
 
 
 
 
 
 

 
 
 
 
 

 
 

College of Engineering 

    

      

 
Drexel E-Repository and Archive (iDEA) 

http://idea.library.drexel.edu/   
 
 

Drexel University Libraries 
www.library.drexel.edu

 
 
 
 
 

 
 
 
 
 
 
The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may 
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations 
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non 
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may 
reproduce (print, download or make copies) the Material without prior permission. All copies must include any 
copyright notice originally included with the Material. You must seek permission from the authors or copyright 
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The 
responsibility for making an independent legal assessment and securing any necessary permission rests with persons 
desiring to reproduce or use the Material. 

 
 

Please direct questions to archives@drexel.edu
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190329268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.drexel.edu
http://idea.library.drexel.edu/
www.library.drexel.edu
mailto:archives@drexel.edu
http://www.drexel.edu/coe/


IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10, NO. 3, MAY/JUNE 2004 445

Model-Based Optoelectronic Packaging Automation
Timothy P. Kurzweg, Member, IEEE, Allon Guez, and Shubham K. Bhat

Abstract—In this paper, we present an automation technique
that yields high-performance, low-cost optoelectronic alignment
and packaging through the use of intelligent control theory
and system-level modeling. The control loop design is based
on model-based control, previously popularized in process and
other control industries. The approach is to build an a priori
knowledge model, specific to the assembled package’s optical
power propagation characteristics, and use this to set the initial
“feed-forward” conditions of the automation system. In addition
to this feed-forward model, the controller is designed with feed-
back components, along with the inclusion of a built in optical
power sensor. The optical modeling is performed with the rigorous
scalar Rayleigh–Sommerfeld formulation, efficiently solved online
using an angular spectrum technique. One of the benefits of using
a knowledge-based control technique is that the efficiency of the
automation process can be increased, as the number of alignment
steps can be greatly reduced. An additional benefit of this tech-
nique is that it can reduce the possibility that attachment between
optical components will occur at local power maximums, instead
of the global maximum of the power distribution. Therefore,
the technique improves system performance, while reducing the
overall cost of the automation process.

Index Terms—Alignment, optical microsystems, optical mod-
eling and simulation, packaging, photonic automation.

I. INTRODUCTION

THE current trend in optical microsystem design is to ex-
ploit advanced devices and new system architectures to

achieve greater system performance, such as higher data rates or
brighter displays. However, to push toward the theoretical limits
of optical microsystems, accurate alignment and packaging of
the multidomain system is required. Packaging is a challenging
problem, as systems are typically manually aligned. This tech-
nique is labor intensive, slow, and can lead to poor performance
of the system. Even with the recent progress in the develop-
ment of devices and microsystems, the packaging and assembly
of these systems remains as the possible critical limiting factor
to commercial success. These problems, compounded with the
current economic struggles of the telecommunication commu-
nity, result in a high cost to develop, prototype, and commer-
cialize the next generation of optical microsystems.

Automation is the key to high-volume, low-cost, and
high-consistency manufacturing, while ensuring performance,
reliability, and quality. There is a growing interest in the
development of automation techniques for photonic alignment
and packaging, as the optical microsystem industry desires
the benefits of automation experienced by the semiconductor
industry. However, the photonic community cannot simply use
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the same automation processes as the mature semiconductor
industry. The equipment is not optimized for optoelectronic
packaging automation, since the optical and geometric axes
of these optical microsystems are often not aligned. There is
a fundamental difference between electrical or semiconductor
automation and optical automation. In the electrical domain, a
good attachment occurs between two components when they
physically touch and solder flows between them. However, in
the optical domain, not only is a good connection needed, an
exact orientation alignment is required. As a result, packaging
costs currently accounts for 60%–80% of the entire photonic
component cost [1].

We are developing an automation process for the assembly,
manufacturing, and packaging of optical microsystems using
advanced device specific optical power models as well as
intelligent control theory to yield high-performance, low-cost
packaging. A priori device and process knowledge will be ex-
ploited in online control loops to align fibers and components in
a near-optimal configuration to maximize power transmission.
Our technique incorporates the materials and mechanics in
order to position the components and devices, exerting forces
on the various degrees of freedom before, during, and after
alignment so that the optical signal is positioned for maximum
transmission in a robust manner.

Using the model-based control process, we are presenting a
new paradigm for photonic automation. Our technique will in-
crease the system performance and efficiency of the automation
process, while decreasing the cost of optical microsystems. This
technique will employ existing capital equipment infrastruc-
ture (from semiconductor and industrial automation) and in-
crease the system performance in terms of bit-error rate (BER),
signal-to-noise ratio (SNR), insertion loss, crosstalk, and cou-
pling. As device and system designs become more complex, the
advantages of our technique will be magnified.

In this paper, we first present the current industry
state-of-the-art photonic automation systems. We use this
section to define common terms and techniques before in-
troducing our optical automation research and presenting its
potential economic and performance advantages. We next
discuss our system-level optical modeling technique and
present two examples of knowledge-based control technique
for the automation of photonic systems. We close with brief
conclusions and a discussion of future work.

II. PHOTONIC AUTOMATION MANUFACTURING PROCESS

Before introducing our automation process in detail, we first
present the current industry state-of-the-art photonic automation
process and show the limitations of technique. From this discus-
sion, the performance and potential economic advantages of our
technique will be clear.

1077-260X/04$20.00 © 2004 IEEE



446 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10, NO. 3, MAY/JUNE 2004

Fig. 1. Current state-of-the-art photonic automation.

A. Current State-of-the-Art Photonic Automation Process

Current photonic automation is used to couple laser diodes
to fiber, fiber to fiber, or waveguide (on an IC) to a fiber [2].
The techniques are typically based on the mature industrial and
semiconductor automation, robotics, motion control, sensors,
and capital equipment. To date, no significant defined process
has been developed to implement automation for general op-
tical systems; therefore, the majority of these production lines
are poorly automated. However, photonic automation research
has been performed in academic institutions, for example, ex-
amining how packaging and alignment can be designed in the
system substrate through micromaching [3]. In addition, some
leading automation and optical component companies have re-
alized the importance of automation for photonic systems, as
product development has begun at Newport, Irvine, CA [4],
Kyocera, San Diego, CA [5], Polytech PI, Karlsruhe, Germany
[6], and Palomar, San Diego, CA [7]. This work is promising
for the support of optical automation for simple unimodal power
distributions, such as Gaussian shaped beams emitted from laser
sources, waveguides, and fibers.

In Fig. 1, we present a flow diagram of the current manu-
facturing automation process for photonic devices. We provide
brief details of each step. In step 1, the device is loaded into the
machinery using standard automation pick and place [1]. Re-
producible, damage-free insertion of the fibers and fiber arrays
and waveguide chips can be obtained through the use of pre-
cision device tooling and high-magnification video feedback.
Step 2, first light detection and coarse alignment, is achieved
using a camera vision system and signal processing to locate

the positions of the fiber and the device. Step 3, control and op-
timization, fine-tunes the position of the alignment. This step is
discussed in detail in the next section, as it is the crux of our au-
tomation process. Step 4, bonding, is the application of commer-
cial-grade and user-proprietary optical adhesives. It is injected
via a time-pulsed or positive-displacement adhesive dispenser.
Calibrated UV radiation is delivered via dual fiber-optic illumi-
nators for curing. In step 5, postbonding testing, final throughput
measurements are made to quantify bond shift and validate de-
vice quality. Finally, in step 6, the device is unloaded. In Fig. 1,
the shaded boxes are the specific parts of the process in which
we have implemented our knowledge-based technique.

B. Current State-of-the-Art Photonic Automation Control

As introduced in Fig. 1, step 3 of the manufacturing process
is the key to the performance of the packaged device. In this
step, the alignment of the critical optical components is con-
trolled to achieve maximum performance. The currently imple-
mented control loop is described in [8] and presented in Fig. 2.
The technique is based on a combination of visual inspection
and power alignments [9], since proportional integral derivative
(PID) loops [10] converge in a single mode: simple unimode
power distributions. Fig. 2 includes an off-the-shelf motion con-
troller often referred to as the servo-feedback control loop. This
controller executes a proportional (P) or proportional, derivative
integral (PID) control algorithm [8].

The control loop is initiated by a vision system, as seen in
step 2 of the flow diagram shown in Fig. 1. After determining
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Fig. 2. State-of-the-art photonic automation control.

the vision set point, in Fig. 2, the alignment is fine-tuned
with the motion controller. Each axis of motion is independently
controlled, and typically, the number of controlled axes is quite
small. To obtain the required power measurement, a laser excites
the system and a power meter is attached to the output fiber. In
efforts to decrease the amount of time to determine the peak
power mode, more efficient positioning algorithms have been
implemented, based on the assumption that the power distribu-
tion will always be a unimode or Gaussian shape [11]. However,
even these recent “smarter” techniques [6], [9] are not model
based and, therefore, cannot exploit device model knowledge to
enhance performance.

This state-of-the-art automation control process has many
limitations. First, if the optical wavefront is not a symmetric
unimode function, the control algorithm can get “caught” at
local power maximums instead of the global maximum of
the entire wavefront. This error can yield a dramatic loss in
power efficiency, SNR, and BER for the assembled product.
Therefore, as the complexity of the optical wavefront increases
(i.e., non-Gaussian) with the addition of complex devices, such
as microelectromechanical systems (MEMS) and diffractive
optical elements (DOE), this current technique of alignment
will not provide accurate and efficient results. Second, since
multispace searches are employed with a gradient ascent algo-
rithm, the convergence time of the alignment equipment will
depend on factors such as the control resolution and processing
power. Packages with multiple degrees of freedom may result
in a delayed assembly line, since the gradient ascent algorithm
for multiple axes is very slow and sometimes nonconverging,
which increases the cost of the automation process. Finally,
current servos and control (PID) deployed in the semiconductor
equipment do not employ process knowledge base data in
the loop. Due to the limitations of the current automation
techniques, the need for a knowledge-based modeling process
for the automation of photonic systems is required to reach

the potential of the high-capacity optical systems in which
packaging and automation is a key to performance and cost.

III. BACKGROUND AND MOTIVATION: MODEL-BASED

AUTOMATION FOR OPTICAL MICROSYSTEMS

In contrast to the current automation techniques, we are
developing a new automation process for the packaging,
aligning, and attachment of optical fibers and waveguides
to devices by employing a model-based control algorithm
based on the optical power distribution of the specific devices
and optical propagation paths. This power distribution model
predicts the optimal alignment and attachment for a given
application, while, in conjunction, a completely automated
active optical feedback loop ensures an accurate, efficient, and
robust connection without the need of human inspection and
testing. Not only will this decrease the cost of system alignment
and packaging, our technique will employ existing capital
equipment infrastructure (from semiconductor and industrial
automation) and increase the system performance in terms of
BER, SNR, insertion loss, crosstalk, and coupling. To the best
of our knowledge, no model-based controller design has been
employed in optoelectronic assembly to date. In this section,
we introduce our method and compare it with today’s standard,
highlighting the advantages of our technique.

A. Approach and Strategy

The key to our approach is in the design of a model-based
control loop for photonic automation, replacing step 3 in the
manufacturing process shown in Fig. 1. Therefore, we find it
appropriate to define the idea of model-based control. The over-
whelming majority of currently deployed control loops are of
the simple feedback type, including P, proportional and integral
(PI), or PID. However, in addition to the feedback module, the
model-based controller also includes a “feed-forward” element,
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Fig. 3. Simple model-based control.

which acts as a set point modification procedure. The feed-for-
ward element is typically based upon a priori knowledge re-
garding the process to be controlled. Such a controller is denoted
as a model-based controller. This family of controllers include
model reference adaptive control (MRAC) [12], [13], internal
model control (IMC) [14], model predictive control (MPC) [15],
and intelligent control such as expert control, neurocontrol [16],
and fuzzy logic control [17].

In our automation process, we increase the accuracy, perfor-
mance, and efficiency of packaging complex optical systems
through the use of a priori knowledge gained by optical
system simulation. The simulation will predict the complex
optical wavefront at the coupling points, leading to the ideal
positioning of the devices for optimal alignment. With this
advanced knowledge, the “feed-forward” stage of our control
loop sets the alignment position of the system. From this
position, fine-tuning of the alignment and attachment can be
achieved with similar techniques, such as a PID feedback loop.

The advantage of model-based control and the use of a feed-
forward loop is seen in Fig. 3. If an accurate model of the con-
trol plant and its inverse can be determined, the control
loop can position the mechanics to at the vicinity of the globally
optimal configuration. In Fig. 3, the transfer functions of each
of the subloops are given. If , where is the behavior of
the plant, perfect tracking can be achieved by

(1)

where, is the output power received on the power meter,
is the input desired power to be tracked, and is the

intermediate signal between the feed-forward loop and the feed-
back loop. Each of the signals is in the frequency domain.

The issue of developing an inverse model for a given dynamic
system or transfer function has several practical challenges [14].
Most transfer functions are not invertible, either due to their
nonminimum phase (having zeros at the right half plane) nature
or due to the excess of poles over zeros of , which results in
demanding online differentiation (noisy) process. Nevertheless,
in many situations it is practical to obtain a realizable and local

inverse. We discuss the finding of a practical approximation to
the inverse model in the next section.

Using a knowledge-based control technique provides many
advantages over the current photonic automation techniques.
We can support the packaging of systems not emitting optical
power in an ideal unimode power distribution. Therefore, if the
optical power distribution has many peaks and valleys, we know
a priori which peak will nominally contain the most optical
power. From the position of the peak, optimal alignment can
be obtained, as our control loop avoids finding and being po-
sitioned in local power maximums. Unavoidable errors, such
as manufacturing errors and misalignments, will be partially
corrected with a PID feedback loop, found in addition to the
feed-forward loop. An additional advantage of our technique
is the time that the automation control loop takes to track the
peak power position. We can greatly decrease this time with
the feed-forward block of our algorithm. Using results from
advanced simulation, we can get close to the optimal position
without having to search a complete optical field space. This re-
duces the required field of view and required resolution, which
can lower the cost of the automation sensors, software, and hard-
ware. As the number of packages to be assembled increases, the
packaging time of an individual device is critical. This time di-
rectly affects the packing time of the entire lot of devices, which
is critical for large manufacturing runs.

For example, having a priori knowledge of how tilts of the
fiber or waveguide affect the performance of the system is crit-
ical. Tilts are the most challenging aspect of alignment using the
current methods, as the control loop dramatically slows down
as the number of parameters to optimize the alignment position
increases [7]. With our model-based control, we can reduce the
costly time of optimizing tilted, and more generally, multiaxis
systems.

Our control strategy is shown in Fig. 4. There are three main
“loops” or phases shown in the figure. The inner most loop, de-
noted (A) in the figure, is the same off-the-shelf servo feedback
loop described in Fig. 2. However, in this case, the servo loop is
initialized with a different, more advanced set point, described
below.

The two other loops are the essence of our method. The “feed-
forward loop,” denoted (B) in Fig. 4, provides the inner servo
loop with a “smart” set point to track. This set point is deter-
mined by a properly derived, optical power propagation model
computed online or, if required, can be stored in a database.
The optical power propagation model is device and assembly
task specific; that is, different devices with different alignment
and assembly tasks will possess unique power distribution func-
tions. As new assembly tasks are submitted to the control ma-
chinery, that is, inputs to the feed-forward block, the model is
activated and generates a new set point for the inner feedback
servo loop to track and lock on. We emphasize that generated
by our method (see Fig. 4) will, in general, be different from the
value of currently produced by the state-of-the-art controller
seen in Fig. 2. This new position forecasts the model-based
nominal configuration for maximum power transfer.

The third and final loop is called the learning loop, denoted
(C) in Fig. 4. This loop is the outermost loop, which provides
opportunities for the system to improve upon its power model
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Fig. 4. Knowledge-based control algorithm for automation of photonic systems.

and adjust its accuracy on the basis of “experienced evidence”
or a mismatch between expected power and measured power at
a specific axes configuration. The learning loop only gets acti-
vated at a lower sampling frequency for specific and appropriate
tasks.

IV. OPTICAL MODELING TECHNIQUE

As part of the automation process, appropriate online optical
modeling techniques must be incorporated into our knowledge-
based controller. It is critical to acknowledge that the appro-
priate optical modeling process varies for different devices and
systems. The model is to be “online,” that is, computationally
efficient, such that many different system configurations can be
simulated to find the position and alignment that creates the best
system performance. However, the more accurate the optical
model, the more effective our model-based automation process
is in increasing performance and productivity, while reducing
the high packaging costs. Therefore, the optical model used in
our automation process needs to be both accurate and computa-
tionally efficient.

When optical wavefronts interact with the small feature
sizes of optical microsystems, many of the common optical
propagation modeling techniques become invalid, and full
vector solutions to Maxwell’s equations are required for
accurate simulation [18]. However, these accurate solutions
are computationally intensive, disabling the use of online
models. To reduce the computational resources of modeling the
optical wavefront in free space by the vector solutions, a scalar
representation is commonly used. We have been using the
Rayleigh–Sommerfeld scalar formulation, efficiently solved
by the angular spectrum method [19], [20] for our online

models. We have previously shown that far (Fraunhofer) and
near (Fresnel) field approximations, which can further reduce
the computational demand of scalar solutions, are not valid for
typical microsystem dimensions [21].

It is to be acknowledged that there are good models and sim-
ulation tools from third-party vendors such as ZEMAX, OSLO,
and BeamProp. However, these models would have to be cus-
tomized for our online control process. Using some of these
tools, could be helpful in the optical modeling process; how-
ever, the creation of tools for our specific use is proving more
beneficial.

A. Determination of the Inverse Model

As shown in the previous section, determining the inverse
model is crucial to the success of the feed-forward method.
Procedures for finding the inverse solutions of problems in-
volving such nonlinear systems as our complex power distri-
butions are, in general, extremely complicated. The challenge
in determining the inverse model for nonlinear functions is that
there is not a one-to-one mapping of the variables. This can be
seen in the power distribution in Fig. 5, as for any given value
of , there could be more than one value.

Because of the complexity of inverting nonlinear systems,
it is often necessary to introduce an “equivalent” set of mono-
tonic functions in place of a multimodal function. Each mono-
tonic function in the set is only valid in a defined range. We
currently find the inverse model for our control algorithm by
decomposing the power distribution waveform into piecewise
linear (PWL) segments. In the control loop, a feedback signal to
the inverse model block determines which range, or PWL seg-
ment, should be used for the calculation of the inverse model.
The PWL representation for a complex power distribution is
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Fig. 5. PWL segments of the optical power distribution.

Fig. 6. Edge-emitting laser coupled to a fiber.

shown in Fig. 5 (denoted by the symbol). This power distribu-
tion and its inverse are used in the examples presented next.

V. PRELIMINARY EXAMPLES AND ANALYSIS

A. Coupling an Edge-Emitting Diode to a Fiber

To highlight some of the advantages of our knowledge-based
automation process, we present preliminary examples com-
paring our technique and the currently used state-of-the-art
control algorithms presented in the previous section. In this
example, we present the coupling of an edge-emitting laser
diode to an optical fiber. We choose this example, since this is
one of the most commonly packaged devices using the current
optical automation process [1]. In this example, the GaAs laser
diode is flip-chip bonded onto an Si bench, containing the elec-
trical drivers for the laser, along with a fabricated V-grove for
placement of the fiber. The V-grove provides “self-alignment”
for the fiber; however, within the V-grove, the positioning of
the fiber is critical to the final performance of the device. The
device is seen in Fig. 6. The arrows represent the six degrees of
freedom [both two-dimensional (2-D) and three-dimensional
(3-D)] in which the fiber needs to be aligned.

In this example, we assume that the laser diode emits a broad
Gaussian beam, which propagates through a 20 20 m square
aperture to a fiber with a 4- m core. We use the aperture in
this example to ensure the power distribution is not a simple

Fig. 7. Power distribution simulation at the fiber interface.

unimode. The distance of propagation between laser diode and
fiber is only 10 m; therefore, the light has propagated only into
the near field, and its 2-D intensity pattern in an observation
plane at the fiber shows diffractive effects, as seen in Fig. 7.
This result is determined from our angular spectrum simulation
and verified in [18].

We first analyze the control loop with the current
state-of-the-art method. As discussed in Section II and Fig. 2,
the current state-of-the-art automation process determines an
initial set point in the V-grove through the visualization of the
fiber to the aperture, aligning the geometrical optical axis with
the center of the fiber core (at a location of 20 m in Fig. 7).
From this set point, in step 3, the gradient ascent algorithm is
performed to find the position alignment for maximum power
coupled into the fiber.

In contrast, we use a knowledge-based control technique in
step 3 to determine the positional alignment for the maximum
power coupled into the fiber. Therefore, we start by simulating
the entire system to predict the best feed-forward set point for
our control algorithm. The simulation is performed using our
angular spectrum technique [19], [20], as the output intensity
distribution and a distribution of the power coupled into the fiber
are determined. In this example, we define the feed-forward set
point with the simulated position of the maximum power (area
underneath the intensity curve) captured in the 4- m fiber, seen
in Fig. 8(a). The position is found at (13.8, 13.8 m).

In Fig. 8(b), we compare the coupling of the fiber using the
current state-of-the-art technique and our knowledge-based con-
trol algorithm. The current technique starts at a position close to
the center of the geometrical optical axis (20, 20 m) and uses
the gradient ascent algorithm (Fig. 2), which stops the align-
ment loop at a local maximum power, denoted by the “X” in
the figure. In contrast, our knowledge-based control technique
starts at the feed-forward position (13.8, 13.8 m) and uses a
gradient ascent algorithm to find the global maximum power
coupled into the fiber, denoted by the “O” in the figure (actu-
ally, in this example, the algorithm starts off from the set point
by a couple of micrometers to simulate possible mechanical and
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Fig. 8. (a) Contour diagram of the power coupled into an 4-�m fiber determines the feed-forward set point. (b) Intensity contour of wavefront with superimposed
final fiber positions using the current state-of-the-art technique (“X”) and our knowledge-based control algorithm (“O”). Using our proposed technique, we show
an improved system performance of approximately 18%.

Fig. 9. Control process including the feed-forward loop and simulation results for the specific laser-to-fiber example.

system misalignments). The paths of the gradient ascent algo-
rithms for both our method and the classical method are in-
cluded on the intensity diagram in Fig. 8(b). In this example,
we show an increase in system performance of approximately
18% when using our knowledge-based technique over the cur-
rent automation techniques.

Using the same laser diode-to-fiber coupling example, we
present a complete simulation of our proposed automation
control process, seen in Fig. 9. Again, an online simulation is
performed at the point of attachment. For these online simula-
tions, the maximum throughput power for the ideal positional
alignment of the fiber is determined. This is used as a target
or tracking parameter. In this simulation, we use our angular
spectrum optical modeling technique [19], [20] and determine
a peak intensity value of 1.41 (AU). The inverse model is
calculated with the PWL deconstruction as presented in the

previous section. Using a simple motor dynamic, we
simulate the entire control loop in MATLAB’s Simulink. Also
included in Fig. 9 are simulation results, in terms of optical
power received versus time and motor position versus time.
Note that for these control parameters, the position of the motor
settles at a distance of 12.6 m, which tracks our goal intensity
value of 1.41, in approximately 7 s.

B. Fiber Array Automation

In this example, we analyze the automation process of
aligning and attaching an eight-element fiber array to a star
coupler, shown in Fig. 10. The spacing between the waveguides
and the fibers in the fiber array are matched to increase system
performance. To make the system more realistic, we excite the
star coupler input with an optical pulse, having a tilt of 2 . This
is a reasonably expected tilt misalignment during a current
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Fig. 10. Star coupler and optical intensity contours shown in 3-D and 2-D.

Fig. 11. Comparison of our knowledge-based control method versus existing alignment control.

semiautomatic assembly process [9], [6]. With the use of sim-
ulation we can determine a priori the output wavefront that is
expected from the star coupler. The 3-D and 2-D cross-section
intensity contours, simulated in RSoft’s BeamProp [22], are
shown at the edge of the output of the star coupler and seen in
Fig. 10.

As we did in the first example, we first perform the current
industry standard for alignment and packaging automation (vi-
sualization setpoint and gradient ascent, described in Section II
and Fig. 2) for comparison with our model-based control tech-
nique. As we saw in the previous example, a possible error can
occur by positioning the first fiber at a local maximum. This
is shown in Fig. 11, as both a 2-D intensity contour and a 3-D
figure. The hill-climbing algorithm is started at a position, de-
noted by the circle in Fig. 11, which is roughly half the fiber
array pitch spacing, in both the and direction, and runs
until a maximum is determined. In this example, this technique,
“zigzags” and stops at a local maxima (denoted by the square)
before the global peak power for the first fiber. The peak inten-
sity at this local position is 0.0502 (AU).

In contrast, the results from the knowledge-based control ap-
proach is also shown in Fig. 11, denoted by the path marked with
the symbol. From the device model simulation, the feed-for-
ward control block determines where the maximum power peak
will occur and sets this initial position in the control loop. In this
example, we position the initial point roughly 5% away from the

maximum value to simulate the possibility of optical modeling
errors, equipment misalignments, and/or manufacturing toler-
ances. This technique quickly finds the maximum power for
coupling to the first fiber in the array, which is denoted by a
star in Fig. 11. The peak optical intensity found at this peak is
0.2376 (AU), which is an increase of over 370% over today’s
current method.

Besides finding the global maximum power peak, our
technique is more efficient when compared to the current
state-of-the-art used alignment algorithm. Even in this simple
example, the number of time steps, or steps that the motors
had to take to get to the maximum power position, is much
less for our knowledge-based technique ( 8 steps) than the
standard hill-climbing technique ( 23 steps), which got caught
in a local minimum and did not even reach the peak power
position. The time steps, in essence, remark on the speed of
the automation process. The number of time steps to reach the
tracked power level can be seen in Fig. 12.

In the next example, we demonstrate our algorithm improving
the performance of the entire array system. A common align-
ment technique for a fiber array begins by aligning (determining
the position for the maximum optical power) in the first fiber,
as presented above. The remainder of the fiber array is then ro-
tated around this position, until the maximum power is captured
in the last fiber of the array. The rest of the fiber array is then as-
sumed to be aligned. In this example, we show that by aligning
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Fig. 12. Iterative time step comparison of out knowledge-based control method versus existing alignment control.

Fig. 13. Fiber array alignment of the hill-climbing algorithm (dark lines and
“o” shape) and our knowledge-based control loop (light lines and + shape).

a fiber array using this technique, the overall performance of
the system is not considered. In contrast, our knowledge-based
control loop takes all of the fibers of the array into consideration
and demonstrate an increase in total system performance.

In this example, the total power of the fiber array is calculated
by summing the optical intensity at each of the center fiber posi-
tions in the array. In the case of the current state-of-the-art tech-
nique, if the peak position of the first fiber is caught in a local
maximum, as seen in Fig. 11, the total power of all eight fibers is
calculated to be 0.1959 (AU). If we allow today’s technique the
benefit of the doubt that the true optical peak for the first fiber
can be found at the global maximum value, the total power cal-
culated for the fiber array is 1.5296 (AU). With our model-based
approach, we examine the entire optical field space and deter-
mine the position in which a certain alignment will achieve a
maximum performance for the entire system. The total power is
calculated for the entire state space, and the optimal position of
the fiber array is chosen at the point where the alignment gives
the best performance for the entire system. In this case, we found

a maximum power of 2.0380 (AU), at a position offset from the
first fiber center by about 3 m in the direction. Comparing
our technique verses the industry standard alignment technique,
we show an improvement of over 33% when the current algo-
rithm uses the peak maximum of the first fiber and over 940%
when the current algorithm method gets caught in the local max-
imum. In Fig. 13, we show the positioning of each fiber in the
array using both the classical technique (centered at the peak
power of the first fiber) and our model-based technique. It can
be seen that the knowledge-based control loop (denoted by the

shape) is closer to more array peaks than the hill-climbing
technique (denoted by the “o” shape).

VI. CONCLUSION

In this paper, we have introduced a knowledge-based con-
trol algorithm for the automation of aligning and packaging
optical microsystems. In addition to the current control loop
performing a gradient ascent algorithm, we have added MPC,
through the use of system simulation. These optical models
are accurate and efficient leading to the initial feed-forward set
point in the control algorithm. Using this technique, we can
increase the speed of the automation process, a critical factor
when many components are being packaged at the same time.
We also achieve better system performance, as we can easily
distinguish the global maximum, instead of the local maximum
around the initial starting point. Through these benefits, we
reduce the overall cost of the automation process.

The work so far is preliminary, as is our research. We have
only verified our algorithms through simulation and are cur-
rently starting hardware implementation and testing, with do-
nated equipment from Kulicke & Soffa, Willow Grove, PA. We
are also developing advanced optical models that are to be used
online in the control loop. Other research include the use of an-
alytical models to help us predict the feed-forward set points
through the use of an inverse model and perform curve fitting
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for the numerical results when analytical models cannot be de-
termined. In addition, the learning loop described in the knowl-
edge-based control is being researched and implemented.
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