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Probabilistic Equilibria for Evolutionarily Stable Strategies 
 
 

Abstract 

 

This comment suggest that an equilibrium framework may be retained, in 

an evolutionary model such as Gintis’ and with far more realistic results, if 

rationality is relaxed in a slightly different way than he proposes: decisions are 

assumed to be related to rewards probabilistically, rather than with certainty. This 

relaxed concept of rationality gives rise to probabilistic equilibria. 

 

Herbert Gintis’ essay concedes that the rational-action core of game theory will be 

a difficulty for many scholars. On the whole, Gintis’ strategy is to introduce beliefs as an 

autonomous factor in decisions along with preferences and constraints, and to suggest 

that well-known empirical anomalies in rational action theory can be isolated as errors in 

beliefs. Gintis goes further in relaxing the rational-action model, suggesting that Nash 

Equilibrium is too narrow and that the broader game theoretic concept of rationalizability 

is sufficient for his purposes. However, there is a difficulty here that suggests a logical 

inconsistency, in that an evolutionarily stable strategy, a central concept in evolutionary 

game theory, is a Nash equilibrium that satisfies some other conditions as well. 

Rationalizability is applicable to one-off play in which there is no repetition or learning 

while evolutionary game theory is largely based on models of repeated matching and can 

be a model of social learning. This comment suggests that the equilibrium framework 

may be retained, with far more realistic results, if rationality is relaxed in a slightly 



different way: decisions are assumed to be related to rewards probabilistically, rather than 

with certainty. This relaxed concept of rationality gives rise to probabilistic equilibria 

(e.g. McKelvey, R. D. and T. R. Palfrey 1995, Chen, Hsiao-Chi, James W. Friedman and 

Jacques-Franciose Thisse, 1997). 

 

Suppose that an agent is to choose between two courses of action, A and B, where 

B pays zero and the payoff to A varies from –4 to +4. Suppose then that the probability 

that the agent will choose strategy i=A, B is given by 
pi = Yi

θ

Yj
θ�

j

 , where Yj is the payoff 

to strategy j. Then the probability that i is chosen increases with the relative payoff Yi. 

This is shown in Figure 1 for several values of the exponent. As Figure 1 suggests, the 

exponent θ can be thought of as an index of relative rationality, in that the choice of the 

higher-payoff strategy is more probable, on the whole, when θ is larger. 



 

Figure 1. Probability of the Choice of Strategy A 

 

If we consider a game-like interaction between two or more agents, each must 

consider the strategy choice of the other as a probability distribution and base his own 

choice of strategies on the expected values of payoffs from his own strategy options. A 

probabilistic equilibrium then is a set of probability distributions over strategy choices 

that are mutually consistent in that each is an approximately best response to the other. 

Consider, in particular, the small centipede game shown in Figure 2. This game can also 



be represented in normal form, using the contingent strategies shown in Table 1. We can 

compute a probabilistic equilibrium for this game by numerical methods (McCain 200

Assuming a value for θ of 2 (Anderson et.  al. p. 1044) and computing a probabilistic

equilibrium based on the strategies in table 1 we obtain the probabilities for the nine 

possible strategy combinations as shown in Table 2. We note that t

3). 

 

he probability of a 

mple noncooperative equilibrium is about 65% in this example.  
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Figure 2. A Small Centipede 

Table 1. Contingent Strategies for the Small Centipede 

 pass, and if Bob passes once, grab 
 and if Bob passes once , pass again 

2 If Al passes once, then pass and, if Al passes twice, then grab 
3 If Al passes once, then pass and, if Al passes twice, then pass 

 

 

  
1 grab 
2
3 pass, 
 
 Bob 
1 If Al passes once, then grab 



Table 2. Probabilities of the Strategy Combinations in an Example of Probabilistic 
Equilibrium in the Centipede 

 
   Al  
  1 2 3 
 1 0.655 0.152 0.018 
Bob 2 0.077 0.018 0.002 
 3 0.062 0.014 0.002 

 

Gintis stresses the importance of non-self-regarding motives. While there is little 

precedent in the literature, it is quite simple in principle to introduce non-self-regarding 

motives into a probabilistic equilibrium model. We need not be concerned whether a non-

self-regarding act generates a “warm feeling” that increases the person’s utility or not, 

nor whether people are in some ultimate sense self-interested even when their actions are 

self-regarding. We simply posit that the probability of choosing a strategy is influence by 

some non-self-regarding considerations as well as the payoffs.  

 

To continue with the example of the centipede game, suppose motives of 

reciprocity influence the probabilities of strategies in this case. To represent reciprocity 

we need some reference values, so that (for example) when an agent’s payoff is less than 

the reference value he retaliates (negative reciprocity) and conversely. As Gintis stresses 

these reference values may depend on social norms, but it is possible by examining some 

games to make a plausible guess. In this case assume that the reference payoffs are the 

payoffs the agent would get if he were to grab at his first opportunity, i.e. 5 for Al and 10 

for Bob. Whatever the probability of strategies 2,1 and 3,1 (Al passes and Bob grabs) this 

would give Al reason for negative reciprocity amounting to a shortfall of 3 and so reduce 

the probability of his choosing strategies 2 or 3. This is just one illustration. In general 



indicate reciprocity by (Y-Yr)(Z-Zr), where Y and Z are the payoffs to Al and Bob 

respectively and Yr, Zr their reference payoffs. In place of Yi
θ in the formula for the 

probability of strategy i write Yi
θ+ωsignum Y-Yr Z-Zr ABS Y-Yr Z-Zr  where ω is a 

nonnegative weight representing the importance of reciprocity motives to the individual. 

Taking the exponent 2 as above and ω=0.333 for a single example, we have in Table 3 

the probabilities for the nine possible strategy combinations. In this case, for example, we 

seen the overall probability of Al choosing the cooperative strategy 3 is 0.35, by 

comparison with 0.022 in the previous case. It should be noted that reciprocity can lead in 

some cases to multiple equilibria that reinforce both cooperative and noncooperative 

outcomes.  

Table 3. Probabilities of the Strategy Combinations in an Example of Probabilistic 
Equilibrium in the Centipede with Reciprocity 

 
   Al  
  1 2 3 
 1 0.036 0.404 0.237 
Bob 2 0.009 0.105 0.061 
 3 0.008 0.088 0.052 

 

We see that the probabilistic equilibrium concept admits of a larger and more 

plausible range of outcomes in this case than Nash equilibrium does, particularly when 

non-self-regarding motives are introduced in a natural way. In Summary, this conception 

of equilibrium has three major advantages in the context of Gintis’ program: 

1)    It allows rationality to be a relative concept. 

2)    While probabilistic equilibria for some games closely approximate 

deterministic Nash equilibria, in some other cases, including the centipede, they can be 



quite different and more plausible. 

3) Non-self-regarding motives are easily introduced. 
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