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Abstract 
Systems Toxicology: mining chemical-toxicity signaling paths to enable network medicine 

Kaushal Desai 
Xiaohua Hu, Ph.D. 

 
Systems toxicology, a branch of toxicology that studies chemical effects on biological 

systems, presents exciting knowledge discovery challenges for the information researcher. The 

exponential increase in availability of genomic and proteomic data in this domain needs to be 

matched with increasingly sophisticated network analysis approaches. Improved ability to mine 

complex gene and protein interaction networks may eventually lead to discovery of drugs that 

target biological sub-networks (‘network medicine’) instead of individual proteins.  

In this thesis, we have proposed and investigated the use of a maximal edge centrality 

criterion to discover drug-toxicity signaling paths inside a human protein interaction network. 

The signaling path detection approach utilizes drug and toxicity information along with two 

novel edge weighting measures, one based on edge centrality for detected paths and another 

using differential gene expression between tissues treated with toxicity-inducing drugs and a 

control set.  Drugs known to induce non-immune Neutropenia were analyzed as a test case and 

common path proteins on discovered signaling paths were evaluated for toxicological 

significance. In addition to investigating the value of topological connectivity for identification 

of toxicity biomarkers, the gene expression-based measure led to identification of a proposed 

biomarker panel for screening new drug candidates. 

Comparative evaluation of findings from the DTSP approach with standard microarray 

analysis method showed clear improvements in various performance measures including true 

positive rate, positive predictive value, negative predictive value and overall accuracy. 

Comparison of non-immune Neutropenia signaling paths with those discovered for a control 

set showed increased transcript-level activation of discovered signaling paths for toxicity-

inducing drugs. 
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We have demonstrated the scientific value from a systems-based approach for identifying 

toxicity-related proteins inside complex biological networks. The algorithm should be useful 

for biomarker identification for any toxicity assuming availability of relevant drug and drug-

induced toxicity information. 
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CHAPTER 1: INTRODUCTION 

 

 The problem of mining for meaningful information inside complex networks has recently 

attracted the information researcher’s attention in a wide variety of domains, including but not 

limited to the network of hyperlinks on the internet [Barnett 2005] , network of social 

interactions among human participants [Shaikh et al. 2007], diffusion of knowledge inside 

organizations [Owen-Smith and Powell 2004], literature citation networks [Chen et al. 2008] 

and molecular interactions in complex organisms [Alfarano et al. 2005]. In the life sciences 

domain, the human genome project and subsequent advances in high-throughput technology 

were expected to transform medical research through elucidation of components that formed 

the cellular machinery. However, it was soon realized that the ‘parts list’ that emerged from 

human genome sequencing was far from a ‘wiring diagram’ and ‘circuit logic’ required to 

understand complex linkages between the genotype (i.e. organism’s genetic makeup), the 

phenotype (i.e. organism’s observable traits or characteristics) and the environment 

[Quackenbush 2007]. Molecular interactions between individual parts or constituents 

including genes, proteins and metabolites need to be examined at the level of pathways, cells, 

tissue and organ to ultimately understand the physiology of the entire organism or system. The 

field of systems biology has emerged to address this gap using a holistic approach that blends 

biomedical science, computational modeling and high-throughput experimentation to provide 

an understanding of cell signaling, developmental biology, cell physiology and metabolic 

networks [Oprea et al. 2007].  

Systems biology approaches have leveraged network science for three primary goals – 

Network Inference, Network Analysis and Network modeling. Biological network inference 

refers to the problem of inferring the structure of biological networks and the state of network 

elements to construct an interaction graph underlying the system. Biological network analysis 

refers to the use of graph theory to analyze a known (complete or incomplete) interaction 
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graph and to extract new biological insights and predictions from the results. Dynamic 

biological network modeling aims to describe how known interactions among defined 

elements determine the time course of the state of the elements, and of the whole system, 

under different conditions. A dynamic model of the cellular machinery allows researchers to 

study changes in the system’s behavior due to external perturbations like drug administration 

[Albert 2007]. Systems and Network biology are therefore important in terms of their 

potential applications to drug discovery and development. 

 A steady increase in the number of drug candidates failing in late-stage clinical 

development over the past decade has been concurrent with the assumption of a ‘one gene, 

one drug, one disease’ paradigm [Hopkins 2008]. Also, recent evidence has challenged the 

paradigm of single target intervention in drug discovery and development. Studies have 

shown that phenotypes are robust to single gene-knockout and only about 19% genes are 

essential across a number of model organisms. It is therefore, conceivable that the robustness 

of phenotype can be understood in terms of redundant function and alternative compensatory 

signaling routes inside complex biological networks [Hopkins 2007]. Polypharmacology, 

defined as the specific binding of a drug to multiple targets, and its effect on biological 

networks and phenotypes is therefore important to understand in the context of the need to 

evaluate drug safety as well as drug efficacy.   

1.1 Drug-induced toxicity evaluation: need for In silico approaches 

 The ability to understand and reliably  predict adverse effects of drug administration on 

biological systems before the drug is administered in humans continues to be a major 

challenge for pharmaceutical research and development. WHO defines an adverse drug 

reaction as ”a response to a drug that is noxious and unintended and occurs at doses normally 

used in man for the prophylaxis, diagnosis or therapy of disease, or modification of 

physiological function” [Edwards and Aronson 2000]. Definition and examples of different 
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types of adverse drug reactions is outlined in Table 1. In the context of this thesis, it is 

important to note the difference between Type A (Dose-related) and Type B (Non-dose 

related) adverse drug reactions. While Type A drug reactions are directly related to the 

pharmacological action of the drug, Type B reactions include immunological or 

hypersensitivity type reactions, that are not related to the pharmacological action of the drug.  

TABLE 1. Types of Adverse Drug Reactions with examples 

 

 The use of computational methods for evaluation of toxic potential for new chemical 

entities is termed as In silico toxicity evaluation. A variety of in vivo (inside a living 

organism, e.g. animal studies) and in vitro (outside a living organism, e.g. test tube or assay-

based evaluation) toxicity screens are available for screening drug candidates. More recently, 

high-throughput technologies have provided the ability to measure changes in mRNA 

(messenger RNA) levels for thousands of gene transcripts on a single chip. This, combined 

with advances in proteomics (ability to measure proteins as products of translation using 
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protein expression, MS and other protein-based measurement technologies) has led to an 

explosion in gene and protein-level information inside publicly available databases. While 

current approaches for analyzing genomic and proteomic data have been successful to some 

extent, it is expected that a ‘systems’ level approach that integrates these diverse data types 

will provide insights that are likely to improve the success of the drug development process 

[Ganter et al. 2006]. It is expected that viewing drug action through the lens of network 

biology may provide insights into the safety and efficacy of novel pharmaceutical agents.  

 The high-level objective of this dissertation is to improve In silico toxicity evaluation 

using network biology.  

1.2 Characteristics of Biological Networks 

A network can be defined as a graphical structure with nodes as their fundamental units. 

The interconnections between nodes in a network are represented by weighted or unweighted 

edges. Each node may represent a physical or conceptual entity from the specific domain of 

study. In case of complex biomolecular networks, the nodes may represent genes, proteins or 

other cellular components connected by edges that represent interactions between cellular 

components including chemical reactions and biophysical interactions. A network model of 

biological entities is used to represent complex interactions that result in biological changes as 

a result of environmental stimulus at the cellular, tissues/organ and organism level. 

In order to understand the characteristics of real world networks, many theoretical network 

models have been proposed. Network models and their parameters provide an overview of the 

global structure or topology of these important cellular networks. The most general level of 

network analysis comes from global network measures that allow us to characterize and 

compare the given network topologies (i.e. the configuration of the nodes and their connecting 

edges). Global measures such as the degree distribution (the degree of a node is the number of 
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edges it participates in) and the clustering coefficient (defined in section 2.1) have recently 

been thoroughly reviewed in the context of cellular networks and in proteomics.  

The small-world model is defined as one where any two nodes in the network can be 

connected through a much shorter path than would be expected in a random network of 

similar size and number of connections. Metabolic networks have been found to be small-

world networks and additionally, the network diameter does not appear to vary between 

different organisms [Alm and Arkin 2003]. Small-world networks have low average path 

lengths and high clustering coefficients.  

Scale-free networks are characterized by a connectivity distribution that decays as power 

law.   

P(k) = Ak
-γ

 

 where A is the normalization constant and the degree exponent γ is between 2 and 3 

[Albert 2007, Barabasi and L. 1999, Jeong et al. 2000]. Essentially, this means that there are a 

small but finite number of highly connected nodes in the system, forming the so-called ‘hubs’. 

It has been shown that many biological networks follow a power-law distribution, including 

protein families, super-families, folds, short DNA words and even pseudogene families 

[Luscombe et al. 2002]. Like small-world networks, scale-free networks have low average 

path lengths and high clustering coefficients. 

 The non-random nature of biological networks has to do with the biological functions of 

nodes and edges. Several studies in yeast have revealed correlations between the topology and 

composition of a network and important biological properties of nodes [Jeong et al. 2001]. 

The well-connected hubs are largely represented by evolutionary conserved proteins because 

the interactions impose certain structural constraints on sequence evolution [Fraser et al. 

2002].  
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 It is important to study biological phenomena at a systems level because certain properties 

of biological networks can only be observed at that level. Table 2 defines  properties like 

modularity, robustness, redundancy etc. with a biological example from the process of 

hemostasis and coagulation. 

 Recently, another topological feature of the network has received attention – betweenness, 

which measures the total number of non-redundant shortest paths going through a certain node 

or edge. Betweenness was originally introduced to measure the centrality of the nodes in the 

network [Yu et al. 2007]. Girvan and Newman proposed a network partitioning algorithm, 

based on the shortest-path algorithm in graph theory, that iteratively removes edges with the 

highest betweenness until the network breaks down into individual clusters [Girvan and 

Newman 2002]. Multiple authors have proposed improvements over the Garvin and Newman 

approach, including the use of ‘edge clustering coefficient’ [Radicchi et al. 2004], combining 

clique detection, superparamagnetic (SPC) clustering and Monte Carlo optimization (MC) to 

search for functional modules in yeast protein network [Spirin and Mirny 2003].  Chapter 3 

describes the implementation of an edge betweenness centrality measure to discover signaling 

paths associated with drug-induced toxicity.  

 While large-scale characteristics of biological networks (e.g. small-world, scale-free) 

provide insight into topological properties at a network-wide level, it has been observed that 

the most important biological processes such as signal transduction, cell-fate regulation, 

transcription and translation involve more than four but much fewer than hundreds of proteins 

[Spirin and Mirny 2003]. It is believed that most relevant processes in biological networks 

correspond to the meso scale (5-25 genes/proteins). Algorithms for identification of clusters 

(sets of proteins having many more interactions among themselves than with the rest of the 

network) have led to discovery of protein complexes and functional modules inside interaction 

networks. 
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TABLE 2. Properties of Biological networks 

 

 

Functional modules consist of proteins that participate in particular cellular processes while 

binding to each other under specific conditions (e.g. after drug administration, during specific 

cell cycle phases, inside specific cellular compartments etc.).  Protein/Module function 

prediction under drug administration conditions may help reveal the mechanism of action for 

the drug and identification of its toxic effects early during drug development.  
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1.3   Research Objectives 

This thesis focuses on the following research questions – 

1) Can the use of a network model provide insights into mechanisms of drug-

induced toxicity? 

2) How can toxicity related proteins or ‘hot spots’ be discovered inside biological 

networks? 

3) What is the biological significance of discovered ‘hotspots’ with respect to the 

drug-induced toxicity being evaluated? 

Evaluation of a candidate drug for potential toxicities during early stages of drug research is 

challenging due to absence of experimental evidence in humans. Animal studies don’t always 

provide an accurate estimate of probability of occurrence for a particular effect in humans and 

also cannot represent human cellular interactions completely. The use of animal testing also 

needs to be minimized for ethical reasons. The emergence of novel high-throughput 

technologies has therefore, led to emphasis on ‘In silico’ (computational) approaches to 

toxicity evaluation.  Use of biological networks for drug-induced toxicity evaluation has been 

challenging for various reasons. First, the scientific information required to construct various 

elements of such a network (genes, proteins, phenotypes etc.) is dispersed across multiple 

public databases and inside an ever-growing volume of published literature [Dietmann et al. 

2006]. Use of standardized vocabularies and taxonomies for various biological annotations 

has recently enabled genome-wide, cross-platform integration of biomolecular data into 

system-wide biological networks. Second, analysis of the integrated biological network 

requires computationally intensive mining algorithms that can handle very large networks. 

The exponential increase in availability of genomic and proteomic data in this domain needs 

to be matched with increasingly sophisticated network analysis approaches. As an example, 

Steffen et al. discovered MAPK signaling paths inside a filtered yeast protein-protein 
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interaction (PPI) network consisting of 5560 interactions and 3725 proteins [Steffen et 

al. 2002]. Compared to this, the human subset of STITCH database (version 1.0) 

consists of ~18600 proteins and ~1432500 unique protein-protein interactions. Mining 

such a large network to elucidate toxicity-related proteins, requires sophisticated 

algorithmic approaches that can run in reasonable time with manageable 

computational burden. Third, the identified protein or set of proteins should have 

toxicological relevance to the effect being evaluated. Analysis of networks may yield insights 

into a wide variety of physiological processes. However, it is important to be able to 

distinguish between a physiological effect that is ’normal’ from effects that can be directly 

associated with external stimuli like drug administration. Similarly, external stimuli can 

typically lead to a wide variety of clinical effects. It is therefore important for network 

algorithms to be able to associate a particular systemic change to a specific clinical 

manifestation, namely drug-induced toxicity.  

If the above challenges can be addressed appropriately, a network-based model may 

capture the complexity of human physiological networks more accurately compared to 

toxicity screens that are based on studying the effects of drug administration on one or a few 

proteins and their interactions. Dynamic programming and fixed parameter tractability offers 

solutions to problems that not very long ago, were considered computationally intractable. The 

challenge for an information researcher is to utilize domain knowledge and develop algorithms 

that can leverage advances in applied mathematics to discover knowledge inside complex 

networks.  The primary motivation for this thesis is to devise analytical methodologies that 

can mine such large biological networks to provide insights into drug effects. This thesis 

proposes and implements two algorithms that leverage multiple sources of information and 

mine a biological network for protein modules or ’hot spots’ that may be associated with a 

particular drug-induced toxicity. The algorithms are then compared with findings from 
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microarray data analysis, the prevalent approach for identification of biomarkers of drug-

induced toxicity. Finally, thesis contributions and directions for future work are summarized 

in chapter 6. 
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CHAPTER 2: BACKGROUND AND RELEVANT WORK 

 

Many drug candidates fail in clinical trials and are withdrawn because of unforeseen 

effects of human metabolism, such as toxicity and unfavorable pharmacokinetic profiles. 

Early pre-clinical elimination of such compounds is important but not always possible, due to 

lack of accurate and reliable predictive models. Three broadly defined resources have been 

considered as components of pharmaceutical In silico toxicity evaluation systems [Bugrim et 

al. 2004] –  

First, chemical structure-activity relationships (SAR) computational models are built 

within groups of structurally similar compounds and aimed at effective prediction based on 

experimental data (toxicity end points, metabolic products and intermediates). The SAR 

approach leverages empirical rules for modeling metabolism and toxicity based on chemical 

structure of lead compounds. 

 The second set of technologies relevant to an In silico toxicity evaluation system is 

collectively referred to as ‘toxicogenomics’ platforms. Toxicogenomics has been defined as 

an integration of genomics and toxicology [Gomase and Tagore 2008]. It is a branch of 

science that aims to study the interaction between the cell’s genome, chemicals in the 

environment and disease.  Toxicogenomics studies classify toxicities based on gene 

transcriptional patterns observed on high-throughput gene expression platforms using tissues 

relevant to specific toxicological endpoints. Patterns from new chemicals and tissue samples 

can be compared with those in ‘reference’ databases to extrapolate the probability of toxicity 

[Bugrim et al. 2004]. 

 The third source of information relevant to In silico toxicity prediction is function 

pathway databases and enzymatic reaction repositories. These systems biology databases 

capture information around chemical reactions, metabolic cascades and signal transduction 

routes across a variety of transporters, metabolizing enzymes and protein interaction. 
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 Advances in structure-activity computational models and ‘omics’ approaches to toxicity 

evaluation are relevant to this work and will therefore be discussed in section 2.1. 

Individually, none of these technologies is sufficient for the task of predicting the ADME 

(Absorption, Distribution, Metabolism and Excretion)/ Tox (toxicity) behavior of new 

chemical entities [Bugrim et al. 2004]. For example, empirical structure-based models do not 

deal with the underlying mechanisms of toxicity and metabolism, genomics-based systems 

and patterns resulting from analysis of data on a single platform have limited value in the 

absence of validation from other experimental and observational sources and pathway 

databases do not reflect the spatial or temporal patterns of pathway activity, and therefore 

reflect the functional potential of a cell or tissue rather than the real activity in response to 

stimuli. Because the understanding of metabolism and toxicity is a systems-level problem, the 

solution requires integration of data from various sources into one comprehensive model. 

Section 2.2 and 2.3 review two areas that address the need for a ‘systems’ level approach, 

namely network biology which aims to analyze complex networks created through integration 

of multiple sources of biomolecular data and automated signaling path detection, a set of 

algorithms aimed at automated discovery of signaling paths inside large biomolecular 

networks. 

2.1 In silico Toxicity Evaluation Methods: Recent advances  

2.1.1 Advances in structure-activity (SAR) based ADME/Tox modeling 

In silico ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicology) 

modeling has received increasing attention in the post-genomic era. From some of the early 

reviews of systems biology it has been proposed as an approach to understanding 

pharmacodynamic and toxicological properties of chemical entities [Kitano 2002, Ekins 2006].   

 Expert systems based approaches have aimed to go beyond the limitations of traditional 

quantitative structure-activity relationship (QSAR) models for prediction of drug activity. 
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Expert systems fall into four broad categories – automated QSAR, knowledge-based systems, 

automated rule derivation and decision tree-based algorithms [Dearden 2003]. More recent 

advances in ADMET modeling are exemplified by software systems like TOPKAT
TM

, 

CASE
TM

, DEREK
TM

, HazardExpert
TM

 etc. Both TOPKAT
TM

 and CASE
TM

 are automated 

QSAR expert systems where toxicity prediction is based on use of predictive models (e.g. 

linear regression for continuous toxicity endpoints like LD50 and logistic regression for 

discreet endpoints like mutagenicity and carcinogenicity). While TOPKAT uses mainly 

topological, sub-structural and electronic descriptors in its predictive model, CASE creates its 

own structural alerts by breaking down each molecule into possible fragments from two to ten 

heavy atoms. DEREK
TM

, HazardExpert
TM

 and OncoLogic
TM

 are knowledge-based expert 

systems that relie on an expert-curated rulebase for prediction of toxicity-related endpoints. 

Various endpoints including carcinogenicity, mutagenicity, teratogenicity, irritation, ACD 

(allergic contact dermatitis), acute toxicity, CYP450 2D inhibition and cellular toxicity can be 

predicted with varying degrees of accuracy using models provided by various in silico 

ADMET platforms. 

Another interesting approach related to prediction of drug effects in new chemical 

entities was termed as ‘biological spectra similarity’ by Fliri et al [Fliri et al. 2007]. The 

authors estimated similarity between 1064 drugs based on six descriptor sets starting with two 

‘signal input’ (compound structure) descriptors, two intermediate cellular level (protein-ligand 

displacement and Medline based protein-drug co-investigation) descriptors and two organism 

level (MedDRA-based literature mining and COSTART based literature mining for adverse 

events) descriptors as clinical manifestations of drug effects. Drug-protein association 

similarity and protein-adverse events association similarity were computed using hierarchical 

clustering to elucidate compounds with similar structure and effect relationships. For a new 

set of compounds, the authors found that compounds with high similarity based on ‘structure 
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information spectra’ also showed high similarity along the ‘effects information spectra’. The 

authors concluded that structure-effect correlations become quantifiable only within certain 

structural boundaries and that the ability to compare broad drug effects on cellular function 

with broad drug effects on organisms is a key to the design of medicines. Paolini et al. 

constructed a polypharmacology interaction network using structure-activity relationships 

(SAR) integrated from diverse sources [Paolini et al. 2006]. A global mapping of chemical 

structure, protein sequence and disease indication enabled construction of a ligand-target 

matrix that could be used as a probabilistic model to predict pharmacology from a large 

knowledgebase. The authors could predict potential activity of a compound against the protein 

space with 56.7% accuracy, representing a 153-fold enrichment over random.  

 A major limitation of QSAR-based approaches is the scarcity of experimental data outside 

a small chemical space of well-studied chemical structures and endpoints like carcinogenicity, 

mutagenicity etc. In order for a QSAR to model biological data well and to be predictive, all 

the compounds involved should act by the same mechanism, since the physico-chemical and 

structural descriptors used in the QSAR are deemed to reflect mechanism of action [Dearden 

2003]. Moreover, expert systems are aimed at prediction of toxicity elucidation and don’t 

directly contribute to elucidation of molecular mechanisms of toxicity. High-throughput 

technologies like genomics and proteomics may help address this limitation. 

2.1.2  Advances in ‘Omics’ approaches to In silico toxicity evaluation 

 ’Omics’ approaches consist of genomics, proteomics and metabonomics for evaluation of 

drug-induced toxicity. High-throughput genomics data is abundantly available from gene 

expression or microarray platforms while proteomics data is also more recently being made 

available in the public domain in the form of protein binding/interaction and protein 

expression data. 
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 Waring et al. investigated whether gene expression profiles can be used for In silico 

toxicity evaluation, by profiling gene expression in rats treated with 15 different known 

hepatotoxins [Waring et al. 2001]. Results showed a strong correlation between the 

histopathology, clinical chemistry and gene expression profiles induced by these agents, 

thereby confirming that gene expression data may provide insights into drug-induced toxicity 

similar to other well-established methods.  

 Lamb et al. proposed gene expression signature similarity as a means to connect diseases, 

genetic perturbation and drug action [Lamb et al. 2006]. The authors constructed a 

‘Connectivity map’ using gene expression profiles for 164 distinct small molecule 

perturbagens inside four different types of cell lines, 6 hours and 12 hours after compound 

treatment. Using a non-parametric, rank-based pattern matching strategy, the authors were 

able to identify compounds from the same class (HDAC inhibitors) using a class-specific 

query signature, as shown in Figure 1. The connectivity map identified compounds with 

negative connectivity as well as compounds with similar effects. Most of the signatures were 

generated from a single cell type. Signatures linked diseases to genes and genes to drug effects 

only on the basis of gene expression changes, without necessarily arriving at a toxicity-related 

functional module and without use of proteomic information that confirms the post-

translational changes that may validate gene expression-based observations. 

The task of predicting the extent to which various proteins play a role in drug-induced toxicity 

may be considered analogous in its intent to the task of assigning new functional association to 

proteins with unknown function. In this context, approaches collectively referred to as ‘guilt by 

association’ are relevant to this work. Guilt by association has been broadly defined as the use 

of contextual information for in silico inference of protein function [Aravind 2000].  Various 

types of contextual information have previously been used in order to predict protein function, 

including phyletic profile (pattern of occurrence of orthologs of a particular gene in a set of 
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genomes under comparison), sequence homology and gene neighborhood along the 

chromosome [Huynen et al. 2000]. More recent approaches that integrate genomic and 

proteomic information and utilize biological networks may also be broadly categorized as ‘guilt 

by association’ [Dittrich et al. 2008].  

Figure 1.  The connectivity map concept, reproduced from Lamb et al. [Lamb 2007]. a.  
Gene expression profiles derived from the treatment of cultured human cells with a large 

number of perturbagens populate a reference database. Perturbagens are ranked by a 
connectivity score that represents the direction and strength of enrichment of a query signature 

with each reference profile. b.  PPARγ agonists are connected with diet-induced obesity in 

Rats. 
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 However, algorithms that can mine large biological networks to elucidate the role of 

specific proteins in drug-induced toxicity are yet to be developed. The next section reviews 

network-based approaches in detail. 

2.2 Advances in Network Biology 

 Two areas of application for network biology are relevant to this thesis – first, algorithms 

that predict protein function based on their topological and other characteristics inside 

biological networks are relevant because as mentioned in the research objectives, one of the 

primary goals of this thesis is to discover toxicity-related proteins inside a large biological 

network. Second, approaches that analyze disease-gene-drug networks are important because 

one of the goals of this thesis is to discover relationships between genes/proteins and drug-

related effects that manifest as adverse events after drug administration. Section 2.2.1 and 

2.2.2 review these two research areas in network biology. 

2.2.1 Network-based prediction of protein function 

 Current approaches to prediction of protein function have relied on network topology 

(connectivity of unannotated and annotated proteins in the network) as well as their known 

functional association [Sharan et al. 2007, Chua et al. 2006, Letovsky and Kasif 2003, Hu et 

al. 2007].  

 Sharan et al. distinguished between two types of approaches, namely Direct annotation 

schemes , which infer the function of a protein based on its connections in the network and 

Module-assisted schemes , which first identify modules of related proteins using different 

approaches and then annotate each module protein based on known function of its members, 

as shown in Fig. 2. 
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Figure 2.  Direct versus module-assisted approaches for functional annotation (reproduced 
from Sharan et al. 2008 [Sharan et al. 2007]). The scheme shows a network in which some 

proteins have known annotations. Proteins with the same function are shown to have the same 
color. Unannotated proteins are in white. The direction of edges indicates influence of 

annotated proteins on unannotated ones. 

 
 Direct Annotation approaches include simple neighborhood counting, where the function 

of a protein is determined by known function of its immediate neighbors. The basic 

neighborhood counting methods don’t provide a statistical significance level or a level of 

confidence for predicted functional annotations [Schwikowski et al. 2000]. Hishigaki et al. 

proposed a variation to the simple neighborhood counting by computing a γ
2
-like score for 

function assignment for all n-neighboring proteins [Hishigaki et al. 2001]. Within the n-

neighborhood, proteins at different distances from p are treated in the same way. Chua et al 

tried to tackle the problem by investigating the relation between network distance and 

functional similarity [Chua et al. 2006]. Considering just the 1- and 2-neighborhoods of a 
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protein, a functional similarity score was computed to assign different weights to proteins 

according to their distances from the target protein. 

 Graph theoretic methods take into account the full topology of the network and mainly 

consist of two types of approaches - cut-based and flow-based. Vazquez et al. aimed at 

assigning a function to each unannotated protein so as to maximize the number of edges 

between proteins with the same function [Vazquez et al. 2003]. The authors computed a score 

that counted the number of interacting proteins with the same functional assignment and 

associated it with any given configuration of functions for the whole set of unannotated 

proteins. The objective of the algorithm was to minimize the score so as to find a 

configuration with the least number of interactions between proteins not annotated with the 

same function. Function prediction therefore became a global optimization problem where 

multiple solutions were possible. The authors therefore, developed an ’objective’ way to 

assing multiple functions to some proteins, depending on whether multiple solutions were 

available to achieve the minimum score configuration. Karaoz et al. applied a similar 

approach but considered one function at a time and compared two types of edge weighting 

approaches, one that captured only qualitative functional links between proteins and one that 

integrated gene co-expression so that the weight of an edge in the integrated network was the 

absolute value of the correlation coefficient of the gene-expression profiles of the pair of 

interacting proteins [Karaoz et al. 2004]. Deng et al. applied a Markov Random Fields 

approach to assign function to unannotated proteins based on function of annotated proteins 

and presence of interaction between proteins with known function [Deng et al. 2003].  

 Module-assisted methods differ in their approach for detecting functional modules inside 

the network. Some module detection algorithms are solely based on network topology while 

others utilize additional data sources, such as gene expression measurements or deletion 

phenotypes. Bader et al. used a core clustering coefficient to add interaction weights to edges 
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in the network and applied a greedy search algorithm to discover modules [Bader 2003]. In 

order to predict the size of a cluster or module, the authors developed a mathematical model 

for the expected number of closed loops in a clustered network. Comparing observations on 

the actual network with those from randomized networks, the analytical model predicted a 

cluster size of 15 ± 2 proteins. Hierarchical clustering approaches have also been used with a 

variety of similarity measures for module identification. It has been shown that pairwise 

distances may not be appropriate as a similarity measure because they tend to be identical 

between many protein pairs [Arnau et al. 2005]. King et al. partitioned the nodes of a given 

graph into distinct clusters, depending on their neighboring interactions, with a cost-based 

local search algorithm that updates a list of already explored clusters that are forbidden in later 

iteration steps. Clusters with either low functional homogeneity, cluster size or edge density 

were filtered out [King et al. 2004]. It has been postulated that module members may have 

similar shortest-path profiles. This criteria has been applied to identify modules inside small 

subnetworks, along with other properties like centrality measures [Dunn et al. 2005]. Several 

methods use expansion of complex seeds to find protein complexes. The SEEDY algorithm 

constructs complexes by adding proteins to a given seed, as long as the reliability of the most 

reliable path from a candidate to the seed does not fall below a certain threshold [Bader 2003]. 

Wu and Hu proposed an algorithm called Commbuilder that accepts a seed protein, gets the 

neighbors (FindCore component), finds the core of the community to build and expands the 

core (ExpandCore component) to find the eventual community [Hu and Wu 2007]. Findcore 

performs a naive search for maximum clique from the neighborhood of the seed protein by 

recursively removing vertices with the lowest in-community degree until all vertices in the 

core set have the same in-community degree. ExpandCore performs a breadth-first expansion 

to first create a set containing the core and all neighbors of the core. It then adds to the core a 

vertex that either meets the quantitative definition of a community in a strong sense (i.e. 
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number of edges connecting the vertex to vertices within the core is greater than the number 

of edges connecting the vertex to vertices outside the core) or the fraction of in-community 

degree over a relaxed (user-defined) affinity threshold of the size of the core. The affinity 

threshold is 1 when the candidate vertex connects to each of the vertices in the core set.   

 While the above approaches are useful for predicting protein functional association, 

identification of proteins that may play a role in drug-induced toxicity requires incorporation 

of background knowledge about the drug and the toxicity under consideration. Drug 

administration perturbs the biological network at specific ‘nodes’ (referred to as drug target 

proteins) that may be several levels upstream (or several nodes apart in terms of distance) 

from toxicity-related ‘end nodes’ in the network. Mapping the cascade of proteins associated 

with drug response and identification of network ‘hotspots’ is therefore, a central challenge in 

toxicity evaluation.  

2.2.2 Analysis of Disease-Gene-Drug Networks 

Network biology has recently been used to mine gene-protein-disease-drug networks 

[Yildirim et al. 2007, Goh et al. 2007, Xu and Li 2006, Ekins et al. 2005]. Yildrim et al. 

constructed a bipartite network of all FDA approved drugs and their protein targets using data 

from the drugbank database [Yildirim et al. 2007]. The resulting network was analyzed to 

elucidate an overabundance of ‘follow on’ drugs (drugs that ‘hit’ previously known targets) 

and a trend towards greater polypharmacology through functionally diverse targets for 

emerging drugs.  The authors also found significant differences between ‘palliative’ and 

‘etiological’ drugs with respect to the shortest distance between the drug targets and their 

respective gene products.  

 Goh et al. constructed a human disease network using gene-disease associations found in 

the NCBI- OMIM (Online Mendelian Inheritance in Man) database [Goh et al. 2007]. Genes 

associated with similar disorders showed higher likelihood of physical interactions between 
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their products and higher expression profiling similarity of their transcripts, supporting the 

existence of distinct disease-specific functional modules. While essential human genes were 

found to be more likely to encode ‘hub’ proteins and were expressed more widely in most 

tissues, majority of the non-essential genes were located on the periphery of the human 

disease network.  

 Identification of functional modules [Chen, et al. 2006], ‘hubs’ or ‘hot spots’ [Begley, et 

al. 2004,] in protein-protein interaction networks is considered the first step towards 

understanding the organization and dynamics of cell function [Hu and Wu 2007]. In silico 

toxicity evaluation and prediction approaches are yet to benefit from insights gained from a 

systematic analysis of biological networks.  

2.3 Discovering signaling paths in biological networks 

 With the advent of genomic and proteomic data, various approaches have been proposed 

to discover biologically meaningful substructures such as dense groups of interacting proteins 

and loop structures. Linear pathways play an important role in signal transduction inside 

biological networks. They are easy to understand and analyze and, as demonstrated by Ideker 

et al. for galactose metabolism in Yeast, they can serve as seed structure for experimental 

investigation of more complex mechanisms [Ideker et al. 2001, Hüffner et al. 2008].  

Steffen et al. constructed a network of 5560 non-redundant protein-protein interactions 

among more than 3725 proteins using yeast-two-hybrid technique and ran an exhaustive search 

to identify all possible linear paths up to length eight starting at any membrane protein and 

ending at transcription factors. The search was applied to an unweighted interaction graph, 

considering all interactions equally reliable. Microarray data was then used to rank all paths 

according to the degree of similarity in the expression profiles of pathway proteins. The 

algorithm, called NetSearch, was able to reproduce many of the essential elements of known 

MAPK pathways in Yeast [Steffen et al. 2002]. Kelly et al., developed an efficient algorithm 
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(called PATHBLAST) to detect simple paths in a graph that is based on finding acyclic 

orientations in the graph’s edges [Kelley et al. 2003]. More recently, network algorithms for 

detecting signaling paths have improved upon earlier approaches in two ways –  

a. Assignment of reliability score to interactions (use of weighted graph) and  

b. Use of a powerful algorithmic technique by Alon et al. [Alon et al. 1995] called color 

coding, to find high-scoring paths efficiently.  

A more efficient algorithm like color coding is necessary for detection of signaling paths 

because the problem of finding linear pathways in a large network is NP Hard or 

computationally intractable (the travelling salesman problem is reducible to it). NP-Hardness 

implies an inherent combinatorial explosion in the solution space that leads to running times 

growing exponentially with the input size. This means that large instances of NP-hard problems 

cannot always be solved efficiently to optimality. Heuristics drop the demand for useful 

running time guarantees and are tuned to run fast with good results on typical instances. 

