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Abstract 

3D Building Synthesis Based on 
Images and Affine Invariant Salient Features 

Chenxi Li 
Fernand S. Cohen. Supervisor, Ph.D. 

 
 
 
 

In this thesis, we introduce a method to synthesize and recognize buildings using a set of at least 

two 2D images taken from different views. Based on a coarse set of affine invariant salient feature 

points (corner points) on the images, a 3D high-resolution building model is obtained in accordance 

with the observed images. Corresponding salient points are found using the ratio of triangle areas 

formed from a set of four consecutive ordered salient corresponding points that form two triangles. 

The order is obtained by finding the vertices of the convex hull of the salient points.  The salient 

points are tessellated to form a high-resolution triangular mesh with the appearance of a triangular 

patch in the image imported onto the personalized 3D model. With multiple images, all coordinates 

and appearances are reconstructed in accordance with the observed images. The 3D model 

reconstruction method allows for a 3D classification of a test building to one of many possible 

buildings stored in the database. The classification is based on a geometric 3D point cloud error. 

For buildings with very close 3D point cloud errors, a further classification is achieved based on 

the mean squared error (MSE) on the appearance of corresponding points on the test and base 

models. Our method can also be used in localization when preloaded location information of each 

model in the database is stored, hence helping an observer navigate without a GPS system. 
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CHAPTER 1   INTRODUCTION 

1.1 Background of 3D modeling 

Three-dimensional (3D) modeling can be regarded as a visualization of a set of data 

interactively displayed on computer. It may seem like a direct and simple way to reconstruct 

the 3D point cloud from dataset, however, this technology has been a long-lasting and 

worthwhile topic in computer vision and computer graphics.  With essential functions in daily 

life, the 3D modeling can be applied in many areas such as recognition based on 3D models, 

navigation and digitalization of the archived documents. Moreover, 3D modeling can also be 

used as one of the contactless and elaborate methods to reconstruct the ancient architecture for 

archeology studies as well as applied in medical surgeries with a more realistic and easy-

observable environment for doctors. 

One of the applications of 3D modeling is used in medical research [1-3]. The straightforward 

method to get the 3D model in medical image is to get the statistic shape model from a set of 

known data [4]. There are lots of methods applied based on the statistic shape model. In [3], 

researchers provide a novel model called Active Appearance Model to learn from the model 

parameter displacement and their residual error through an iterative scheme. This model can 

also be used to recognize the displacement in human face reconstruction. Also, the 

segmentation of MRI images and CT scanners can be used to form 3D model in medical images 

of brain tissue and vessel [2]. Applying 3D modeling in historical monument allows for digital 

archive and non-invasively studies with more details of the historical building [5,6]. In [5], the 

author introduces a novel prototype library of parametric models which is called Historical 

Building Information Modelling. This library can automatically form the detailed information 

including 3D documentation, orthographical projections based on laser scanning. While in [7-

9], 3D modeling can be used for digitalizing city models. Based on aerial images taken by 
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mature-airborne laser scanning, the geo-information can be easily acquired. Thus, the model of 

an urban area can be roughly reconstructed based on the 2D planner and geo-information.   

1.2 Introduction to building reconstruction 

3D building and scene reconstruction based on 2D images and videos is an active and popular 

research topic in computer vision and computer graphics as it pertains to various applications 

ranging from non-GPS location identification, architectural studies, and archeological studies 

for heritage conservation and exhibition [10].3D structure and appearance are features of a 

building that uniquely lead to its unique characterization. The 3D structure can be had from 

images of the building through extracting salient corresponding points in the images from 

which a 3D cloud structure is computed via triangulation, while the building appearance is 

obtained by importing the appearance of an image patch to its corresponding 3D patch on the 

building surface. 

This thesis deals with the problem of constructing a 3D textured model of a building or 

monument from images of the building by extracting corresponding salient points (corner 

points) on the 2D images.  The salient points need to be intrinsic and invariant under the 

projection transformation, i.e. they need to be preserved under the projection transformation, 

which means salient points need to appear as salient points after the transformation unless there 

is occlusion.  This step uses absolute affine invariants constructed based on the nested convex 

hulls of the salient points and yield a coarse set of corresponding points on the images. These 

coarse corresponding feature points are tessellated to form a high-resolution triangular mesh 

using a loop subdivision process. The subdivision produces a dense set of corresponding 

landmarks on the images of the building and result in a high-resolution 3D building model. 

This adds very little to the total computational cost (adding a few hundred milliseconds to the 

total processing time).  Finally, the appearance of a triangular patch in the image is imported 

onto the personalized model. With multiple images, all coordinates and appearance are 
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reconstructed in accordance with the observed images. The 3D model reconstruction method 

allows for a 3D classification of a test building to one of many possible buildings stored in the 

database. The classification is based on a combination of a geometric 3D point cloud error. The 

geometric error is obtained by calculating mean squared error (MSE) between one point in test 

model and its nearest neighbor point in base model. For buildings with similar shape but 

different appearance, the geometric ambiguity is resolved through calculating the differences 

in intensity between the test and each base belonging to the ambiguity set (set with very close 

shape errors). The overall process of a building synthesis/ recognition is shown in Figure 1. 

