

Goodwin College of Professional Studies

Drexel E-Repository and Archive (iDEA)

http://idea.library.drexel.edu/

Drexel University Libraries
www.library.drexel.edu

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may
reproduce (print, download or make copies) the Material without prior permission. All copies must include any
copyright notice originally included with the Material. You must seek permission from the authors or copyright
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The
responsibility for making an independent legal assessment and securing any necessary permission rests with persons
desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

http://www.drexel.edu
http://idea.library.drexel.edu/
www.library.drexel.edu
mailto:archives@drexel.edu
http://www.drexel.edu/goodwin/

Block Migration in Broadcast-based Multiprocessor Architectures

Constantine Katsinis
Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104

katsinis@ece.drexel.edu

Abstract

This paper presents techniques that improve the
performance of parallel programs on distributed shared
memory NUMA multiprocessors by implementing
dynamic memory block and page migration. Our
techniques address the latencies caused by the
contention within the network and attempt to enhance
data locality by migrating pages to reduce remote
references. We analyze the behavior of eight
multiprocessor applications which exhibit a wide range
of network traffic patterns. Results show that several
applications that encounter hot spots and network
congestion see a reduction of run time by more than a
factor of ten.

1. Introduction

Typically, on cache-coherent DSM multiprocessors,
each logical memory page is initially mapped on a
physical page at some node in the system which serves as
the home node of that page.

Our experiments with real applications show that
usually pages are shared by more than two processors
and that all processors sharing the page generate
approximately the same number of references. Therefore,
migrating a page to a new node has little beneficial
effect. In fact, experiments have shown [1] that
contention at the network interface and the links can be
a significant factor affecting performance and must be
taken into account when designing page migration
protocols.

To reduce the contention, we must detect and
eliminate the hot spots as soon as possible after they
arise, so that the flow of data request and acknowledge
messages in the network is approximately uniform over
all nodes. We examine algorithms that continuously
attempt to determine if a node is a hot spot. If the node
is a hot spot, the algorithm determines if the block being
acknowledged by the message under consideration is one
of the causes of the hot spot, and may decide to migrate
the block.

Our algorithms examine individual memory blocks,
or groups of blocks within the same physical page, and
may decide to migrate one block or several blocks from
the same physical page. They are implemented at the
lowest level, between the cache, directory and network
controllers, and therefore are completely transparent to
the user and require no modification to the application.

We analyze the behavior of the applications using
address traces executed by a simulator that uses a
broadcast-based architecture as the underlying computer
system. One particular implementation of this
architecture is the SOME-BUS multiprocessor [2,3]
which requires no switches and is capable of supporting
multiple continuous broadcasts. Although this broadcast-
based architecture can provide better performance than
some switch-based architectures, the results obtained
here are generally applicable to traditional architectures.

The address space of the application is initially
uniformly distributed over all nodes. Directory
information for each block includes two counters,
indicating the number of local and remote references.
Each node has an address translation table which maps
logical block numbers to physical block numbers.
Initially, the table does not do any remapping, so that
logical block b is mapped to physical block b. Block
migration is implemented by copying the selected block
from the original home node to the new home node and
adjusting the translation tables in all nodes. Since
previous research uses pages as the granularity for data
migration, we also implement page migration. The
directory contains two counters per page, indicating the
number of local and remote references to that page.
These counters are in addition to the two counters per
block mentioned above. Our experiments show that the
relevant reference counts per block are small numbers,
so that the counters associated with each block need only
be a few bits wide. Thus, the additional memory
requirements per block and per page are very small.

2. Reducing contention

Our assumption is that most shared pages are shared

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE

by more than one processor, the result of repetitive and
dynamic single-producer, multiple-consumer
combinations. Migrating pages to nodes that access them
more frequently offers little benefit and requires such
excessive processing that it is not practical to implement
in hardware. Instead, we develop very simple algorithms
that can be easily implemented in hardware and that use
information gathered by hardware monitors with only a
minimal overhead and without the involvement of the
operating system.

Our protocols are designed to adjust the data
distribution at runtime through automatic block
migrations. Instead of using memory access histograms,
each node monitors its own channel condition to
determine if it is becoming a hot spot and, based on this
decision, migrates individual blocks to nodes that are not
hot spots, to dynamically and transparently modify the
data layout. In this way, incorrectly allocated data is
moved to other nodes causing an equalization of remote
accesses. Blocks being accessed frequently by their
current home node are not migrated and hence data
locality is preserved.

The performance of the algorithms is examined
using a simulator which maintains the precise state of the
processor, directory controller, cache controller and
channel controller, for every memory reference and
every message. The applications executed by the
simulator consist of sequences of memory references
extracted from actual multiprocessor address trace files.
Each thread has its own address sequence and stops
running when it has finished processing all of its memory
references. The execution of the application is complete
when all threads have finished processing their
respective memory reference sequences.

The architecture used in this paper has 64 nodes.
There is one thread per node. Cache blocks have 64
bytes; DACK messages (with payload of one cache
block) have 80 bytes, and request messages with no data
have 48 bytes. Smaller messages, such as channel state
updates or remap acknowledgments, have 8 or 16 bytes.