Approximation algorithms trade the demand for optimality for a provably efficient running 

time behavior, while still providing provable bounds on the solution quality. However, these 

methods have serious drawbacks. In many applications, it is not acceptable that there is a 

chance that the algorithm might take exceptionally long in corner cases; and the approximation 

guarantees that are typically obtained are rather weak and it has been shown that a guarantee 

such as 10% error is often not attainable [Hüffner 2007]. Parameterized complexity, as 

accomplished with the color coding approach, offers a third alternative where the structural 

complexity is measured with a nonnegative parameter (denoted by k) such that growth of the 

running time is determined by both, the input size and the parameter k . Algorithms that 

leverage parameterized complexity, confine the combinatorial explosion to the parameter such 

that instances solve fast whenever the parameter is small. As explained by Hüffner et al. 

[Hüffner 2007], Fixed Parameter Tractability (FTP) is different from ‘polynomial time solvable 
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for fixed k’; an algorithm running in O(n

k
) time demonstrates that a problem is polynomial-time 

solvable for any fixed k , but does not show fixed-parameter tractability. 

 Color coding is a randomized algorithm for finding simple paths and simple cycles of a 

specified length k  within a given graph. Consider a weighted interaction graph in which each 

vertex is a protein and each edge (u, v) represents an experimentally observed interaction 

between proteins u and v, and is assigned a numerical value p(u, v) representing the 

probability that u and v interact. Each simple path in this graph can be assigned a score equal 

to the product of the values assigned to its edges. Among paths of a given length, those with 

the highest scores are plausible candidates for being identified as linear signal transduction 

pathways. Scott et al. extended the color coding algorithm to accurately recover well-known 

MAP Kinase and ubiquitin-ligation pathways [Scott et al. 2006]. The implementation 

however, was limited to path lengths of 10 vertices and moreover, required some hours of run 

time. Hüffner et al. used a dynamic programming approach to enable detection of paths up to 

a length of 20 vertices in some hours. The task of finding pathways of length 10 could be 

accomplished in a few seconds [Hüffner et al. 2008].  

 Following Hüffner et al., an implementation of the color coding algorithm can be 

summarized as follows: 

 The network is modeled as an undirected graph where each protein is a vertex and each 

edge is weighted by the negative logarithm of the interaction probability for the two proteins it 

connects. In other words, in order to work with an additive weight rather than a multiplicative 

one and to formalize the problem of high probability pathway candidate detection to a NP-

hard problem called MINIMUM-WEIGHT PATH, each edge is assigned a weight w(v,u) = -

logp(u,v). The weight of a path is defined as the sum of the weights of the edges and the 

length of the path as the number of vertices it contains. 
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Algorithm: COLORCODING(G = (V,E)) 

1 repeat a sufficient number of times: 

2 for each  v Є V: 

3     color v randomly; 

4 if TRIAL(G): 

5      return true 

6 return false 

Figure 3.  Algorithm pseudocode for color-coding 

 

MINIMUM-WEIGHT PATH 

Input: An undirected edge-weighted graph G = (V, E) with n:=|V| and m:=|E| and an integer k . 

Task: Find a length-k  path in G that minimizes the sum over its edge weights. 

 The primary goal with color coding is to randomly color the vertices of an input graph 

with k  colors and then search for colorful paths, that is, paths where no color occurs twice. 

Given a fixed coloring of vertices, Hüffner et al. find the minimum-weight colorful path using 

dynamic programming: Assume that for some i < k  a value W(v, S) is computed for every 

vertex v Є V and cardinality-i subset S of vertex colors; this value denotes the minimum 

weight of a path that uses every color in S exactly once and ends in v. Clearly, this path is 

simple because no color is used more than once. This value can now be used to compute the 

values W(v, S) for all cardinality -(i + 1) subsets S and vertices v Є V because a colorful 

length-(i+1) path that ends in a vertex v Є V can be composed of a colorful length-i path that 

does not use the color of v and ends in a neighbor of v. Mathematically, 

W(v, S) =  min    (W(u, S \ {color(v)}) + w(e))  
                                  e={u,v}ЄE 

 The coloring of input graph is random and hence many coloring trials have to be 

performed to ensure that the minimum-weight path is found with a high probability. One of 
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the strengths of the color coding approach is that it can be adapted to many practically 

relevant variations in problem formulation, including the problem of finding paths with 

maximum product of edge weights as an optimization criterion. As mentioned by Sharan et 

al., automated signaling path detection approaches have not been applied towards prediction 

of protein function [Sharan et al. 2007]. Chapter 3 and 4 demonstrate how the use of color 

coding technique in combination with appropriate edge-weighting criteria can be used to 

understand the role of network proteins in drug-induced toxicity. 
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CHAPTER 3: A NOVEL SYSTEMS BIOLOGY APPROACH FOR 

DETECTING TOXICITY-RELATED HOTSPOTS 

 
 This chapter describes the implementation of a novel systems biology approach for 

detecting toxicity-related proteins or sets of proteins inside a biological network. The 

algorithm, called ’Drug Toxicity Signaling Path’ (DTSP) detection, utilizes an edge centrality 

measure in conjunction with the color coding algorithm to identify toxicity-specific modules 

inside protein interaction networks.  Section 3.1 provides a conceptual description of the 

algorithm, followed by implementation details in section 3.2 and a discussion of results and 

conclusions in section 3.3 and 3.5 respectively.  

The rationale for use of protein interaction data to implement the algorithm can be 

summarized as follows – 

At least three different types of molecular interaction networks have previously been 

considered for network biology research: the protein-protein interaction network, the 

transcription regulatory network and the small-molecule metabolism network. Technologies 

like Mass Spectrometry have led to unprecedented generation of protein-protein interaction 

data at the cost of a large fraction of false-positives as well as false-negatives [Alm and Arkin 

2003]. Proteins are important players in executing the genetic program and also act as targets 

for modulating biological processes and pathways after drug administration. When carrying out 

a particular biological function or serving as molecular building blocks for a particular cellular 

structure, proteins rarely act individually. Understanding the network of proteins is important 

because drug-induced toxicity is a result of interactions between proteins, with DNA, RNA and 

small molecules that form molecular machines. These machines are modular, involve both 

static and dynamic assemblies of macromolecules, and transmit as well as respond to intra- and 

extracellular signals [Ideker and Sharan 2008]. This thesis, therefore, proposes a novel 



28 
 
analytical methodology to mine protein-protein interaction networks and discover toxicity-

related hotspots.  

3.1 Drug Toxicity Signaling Path (DTSP) Detection Algorithm 

 Beneficial, deleterious or neutral functional effects of drugs can be mediated via binding to 

the desired therapeutic target and/or to other molecular targets such as G-protein-coupled 

receptors (GPCR), ion channels, or transporters on the cell membrane, or to intracellular targets 

such as enzymes and nuclear hormone receptors [Valentin and Hammond 2008]. The effects of 

an external stimulus are propagated through a complex biomolecular network of protein-

protein interactions, starting at the drug target protein and ending in proteins associated with 

specific effects of the drug. In order to understand the molecular mechanism of toxicity and to 

identify toxicity-specific functional modules, network analysis algorithms should be able distill 

the set of proteins involved in signaling paths that link the drug target proteins to toxicity-

related proteins in the PPI network. In this thesis, such paths are defined as drug toxicity 

signaling paths (hereinafter “DTSP”). 

 Figure 4 shows a schematic representation of DTSPs for a drug and a toxicity of interest.  

A DTSP is any linear path that links one of the drug’s target proteins to a toxicity-associated 

protein within the PPI network. For a summary of graph-theoretic definitions used in this 

thesis, refer to Appendix A. 

Mathematically, a DTSP can be defined as follows – 

Let DT = { 0, 1, 2,……. k} be the set of drug target proteins in the protein interaction 

network. Let Tp = { 0, 1, 2,……. k} be the set of toxicity-related proteins in the protein 

interaction network. A Drug-Toxicity Signaling path is a term used to refer to any path that 

starts at an element of set DT and ends at an element of set Tp.  

 DTSP = { 0, 1, 2,……. k}  where 0 Є DT and k Є Tp.   
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Figure 4.  Network model schematic for drug-toxicity signaling paths 

As described in section 2.3, automated signaling path detection algorithms and variations 

thereof have recently been proposed and evaluated for Yeast biomolecular networks [Hüffner 

et al. 2008, Noga et al. 1995]. Our algorithm extends the algorithm proposed by Steffen et 

al.[Steffen et al. 2002] to make it amenable to discovery of toxicity-specific proteins inside 

large protein interaction networks and utilizes the color coding algorithm proposed by Alon et 

al.[Alon et al. 1995]. Hüffner [Hüffner et al. 2008] implemented the color coding technique as 

the FASPAD algorithm using dynamic programming, to address the NP-hard problem of 

discovering signaling paths inside biomolecular networks [Hüffner et al. 2007].  

Figure 5 outlines the algorithm pseudo code for DTSP detection. The steps in our algorithm 

are as follows: 

Step 1 - Discover high confidence paths  

Various types of evidence may be used to estimate confidence or reliability of each 

interaction in the network. The first step in the DTSP algorithm involves use of a heuristic 

approach to harvest a family of high-confidence paths in the PPI network, as shown in Figure 

4. The color coding algorithm is adapted to use the drug’s protein targets as fixed start nodes 

and proteins known to be associated with the toxicity as fixed end nodes. Toxicity-related 
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proteins may be members of pathways associated with the toxic phenomenon and can be 

identified from published literature as well as pathway annotation databases. 

ALGORITHM: DTSPDETECTION(G = (V,E), KEGGPaths ToxD, start, dest) 

For each Drug D Є ToxD 

% Find high confidence paths: length 3 to 10 for each drug 

For Pathlength = n : m 

 GR = FindHiConfPaths(G=(V,E), start, dest , NumPaths , %similarity , Pathlength) 

End 

% Compute edge centrality of each interaction in the network of high confidence paths  

IEDGE = ComputeEdgeCentrality(GR) 

% Find paths with high edge centrality (DTSP candidates) 

P = FindMaxCentralityPaths(GR , IEDGE) 

% Permutation test to evaluate statistical significance of DTSPs 

For each path P
i
 Є P 

 For permutations = 1: p 

   Assign RandomEdgeWeights(P
i
) 

   ComputePathScore(P
i
) 

 End 

P
SIG

 = computePval(P
i
) 

KEGG
annot 

 = FindSigPathways(P
SIG

) 

End 

% Find statistically significant KEGG Pathway association for DTSPs  

 Function KEGG
annot 

 = FindSigPathways(P
SIG

) 

   ES
path

 = CalculateEnrichScore(PathProtAnnotations, KEGGPaths) 

   KEGG
annot

 = ComputeSig(PathProtAnnotations, ES
path

, Permutations) 

  Return KEGG
annot

  

Return P
DTSP

 , KEGG
annot
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Figure 5 (continued) 

Pseudocode variable definitions: 

ToxD - Set of Drugs known to cause the toxicity 

D - a drug known to cause the toxicity 

start – Set of Drug Target Proteins (start nodes for signaling path detection) 

dest – Set of End nodes for the color coding algorithm 

NumberPaths – Input parameter for color coding, specifying the maximum number of 

paths to be discovered. 

%similarity – Threshold for the maximum allowed % similarity between two discovered 

paths. 

Pathlength – Input parameter to algorithm, specifying the length of each detected path. 

P – Set of high edge centrality paths discovered for a drug. 

Pi - a member of the path set P. 

PSIG – Set of statistically significant paths or DTSPs. 

PathProtAnnotations – KEGG pathway annotations for proteins inside DTSPs 

KEGGPaths – Set of canonical KEGG pathways and associated proteins. 

ESpath – Enrichment Score for a particular KEGG pathway 

KEGGannot – Set of KEGG pathways associated with proteins involved in DTSPs. 

Figure 5.  Algorithm pseudocode for DTSP Detection 

As an example, proteins involved in hematopoiesis could be considered as end-nodes when 

discovering paths relevant to blood disorders. 

 Edge probabilities represent the strength of evidence for each interaction in the PPI 

network and detect paths that maximize the product of edge probabilities. Strength of evidence 

can be based on the amount and type of evidence available to verify the existence of each edge 

or interaction. Types of evidence may include experimental observation, consensus among 
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multiple databases, evidence gathered from research literature using text mining or gene-based 

analysis like gene fusion or neighborhood analysis and approaches similar to those used 

traditionally as ‘guilt by association’ (reviewed in chapter 2). The color coding algorithm is 

then applied to this network, to discover paths that consist of high confidence interactions. The 

resulting family of high confidence paths is used in the subsequent steps to identify possible 

drug-toxicity signaling paths, as described in step 2.  

 Given the fact that the problem of discovering all paths between two nodes in a large 

network is NP-hard (Non-deterministic polynomial-time hard), a heuristic approach is 

developed for detection of high confidence paths, as described in section 3.2. The color coding 

algorithm, as implemented by Hüffner et al. takes various input parameters, including the 

length of detected paths, the maximum threshold for similarity between two discovered paths, 

the total number of paths to be discovered and the start/end nodes for detected paths in the 

network.  

Step 2 -  Compute edge weights using an appropriate measure 

The family of high confidence paths discovered in step 1 constitute theoretical paths, some 

of which may be actual drug toxicity signaling paths. Others may just be topological interaction 

chains that link the drug’s protein targets to toxicity-related proteins in the network without 

being actually involved in the mechanism of the toxicity. Identification of drug-toxicity 

signaling paths from among these high confidence paths, therefore requires a criteria that is  

a. Relevant for discovery of drug toxicity signaling paths from a toxicological perspective 

and  

b. Enables mining of the network of high confidence paths to yield protein ‘hot spots’.  

In order to accomplish this, two novel edge weighting criteria have been proposed and 

implemented as a part of this thesis. The first approach applies background knowledge of a set 



33 
 
of drugs known to cause the toxicity to discover proteins that are most central to linking a set of 

drugs to toxicity-related proteins via their respective protein targets. 

 

Figure 6.  Edges or protein interactions that are highly central to the detected set of paths are 
assigned a higher relevance score. 

This criterion for edge weighting, termed as the edge centrality measure, is described in 

detail in section 3.2. The second approach uses drug-specific gene expression data to compute 

edge weights that reflect the extent to which various protein interactions in the high confidence 

graph involve genes that are highly differentially regulated after drug administration. The gene 

expression measure and findings from its application have been described in detail in chapter 4. 

Each interaction in the smaller network of high confidence paths is weighted using one of 

the measures described above and the resulting network is used to detect drug-toxicity 

signaling path candidates in step 3.  

Step 3 - Automated Signaling Path (DTSP) Detection 

Step 3 in our algorithm uses the network of reliable paths as its starting point, with each 

edge being assigned a new weight using one of the two measures described in step 2. As shown 

in Figure 6, the color coding technique is re-applied to this weight graph so as to detect drug 

toxicity signaling path (DTSP) candidates or paths with a high product of edge weights. The 
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input parameters to the color coding algorithm remain the same. At this step in the algorithm, 

the detected path candidates are yet to be evaluated for statistical and biological significance.  

Step 4 - Evaluate statistical significance of detected paths  

Evaluation of statistical significance for detected  network paths has been carried out 

previously using a randomized network approach [Lindfors et al. 2009]. Briefly, edge weights 

in our network are randomly shuffled across the network to create a simulated edge weighted 

PPI network with the same overall distribution of edge weights. The ranking statistic (product 

of edge probabilities) is then calculated for each path detected in step 3 above. The simulation 

is repeated 10,000 times to yield a distribution of the statistic for each path. The threshold for 

statistical significance of p < 0.01 is applied after correcting for multiple test comparisons 

using an appropriate correction measure.  

Step 5 - Evaluate the biological relevance of detected paths  

Functional attributes of the set of path proteins (common to DTSPs across the set of drugs) 

and their ability to modulate disease pathways can be analyzed using geneset enrichment 

methods. Subramaniam et al. have proposed and implemented the geneset enrichment analysis 

(GSEA) approach, aimed at extracting biological insight from genome wide information 

[Subramanian et al. 2005]. Briefly, given an a priori defined set of genes S (e.g. pathways 

associated with DTSP proteins), the goal of GSEA is to determine whether the members of S 

are randomly distributed throughout L (e.g. the set of all proteins in the network) or primarily 

found at the top (among the most commonly occurring pathway annotations associated with 

DTSP proteins) or bottom (among the rarely occurring pathways associated with DTSP 

proteins). The expectation would be that pathways related to the phenotypic distribution (e.g. 

pathways related to the set of detected drug toxicity signaling paths) will tend to show the latter 

distribution. As described by Subramaniam et al. [Subramanian et al. 2005], there are three key 

elements of the GSEA method: 
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Step 1: Calculation of Enrichment score. The enrichment score is the maximum deviation 

from zero encountered in a random walk, when a running-time statistic is increased if a gene in 

S (i.e. having a particular functional/pathway annotation) is encountered by walking down the 

list in L (i.e. the list of all common path proteins in DTSPs for drugs known to cause the 

toxicity) and decreased if the gene encountered is not in S. The Enrichment Score (ES) 

corresponds to a weighted Kolmogorov-Smirnov-like statistic. 

Step 2: Estimation of significance level of ES. The statistical significance of ES is estimated 

using an empirical phenotype-based permutation test procedure. The phenotype labels are 

permuted and the ES is recomputed for multiple permutations to generate a null distribution. 

The confidence intervals for this distribution are computed and the actual ES is compared to 

these thresholds to establish statistical significance. 

Step 3: Adjustment for Multiple Hypothesis Testing.  When the entire set of pathway 

annotations is evaluated for statistical significance for all path proteins, the estimated 

significance level is adjusted to account for multiple hypothesis testing.    

Geneset enrichment analysis can point to biological processes that may be modulated 

downstream from the drug’s target proteins as reflected through the identification of proteins 

involved in DTSPs. Statistically significant enrichment of specific pathways and functional 

annotations among the set of DTSP proteins may highlight their relevance to the drug-induced 

toxicity of interest.  

3.2 Discovering DTSPs for drug-induced non-immune Neutropenia 

3.2.1 Non-immune Neutropenia: considerations for selecting the toxicity under 

evaluation 

 In order to evaluate the ability of our algorithm to detect toxicity-specific proteins inside a 

PPI network, compounds known to induce Neutropenia were considered. Neutropenia resulting 

from drug administration can be fatal when severe. In the United States, labels of over 40 
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currently marketed prescription drugs include a warning of a risk for neutropenia and/or 

agranulocytosis [Multiple 2005]. Neutropenia can be a ‘type A’ (dose-dependent, typically 

associated with the drug’s mechanism of action) or a ‘type B’ (not related to pharmacological 

action, typically an immunological or hypersensitivity reaction) adverse effect [Edwards and 

Aronson 2000]. The thesis uses non-immune mediated (type A) neutropenia to evaluate the 

approach because our algorithm leverages information on the drug’s target proteins that may be 

directly associated with the drug’s mechanism of action. 

3.2.2  Drugs, Drug Targets and Toxicity-related proteins 

Our algorithm utilizes existing knowledge about drugs that are known to be associated with 

the toxicity of interest. Three types of evidence were used to create a list of drugs known to be 

associated with non-immune neutropenia. First, literature mining was performed on Pubmed 

abstracts to parse sentences involving neutropenia and a drug term. The drugs were ranked by 

frequency of co-occurrence with neutropenia or one of its subtypes and the list was manually 

curated to remove irrelevant associations. Second, the Comparative Toxicogenomics database 

[Mattingly et al. 2006] was searched to create a list of compounds associated with neutropenia. 

Third, a toxicologist reviewed the combined list from both analyses to provide a list of drugs 

associated with non-immune neutropenia. Table 3 shows a list of drugs identified with this 

approach. Information from the STITCH database was used to identify each drug’s target 

proteins [Kuhn et al. 2008]. STITCH database provides chemical-protein interaction 

information integrated from multiple public databases, including DrugBank {Wishart, 2006 

#104}, SuperTarget and Matador {Gunther, 2008 #127} . 

As per our definition of DTSP, proteins associated with the pathophysiology of interest had 

to be included as ‘end’ nodes in our path detection algorithm. A review of literature pertaining 

to hematopoietic regulation reveals the key role of a set of proteins involved in neutrophil 

production and maturity [Kaushansky 2006, von Vietinghoff and Ley 2008, Daniel et al. 2009]. 
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These proteins are involved in lineage commitment to a specific cell type during the 

differentiation of hematopoietic stem cells into one of the multiple blood cell types, including 

platelets, erythrocytes, monocytes, neutrophils, T cells, NK cells and B cells. In addition to 

their relevance to neutrophil biology, some of these proteins (e.g. CFU-GM) have recently been 

proposed as possible early markers of bone marrow toxicity [Pessina et al. 2005]. 

The proteins listed in Table 4 were therefore considered as ‘end’ nodes in the PPI network. 

3.2.3  Rationale for use of an Edge Centrality Measure 

 Consider a hypothetical situation where all high confidence paths discovered in step 1 of 

the algorithm have exactly one interaction in common. This interaction could be considered the 

most central to achieving topological connectivity between the drug’s targets and the toxicity 

of interest because all reliable paths discovered in step 1 involve this protein interaction. The 

interacting proteins would be of interest from a biological perspective because their function 

could yield insights into toxic mechanisms that link the drug to its adverse effect. Edge 

centrality is important from a biological perspective because interactions common to high 

confidence paths across toxicity-inducing drugs may point to common mechanisms of toxicity. 

TABLE 3. Protein ‘end nodes’ for path detection. 

Ensembl Protein ID Description HGNC symbol 

ENSP00000225474 Granulocyte colony-stimulating factor Precursor  CSF3 

ENSP00000228280 Kit ligand Precursor (C-kit ligand)(Stem cell factor) KITLG 

ENSP00000231454 
Interleukin-5 Precursor (IL-5)(T-cell replacing 
factor)  

IL5 

ENSP00000296871 
Granulocyte-macrophage colony-stimulating factor 
Precursor (GM-CSF)  

CSF2 

 

 

 



38 
 

Edge centrality in this context, is defined as the extent to which a particular edge is involved 

in all drug-toxicity signaling paths for a particular drug. As a general case across many drugs 

that cause the same toxicity,  edge centrality of each interaction can be computed to identify 

those edges in the network that are most central to linking the drug’s targets to its toxicity of 

interest, as shown in Figure 7. Edge centrality of an edge e is defined as the number of reliable 

paths that pass through e. Each edge in the set of high confidence paths is assigned a weight 

equal to its edge centrality. 

TABLE 4. Drugs associated with Non-immune Neutropenia  

Drug Therapeutic category[DrugBank] 

Vancomycin Anti-Bacterial Agents , Glycopeptide antibacterials 

Zidovudine 
Anti-HIV Agents, Antimetabolites, Nucleoside and Nucleotide 
Reverse Transcriptase Inhibitors, Reverse Transcriptase Inhibitors 

Econazole Antifungal Agents 

Miconazole Antifungal Agents 

Ketaconazole Antifungal Agents 

Isoniazid Antitubercular Agents, Fatty Acid Synthesis Inhibitors 

Rifampicin 
Antitubercular antibiotics, Antituberculosis Agents,Enzyme 
Inhibitors,Leprostatic Agents,Nucleic Acid Synthesis Inhibitors 

Clotrimazole Local Anti-Infective agents,Antifungal Agents, Growth Inhibitors 
Doxorubicin Antibiotics, Antineoplastic Agents 

Methotrexate 

Abortifacient Agents, Abortifacient Agents, Nonsteroidal 
Antimetabolites, Antimetabolites, Antineoplastic Agents, 
Antirheumatic Agents, Dermatologic Agents, Enzyme Inhibitors, 
Folic Acid Antagonists, Immunosuppressive Agents, Nucleic Acid 
Synthesis Inhibitors 

Etoposide 
Antineoplastic Agents, Phytogenic Nucleic Acid Synthesis 
Inhibitors 

Irinotecan 
Phytogenic Antineoplastic Agents, Enzyme Inhibitors, 
Parasympathomimetics, Prodrugs, Radiation-Sensitizing Agents 

Paclitaxel Phytogenic Antineoplastic Agents, Tubulin Modulators 

Tamoxifen 

Hormonal Antineoplastic Agents, Bone Density Conservation 
Agents, Estrogen Antagonists, Selective Estrogen Receptor 
Modulators 

Vinblastine Phytogenic Antineoplastic Agents, Tubulin Modulators 

Promazine 
Antiemetics, Antipsychotic Agents, Antipsychotics, Dopamine 
Antagonists, Neuroleptics, Phenothiazines 
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Table 4 (continued)  

Desferrioxamine Chelating agent, Iron Chelating Agents, Siderophores 
Furosemide Diuretics, Sodium Potassium Chloride Symporter Inhibitors 

HCTZ 
Antihypertensive Agents, Diuretics, Sodium Chloride Symporter 
Inhibitors 

  

 

This smaller network of reliable paths is then used to detect drug-toxicity signaling paths. In 

step 2 of our algorithm the edge centrality of each interaction/edge in the family of high 

confidence paths is computed. 

 
3.2.4  DTSP algorithm implementation 

The color coding algorithm was adapted so that it could be applied towards discovery of 

signaling paths relevant to the toxicity of interest. Toxicity relevance for detected paths was 

achieved through use of hematopoiesis-related proteins (shown in Table 3) as destination nodes 

in the algorithm. Drug relevance for detected paths was achieved through use of drug target 

proteins as ‘source’ nodes in the algorithm. The primary source of protein interaction data was 

the STITCH database (http://stitch.embl.de/). All protein-protein interactions from the STITCH 

database were downloaded and the human subset was used as our PPI network.  

Details on the STITCH database and calculation of combined score for confidence of each 

edge have been published elsewhere [Kuhn et al. 2008]. Briefly, a consolidated set of 

chemicals was derived from PubChem and relations between chemicals were derived from 

similar activity profiles in the NCI60 cell lines, from pharmacological actions assigned to 

chemicals in the Medical Subject Headings (MeSH) and from the literature. In order to link the 

derived chemical-chemical associations to the protein world, a variety of databases of 

chemical-protein interactions were imported.  Experimental evidence of direct chemical-protein 

binding was derived from the PDSP Ki Database and the protein data bank [Berman et al. 

2000]. The STITCH database contains interaction information for over 68000 chemicals, 

http://stitch.embl.de/
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including 2200 drugs, and connects them to 1.5 million genes across 373 genomes and their 

interactions contained in the STRING database [Jensen et al. 2009]. 

 

Figure 7.  STRING Database: Evidence types used to confidence score for each interaction 
(reproduced from Jensen et al. 2009 [Jensen et al. 2009]) 

 

Many of the protein-protein interactions in the STRING database are imported from other 

databases but STRING also contains a large body of predicted associations that are produced 

de novo. Completely sequenced genomes are periodically imported and searched for three 

types of genomic context associations:  

a. Conserved genomic neighborhood: The conservation of proximity of genes along the 

genome between distantly related species may predict interaction between the protein 

products {Dandekar, 1998 #581}. 

b. Gene fusion events: Some interacting protein pairs are encoded by two independent 

genes in some organisms whereas they are encoded by a single gene in other organisms. 
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Knowledge of gene fusion events may therefore be used to ascertain whether two 

proteins may be interacting with each other [Valencia and Pazos 2003]. 

c. Co-occurrence of genes across genomes : Similar Loci for genes corresponding to a 

protein pair across genomes may point to a possibility of interaction. 

All three searches aim to identify pairs of genes which appear to be under common selective 

pressures during evolution (more so than expected by chance), and which are therefore thought 

to be functionally associated. Another important source of protein association information is 

published literature. As shown in Figure 8, STRING database assigns confidence score to 

interactions based on systematic extraction of associations from PubMed, by searching for 

recurrent co-mentioning of gene names in abstracts. This search relies on gene names and 

synonyms parsed from SwissProt as well as from organism-specific databases. It utilizes a 

benchmarked scoring system based on the frequencies and distributions of gene names in 

abstracts. Finally, protein-protein interactions are also derived from functional genomics data: 

evidence of co-regulation of genes across diverse experimental conditions is imported from the 

ArrayProspector server [Jensen et al. 2004]. 

The command-line version of FASPAD implementation [Hüffner et al. 2007] was used to 

discover high confidence paths in the PPI network using a heuristic approach. As a first step in 

the algorithm, signaling paths were detected with maximum product of path reliabilities for 

path lengths up to 10. The rationale for selection of a maximum path length of 10 was based on 

the observation that the number of new proteins involved in discovered paths decreased 

drastically as the path length approached 10, as shown in Figure 9. For each path length, 100 

high confidence paths were harvested to detect a total of 800 candidate signaling paths for each 

drug. FASPAD parameters were set so that there was no more than 70% similarity between 

two paths of the same length. For the second step in our algorithm, the network created from 

high confidence paths was used to compute the edge centrality value for each interaction. As 
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described in section 3.1, the edge weights were then re-assigned to each interaction using its 

edge centrality value, so that the value on each interaction represented the extent to which the 

interaction was central to paths that connect the drug target proteins to toxicity-related proteins 

in the network. The third step in the algorithm involved detection of paths with high edge 

central interactions, or the set of candidate ‘Drug – Toxicity signaling paths’ for each drug. The 

color coding algorithm was applied again, with the same parameters as earlier but with edge 

weights reassigned based on edge centrality calculation for each interaction.  

The resulting set of signaling paths was then evaluated for statistical significance as 

described in section 3.1. The product of edge weights for each path was used as the test 

statistic. For 20,000 random permutations of edge weights inside the network, the product of 

edge weights for each discovered path was calculated. Paths were then filtered using a p < 0.01 

threshold and only paths with statistically significant value were retained. This process was 

repeated for each drug listed in Table 4. Finally, Geneset Enrichment analysis (GSEA) 

implemented in WebGestalt [Zhang et al. 2005] was run to identify significant KEGG pathway 

associations for DTSP proteins. 

Briefly, the procedure calculated a ratio enrichment score for each KEGG pathway as k/ke, 

where k was the actual number of genes in the DTSP set of proteins that belonged to a 

particular KEGG pathway and ke is the expected number of genes for that pathway. Using a 

statistical significance threshold of p<0.01 for hypergeometric test and Bonferroni multiple 

testing correction, a set of canonical pathway associations for each drug were identified.  

3.3 Results and Discussion 

3.3.1  Impact of the signaling path detection approach 

A key motivation for this approach was to evaluate whether the huge network of human 

protein-protein interactions can be condensed to a small set of proteins that may constitute a 

‘bottleneck’ linking drug targets with the toxicity-related end nodes in the network. In order to 
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evaluate this, we compared the total number of immediate neighbors of our end nodes with the 

number of immediate neighbors that were involved in at least one DTSP. At level 1 (immediate 

neighborhood of toxicity-related proteins), we found 2337 proteins connected to the four ‘end 

nodes’ related to non-immune neutropenia. All of these immediate neighbors could 

theoretically be involved in paths terminating in end nodes. However, for the non-immune 

neutropenia causing drugs analyzed in this study, only 227 proteins out of the 2337 were found 

to be involved in a drug-toxicity signaling path. Within the set of immediate neighbors for 

toxicity-related proteins, these 227 proteins appeared to be more relevant to understanding the 

mechanism of non-immune neutropenia compared to the rest. Taking this observation to the 

next level of connectivity, out of 16339 proteins that were linked to the 2337 immediate 

neighbors, our algorithm found 270 proteins in DTSPs detected for drugs analyzed. The value 

of our approach was evident from its ability to identify a smaller set of proteins that were 

relevant to both the toxicity of interest as well as the drugs known to be associated with the 

toxicity. 

 

3.3.2  Path length heuristic and discovery of new proteins 

One important consideration in our algorithm was the choice of path length when harvesting 

signaling paths. As the path length increased towards 10, longer paths seemed to be created 

using proteins involved in shorter paths. This is demonstrated in Figure 9, where the number of 

new proteins involved in discovered paths decreases substantially as the path length increases. 

To the extent that the algorithm is aimed at identification of protein/s relevant to the toxicity, 

there seems to be limited value in detecting paths of higher lengths. This is an aspect of this 

algorithm that needs to be investigated in more detail. 
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Figure 8.  As the path length increases towards 10, the number of discovered paths 
involving additional proteins decreases towards zero 

 

3.3.3   Network ‘hotspots’ and their toxicological relevance  

As conceptually visualized in Figure 7, proteins involved in at least one DTSP for all drugs 

get a high interestingness score due to their ability to provide topological connectivity between 

a target protein and a toxicity-related protein for all drugs that are known to be associated with 

the toxicity. We therefore analyzed the list of DTSPs to find proteins that were common across 

all drugs analyzed in this study. As shown in Figure 10, 119 proteins were involved in a DTSP 

for a single drug, 12 proteins were common to 4 Drugs (i.e. involved in one or more DTSPs for 

four drugs) and 9 proteins were found to be involved in one or more DTSPs for all drugs. Table 

5 lists the nine proteins that occur in one or more DTSPs across all drugs. 

A brief summary of their relevance to non-immune neutropenia is provided below –  

A genetic variant of CSF2RB (Ensembl id: ENSP00000262825) has been patented in its 

application as a marker associated with adverse hematological response to drugs [Athanasiou 

and GERSON 2006]. GM-CSF exhibits a number of overlapping biological activities in 
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hematopoiesis, which are all mediated via binding of GM-CSF to the GM-CSF receptor 

[Barreda et al. 2004]. The STAT3 (signal transducer and activator of transcription 3, acute-

phase response factor) protein (Ensembl id: ENSP00000264657) plays a key role in apoptosis 

and cell differentiation. Deletion of STAT3 in rats has been shown to cause abnormalities in 

myeloid cells [Welte et al. 2003]. 

 

 

Figure 9.  Plot shows the number of proteins that occur at least once across various drugs in 

the analysis set. 

The Janus Kinase JAK1 (Ensembl id: ENSP00000294423) and JAK2 (Ensembl id: 

ENSP00000371067) pathways in addition to the STAT pathway constitute a major signaling 

mechanism engaged by the G-CSFR (Granulocyte Colony Stimulating Factor) receptor. When 

activated by the GCSFR, Jak tyrosines phosphorylate STAT complexes which then translocate 

to the nucleus where they activate transcription [Touw and Bontenbal 2007]. The Tyrosine 

protein phosphatase non-receptor type 6, PTPN6 protein (Ensembl id: ENSP00000326010) is a 

key regulator of neutrophil apoptosis [Simon 2003]. The growth factor receptor bound protein 

2 (Ensembl id: ENSP00000339007) functions as an adapter protein in the MAPK transduction 

pathway which plays a key role in hematopoiesis [Geest and Coffer]. The SHC-transforming 
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protein 1 (Ensembl id: ENSP00000357432) is another signaling adapter that couples activated 

growth factor receptors to MAPK signaling pathway.  

The KIT stem cell precursor (Ensemble id: ENSP00000370749) is the receptor of the stem 

cell factor that is directly involved in myeloid cell differentiation. Finally, the Tumor Necrosis 

Factor precursor (Ensemble id: ENSP00000372790) is a cytokine that binds to tumor necrosis 

factor (TNF) receptor. TNF may have inhibitory effects on granulocyte-macrophage 

progenitors and on committed and primitive hematopoietic progenitors in vitro [Drutskaya et 

al. 2005]. 

TABLE 5. List of proteins that occur in at least one DTSP across all analyzed Drugs. 

Protein  

Ensembl Id 

HGNC 

Symbol Name 

Biological 

relevance 

ENSP00000262825 CSF2RB 
Colony Stimulating 
Factor Receptor, Beta 

Barreda et al. 
2004 [Barreda et 
al. 2004] 

ENSP00000264657 STAT3 

Signal Transducer and 
Activator of 
transcription 

Welte et al. 
2003[Welte et al. 
2003] 

ENSP00000294423 JAK1 Janus Kinase 1 

Touw et al. 
2007[Touw and 
Bontenbal 2007] 

ENSP00000326010 PTPN6 

Tyrosine Protein 
phosphatase type 6 
(HCP, PTP1C) 

Simon 
2003[Simon 
2003] 

ENSP00000339007 GRB2 
Growth Factor Receptor 
Bound 2  

Geest et al. 
2009[Geest and 
Coffer 2009] 

ENSP00000357432 SHC-1 
SHC-transforming 
protein 1  

Geest et al. 
2009[Geest and 
Coffer 2009] 

ENSP00000370749 
KIT 
precursor Stem Cell precursor 

Kaushanky 
2006[Kaushansky 
2006] 

ENSP00000371067 JAK2 Janus Kinase 2 

Touw et al. 
2007[Touw and 
Bontenbal 2007] 

ENSP00000372790 
TNF 
precursor 

Tumor Necrosis Factor 
precursor  

Drutskaya et al. 
2005[Drutskaya 
et al. 2005] 
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 3.3.4  Elucidating class-specific mechanisms of toxicity 

In order to understand whether proteins involved in paths discovered for one class of drugs 

were different from another, we compared proteins common to anti-infective and anti-cancer 

DTSPs i.e. proteins involved in one or more DTSPs for all drugs that belong to the same 

therapeutic class. A set of 12 proteins were found to be involved in one or more DTSPs for all 

anti-cancer drugs. A different set of 10 proteins were found to be involved in one or more 

DTSPs for all anti-infective drugs. Geneset enrichment analysis revealed distinct biological 

processes being regulated by each set. We found that the ‘anti-infective’ set of proteins were 

also involved in biological processes like response to bacterial stimulus. This observation 

seems to imply that anti-infective mode of action may be the desirable action for drugs in this 

class, but proteins involved in anti-infective related processes also link the drug targets and/or 

the indication to hematopoiesis-related proteins in the network. The observation also seems 

important in light of the fact that manifestations of agranulocytosis are secondary to infection 

[Flanagan and Dunk 2008].  

3.3.5  Pathway Association for DTSP proteins 

The robustness of a phenotype may be understood in terms of alternative compensatory 

signaling routes inside complex biomolecular networks. To this end, proteins involved in the 

set of DTSPs for each drug may yield insights into downstream effects of the drug on multiple 

biological and disease pathways. Geneset enrichment provided a set of KEGG pathways with 

high ratio enrichment score for each drug. Using this approach for each drug, we identified a 

set of KEGG pathways that were statistically overrepresented in DTSPs for that drug. Table 6 

shows a list of KEGG pathways that were overrepresented for all drugs in this analysis.  

A key observation from enrichment analysis was that proteins associated with cancer-

related pathways were found within DTSPs discovered for all drugs associated with non-

immune neutropenia in this analysis. This finding applied to all drug classes analyzed with our 
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algorithm, including anti-cancer, anti-infective as well as other disease-related drugs. Though 

an observation made on a small number of drugs, this is in line with the clinical observation 

that cytotoxic cancer treatments predispose patients to clinically significant changes in 

neutrophil counts, often leading to severe neutropenia [Crawford et al. 2004]. Neutrophils 

being the first line of defense against infection and as the first cellular component of the 

inflammatory response to nascent infections, it is conceivable that proteins involved in 

inflammatory response and immune system disorders are also members of drug-toxicity 

signaling paths discovered using our algorithm.  

TABLE 6. Pathway Association for DTSP proteins  

KEGG pathway Id KEGG Pathway Name 

hsa05221 Acute myeloid leukemia 
hsa04920 Adipocytokine signaling pathway 

hsa04662 B cell receptor signaling pathway 
hsa04062 Chemokine signaling pathway 

hsa05220 Chronic myeloid leukemia 
hsa05210 Colorectal cancer 

hsa04060 Cytokine-cytokine receptor interaction 
hsa05213 Endometrial cancer 

hsa05120 Epithelial cell signaling in Helicobacter pylori infection 

hsa04664 Fc epsilon RI signaling pathway 
hsa04510 Focal adhesion 

hsa05214 Glioma 
hsa04910 Insulin signaling pathway 

hsa04630 Jak-STAT signaling pathway 
hsa04010 MAPK signaling pathway 

hsa04650 Natural killer cell mediated cytotoxicity 
hsa04722 Neurotrophin signaling pathway 

hsa05223 Non-small cell lung cancer 
hsa05212 Pancreatic cancer 

hsa05200 Pathways in cancer 
hsa05215 Prostate cancer 

hsa05211 Renal cell carcinoma 
hsa04660 T cell receptor signaling pathway 

hsa04620 Toll-like receptor signaling pathway 

hsa04930 Type II diabetes mellitus 
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3.4 Limitations 

This study was aimed at understanding downstream regulation of drug-induced toxicity at a 

‘systems’ level. Improvements on the proposed algorithm are certainly possible. First, we 

mined a non-directional PPI network for signaling paths. This implies that directionality of the 

interaction chains cannot be inferred from this analysis. Some background knowledge of the 

signaling cascade from the CSF receptor to activation of Colony Stimulating factor (CSF) 

suggests that proteins like JAK1, JAK2 and STAT3 are mediators of CSF activation but this 

cannot be concluded from our analysis. Second, we have used a range of path lengths and the 

maximum number of detected paths as parameters. 

In Figure 9, we have shown that the choice of heuristic path length seems appropriate. 

However, the choice of maximum paths discovered needs further investigation. 

Further analysis could reveal the extent to which the set of detected paths covers the 

available topological space. Further work is also needed to incorporate additional evidence, 

gene expression data, for example, to identify putative signaling paths from among the larger 

set we have discovered through this analysis. Integration with gene expression data may also 

reveal ‘dose-specific’ paths that reflect pharmacodynamic changes after drug administration. 

We believe that the use of multiple sources of evidence to assign interaction confidence scores 

may have resulted in fewer false negatives and that, integration with gene expression data may 

also reduce the potential for false negatives in our analysis. Finally, a large set of drugs known 

to induce non-immune neutropenia needs to be analyzed, preferably from a wider variety of 

therapeutic categories, to understand the specificity and sensitivity of our approach. 

3.5 Conclusions 

This study explored downstream effects common to drugs known to induce non-immune 

neutropenia.  Using our approach, we have identified proteins that constitute ‘bottlenecks’ in 

interaction chains that link a neutropenia-inducing drug with toxicity-related endpoints. Further 
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analysis is required to identify pathways involved in pathophysiology of non-immune 

neutropenia for various drug classes. The edge centrality based approach provides an 

alternative to other approaches that can be applied at the systems level, either using local or 

global properties of PPI networks. We have demonstrated the value of our approach using non-

immune neutropenia as a test case. The algorithm may be applied towards detection of protein 

interaction hotspots for any toxicity where the drugs known to induce the toxicity and the 

physiological processes involved in the toxic mechanism are known. 
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CHAPTER 4: INTEGRATING PROTEIN INTERACTION AND GENE 

EXPRESSION INFORMATION TO GAIN INSIGHTS INTO TOXICITY 

MECHANISMS 

 
In chapter 3, the drug-toxicity signaling path (DTSP) algorithm was used to  identify 

toxicity-related hotspots inside protein interaction networks through a combination of color 

coding and edge centrality as a measure for filtering detected paths [Desai et al. 2011]. The 

approach relied on background knowledge of a set of drugs and proteins related to the drug-

induced toxicity. One of the recognized limitations of the edge-centrality based approach is its 

inability to leverage dynamic drug-specific gene expression data to further inform the filtering 

of detected signaling paths. This chapter extends the earlier approach by incorporating a gene 

expression-based measure for filtering discovered paths based on analysis of gene expression 

data collected in vitro after treatment with the set of drugs under consideration. The resulting 

set of path proteins is analyzed, leading to a biomarker panel that may be used for screening of 

drug candidates. 

All steps involved in the drug-toxicity signaling path detection algorithm as well as 

implementation of the algorithm for non-immune neutropenia have been described in section 

3.1 and 3.2. These details will therefore, not be repeated in this chapter. The advantages of 

using a gene-expression based measure are described in section 4.1 and implementation of the 

measure is described in section 4.2. Section 4.3 discusses results from the analysis, followed by 

Limitations and Conclusions in section 4.4 and 4.5 respectively. 

4.1 Advantages of using a gene-expression based measure 

As described in chapter 2, contextual information in the form of evolutionary conservation 

of expression patterns across organisms when used for guilt by association (GBA) analysis, has 

yielded functionally related groups of genes under homeostatic conditions  [Quackenbush 

2003]. Gene co-expression based GBA approaches have also looked for genes whose 
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expression patterns mimic those of known disease-associated genes[Walker et al. 1999]. While 

such approaches are useful for assigning disease association more generally, they may not be 

sufficient for identifying proteins associated with drug-induced toxicity. This is because genes 

discovered using such approaches may be located multiple levels downstream from protein 

targets of drugs associated with a particular toxicity.  

Integrating gene expression data with protein interaction networks has many advantages. 

First, to the extent that gene expression data can reflect dynamic changes that happen at various 

time points after drug administration, this could enable identification of signaling paths that 

consist of genes that are differentially expressed between treated and control conditions. 

Second, clustering expression data into groups of genes that share profiles is a proven method 

for grouping functionally related genes, but does not order pathway components according to 

physical or regulatory relationships [Steffen et al. 2002]. Protein Interaction information can 

complement gene expression data to help identify differentially expressed genes that may lie 

downstream from the drug’s known target proteins and upstream from the known toxicity-

related endpoints in the network. 

Commercial pathway analysis tools provide the ability to construct networks based on 

integration of evidence from multiple sources and the ability to analyze the resulting network 

using algorithms like shortest paths [Ekins 2006]. Drug administration perturbs the biological 

network at specific ‘nodes’ (referred to as drug target proteins) that may be several levels 

upstream from the toxicity-related ‘endpoints’ in the network. Mapping the cascade of proteins 

associated with drug response is therefore a central challenge in toxicity evaluation. 
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ALGORITHM: INTEGRATEEXPRESSION(G = (V,E), ToxD, startVert, dest) 
For each Drug D Є ToxD 

% Find high confidence paths: length 3 to 10 for each drug 

For Pathlength = n : m 

 GR = FindHiConfPaths(G = (V,E),startVert,dest, Paths ,%similarity, Pathlength) 

End 

% Compute Gene Expression Score for high confidence interactions (based on gene expression 

for interacting proteins) 

PathExpScore = ComputeIntExpScore(GR , D) 

% Detect signaling paths that maximize path differential expression score  

P = FindMaxDiffExpPaths(GR , PathExpScore) 

For permutations = 1: p 

 For each interaction P int 

Assign RandomEdgeWeights(P int) 

ComputePathScore(P) 

 End 

End 

PSIG = computePval(P) 

% Compute common pathproteins for each therapeutic category 

Pcancerprot = intersect (ProtsPSIG) 

Return PSIG , Pcancerprot 

 

Pseudocode variable definitions  (also refer to other variables defined in Figure 5): 

P – Set of paths with highest differential gene expression between treated and control. 

Pcancerprot – Path proteins found on DTSPs for anti-cancer treatments. 
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Figure 11 (continued) 

Function ComputeIntExpScore(GR , D) 

% Extract and Process Raw gene expression CEL files for n Treated samples and  

% m vehicle  scans for each Treated sample. Compute Average Expression Score for 

% each probeset and each protein. Finally, compute interaction expression score. 

 RawExp = GetCEL(D) 

 GCTExp = ExpressionFileCreator(RawExp,‘QuantileNorm’,’medianScale’, HgU.cdf) 

  For probesets = 1: pn 

  For each Experiment i 

  SampleExpScore(i) =  

  Return SampleExpScore 

   ProbesetExpScore = ln( ) 

   End 

  For each Path p in GR 

  For each protein i in p 

  ProtExpScore(i) = i np 

  End 

  IntExpScore(p) = i  

  Return IntExpScore 

Return IntExpScore 

 

Pseudocode variable definitions: 

RawExp – Raw CEL file data for a single sample. 

GCTExp – Matrix of probeset-Sample with expression values inside each cell. 

SampleExpScore  – Ratio of treated/control expr. values for all HT_HGU133 probesets. 

ProbesetExpScore  – Log ratio of average gene expression score across all samples 

ProtExpScore  – Average gene expression score for a protein based on mapped probesets. 

IntExpScore  – Interaction expression score, i.e. average differential expression score for 

interacting proteins 

 

Figure 10.  Algorithm Pseudocode for detecting Drug-Toxicity Signaling Paths using 
microarray data 
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4.2 Computing Edge weights using Gene Expression Measure 

Gene expression was used to identify paths that may be ‘active’ in the presence of a drug 

known to induce the toxicity. A differential gene expression measure was applied as follows – 

We hypothesized that the most relevant toxicity-related paths would consist of genes that 

showed high differential expression between treatment (with drugs associated with the toxicity) 

and control. In other words, if all proteins in a detected path consisted of genes that were 

unperturbed after treatment, that path was unlikely to be associated with the drug and its 

toxicity and would therefore be ranked lower with our algorithm. Also, the algorithm should 

consider the magnitude of up-regulation and down-regulation as equally important. So, a 2-fold 

up-regulation would be considered as important as a 2-fold down-regulation. We therefore, 

using principles inherent in a ranking measure proposed earlier [Zhang and Gant 2008], 

calculated the average absolute log ratio of treated vs. control for each protein in the set of 

reliable paths to assign weights for each interaction based on differential gene expression of 

proteins participating in that interaction. This smaller network of reliable paths was then used 

to detect drug-toxicity signaling paths in step 3 of the algorithm (described in section 3.1). 

To compute the gene expression measure, we downloaded gene expression CEL files from 

the connectivity map data provided by the MIT Broad Institute. Details of the connectivity map 

data have been published elsewhere [Lamb 2007]. Briefly, the connectivity map (also known as 

cmap) is a collection of genome-wide transcriptional expression data from cultured human cells 

treated with bioactive small molecules. Build 02 of this publicly available collection provides 

access to more than 7000 expression profiles representing 1309 compounds. For the 19 drugs 

analyzed in this study, we found 41 instances or experiments in the connectivity map 

collection, i.e. one or more treated samples (dose: 10µM, duration: 6 hours) and multiple 

vehicle scans in MCF7 cell lines. The ‘ExpressionFileCreator’ module in GenePattern was 

used to convert CEL files into gct format expression files [Reich et al. 2006]. Robust multichip 
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average (RMA) measure was used for conversion and quantile normalization was applied. The 

absolute average log ratio values were calculated for each probeset and each ensemble protein 

was assigned the average of all probesets that mapped to the protein. Mapping between affy 

probeset ids and ensemble ids was obtained from Ensembl database [Flicek et al. 2008]. Each 

edge or interaction in the network of reliable paths was then assigned the expression measure 

value as the average of absolute log ratio value for its interacting proteins. 

 The third step in the DTSP algorithm involved detection of paths consisting of high 

differential expression interactions, or the set of candidate ‘Drug – Toxicity signaling paths’ for 

each drug. We used the color coding algorithm again, with the same parameters as earlier but 

with edge weights assigned based on the gene expression measure for each interaction.  

4.3 Results and Discussion 

4.3.1 Difference in path proteins discovered with different measures 

In order to compare DTSPs discovered using differential gene expression with DTSPs 

discovered using edge centrality (published earlier [Desai et al. 2011]), the percentage 

difference in number of proteins involved in DTSPs obtained using the two measures was 

computed. An average of 45% proteins was different between the two measures. This finding 

seems to point to the fact that edge central proteins may not be substantially differentially 

expressed under treatment conditions. This may be attributable to the presence of alternative 

compensatory paths in protein interaction networks and the fact that highly edge central 

interactions by definition are likely to receive positive as well as negative regulatory inputs 

from a relatively large number of interactions. 

4.3.2  Toxicological relevance of detected paths 

As neutropenia is defined as a clinically significant reduction on neutrophils and as the end 

nodes (listed in table 3) in our algorithm are involved in neutrophil production, we considered 

paths that down-regulated the end nodes (treated < control) as more relevant than filtered paths 



57 
 
that up-regulated the end nodes  (treated > control), irrespective of the direction of regulation 

for intermediate nodes (nodes between the two end nodes for each path).  Also, to eliminate 

redundancy among down-regulated paths, we manually curated the list to identify the shortest 

path/s that down-regulated each end node. In other words, if there was one shorter path and one 

longer path that terminated in the same end node, we only considered the shorter path. The 

paths can be used to understand the relevant mechanisms of toxicity for a specific drug. For 

example, the highest ranked path for Clotrimazole may be interpreted as follows - 

In tissue samples treated with Clotrimazole, Cyp3A4 (node 1) inhibition may lead to down-

regulation of SRGN (node 2), the serglycin haematopoeitic cell granule proteoglycan which in 

turn, may serve as a mediator of granule mediated apoptosis [Ma et al. 2008]. SRGN down-

regulates the end node ‘KITLG’, stem cell factor (end node) that is able to augment the 

proliferation of both myeloid and lymphoid hematopoietic progenitors in bone marrow cells 

[Niemann et al. 2004].  

The above path was one of four paths for Clotrimazole, the other four having length four 

and ending in the second down regulated end node, IL5. 

The entire list of specific paths for each drug is pending further interpretation in the context 

of non-immune neutropenia. Table 7 shows a list of path proteins for each drug. 

4.3.3  Elucidating class-specific mechanisms of toxicity 

 In order to understand whether proteins involved in paths discovered for one therapeutic 

category of drugs were different from another, we compared proteins common within and 

between (involved in one or more DTSPs) anti-infective, anti-cancer and Other DTSPs. Only 

KITLG was common (>50%) within the three therapeutic categories suggesting some 

commonality of compounds that induce neutropenia irrespective of therapy area.  In addition, 

the following were common within a therapy area: IL5 and TNFa in anti-infective, BAX, 

CSF3, IL6 and IL8 in anti-cancer and FOS, IL6, IL8, JAK and JUN within other.    
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4.3.4  Potential neutropenia biomarkers  

 In addition to identifying common DTSPs, the data within Table 8 was evaluated to 

identify a potential neutropenia biomarker panel irrespective of therapy area.  KITLG was 

altered in 76% of all compounds evaluated and could be further investigated as a neutropenic 

biomarker.  Of the compounds where KITLG was not altered, TNFA was altered in the anti-

infective compounds and CSF3 (GM-CSF) in anti-cancer compounds.  Therefore, a biomarker 

panel containing at least KITLG, TNFA and CSF3 should be further investigated for detecting 

compounds that induce neutropenia. 

4.4 Limitations 

The DTSP algorithm and use of gene expression data has provided additional insights into 

signaling paths that may be down regulated in non-immune neutropenia. Other extensions may 

improve the algorithm further. Specifically, knowledge on protein localization and tissue 

specific protein expression may add further specificity to detected paths. Experimental 

validation of the proposed biomarker panel may provide evidence to support the use of the 

panel for screening drug candidates.  

4.5 Conclusion 

We have developed a new algorithm for detection of toxicity-related hotspots inside protein 

interaction networks and evaluated its ability to detect proteins relevant to non-immune 

neutropenia. This work has demonstrated that better network analysis algorithms can provide 

valuable insights into mechanisms of toxicity and at the same time, deliver potential 

biomarkers that may be experimentally validated and used as a tool for screening drug 

candidates. 
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TABLE 7. Proteins involved in DTSPs discovered for each drug 

Category Drug Path Proteins (HGNC Symbol) 

A
n

ti
-i

n
fe

c
ti

v
e
s 

Clotrimazole 
CD44, CYP3A4, GZMB, IFNG, IL5, IL11, 
KITLG, PRF1, SRGN 

Desferrioxamine 
CSF3, EPO, EPOR, FOS, IFNG, IL1B, IL5, IL6, 
IL8, JAK1, JUN, KIT, KITLG, MAPK11, 
MAPK14, RELA, SELP, STAT1, STAT6, TNFA 

Economazole ADCYP1, FOS, TNFA 

Isoniazid BOC, CA3, JAK2, KITLG, MPO, PTPN6 

Ketaconazole 

ABCB1, BCL2, CD79A, CCL2, CSF3, CYCS, 
EP300, EPOR, IL1A, IL2, IL4, IL5, IL6, IL6ST, 
IRS1, ITGAM, JAK1, JAK2, KIT, KITLG, LIF, 
MAPK8, PIK3R1, PRL, RELA STAT1, TNFA, 
TP53 

Miconazole BAX, CSF3, HMOX1, IFNG, KITLG, POR 

Rifampicin 

ABCB1, BCL2, CCND1, CCND3, CSF2, 
CYP1A2, GST3, IFNG, IL2, IL2RA, IL5, IL7, 
IL8, JAK1, JUN, MAPK1, MAPK8, NR3C1, 
NR0B2, RBL2, STAT1, STAT3, STAT5B, TNFA 

Vancomycin 
CCL5, CD4, IL1A, IL5, IL6, IL10, IL11, IL12B, 
JUN KITLG, STAT3, TNFA 

Zidovudine 
CD4, EPO, FOS, IL5, IL10, IL12A, JAK2 
KITLG, STAT3 

A
n

ti
-c

a
n

c
e
r1

 

Doxorubicin 
BCL2, CASP8, CSF3, FADD, IL4, IL6, IRS1, 
KIT, KITLG, MAPK1, PIK3R1, TNFA 
TNFRSF1A 

Etoposide 
ABL1, BAX, BCL2, BCL2L1, CASP3, CSF2RB, 
CSF3, DIABLO, EP300, IFNG, IL2, IL5, IL6, 
IL8, MAPK8, MDM2, PTPN6, RB1,STAT3 TP53 

Paclitaxel EPOR, FOS, IL12A, JAK2, KIT, KITLG 

Tamoxifen 
BAX, BCL2, CRH, CSF2, CSF3, FOS, IFNG, 
IL1A, IL2, IL3, IL5, IL6, IL8, JUN, KITLG, 
MAPK8, TGFB1, TNFA, TP53 

Vinblastine CD4, CSF3, IL8, IL10 

O
th

e
r 

Furosemide 

AGT, APAF1, BCL2, FOS, IL1B, IL2, JAK2, 
JUN, KITLG, LRP1, OXT, PPP1R12A, RB1, 
REN, RHOA, SERPINE1, SHC1, SLC12A2, 
SPP1, TNFA 

Hctz 
ACE, AGTR1, CSF2, EDN1, FOS, IL5, IL6, 
JAK2, JUN, KITLG, REN, SERPINE1, 
SLC33A1, SOCS3, STAT3 

Promazine 
CHRM1, CSF3, EGFR, HTR2C, IL3, IL6, JAK2, 
KIT, KITLG, PIK3CA, SHC1, STAT1 

1 – Irinotecan was also analyzed in this therapeutic category but did not yield statistically 
significant DTSPs. 
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TABLE 8. Percentage of compounds with altered gene expression levels in each 

therapeutic category 
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CHAPTER 5: DTSP ALGORITHM - COMPARATIVE EVALUATION 

 
Chapters 3 and 4 describe two unique analytical approaches for detecting signaling paths 

and toxicity hotspots inside large protein interaction networks. While the edge centrality 

approach (outlined in chapter 3) utilizes information on path involvement and edge centrality 

for each protein in the network, the gene expression integration approach (outlined in chapter 

4) leverages information on dynamic, drug-specific changes that occur inside the network as a 

result of drug administration, as measured using in vitro gene expression experiments. This 

chapter describes two implementations aimed at comparative evaluation of the DTSP approach. 

The first evaluation compares paths detected for the set of drugs known to cause non-immune 

neutropenia with another set of paths, discovered for drugs NOT known to cause drug-induced 

neutropenia. The second evaluation compares both DTSP algorithms with the current standard 

approach for biomarker identification in toxicogenomics – namely, microarray data analysis. 

Section 5.1 outlines the rationale for comparison of results with a ‘control’ set of drugs (i.e. 

drugs not known to cause non-immune neutropenia) and compares/contrasts results for the two 

set of drugs. The DTSP algorithm described in chapters 3 and 4 was used on this set of drugs 

along with the gene-expression based measure for assigning edge weights. Description of the 

algorithm implementation is therefore, not repeated in this chapter. 

5.1 Comparison: Toxicity-inducing Drugs vs Control Drugs 

5.1.1 Analysis Methods 

Biological changes inside the network may be caused by many different external stimuli. A 

set of biological changes may lead to multiple phenotypes. For example, an administered drug 

and an environmental allergen may both cause an up-regulation in inflammation-related 

pathways inside the network and this in turn, could lead to many clinical manifestations, 

including the drug-induced toxicity. It would therefore, be interesting to compare the paths 
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discovered for toxicity-inducing drugs with paths for drugs that are not known to cause drug-

induced neutropenia. Is it likely that some of the same proteins may be involved in both sets of 

paths ? What proteins, in paths discovered for drugs related to non-immune neutropenia, are 

also likely to be modulated in relation to other clinical effects and will therefore be ‘hotspots’ 

detected for a set of drugs not involved in non-immune neutropenia ?  What paths are common 

to both sets of drugs and how are they regulated under ‘toxic’ and ‘nontoxic’ conditions? 

In order to address the above questions, the algorithm was re-run on a set of drugs that are 

not known to cause drug-induced neutropenia. The choice of drugs used in this analysis was 

based on two criteria, namely manual curation by a toxicologist to confirm non-association 

with drug-induced non-immune neutropenia and availability of drug-specific gene expression 

data so as to enable implementation of the algorithm. Based on these criteria, a toxicologist 

collaborator performed manual curation to arrive at the list of drugs shown in Table 9.  

TABLE 9. Drugs not known to cause non-immune neutropenia 

Drug Therapeutic Category Description 

Acacetin Antineoplastic Agents 

Acacetin, a flalvinoid compound, has been studied for its 
anti-proliferative effects in human non-small cell lung 

cancer  

Bemegride 

CNS stimulants, 
AntiConvulsants, 
Respiratory system agents 

A CNS stimulant that is used to induce convulsions in 
experimental animals. It  has been used as a respiratory 
stimulant and in the treatment of barbiturate overdose. 

Benparidol Antipsychotic agent 

A butyrophenone with general properties similar to those 
of HALOPERIDOL. It has been used in the treatment of 

aberrant sexual behavior. (From Martindale, The Extra 
Pharmacopoeia, 30th ed, p567) 

Ethotoin AntiConvulsant Ethotoin is a hydantoin derivative and anticonvulsant.  

Ethionamide 

Leprostatic Agents  
Antitubercular Agents  
Fatty Acid Synthesis 

Inhibitors  

A second-line antitubercular agent that inhibits mycolic 
acid synthesis. It  also may be used for treatment of 
leprosy. (From Smith and Reynard, Textbook of 

Pharmacology, 1992, p868) 

Etomidate 
Hypnotics and Sedatives  
Anesthetics, Intravenous  

Imidazole derivative anesthetic and hypnotic with lit t le 
effect on blood gases, ventilation, or the cardiovascular 
system. It has been proposed as an induction anesthetic. 

Etodolac 
Hypnotics and Sedatives  
Anesthetics, Intravenous 

Etodolac is a non-steroidal anti-inflammatory drug 
(NSAID) with anti-inflammatory, analgesic and 

antipyretic properties. Its therapeutic effects are due to its 
ability to inhibit prostaglandin synthesis. It is indicated for 
of rheumatoid arthritis and osteoarthritis. 

Galantamine 

Parasympathomimetics  

Cholinesterase Inhibitors  
Nootropic Agents 

A benzazepine derived from norbelladine. Galantamine is 
a cholinesterase inhibitor that has been studied as a 

treatment for Alzheimer’s disease and other central 
nervous system disorders. 
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Table 9 (continued)   

Indapamide 

Antihypertensive Agents  

Diuretics 

A benzamide-sulfonamide-indole. It  is called a thiazide-
like diuretic but structure is different enough (lacking the 
thiazo-ring) so it  is not clear that the mechanism is 

comparable. 

Isosorbide 

Vasodilator Agents  
Nitrates and Nitrites  
Nitric Oxide Donors 

Isosorbide mononitrate is a drug used principally in the 
treatment of angina pectoris1 and acts by dilating the 
blood vessels so as to reduce the blood pressure. It  is sold 
by AstraZeneca under the trade name Imdur. 

Mestranol Estrogens 

The 3-methyl ether of ethinyl estradiol. It  must be 

demethylated to be biologically active. It  is used as the 
estrogen component of many combination ORAL 
contraceptives. 

Nalbuphine 

Narcotics  
Analgesics, Opioid  

Narcotic Antagonists 

A narcotic used as a pain medication. It  appears to be an 
agonist at kappa opioid receptors and an antagonist or 

partial agonist at mu opioid receptors. 

Nabumetone Antineoplastic Agents 

Nabumetone is a nonsteroidal anti-inflammatory drug 
(NSAID) of the arylalkanoic acid family (which includes 
diclofenac). Marketed under the brand name Relafen, it  
has been shown to have a slightly lower risk of 

gastrointestinal side effects than most other non-selective 
NSAIDs. 

Orlistat  

Enzyme Inhibitors  

Anti-Obesity Agents 

 Orlistat is a drug designed to treat obesity. Its primary 
function is preventing the absorption of fats from the 
human diet, thereby reducing caloric intake. Orlistat works 

by inhibiting pancreatic lipase, an enzyme that breaks 
down triglycerides in the intestine. Without this enzyme, 
triglycerides from the diet are prevented from being 
hydrolyzed into absorbable free fatty acids and are 

excreted undigested.  

Papaverine 

Vasodilator Agents  
Phosphodiesterase 
Inhibitors 

An alkaloid found in opium but not closely related to the 
other opium alkaloids in its structure or pharmacological 
actions. It is a direct-acting smooth muscle relaxant used 
in the treatment of impotence and as a vasodilator, 

especially for cerebral vasodilation. The mechanism of its 
pharmacological actions is not clear, but it  apparently can  
inhibit phosphodiesterases and it  may have direct actions 
on calcium channels. 

Pimozide Antipsychotic agent 

A diphenylbutylpiperidine that is effective as an 

antipsychotic agent and as an alternative to haloperidol for 
the suppression of vocal and motor tics in patients with 
Tourette syndrome. 

Raloxifane 

Antihypocalcemic Agents  
Osteoporosis Prophylactic   
Estrogen Antagonists  

A second generation selective estrogen receptor modulator 
(SERM) used to prevent osteoporosis in postmenopausal 

women. It  has estrogen agonist effects on bone and 
cholesterol metabolism but behaves as a complete 
estrogen antagonist on mammary gland and uterine tissue. 

Selegiline 

Central Nervous System 

Agents  
Antiparkinson Agents 

A selective, irreversible inhibitor of Type B monoamine 
oxidase. It  is used in newly diagnosed patients with 

Parkinson’s disease. It  may slow progression of the 
clinical disease and delay the requirement for levodopa 
therapy. It also may be given with levodopa upon onset of 
disability. (From AMA Drug Evaluations Annual, 1994, 

p385) The compound without isomeric designation is 
Deprenyl. 

 

Hereinafter, the set of drugs not known to cause non-immune neutropenia (listed in Table 9) 

will be termed as ‘control drugs’ and the set of drugs known to cause non-immune neutropenia 

(listed in Table 4) will be described as ‘toxicity-inducing’ drugs. All steps outlined in chapters 

3 and 4 were applied to this analysis and the methods will therefore not be repeated here. 
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Sections 5.1.2 summarizes results from a comparative analysis of DTSPs discovered for 

toxicity-inducing and control drugs.  

5.1.2  Results and Discussion 

Some characteristics of DTSPs for ’control’ drugs were found to be equivalent to their 

’toxicity-inducing’ counterparts. On average, 127 unique proteins were involved in 

statistically significant paths connecting drug targets for control drugs with toxicity-related 

proteins in the network. On average, 147 unique proteins were involved in statistically 

significant paths connecting drug targets for toxicity-inducing drugs with toxicity-related 

proteins in the network. This may imply that the density of interactions among the set of 

proteins involved on DTSPs for each group is more or less similar within the two groups. The 

average number of paths were also found to be similar (424 for toxicity-inducing drugs as 

opposed to 519 for control drugs) in both groups. As the algorithm is designed to identify 

paths maximising the product of gene expression score and the number of such paths desired 

is an input parameter to the algorithm, we find about the same number of paths in both groups. 

The algorithm ranks detected paths based on gene expression change relative to other paths 

for the same drug. If a path is found to be highly ranked for a drug, this may not necessarily 

imply that paths discovered for ’control’ drugs have the same extent of differential expression 

change (Treated vs. Control) compared to paths discovered for the ’toxicity-inducing’ drugs.  

Section 5.1.2.2 describes the difference in extent of gene expression change between the two 

groups. 

5.1.2.1 Toxicity-inducing vs Control drugs: Common path proteins and pathways 
 

If a protein is found to be involved in a statistically significant signaling path for a toxicity-

inducing drug, it may point to the protein’s topological relevance to the drug-induced toxicity, 

depending on the extent of gene expression change and functional association between the 

protein and patho-physiological processes involved in the drug-induced toxicity. However, if 
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the same protein is also found to be involved on paths for control drugs, this can be interpreted 

in many ways. First, it would be important to know the extent to which the path proteins are 

differentially expressed under each treatment condition. If a protein has topological relevance 

but unequal gene expression change under ‘control’ and ‘toxicity-inducing’ conditions, this 

may point to its role in drug-induced toxicity. On the contrary, if the protein is topologically 

relevant (i.e. involved on paths for both toxicity-inducing and control groups) but exhibits the 

same direction or lack of gene expression change irrespective of the drug treatment, this could 

make the protein less relevant to the drug-induced toxicity. If the protein is involved in paths 

for one set of drugs (either toxicity-inducing or control) but not the other, it could still be 

relevant to the toxicity depending on the extent and type (up-regulation or down-regulation) of 

gene expression change observed in each case. For example, if a path protein associated with 

increase in inflammation is found to be down-regulated after control drug administration, this 

may point to its role in inhibiting inflammatory cytokines thereby preventing any neutropenia 

related adverse effect after drug administration. This protein would be relevant to 

understanding toxic mechanisms even if it was not found to be involved in any statistically 

significant paths for the toxicity-inducing drugs. Interpretation of findings solely on the basis of 

protein involvement on paths within each group is therefore likely to be less accurate compared 

to a detailed analysis of the extent of gene expression change and the effect of this change on 

toxicity-related end nodes in the network. 

Key observations from identifying protein/s that are involved on at least one path for both 

groups and those that are only found on paths for one of the groups are as follows –  

- Out of the 424 unique proteins found to be involved in at least one path for the 

‘toxicity-inducing’ drugs, 272 proteins were also found to be involved in at least one 

path for the ‘control’ set of drugs. 152 proteins were only found on paths for the 

toxicity-inducing set while 247 proteins were found only on paths for the control drugs. 
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- Further analysis of the above set of proteins was carried out to understand whether 

specific canonical pathways were being modulated by each group of proteins. Geneset 

Enrichment for statistically significant KEGG pathway association was carried out 

using the WEBGESTALT application as described in section 3.1.5. The intention with 

geneset enrichment analysis was to understand whether some pathways were being 

modulated solely in the ‘toxicity-inducing’ set while other pathways were being 

modulated in both set of drugs. Figure 12 shows the top 10 pathways that were 

modulated by each set of proteins. 

 

Figure 11.  Venn Diagram shows the number of proteins common and exclusive to paths 
discovered for toxicity-inducing and control drugs. Geneset enrichment analysis revealed top 
10 canonical pathways associated with path proteins discovered for each set of drugs. Some 

known pathways (like MAPK, cancer pathways and GnRH signaling pathway) were found to 
be common across the groups. Some others (like drug metabolism – cytochrome P450, Focal 
adhesion) were exclusively associated with path proteins discovered for drugs that cause non-

immune neutropenia. 
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- Some known pathways like MAPK signaling and cancer-related pathways showed 

statistically significant association in both groups. This implies that distinct components 

of these pathways are involved in paths discovered for each group. This isn’t 

unexpected given observations that distinct set of proteins within the MAPK signaling 

cascade have opposing effects on apoptosis [Xia et al. 1995].  While it cannot be 

concluded solely on findings from this analysis, it is possible that some proteins 

associated with MAPK signaling activate processes that lead to drug-induced 

neutropenia while certain other proteins also associated with MAPK signaling exhibit 

the exact opposite effect under control treatment conditions. MAPK is a key signaling 

pathway known to modulate the therapeutic effects of chemotherapy drugs[Boldt et al. 

2002]. Detailed analysis of these path proteins with additional data and knowledge of 

up and down regulation of relevant proteins in the context of other changes may 

therefore, help understand the underlying toxicological processes better. 

5.1.2.2 Toxicity-inducing vs. Control drugs: Extent of genomic regulation 
 

As described in section 5.2, both topological relevance and extent of gene expression 

change in path proteins are important to understand when interpreting the results from this 

analysis. Topological relevance of proteins discovered for each set of drugs have been analyzed 

in section 5.2.  

In order to compare the extent of gene expression change in path proteins for the two set of 

drugs, an average of path expression scores for all paths was computed across all statistically 

significant paths for drugs in the toxicity-inducing and control set. Figure 13 shows a boxplot 

of the average score in each group. 

The boxplot implies that proteins involved in DTSPs for drugs in the ‘toxicity-inducing’ set 

exhibit greater extent of gene expression change (treated vs. control) compared to those for 

drugs in the ‘control’ set. In other words, the set of statistically significant paths discovered for 
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toxicity-inducing drugs may be ‘active’ under drug administration conditions while the set of 

paths discovered for control drugs are relatively ‘inactive’ from a gene expression standpoint.  

 

 

 

Figure 12.  Average Path expression score in each set reveals the greater extent of gene 
expression change (treated vs. control) in path proteins discovered for the Toxicity-inducing 

drugs. 

The advantage of using the DTSP algorithm on protein interaction networks and integrating 

gene expression data is clear from this observation. Topological relevance of a protein provides 

a rationale for studying its gene expression change and the extent of gene expression change 

indicates that one set of path proteins is more likely to yield a downstream effect in the form of 

a drug-induced toxicity. 

Some DTSPs were found to be common to both set of drugs. If a statistically significant 

path discovered for the toxicity-inducing drugs also exists in the control set, it would be 

important to know whether the extent and direction of gene expression regulation for such 

paths is different between the two set of drugs. If the end nodes on such paths are differentially 

regulated between the two sets of drugs, this may point to their role in drug-induced non-

immune Neutropenia. This is because Neutropenia is defined as a clinical significant reduction 

in Neutrophil count. Paths where the toxicity-related end node proteins are down-regulated, are 

Toxicity-inducing 

Drugs 

Control 

Drugs 
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therefore important because they may lead to reduction in Neutrophil production. The ‘toxicity-

inducing’ set of DTSPs were therefore, compared with all paths discovered for the control set 

to identify four common DTSPs. The extent of gene expression regulation in the end nodes 

(known hematopoiesis-related proteins) was calculated (ratio of treated and control) for each 

common path. Table 10 shows the four paths and the gene expression ratio for the end nodes 

for each path. 

Colony stimulating factor CSF3,  an end node for paths (depicted as a chain of HGNC 

symbols) IL1B-MAPK14-STAT1-CSF3 and REN-EDN1-ACE1-CSF3 was marginally down-

regulated (treated/control) for the first path in both toxicity-inducing as well as control group 

while in the second path, CSF3 was found to be marginally up-regulated in both, the toxicity-

inducing and the control set. The longer path that started at CCND1 also led to marginal up-

regulation of its end node CSF2 in both sets of drugs. DTSPs common to both groups and 

regulation of toxicity-related proteins on those paths. 

TABLE 10. DTSPs common to both groups and regulation of toxicity-related 

proteins on those paths 

 

KITLG (KIT Ligand) was the only end node that was found to be marginally down-

regulated in the toxicity-inducing set and marginally up-regulated in the control set. This 

implies that down-regulation of KITLG via EGFR and SHC1 proteins may lead to reduced 

Drug-Toxicity Signaling Path (DTSP) 

Toxicity-

inducing 

Drugs 

Ratio 
(Trt/Ctl) 

Control 

Drugs 

Ratio 

(Trt/Ctl) 

IL1B MAPK14 STAT1 CSF3       0.939631803 0.944454842 

REN EDN1 ACE1 CSF3       1.016675682 1.112032776 

CHRM1 EGFR1 SHC1 KITLG       0.857261358 1.095764547 

CCND1 STAT3 SRC5 GJA1 MAPK3 FOS1 CSF2 1.078424425 1.015210632 
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Neutrophil production due to toxicity-inducing drugs. This observation needs further 

experimental confirmation to evaluate the range of expression change in KITLG and 

corresponding change in Neutrophil production. 

The role of KITLG as a key network protein involved in drug-induced non-immune 

neutropenia as hypothesized in Section 4.3.4 and its inclusion as a potential biomarker is 

therefore, supported with this comparative analysis of paths discovered for the toxicity-

inducing and control drugs. 

5.2 Comparative Evaluation of algorithm accuracy 

The integration of gene expression and protein interaction information may seem to offer a 

more comprehensive model compared to using either ‘omics’ platform by itself. However, a 

statistical evaluation of the DTSP algorithm is necessary in order to understand its predictive 

ability compared to the most prevalent toxicogenomics method. To achieve this, microarray 

data analysis was performed using the same gene expression dataset that was used earlier to 

compute the gene expression measure. Results from all algorithms were compared against 

results from microarray data analysis. The choice of microarray data analysis for comparison 

was driven by two factors:  

1. As the first high-throughput ‘omics’ platform that developed and evolved after the 

human genome project, gene expression-based measurements are relatively mature 

compared to protein expression and metabonomics platforms. Affymetrix Genechip 

arrays have been known to deliver repeatable results when performed under quality-

controlled experimental conditions. The other ‘omics’ platforms (proteomics and 

metabonomics) are relatively newer and drug-specific data for these platforms are not 

widely available.  
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2. Microarray gene expression data are publicly available and extensively used for 

toxicogenomics applications [Roth et al. 2011, Mongan and Hamadeh 2011, Afshari 

et al. 2011, Hamadeh et al. 2002]. 

The following section describes steps implemented to analyze microarray gene expression 

data. 

5.2.1 Microarray Data Analysis 

Analysis of raw data collected using a microarray platform involved the following steps: 

1. Raw CEL files for one or more treated samples and more than one control sample for 

each treated sample were downloaded for each ‘toxicity-inducing’ drug from the 

connectivity map server. CEL files (treated and 1-4 vehicles scans) for 51 experiments 

were downloaded for the 19 toxicity-inducing drugs analyzed in this study. For the 18 

control drugs, CEL files (treated and 1-4 vehicles) for 41 experiments were 

downloaded. There were one or more treated samples for each drug (dose: 10µM, 

duration: 6 hours) and multiple vehicle scans from HT_HgU133 chip array in NCI 

MCF7 cell lines. 

2. The ‘ExpressionFileCreator’ module in GenePattern was used to convert CEL files into 

gct format expression files [Reich et al. 2006]. Robust multichip average (RMA) 

measure was used for conversion and quantile normalization was applied. 

3. The average log ratio of treated/average(vehicle) values were calculated for each 

probeset and gene expression data for all drugs were combined into a single gct file 

with class labels ‘toxicity-inducing’ and ‘control’. 

4. The gene expression dataset was then analyzed using the 

‘ComparativeMarkerSelection’ module in GenePattern. The 22277 probesets on 

HT_HgU133 chip were ranked using the ‘Signal to Noise’ (SNR) test statistic – 

SNR = (µtoxic - µcontrol)/(σtoxic + σcontrol) 
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where   µtoxic – Mean value for a probeset in the ‘toxicity-inducing’ set 

 µcontrol - Mean value for a probeset in the ‘control’ set 

 σtoxic – Standard deviation for a probeset in the ‘toxicity-inducing’ set 

 σcontrol – Standard deviation for a probeset in the ‘control’ set 

Use of the SNR test statistic ensured that probesets with largest difference in mean 

expression value between the two sets and least standard deviation within the two sets were 

ranked higher. 

 

5.2.2  Choice of Benchmark Database 

In order to compare outputs from the two DTSP algorithms with results from microarray 

data analysis, benchmark data associating specific network proteins with the drug-induced 

toxicity were required. The Comparative Toxicogenomics Database (CTD), with its collection 

of chemical–gene, chemical–disease and gene–disease relationships manually curated and 

inferred from published literature was used for this purpose. The database is dedicated to 

promoting the exploration and development of testable hypotheses about the effects of the 

environment on human health [Davis et al. 2011]. 

A significant number of relationships in the CTD result from computation of an inference 

score. The inference score reflects the degree of similarity between CTD chemical–gene–

disease networks and a similar scale-free random network. Many biological networks, such as 

disease and metabolic networks, have been shown to be scale-free random networks. The score 

takes into account the connectivity of the chemical, disease and each of the genes used to make 

the chemical disease inference. The higher the score, the more likely the inference network has 

non-uniform connectivity as observed in scale-free random networks. 
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Figure 13.  CTD integrates curated data for chemical-gene interactions, chemical- disease and 
gene-disease relationships (colored circles) with select public datasets (gray circles; pathways 

from the KEGG and Reactome databases and GO annotations). Solid lines describe directly 
curated or integrated relationships and dashed lines describe inferred relationships. (Figure 
and Legend reproduced from the BioInformatics Primer, Pathway Interaction Database, 

Mattingly 2011)[Mattingly et al. 2006] [Davis et al. 2011] 

As summarized in Table 11, CTD provides ~325,000 curated chemical-gene interactions 

and ~1,500,000 curated and inferred Gene-Disease relationships. A major strength of CTD is 

that these core data are manually curated from the literature by professional biocurators [Salimi 

and Vita 2006], ensuring accuracy. CTD does use text mining to triage the literature, but each 

reference (abstract or full-text) is read by biocurator to identify interactions and relationships, 

and all curated data is supported by its source citation. The manual curation approach at CTD 

allows biocurators to validate every interaction and relationship, ensure that the correct 

chemical name and gene symbol is used, and generate detailed descriptions of the types of 

interaction. Data are uploaded to the database monthly. The CTD was therefore used as a 

benchmark to compare results from microarray analysis with results from the two DTSP 

algorithms proposed in this thesis.  
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TABLE 11. CTD data status as of May 2011 (summarized from BioInformatics 

Primer, Mattingly 2011) 

Description Data Count 

Chemical-Gene curated Interactions 325,342 

Gene-disease relationships 1,575,076 

- Curated 13,187 

- Inferred 1,561,889 

Chemical-disease relationships 334,448 

- Curated 11,378 

- Inferred 323,070 

 

5.3 Results and Discussion 

Hereinafter, the DTSP Algorithm described in chapter 3 will be referred to as the 

’DTSP_Edgecent’ (for Edge Centrality measure) algorithm and the DTSP algorithm described 

in chapter 4 (combining protein interaction network and gene expression measure) will be 

referred to as ‘DTSP_GeneExp’ algorithm. The two algorithms were compared with results 

from microarray data analysis described in section 5.2.1. Comparison of results was carried out 

as follows: 

1. Results from each algorithm (path proteins in case of the two DTSP algorithms and 

probesets in case of microarray data analysis) were mapped to genes in order to enable 

comparison with neutropenia-related genes provided by the Comparative 

Toxicogenomics database. 

2. Genes common to the three sets, i.e. the human subset of the STITCH database, the 

HT_HgU133 chip genes and CTD database genes were identified. This was the larger 

set of common genes from which each algorithm mined a smaller set of ‘toxicity-

related’ genes. 
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3. From within this common set, the DTSP_Edgecent algorithm identified 182 unique 

genes involved on paths discovered for the toxicity-inducing drugs. The 

DTSP_GeneExp algorithm identified 417 unique genes involved on paths discovered 

for the toxicity-inducing drugs. The top 500 genes (ranked by SNR statistic described 

in section 5.2.1) from microarray data analysis were compared with results from the 

two DTSP algorithms using the CTD benchmark. 

Comparison of the two DTSP algorithms with results from microarray data analysis was 

undertaken using gene-neutropenia-drug relationships from the CTD database as a reference. 

The CTD database contained less than 25 manually curated relationships between 18 genes and 

neutropenia-related disorders (including severe congenital 1/2 autosomal dominant, 

Poikiloderma with Neutropenia disorder and chronic idiopathic subtypes) and not all gene-

neutropenia relationships were found in the context of drug administration. The number of 

inferred relationships in the database was much higher, each with an inference score that 

ranged from about 1.9 (indicating weak association) to 140 (indicating strong association).  

In order to explore changes in accuracy estimates with use of different inference score 

thresholds for identifying a ‘positive set’ inside the CTD benchmark, three different ‘positive’ 

set of genes were considered – 

Set 1:  All Neutropenia genes with direct (manually curated) evidence in CTD 

Set 2:  List of top 500 neutropenia genes in CTD (direct and inferred evidence) 

Set 3:  All Neutropenia genes with direct and inferred evidence for association with the set 

of toxicity-inducing drugs used for the DTSP algorithm. 

Results from comparative evaluation of each algorithm using Set 1 is summarized below: 

Out of the 18 unique genes that were associated with various subtypes of neutropenia, 11 

were associated with the higher-granularity disease ‘neutropenia’, 5 with congenital subtype or 

cyclic subtype of the disease, one with ‘granule deficiency’ and one with ‘Poikiloderma with 
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Neutropenia’. Out of the 11 genes associated with ‘Neutropenia’, 4 were associated with 

genetic polymorphisms in some cases associated with genes that degrade specific  

chemotherapy drugs. Given that in vitro gene expression data used in this analysis was 

primarily aimed at detecting gene expression changes from drug administration using in vitro 

tissue samples and evidence for genetic polymorphism may not imply a functional effect under 

drug administration conditions, it was considered appropriate to compare algorithm results with 

the remaining set of genes. Out of the 7 remaining genes in the ‘positive’ set, 5 genes (71%) 

were detected using the DTSP-GeneExp algorithm, 2 genes (29%) were detected using the 

DTSP-Edgecent algorithm and 1 gene (14%) was ranked among the top 500 with microarray 

data analysis. 

For the ‘positive’ sets 2 and 3 in CTD, the following measures were computed 

a. True Positives (TP): Number of genes identified as toxicity-related using an 

algorithm that are also associated with the toxicity inside CTD. 

b. False Positives (FP): Number of genes identified as toxicity-related using an 

algorithm that are not associated with the toxicity inside CTD. 

c. True Negatives (TN): Number of genes identified as NOT toxicity-related using 

an algorithm that are NOT associated with the toxicity inside CTD. 

d. False Negatives (FN): Number of genes identified as NOT toxicity-related using 

an algorithm that are associated with the toxicity inside CTD. 

e. Sensitivity = TP/(TP + FN) 

f. Specificity = TN/(FP + TN) 

g. Positive Predictive  Value = TP/(TP + FP) 

h. Negative Predictive Value = TN/(TN + FN) 

i.  False Discovery Rate = FP/(FP + TP) 

j.  Accuracy = (TP + TN)/(TP + TN + FP + FN)  
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For set 2, the top 500 genes (ranked by inference score) were considered as the CTD 

‘positive’ set and for set 3, all 4004 genes (with direct and inferred evidence) were considered 

as the CTD ‘positive’ set. Table 12 shows measures computed for both sets.  

TABLE 12.Comparative Evaluation of DTSP algorithms 

 
CTD (Top 500) 

CTD - all ‘neutropenia’ genes  

(4004) 

Measure 

Microarray  

(top 500) 

DTSP 

EdgeCe

nt 

DTSP 

GeneExp 

Microarray  

(top 500) 

DTSP 

EdgeCent 

DTSP 

GeneExp 

True 
Positives 

37 
(7.4%) 

80 
(44%) 

141 
(34%) 

231 
(46%) 

136 
(74%) 

296 
(71%) 

False 
Positives 

463 
(93%) 

102 
(56%) 

276 
(55%) 

269 
(54%) 

46 
(25%) 

121 
(29%) 

True 
Negatives 

10274 
(96%) 

10635 
(96%) 

10461 
(97%) 

6964 
(65%) 

7187 
(65%) 

7112 
(66%) 

False 
Negatives 

463 
(4.3%) 

420 
(3.7%) 

359 
(3.3%) 

3773 
(35%) 

3868 
(35%) 

3708 
(34%) 

Sensitivity  0.074 0.16 0.282 0.032 0.034 0.074 

Specificity  0.96 0.99 0.97 0.93 0.99 0.98 

PPV  0.074 0.44 0.34 0.46 0.75 0.71 

NPV  0.96 0.96 0.97 0.35 0.65 0.66 

FDR 0.93 0.56 0.66 0.538 0.25 0.29 

Accuracy 0.92 0.95 0.94 0.36 0.65 0.66 

 

Both DTSP algorithms showed a significant improvement over standard microarray data 

analysis for the two sets. A five-fold improvement in ‘true positives’, two-fold improvement in 

‘false positives’ and marginal improvements in ‘true negatives’ was observed with the DTSP 

algorithms with set 2 (CTD Top500),. However, due to high proportion of ‘False positives’ 

(partly attributable to a stringent cut-off for number of genes in the ‘true positive’ set), the 

sensitivity with all three methods was impacted. The two DTSP algorithms showed distinct 

improvement in sensitivity over microarray data analysis, with the DTSP-GeneExpression 

approach showing the highest sensitivity among the three methods. Specificity was high with 

all three methods, implying that if a gene was found to be associated with the drug-induced 
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toxicity using either methods, there was 3-4% chance that this would be a ‘false positive’ 

finding, with the DTSP algorithms having marginally improved specificity. 

In terms of overall accuracy, the DTSP_Edgecent algorithm marginally outperformed the other 

two methods, with 95% accuracy followed by DTSP_GeneExp algorithm (94% accuracy) and 

Microarray data analysis with 92% accuracy. 

Set 3 used a bigger ‘positive’ set, which improved the proportion of ‘true positives’ detected 

with all three methods at the expense of higher ‘false Negatives’. As a much higher number of 

‘true positive’ genes was identified inside the CTD benchmark (total 4004 genes) compared to 

the number of genes identified as toxicity-related from microarray data analysis (top 500, 

ranked by Signal-to-Noise ratio statistic), there were a higher proportion of false negatives with 

set 3.   

However even with set 3, the two DTSP algorithms outperformed microarray data analysis 

in terms of ‘true positives’ detected (46% for microarray data analysis, 74% for 

DTSP_Edgecent and 71% for DTSP_GeneExp), Specificity (93% for microarray data analysis, 

98% for DTSP_GeneExp and 99% for DTSP_Edgecent), Positive Predictive Value (46% - 

Microarray, 71% - DTSP_GeneExp and 74% - DTSP_Edgecent) and Overall accuracy (36% - 

Microarray, 65% - DTSP_Edgecent and 66% - DTSP_GeneExp). 

The advantages of using the DTSP approach over standard microarray analysis are apparent 

from the above analysis. However, there is only a marginal difference in measures for the two 

DTSP algorithms and on some measures (e.g. %True positives, PPV and Specificity) the edge 

centrality-based DTSP algorithm marginally outperformed the gene expression-based 

approach. Does this necessarily imply that the edge centrality-based approach is superior to the 

gene expression-based approach? Further analysis is recommended before one DTSP approach 

can be preferred over the other. The following aspects of the comparative evaluation and the 

two DTSP algorithms need further consideration -  
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1. The gene expression measure emphasizes network dynamics (temporal changes in gene 

expression after drug administration) when identifying toxicity-related proteins whereas the 

edge centrality approach emphasizes topological connectivity. Understanding and 

incorporating network dynamics into a large network model may be inherently more 

complicated than computing edge centrality with the assumption that connectivity determines 

‘interestingness’ irrespective of temporal changes that may happen to the network after drug 

administration. Given the limited amount of available evidence from comparative evaluation 

that demonstrates marginal superiority for the edge centrality approach, the choice of one 

DTSP algorithm over the other remains unclear. Further investigation is required, both in terms 

of using additional gene expression data as well as integrating additional data types, in order to 

refine the gene expression based approach. Edge centrality seems to provide an interesting 

alternative view on drug-toxicity signaling path but whether choice of a biomarker panel can be 

based solely on network connectivity remains to be seen. A measure that combines the 

strengths of the two DTSP algorithms may perhaps lead to an improved specificity and 

sensitivity over using the two distinct measures. 

2.  The choice and availability of an appropriate benchmark for evaluating such algorithms 

needs further investigation. CTD provides a high-quality resource that catalogs relationships 

between genes, diseases and chemicals from a variety of sources. However, for algorithms like 

the ones developed in this thesis and those that are implemented on large integrated networks, 

some of the same underlying sources would be used (e.g. co-occurrence between genes and 

diseases inside published literature) to populate both the STITCH/STRING databases and the 

CTD/benchmark. There is a need to identify benchmark databases that capture gene-chemical-

disease relationship from independent experimental/direct evidence sources. Also, CTD 

provides many types of gene-disease-drug relationships, only of some of which can be 
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expected to be detected using the DTSP approach, at least partly due to the algorithm 

limitations with using only two data types. 

 

Figure 14.  The CTD curation and integration paradigm (reproduced from Davis et al. 
2011[Davis et al. 2009]. Evidence for a direct gene-chemical relationship and a direct 

chemical-disease relationship forms the basis for an inferred gene-disease relationship. 

Moreover, as shown in Figure 15, inferred relationships between genes and disease in the 

CTD are based on the paradigm that if there is direct evidence in published literature 

associating a gene with a particular chemical and if there is also direct evidence that the same 

chemical is associated with a toxicity, then it is inferred that the gene and the disease may also 

be related. This paradigm contradicts underlying assumptions made with the two DTSP 

algorithms that primary or secondary drug targets (proteins) are only relevant if they enable 

topologically connectivity with proteins known to be associated with the drug-induced toxicity 

(i.e. DTSP_Edgecent algorithm) and are involved in highly differentially regulated drug-

toxicity signaling paths (ie. DTSP_GeneExp algorithm). The ‘positive’ set identified with the 

benchmark, therefore requires further refinement in order to distil the specific genes that can be 

definitively linked to drug-induced non-immune neutropenia and not neutropenia in general 
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(includes congenital and many other subtypes of the disease). The apparent lack of sensitivity 

with all three methods can be at least partly attributed to the above limitations with using a 

comparison benchmark. 

On the other hand, interpretation of results from signaling path detection approaches like the 

DTSP algorithms requires further refinement in path protein subsets. Further analysis of 

discovered paths may lead to identification of protein subsets that are unique to the drug and its 

mechanism of action and therefore, have a stronger association with the drug than to drug-

induced toxicity across a set of drugs. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

 
The ability to apply signaling path detection to in silico toxicity evaluation offers 

exciting opportunities. This thesis demonstrates how background knowledge about drugs and 

their effects can be utilized in conjunction with a network-based model to discover toxicity-

related path proteins. Integration of protein interaction and gene expression information yields 

insights into the dynamic changes that occur at a systems level after drug administration. 

Drug-Toxicity signaling paths and discovery of common characteristics of path proteins 

across a set of drugs provides opportunities for understanding toxic mechanisms and possible 

biomarker panels that can, in the future be used for screening new drug candidates.  The 

DTSP algorithm represents one of the first steps towards driving an area of research in 

systems toxicology that can lead to increasingly accurate and comprehensive in silico toxicity 

evaluation models.  

6.1 Thesis Contributions 

This thesis has made the following important contributions: 

First, the drug-toxicity signaling path detection algorithm is a unique approach for 

discovering signaling paths inside protein interaction networks that are directly relevant and 

downstream from drug target proteins and upstream from toxicity-related proteins inside a 

large protein interaction network. The DTSP algorithm is the first to apply signaling path 

detection to in silico toxicity evaluation. 

Second, both local and global properties of biological networks have recently been studied 

and applied towards prediction of protein function. However, the definition and 

implementation of an edge centrality measure for detection of drug-induced toxicity hotspots 

inside protein interaction networks is a unique contribution of this thesis.  
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Third, algorithms aimed at re-engineering biomolecular networks from gene expression data 

and integration of genomic-proteomic data have been proposed recently. However, integration 

of gene expression and protein interaction data for detection of toxicity hotspots is a unique 

contribution of this thesis. 

Four, yet another unique contribution of this thesis is a biomarker panel associated with 

drug-induced non-immune neutropenia, discovered using the DTSP algorithm. 

The following section summarizes the next steps and areas in which the DTSP algorithm 

can be extended in the future. 

6.2  Recommendations for Future Work 

6.2.1  Experimental Confirmation 

Validation of the DTSP algorithm is a necessary pre-requisite for the approach to be 

considered as a toxicity screen in pharmaceutical R&D. In order to confirm that the biomarker 

panel proposed in chapter 3 is predictive of drug-induced non-immune neutropenia, the results 

will need to be replicated on other drugs that are known to cause the toxicity. Laboratory-based 

experiments on identified path proteins may provide experimental evidence to support the 

preliminary hypothesis.  

6.2.2   Applicability to other drug-induced toxicities 

If the algorithm can be implemented and evaluated for toxicities with high-quality 

benchmark data that supports drug-toxicity association and protein-toxicity relationships, this 

will provide greater confidence in its ability to detect toxicity-specific protein hotspots inside 

large biological networks. Discovery of toxicity hotspots using the DTSP algorithm requires 

availability of in vitro gene expression data. In addition to this, some of the additional data 

types outlined in section 6.2.3 may also improve screening of candidate paths to reveal those 

that are directly related to the toxicity of interest. 
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6.2.3  Incorporation of Additional data types  

Systems analysis for detection of toxicity hotspots can potentially utilize many other data 

types. The metric used for weighting edge of the network of reliable paths in the DTSP 

algorithm, can incorporate additional background knowledge on network proteins, such as 

miRNA (microRNA) annotations and protein localization information. For example, when 

considering events like hepatotoxicity, paths consisting of proteins known to be localized in 

the liver may be considered more relevant. Incorporation of miRNA annotations for path 

proteins may reveal common regulators of proteins involved in drug-toxicity signaling paths. 

Improved mechanistic understanding of pathway regulation may lead to improved biomarkers 

for prediction of drug-induced toxicities. The algorithm may also benefit from additional data 

types in the form of chemical properties of the drugs, pharmacokinetic properties and 

pharmacodynamic changes at various time points after drug administration as well as higher 

level canonical pathway annotations of network nodes. Finally, drug-toxicity signaling paths 

that are ‘active’ only in the presence of more than one drug, may be associated with adverse 

effects that result from administration of multiple drugs [Tatonetti et al. 2012]. Understanding 

drug-drug interactions through the lens of automatic signaling path detection may be an 

important benefit from our approach. 

6.2.4  System-wide temporal and stochastic simulation 

Protein interaction network analysis described in this thesis represents a non-temporal, 

non-dynamic, semi-stochastic , ‘top down’ approach starting at drugs and their clinical effects, 

using a constructed protein interaction network and analyzing it to understand the role of 

proteins involved on drug-toxicity signaling paths. An alternative approach would be to utilize 

a ‘bottom up’ approach, where individual components of the network are first studied in 

greater detail. The bottom up approach starts with identifying regulation functions for each 

network element and gradually building the holistic picture of the system, at the protein, 
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pathways, tissue, organ and organism leve1. However, analysis of smaller metabolic networks 

has been undertaken by many other researchers to leverage the ‘bottom up’ approach. One of 

the limitations with adopting a thorough quantitative approach at the level of a large network 

is the scarcity of temporal data on protein interactions and all levels above it (pathways, cell, 

tissue and organ) for the human biological system. This limitation is rapidly being replaced by 

the limitation in our ability to mine these networks to reveal the ‘truth’ underlying patho-

physiological phenomena.  

6.2.5 Network Medicine 

Drugs of the future may be able to target sub-networks instead of proteins, thereby giving 

rise to a completely new approach to drug discovery, recently termed as ‘network medicine’. 

Pawson et al. suggest two different strategies to drive network medicine, one involves a 

synthetic biology approach that aims at rewiring (adding new interactions) of the network using 

small molecules or novel synthetic modular proteins. This strategy exploits the modular nature 

of signaling proteins to change the topology and wiring of the network by adding or deleting 

interactions. The second approach relies on changing the information flow inside the network 

by targeting the phosphorylation states of key proteins. 

As systems biology is a relatively nascent field, many more approaches for targeting protein 

hotspots or modules directly may emerge over the next decade. Our ability to understand the 

dynamics of biological networks would be the key to discovering safe and efficacious 

therapeutic interventions. 
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Appendix A:  Graph Theoretic Definitions 

 This thesis adopts the graph-theoretic definitions proposed by Diestel [Diestel 2005]. A 

graph is a pair G = (V, E) of sets such that E Є [V
2
] and V Ω E = ф . The elements of V are 

vertices (or nodes) of the graph G, the elements of E are its edges (or lines).  The usual way to 

picture a graph is by drawing a dot for each vertex and joining two of these dots by a line if 

the corresponding two vertices form an edge. 

 The degree (or valency) dG(ν) =  d(ν) of a vertex ν is the number |E(ν)| of edges at ν ; by 

our definition of graph, this is equal to the number of neighbors of ν. A vertex of degree 0 is 

isolated.  

 A path is a non-empty graph P = (V,E) of the form 

 V = { x0, x1 , x2 , ……… xk }                              E = { x0x1, x1x2, x2x3 ………. Xk-1Xk}  

 where the xi are all distinct. The vertices x0 and xk are linked by P and are called its ends; 

the vertices x1 , x2 , ……… xk-1 are the inner vertices of P. The number of edges of a path is its 

length, and the path of length k is denoted as P
k
. k is allowed to be zero. A path is often 

referred to by the natural sequence of its vertices, say P =  x0x1 x2  ……… xk and calling P a 

path from x0 to xk .  

 A subgraph of a graph G is a graph whose vertex and edge sets are subsets of those of 

G. A supergraph of a graph G is a graph that contains G as a subgraph.  The graph is 

directed if its edges are directed (pointing toward either one of the ends) and undirected 

otherwise. A graph is complete (or called a clique) if every node has a connecting edge to 

every other node.  

 The complete graph on n vertices is often denoted by Kn where Kn would have n(n-1)/2 

vertices. 

 The clustering coefficient is used to quantify the extent to which a node is a 

cluster member. For example, in a network, if a node is directly connected to five 
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neighbors, the clustering coefficient calculates the ratio of the number of direct links 

observed among the five neighbors over the number of possible direct links among the 

five neighbors. If all five neighbors are fully interconnected, the node is said to have a 

high clustering coefficient (value of 1) and vice versa (value of zero). Formally, the 

clustering coefficient is defined as 

Ci = 2n /k i(ki-1)’ 

where n denotes the number of direct links connecting the ki nearest neighbors of node 

i. The clustering coefficient is 1 for a node at the center of a fully inter-linked cluster, 

while it is zero for a node that is part of a loosely connected group. A global 

measurement related to Ci is the average clustering coefficient C over all nodes in the 

network, characterizing the overall tendency of nodes to form clusters or groups. 
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