, etc. See Table 1 for fixture unit totals. The water supply line has 457 water supply fixture units, which can be broken up into 347.5 cold water fixture units and 109.5 hot water fixture units. These fixture units have an equivalent flow rate. The corresponding flow rates were in the ASPE manual. The total supply flow rate is 142 gallons per minute, 126 cold water gpm and 72.5 hot water gpm (the gpm curve is not linear see Figure 1). After the flow rates are found, the main building pipes may be sized. ASHRAE's pipe fitting (Figure 2) can be utilized to find a sufficient pipe size. This chart also shows the approximate velocity of the water in a particular pipe size and gpm. Velocity should remain between 6 and 10 ft/s to ensure flow and prevent excess noise.

Domestic Hot Water Supply

This hot water system consists of a water heater, a circulating pump, and lots of pipe. In order to size the aforementioned units three pieces of information are needed: total equivalent length of pipe, head loss in the pipe, and heat loss from the pipe.

The only way to find the total equivalent length of pipe is to lay it all out, from water heater to fixture. The total equivalent length of pipe must also be broken up by pipe size and factors added for various fittings and valves. Since the entire piping layout would be very time consuming, an estimate has been used.

Head loss in the pipe is found by multiplying the head loss factor per unit length by the total equivalent length of pipe. Head loss is dependent on material of pipe, temperature of water, length of pipe and pipe diameter. A computer program was utilized to calculate 13.5 ft of pressure head loss. See Figure 3 for details. Following the calculation of pressure head loss in the pipe total head can be calculated by adding the elevation head loss to the pressure head loss in the pipe. Elevation head is equal to the vertical distance from the deepest pipe to the lughest fixture. But in a closed loop system such as ours, the elevation head does not affect the total head.

Heat loss in the pipe is found by multiplying the heat loss factor per unit length of pipe by the total equivalent length of pipe. Heat loss is also dependent on the material of the pipe and the pipe diameter. From the total heat loss the circulated hot water flow rate can be found. See Tables 2 for detailed takeoffs.

The pump size for the hot water supply can now be found. Pump manufacturers produce pump curves for each model produced. These curves are a graph of total head loss vs. flow rate. Another computer program was utilized to fit a pump curve. See figure 4 fr details. From this curve other data can be extracted including: impellor size, motor size, and pump efficiency. The pump St. Michaels will be using is an in-line centrifugal pump with ½ horsepower motor.

The water heater/storage tank may be sized by multiplying the quantity of hot water fixtures by their demand flow rate in gallons per hour. This number is multiplied by a demand factor, which is different for each type of building usage. Table 3 gives a detailed analysis of water beater/ storage tank sizing. The water heater will have a 600 gallon capacity and othe properties as in Figure 5.

Drainage System Design

The building sewer can be sized by summing the drainage fixture units for each fixture. See Table 1 for details. The building sewer can handle 201 drainage fixture units with a 4 inch pipe and ¼ inch per foot slope. See Figure 6 for details.

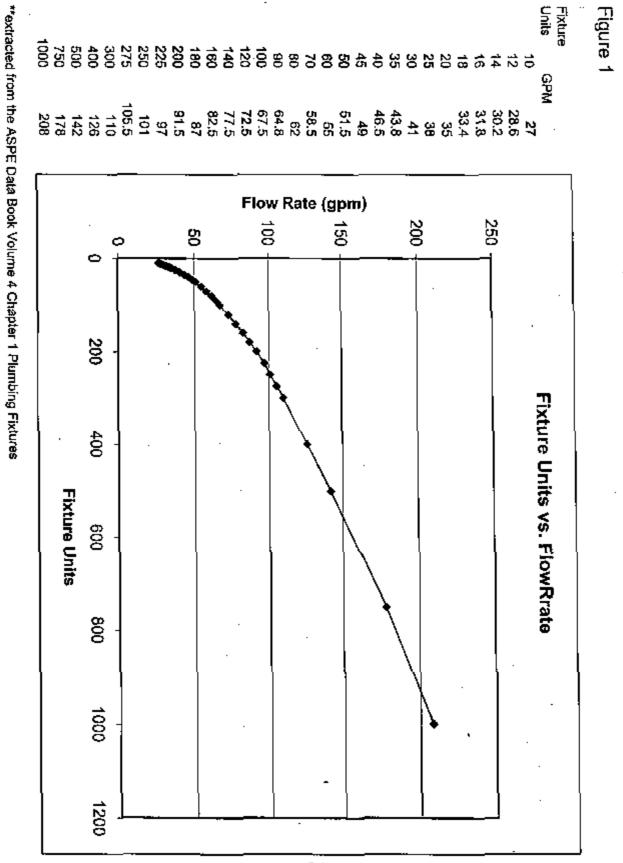
Another essential task of the drainage system si to prevent wastewater gases from entering the building. Drainage traps are small elbows in the drain pie immediately after the fixture, which traps inside and stops wastewater gases from escaping through the fixture. Stack vents are vertical pipes, which rise to the roof and are open to the atmosphere to prevent the gases from collecting in the drainage pipes. Figures 7 and 8 show minimum sizes of traps and stack vents, respectively.

Table 1: Water Supply and Drainage System									
				Cold		Hot			
		Drainage		Water		Water			
		Fixture		Fixture		Fixture			
Quantity	Fixture	Units	Total	Unils	Total	Units	Total		
	Water Closet Flush								
22	Valve	4	88	10	220				
20	Lavatory	1	20	1.5	30	1.5	30		
2	Service Sink	2	4	2.25	4.5	2,25	4.5		
2	Shower	3	6	3	6	3	6		
14	Тир	3	42	3	42	3	42		
3	Washing Machine	2	6	3	9	3	9		
4	Floor Drains	4	16						
5	Kitchen Sink	3	15	3	15	3	15		
1	Dish Washer	4	4		3		. 3		
	Totals			_					
	Cold Water FV	329.5							
	Non-flush Valve	18							
	Total Cold Water								
	Fixture Units	347.5	=	126 gpm	=	3" pipe	=	6.25 fps	
	Hot Water	109.5	=	72.5 gpm	=	2.5" pipe	=	7.5 fps	
	Total Water Supply					•	•		
	Fixture Units	457	=	142 gpm	=	3" pipe	=	7 fps	
	Total Drainage			or		- F.C			
	Fixture Units	201	E	4" pip∉	=	1/4" per foo	l slope		

•

ć

ě


< - 1

· ·

Table 1: Water Supply and Drainage System

ı

G-4

ł

Ì

G-6

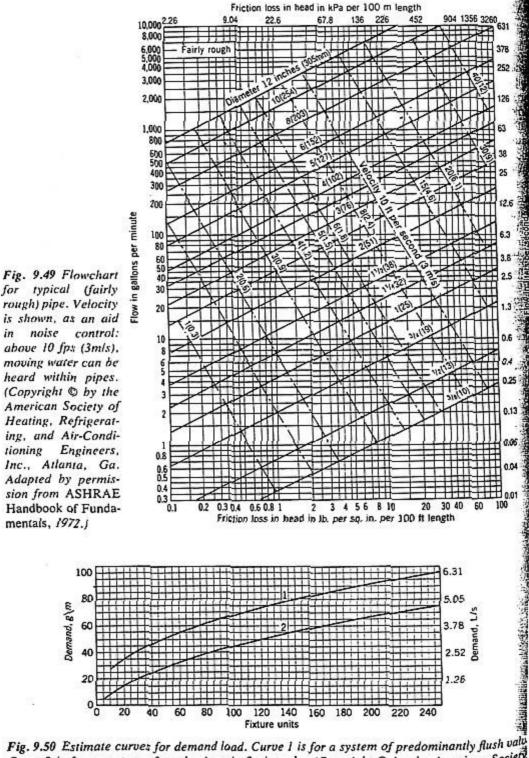
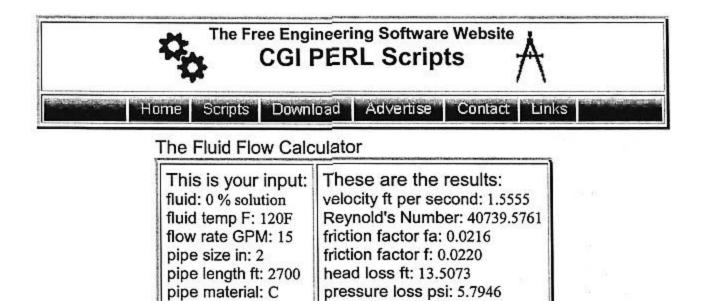



Fig. 9.50 Estimate curves for aemana toad. Curve 1 is for a system of predominantly flush curve 2 is for a system of predominantly flush tanks. (Copyright © by the American Society Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, Ga. Adapted by permiss from ASHRAE Handbook of Fundamentals, 1989.)

Figure 3

flow calculator developed by Michael J. Rocchetti PE Back to the Calculator

http://www.connel.com/cgi-bin/flowcalc1.pl

JOB TITLE:			_				
JOB NO.	SUBJECT	BY:	DATE:	CHK'D	DATE	PAGE	ŌF
	Sizing Domestic H.W. Recirc.						

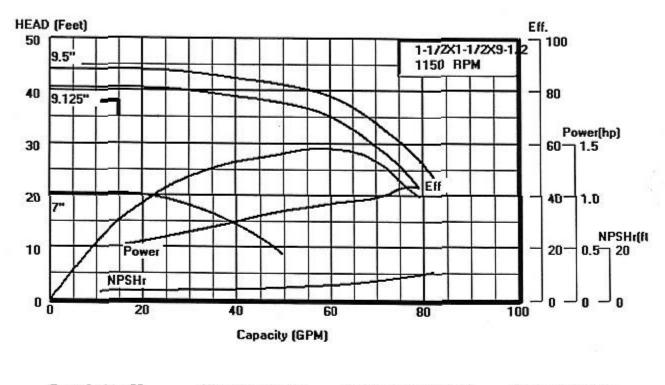
PIPE SIZE	TOTAL HWS & HWR LINEAL FEET	BTU/HR/LIN.FT	LINEAL FT X BTU - HEAT LOSS
1 <u>/2</u> "		15	
¥"		17	
1"	675_	19	12 825
1 ¼"		21	
<u>ا لائ</u>		25	
2 "	12,50	28	37800
2 ½"		32	
3"	675	38	25650
4 "		46	
5"		55	
6"		63	

TOTAL <u>76275</u>

Divided by 5,000= 15.25

-= ^{\S.2S} GPM TO BE RECIRCULATED

INITIALLY USE ³/⁴" FOR RECIRC SIZE. IF, AFTER CALCULATIONS ARE COMPLETE, VELOCITY AND PRESSURE DROP OF GPM IN A ³/⁴" PIPE ARE IN EXCESS, INCREASE ³/⁴" RECIRC LINE TO 1^{*}.


take off list provided by Joe Smaul P.E. BHKR Associates.

6-8

Figure 4

Curve Generation Version C1.16

Pump Series: 80	Min Imp Dia = 7 "	Design Capacity =15.0
Suction Size = 1.5 "	Max Imp Dia = 9.5 "	Design Head = 38.0
Discharge Size = 1.5 "	Cut Dia = 9.125 "	Motor Size = .5 HP

ITT Bell & Gossett 8200 N. Austin Morton Grove, II 60053

The Power and Eff. curves shown are for the cut dia. impeller.

http://appserver.ittind.com/software/plus/ESPinscreen.htm

Table 3: Storage Tank Sizing

School

Quantity	Fixture	gal / hr	Total
	Lavatory	15	300
. 2	Shower	225	450
14	Tub	20	280
5	Kitchen Sink	10	50
1	Dish Washer	100	100
3	Washing Machine	100	300

school demand factor 0.4 storage capacity 1

۰.

\$

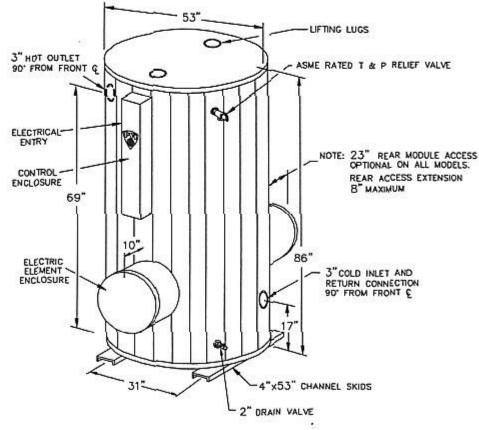
Total Demand 1480

Optimum Storage Size = Total Demand * Demand Factor * storage capacity

Optimum Storage Size = 592 gal / hr

Figure 5 DURAWATT® ELECTRIC . PACKAGED WATER HEATER

NICKELSHIELD® NICKEL-PLATED STORAGE TANK


TANK SERIES 600 GALLONS

MODEL	RECOVERY RATE GPH		INPUT ELEMENTS					SHIPPING			
NUMBER	40°-120°F	40°-140°F	kW	80 W/IN ²	40 W/IN ²	208V, 1Ø	240V, 1Ø	208V, 3Ø	240V, 3Ø	480V, 3Ø	WEIGHT
90 N 600A-E	90	70	18	1	2	87	75	50	44	22	2120 #
180 N 600A-E	180	150	36	2	4	174	150	100	87	44	2120 #
270 N 600A-E	270	220	54	3	6	260	225	150	130	65	2130 #
370 N 600A-E	370	300	72	4	8	347	300	200	174	87	2130 #
460 N 600A-E	460	370	90	5	10	433	375	250	217	109	2140 #
550 N 600A-E	550	440	108	6	12	520	450	300	260	130	2160 #
650 N 600A-E	650	520	126	7	14	606	525	350	304	152	2170 #
740 N 600A-E	740	590	144	8	16	693	600	400	347	174	2190 #
920 N 600A-E	920	740	180	10	20	866	750	500	434	217	2220 #
1100 N 600A-E	1100	880	216	12		1039	900	600	520	260	2230 #
1300 N 600A-E	1300	1030	252	14		1212	1050	700	607	304	2240 #
1470 N 600A-E	1470	1180	288	16		1385	1200	800	693	347	2250 #
1600 N 600A-E	1600	1330	324	18		1558	1350	900	780	390	2260 #
1850 N 600A-E	1850	1480	360	20		1731	1500	1000	867	434	2270 #

FOR STANDARD AND OPTIONAL EQUIPMENT, SEE FORM #PV 6008. ASHRAE 90.1 COMPLIANT

۱

4

CONTROL CIRCUIT TRANSFORMER SUPPLIED ON 480V ONLY, TAPPED CONTROL CIRCUIT INTERNALLY WIRED FOR 208V AND 240V. 208V AND 240V MODELS REQUIRE AC NEUTRAL CONDUCTOR FOR GROUNDING OF CONTROL CIRCUIT.

ALTERNATE VOLTAGES: FOR 230/460V, MULTIPLY kW AND RECOVERY BY .92. MULTIPLY AMPS BY .96. FOR 220/440V, MULTIPLY KW AND RECOVERY BY .84. MULTIPLY AMPS BY .92.

PVI RESERVES THE RIGHT TO CHANGE THE DESIGN AND SPECIFICATION WITHOUT NOTICE.

U.S. Patents: 4,869,208; 4,968,066 Canadian Patents: 1,286,932; 2,007,302 Mexican Patent:: 167,200

PV 5586 11/98

PVI INDUSTRIES, INC. FORT WORTH, TEXAS 76111 (800) 784-8326

PVI

.		Connecte	m Number of F ed to Any Portic ilding Sewer In	on of the Build	ing	Drain or						
Diameter of Pipe		0.9 -	Fall per Foot (mm per m)									
(in.)	(mm)	1/16 in. (5.2)	1/s in. (10.4)	1⁄4 in. (20.9)	. ·	1/2 in. (41.7)						
2	51			21		26						
21	64			24		31						
21 3	76		36 ^b	42 ^b		50						
4	102		180	216		250						
5	127		390	480		575						
6	152		700	840		1,000						
8	203	1,400	1,600	1,920		2,300						
10	254	2,500	2,900	3,500		4,200						
12	305	2,900	4,600	5,600		6,700						
15	381	7,000	8,300	10,000		12,000						

TABLE 10.10 Building Drains and Sewers^a

Source: National Standard Plumbing Code. (Metric conversions by author.) *On-site sewers that serve more than one building may be sized according to the current standards and specifications of the Administrative Authority for public sewers.

"Not more than two water closets or two bathroom groups.

	Any	Stack Sizing	Stack Sizing for More than 3 Stories in Height					
Diameter of Pipe (in.)	(mm)	Horizontal Fixture Branch ^a	for 3 Stories in Height or 3 Intervals	Total for Stack	Total at 1 Story or 1 Branch Interval			
11	38	3	4	8	2			
2	51	6	10	24	6			
21/2	64	12	20	42	9			
3	76	20 ^b	48 ^b	72	20%			
4	102	160	240	500	90			
5	127	360	540	1,100	200			
6	152	620	960	1,900	350			
8	203	1,400	2,200	3,600	600			
10	254	2,500	3,800	5,600	1,000			
12	305	3,900	6,000	8,400	1,500			
15	381	7,000	25	181 1	18 - E4			

TABLE 10.11 Horizontal Fixture Branches and Stacks

NOTE: Stacks shall be sized according to the total accumulated connected load at each story or branch interval and may be reduced in size as this load decreases to a minimum diameter of ½ of the largest size required.

Source: National Standard Plumbing Code. (Metric conversions by author.) *Does not include branches of the building drain.

^bNot more than two water closets or bathroom groups within each branch interval or more than six water closets or bathroom groups on the stack.

(-- 12

TABLE 10.8 Size of	Nonintegral	Traps for	Different-Type
Plumbing Fixtures			

Plumbing Fixture	Trap Size in Inches	Trap Size (mm)
Bathtub (with or without overhead shower)	11	38
Bidet	11	32
Combination sink and wash (laundry) tray	13	38
Combination sink and wash (laundry) tray with food		
waste grinder unit	13=	38*
Combination kitchen sink, domestic, dishwasher, and	-	
food waste grinder	2	51
Dental unit or cuspidor	11	32
Dental lavatory	11	32
Drinking fountain	11	32
Dishwasher, commercial	2	51
Dishwasher, domestic (nonintegral trap)	13	38
Floor drain	1 <u>1</u> 2 2	51
Food waste grinder-commercial use		51
Food waste grinder-domestic use	13	38
Kitchen sink, domestic, with food waste grinder unit	13	38
Kitchen sink, domestic	1}	38
Kitchen sink, domestic, with dishwasher	13	38
Lavatory, common	11	32
Lavatory (barber shop, beauty parlor or surgeon's)	11	38
Lavatory, multiple type (wash fountain or wash sink)	13	38
Laundry tray (1 or 2 compartments)	1]	38
Shower stall or drain	2	51
Sink (surgeon's)	13	38
Sink (flushing rim type, flush valve supplied)	3	76
Sink (service type with floor outlet trap standard)	3	76
Sink (service trap with P trap)	2	51
Sink, commercial (pot, scullery, or similar type)	2	51
Sink, commercial (with food grinder unit)	2	51

Source: National Standard Plumbing Code. (Metric conversions by author.) *Separate traps required for wash tray for sink compartment with food waste grinder unit.

G-13

fixtures) instead of coping with the pressures and suctions that normal effluent would cause (see Figs. 10.48 and 10.49).

The "plunger" effect of a descending "slug" of water/waste within pipes was described in Section 10.3. If the effectiveness of the "plunger" can be reduced, the negative and positive pressures created by it will be also reduced. If their values can be brought down below the holding power of the several inches of water in the trap, no vents will be necessary. In the single-stack *Sovent* system illustrated in Fig. 10.49, this is done by dealing with the normal liquid effluent at each floor. Aeration there produces a *foam* that lacks the stack-filling ter dency of the liquid effluent. Thus, through the creation of a *soft* plunger, pressure variations the single stack are minimized.

Tests have shown that the positive and negative pressures produced by *normal* liquid effient during its descent and relieved by the verpiping are often about 5 to 12 in. (127 to 305 mm water gauge. Obviously, if the vents were provided, the 2 to 4 in. (51 to 102 mm) of whiseal in the traps would be vulnerable to penetre tion by gases from pipes under positive pressin or siphonage of water seals into pipes that m be under negative pressure.

Figure 8

0 WATER AND WASTE

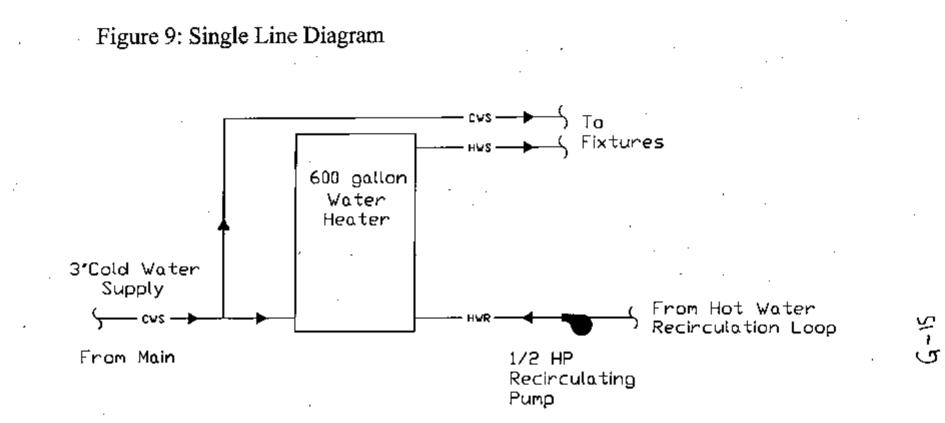
Size of Soil or	Fixture Units		-	Diam	eter ol	Vent	Requir	ed (in.)					
Waste	Con-			3	4.	5	6	8					
Stack	nected	Maximum Length of Vent (ft)											
Inches													
11	8	50	150										
11	10	30	100										
2	12	30	75	200									
2	20	26	50	150									
21	42		30	100	300								
3	10		30	100	200	600							
3	30			60	100	500							
3	60			50	80	400							
4	100			35	100	260	1000						
4	200			30	90	250	900						
4	500			20	70	180	700						
5	200				35	80	350	1000					
5	500				30	70	300	900					
5	1100				20	50	200	700					
6	350				25	50	200	400	1300				
6	620				15	30	125	300	1100				
6	960					24	100	250	1000				
6	1900					20	70	200	700				
8	600						50	150	500	1300			
8	1400						40	100	400	1200			
8	2200						30	80	350	1100			
8	3600						25	60	250	800			
10	1000							75	125	1000			
10	2500							50	100	500			
10	3800							30	80	35			
10	5600							25	60	25			

TABLE 10.12 Size and Length of Vents

Source: National Standard Plumbing Code.

tgures 10.48, 10.49, and 10.50 illustrate the bonents and the action of the Sovent sys-Effluent, already aerated and descending upper stories, is diverted in the stack at fower story. The aerator fitting there afa passage for this diverted flow and also an tace into which the effluent from the local tisoil or waste can.drop. Here it spatters, is with the air to form a rarified mixture of dilquid. Tests show that this mixture does oduce pressures, positive or negative, of than 1 in. (25 mm) water gauge. Thus a cal of 2 in. (51 mm) or more is safe against inge or penetration.

the foot of the single stack the aerated


6-14

effluent is compacted—a process aided by a baffle in the path of the flow in the deaerator fitting (see Fig. 10.50). If not relieved, air piling up at this point could cause pressures in the stack at the first floor. An air-discharge pipe provides this relief of air from the deaerator fitting to the upper part of the building drain, above the liquid flow.

The Sovent system was invented by Fritz Sommer of Switzerland, who tested it in a 10story drainage test tower. Since its introduction in 1962, it has been installed and used in hundreds of buildings in Europe and Africa. Canada used the Sovent method in the Habitat apartments at the 1967 Montreal expo. Sovent was

641

SERVICE DEVELOPMENTS

. . .

· · · ·

References:

- 1. Joe Smaul P.E. Burt Hill Kosar Rittleman Associates
- 2. Stein and Reynolds, *Mechanical and Electrical Equipment for Buildings*, John Wiley and Sons, 1992.
- 3. The BOCA National Plumbing Code 1993
- 4. ASPE Data Book Volume 4
- 5. ASHRAE Fundamentals 1993
- 6. http://appserver.ittind.com/software/plus/ESPinscreen.htm
- 7. http://www.connel.com/cgi-bin/flowcalc1.pl
- 8. http://www.pvi.com/waterheaters.htm

ECONOMIC ANALYSIS

System Cost Breakdown

Site Development	\$65,000
⇒Geotechnical	\$246,000
⇒Architectural	\$2,300,000
⇒Structural	\$1,000,000
⇒HVAC	\$936,000
⇒Electrical	\$465,000
⇒Plumbing	\$147,000
⇒Contingency	\$975,000
⇒Design Fee	<u>\$750,000</u>
⊃Total	\$6.8 Million

2000/2001 SCHEDULE

	May	June	ylul	August	September	October	November	December	January	February	March	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Data Acquisition/Research	-	Short																	
Systems Research			1000	No. of Concession, Name	-			1200			_								
Architectural Layout											_								
Alternative Consideration								1											
Systems Design								B	10.57										
Systems Collaboration																			
Progress Report Writing									2100 S	100									
Systems Refinement										-	1-12	12/2					-		
Progress Presentation									_		1								
Second Site Visit																			
Secondary Information Review																			
Progress Adjustments											_							100	
Final Design Completion																	1000	1015	
Final Presentation			-											-					