A set of four multiprocessor address trace files for
programs called fft, speech, simple and weather was
obtained from the trace database at the TraceBase
website. Details about these four applications are
provided in [4]. In addition, we use four multiprocessor
address trace files from the SPLASH applications
barnes, radix and LU using contiguous (LUC) and
non-contiguous column allocation (LUN).

The migration protocol operates as follows. At some
point in time, the current home node A decides to
migrate the block being processed. After the DACK
message is enqueued, the directory selects the new home
node B and enqueues a remap request message to node
B. This message contains the current logical and physical

numbers of the block as well as the current contents of
the block. The state of the block in node A becomes old-
transient. During the time that the block is in this state,
the old directory in node A continues to respond to data
requests from other nodes. It stops responding if it
receives an ownership request, which it leaves enqueued
together with any subsequently received data requests.
The new home node B responds to the remap request
message by allocating space for the migrated block,
setting its state to new-transient and broadcasting a
REMAP-ACK message to all nodes. This message also
contains the logical and new physical numbers of the
block. All nodes adjust their local translation tables, and
respond with a REMAP-DONE message to the new
home node B. The old home node A responds with a
REMAP-DONE message which also includes the current
copyset of the block. Node A also changes the state of
the block to old-done, and forwards to node B any
requests that node A may have kept in its queue, or any
requests that node A may receive in the future. The new
home node B starts responding to data requests after
broadcasting the REMAP-ACK message. It delays
responding to ownership requests (and all data requests
from nodes with pending ownership requests) until it has
collected all REMAP-DONE messages (including the
one from the old home node). This protocol may only
delay the response to ownership requests, but preserves
order and write atomicity, and therefore still enforces
sequential consistency.

3. Migration algorithms

In the following we describe several block migration
algorithms and show their effect on application run
times. The basic differences between these algorithms
are 1) the quantity used to determine the channel status,
and 2) whether additional blocks from the same page
may be migrated. All algorithms decide if the current
node is a hot spot by comparing the channel state to a
threshold. Depending on the algorithm, the state is
defined as the utilization, or the channel mean waiting
time, or the number of messages queued at the channel.
Algorithm 1 decides if the current node is a hot spot
using the long-term channel utilization which is the ratio
of the time that the channel controller is busy transferring
messages over the total run time up to that point in time.
Algorithm 2 uses the average long-term message waiting
time at the channel queue. This time is updated when a
message enters channel service and begins transmission.
Algorithm 3 also uses the average long-term queue
waiting time and searches the same page for additional
blocks that may be migrated. Algorithm 4 operates as
Algorithm 3, but uses a short-term estimate of the
average channel queue waiting time of messages, by

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE

107 cycles

107 cycles

60.00

 0.00

10.00

20.00

30.00

40.00

50.00

 FFT LUC LUN RADIX SIMPLE SPCH WTHR BARNES

no migration
algorithm 1
algorithm 2
algorithm 3
algorithm 4
algorithm 5
algorithm 4-04
algorithm 4-08

Application run time in 106 cycles
009 z-ru--

n

34
5 4-04

4-08

21

n

3

4

5
4-04
4-08

2
1

Figure 1: Application run times.

simply clearing the counters that accumulate waiting
time and run time when a busy period of the channel
ends. Algorithm 5 requires less hardware complexity by
relying on the number of messages in the channel queue
to decide if a node is a hot spot or not. The direct result
of these algorithms is that blocks that were originally
allocated on the memory of the same node X, become
remapped onto different nodes and consequently the
message traffic which was initially directed toward node
X, becomes dispersed onto several nodes. A block
located in node X is migrated to any node Y that is
determined not to be a hot spot, if the total number of
remote memory accesses to the block is larger than the
number of local memory accesses. As a result, future
reference that would have been directed to the old node
are directed to the new node, reducing the traffic into the
old node and making it less of a hot spot. At the same
time, the new node begins to receive more traffic and
becomes more of a hot spot. As it periodically reports its
condition, it will eventually stop being selected by the
other nodes as a recipient of new remapped blocks,
resulting in a balanced message traffic.

The directory maintains two counters for each block,
indicating the number of local (CL) and remote (CR)
references to that block, and two counters for each page
(of 16 blocks), indicating the number of local (BL) and
remote (BR) references to that page. Once the algorithm
decides that the current node is a hot spot, it decides
whether the current block should be migrated. This
decision is based on two thresholds, the remote count of
accesses to the block TR and the local count TL. TR has
two values TRH and TRL (TRL < TRH) which provide some
adaptive ability to the algorithm. If the algorithm decides
that the current channel state is more than the threshold,
it examines the remote and local access counts of the
current block and decides to migrate the block if all three
conditions are satisfied CR > TR and CL < TL and CR >
CL. Threshold TR is normally set to TRH but if the current
channel state is much larger than the threshold then TR is
set to the lower value TRL to increase the rate at which
blocks are migrated.