Our method can also be used in image based navigation when preloaded location information 

of each model in database is provided, hence helping an observer navigate without a GPS 

system. 

The thesis is organized as follows. In Chapter 2 we briefly cover related work, while in Chapter 

3 we discuss the properties of salient points and how to enrich the salient point set. The affine 

transformation theory is discussed in Chapter 4 and we discuss why choose convex hull as well 

as how to construct nested convex hull in Chapter 5. The detailed process of our method applied 

on building models is discussed in Chapter 6 and we evaluate the geometric error combined 

with texture error in Chapter 7. The application and conclusion of the thesis are given in 

Chapter 8 and 9, respectively.  
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(a) Overall synthesizing process 

 

 

 

 

(b) Synthesized tower juxtaposed against the true tower  

 
 

Figure 1: Overall reconstruction process  
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CHAPTER 2   RELATED WORK 

2.1 Methods for 3D building reconstruction and recognition 

3D building reconstruction are needed for city mapping where urban centers are mapped and 

digitized for navigation and urban construction planning for crime prevention and disaster 

mitigation. This technology is also useful in archeology, where reconstruction of monuments 

(e.g. palaces, temples, etc.) can be achieved virtually yielding historical detailed information 

about a monument non-invasively and without physically damaging the monument remains.  

Finally, this technology lends itself to non-GPS image based navigation, where the position 

location system is attained from the identification of a building against a possible building 

stored in a database.   

Many methods have been developed to accommodate different conditions in 3D modeling. The 

most direct method is to use 3D scanning system which all have similar steps. For the models 

which are scanned directly from a 3D scanner, the steps always contain shape measurement for 

geometric structure and texture alignment for model surface appearance [11]. For the physical 

model scan, multiple scanning images must be aligned into the same coordinate and cover the 

surface of the model. Multiple image registration is done by matching features from 2 

overlapping images automatically. In [12], researchers introduce a method to simplify the 

surface matching problem into a 2D image matching problem through a harmonic map. Also, 

a method based on pin images of the 3D model is introduced in [13]. The surface is matched 

based on the highly correlated pin images which are the level descriptors to represent images. 

Besides the shape registration of the model, the reconstruction will be inadequate when missing 

the texture part. To align the texture on to 3D model accurately, the camera calibration is 

needed to provide intrinsic and extrinsic parameters [14]. And for models which have obvious 

geometric features, the correspondence can be found manually before image texture can be 

rendered on the 3D model. In [15], the author introduces the way to reconstruct 3D model based 
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on the RGB-D camera. This novel sensing system take RGB images with depth information 

for each pixel. With a RGB-D mapping, a dense indoor model can be formalized. While in [16], 

a hand-held stereo photometric camera is introduced to recover the shape and surface 

reflectance of a model from a set of images. The photometric constraint is added to the multi-

view stereo problem which can help to solve the shape, surface normal and reflectance 

simultaneously. However, it is inapplicable for laser scanner to get the shape range from objects 

with shiny, mirroring and transparent texture. And this method requires time accuracy for a 

time-flight system [17].    

Some of the current technologies are based on cartographical maps or 2D planar maps and 

aerial images based on Geographical Information System (GIS) database. Based on aerial 

images taken by mature-airborne laser scanning, the geo-information can be easily acquired. 

With the given aerial photogrammetry in a large area, urban 3D city models and building 

models can be reconstructed [7-9]. In [7], a 3D city model is reconstructed from detected planes 

extracted using Hough Transformation in 3D space. In [8], ground plans and airborne LIDAR 

data are combined using a 2D partitioning method to separate building footprint into 

'nonintersecting and mostly quadrangular sections’ as cell decomposition. This allows the 

creation of a level of detail building reconstruction. Building reconstruction based on aerial 

photogrammetry, however, can sometimes be not as accurate due to the low quality of laser 

scanning and cannot give a precise description of each building, and requires higher accuracy 

to achieve localization of a specific spot. In [9], a method to reconstruct 3D scene from video 

is introduced. This method can reconstruct the 3D scene using multi-view stereo reconstruction 

and a textured model in real time. This can be used in application like Google Earth and 

Microsoft Virtual Earth to visualize large scale models. In [18], a model-based building 

reconstruction based on coarse polyhedral model is proposed by finding the vanishing point 

then reconstructing more details by detecting features based on the maximum of the density 

gradient. This method is done using a close range 2D image, the model details, however, are 
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not enough for recognition. Another method for building reconstruction based on vanishing 

point is introduced in [19] using different vanishing points in 2D images and assigning points 

on lines with the same vanishing point to the common hue color. This method is called localized 

color histogram, which is regarded as an index vector for recognition. The authors also 

suggested finding SIFT points to refine their results. 

There is an abundance of work [20,21] for 3D scene recognition that are based on SIFT point 

features. SIFT point features are pointed out by Lowe in [20], and these features are regarded 

as salient points to describe an object. In [21] informative SIFT descriptors are calculated to 

reduce the dimensionality by rejecting the majority of irrelevant descriptors formed by standard 

SIFT method. While in variant and invariant patch (VIP) features are generated based on SIFT 

features to match a 3D scene. This method can also be very effective when matching a 3D 

scene just from 2D images. However, basically, SIFT features are formulated in a grey-scale 

images, so it is hard for it to detect the differences between building appearance with the same 

structure.  

2.2 Situating our Synthesis Method within the Different Classes of Synthesis 

There are basically three ways for synthesizing a building structure. The first and most basic is 

using 3D scanners (time of flight) to obtain a 3D cloud of building points that represent a given 

building or monument, while the second uses acquired images of the building from which the 

3D cloud building structure is obtained. The third method starts with a generic building model 

preferably one that belongs to the set of buildings that need to be synthesized, then personalize 

the generic model by morphing its 3D structure so it aligns itself with the images of the building 

that we are trying to synthesize. This approach was used for 3D face synthesis in [11,22]. The 

first method is more direct but is prone to errors in the presence of metallic surface resulting in 

reflection during scanning and is definitely more expensive and non-portable technology. The 

second method, while inexpensive and portable, requires the tracking of corresponding points 
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on the images to be able to reconstruct the 3D cloud via triangulation and necessitates cameras’ 

calibration. While for the third method, it requires the models in the database have the same 

number of feature points for generalizing a generic model. For example, in the 3D face 

synthesis, all faces have the same number of features such as nose, mouth, eyes. However, it is 

hard to say if every building, even within the same type, will have the same number of floors 

or pillars. Thus, it will be difficult for us to construct a generic model for our building with this 

method. 

The method used in this thesis belongs to the second class of methods.  In this thesis, we use 

corner points as our salient points. These are invariably present in all buildings and can stand 

as common descriptors in the same way eyes, nose, cheeks, and mouth are common descriptors 

for all faces, notwithstanding the fact that their relative positions and shapes vary from one face 

to another. Moreover, these are intrinsic points that are preserved under the projection model 

(affine transformation). A coarse set of corresponding corner points on the images are obtained 

using a set of absolute affine invariants constructed from the set of convex hulls of the corner 

point set.  Note that we have limited our transformation to affine since the transformation 

obtained from the camera model (perspective transformation) is well approximated locally by 

an affine transformation. This set is considered an intrinsic affine preserved set and go beyond 

the scale and rotation preserving property inherent in SIFTs. 

In the next chapter, the salient points, which we mentioned several times, will be discussed 

including the properties of them and the proper salient point set in building models. After that, 

we will show the way to get a dense and rich salient point set based on original salient point 

set.  
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CHAPTER 3 SALIENT POINTS 

Salient points can be regarded as the feature points in building models. As for a 3D face 

reconstruction indicated in [23,24], salient points are relied on features on human face such as 

eyes, nose, mouth and cheek. These points are treated as salient points based on their common 

existence on every face. Based on the salient points, we can easily find the correspondence 

between different faces and morph the generic model into a synthesized one. However, in our 

case the model which is going to be reconstructed are buildings. Even belongs to the same type, 

one building will not have the same number of features as others do. Thus, the generic model 

method is inadequate to be applied here for the generic model can only be well prepared when 

take the average of different models with same salient points. 

The method we are going to use here is to track the corresponding points in different images 

and align them into a 3D model. As salient points must remain consistence and be preserved 

during the transformation, corner points on the building models are selected to be served as the 

salient points in reconstruction. As shown in Figure 3, salient points are marked in to red.  

3.1 Properties of salient points. 

In order to reconstruct the building model with a rich and dense salient point set, the salient 

points should have the following properties. 

The salient points should be invariant, intrinsic and locally controllable. Firstly, salient points 

should be preserved under projective transformation and appear in the images as the salient 

points. Secondly, salient points should be intrinsic. Since we can take images of building from 

different angles, these points should be remained as salient points even we change the viewing 

angle. This requires salient points to be independent from the coordinate. Finally, salient points 

should be locally controllable due to noise and occlusion. For example, when noise occurs 

during the transformation, only the vicinity of the noise will be affected, leaving the ones not 
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in their noise vicinity to yield a good reconstruction. This also should apply to occlusion where 

only the occluded salient points are imparted. 

One such set of salient points are corner points. These are invariably present in the set of 

different of towers shown in Figure 2, and clearly shown as frontal view image of tower 1 for 

example in Figure 3. Corner points map onto corner points under the affine transformation 

since intersection points between two lines map into intersection points after the affine 

transformation. This is also true for the midpoint between the line joining two salient points 

and any midpoints between those. This is of particular importance when obtaining a dense set 

of salient points from the corresponding corner points through the loop subdivision method 

outlined in section 3.2. 

 

 

 

 

Figure 2: Set of 8 different towers 
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Figure 3: Salient Feature Points on a Tower  

 

 

3.2 Additional salient points 

Though the salient points are critical to present the geometric features on 3D model, only these 

original salient points are not enough. We need more salient points to build the points cloud of 

the model in order to express the model more accurately. 

For a high-resolution 3D building model, we need more salient points. Under affine 

transformation, the midpoint of two points along a line will map to midpoint, we consider the 

midpoint of two adjacent salient points to be an additional salient point. Since midpoints are 

also salient points, this implies that all points on lines joining midpoints between themselves 

and the corner points are themselves salient points. By repeatedly selecting the midpoint of 2 

adjacent salient points, we can enlarge our salient point set. 
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Using the coarse set of corresponding salient corner points for images 1 and 2, we form a 

Delaunay triangulation to tessellate the salient points in a triangular mesh (salient point mesh). 

The salient meshes have vertex-to-vertex and triangle-to-triangle correspondences in the 

frontal and profile images. Each mesh is then further subdivided through the loop subdivision 

routine in [23,24], where for each side of a triangle in the mesh, a midpoint is chosen. The loop 

subdivision process is shown in Figure 4. Suppose now we take a patch of building model with 

triangular mesh, the vertexes of the mesh come from the original salient point set. Then we 

take the midpoint along each triangular edge which are marked as red points shown in Figure 

4 (b). Connecting the red points in the same triangular, a new triangular mesh contains original 

salient points and additional salient points will be formed after 1st time subdivision. By 

iteratively doing this, a set of rich salient points and dense triangular mesh will be constructed 

to describe the building model.  

 

 

 

Figure 4: Process of subdivision 

 

3.3 Select salient points 

The salient points are selected manually and ordered consecutively. Take Tower1 for a quick 

example. After taking 2 different images of the building from different views, we order the 
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corner points as the salient points manually on the images as shown in Figure 5. The salient 

points in frontal view which is shown as Image 1 have been selected and numbered. I just 

pointed out four of them in order to make the figure clear to be observed. After changing 

viewing angle into 90 -degree, the salient points will be ordered and have a common set with 

salient points selected from frontal view. The number of common salient points in the common 

set is determined by the overlapping area of different viewing angles. When the position where 

we take the images changes, the set of intersection of salient points also changes. Figure 6 

shows how the overlapping area changes based on different viewing angles. We can see from 

the Figure 6 that the combination of Cams 1 and 2 is better than the combination of Cams 1 & 

3 as it has a better view of the whole building.  

 

 

 

Figure 5: Selected salient points on images 

 

3.4 Modeling from stereo views 

In order to get the whole model of the building not just part of the surface, images from stereo 

viewing angles of one building are needed. Since the common set of the salient points is 

determined by the overlapping area of the viewing angles, we can choose viewing angles with  
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Figure 6: Overlapping area from different viewing angle  

 

 

 

 

 

Figure 7: Images from stereo views 

the largest overlapping area to reconstruct the whole building model surface when circulating 

around the model. As is shown in Figure 7, the overlapping area of the binocular viewing angles 
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contains all the selected salient points. If we rotate the binocular viewing system around the 

building on a plate with every θ (i.e. θ = 30° or θ = 45° ) degrees, the whole building will be 

reconstructed from all sides. 

In next chapter, we will discuss the relationship (transformation) between different views under 

pin-hole camera model and invariants under different transformations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

CHAPTER 4   AFFINE TRANSFORMATION  

4.1 Relative and absolute invariances 

Invariance is an important property in the presence of geometric transformation[25]. There are 

two types of invariances: relative and absolute. When object’s entities before and after the 

transformation are related through a scale factor that depends only on the transformation, then 

we have a relative invariance.  For similarity transformations (rotation by an angle q and scaled 

by a scale factor α in 2D), length is a relative invariance since it is scaled by the scale factor α, 

i.e., 𝑙( = 𝛼𝑙, where 𝑙	and 𝑙(are the lengths between two points before and after the similarity 

transformation. For an affine transformation, area in 2D or volume in 3D is a relative invariance 

for it is scaled by the determinant of linear transformation matrix after an affine transformation. 

i.e., 𝑑𝐴( = det 𝐿 𝑑𝐴,  where 𝑑𝐴	and 𝑑𝐴( are differential areas before and after the affine 

transformation. Absolute invariance is the invariance where the scale factor is 1. For example, 

under a similarity transformation, angles are absolute invariants and so is the ratio of lengths. 

For an affine transformation, the ratio of areas is an absolute invariant. 

4.2 Geometric Transformation 

An object in 3D when imaged from different views by a camera undergoes a geometric 

transformation. Depending on the conditions under which the object is imaged, different object 

image views are related through one of the following transformations: rigid, similarity, affine, 

or perspective transformation.  

In a rigid transformation, a point in one view is mapped in accordance with  

𝑥′
𝑦′ = [𝑅]

𝑥
𝑦 + 𝑡 
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where 𝑥 𝑦 ; is the original coordinate of the point, 𝑥′ 𝑦′ ; is the coordinate of the point 

after the rigid transformation, [R] = 	 cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃  is a rotation matrix with θ being the 

angle of rotation, and t is a translation vector.  

 

 

 

Figure 8: Rigid transformation 

 

 

Under a rigid transformation, lengths and angles are absolute invariants. 

Under a similarity transformation a point in one view is mapped in accordance with  

𝑥′
𝑦′ = α	[𝑅]

𝑥
𝑦 + 𝑡 

 

 

 

Figure 9: Similarity transformation 
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A similarity transformation preserves angles and the length ratios. 

Under an affine transformation, the object is subjected to a shear and a point on the object is 

mapped from one view to another in accordance with   

𝑥′
𝑦′ = [𝐿]

𝑥
𝑦 + 𝑡 

where [𝐿] is a nonsingular matrix. In affine transformation, length and angle are no longer 

relative invariants, however, area is, and the ratio of areas is an absolute invariant.  As shown 

in Figure 10, we can obviously see that angels and the ratio of length change, but the area ratio 

EFGE{IF(KL,KM,KN)}
EFGE{IF(KM,KN,KQ)}

 remains the same after affine transformation.  

 

 

 

 Figure 10: Affine transformation 

 

 

Under a perspective transformation (pinhole camera) the image projection of a 3D point on an 

object follows the transformation shown in the Figure 11.  
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Figure 11: Projection process with pin-hole model 

 

 

As shown in Figure 11, P is a 3D point with coordinate (x, y, z) with its projection onto the 2D 

image plane being the point (x, y, f), where f is the focal length of the camera. Note that the 

image plane is set in front of the camera center is to avoid getting an inverted image. Using the 

similarity property of triangles, it can be easily observed the relationship between x’ and x, y’ 

and y respectively, where x( = 	𝑓 T
U

  and y( = 	𝑓 W
U

 .  Figure 12 shows how an object 

perspectively maps on the image plane.  

 

 

 

Figure 12: Perspective projection 
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Points on model are projected onto plane P1 through a perspective projection. It is interesting 

to see here that in the projective space, the parallel lines are no longer parallel as they converge 

into a vanishing point.  

4.3 Affine transformation and weak perspective projection 

The perspective projection can be divided into weak perspective and strong perspective. For 

the strong perspective, the parallel lines are not preserved and will intersect at the vanishing 

point (see Figure 13).  

  

  

 

Figure 13: Weak and strong perspective 

 

 

Under weak perspective shown in Figure 14, a planar patch 𝑑𝑃Y	on the object with centroid 𝑟Y 

is projected on a plane passing through 𝑟Y	and parallel to the image plane. This gives rise to an 

intermediate patch 𝑑𝑃[′, which is perspectively projected on the image plane (just a scale factor 

since the intermediate and image planes are parallel). The combination of these two projections 

is the weak perspective projection, which is an affine transformation. When the patch size 

relative to the distance from the object to the camera is relatively small, the perspective 

transformation is a weak perspective, i.e., is an affine map globally or piecewise locally, 

rendering views of an object affine maps of one another. 
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Figure 14: Process of weak perspective 

 

 

In the next chapter, we show how we can use affine invariant constructed based on the 

assumption of affine maps to find correspondences between salient points contained in different 

views (images).   
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CHAPTER 5 CONSTRUCT CORRESPONDENCES 

In this Chapter, we discuss how to find correspondences between salient points in the images 

from which the 3D model cloud is synthesized using triangulation. The correspondences are 

established using a set of the absolute affine invariants of affine transformation. Once the 

correspondences of the salient points are found, loop subdivision (at increasing resolutions) is 

used at a minimal extra cost to obtain an additional dense set of salient points with already 

established set correspondences. This is discussed in chapter 6. 

5.1 Construct correspondence under affine transformation  

Consider the two ordered sets of salient points given in images 1 and 2. We can declare 

points	𝑟\, 	𝑟\]L, 	𝑟\]M and 	𝑟\]N in image 1 to points 	𝑟 , 	𝑟 ]L, 	𝑟 ]M and 	𝑟 ]N as corresponding 

points if 	𝐼L 𝑘 	and 	𝐼M 𝑙 	 are the same. Since there might be small errors in locating exactly 

the corner points we can allow for a small percentage error and use the error function given as 

|[b \ c[d ^ |
[b \

< 𝜀, with 𝜀 set to 0.05 for example.  

 

 

 

Figure 15: Absolute invariant in affine transformation 
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5.2 Imposing order on salient points 

As we mentioned before, if we want to find the correspondences between 4 points in different 

salient point set based on the absolute invariant, we have to form all possible area ratios and 

apply the absolute invariant error metric to find the correspondences which is a time-consuming 

way. In order to speed up this process, we should impose an order on the salient points.  

The first method is to order the areas into an increasing sequence and by taking the ratio of the 

consecutive elements in the sequence, the absolute invariant of affine transformation is derived. 

However, if the number of salient points in the point set is great, we still have to form the 

triangles for all possible point combinations.  

The second method is to apply nested convex hull into the salient point set. Since the convex 

hull is affine invariant and has ordered itself, we can get the area ratio of the consecutive four 

points on the convex hull into an ordered sequence and the correspondences of the points are 

found by a circular shift. Since the salient points are divided into several convex hull layers, it 

would be much easier to find correspondences in each smaller point set.    

5.3 Find correspondences using convex hull 

Convex hull is the smallest bounding polygon that can contain all the points in dataset [26, 27]. 

To quickly establish correspondences between the corner points in the two images, we compute 

the convex hull associated with the extracted salient points in each image. The convex hull is 

affine preserved, which again means that the convex hull of the affine mapped points is an 

affine map of the original convex hull constructed from the data before the transformation, with 

the vertices before and after the affine transformation being an affine map of one another. With 

extra salient points appearing or disappearing because of the viewing angle of the images, some 

of the vertices of the two convex hulls will possibly disappear with the new ones possibly 

appearing. This only occurs when the salient points are near the vertices. In other words, the 

convex hull has local controllability with added or subtracted points possibly affecting the 
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convex hull only locally. It is also unique, computational efficient (𝑂(𝑁𝑙𝑜𝑔𝑁, where 𝑁	is the 

number of salient points). Finally, the convex hull has ordered vertices, which helps in the 

search for corresponding salient point vertices through a simple circular shift. 

 

 

 

Figure 16: Ordered vertices of convex hulls and area ratio invariance 

 

 

Every three consecutive vertices on the convex hull form a triangle. The area ratio computed 

from 2 adjacent neighboring triangles (constructed from 4 consecutive vertices) is an absolute 

invariant, which means it remains the same before and after the affine transformation as long 

as we consider the 4 corresponding vertices after the transformation as shown in Figure 16. 

If 𝐼L 𝑘 = KFGE	{IF Fk,Fklb,Fkld }
KFGE	{IF Fklb,Fkld,Fklm }

, 𝑘 = 1,2, … ,𝑚,	 is the set of absolute area invariants 

constructed from the vertices of the convex hull of the salient points of the first image, and 

𝐼L 𝑙 = KFGE	{IF Fr,Frlb,Frld }
KFGE	{IF Frlb,Frld,Frlm }

, , 𝑙 = 1,2, … , 𝑛, that of the second image, then we declare the set 

of 4 consecutive vertices 𝑟\, 𝑟\]L, 𝑟\]M and 𝑟\]N on image 1 to be correspondent to the set of 4 

consecutive vertices 𝑟 , 𝑟 ]L, 𝑟 ]Mand 𝑟 ]N  on image 2 when 𝐼L 𝑘 = 𝐼M 𝑙 .  We can allow a 

nonzero small error margin for declaring correspondences by adopting the following decision: 

|[b \ c[d ^ |
[b \

< 𝜀, where is a small fraction like 0.05 for example. 
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In the presence of occlusion, as shown in Figure 17 in image (b) with point P occluded, there 

will be no corresponding point P’ to P but the other 5 points will be found as corresponding 

points [28].  

 

 

 

Figure 17: Convex hull with occlusion 

 

5.4 Construct nested convex hull 

 To enlarge the set of corresponding salient corner points, we find repeat the process on a 

set of nested convex hulls as shown in Figure 18. This is done by removing the vertices of 

the outer layer convex hull and finding the inner layer convex hulls in the two images and 

establish correspondence on those. The process can be repeated until the salient point data 

is exhausted. Note that finding correspondences based on each convex hull layer is much 

easier than finding correspondences in a larger dataset. The end of this process results into 

a coarse set of salient corner points correspondences. This set serves as the basis for 

tessellation resulting in a dense set of corresponding salient points. 
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Figure 18: Nested convex hull layers  
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CHAPTER 6   3D model synthesizing 

6.1 Geometric model synthesizing 

As stated in section 3.2, since under the affine transformation a midpoint on a line is affine 

preserved, this means that the new generated set of points are also corresponding in the two 

images. Based on the correspondences found through the nested convex hull method, the 

corresponding salient point set can be enlarged through subdivision without finding 

correspondences, i.e. they are already declared as correspondences. The subdivided meshes 

maintain the vertex-to-vertex correspondences. This mesh loop subdivision is shown in Figure 

19 for images 1 and 2 of tower1.  

 

 

 

Figure 19: Loop subdivision  
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The 3D building model without appearance (texture) from the dense salient point set is 

synthesized as is shown in Figure 20. 

 

 

 

 

Figure 20: 3D model synthesis without texture 

 

 

6.2 Texture mapping 

A complete 3D model for the tower is obtained when considering images taken all around the 

building. We can add a textured appearance to the 3D tower model by importing the appearance 

of any triangle on the images to the corresponding triangle using tray racing on the 3D structure. 

This is shown in Figure 21 for tower 1. For each patch on the high-resolution 3D building mesh, 

its intensity is imported as the average intensity from 3 vertexes. When the iteration time of the 

subdivision increase, the appearance of the building will be smoother and consistent as shown 

in Figure 22.  
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Figure 21: Loop subdivision on image 1 of Tower1.  

 

 

 

 

 

Figure 22: Increase iteration time 
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6.3 Computational complexity associated with our 3D synthesis method 

Computational complexity is an important index to describe the computational time or storage 

needed in executing our method. In this paper the corner points in the images are selected using 

a GUI system. As this part of the algorithm is not yet automated and is beyond the scope of this 

thesis, the computational complexity commences after the acquisition of the corner points. Note 

that in a fully automated system, a corner edge detector [29] will be used to extract the corner 

points in the images. Suppose we have a set of N salient points which are selected. Then the 

first step is to construct the nested convex hull, then find the correspondences for points on 

each convex hull, respectively. We then establish a dense salient point set by subdivision, 

finally map the intensities of points on the images onto corresponding points on the 3D model.   

Firstly, the computational complexity for generating the convex hull of the N points dataset is 

O(N log N) [30]. Since each time we generate the inner convex hull we have a lesser number 

of data points, the total complexity is bounded from above by αO(NlogN), where α represents 

the number of layers in the nested convex hulls. Secondly, the finding of the correspondences 

of the points on each convex hull layer has is of order	𝑀\, where 𝑀\ is the number of vertices 

on each convex hull 𝑘since the convex hull has ordered vertices and the correspondences 

therefore are found through a circular shift.  This is followed by a Delaunay triangulation where 

the corresponding corner salient points in each image are connected as a mesh with non-

intersectional edges. The computational complexity of Delaunay triangulation for each image 

is of order N log N [30], for N is the number of corner points with established correspondences. 

The additional salient points are selected as midpoints between two adjacent points. For a point 

set containing N points, there will be no more than 3N edges in any triangulation. Thus, finding 

the midpoints on edges will have the computational complexity of O(3N), with increasing 

resolution (loop subdivision iteration), the computational complexity is of order 3\𝑁 where k 
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is the iteration stage. Finally, to import the intensities from image to the model, generally each 

vertex on the triangle will be touched 3 times to calculate the intensities of the around 3 

triangles except for the points on the boundary. Thus, the computational complexity is 

O(3\]L𝑁). For example, for test Tower1 for an example with N=47 corner points, the time for 

constructing nested convex hull is 0.193 sec; for finding the correspondences between salient 

points is 0.211 sec; and for obtaining additional salient points to dense point set per loop 

subdivision is 0.003 sec; whereas the time for texture mapping is 0.043sec; whereas for 7 times 

subdivision the time for finding additional salient point is 12.881sec. Thus, the computational 

complexity for selecting midpoint on each edge will be much smaller than that of constructing 

the convex hulls and the Delaunay triangulation. Hence, the method is able to add an additional 

salient point set at minimal cost. However, with the increase of iteration time, the time for 

finding the midpoints will increase since there is a 3\]L term in it.  
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CHAPTER 7   EVALUATION 

7.1 Geometric Error Evaluation  

In this section, we test the efficacy of our synthesis model for 3D classification of a test building 

(synthesized using two images) to one of 8 possible buildings shown in Figure 3 stored in the 

database. A geometric error is obtained by calculating the mean square error (MSE) between 

one point in the test model and its nearest neighbor point in the base model. The test models 

are reconstructed and centered in the same coordinate as the base models. The classification 

errors are shown in Table I, with the table entries showing the MSE distance between the point 

clouds of every test model and base model. 

 

Table 1: Geometric error values 

 
 

 

 

 

A larger value refers to a greater difference between two models while a smaller value 

represents a higher similarity. As expected entries along the diagonal in Table I, point to the 

smallest error values indicating a 100% correct classification. It is interesting to note that the 
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errors are much larger for dissimilar towers. We also note that the errors for two towers with 

similar shapes but different facades will have very close geometric errors (e.g. towers 2 and 5 

have similar shapes but different textures), hence the importance of incorporating appearance 

as well as geometry for these cases for correct classification. 

When comparing test model with base Tower1 and base Tower2, we can easily find from the 

point error in Figure 23 that the error distribution is close to 0 when the test tower is compared 

to base tower1, whereas it is non-uniformly distributed away from 0 when compared to tower 

base 2. 

 

 

 

Figure 23: Compare test Tower1 to base Tower1 and base Tower2  

 

 

7.2 Texture error evaluation 

As indicated in the previous section when two towers have similar shapes but different textures 

or appearances, the classification geometric errors will be almost identical. To resolve this 

ambiguity, we compute the MSE in intensity between corresponding points on the test and base 

towers belonging to the ambiguity set with very close geometric errors, and pick the base with 
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the smallest intensity MSE. The intensity error is calculated under the normalized gray scale 

with 0 representing black and 1 representing rather than on a 0 to 255 scale. The errors between 

test tower 2 and base tower2 and base tower5 were found to be 0.1398 and 0.7380, with the 

minimum value pointing to the right classification. 
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CHAPTER 8   APPLICATION 

Based on the evaluation results shown in Chapter 7, buildings can be reconstructed and well 

identified through this method. If the location information for each base tower is apriori known 

then using our reconstruction and classification method, navigation and localization is possible 

without connecting into GPS. For example, if an observer is navigating in the scene shown in 

Figure 24 with known coordinates for the 8 towers appearing in the scene, then the observer 

would be able to locate him/herself based on identifying the building the observer is looking at 

by taking a couple of images for the building s/he is looking at, then grab the location 

information from a database of landmarks. Based on the location information, the observer 

could then be aware of his/her location. 

 

 

 

 

Figure 24: Simulated location recognition in experiment scene 
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CHAPTER 9   DISCUSSION 

9.1 Conclusion 

We constructed a 3D textured model of a building or monument from images of the building 

by extracting corresponding intrinsic and invariant (under the projection transformation) salient 

points (corner points) on the 2D images.  We constructed a set of absolute affine invariants 

based on the nested convex hulls of the salient points to yield a coarse set of corresponding 

points on the images. These coarse corresponding feature points are tessellated to form a high-

resolution triangular mesh using a loop subdivision process. The subdivision produces a dense 

set of corresponding landmarks on the images of the building and results in a high-resolution 

3D building model. Finally, the appearance of a triangular patch in the image is imported onto 

the personalized model. With multiple images, all coordinates and appearances are 

reconstructed in accordance with the observed images. The 3D model reconstruction method 

allows for a 3D classification of a test building to one of many possible buildings stored in the 

database. The classification is based on geometric 3D point cloud error. The geometric error is 

obtained by calculating mean square error (MSE) between one point in test model and its 

nearest neighbor point in base model. For buildings with similar shape but different appearance, 

the geometric ambiguity is resolved through calculating the differences in intensity between 

the test and each base belonging to the ambiguity set (set with very close shape errors). Our 

method can also be used in image based navigation when preloaded location information of 

each model in the database is provided, hence helping an observer without a GPS system. 

 

9.2 Future work 

(1) We will consider a richer set of salient points under the weak perspective and beyond. Since 

the common set of salient points from different viewing angles will be maximized if we choose 
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an appropriate viewing angle, we can formulate the 3D surface of the whole building model if 

we enlarge the salient point set of the whole building.  

(2) In this thesis, we approximate the weak perspective into affine transformation. In order to 

get more precise correspondences, we can consider a set of perspective invariants to establish 

correspondences. 

(3) We are now selecting the salient points from images manually with a GUI. In order to get 

a more precise location of the salient points without distortion cased in selection, we are 

considering extract the salient points from images automatically with corner point detector.  

(4) We will study how the loop subdivision and resolution impacts the between class variance 

(test and base coming from the different classes) and the within variance (test and base coming 

from the same class) and define signal-to-ratio measure that decides on far one should go into 

finer resolution. 

(5) We will look at the scalability of the approach in the presence of large database and find 

ways of efficiently search for the best using a divide and conquer hierarchical approach where 

the observer decides on the specific kind of building s/he is trying to synthesize and recognize 

so the matching is done against that specific kind of buildings in the database.  

(6) Since the idea of this thesis comes from the non-GPS navigating, this algorithm can be 

implemented on smart phones for navigation and location.  
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APPENDIX A: WEAK PERSPECTIVE 

 

 

Proposition:  

For approximation, if the depth of the object is far more less than the average distance between 

the object to camera center, the perspective projection can be regarded as weak perspective. 

 

Proof: 

Suppose the coordinate of point X on object	is	
𝑥
𝑦 , the depth of the object is ∆𝑍, the average 

distance between object and camera center is 𝑍E| and the focal length of the pin-hole camera 

is 𝑓.  

With perspective projection, the coordinate of 𝑿~ on image plane will be: 

 𝑿~ =
�

���]∆�

𝑥
𝑦  , 

 with Taylor-series expansion: 

 𝑿~ =
�

���]∆�

𝑥
𝑦 = 	 �

���
(1 − ∆�

���
+ ∆�

���

M
− ⋯)

𝑥
𝑦   , 

when |∆𝑍| ≪ 	𝑍E| only the zero-order term remains and we get  

𝑿�~ =
�
���

𝑥
𝑦   , 
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which is the weak perspective. 

The error between the point of perspective projection and weak perspective will be: 

	𝑿GFF = 𝑿~ − 𝑿�~ = − �
���

∆�
���]∆�

𝑥
𝑦 . 
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