If the block must be migrated, then the algorithm
selects at random a non-hot-spot node and enqueues a
remap request message. If the algorithm can migrate
additional blocks, it may examine several more blocks of
the same page, if the page counters contain values that
satisfy the page thresholds. Specifically, counters PR and
PL indicate the remote and local count of accesses to the
page, and PN indicates the maximum number of
additional blocks within the page that will be considered
given that the decision has been made to migrate the first
block. A decision to examine additional blocks within
the relevant page is made if all three conditions are
satisfied BR > PR and BL < PL and BR > BL where BL and

BR are the local and remote access counts of the page.
The algorithm stops examining blocks when migrate
messages have been sent for PN blocks. In our
experiments migrate messages for all additional blocks
are sent to the same node as the migrate message for the
initial block.

Although Algorithm 1 succeeds in reducing the
application run times, it does not eliminate the hot spots.
The reason is that it relies on a long-term utilization
measurement that does not quickly reflect the increased
latencies experienced at the hot spots. Still, Algorithm 1
is useful because of its simplicity and as a basis for
further comparisons. Algorithm 2 is more responsive to
the occurrence of large latencies at the hot spots and
results in significantly lower run times compared to
Algorithm 1. Figure 1 shows the run times of 8
applications for the case when no block migration is used
and for Algorithms 1, 2, 3, 4 and 5. Algorithm 1 uses
utilization threshold TU = 0.50 and Algorithms 2, 3 and
4 use waiting time threshold TW = 160, and TRL = 4, TRH

= 6, TL = 9, with PN = 1. Algorithm 5 uses queued
messages threshold TN = 10. Using channel wait times
and expanding the migration decision to rely on page
information has a direct effect on equalizing the channel
utilizations. Applications fft and speech exhibit one
dominant hot spot, which is easily eliminated by all
algorithms with about the same effectiveness. Radix also
has two dominant hot spots, but most accesses involve a
very small number of blocks, so that migrating a block is
not as effective because it would only move the hot spot
from one node to another. Simple and weather are the
more representative applications that exhibit several hot
spots that are effectively eliminated by block migration.
Applications LUC and LUN also show some benefit from
block migration, however they place much less traffic on
the network and messages do not encounter large

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE

latencies. As a result, the migration algorithms are called
infrequently. The figure shows that use of Algorithm 3
increases the run time in applications LUC and radix.
Because it relies on the average long-term message
channel queue waiting time, it goes through periods of
time when several blocks are migrated, increasing the
network traffic and message latencies, without reducing
the hot-spot effects. This is due to the fact that in radix
the hot spot is concentrated on a few blocks, and in LUC
the latencies are relatively small even in the initial run
with no migration. Algorithms 4 and 5 are more
responsive and never increase the run time. In most
cases, the performance of Algorithm 5 is better or
approximately equal to the performance of Algorithm 4.

4. Conclusion

In DSM multiprocessor architectures, application
run time can be reduced, sometimes quite significantly,
by the use of simple algorithms that automatically
migrate memory blocks. Their primary purpose is to
reduce the latency caused by network contention due to
near-simultaneous accesses of memory blocks by
multiple processors. In addition, they take into account
the local accesses of the home node, thereby preserving
application locality. Our results show that very simple
measurements, easily implemented in hardware, such as
the number of messages waiting transmission at the node
channel queue can be used by migration algorithms to
successfully improve performance. As Figure 1 shows,
run time is reduced. Applications that exhibit one
dominant hot spot, such as fft and speech, encounter
significant improvement, since all processors, except the
one at the hot spot, see reduced request-response

latencies and are idle for a smaller fraction of time. In
the fft application, run time is reduced by a factor of 14
and processor utilization more than doubles. In the
speech application, run time is reduced by a factor of
12.5 and average processor utilization increases by a
factor of 1.523. In applications that exhibit several
independent hot spots, such as simple and weather, run
time is reduced to half the original time, while average
processor utilization increases slightly. Applications that
place less traffic on the network and whose messages do
not encounter large latencies, such as LUC and LUN see
a smaller benefit from block migration. Finally, in
applications with few hot spots where only a small
number of memory blocks are involved, migration
algorithms have a smaller effect, since migrating a block
only causes the channel congestion to reappear at the
new home node.

5. References

[1]. Donglai, Dai, Panda, DK, "How much does network
contention affect distributed shared memory
performance", Intern. Conference on Parallel Processing,
1997, pp. 454-461.
[2]. Katsinis, C. and D. Hecht, "Fault-tolerant
Distributed- shared-memory on a broadcast-based
architecture", Tr. on Parallel and Distributed Systems, v.
15, n. 12, Dec. 2004, pp. 1082-1092.
[3]. Katsinis, C., "Performance Analysis of the
Simultaneous Optical Multiprocessor Exchange Bus",
Parallel Computing Journal, Vol. 27, No. 8, July 2001,
pp. 1079-1115.
[4]. http://tracebase.nmsu.edu/tracebase.html

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE

