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Abstract
Achievable Schemes for Cost/Performance Trade-offs in Networks

Bradford D. Boyle
Steven Weber, Ph.D.

A common pattern in communication networks (both wired and wireless) is the collection of dis-

tributed state information from various network elements. This network state is needed for both

analytics and operator policy and its collection consumes network resources, both to measure the

relevant state and to transmit the measurements back to the data sink. The design of simple achiev-

able schemes are considered with the goal of minimizing the overhead from data collection and/or

trading off performance for overhead. Where possible, these schemes are compared with the optimal

trade-off curve.

The optimal transmission of distributed correlated discrete memoryless sources across a network

with capacity constraints is considered first. Previously unreported properties of jointly optimal

compression rates and transmission schemes are established. Additionally, an explicit relationship

between the conditional independence relationships of the distributed sources and the number of

vertices for the Slepian-Wolf rate region is given.

Motivated by recent work applying rate-distortion theory to computing the optimal performance-

overhead trade-off, the use of distributed scalar quantization is investigated for lossy encoding of

state, where a central estimation officer (CEO) wishes to compute an extremization function of a

collection of sources. The superiority of a simple heterogeneous (across users) quantizer design over

the optimal homogeneous quantizer design is proven.

Interactive communication enables an alternative framework where communicating parties can

send messages back-and-forth over multiple rounds. This back-and-forth messaging can reduce

the rate required to compute an extremum/extrema of the sources at the cost of increased delay.

Again scalar quantization followed by entropy encoding is considered as an achievable scheme for a

collection of distributed users talking to a CEO in the context of interactive communication. The



xi

design of optimal quantizers is formulated as the solution of a minimum cost dynamic program. It

is established that, asymptotically, the costs for the CEO to compute the different extremization

functions are equal. The existence of a simpler search space, which is asymptotically sufficient for

minimizing the cost of computing the selected extremization functions, is proven.
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Chapter 1: Introduction

Successful and efficient utilization of a communication network requires collecting data about the

state of the network, both for analytics and resource allocation/control. Owing to the highly dis-

tributed nature of modern networks (especially wireless), collection of relevant state information

represents a non trivial cost to the network operator. As an example, approximately 25–30% of LTE

downlink transmission bandwidth is used for control signaling [1, 2]. With the increasing demand

for and reliance on wireless networks, techniques are needed to minimize the impact of gathering the

relevant information. This thesis leverages analytical and algorithmic tools from information theory,

linear programming, network flow theory, and combinatorial optimization in addressing this engi-

neering challenge. In particular, the design of simple achievable schemes that minimize the overhead

from data collection and/or trade-off performance for overhead are presented. This chapter provides

an overview of the problems considered in this work and summarizes the key research contributions.

1.1 Research contributions and thesis outline

As a first step toward addressing the problem of minimizing and/or effecting a trade-off of perfor-

mance for overhead in communication systems, the present work considers three related problems:

1. lossless transmission of distributed correlated sources across a network with capacity con-

straints;

2. scalar quantization for lossy distributed extremization, and;

3. interactive scalar quantization for lossless distributed extremization.

The rest of this section describes each of these problems in more detail and summarizes the research

contributions made in each.
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1.1.1 Lossless transmission of distributed correlated sources across a net-
work with capacity constraints

Efficient minimization of the overhead for lossless transmission of sources across capacity constrained

networks requires understanding of the structural properties of the set of feasible source rates and

network flow. A key result of this investigation is a comprehensive characterization of the inter-

section of polymatroids and contrapolymatroids, answering questions about the feasibility of the

Pareto-optimal subset of the Slepian-Wolf rate region. Another key result is an explicit relationship

between conditional independence relationships and the redundancy of vertices of the Slepian-Wolf

rate region, reducing the number of inequalities needed to define the rate region for sources with

known structures such as Markov random fields. Combining these new insights about the set of

feasible rates demonstrates that a layered solution to the optimization problem may not be optimal

when the cost of data compression is in tension with transmission costs.

1.1.2 Scalar quantization for lossy distributed extremization

The previous problem formulation required lossless collection of the relevant sources. In many

scenarios, the entirety of the data is not needed; it is sufficient to compute a function of the data.

Depending on the exact function to be computed, this result can be obtained losslessly with a

lower required rate. In resource allocation contexts, a common class of functions are extremization

functions (e.g., max/min). For this class of functions, lossless rate savings are negligible and it is

necessary to tolerate bounded distortion to realize an appreciable rate savings [3]. This problem is an

indirect distributed lossy source coding problem with the distortion measuring degredation in system

performance. Motivated by these insights, the design of a simple achievable scheme based on scalar

quantization to trade-off distortion with rate is proposed. For computing an extremization function,

scalar quantization has overhead-performance trade-off close to the fundamental limit given by the

rate distortion. Additionally, it is shown that a heterogeneous (across users) quantizer design has

better performance than an optimal homogeneous quantizer design, even when the source variables

are independent and identically distributed (i.i.d.).
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1.1.3 Interactive scalar quantization for lossless distributed extremiza-
tion

An alternative approach to reduce the rate required for function computation is the usage of interac-

tive communication. In the lossy estimator framework, the rate savings were achieved by tolerating

distortion. With the interactive approach, the rate savings come at the expense of delay. Mir-

roring the solution approach of the previous problem, the design of interactive scalar quantizers is

considered as a means to effect rate-delay trade-offs. The stages of communication between the

CEO and distributed users in this framework suggests dynamic programming as a solution tech-

nique to optimizing the proposed scheme. For homogeneous (across users) scalar quantization, it is

established that the rate-delay trade-offs of the optimal dynamic program for the different extrem-

ization functions are asymptotically equal. Analysis of simple quantization strategies demonstrates

that overhead (per user) of scalar quantization decreases as the number of users is increased. Ex-

tending the previously mentioned strategies results in a family of quantization strategies that are

(asymptotically) sufficient for obtaining the optimal rate-delay trade-offs of scalar quantization.
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Chapter 2: Structural and Optimization Properties for Joint Selection of
Source Rates and Network Flow

We consider the optimal transmission of distributed correlated discrete memoryless sources across a

network with capacity constraints. We present several previously undiscussed structural properties

of the set of feasible rates and transmission schemes. We extend previous results concerning the

intersection of polymatroids and contrapolymatroids to characterize when all of the vertices of the

Slepian-Wolf rate region are feasible for the capacity constrained network. An explicit relationship

between the conditional independence relationships of the distributed sources and the number of

vertices for the Slepian-Wolf rate region are given. These properties are then applied to characterize

the optimal transmission rate and scheme and its connection to the corner points of the Slepian-

Wolf rate region. In particular, we demonstrate that when the per-source compression costs are in

tension with the per-link flow costs the optimal flow/rate point need not coincide with a vertex of

the Slepian-Wolf rate region. Finally, we connect results for the single-sink problem to the multi-sink

problem by extending structural insights and developing upper and lower bounds on the optimal

cost of the multi-sink problem.

2.1 Introduction

2.1.1 Motivation

A class of problems that arises in many contexts is the transmission of distributed discrete memo-

ryless sources across a capacity-constrained network to a collection of sinks. Information theoretic

characterizations of this class of problems have received much attention in recent years as a result

of the development of network coding [4] and can be traced back to the seminal work of Slepian

and Wolf [5]. In this chapter, we consider the design problem of selecting a set of rates and a trans-

mission scheme for a given network that are optimal with respect to known information-theoretic

characterizations. A necessary assumption is that all sinks want all sources. The general case where

each sink wishes to receive a subset of the sources has an implicit characterization in terms of the
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s1

s2

s3

s4

t

f(a), c(a), k(a)

a

D(V, A)

R(si), h(si)

source relay sink

Figure 2.1: Transmission of distributed correlated sources across a network with capacity con-
straints problem overview: A single sink node losslessly recovers distributed correlated sources
over a capacity constrained network. There is a per unit cost associated with activating each
link as well as a per unit cost at the sources.

region of entropic vectors and only inner and outer bounds are explicitly known [6, 7].

2.1.2 Related Work

Han considers the problem of communicating a distributed set of correlated sources to a single sink

across a capacity-constrained network and characterizes the set of achievable rates [8]. For a single

sink, it is known that the min-cut/max-flow bounds can be achieved [7] and in particular, Slepian-

Wolf (SW) style source coding [5] followed by routing is sufficient [8]. Han proposes a minimum-cost

problem where link activations are charged a per unit cost and cites work by Fujishige [9] as an

algorithmic solution to the proposed problem. The proposed algorithm can be applied to problems

with both link and source costs; however, it cannot be extended to the case of multiple sinks.

Additionally, the algorithm is only guaranteed to terminate in finite time if the data are assumed

integral [9]. Barros et al. [10] contains a similar characterization of the set of achievable rates and

an identical LP formulation as [8] but no discussion of an efficient algorithm. In the achievability

proof of Barros et al. (and Han [8]), a separation between the source encoder rates and the network

flows is observed, leading to a natural mapping of this problem into the traditional protocol stack.
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When the problem is extended from a single sink to multiple sinks, each sink required to receive

all the sources, it is known that i) in general routing is not sufficient for achieving the min-cut/max-

flow bounds; ii) network coding is necessary [4], and; iii) in fact linear network coding is sufficient

[7]. Identical characterizations of when a distributed correlated source can be multicast across a

capacity-constrained network have been given by Song et al., Ramamoorthy, and Han [6, 11, 12].

These characterizations are a natural extension of the result for a single sink [8]. Earlier work by

Cristescu et al. also considers the problem of SW coding across a network with links that were not

capacity-constrained [13]. This allows for an optimal solution to be obtained as the superposition of

minimum weight spanning trees. Two key differences between the work of Ramamoorthy [11] and

Han [12] are that the former makes the assumption of rational capacities to make use of results from

[14] and specifically considers the problem of minimizing the cost to multicast the sources. Focusing

on lossless communication and assuming a linear objective, the cost to multicast the sources can be

formulated as a linear objective with per unit cost for activating links. By not having a per-source

cost, the proposed LP can be solved by applying dual decomposition to exploit the combinatorial

structure of the SW rate region associated with the correlated sources and using the subgradient

method to approximate the optimal cost [11]. In the present work, we consider a more general model

by including a per-unit rate cost for each source node. The technique of dual decomposition and

application of the subgradient method has been used in work by Yu et al. [15] and Lun et al. [16].

Yu et al. considers the problem of lossy communication of a set of sources and minimizes a cost

function that trades off between the estimation distortion and the transmit power of the nodes in

the network. The rate-distortion region is, in general, not polyhedral and the resulting optimization

problem is convex. Lun et al. makes the assumption of a single source and therefore does not deal

with the interdependencies among the different source rates.

2.1.3 Summary of Contributions

Previous works have only considered the dual with respect to a subset of the constraints in order to

exploit the contrapolymatroidal structure of the SW rate region. In the present work, we restrict

our attention to a single sink and more fully investigate the underlying combinatorial structure of
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the resulting set of achievable rates. By considering the full dual LP, we demonstrate the application

of the additional structural properties towards the development of alternative algorithmic solutions.

The rest of this chapter is organized as follows: In §2.2, we present and discuss relevant supporting

material from literature as well as formally pose our optimization problem. In §2.3, we extend

existing results concerning the intersection of polymatroid with a contrapolymatroid and characterize

their types of intersections. We also relate the conditional independence relationships of the sources

to degeneracy of the extreme points of the Slepian-Wolf rate region, reducing the number of inequality

constraints needed to describe the polyhedron. In §2.4, we consider the dual of the linear program to

develop sufficient conditions for optimal solutions. We are particularly interested in knowing when

the optimal solution will coincide with a vertex of the Slepian-Wolf rate region. We demonstrate

that when there is an imbalance between the source costs and flow costs (i.e., cheap compression

and expensive routing vs. expensive compression and cheap routing), the optimal rate allocation

may not coincide with a vertex of the rate region. In §2.5, we partially extend our results to the

multi-sink problem and bound the optimal value of the multi-sink problem with the optimal values

of related single sink problems. We conclude in §2.6.

2.2 Preliminaries

We model the network as a simple directed graph D = (V,A) with nodes V representing alternately

sources, routers, and destinations, and arcs A representing network connections between nodes in

V . We model the arcs A as capacitated with capacity c = (c(a), a ∈ A). If a = (u, v) ∈ A, then we

define tail(a) , u and head(a) , v and

δout(v) , {a ∈ A : tail(a) = v} (2.1a)

δin(v) , {a ∈ A : head(a) = v} . (2.1b)

For an arbitrary set function f : U 7→ R, we denote
∑
u∈B f(u) by f(B) for any subset B ⊆ U .

The distributed sources are located at a subset S ⊂ V of the network elements and need to be

collected at a sink t ∈ V \S. We model the sources as a collection of correlated discrete memoryless
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random variables (Xs : s ∈ S). There is a joint distribution p(Xs:s∈S) (shortened to just pS) on

the set of sources which in turn gives rise to a vector of conditional entropies (H(XU |XU c), U ⊆ S),

where H(XU |XU c) is the conditional entropy associated with the subset of sources U ⊆ S given the

values of the other sources U c = S \ U .

The decision variables in our model are both i) the rates for each source, R = (R(s), s ∈ S),

and ii) the flow on each arc, f = (f(a), a ∈ A). The rate R(s) is the rate at which source s

transmits, which must be routed (possibly split over multiple paths) towards the destination t, and

the flow f(a) is the superposition over all rates R(s) whose routes traverse arc a. Flows must satisfy:

i) capacity constraints (0 ≤ f(a) ≤ c(a) for all a ∈ A), and ii) conservation of flow at all non-source,

non-sink nodes (f(δout(v)) = f(δin(v)) for all v ∈ V \ (S ∪{t})). A flow f supports rates R if for all

s ∈ S, R(s) = f(δout(s))− f(δin(s)). The novelty of our optimization problem model lies in jointly

optimizing over both (f,R) simultaneously, since most of the network flow literature assumes the

source rates to be an input to the flow problem. While the multi-source network coding problem

includes variables for both source rates and edge rates (analogous to our flow variables), much of

the network coding literature has focused on characterizing the region obtained by projecting onto

either the source rate or edge rate variables. Our work focuses on the cases where rate regions are

known and expressly considers the problem of joint optimization without the projection onto one set

of variables. For the case of multiple sinks, routing will no longer be sufficient and we will need to

consider network coding. In this case, there will be a “virtual” flow ft for each sink t satisfying the

normal flow constraints. Under network coding, the physical flow f(a) on an arc a will then satisfy

ft(a) ≤ f(a) for all t [16].

We begin with the Slepian-Wolf theorem, which characterizes the set of source rates for which

lossless distributed source codes exist.

Theorem 1 (Slepian-Wolf [5]). The rate region RSW for distributed lossless source coding the

discrete memoryless sources XS is the set of rate tuples R such that

R(U) ≥ H(XU |XU c) ∀ U ⊆ S. (2.2)



9

For brevity, let us define σSW : 2|S| → R as

σSW (U) , H(XU |XU c) (2.3)

which is a nonnegative, nondecreasing supermodular set function on the set of sources. Note that

the rate region of Theorem 1 is the contrapolymatroid QσSW associated with σSW :

RSW = QσSW ,
{
R ∈ R|S| : R(U) ≥ σSW (U), ∀ U ⊆ S

}
. (2.4)

The following theorem characterizes the set of source rates for which there exists a supporting

flow.

Theorem 2 (Megiddo [17]). There exists a flow f that supports the rates R iff

R(U) ≤ min{c(δout(X)) : U ⊆ X, t ∈ V \X} ∀ U ⊆ S. (2.5)

Paralleling (2.3), define ρc : 2|S| → R as

ρc(U) = min{c(δout(X)) : U ⊆ X, t ∈ V \X} (2.6)

This is the min-cut capacity/max-flow value from the set U to the sink t, which is a nonnegative,

nondecreasing submodular set function on the set of sources. The set of source rates for which there

exists a supporting flow is the polymatroid Pρc associated with ρc:

Pρc ,
{
R ∈ R|S| : R ≥ 0, R(U) ≤ ρc(U), ∀ U ⊆ S

}
. (2.7)

The final theorem in this section characterizes when the intersection of the sets of source rates

from the previous two theorems is non-empty.

Theorem 3 (Han’s matching condition [8]). Let σ and ρ be supermodular and submodular set
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R(s1)

R(s2) �1  ⇢1

�2  ⇢2

�1,2  ⇢1,2

⇢1,2  ⇢1 + ⇢2

⇢ submodular

�1,2 < �1 + �2

� not supermodular

Figure 2.2: Sufficiency of Theorem 3 depends on submodularity and supermodularity. An
example of set functions ρ and σ that satisfy σ(U) ≤ ρ(U) for all U ⊆ S. We see that
ρ is submodular since ρ({s1, s2}) ≤ ρ({s1}) + ρ({s2}), while σ is not supermodular since
σ({s1, s2}) < σ({s1}) + σ({s2}). In this case, Theorem 3 cannot be used to conclude that
Pρ and Qσ have a non-empty intersection.

functions, respectively. Then

Iσ,ρ , Qσ ∩ Pρ 6= ∅ (2.8)

if and only if

σ(U) ≤ ρ(U) U ⊆ S (2.9)

In particular, there exists distributed lossless source codes for communicating the sources XS across

the capacity-constrained network to the sink t iff σSW (U) ≤ ρc(U) for all U ⊆ S.

As mentioned in [8], the proof of the necessity of Theorem 3 is obvious. The proof of the

sufficiency of Theorem 3 depends critically on the submodularity of ρ and supermodularity of σ.

Figure 2.2 gives an example of generic set functions σ and ρ that satisfy (2.9) for which the set

Iσ,ρ = ∅ because σ is not supermodular. Specializing (2.9) to conditional entropy and min-cut

capacity gives

H(XU | XU c) ≤ ρc(U) (2.10)

which has the following interpretation: H(XU | XU c) is the information only available at the set of

sources U and the network must be able to at least support a flow of that value from those sources.

Our objective is to route the information from the sources S to the sink t as efficiently as possible,
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which we measure via costs on both the rate of the sources, and the costs of activating the arcs.

Specifically, let h = (h(s), s ∈ S) be the cost per bit per second associated with each source, and

k = (k(a), a ∈ A) be the cost per unit flow associated with each arc.

With this notation, the cost of a solution (f,R) is kᵀf + hᵀR. The constraints are the natural

ones given the model description above: i) flows must observe the arc capacity constraints f ≤ c,

ii) flows f and rates R must satisfy conservation of flow at all router nodes v ∈ V \ (S ∪ t), iii) the

flows and rates must match at the sources, so that the inflow plus the source rate equals the outflow,

and iv) the rates must be large enough to fully describe the source entropies R(U) ≥ H(XU |XU c) for

all U ⊆ S. By only considering a single sink, we only need to find one flow vector f . For the general

network coding case, the model can be extended in a natural way to account for the “virtual” flow

for each sink and the physical flow on each arc.

The linear program described above is as follows:

minimize
f≥0,R

∑

a∈A
k(a)f(a) +

∑

s∈S
h(s)R(s)

subject to f(a) ≤ c(a) a ∈ A

f(δin(v))− f(δout(v)) = 0 v ∈ N

R(s) + f(δin(s))− f(δout(s)) = 0 s ∈ S

R(U) ≥ H(XU |XU c) U ⊆ S

(2.11)

where N , V \ (S ∪ {t}), f(δ(v)) ,
∑
a∈δ(v) f(a), and R(U) ,

∑
s∈U R(s), U ⊆ S. The linear

program in (2.11) has |A|+ |V |− 1 + 2|S| inequalities. If |S| = O(|V |), then the LP is exponential in

the size of the graph. Observe that an optimal solution (f∗, R∗) to (2.11) will satisfy R∗(S) = H(XS)

[8].

2.3 Feasible Set Structural Properties

We see from Theorem 1 and Theorem 2 that the set of feasible rates QσSW ∩Pρc is the intersection of

a polymatroid with a contrapolymatroid. The resulting polytope can be thought of as being obtained

by the projection p : R|A|+|S| → R|S| of the set of feasible (f,R) tuples onto the rate variables R. In
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this section we present several structural properties of the set of feasible (f,R) and the associated

lower dimensional set QσSW ∩Pρc that are independent of the assumed objective function in (2.11).

2.3.1 General properties from sub-/supermodularity

For any polyhedron P , we denote the set of extreme points as Ext(P ). The extreme points (vertices)

of a contrapolymatroid Qσ are given by

Rπ(sπ(i)) = σ(Uπ(i))− σ(Uπ(i−1)) i = 1, . . . , |S| (2.12)

where π ranges over all permutations of [|S|]1 and Uπ(i) = {sπ(1), . . . , sπ(i)} [18]. The extreme rays

of Qσ are the unit vectors of R|S|. Similarly, the extreme points of a polymatroid Pρ are given by

Rπ(sπ(i)) =





ρ(Uπ(i))− ρ(Uπ(i−1)) i ≤ k

0 i > k

(2.13)

where π ranges over all permutations of [|S|] and where k ranges over 0, . . . , |S| [18]. With these

definitions, we can now show that the half-space inequalities for Uπ(i) hold with equality.

Lemma 1. If Rπ is the vertex of Qσ corresponding to permutation π then

Rπ(Uπ(i)) = σ(Uπ(i)). (2.14)

If Rπ is the vertex of Pρ corresponding to permutation π then

Rπ(Uπ(i)) = ρ(Uπ(i)). (2.15)

1For an integer i, the set {1, . . . , i} is denoted by [i].
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Proof. For any supermodular set function we have

Rπ(Uπ(i)) =

i∑

j=1

Rπ(sπ(j))

=

i∑

j=1

σ(Uπ(j))− σ(Uπ(j−1))

= σ(Uπ(i))− σ(∅).

(2.16)

For any submodular set function we have

Rπ(Uπ(i)) =

i∑

j=1

Rπ(sπ(j))

=

i∑

j=1

ρ(Uπ(j))− ρ(Uπ(j−1))

= ρ(Uπ(i))− ρ(∅).

(2.17)

The base polyhedron of Qσ and Pρ is defined as [19]

Bσ , Qσ ∩ {R : R(S) = σ(S)} (2.18a)

Bρ , Pρ ∩ {R : R(S) = ρ(S)}. (2.18b)

As noted previously, an optimal solution (f∗, R∗) to the LP (2.11) will satisfy R∗(S) = H(XS) and

thus R∗ ∈ BσSW .

In general, Han’s matching condition (Theorem 3) does not allow us to conclude if the base

polyhedron of a contrapolymatroid Bσ is wholly contained in the intersection Qσ ∩ Pρ.

Example 1. Consider S = {s1, s2} and let ρ be submodular and σ supermodular such that σ(U) ≤

ρ(U) for all U ⊆ S. Consider the vertex R = (σ(s1), σ(s1, s2) − σ(s1)) of Qσ. We have, by the

assumption of (2.9) that R(s1) = σ(s1) ≤ ρ(s1) and R(s1) +R(s2) = σ(s1, s2) ≤ ρ(s1, s2). From the

supermodularity of σ, we have that σ(s2) ≤ σ(s1, s2)− σ(s1) and by assumption σ(s2) ≤ ρ(s2); this

does not allow us to conclude one way or the other if σ(s1, s2)− σ(s1) ≷ ρ(s2) and so we cannot, in
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general, determine if R ∈ Pρ and therefore R ∈ Iσ,ρ.

Our first set of results characterize when Bσ and Bρ are contained in Iσ,ρ. For generic submodular

ρ and supermodular σ set functions we assume, w.l.o.g., that σ(∅) = ρ(∅) = 0. We begin by

combining results from Frank et al. [20] and Fujishige [19, 21] and provide an explicit characterization

of the vertices of Iσ,ρ for certain instances of σ and ρ.

Theorem 4. Let σ be a supermodular set function and ρ be a submodular set function. If

σ(U)− σ(U \ T ) ≤ ρ(T )− ρ(T \ U) ∀ T,U ⊆ S (2.19)

then the vertices of Iσ,ρ are given by

Rjπ(sπ(i)) =





ρ(Uπ(i))− ρ(Uπ(i−1)) i ≤ j

σ(S \ Uπ(i−1))− σ(S \ Uπ(i)) i > j

(2.20)

where π is a permutation and j ∈ {0, . . . , n}.

To proof this theorem, two supporting lemmas are needed.

Lemma 2. Let Ext(P ) be the set of extreme points of a polyhedron P and p(P ) be the projection of

P ; then Ext(p(P )) ⊆ p(Ext(P )).

Proof. Suppose x ∈ Ext(p(P )); then there exists x′ such that (x, x′) ∈ P . As x is extreme, there

does not exist y, z ∈ p(P ) not equal to x and λ ∈ (0, 1) such that x = λy+ (1−λ)z. Therefore there

is no choice of (y, y′), (z, z′) ∈ P not equal to (x, x′) and λ ∈ (0, 1) such that



x

x′


 = λ



y

y′


+ (1− λ)



z

z′


 (2.21)

and (x, x′) ∈ Ext(P ).

Lemma 3. Let Ext(P ) be the set of extreme points of a polyhedron P and p(P ) be the projection of

P . If p one-to-one, then Ext(p(P )) = p(Ext(P )).
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Proof. Consider x ∈ Ext(P ); suppose its projection p(x) 6∈ Ext(p(P )). W.l.o.g. there exists y, z ∈ P

not equal to x and λ ∈ (0, 1) such that

p(x) = λp(y) + (1− λ)p(z) = p(λy + (1− λ)z) (2.22)

which follows from projections being affine mappings. Additionally, since the projection is one-to-one

we must have

x = λy + (1− λ)z (2.23)

contradicting the assumption of x ∈ Ext(P ).

Proof of Theorem 4 . Assuming σ and ρ satisfy the condition of Theorem 4, we have that Qσ ∩ Pρ

is non-empty. Let us define S′ = S ∪ {s∗} and

f(U) =





ρ(U) U ∈ 2S

γ − σ(S′ \ U) U ⊂ S′, s∗ ∈ U
(2.24)

where γ ∈ R is arbitrary but fixed. Such a f is a submodular function on 2S
′

and B(EPf ) =

EPf ∩ {R : R(S) = f(S)} 2 is non-empty [19]. In fact

Qσ ∩ Pρ =
{
R ∈ R|S| : ∃α ∈ R : (R,α) ∈ B(EPf )

}
. (2.25)

The vertices of EPf are given by

Rπ(sπ(i)) = f(Uπ(i))− f(Uπ(i−1)) i = 1, . . . , |S|+ 1 (2.26)

2The set EPf = {R ∈ R|S′| : R(U) ≤ f(U)} is the extended polymatroid associated with f while Pf = {x ∈
R|S

′| : R ≥ 0, R(U) ≤ f(U)} is the polymatroid associated with f .
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where π ranges over all permutations of [|S|+ 1]. Let j be the integer such that sπ(j) = s′. Then

Rπ(sπ(i)) =





ρ(Uπ(i))− ρ(Uπ(i−1)) i < j

γ − σ(S′ \ Uπ(i))− ρ(Uπ(i−1)) i = j

σ(S′ \ Uπ(i−1))− σ(S′ \ Uπ(i)) i > j.

(2.27)

Ignoring the flow costs in the LP of (2.11), we see that an optimal solution corresponds to an

extreme point of QσSW .

Corollary 1. Let σ and ρ satisfy the conditions of Theorem 4 and consider the LP given by

minimize
R

∑

s∈S
h(s)R(s)

subject to σ(U) ≤ R(U) ≤ ρ(U) U ⊆ S.

(2.28)

If h(s) ≥ 0 for all s ∈ S, then there exists R∗ ∈ Ext(Bσ) that is an optimal solution to the given

LP. If h(s) ≤ 0 for all s ∈ S, then there exists R∗ ∈ Ext(Bρ) that is an optimal solution to the given

LP.

For σ and ρ that satisfies the conditions of Theorem 4, the set Iσ,ρ is a generalized polymatroid [20],

a mathematical object that unifies polymatroids and contrapolymatroids [18]. For every generalized

polymatroid in R|S|, there exists a submodular set function ρ′ : 2|S|+1 → R and a projection

p : R|S|+1 → R|S| such that p(Bρ′) is equal to that generalized polymatroid [19] (see Figure 2.3).

This insight is half of the proof of Theorem 4; the other half is recognizing that polyhedral properties

are preserved by one-to-one affine mappings [21].

We see from (2.13) that the intersection Iσ,ρ has at most (n + 1)! vertices; we can construct

trivial examples for which the intersection is a generalized polymatroid and has strictly less than

(n + 1)! vertices. For a given submodular set function ρ, let σ(X) = ρ(S) − ρ(S \ X). It can be

readily verified that such a σ is supermodular and that (2.19) is always true by the submodularity

of ρ. From (2.20), the vertices of Iσ,ρ are just those of Bρ (or those of Bσ as Bρ = Bσ).
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R(s1)

R(s2)

R(s⇤)

O

R

B(P⇢0)

P⇢0

P⇢c

R(s2)

R(s1)

R
h|R

Figure 2.3: Generalized polymatroid as the projection of the base polytope Bf of a polyma-
troid Pf in a higher dimension. Minimization of a linear objective with sign-definite weight
vector h will have a solution at a vertex of Bσ (h ≥ 0) or at a vertex of Bρ (h ≤ 0).

We observe that when (2.19) holds, we have that Bσ ⊂ Iσ,ρ and Bρ ⊂ Iσ,ρ. Motivated by

the observation that if (f∗, R∗) is an optimal solution to (2.11), then R∗ ∈ BσSW , we loosen the

requirement (2.19) of Theorem 4 to characterize when Bσ ⊂ Iσ,ρ.

Theorem 5. Ext(Bσ) ⊆ Pρ if and only if

σ(T )− σ(T \ U) ≤ ρ(U) ∀U ⊆ T ⊆ S. (2.29)

Proof. Assume σ(T ) − σ(T \ U) ≤ ρ(U) for all U ⊆ T ⊆ S. Consider an arbitrary permutation π

and its associated vertex Rπ of Qσ. For any U ⊆ S, define k , min{k′ : U ⊆ Uπ(k′)} or equivalently

k , max{k′ : sπ(k′) ∈ U}. We have

Rπ(U) = Rπ(Uπ(k))−Rπ(Uπ(k) \ U)

= σ(Uπ(k))−Rπ(Uπ(k) \ U)

≤ σ(Uπ(k))− σ(Uπ(k) \ U)

≤ ρ(U)

(2.30)

and therefore Rπ ∈ Pρ. This is true for all permutations and we conclude that B(Qσ) ⊆ Pρ.

Suppose ∃U ⊆ T ⊆ S such that σ(T ) − σ(T \ U) > ρ(U). Let the elements of S be ordered

by a permutation π so that T = {sπ(1), . . . , sπ(|T |)} and U = {sπ(|T |−|U |+1), . . . , sπ(|T |)}. Then
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T = Uπ(|T |) and T \ U = Uπ(|T |−|U |). It follows that

Rπ(U) =

|T |∑

i=|T |−|U |+1

σ(Uπ(i))− σ(Uπ(i−1))

= σ(Uπ(|T |))− σ(Uπ(|T |−|U |))

= σ(T )− σ(T \ U)

> ρ(U)

(2.31)

and therefore Rπ 6∈ Pρ. We conclude that Bσ 6⊆ Pρ.

Unsurprisingly, we can loosen (2.19) in a similar manner to characterize when Bρ ⊂ Iσ,ρ.

Theorem 6. Ext(Bρ) ⊆ Qσ if and only if

σ(U) ≤ ρ(T )− ρ(T \ U) ∀U ⊆ T ⊆ S (2.32)

Proof. Assume σ(U) ≤ ρ(T ) − ρ(T \ U for all U ⊆ T ⊆ S. Consider an arbitrary permutation π

and its associated vertex Rπ of Pρ. For any U ⊆ S, define k , min{k′ : U ⊆ Uπ(k′)} or equivalently

k , max{k′ : sπ(k′) ∈ U}. We have

Rπ(U) = Rπ(Uπ(k))−Rπ(Uπ(k) \ U)

= ρ(Uπ(k))−Rπ(Uπ(k) \ U)

≥ ρ(Uπ(k))− ρ(Uπ(k) \ U)

≥ σ(U)

(2.33)

and therefore Rπ ∈ Qσ. This is true for all permutations and we conclude that B(Pρ) ⊆ Qσ.

Suppose ∃U ⊆ T ⊆ S such that σ(U) > ρ(T ) − ρ(T \ U). Let the elements of S be ordered

by a permutation π so that T = {sπ(1), . . . , sπ(|T |)} and U = {sπ(|T |−|U |+1), . . . , sπ(|T |)}. Then
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T = Uπ(|T |) and T \ U = Uπ(|T |−|U |). It follows that

Rπ(U) =

|T |∑

i=|T |−|U |+1

ρ(Uπ(i))− ρ(Uπ(i−1))

= ρ(Uπ(|T |))− ρ(Uπ(|T |−|U |))

= ρ(T )− ρ(T \ U)

< σ(U)

(2.34)

and therefore Rπ 6∈ Qσ. We conclude that Bρ 6⊆ Qσ.

Remark. In the proofs of Theorems 5 & 6, we use the existence of T,U that do not satisfy (2.29)

(resp. (2.32)) to construct a vertex of Qσ (resp. Pρ) that is not retained in the intersection Iσ,ρ.

For a given T,U that do not satisfy (2.29), there exists (|T | − |U |)! |U |! (|S| − |T |)! permutations for

which the corresponding vertex of Qσ is not in Pρ. Similarly, for a given T,U that do not satisfy

(2.32), there exists (|T | − |U |)! |U |! (|S| − |T |)! permutations for which the corresponding vertex of

Pρ is not in Qσ.

Observe that Theorems 4, 5, and 6 each imply Theorem 3. To see this, let T = U . Figure 2.4

provides an example that illustrates the differences between Theorems 3, 5, & 6. Theorem 3 provides

an initial characterization of the structure of Iσ,ρ by determining when the intersection is empty or

not and requires checking 2n inequalities. It does not provide insight into what the vertices of

the intersection are. Theorem 5 and Theorem 6 provide a partial characterization of the vertices

of the intersection by characterizing a subset of the vertices of the intersection, but each requires

checking 3n inequalities. If Ext(Bσ) ⊆ Pρ, then Ext(Bσ) ⊆ Ext(Iσ,ρ) and if Ext(Bρ) ⊆ Qσ, then

Ext(Bρ) ⊆ Ext(Iσ,ρ). However, we know that there are vertices of Iσ,ρ that do not lie in either Bσ

or Bρ (e.g., Figure 2.4e). Finally, Theorem 4 provides a complete characterization of Ext(Iσ,ρ), but

requires checking 4n inequalities. Observe that U ∩ T = ∅ the cross inequality (2.19) of Theorem 4

is the tautology 0 ≤ 0 and there are 3n such pairs T,U of subsets of S. For T = U , (2.19) becomes

Han’s matching condition (2.9). For T ⊆ U , (2.19) reduces to (2.29). For U ⊆ T , (2.19) reduces to

(2.32). The relationship among Theorems 4, 5, & 6 (in terms of pairs of subsets of S) is depicted in
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R(s1)

R(s2)

(a)

R(s1)

R(s2)

(b)

R(s1)

R(s2)

(c)

R(s1)

R(s2)

(d)

R(s1)

R(s2)

(e)

R(s1)

R(s2)

(f)

(a)

Thm. 3
(b)

Thm. 5
(c)

Thm. 6
(d)

Ext(Q� \ P⇢)

Ext(B�) ✓ Ext(Q� \ P⇢) Ext(B⇢) ✓ Ext(Q� \ P⇢)

Q� \ P⇢ = ?

Thm. 4
(f)
(e)

Q�, P⇢

(g)

Figure 2.4: An example of Theorems 3, 4, 5, & 6: Theorem 3 differentiates a vs. b–e. If The-
orem 3 holds, Theorem 5 differentiates b vs. c; Theorem 6 differentiates b vs. d, and; Theorems
5 & 6 together differentiate b vs. e. If Theorem 4 holds, we have a complete characterization of
all the vertices of Iσ,ρ; Theorems 5 & 6 are not enough to characterize the vertices (purple, f)
that are not in Bσ or Bρ.
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T, U ✓ S

T = U

3n

2n

4n

3n

T \ U = ?

2n 2n

U = ? T = ?

T ✓ UU ✓ T

3n

Figure 2.5: Relationship amongst Theorems 3, 4, 5, and 6: Specializing the cross-inequality
(2.19) of Theorem 4 for T = U gives Theorem 3, for T ⊆ U gives Theorem 5, and for U ⊆ T
gives Theorem 6.

Figure 2.5.

We now show that characterizing Bσ ⊂ Iσ,ρ only requires checking 2n inequalities, as opposed to

the 3n inequalities of Theorem 5.

Theorem 7.

σ(T )− σ(T \ U) ≤ ρ(U) ∀U ⊆ T ⊆ S (2.35)

if and only if

σ(S)− σ(S \ U) ≤ ρ(U) ∀U ⊆ S. (2.36)

Proof. The set of inequalities in (2.35) include (2.36), so the one direction is immediate.

By the supermodularity of σ, we have

σ(T ) + σ(S \ U) ≤ σ(S) + σ(T \ U) ∀U ⊆ T ⊂ S (2.37)

which we rearrange to get

σ(T )− σ(T \ U) ≤ σ(S)− σ(S \ U) ≤ ρ(U) ∀U ⊆ T ⊂ S. (2.38)
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While (2.29) (and (2.35)) are readily seen as weaker versions of (2.19), the relationship between

(2.36) and (2.19) is not immediate. As before, a similar result holds for characterizing Bσ ⊂ Iσ,ρ.

Theorem 8.

σ(U) ≤ ρ(T )− ρ(T \ U) ∀U ⊆ T ⊆ S (2.39)

if and only if

σ(U) ≤ ρ(S)− ρ(S \ U) ∀U ⊆ S. (2.40)

Proof. The set of inequalities in (2.39) include (2.40), so the one direction is immediate.

By the submodularity of ρ, we have

ρ(S) + ρ(T \ U) ≤ ρ(T ) + ρ(S \ U) ∀U ⊆ T ⊂ S (2.41)

which we rearrange to get

σ(U) ≤ ρ(S)− σ(S \ U) ≤ ρ(T )− ρ(T \ U) ∀U ⊆ T ⊂ S. (2.42)

One advantage of Theorems 7 and 8 (besides the exponential reduction in inequalities), is the

intuitive geometric interpretation of (2.36) and (2.40). For a given supermodular set function σ, let

σ̄(U) = σ(S)−σ(S \U), which is a submodular set function. We then have (combining Theorems 5

and 7) Bσ ⊂ Iσ,ρ if and only if σ̄(U) ≤ ρ(U) for all U ⊂ S. Equivalently the polymatroid Pσ̄

is a subset of the polymatroid Pρ, as depicted in Figure 2.6. With a similar argument combining

Theorems 6 and 8 we have Bσ ⊂ Iσ,ρ if and only if the contrapolymatroid Qρ̄ is a subset of the

contrapolymatroid Qσ.

We now specialize (2.36) for the case of conditional entropy σSW and min-cut capacity ρc

H(XU ) ≤ ρc(U) ∀U ⊆ S, (2.43)
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R(s1)

R(s2)

P⇢
P�̄

Q�

R(s1)

R(s2)

P⇢
Q�

Q⇢̄

Figure 2.6: Geometric interpretation of Theorems 7 and 8. Since Bσ = Bσ̄, Bσ ⊆ Pρ if and
only if Bσ̄ ⊆ Pρ. A similar argument holds for Bρ.

U

U c

S

H(XU )  ⇢c(U)

⇢c(U)
t

H(XU | XU c)  ⇢c(U)

Figure 2.7: Specializing (2.9) to conditional entropy and min-cut capacity requires the network
to have enough capacity ρc(U) to support the lowest sum-rate H(XU | XU c) from every subset
of sources. Specializing (2.36) to conditional entropy and min-cut capacity requires the network
to have enough capacity ρc(U) to support the “highest” sum-rate H(XU ) from every subset of
sources. The sum-rate from a subset of sources could exceed the entropy, but is not needed to
support lossless recovery of the sources and would be a suboptimal rate allocation.

which follows from the application of the chain rule for entropy toH(XS)−H(XS\U | XU ). Figure 2.7

illustrates the differences between Theorem 3 and Theorems 7 and 8. Consider a set of sources U .

Han’s matching condition (2.9) requires the network have enough capacity to support the best-case

sum-rate (i.e., minimum) from a set of sources for lossless recovery; in particular H(XU | XU c) ≤

ρc(U). The matching condition (2.36) of Theorem 7 requires that the network have enough capacity

to support the worst-case sum-rate (i.e., maximum) for all subsets of sources.

Unlike Theorem 3, when we specialize (2.19) to the case of conditional entropy and min-cut

capacity there is no immediately obvious intuition for what (2.44) represents.

H(XU∩T | XU c) ≤ ρc(T )− ρc(T \ U) (2.44)
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R(s2)

R(s1)

R(s2)

R(s1)

Figure 2.8: Comparison of non-degenerate and degenerate vertices: at a non-degenerate vertex
(left), |S| constraints will be active; a degenerate vertex (right) will have more than |S| active
constraints.

2.3.2 Properties from conditional entropy

In the previous section, we focused on the properties of general submodular and supermodular set

functions in order to more fully characterize the intersection of a polymatroid with a contrapolyma-

troid. Our next set of results leverage additional properties of the conditional entropy supermodular

set function, most notably the chain rule for entropy and the relationship between entropy and

conditional independence [22]. To motivate the results of this section, consider the two source SW

rate regions in Figure 2.8. In general, the rate region is defined by three inequalities as in Figure 2.8

(left); however, if it is known that the sources are independent (i.e., X1 ⊥ X2), the rate region

can be defined using only two inequalities. The number of vertices has also been reduced from two

non-degenerate vertices to one degenerate vertex. We further develop this insight in the remainder

of this section.

For an extreme point R of QσSW , we provide an expression for the sum rate for an arbitrary set

of sources and then use this to characterize the active inequalities of the LP (2.11) at R.

Lemma 4. Fix an ordering s1, s2, . . . , sn of the elements of S and define Ui , {sj : j ∈ [i]}. If R

is the vertex in QσSW corresponding to this ordering (cf. (2.12)) and U = {sk1 , · · · , skm} such that

k1 < k2 < . . . < km then

R(U) = H(XU |XU c
k1
\U )

+

m∑

j=2

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XU c
kj
\U )

(2.45)

Recall from Lemma 4 that Ui , {sj : j ∈ [i]} and U = {sk1 , · · · , skm} such that k1 < k2 < . . . <
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km. Let us define U ′ , U \ {sk1} = {sk′1 , · · · , sk′m′} where k′i = ki+1 and m′ = m − 1. We begin

with three supporting lemmas.

Lemma 5.

U c
kj \ U ′ = U c

kj \ U (2.46)

Proof.

U c
kj \ U = U c

kj ∩ ({sk1} ∪ U ′)c

= U c
kj ∩ ({sk1}c ∩ U

′c)

= U c
kj ∩ U

′c

(2.47)

The first step follows from the definition of U ′ and the last step from recognizing that U c
kj
⊆

{sk1}c.

Lemma 6.

U ′ = U \ Uk1 (2.48)

Proof.

U \ Uk1 = U ∩ {sk1+1, sk1+2, . . . , sn} = {sk2 , · · · , skm} = U ′ (2.49)

Lemma 7.

U c = Uk1−1 ∪ U c
k1 \ U (2.50)

Proof.

Uk1−1 ∪ U c
k1 \ U = Uk1−1 ∪ (U c

k1 ∩ U c)

= (Uk1−1 ∪ U c
k1) ∩ (Uk1−1 ∪ U c)

= {sk1−1}c ∩ U c

= U c

(2.51)
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Proof of Lemma 4 . Proof by induction on |U |. Base case: If |U | = 1, then U = {sk1} and we have

that

R(sk1) = H(XUk1
| XU c

k1
)−H(XUk1−1

| XU c
k1−1

)

= H(XUk1−1
, Xsk1

| XU c
k1

)−H(XUk1−1
| XU c

k1
, Xsk1

)

= H(Xsk1
| XU c

k1
)

= H(Xsk1
| XU c

k1
\{sk1})

(2.52)

where the last step follows from the fact that U c
i = U c

i \ {si}.

Inductive step: Let us define

U ′ , U \ {sk1} = {sk′1 , · · · , sk′m′} (2.53)

where k′i = ki+1 and m′ = m− 1. We have that

R(U) = R(sk1) +R(U ′)

(a)
= H(Xsk1

|XU c
k1

) +R(U ′)

(b)
= H(Xsk1

|XU c
k1

) +H(XU ′ |XU c
k′1
\U ′) +

m′−1∑

i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XU c
k′
i+1
\U ′)

(c)
= H(Xsk1

|XU c
k1

) +H(XU ′ |XUk2−1\Uk1 , XU c
k′1
\U ′) + I(XU ′ ;XUk2−1\Uk1 |XU c

k′1
\U ′)

+

m′−1∑

i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XU c
k′
i+1
\U ′)

(d)
= H(Xsk1

|XU c
k1

) +H(XU ′ |XUk2−1\Uk1 , XU c
k2
\U ′) + I(XU ′ ;XUk2−1\Uk1 |XU c

k2
\U ′)

+

m′−1∑

i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XU c
k′
i+1
\U ′)

(e)
= H(Xsk1

|XU c
k1
\U ′ , XU ′) +H(XU ′ |XU c

k1
\U ′) + I(XU ′ ;XUk2−1\Uk1 |XU c

k2
\U ′)

+

m′−1∑

i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XU c
k′
i+1
\U ′)

(f)
= H(XU |XU c

k1
\U ′) + I(XU ′ ;XUk2−1\Uk1 |XU c

k2
\U ′)

+

m′−1∑

i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XU c
k′
i+1
\U ′)
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(g)
= H(XU |XU c

k1
\U ′) + I(XU ′ ;XUk2−1\Uk1 |XU c

k2
\U ′)

+

m−1∑

i=2

I(XU\Uki ;XUki+1−1\Uki |XU c
ki+1

\U )

(h)
= H(XU |XU c

k1
\U ′) + I(XU\Uk1 ;XUk2−1\Uk1 |XU c

k2
\U )

+

m−1∑

i=2

I(XU\Uki ;XUki+1−1\Uki |XU c
ki+1

\U )

(i)
= H(XU |XU c

k1
\U )

+

m−1∑

i=1

I(XU\Uki ;XUki+1−1\Uki |XU c
ki+1

\U )

where: (a) follows from the definition of a vertex; (b) follows from the application of the inductive

hypothesis; (c) follows from the definition of conditional mutual information; (d) U c
k′1
\U ′ = U c

k2
\U ′;

(e) U ′ ⊆ U c
k1

so partition U c
k1

into U c
k1
\ U ′ and U ′; (f) follows from the chain rule for conditional

entropy; (g) follows from a change of variable for the sum index; (h) follows from expressing the

conditional mutual information in terms of the original set, and; (i) follows from moving the first

conditional mutual information into the sum.

Proposition 1. Fix an ordering s1, s2, . . . , sn of the elements of S and define Ui , {sj : j ∈ [i]}

and U0 = ∅. Let R be the vertex in QσSW that corresponds to this ordering and U = {sk1 , · · · , skm}

such that k1 < k2 < . . . < km. Define k0 , 0. If U = Ui for some i ∈ [n], then R(U) = H(XU |XU c).

If U 6= Ui for some i, then R(U) = H(XU |Xc
U ) if and only if

(XU\Ukj−1
⊥ XUkj−1\Ukj−1

)|XU c
kj
\U j = 1, . . . ,m. (2.54)
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Proof. From the Lemma 4, we have that

0 ≤ R(U)−H(XU |XU c)

= H(XU |XU c
k1
\U )−H(XU |XU c)

+

m∑

j=2

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XU c
kj
\U )

= H(XU |XU c
k1
\U )−H(XU |XUk1−1

, XU c
k1
\U )

+

m∑

j=2

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XU c
kj
\U )

= I(XU ;XUk1−1
|XU c

k1
\U )

+

m∑

j=2

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XU c
kj
\U )

=

m∑

j=1

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XU c
kj
\U ).

(2.55)

The above is a sum of conditional mutual informations which is zero iff each of the terms is equal

to zero. This happens when the random variables XU satisfies (2.54).

Proposition 2. Let T,U, V,W, Y be a partition of S and let πT be a permutation of T etc. Define

π = (πT , πU , πV , πW , πY ) to be the permutation formed from the permutations of the associated

partition and π′ = (πT , πV , πU , πW , πY ). If XU ⊥ XV | XW , then Rπ = Rπ′ .

Proof. Denote the elements of S ordered by π as

t1, . . . , t|T |, u1, . . . , u|U |, v1, . . . , v|V |, w1, . . . , w|W |, y1, . . . , y|Y |.

Then the elements of S ordered by π′ is

t1, . . . , t|T |, v1, . . . , v|V |, u1, . . . , u|U |, w1, . . . , w|W |, y1, . . . , y|Y |. (2.56)
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We can show the following

Rπ(ti) = H(Xti | Xti+1 , . . . , Xt|T | , XU , XV , XW , XY )

= H(Xti | Xti+1 , . . . , Xt|T | , XV , XU , XW , XY )

= Rπ′(ti)

(2.57)

Rπ(ui) = H(Xti | Xui+1
, . . . , Xu|U| , XV , XW , XY )

= H(Xti | Xui+1
, . . . , Xu|U| , XW , XY )

= Rπ′(ui)

(2.58)

Rπ(vi) = H(Xvi | Xvi+1
, . . . , Xv|V | , XW , XY )

= H(Xvi | Xvi+1
, . . . , Xv|V | , XU , XW , XY )

= Rπ′(vi)

(2.59)

Rπ(wi) = H(Xwi | Xwi+1 , . . . , Xw|W | , XY )

= Rπ′(wi)

(2.60)

Rπ(yi) = H(Xyi | Xyi+1
, . . . , Xw|Y |)

= Rπ′(Yi)

(2.61)

Corollary 2. Let T,U, V,W be a partition of S and let πT be a permutation of T etc. Define

π = (πT , πU , πV , πW ) to be the permutation formed from the permutations of the associated partition

and π′ = (πT , πV , πU , πW ). If XU ⊥ XV , then Rπ = Rπ′ .

A polyhedron can be represented as the intersection of half-spaces (H-rep) or as the convex

combination of its extreme points plus the conic combination of its extreme rays (V-rep)[23]. In

general, it is more compact to represent polymatroids and contrapolymatroids using half-spaces

(2|S|) than in terms of the extreme points and extreme rays (O(|S|!)). What the previous two
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propositions show is that the size of the representation of the Slepian-Wolf rate region is directly

tied to the conditional independence structure of the distributed correlated sources. In turn, this

means that the number of inequalities in the LP (2.11) depends on the conditional independence

structure of the sources and may have a polynomial (in |S|, |V |, and |A|) number of constraints.

For example, if all the sources are independent, then only |S| inequalities are needed to describe the

Slepian-Wolf rate region.

Example 2. Consider the following three source discrete memoryless source (DMS):

P(X1 = x1, X2 = x2) =





1− p
2

x1 = x2

p

2
x1 6= x2

(2.62)

and

P(X3 = 0 | X2 = 0) = P(X3 = 1 | X2 = 1) = 1− q (2.63)

with p, q 6= 1
2 . Such a DMS forms the Markov chain X1 ↔ X2 ↔ X3. For the permutation

π = (3, 1, 2), we have the three necessarily active constraints

Rπ(s3) = H(X3 | X1, X2) (2.64a)

Rπ({s1, s3}) = H(X1, X3 | X2) (2.64b)

Rπ({s1, s2, s3}) = H(X1, X2, X3). (2.64c)

Additionally, because of the Markov structure for this source we have

Rπ(s1) = H(X1 | X2) = H(X1 | X2, X3) (2.65)

active at Rπ. Enumerating all of the vertices, we see that the Slepian-Wolf rate region for this class

of DMSs has only five vertices instead of 3! = 6. In particular, the permutations π1 = (1, 3, 2) and

π2 = (3, 1, 2) map to the same point, i.e., Rπ1 = Rπ2 .

If p = 1
2 or (exclusively) q = 1

2 , then the SW rate region will only have four vertices. If p = q = 1
2 ,
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p q

6= 1
2 6= 1

2

6= 1
2 = 1

2

= 1
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X1 ? X3 | X2

X1 ? X3, X2 ? X3
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0
0

1
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Figure 2.9: The number of vertices the Slepian-Wolf rate region has for the source of Example 2
as a function of the parameters p and q. Depending on the parameter p and q, certain conditional
independence relationships hold leading to a reduction in the number of vertices.

then the SW rate region will have one vertex. Figure 2.9 shows the number of vertices that SW

rate region has and summarizes the different conditional independence structures as a function of

the distribution parameters p and q.

Proposition 1 will be used in the next section when giving conditions for a feasible solution of

the optimization problem (2.11) to be optimal.

2.4 Sufficient Conditions for Characterizing Optimality

We proceed by finding the dual LP of the primal given in (2.11). In (2.11), we have three types of

constraints: i) a capacity constraint for each edge, ii) flow conservation for each node, and iii) rate

requirements for each subset of sources. The dual, then, will have three types of dual variables:

i) (x(a) : a ∈ A), ii) (z(v) : v ∈ V ), and iii) (yU : U ⊂ S). The dual LP is given as

maximize
x≤0,y≥0,z

∑

a∈A
c(a)x(a) +

∑

U⊆S
H(XU |XU c)yU

subject to x(a) + z(head(a))− z(tail(a)) ≤ k(a) a ∈ A
∑

U3s
yU + z(s)− z(t) = h(s) s ∈ S

(2.66)

We set z(t) = 0 because it is associated with the conservation of flow constraint at the sink, which is

omitted from (2.11) as it is a consequence of the equality constraints at every other node. Observe

that the number of dual variables is exponential in |S|. We now show that, in a certain sense, the
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dual variables x(a) for a ∈ A and yU for U ⊆ S are unnecessary.

Let us define the reduced cost of a ∈ A as

k̄(a) , k(a)− (z(head(a))− z(tail(a))) (2.67)

and observe that the first set of constraints of (2.66) can be written as x(a) ≤ k̄(a) for all a ∈ A

[24]. Combined with the non-positivity constraint on x(a) we have x(a) ≤ min(0, k̄(a)). Since we

are maximizing in (2.66) and c(a) > 0 for all a, we take

x(a) = min(0, k̄(a)) (2.68)

and see that the dual variable x(a) can be expressed in terms of (z(v) : v ∈ V ). As we show in

the next theorem, characterizations of optimal solutions do not need to explicitly consider the dual

variables (x(a) : a ∈ A).

Theorem 9. Let f∗Ri be a min-cost flow that supports rate Ri. Let R =
∑
i λiRi. The flow

f =
∑
i λif

∗
Ri

is a flow that supports R of minimum cost if there exists a vector (z(v) : v ∈ V ) such

that for all i

k̄(a) < 0 =⇒ f∗Ri(a) = c(a) (2.69a)

k̄(a) > 0 =⇒ f∗Ri(a) = 0. (2.69b)

The next lemma establishes that a convex combination of rates can be supported by a convex

combination of supporting flows.

Lemma 8. Suppose Ri ∈ QσSW ∩ Pρc and let fi be a flow that supports Ri. If Rλ =
∑
i λiRi for

λi ≥ 0 and
∑
i λi = 1 then fλ =

∑
i λifi is a flow that supports Rλ.

Proof. Omitted for brevity.

This is a restatement of and proof of Theorem 9.
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Theorem 10. Let f∗Ri be a min-cost flow that supports rate Ri. Let R =
∑
i λiRi. The flow

f =
∑
i λif

∗
Ri

is a flow that supports R of minimum cost if there exists a vectors (x∗(a) : a ∈ A) and

(z∗(v) : v ∈ V ) such that for all i

x∗(a)(f∗Ri(a)− c(a)) = 0 (2.70a)

(k(a)− x∗(a)− (z∗(head(a))− z∗(tail(a))))f∗Ri(a) = 0 (2.70b)

for all a ∈ A.

Proof. Having fixed a rate vector Ri, we can solve for the min-cost flow for that rate with following

LP

minimize
f≥0

∑

a∈A
k(a)f(a)

subject to f(a) ≤ c(a) a ∈ A

f(δin(v))− f(δout(v)) = 0 v ∈ N

f(δin(v))− f(δout(s)) = −Ri(s) s ∈ S

(2.71)

and its corresponding dual

maximize
x≤0,z

∑

a∈A
c(a)x(a)−

∑

s∈S
Ri(s)z(s)

subject to x(a) + z(head(a))− z(tail(a)) ≤ k(a) a ∈ A.

(2.72)

If Ri is a feasible rate vector, then there exists a min-cost flow f∗Ri for this Ri and therefore optimal

dual variables (x∗Ri , z
∗
Ri

). Observe that the set of feasible dual variables does not depend on the

rates Ri, only on the edge costs k. By assumption x∗Ri = x∗ and z∗Ri = z∗ for all i and therefore

(x∗, z∗) is dual feasible for R. We have that by Lemma 8, that f is primal feasible. Checking the
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complimentary slackness conditions for f , x∗, and z∗, we have

x∗(a)(f(a)− c(a)) = x∗(a)

(∑

i

λif
∗
Ri(a)− c(a)

)

=
∑

i

λi
(
x∗(a)(f∗Ri(a)− c(a))

)

= 0

(2.73)

and similarly

(k(a)− x∗(a)− (z∗(head(a))− z∗(tail(a))))f∗Ri(a) = 0. (2.74)

We conclude that f is primal optimal and x∗, z∗ are dual optimal solutions for a min-cost flow that

supports R.

Since we are considering fixed rates in the previous theorem, there are no dual variables (yU : U ⊆

S). If the conditional entropies of the sources and the min-cut capacities satisfy the requirements

of Theorem 4, then all extreme points of QσSW are feasible for (2.11). As was mentioned earlier, if

(f∗, R∗) is an optimal solution to (2.11) then R∗(S) = H(XS) [8] and therefore R∗ can be written as

a convex combination of the extreme points of QσSW . The previous theorem shows that in certain

cases, f∗ can be found as a convex combination of the min-cost flows for the extreme points of the

SW rate region. In general though, this is not always the case as the next example demonstrates.

Example 3. We consider the relay network with arc capacities and costs as shown in Figure 2.10a.

Let the sources X1, X2 be binary valued with the following joint distribution

P(X1 = x1, X2 = x2) =





1− p
2

x1 = x2

p

2
x1 6= x2

. (2.75)

For such a source, the entropies are H(X1) = H(X2) = 1 and H(X1, X2) = 1 + H(p) and the

vertices of the Slepian-Wolf rate region are R1 = (H(p), 1) and R2 = (1, H(p)) 3. The network of

Figure 2.10a has sufficient capacity to support either R1 or R2. Fixing R = R1 and solving for the

3H(p) = −p log2 p− (1− p) log2(1− p)
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✓
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Figure 2.10: Relay network example: a network topology with arc capacities as a function of
the source parameter p, arc costs, and source costs; b optimal min-cost flow when the source
rates are fixed as R(s1) = H(p) and R(s2) = 1; c optimal min-cost flow when the source rates
are fixed as R(s1) = 1 and R(s2) = H(p); d convex combination of b and c; e optimal min-cost
flow for convex combination of source rates in b and c for λ ≤ 1

2 , and; f optimal min-cost flow
for convex combination of source rates in b and c for λ ≥ 1

2 .
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flow for a convex combination of rates. The source distribution parameter p = 1
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min-cost flow f∗1 , we obtain the solution shown in Figure 2.10b; correspondingly, if we fix R = R2

and solve for the min-cost flow f∗2 , we obtain the solution shown in Figure 2.10c. The feasible

solution f̃λ = λf∗1 + (1− λ)f∗2 for Rλ = λR1 + (1− λ)R2 is shown in Figure 2.10d. Comparing with

optimal min-cost flow f∗λ for Rλ shown in Figure 2.10e & Figure 2.10f, we see that for λ ∈ (0, 1),

the convex combination of min-cost flows f̃λ is not a min-cost flow for Rλ. Shown in Figure 2.11

is the cost kᵀf̃λ of the convex combination of min-cost flows as a function of λ compared to the

cost kᵀf∗λ for the min-cost flow for a convex combination of rates Rλ. Comparing Figure 2.10d with

Figure 2.10e & Figure 2.10f, we see immediately why f̃λ is not optimal: f̃λ always utilizes the arc a3

even when arc a1 (which has a lower cost) has spare capacity. If the same relay network is consider

with k = (2, 1, 1) and all other parameters kept the same, then it can be shown that kᵀf̃λ = kᵀf∗λ

for λ ∈ [0, 1]. Observe that with this cost vector k, the cost of the two directed paths s1 → t are

k(a1) = 2 and k(a3) + k(a2) = 2 and the cost of any flow supporting R(s1) is the same.

A sufficient condition for the existence of z that satisfies the condition of Theorem 9 can be given

in terms of the topology of the network and the arc costs k.

Theorem 11. If for every v ∈ V \{t}, the cost of all v− t paths are equal, then there exists a vector
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(z(v) : v ∈ V ) such that for

k̄(a) < 0 =⇒ f∗Ri(a) = c(a) ∀i (2.76a)

k̄(a) > 0 =⇒ f∗Ri(a) = 0 ∀i. (2.76b)

Proof. Define µ(v) , minP k(P ) be the value of a min-cost v − t path in the network and let v  t

indicate a v − t path. Let x̂(a) = 0 for all a ∈ A and ẑ = −µ(v) for all v ∈ V \ {t}. At x̂, ẑ, the

constraints of (2.66) are equivalent to

µ(head(a)) + k(a) ≥ µ(tail(a)). (2.77)

Observe that tail(a) → head(a)  t is a directed tail(a) − t path of cost µ(head(a)) + k(a) and

therefore x̂, ẑ is dual feasible. Furthermore, for every u ∈ V \ {t}, there exists v ∈ V such that

(u, v) ∈ A and µ(u) = µ(v) + k((u, v)). This means that there are at least |A| + |V | − 1 active

constraints at x̂, ẑ and it is a vertex. In fact, for a given v ∈ V all v − t paths have the same cost,

all constraints are active and x̂, ẑ is the only vertex of the dual feasible set. The dual feasible set is

identical for all choices of source rates R and therefore the optimal solution is give by x∗ = x̂ and

z∗ = ẑ.

We now define the reduced cost of s ∈ S as

h̄(s) , h(s)− (z(s)− z(t)) = h(s)− z(s) (2.78)

and rewrite the second set of constraints of (2.66) as

∑

U3s
yU = h̄(s). (2.79)

We seek to express the dual variables yU as a function of the dual variables z(s) as we did for the

dual variables x(a). The following theorem provides a characterization of which of the dual variables
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yU must be zero as a function of the correlation structure of the source random variables.

Theorem 12. Suppose R∗ is primal optimal and y∗ is dual optimal and let U = {sk1 , · · · , skm}

such that k1 < k2 < . . . < km. If R∗ is a vertex of QσSW and there exists j ∈ [m] such that

(XU\Ukj−1
6⊥ XUkj−1\Ukj−1

)|XU c
kj
\U (2.80)

then y∗U = 0.

Proof. Follows immediately from complimentary slackness and Proposition 1.

This characterization suggests the following sufficient condition for an extreme point Rπ of the

SW rate region QσSW and its associated min-cost flow f∗π to be a solution to the LP in (2.11).

Theorem 13. A feasible solution (f∗π , Rπ) of (2.11) is optimal if there exists vectors (z(v) : v ∈ V )

satisfying

k̄(a) < 0 =⇒ f∗π(a) = c(a) ∀a ∈ A (2.81a)

k̄(a) > 0 =⇒ f∗π(a) = 0 ∀a ∈ A (2.81b)

and

h̄(s1) ≥ h̄(s2) ≥ · · · ≥ h̄(sn) ≥ 0 (2.82)

where the elements of S are ordered according the permutation π.

Proof. Ordering the elements of S according to the permutation π induces a nested family of subsets

Ui , {sj : j ∈ [i]}. We construct a dual feasible y by setting yU = 0 for U not in the nested family

and

yUi =





h̄(si)− h̄(si+1) i ∈ [n− 1]

h̄(si) i = n.

(2.83)

We construct a dual feasible x from (2.68). Having primal feasible (f∗π , Rπ) and dual feasible (x, y, z),

optimality follows from complimentary slackness.
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Figure 2.12: Plot of i) source cost plus cost of a convex combination of min-cost flows and
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distribution parameter p = 1

2 .

The impact of the previous two theorems is that even though the dual has an exponential number

of variables, we need only consider a linear (in |V |) number of them. Given (z∗(v) : v ∈ V ), we

can compute (x∗(a) : a ∈ A) according to (2.68) and (y∗U : U ⊆ S) according to (2.83). The

extreme points of the SW rate region are significant because codes that satisfy R(S) = H(XS) can

be constructed from codes for these points via time sharing. By adding in a per source cost to the

previous example, we demonstrate that such a z need not always exist.

Example 4. Looking at Figure 2.11, one might conjecture that an optimal solution (f∗, R∗) to

problem in (2.11) would have the property R∗ ∈ Ext(BσSW ); i.e., that an optimal rate will always

coincide with a vertex of the Slepian-Wolf rate region and that z that satisfies the condition of the

previous theorem will always exist. It is certainly true that f∗, R∗ will be a vertex of the polyhedron

in flow-rate space, the network of Figure 2.10 example demonstrates that for certain choices of source

costs h and arc costs k the optimal rate R∗ need not be a vertex of the Slepian-Wolf rate region.

Figure 2.12 shows the cost hᵀRλ + kᵀf̃λ of the convex combination of min-cost flows as a function

of λ compared to the cost hᵀRλ + kᵀf∗λ for the min-cost flow for a convex combination of rates Rλ.

We see immediately the minimum cost is achieved with λ = 1
2 and R∗λ 6∈ Ext(BσSW ).

Given the intuitive decomposition of the source coding and routing into different protocol layers

noted by Barros et al., it may appear at first glance that a simple decomposed approach to designing
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a minimum cost solution might hold [10]. For the case where all extreme points of the Slepian-Wolf

rate region are feasible, one might consider a näıve approach of finding a minimum cost (w.r.t. h)

source rate R̂ and a supporting minimum cost (w.r.t. k) f̂ . Alternatively, one might try enumerating

all extreme points of the Slepian-Wolf rate region (combinatorial complexity aside), solving for a

min-cost flow, and keeping track of the best solution. The problem with both of these approaches

is that the resulting feasible solution will select a rate R̂ that coincides with an extreme point of

the Slepian-Wolf rate region. The previous example demonstrates that when there is a imbalance

between source costs and flow cost (i.e., cheap compression and expensive routing vs. expensive

compression and cheap routing) the optimal rate R∗ 6∈ Ext(QσSW ).

2.5 Extensions to Multiple Sinks

In previous sections, we have focused our attention on the single-sink problem. In many contexts, it

may be necessary to recover the source XS at multiple sinks T . As mentioned earlier, this problem

was considered by Ramamoorthy [11]. When there are multiple sinks, routing is no longer sufficient

for conveyance of the sources to the sinks; instead network coding is necessary. In the general

network coding case, the single flow variable on each edges is replaced by virtual flows, one for each

each edge and the traffic carried is represented with a physical flow [16]. Finally, Ramamoorthy

augments the original graph by adding in a super source s∗ and connecting this vertex to each of

the sources s ∈ S with an edge of zero cost and capacity given by the entropy of the source H(Xs).

With this augmentation, the multi-sink linear program can be written as:

minimize
f,p,R

∑

a∈A
k(a)p(a)

subject to

0 ≤ f (t)(a) ≤ p(a) ≤ c∗(a) a ∈ A, t ∈ T

f (t)(δin(v))− f (t)(δout(v)) = ∆(t)(v) v ∈ V

x(t)((s∗, s)) ≥ R(t)(s) s ∈ S, t ∈ T

R(t)(U) ≥ H(XU |XU c) U ⊆ S, t ∈ T.

(2.84)
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where

c∗(a) =





c(a) a ∈ A

H(Xs) a = (s∗, s)

(2.85)

and

∆(v) =





−H(XS) v = s∗

H(XS) v = t

0 otherwise

(2.86)

We can view the multi-sink problem as being the intersection of multiple single-sink problems.

Looking at (2.84), we can see that f (t) is a valid flow that supports R(t) for the sink t. We can define

a min-cost capacity set function for each of the sinks

ρ(t)
c (U) = min{c(δout(X)) : U ⊆ X, t ∈ V \X} (2.87)

and we then see that R(t) ∈ QσSW ∩ Pρ(t)c .

Although the multi-sink scenario requires network coding (as compared to distributed source

coding and routing for the single-sink scenario), many of the insights developed for the single-sink

case carry over. The first is characterizing the feasibility of (2.84) [6, 11, 12].

Theorem 14 (Han’s Matching Condition for Multiple Sinks [12]). The sources XS are transmissible

across the network to the sinks T if and only if

σSW (U) ≤ min
t∈T

ρ(t)
c (U)∀U ⊆ S. (2.88)

Comparing (2.9) and (2.88), we see that Theorem 14 implies Theorem 3 for every sink t ∈ T .

We can extend Theorem 5 in a similar manner.

Theorem 15. All of the vertices of the Slepian-Wolf rate region QσSW are feasible for the multi-sink

problem (2.84) if and only if

H(XU ) ≤ min
t∈T

ρ(t)
c (U) ∀U ⊆ S. (2.89)
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Proof. The condition (2.89) implies BσSW ⊆ P
ρ
(t)
c

for all t ∈ T , which means that for any vertex of

QσSW and any sink t ∈ T there exists a supporting virtual flow f (t). If on the other hand (2.89)

does not hold, this implies there exists a sink t ∈ T and a vertex of QσSW for which no supporting

flow f (t) exists.

We can bound the optimal value of the multi-sink min-cost flow problem in (2.84) in terms of

the optimal values for a collection of single-sink min-cost flow problems.

Theorem 16. Let (f∗, p∗, R∗) be an optimal solution to (2.84) and (f̂ (t), R̂(t)) be an optimal solution

to the single sink problem for t ∈ T . We have

max
t∈T

∑

a∈A
k(a)f̂ (t)(a) ≤

∑

a∈A
k(a)p∗(a) (2.90)

and

∑

a∈A
k(a)p∗(a) ≤

∑

a∈A
k(a) max

t∈T
f̂ (t)(a). (2.91)

Proof. Denote an optimal solution to (2.84) as (f∗, p∗, R∗). The optimal value of a min-cost flow

for the single sink t is given by

∑

a∈A
k(a)f̂ (t)(a) (2.92)

and this must be a lower bound for the multi-sink problem with t ∈ T . Suppose that it was not;

then,
∑

a∈A
k(a)f̂ (t)(a) ≥

∑

a∈A
k(a)p(a)

≥
∑

a∈A
k(a)f∗(t)(a)

(2.93)

which follows from the constraints of (2.84). Note that the virtual flow f∗(t)(a) is a feasible solution

to the single sink problem for sink t, contradicting the assumption of f̂ (t) as an optimal solution to

the single sink problem for t. Since (2.92) is a lower bound for every t ∈ T , it must be true for

max
t∈T

∑

a∈A
k(a)f̂ (t)(a). (2.94)
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To produce an upper bound for the optimal value of (2.84), we form a feasible solution from

{
(f̂ (t), R̂(t)) : t ∈ T

}
the set of optimal solution to single-sink problems:

f (t)(a) = f∗(t)(a) ∀a ∈ A, t ∈ T (2.95a)

R(t)(s) = R∗(t)(s) ∀s ∈ S, t ∈ T (2.95b)

p(a) = max
t
f (t)(a). (2.95c)

Finally, the cost of this feasible solution is

∑

a∈A
k(a) max

t∈T
f̂ (t)(a). (2.96)

Example 5. As an example of the above bounds, we consider a multi-sink problem instance formu-

lated by Ramamoorthy [11]. In this scenario, the network consists of 50 nodes and 286 edges; 10 of

the nodes are sources and 3 are sinks, with the rest of the nodes acting as relays. The edge capacities

are either 20 or 40 depending upon the distance between the connected nodes and the edge costs

are all 1. A more detailed description of the network topology and source model can be found in

[11], §3-B. Shown in Figure 2.13 is a comparison of the cost of the solution found using a partial

dual decomposition and application of the subgradient method, the optimal value as computed from

building and solving the LP in (2.84), and the lower and upper bounds of Theorem 16.4 We observe,

for this problem, that neither bound is tight; the lower bound has a relative difference of 47.5%

while the upper bound has a relative difference of 34.7%. We see that the subgradient method does

converge to the optimal value rather quickly, realizing a relative error of 0.19%, 0.13%, and 0.06%

after 10, 100, and 1000 iterations, respectively.

4 In Fig. 1 (b) of [11], the optimal value is reported as 646.69 which is different from the optimal value of 573.45
shown in Figure 2.13. Through personal correspondence with the author of [11] it was determined that in computing
the solution costs Fig. 1 (b) of [11] non-zero costs were being assigned to the edges between the super source s∗ and
the sources s ∈ S. Correcting for this gives the subgradient results in Figure 2.13
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Figure 2.13: Comparison of subgradient method [11] with optimal value and upper and lower
bound.

2.6 Conclusion

In this chapter, we have considered the transmission of distributed sources across a network with

capacity constraints. Previous works have only made use of the fact that SW rate region is a

contrapolymatroid as part of an iterative subgradient method. The set of achievable rates is the

intersection of the SW rate region with the polymatroid defined by the min-cut capacities. We

characterize when the SW vertices are all feasible and give an explicit characterization of all the

vertices of the intersection of polymatroid with a contrapolymatroid for certain sub-/supermodular

set functions. The size of the representation of the SW rate region is related to the conditional

independence relationships among the sources and in some cases may require a sub-exponential

number of inequalities to describe the rate region. We have shown that these properties lead to a

characterization relating optimal solutions and the corner points of the SW rate region. Through a

simple, but natural counter-example we demonstrate that an optimal rate allocation may not be a

vertex of the SW rate region. Our result concerning the feasibility of all the SW rate region vertices

naturally extends from the single sink problem to the multi-sink setting. The optimal value of the

multi-sink is bounded from above and below in terms of the optimal solutions to a collection of

related single-sink problems.
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Chapter 3: Distributed Scalar Quantization for Resource Allocation

Efficient downlink resource allocation (e.g., subbands in OFDMA/LTE) requires channel state in-

formation (e.g., subband gains) local to each user be transmitted to the base station (BS). Lossy

encoding of the relevant state may result in suboptimal resource allocations by the BS, the perfor-

mance cost of which may be captured by a suitable distortion measure. This problem is an indirect

distributed lossy source coding problem with the function to be computed representing the optimal

resource allocation, and the distortion measuring the cost of suboptimal allocations. In this chapter

we investigate the use of distributed scalar quantizers for lossy encoding of state, where the BS

wishes to compute the index of the user with the largest gain on each subband. We prove the supe-

riority of a heterogeneous (across users) quantizer design over the optimal homogeneous quantizer

design, even though the source variables are i.i.d.

3.1 Introduction

In a multiuser OFDMA system, each of the available subbands may be assigned to a user. Once this

assignment is done, the BS can select an appropriate modulation and coding scheme to approach

the capacity of the channel on the subband between the BS and the selected user. The BS needs to

know, for each subband, the user with the best channel gain and the value of the best gain; the other

users’ channel gains are irrelevant. Further, if the BS utilizes a rateless code on the subbands then

it only needs to compute the index of the user with the best channel gain and not the actual value of

the channel gain. A distinguishing feature of our approach is to model resource allocation problems

as a chief estimating officer (CEO) (i.e., an indirect distributed lossy source coding) problem [25], by

capturing the resource allocation decision as a function of the state variables, and representing the

cost of suboptimal allocations via a suitable distortion measure. The associated rate-distortion (R-D)

function gives the fundamental overhead-performance trade-offs in the resource allocation problem,

where the overhead is the sum rate of the messages sent to the BS, and the performance cost is the
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Figure 3.1: Distributed scalar quantization for resource allocation problem overview. The BS
wishes to compute the index (arg max) of the user with the largest gain on each subband. The
users encode their local gains across subbands using SQs.

subband gain lost due to a suboptimal allocation.

In this work, we consider the design of distributed scalar quantizers (SQs) as an achievable scheme

(i.e., realizable code) for encoding state for the allocation of subbands across users. Traditionally,

quantizers are designed to minimize the reproduction distortion when using a finite-rate code for a

continuous random source. For the resource allocation problem, what needs to be recovered at the

decoder is a function of the sources instead of the sources directly. Additionally, the distributed

nature of the sources greatly complicates the code design process. For example, if N mobile stations

(MSs) were centrally located, then log2N bits would suffice to communicate which user has the best

channel to the BS.

Recent work by Misra et al. considered the problem of distributed functional scalar quantization

(DFSQ) [26]. By focusing on the high-rate regime and assuming a mean squared error (MSE)

distortion, the authors are able to make several approximations to obtain distortion expressions

that are optimal asymptotically (i.e., as the rate goes to infinity). We assume a different distortion

measure, derive an exact expression for the distortion as a function of the quantizer parameters, and

derive necessary conditions for optimal parameters. Moreover, our results hold for all rates.

Our focus on the use of SQs as an achievable scheme is motivated by several results concerning
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the optimality of a layered architecture of quantization followed by entropy coding. Zamir et al.

considered the distributed encoding and centralized decoding of continuous valued sources and estab-

lished that lattice quantization followed by Slepian-Wolf (SW) encoding is optimal asymptotically in

rate [27]. When the sources are Gaussian and the distortion is MSE, local vector quantizers followed

by SW coding is optimal, not just asymptotically [28]. For discrete valued random variables, scalar

quantization with block entropy encoding is optimal [29]. Each of the problem models considered in

[27–29] can be understood as an instance of indirect distributed lossy source coding for the identity

function.

Our main result is a proof of the superiority of a simple and natural heterogeneous scalar quantizer

(HetSQ) design over the optimal homogeneous scalar quantizer (HomSQ) design for computing the

optimal user index under our given distortion measure. Superiority means the HetSQ achieves the

same distortion with lower rate as the best HomSQ. Our result is surprising in that HetSQ are seen

to achieve significant rate gains over optimal HomSQ even when the state variables are i.i.d. For a

uniform discrete distribution we show numerically that our HetSQ is both significantly better than

the optimal HomSQ, and moreover very close to the fundamental limit.

3.2 Problem Model

We focus our attention on the subband allocation problem for a single BS with two MSs as depicted

in Figure 3.1. At the i-th MS, the local state Xi is a vector of downlink channel capacities, which

we model as random variables that are i.i.d. across users. Having observed its local state, the i-th

MS sends a message Si ∈ {1, . . . , 2nRi} at rate Ri to the BS. If the BS had direct access to the local

state at each MS, it could compute the optimal subband allocation Z = g(X1, . . . ,XN ). Instead, the

BS has to compute the subband allocation Ẑ = f(S1, . . . , SN ) based on the messages it has received

from the MSs. The performance of the system is measured with a distortion function d(Z, Ẑ).

If we assume the BS utilizes a rateless code then the only information the BS needs is which MS

has the better subband; the optimal resource allocation function is naturally

Z(j) = arg max
i
{X(j)

i : i = 1, . . . , N}. (3.1)
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The BS estimates which user has largest gain on each subband and uses a rateless code (e.g.,

Hybrid ARQ) to find the coding rate on each subband. This is contrasted with the conventional

adaptive modulation and coding (AMC), where the BS needs to estimate both the best user and

the max gain on each subband. The distortion is the difference between the max rate for the MS

with the actual arg max index and the rate for the MS with estimated arg max

d(Z, Ẑ) =
1

M

M∑

j=1

(
X

(j)

Z(j) −X(j)

Ẑ(j)

)
(3.2)

where M is the number of available subbands. Observe that by definition, the quantity X
(j)

Z(j)−X(j)

Ẑ(j)

is always non-negative.

3.3 Optimal Scalar Quantizer Design

In this section, we consider the design of SQs as an achievable scheme and compare their performance

to computed rate-distortion functions. We first consider the case where all users are using the same

quantizer and derive an expression for the resulting distortion. Using this expression, we pose two

non-linear optimization problems: first, minimize distortion for a given number of bins, and; second,

minimize distortion for a given number of bins subject to a constraint on the entropy of the quantizer

output. We provide first order necessary conditions for the optimal quantizer for both non-linear

optimizations. We then argue that the same distortion performance can be achieved with a smaller

sum rate by utilizing different quantizers at each user. We show that the design of the HetSQ can

be accomplished via the same design procedure as for the HomSQ.

Let Xi : i = 1, . . . , N be the sources for the N users and let ZA be the index of the user

with maximum value. Unlike previous sections, we assume continous (instead of discrete) random

variables Xi : i = 1, . . . , N . As before, we still assume they are i.i.d. with common PDF f(x), CDF

F (x), and support set X ⊆ R+.
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3.3.1 Homogeneous Scalar Quantizers

Normally, a SQ is specified as a set of decision boundaries and reconstruction levels [30]. For the

estimating the arg max, we do not need the CEO to produce estimates for Xi : i = 1, . . . , N or even

XZA (i.e., the value of the maximum source). We can therefore specify the quantizer with just a set

of decision boundaries {`k : k = 0, . . . ,K} which divide the support set X into K intervals

Lk = [`k−1, `k] k = 1, . . . ,K (3.3)

where `0 , inf X and `K , supX . Let Ui ∈ {1, . . . ,K} indicate the interval in which user i’s

observed value lies. The CEO will pick user i if Ui > Ui′ for all i′ 6= i and will randomly pick a user

from arg max
i

Ui otherwise; we denote the estimate so obtained as XẐA
.

For notational brevity, we define the following: Ej , E [X | `j−1 ≤ X ≤ `j ], fj = f(`j), Fj ,

F (`j), and pj , P (`j−1 ≤ X ≤ `j).

Lemma 9. Let (Xi : i ∈ [N ]) be a collection of i.i.d. random variables with cdf F (x) and pdf f(x)

and

ZA , {i|Xi = max{X1, . . . , XN}, i ∈ [N ]}. (3.4)

The expected value of the max is

E [Xi|i ∈ ZA] =

∫ supX

inf X
xNFN−1(x)f(x) dx. (3.5)

Theorem 17. Let (Xi : i ∈ [N ]) be a collection of i.i.d. random variables with cdf F (x) and pdf

f(x) and

ZA , {i|Xi = max{X1, . . . , XN}, i ∈ [N ]}. (3.6)

The expected value of the estimated arg max when using HomSQs with K intervals is

E
[
XẐA

]
=

K∑

j=1

[
Ej
(
FNj − FNj−1

)]
. (3.7)
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Proof. The optimal Bayes estimator will select one of the users that reports being in the highest

interval.

nj ,
N∑

i=1

1`j−1≤Xi≤`j . (3.8)

We then have

E
[
XẐA

]
=

K∑

j=1


Ej

∑
∑j
k nk=N
nj>0

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j




=

K∑

j=1


Ej



(

j∑

k=1

pk

)N
−
(
j−1∑

k=1

pk

)N




=

K∑

j=1

[
Ej
(
FNj − FNj−1

)]
.

(3.9)

The last step follows from observing

∑
∑j
k nk=N

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j =

∑
∑j
k nk=N
nj>0

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j

+
∑

∑j
k nk=N
nj=0

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j ;

(3.10)

rearranging and applying the multinomial theorem yeilds

∑
∑j
k nk=N
nj>0

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j =

(
j∑

k=1

pk

)N
−
(
j−1∑

k=1

pk

)N
. (3.11)

Recall that for a collection of i.i.d. random variables Xi : i ∈ [N ]), the CDF of maximum

Z = maxiXi is given as

FZ(z) = FNX (z). (3.12)

We see then that an alternative and more intuitive way to view (3.7) is given as

E
[
XẐA

]
=

K∑

j=1

EjP (`j−1 ≤ XZA ≤ `j) . (3.13)
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Lemma 10.

∂Ek
∂`k−1

= fk−1
Ek − `k−1

pk
(3.14a)

∂Ek
∂`k

= fk
`k − Ek
pk

(3.14b)

Proof. Follows from application of the quotient rule and Leibniz’s rule.

Lemma 11.

∂E
[
XẐA

]

∂`k
= fk

[
(FNk+1 − FNk )(Ek+1 − `k)

pk+1
+

(FNk − FNk−1)(`k − Ek)

pk
−NFN−1

k (Ek+1 − Ek)

]

(3.15)

Proof. We re-write (3.7) as

E
[
XẐA

]
=

K∑

j=1

[
Ej
(
FNj − FNj−1

)]

= FNK EK −
K−1∑

j=1

FNj (Ej+1 − Ej)− FN0 E1

= EK −
K−1∑

j=1

FNj (Ej+1 − Ej)

(3.16)

and take derivatives

∂E
[
XẐA

]

∂`k
=

∂

∂`k
EK −

K−1∑

j=1

∂

∂`k
FNj (Ej+1 − Ej). (3.17)
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If k 6= K − 1, the above becomes

∂E
[
XẐA

]

∂`k
= −

K−1∑

j=1

∂

∂`k
FNj (Ej+1 − Ej)

= − ∂

∂`k
FNk−1(Ek − Ek−1)− ∂

∂`k
FNk (Ek+1 − Ek)− ∂

∂`k
FNk+1(Ek+2 − Ek+1)

= −FNk−1

∂Ek
∂`k
−NFN−1

k fk(Ek+1 − Ek)− FNk (
∂Ek+1

∂`k
− ∂Ek
∂`k

) + FNk+1

∂Ek+1

∂`k

= fk

[
−FNk−1

`k − Ek
pk

−NFN−1
k (Ek+1 − Ek)− FNk

(
Ek+1 − `k
pk+1

− `k − Ek
pk

)]

+ fk

[
FNk+1

Ek+1 − `k
pk+1

]

(3.18)

If k = K − 1, the above becomes

∂E
[
XẐA

]

∂`K−1
=

∂

∂`K−1
EK −

∂

∂`K−1
FNK−2(EK−1 − EK−2)− ∂

∂`K−1
FNK−1(EK − EK−1)

= −FNK−2

∂EK−1

∂`K−1
−NFN−1

K−1 fK−1(EK − EK−1)− FNK−1(
∂EK
∂`K−1

− ∂EK−1

∂`K−1
)

+ FNK
∂EK
∂`K−1

(3.19)

The above follows from recognizing that FK = 1 and we see that the expression for k 6= K − 1 holds

for k = K − 1.

Corollary 3. For N = 2, the above simplifies to

∂E
[
XẐA

]

∂`k
= fk

[∫ `k+1

`k−1

(x− `k)f(x) dx

]
. (3.20)
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Proof.

∂E
[
XẐA

]

∂`k
= fk

[
(F 2
k+1 − F 2

k )(Ek+1 − `k)

pk+1
+

(F 2
k − F 2

k−1)(`k − Ek)

pk
− 2Fk(Ek+1 − Ek)

]

= fk

[
(F 2
k+1 − F 2

k )(Ek+1 − `k)

Fk+1 − Fk
+

(F 2
k − F 2

k−1)(`k − Ek)

Fk − Fk−1
− 2Fk(Ek+1 − Ek)

]

= fk [(Fk+1 + Fk)(Ek+1 − `k) + (Fk + Fk−1)(`k − Ek)− 2Fk(Ek+1 − Ek)]

= fk [(Fk+1 − Fk)Ek+1 + (Fk − Fk−1)Ek − (Fk+1 − Fk−1)`k]

= fk

[∫ `k+1

`k

xf(x) dx+

∫ `k

`k−1

xf(x) dx− `k
∫ `k+1

`k−1

f(x) dx

]

(3.21)

Minimum Distortion

For a given number of intervals K, the decision boundaries {`k : k = 0, . . . ,K} that minimize the

expected distortion are given by the solution to the following non-linear optimization:

minimize
`

D(`)

subject to `k−1 ≤ `k k = 1, . . . ,K.

(3.22)

Theorem 18. If {`∗k : k = 0, . . . ,K} is an optimal solution to (3.22) then there exists µ∗K ≥ 0 for

k = 1, . . . ,K such that

fk

[
(FNk+1 − FNk )(`∗k − Ek+1)

pk+1
+

(FNk − FNk−1)(Ek − `∗k)

pk
−NFN−1

k (Ek − Ek+1)

]
− µ∗k + µ∗k+1 = 0

(3.23a)

µ∗k(`∗k−1 − `∗k) = 0. (3.23b)

Proof. The Lagrangian associated with this problem is

L(`,µ) = D(`) +

K∑

k=1

µk(`k−1 − `k) (3.24)
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Taking the derivative w.r.t. `i gives

∂L(`,µ)

∂`k
=
∂D(`)

∂`k
− µk + µk+1 (3.25)

where

∂D(`)

∂`k
= −

∂E
[
XẐA

]

∂`k
. (3.26)

The result follows from setting the above equal to zero and complementary slackness.

Corollary 4. For N = 2, the above simplifies to

fk

[∫ `∗k+1

`∗k−1

(`∗k − x)f(x) dx

]
− µ∗k + µ∗k+1 = 0 (3.27a)

µ∗k(`∗k−1 − `∗k) = 0. (3.27b)

Remark. In §3.4, we solved for the optimal decision boundaries by setting all the Lagrange multipliers

to zero and solving (3.23a). Depending upon the distribution, (3.23a) can be solved exactly or with

a non-linear solver.

Entropy-constrained minimum distortion

The interval Ui that the i-th user’s observed value lies in is a discrete random variable with probability

mass function given by p = (pk : k = 1, . . . ,K) and the entropy of Ui is H(Ui) = −∑K
k=1 pk log2 pk.

The total rate needed for the N users to report their intervals is then

RHomSQ(`) ,
N∑

i=1

H(Ui) = NH(U) (3.28)

by the i.i.d. assumption of the sources and the homogeneity of the quantizers.

Lemma 12.

∂RHomSQ(`)

∂`k
= Nfk log2

(
pk+1

pk

)
(3.29)
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Figure 3.2: Plots of D(`) and R(`) as functions of ` for exponentially distributed source. For
R(`) ≤ 1.75, the set of feasible ` is seen to be non-convex.

Proof.

∂RHomSQ(`)

∂`k
= N

K∑

j=1

∂

∂`k
pj log

(
1

pj

)

= N

(
∂

∂`k
pk log

(
1

pk

)
+

∂

∂`k
pk+1 log

(
1

pk+1

))

= N

(
−fk + fk log

(
1

pk

)
+ fk − fk log

(
1

pk+1

))

(3.30)

We now consider the problem of minimizing the distortion subject to an upper limit on the sum

rate.

minimize
`

D(`)

subject to RHomSQ(`) ≤ R0

`k−1 ≤ `k k = 1, . . . ,K

(3.31)

In general, this problem is not convex. To see this, consider Xi ∼ Exponential(λ) and a single

threshold ` (two intervals: [0, `), [`,∞)). Figure 3.2 shows a plot of D(`) (top) and R(`) (bottom)

as ` is swept from inf X to supX . For R0 = 1.75 bits, the range of infeasible ` is shown as a filled

area under the rate and distortion curves and we see that the set of feasible ` is non-convex.

Theorem 19. If {`∗k : k = 0, . . . ,K} is an optimal solution to (3.31), then there exists µ∗K ≥ 0 for
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k = 1, . . . ,K and µR ≥ 0 such that

fk

[
(FNk+1 − FNk )(`∗k − Ek+1)

pk+1
+

(FNk − FNk−1)(Ek − `∗k)

pk
−NFN−1

k (Ek − Ek+1)

]

+fkµ
∗
RN log2

(
pk+1

pk

)
− µ∗k + µ∗k+1 = 0

(3.32a)

µ∗i (`
∗
i−1 − `∗i ) = 0 and µ∗R(RHomSQ(`∗)−R0) = 0. (3.32b)

Proof. The Lagrangian associated with this problem is

L(`,µ) = D(`) + µR(RHomSQ(`)− r) +

K∑

k=1

µk(`k−1 − `k) (3.33)

Taking the derivative w.r.t. `i gives

∂L(`,µ)

∂`i
=
∂D(`)

∂`i
+ µR

∂RHomSQ(`)

∂`i
− µi + µi+1. (3.34)

The result follows from setting the above equal to zero and complementary slackness.

Remark. Solving for the optimal entropy constrained quantizer is more difficult than solving for

the minimum distortion quantizer. Depending upon the given values of R0 and K, the decision

boundaries may collapse and the associated Lagrange multipliers need no longer be identically zero.

A general solution technique for (3.32) is beyond the scope of the present work; generalizations to

both Lloyd’s and Max’s algorithms for entropy constrained quantizer design are presented in [31].

We conclude with some observations about the rate-distortion curve for entropy-constrained

quantizers. For a given K, suppose `∗ is a solution to (3.22). If R0 ≥ RHomSQ(`∗), then the rate

constraint in (3.31) is not active and `∗ is also a solution to (3.31) for the same K. On the other

hand, if R0 < R(`∗) then the rate constraint in (3.31) is active and `∗ is infeasible for (3.31) [31].

Next, consider the rate-distortion curve for a N -level entropy-constrained quantizer and the sequence

of rate-distortion points given by (3.22) for K = 1, . . . , N . These rate-distortion points all lie in the

rate-distortion curve for the N -level entropy-constrained quantizer.
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3.3.2 Heterogeneous Scalar Quantizers

It is somewhat intuitive to suppose that because the sources are i.i.d., the quantizers at each user

should be identical. For symmetric functions (e.g., max), Misra et al. consider only the design of the

quantizer for a single user [26]. When the function is not symmetric (e.g., arg max as in our case),

the assumption of HomSQ is in fact not true.

Theorem 20. For an optimal HomSQ `∗ that achieves a distortion D(`∗), there exists a HetSQ

that achieves the same distortion with rate

RHetSQ(`) = (N − 2)H(U) + δ (3.35)

where

δ =

K∑

k=1

pk log
1

(pk−1 + pk)(pk + pk+1)
≤ 2H(U) (3.36)

and p0 = 0 and pK+1 = 0.

Proof. We think of HomSQ as approximating the continous distribution with a discrete one and

then losslessly computing the arg max of the quantization bin indices. This is exactly the problem

considered in Section II of [3]. From [3], we know that fewer than RHomSQ(`) bits are needed to

enable the CEO to losslessly determine arg max of the bin indices. In [3], a code is constructed by

coloring the vertices of the associated characteristic graphs for each user and entropy coding the

vertex colors. The rate savings comes by allowing a pair of consecutive bin indices for a user to be

assigned the same color, provided the pair of indices are assigned different colors for every other

user. We can compute the colors directly, by observing that if a pair of consecutive bin indices are

being assigned the same color we are merging the underlying bins into one larger bin for that user

only.

Remark. As was shown in [3], the total rate savings for losslessly determinging the arg max of a

discrete distribution is at most 2 bits. Therefore, the rate savings of HetSQs versus HomSQs is also

at most 2 bits and the savings per user goes to zero as the number of users is increased.
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Figure 3.3: Block diagram of possible scalar quantizers for arg max. For HomSQ a, U1, . . . , UN
are i.i.d. and the encoder is the same for each user. In the alternative HomSQ scheme b, the
reduction in rate comes from coloring the vertices in a characteristic graph associated with
each source. In general, this graph is different for each user and therefore the encoder will be
different for each user. Finally, by having the quantization operation at each source determine
the “vertex color”, U ′1, . . . , U

′
N are independent but not identically distributed.

For HetSQ, when N = 2 and K = 2 only one of the sources is sending back a bit. We can use

results from rate-distortion for the Bernoulli(p) source with Hamming distortion to trace out the

low-rate/high-distortion segment of the trade-off curve.

Lemma 13. The expected value of the estimator when a lossy source code is used to communicate

the output HetSQ for N = 2 and K = 2 to the CEO is given by

E
[
XẐA

]
= (1− p̂)E [X] + p̂(DHE [X|X ≤ `] + (1−DH)E [X|` ≤ X]) (3.37)

where

p̂ =
p2 −DH

1− 2DH
(3.38)

and the rate is given by

R(`,DH) =





h2(p2)− h2(DH) DH ≤ min{p2, 1− p2}

0 DH > min{p2, 1− p2}
(3.39)
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Proof. We assume that user 1 is sending the single indicator bit to the CEO w.l.o.g. and model this

as a Bernoulli(p2) source with p2 = P (X1 ≥ `) and Hamming distortion DH . The rate-distortion

function for this subproblem is given by (3.39). The test channel that achieves this is a binary

symmetric channel (BSC)(DH) with input X̂ ∼ Bernoulli(p̂). From this we obtain an expression for

the joint probability mass function (pmf) P
(
X = x, X̂ = x̂

)
from which we can derive (3.37).

Remark. Observer that for DH = 0, we obtain the same expression as (3.7) for N = 2 and K = 2

and for DH = min{p2, 1− p2}, we get E
[
XẐA

]
= E [X].

3.4 Examples & Results

Example 6 (arg max SQ for N ≥ 2 Uniform(0, 1)). We now consider the design of a HomSQ for

estimating the arg max from N > 2 sources i.i.d. Uniform(0, 1). From (3.7) we obtain the following

expression for the expected distortion

D(`) =
N

N + 1
−

K∑

j=1

(`j−1 + `j)(`
N
j − `Nj−1)

2
(3.40)

from which we solve for optimal quantizer parameter `∗

`∗N−1
j−1 =

`∗Nj+1 − `∗Nj−1

N(`∗j+1 − `∗j−1)
. (3.41)

Figure 3.4 shows the per user rate and normalized distortion for HomSQ and the staggered HetSQ

derived from the optimal HomSQ for estimating the arg max of a collection of distributed users with

sources i.i.d. Uniform(0, 1). The left subplot is for N = 2 users, the middle subplot for N = 4 users,

and N = 8 users. We observe immediately that the performance gains of the staggered HetSQ over

HomSQ diminish as the number of users increases. Additionally, while the zero rate distortion is

increasing in the number of users, we observe that the required rate per user to achieve a specified

normalized distortion is non-montonic in the number of users. For example, fixing D = 0.01 we

observe per user rate for HomSQ is 2.32 bits for N = 2, 2.32 bits for N = 4, and 1.86 bits for N = 8.

The per user rate for HetSQ is 1.52 bits for N = 2, 1.95 bits for N = 4, and 1.71 bits for N = 8.
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Figure 3.4: Rate-distortion trade-offs for HomSQ and HetSQ and rate-distortion function for
varying numbers of users: N = 2 users (top, left); N = 4 users (top right), and; N = 8 users
(bottom). The source distribution was assumed Uniform(0, 1).
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The performance gain of HetSQ over HomSQ does come at a cost in terms of fairness. To

demonstrate this, consider the optimal HomSQ when using three intervals at each user, for which

the optimal thresholds are given as `(1)∗ = 2a+b
3 and `(2)∗ = a+2b

3 . The HetSQ bins for X1 will be

[a, 2a+b
3 ) and [ 2a+b

3 , b]; the HetSQ bins for X2 will be [a, a+2b
3 ) and [a+2b

3 , b]. Observe that S1 ∼

Bernoulli(2/3) and S2 ∼ Bernoulli(1/3) independent of a and b and therefore

RHomSQ(`) = 2 log2 3 ≈ 3.170

RHetSQ(`) =
2

3
log2

(
27

4

)
≈ 1.837.

User one is selected as the arg max with probability P(S1 = 0, S2 = 0)+P(S1 = 1, S2 = 0)+P(S1 =

1, S2 = 1) = 5
9 while user two is selected with probability 4

9 . If we use three total thresholds (i.e.,

K = 4) with one thresholds at user one and two threshold at user two, then user one and user two

are selected as the arg max with equal probability. However, user one’s rate is R1 = 1.0 bits while

user two’s rate is R2 = 1.5 bits.

Example 7 (arg max SQ for Exponential(λ)). We now consider the scenario where each user’s

source is distributed Exponential(λ). If we define wj , λ`j , then expected distortion can be written

as

D(`) =
1

λ


HN −

K∑

j=1

(
ewj (wj−1 + 1)− ewj−1(wj+1)

) (
(1− e−wj )n − (1− e−wj−1)

n)

ewj − ewj−1


 (3.42)

where HN is the N th harmonic number. When N = 2, we have from (3.23a) that an optimal solution

will satisfy

w∗k =
−e−w∗k−1(1 + w∗k−1) + e−w

∗
k+1(1 + w∗k+1)

(e−w
∗
k+1 − e−w∗k−1)

(3.43)

with boundary conditions

w∗1 =
1− e−w∗2 (1 + w∗2)

(1− e−w∗2 )
, w∗K−1 = 1 + w∗K−2. (3.44)
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Figure 3.5: Rate-distortion trade-offs for HomSQ and HetSQ for Uniform(0, 1) as the number
of users is increased.
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Figure 3.6: Rate-distortion trade-offs for HomSQ (left) and HetSQ (right) for Uniform(0, 1)
as a function of the number of users.
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Such an expression can be found for N > 2, but the details are omitted here. We observe that

the optimal quantizer for X1, . . . , XN ∼ Exponential(λ) is given by an appropriate scaling of the

optimal quantizer for X1, . . . , XN ∼ Exponential(1).

Figure 3.7 shows the per user rate and normalized distortion for HomSQ and the staggered

HetSQ derived from the optimal HomSQ for estimating the arg max of a collection of distributed

users with sources i.i.d. Exponential(2). The left subplot is for N = 2 users, the middle subplot for

N = 4 users, and N = 8 users. As with the previous example, we observe that the performance

gains of the staggered HetSQ over HomSQ diminish as the number of users increases. The zero

rate distortion is increasing in the number of users, but we observe that the required rate per user

to acheive a specified normalized distortion is non-montonic in the number of users. For example,

fixing D = 0.01 we observe per user rate for HomSQ is 2.51 bits for N = 2, 2.51 bits for N = 4,

and 2.07 bits for N = 8. The per user rate for HetSQ is 1.68 bits for N = 2, 2.12 bits for N = 4,

and 1.91 bits for N = 8. We conclude by noting that for a fixed normalize distortion, the SQs for

exopentially distributed sources require a higher per user rate than SQs for uniformly distribute

sources. This makes sense intuitively as the support set of Uniform(0, 1) is bounded, while it is

unbounded for Exponential(λ).

As above, consider the optimal HetSQ when using two intervals at each user, for which the optimal

thresholds are given as w∗1 = 1 + W (−2e−2) and w∗2 = 2 + W (−2e−2) where W (x) is the Lambert

W function. Observe that S1 ∼ Bernoulli(1− e−w∗1 ) ≈ 0.448 and S2 ∼ Bernoulli(1− e−w∗2 ) ≈ 0.797

and therefore

R1 +R2 = H(S1) +H(S2) ≈ 1.720

We get the same distortion as for identical quantizers with K = 3 which requires 3.033 bits. User

two is selected as the arg max with probability P(S1 = 0, S2 = 0) + P(S1 = 1, S2 = 0) + P(S1 =

1, S2 = 1) ≈ 0.560 while user one is selected with probability 0.440.
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Figure 3.7: Rate-distortion trade-offs for HomSQ and HetSQ and rate-distortion function for
varying numbers of user: N = 2 users (top left); N = 4 users (top right), and; N = 8 users
(bottom). The source distribution was assumed Exponential(2).
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Figure 3.8: Rate-distortion trade-offs for HomSQ and HetSQ for Exponential(2) as the number
of users is increased.
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Figure 3.9: Rate-distortion trade-offs for HomSQ (left) and HetSQ (right) for Exponential(2)
as a function of the number of users.
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3.5 Conclusions

In this chapter, we have considered the design of SQs for distributed function computation in the

context of a resource allocation problem. We proposed a natural, non-quadratic distortion measure

and provided an exact expression as a function of the quantizer parameters. We have argued that

HetSQ are more efficient than HomSQ by achieving the same distortion at a lower rate. We consid-

ered several example capacity distributions, demonstrating that the performance of HetSQ may be

close to fundamental limits.

We restricted our focus to SQs for a single subband. It is known that vector quantizers are

more efficient than SQs, even when the source outputs being blocked into vectors are independent

[22, 30]. As mentioned previously, recent results have shown that local vector quantizers followed

by SW encoding is optimal for certain two-terminal problems with continuous distributions [27, 28].

This motivates the consideration of vector quantization in future work and to handle the case with

multiple subbands.
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Chapter 4: Interactive Scalar Quantization for Distributed Extremization

In many resource allocation problems, a centralized controller needs to award some resource to a user

selected from a collection of distributed users with the goal of maximizing the utility the user would

receive from the resource. This can be modeled as the controller computing an extremization of the

distributed users’ utilities. The overhead rate necessary to enable the controller to reproduce the

users’ local state can be prohibitively high. Two approaches to reduce this overhead are lossy esti-

mation and interactive communication. In the lossy estimator framework, rate savings are achieved

by tolerating a bounded expected reduction in utility. In interactive communication, rate savings

come at the expense of delay. In this chapter, we consider the design of a simple achievable scheme

based on successive refinements of scalar quantization at each user. The optimal quantization policy

is computed via a dynamic program and we demonstrate that tolerating a small increase in delay

can yield significant rate savings. We then consider two simpler quantization policies to investigate

the scaling properties of the rate-delay trade-offs. Using a combination of these simpler policies, the

performance of the optimal policy can be closely approximated with lower computational costs.

4.1 Introduction

4.1.1 Motivation

A common pattern in resource limited systems is the allocation of the resource by a controller

among a set of competing consumers/users. In an effort to make the most efficient usage of the

resource, the controller awards the resource to the user that derives the most utility from it. Often,

these users are not colocated and must communicate some local state to the centralized controller.

This communication presents an overhead. Hence techniques for minimizing the required rate are

needed. In some cases, the rate can be reduced by incurring only a small penalty. Rate-distortion

theory is an example where the rate required to communicate/reconstruct a signal can be reduced

if small errors in the reconstruction are tolerated. Interactive communication allows an alternative
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framework where communicating parties can send messages back-and-forth over multiple rounds

[32]. This back-and-forth messaging can reduce the rate required to compute an extremum/extrema

of the sources at the cost of increased delay. One achievable scheme for a collection of distributed

users talking to central controller (multiterminal CEO) is quantization followed by entropy (i.e.,

Huffman) encoders [33, 34]. In this chapter, we consider this same technique in the context of

interactive communication. We formulate the design of the multi-round quantization as the solution

to a dynamic program and demonstrate a substantial reduction in overhead communication rate

can be obtained for a small increase in delay. Because of the high computational complexity of the

dynamic programming problem, we identify two simpler schemes and investigate their performance

over a range of parameters. By combining these two schemes, we demonstrate a close approximation

of the dynamic programming solution at a lower computational cost.

4.1.2 Contributions

This chapter is organized as follows. We review related literature from information theory, signal pro-

cessing, and communication complexity in §4.2. We present the basic problem model and establish

the mathematical notation used throughout the chapter in §4.3. In §4.4, we formulate the optimal

rate-delay trade-off of scalar quantization as the solution of a minimum cost dynamic program. We

characterize the set of terminating states for the dynamic program when computing the different

extremization functions under consideration (cf. Proposition 3 & Proposition 4). We prove that,

asymptotically in the number of users, the cost for the CEO to compute the different extremization

functions are equal (cf. Proposition 6). In §4.5, we restrict our attention to the case of users’ utilities

being distributed uniformly. This assumption allows us to provide analytical expressions for the

rate and delay of simple quantization policies (cf. Proposition 7 & Proposition 8). We then provide

an extension to these simple schemes, which is asymptotically (in the number of users) sufficient

for minimizing the cost of computing the selected extremization functions (cf. Proposition 10). The

proposed family of quantizers is significantly smaller compared to the space of all possible quantiz-

ers. Hence, with these results the dynamic program can be solved more quickly with a relatively

small incurred penalty relative to the optimal dynamic program. In §4.6, we show the rate-delay
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trade-offs for different distributions and varying numbers of users. We also present a comparison of

the minimum cost from searching over all quantizers to the minimal cost from searching over our

proposed family of quantizers. We present directions for future work in §4.7.

4.2 Related Work

In the present work, we consider a distributed model where all users communicate to a central node.

In particular, the users can not overhear each other but can design their codes (with knowledge of

the source distributions of other users) to communicate with the central node—called “cooperative

design, separate encoding” [35]. These models are referred as the chief estimation officer (CEO)

problem [36]. We begin by reviewing fundamental limits and achievable schemes for non-interactive

variants of CEO-type problems. We then review results for interactive variants that demonstrate

significant rate savings may be possible. The non-interactive CEO problem has received considerably

more attention than the interactive variant, and, for the cases where fundamental limits are known,

quantization followed by entropy coding closely approximates these limits. This motivates our study

of interactive quantization as a means to realize further rate savings at the expense of an incurred

delay.

4.2.1 Non-interactive communication: fundamental limits

In information theory, the interest is usually on characterizing inner/outer bounds for the rate

region. Berger et al. introduced the generic CEO problem, wherein the CEO wants to reproduce

the source from the received signals [36]. The rate region for the problem of source reproduction

with constrained distortion remains unknown, except for the cases of Gaussian distribution with

quadratic distortion [37, 38] or i.i.d. discrete source distributions [39].

In our work, we are interested in having the CEO compute a function of all sources; this is

referred to as the distributed function computation (DFC) problem, and was considered in [40–

42]. This general formulation contains the specialized problem of function computation with side

information; in this problem, the CEO knows all but one of the sources [43, 44]. When the problem

requires error-free computation, it was shown that the minimum worst case rate is related to the
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chromatic number of the characteristic graph of the source [43]. In the case of lossless (in the

Shannon sense) computation, it was shown that the minimum average rate is the conditional graph

entropy of the characteristic graph of the source [44, 45]. Building upon this line of research, the

rate region for the lossless DFC problem was characterized for certain problem instances [41, 42].

Sefidgaran et al. derived inner and outer bounds to the rate region for a class of tree structured

networks (which includes the CEO problem) and showed that the inner and outer bound coincide

with each other if the sources obey certain Markov properties [41]. Doshi et al. gave the rate region

for the DFC problem under a different constraint that they referred to as the “zig-zag” condition

[42]. They showed that any achievable rate point can be realized by graph coloring at each user and

Slepian-Wolf (SW) [5] encoding the colors. Han and Kobayashi partitioned all DFC problems based

on whether their achievable rate region coincides with the SW region [40].

The aforementioned literature provides insightful outer bounds for comparing the performance

of distributed quantizer designs [3, 46], but the achievable schemes used in the proofs usually require

block coding with infinite block length, which is not practical. For use in a real system, simpler

achievable schemes with low computational complexity and performance close to the limits are

needed.

4.2.2 Non-interactive communication: achievability

A concern of signal processing is to provide optimized practical quantization algorithms for the

DFC system with performance close to the rate-distortion limits [26, 33–35, 47–49]. There are

asymptotic results for sufficiently high-rate and low-distortion that are derived by applying high rate

quantization theory [50], while there are also non-asymptotic results derived from generalizations of

Lloyd’s algorithm.

For the high-rate and low-distortion scenario, Misra et al. considered a quantization scheme for

the analysis of distributed scalar quantization [26]. It was shown that, with certain constraints on

the objective function and source distributions, the high-resolution approach can asymptotically

achieve the rate-distortion limits, and the optimized quantization is regular1. Sun et al. used a

1A quantizer is called regular if each partition cell is an interval and each output level is within the corresponding
interval.
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similar high-resolution approach, but with a simpler decoder design and relaxed source distribution

requirements [48].

For the general rate-distortion problem, an algorithm for building optimized distributed quantiz-

ers was given wherein the CEO uses the quantized observations to perform hypothesis testing [35]. A

two-stage distributed scheme was proposed for the case when the users each have a noisy observation

on the same source, and the CEO needs to reproduce the source with a bounded expected distortion

[33, 34]. A first stage of local quantization is followed by a second stage of encoding the quantized

signals based on Slepian-Wolf coding using syndrome codes [34] or index reuse techniques [33].

Most of the provided distributed quantization schemes are non-interactive, which means the users

each communicate with the CEO once, and no feedback is allowed from the CEO. For the problems in

which the non-interactive fundamental limits are known, distributed quantization shows satisfactory

performance as compared with the limit. However, very little work has been done in the interactive

distributed cases.

4.2.3 Interactive communication

Interactive communication is a scheme that allows message passing over multiple rounds. At each

round, the communicating parties are allowed to send messages based on what they have received in

previous rounds as well as their local source observation [32]. The interactive communication litera-

ture is roughly divided into two categories: communication complexity and interactive information

theory.

The communication complexity literature is concerned with finding communication protocols

that minimize the sum-rate subject to different sets of constraints. Overviews of communication

complexity can be found in [51, 52]. Communication complexity is defined as the sum-rate cost

minimized over all protocols and maximized over all possible input pairs (worst case cost). Average

cost has also been studied for randomized coding protocols. Much of the communication complexity

literature is focused on 2 users. Models with an N -terminal setup were considered in [53, 54], where

the authors focused on providing communication complexity bounds with the restrictions that the

function must be Boolean and the message sent at each round must be binary. However, in our
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work, we are interested in providing achievable schemes for problems without the limitation to 1 bit

of communication in each round or the restriction to Boolean functions.

Kaspi determined the two party information theoretic limit for lossy compression via interactive

communication [32]. This line of research was continued by Ma and Ishwar, who showed (by an

example) that the minimum rate for a given distortion constraint can be arbitrarily smaller than the

non-interactive minimum rate obtaining the same distortion [55]. In follow up work, Ma and Ishwar

showed (by an example) that for the DFC problem, the minimum sum-rate for losslessly computing

a function can be smaller than the non-interactive rate; even infinitely-many rounds of interaction

may still improve the rate-region [56].

These results motivate us to consider interaction for the DFC problem. In earlier work, we con-

sidered the non-interactive DFC problem of computing an extremization of independent users. We

developed distributed scalar quantizers with rate-distortion performance close to the rate-distortion

limits [3, 46]. We provided an achievable interactive communication scheme where the CEO com-

municates a threshold to the users at each round and the users reply with a single bit indicating if

its value is above or below the threshold [3, 57]. This scheme can be thought of as a simple two-bin

quantizer selected by the CEO at the beginning of each round; in the present work we extend this

by allowing the CEO to select a multi-bin quantizer in each round.

4.3 Problem Model

We assume that we have N users, each with local state Xi for i = 1, . . . , N , vying for a resource to

be allocated by the controller (i.e., CEO). We model the users’ local states as i.i.d. (across users)

discrete random variables with support set X and PMF pX(x), and interpret state as a proxy for

the users’ utility. Maximum utility of the resource is obtained by allocating it to the user with the

largest local state value. Without loss of generality, we will take X = {1, . . . , L} where L is the

size of support set. To select a user to award the resource to, the CEO wishes to compute one of

the following functions2: 1. arg maxiXi; 2. maxiXi, or; 3. (arg maxiXi,maxiXi). By computing

2Though we focus exclusively on the case of maximization in this chapter, similar results hold for the case of
minimization. In later sections, we enforce a decreasing order on certain parameters; to obtain results for minimization,
the order should be increasing.
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Figure 4.1: Interactive quantization system diagram. The users’ utilities Xi are quantized

using the quantization function Q(t)(·) giving the quantized utilities Q
(t)
i which are then entropy

encoded (Enc) before being sent to the CEO (Dec). Based on the received quantized utilities,
the CEO updates the quantization function at the users until the desired function has been
computed.

the arg max, the CEO can allocate the resource to an appropriate user without knowing exactly its

value. Computing the max of the users’ local state allows the CEO to make a global decision, e.g.,

turning on building-wide air conditioning based on local temperature readings. Computing both

enables the CEO to know the local value of the user being awarded the resource.

We view quantization as a function that maps the support set X ⊂ R onto some finite set X̂ ,

i.e., Q : X → X̂ . Traditionally, quantization is used as a lossy compression scheme for representing

sources with values drawn from a continuous support set. In this case, the quantizer is specified by

partitioning the support set into intervals that are mapped to representative values. Implicit is the

assumption the quantizer is monotonically increasing x, y ∈ X s.t. x ≤ y =⇒ Q(x) ≤ Q(y). When

X is finite (as we assume in this work), the quantizer can still be specified in terms of intervals but

this representation may not be unique. With the assumptions of X finite and Q order preserving,

we can alternately specify a K-level quantizer as a K-tuple of integers n = n1, . . . , nK that sum

to L with the following interpretation: the first n1 elements of X ({1, . . . , n1}) are mapped to 1,

the next n2 elements of X ({n1 + 1, . . . , n2}) are mapped to 2, and so on. This representation is

unique (in that different integer tuples correspond to different quantization functions) and the set of

possible scalar quantizers is isomorphic to the compositions of the integer L. For brevity, we define
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n1:k = n1 + · · ·+ nk. The induced PMF on Q is then

pQ(k) =

n1:k∑

i=n1:k−1+1

pX(i). (4.1)

We assume that time is slotted into rounds of sufficient length that the CEO can communicate to

the users and receive their responses in a single slot. We indicate the time slot/round of interaction

by t. In our analysis, we assume that feedback from the CEO provides all users with the same

knowledge as the CEO. We further assume the cost of communication from users to the CEO is

more expensive than communication from the CEO to the users. Therefore we omit the cost of

dissemination on the downlink from the CEO to the users in our analysis.

Suppose that at the beginning of the t-th round of interaction, the CEO observes that there are

N (t) active users and the support set has size L(t). The CEO will select a quantization function Q(t)

(homogeneous across users) by selecting the number of quantization levels K(t) and the quantization

bin sizes n(t) = (n
(t)
1 , . . . , n

(t)

K(t)) and communicate this to the users. Let Q
(t)
i , Q

(t)(Xi) denote the

quantization bin in which Xi lies and let Q(t) = (Q
(t)
i : i = 1, . . . , N (t)) denote the length N (t) tuple

of response received by the CEO from the users. Define

N
(t)
k =

N(t)∑

i=1

1
Q

(t)
i =k

, k = 1, . . . ,K(t) (4.2)

as the number of sources with state in bin k and let k∗t = max{k : N
(t)
k > 0} = maxiQ

(t)
i be the

index of the largest non-empty quantization bin. Based on the responses Q(t) from the active users,

the CEO performs the following updates in each round of interaction:

N (t+1) = N
(t)
k∗t
, L(t+1) = n

(t)
k∗t

(4.3a)

p
(t+1)
X (i) =





p
(t)
X (i)

p
(t)
Q (k∗t )

Q(t)(i) = k∗t

0 o.w.

(4.3b)

The first equation captures the fact that if a user’s quantized value is not in the highest reported
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bin, the user’s utility cannot be a maximizing value. Only the users with values in the highest

reported bin need to continue interacting with the CEO; the remaining users become inactive and

do not participate in subsequent rounds. The second equation updates the cardinality of the support

set; the maximizing value Xi corresponds to one of the values of X (t) that maps to the maximum

reported quantization bin. The final equation updates the PMF for the remaining range of user

values. At this point, the CEO is ready to begin the t+ 1-th round of interaction. In the following,

we will omit the time superscript when the time instance t is not relevant to the discussion and/or

is clear from context.

4.4 Optimal Solution via Dynamic Programming

At time t, the CEO observes the state of the system s(t) =
(
N (t), L(t), p

(t)
X

)
and wishes to compute

a quantization policy a(t) ,
(
K(t),n(t)

)
∈ A(t) that minimizes the cost of computing the desired

function f :

Cf

(
s(t)
)

= min
a(t)∈A(t)

[
(1− λ)R

(
a(t), s(t)

)
+ λτ

(
s(t),a(t)

)
+ E

[
Cf

(
S(t+1)

)]]
. (4.4)

The first part of the term inside the minimization consists of a weighting (λ) of the rate and delay

incurred by choosing the quantizer given by a(t) when in state s(t). The parameter λ is fixed

throughout and sets the relative importance of minimizing the rate (R(·)) versus the delay (τ(·)).

Given s(t) and a(t), the rate and delay are:

R
(
a(t), s(t)

)
=





N (t)H
(
p

(t)
Q

)
s(t) 6∈ S∗f

0 o.w.

(4.5a)

τ
(
a(t), s(t)

)
=





1 s(t) 6∈ S∗f

0 o.w.

(4.5b)

where p
(t)
Q is given by (4.1) and the set S∗ represents terminating states (from which f may be com-

puted). In general, the set S∗ will depend on the particular extremization function being considered.
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If s(t) 6∈ S∗, then the CEO will select a quantizer and the rate incurred is the entropy of the induced

PMF on the quantized values times the number of active users N (t); the delay is an additional round

of interaction. If s(t) ∈ S∗, the CEO can compute f and the interaction is over.

The second part of the expression inside of the minimization consists of the “cost to go”. De-

pending on the particular state s(t) and particular action a(t) chosen, the system state transitions to

state s(t+1) with some probability. The “cost to go” is an expectation of the optimal cost function

taken over all possible next time step states s(t+1) and is given by

E
[
Cf

(
S(t+1)

)]
=

K(t)∑

k=1



N(t)∑

i=1

ρ(k, i)Cf

((
i, n

(t)
k , p

(t+1)
X

))



ρ(k, i) =
(
p

(t)
Q (k)

)i


k−1∑

j=1

p
(t)
Q (j)



N(t)−i(

N (t)

i

)
(4.6)

The outer summation conditions on the largest reported quantization bin (k∗t = k) while the inner

summation conditions on there being i users in the k∗t -th bin. Given these two outcomes, the state

in the next time step is given as s(t+1) =
(
i, n

(t)
k , p

(t)
X

)
.

The next result characterizes the set S∗ of terminating states for the functions arg max, max, or

the pair (arg max,max).

Proposition 3. When the CEO wishes to determine the arg max of the set of users’ values, s(t) ∈ S∗A

iff N (t) = 1 or L(t) = 1.

Proof. If at some time t there is only one user still contending for the resource it must be the unique

maximizer. If the set of possible values consists of a single value, then all remaining users’ values

equal this value and they are all maximizers. In either case, the CEO has losslessly determined the

set of arg max users.

Proposition 4. When the CEO wishes to determine either the max or the pair (arg max,max) of

the set of users’ values, s(t) ∈ S∗M iff L(t) = 1.

Proof. If the set of possible values consists of a single value, then all remaining users’ values equal

this value and they are all maximizers.
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The set of terminating states is larger when the CEO wishes to determine the arg max because

communication can stop when a single user is left, regardless of the set of remaining possible values.

When determining the max, the CEO still needs subsequent rounds of communication with the single

remaining user to determine its value. The following gives the optimal cost C
(t)
M for s(t) ∈ S∗A \ S∗M .

Proposition 5. For s(t) ∈ S∗A \ S∗M , the optimal quantization strategy is for the single remaining

user to entropy code the state , and thus complete the communication in one additional round, i.e.,

C
(t)
M

(
s(t)
)

= (1− λ) log2 L
(t) + λ.

Proof. First, we show that for any quantizer n the expected rate is log2 L
(t). We proceed by

induction. The base case of L(t) = 2 is immediate. For the inductive step, suppose we have a

quantizer n = (n1, . . . , nK); then

R(L(t)) = H(pQ) + E
[
R(L(t+1))

]
(4.7)

H(pQ) = log2 L
(t) − 1

L(t)

K∑

k=1

nk log2 nk (4.8)

and

E
[
R(L(t+1))

]
=

1

L(t)

K∑

k=1

nk log2 nk. (4.9)

We conclude that R(L(t)) = log2 L
(t), and the cost depends only on the delay. A minimum delay of

1 is achieved by n = (1, . . . , 1).

The next proposition shows how the cost of computing the arg max is related to the cost of

computing the max.

Proposition 6. The cost for the CEO to compute the max exceeds the cost of computing the arg max,

but the difference between the two costs goes to zero as the number of users N increases. We have

C
(t)
A

(
s(t)
)
≤ C(t)

M

(
s(t)
)
≤ C(t)

A

(
s(t)
)

+ ∆̄ (4.10)
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where ∆̄→ 0 as N →∞.

Proof. Recall that S∗M ⊂ S∗A (Proposition 3 & Proposition 4). Therefore, an optimal quantization

policy for computing the max is a feasible quantization policy for computing the arg max and the

lower bound is immediate.

To establish the upper bound, an optimal quantization policy for the arg max can be extended

into a feasible quantization policy for the max. Starting at time t = 0, the CEO follows the optimal

quantization policy for arg max until some time t = δ such that s(δ) ∈ S∗A. If s(δ) ∈ S∗M , then

the CEO has determined the max. If s(δ) ∈ S∗A \ S∗M , then the CEO has determined who the

unique maximizer is but not what their value is. Since there is a single user left, the minimum cost

C(δ)
(
s(δ)

)
= (1− λ)H

(
p

(δ)
X

)
+ λ (cf. Proposition 5). We have

H
(
p

(δ)
X

)
≤ log2 L

(δ) ≤ log2

(
L(0) − 1

)
(4.11)

where the last inequality follows from observing that the size of the support set decreases by at least

one at each round and δ ≥ 1. As this is a feasible quantization policy for the max policy we have

C
(t)
M ≤ C

(t)
A +

∑

s(δ)∈S∗A\S∗M

P
(
s(δ)

) [
(1− λ)H

(
p

(δ)
X

)
+ λ

]

≤ C(t)
A + P (E)

[
(1− λ) log2

(
L(0) − 1

)
+ λ

]
(4.12)

where E is the event
{
s(δ) ∈ S∗A \ S∗M

}
and P

(
s(δ)

)
is the probability of the quantization policy

ending in the state s(δ). We have that E ⊆ {|arg maxiXi| = 1}. Suppose that there are two or more

maximizers. Then, for any sequence of quantizers, the set of maximizers will respond with the same

quantized utility and the only possible terminating state is s(δ) ∈ S∗M .

To show that ∆̄→ 0 as N →∞ it suffices to show that

lim
N→∞

P

(∣∣∣∣arg max
i

Xi

∣∣∣∣ = 1

)
= 0. (4.13)

Let A denote the event that |arg maxiXi| = 1 and Bk denote the event maxiXi = k. By the law of
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total probability we have

P (A) =

L∑

k=1

P (A ∩Bk) =

L∑

k=1

NFX(k − 1)N−1pX(k). (4.14)

Since

lim
N→∞

NFN−1
X (k − 1)pX(k) = 0 ∀ k = 1, . . . , L, (4.15)

it follows that P (A)→ 0 as N →∞

To trace out the rate-delay trade-offs of interactive scalar quantization, the dynamic program of

(4.4) is solved for multiple values of λ and the corresponding rate-delay values are plotted paramet-

rically. This is done in §4.6 for representative source distributions. We conclude this section with

an assumption concerning the search space A(t) in (4.4).

Assumption 1. We take the set of quantizers in solving (4.4) to be the set of all partitions of the

integer L instead of the set of all compositions.

Remark. In §4.3, we showed that set of quantizers is isomorphic to the set of compositions of the

integer L. Thus there are 2L−1 possible quantizers to search over in solving (4.4). A related combina-

torial object is a partition of the integer L. Unlike compositions, order does not matter for partitions.

For example, consider the integer 3: there are 4 compositions (namely {(3), (2, 1), (1, 2), (1, 1, 1)})

while there are only 3 partitions ({(3), (2, 1), (1, 1, 1)}). As the integer L gets larger, the number

of partitions grows slower than the number of compositions (cf. Figure 4.2, left hand side). For

computational tractability, we take the set of quantizers to be the set of all partitions instead of

compositions. Our justification for doing so is shown in the right hand side of Figure 4.2. For a

small initial number of users N and initial support set size L = 16, we computed the rate and

delay cost components for every composition and every partition assuming subsequent rounds are

solved optimally. The Pareto optimal boundary for compositions (markers) matches the boundary

for partitions (no markers) for these parameters. For a given source distribution, as the number

of users increases the distribution of the maximum becomes more and mored “peaked” about the
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Figure 4.2: Comparison of compositions and partitions. The left hand side shows how the
number of compositions and partitions grows as a function of the support set size L and the right
hand side shows the rate-delay trade-off obtained by optimizing over the set of compositions
(markers) and partitions (no markers).

largest possible value. Since the CEO is seeking to identify either the arg max or max (or both), we

expect that quantizers that more finely quantize the larger values of the support set will outperform

those quantizers that do not.

4.5 Analysis of Suboptimal Schemes

The dynamic programming formulation of the previous section is amenable to computing the mini-

mum cost, and therefore the rate-delay trade-off, of interactive scalar quantization as an achievable

scheme. A drawback with computing the solution to the dynamic program is that it does not provide

insight into how the minimum cost scales in the number of users N and/or support set size L. Ad-

ditionally, the computation provides little insight about the structure of the optimal quantizers. In

this section, we consider two simple quantization strategies and derive expressions for the associated

rate and delay. We then generalize to a family of strategies and prove their near-optimality; the

significant reduction in the size of the search space results in faster computation of (4.4) with only

a small penalty.

In this section, we assume the users’ utilities have a uniform distribution. This assumption is

motivated by the results of §4.6.1 and the analytical tractability of the resulting rate and delay

expressions.
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4.5.1 Binary search

We first consider a quantization strategy for computing the arg max inspired by binary search. At

each round, the remaining support set is divided in half and the users indicate whether their values

lie in the lower or upper half. This process is repeated until either a single user remains or the

support set has been reduced to one.

We assume L is a power of two to repeatedly divide in half. The rate for this scheme is given by

Rb(N, 2L) = N +
Rb(N,L) +

∑N
i=2

(
N
i

)
Rb(i, L)

2N
(4.16)

with base cases Rb(1, ·) = Rb(·, 1) = 0. Since the initial support set size (2L) is being halved, each

user replies with a single bit for a total of N bits. Depending on the users’ values, all N users could

be in the lower half (L) which happens with probability 2−N ; or i users could be in the upper half

which happens with probability
(
N
i

)
2−N . Following a similar line of reasoning, delay is given by

τb(N, 2L) = 1 +
τb(N,L) +

∑N
i=2

(
N
i

)
τb(i, L)

2N
, (4.17)

with base cases τb(1, ·) = τb(·, 1) = 0.

Proposition 7. If L is a power of two, the expected rate of computing the arg max with binary

search is

Rb(N,L) = 2N

(
1− 1

L

)
(4.18)

and the expected delay is bounded by

τb(N,L) ≤ min{log2N + 1, log2 L} (4.19)

for N ≥ 2 and L ≥ 2. It follows that

lim
L→∞

Rb(N,L)

N
= 2, lim

L→∞
τb(N,L) ≤ log2N + 1. (4.20)
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Proof. We prove the expression for expected rate by induction. The base case of N = 2 and L = 2

is immediate. For the inductive step, we have

Rb(N, 2L)

(a)
= N + 2−N

[
2N

(
1− 1

L

)
+

N∑

i=2

(
N

i

)(
2i

(
1− 1

L

))]

(b)
= N + 2−(N−1)

(
1− 1

L

)
2(N−1)N

(4.21)

where (a) follows by the inductive assumption and (4.16) & (4.18), and (b) follows from a standard

identity.

To prove the upper bound for delay, we first consider the case of L fixed and show that

τb(N,L) ≤ log2 L ∀ N. (4.22)

We proceed by induction in L; the base case of L = 1 is immediate. For the inductive step, we have

τb(N, 2L)

(a)

≤ 1 + 2−N
[

log2 L+

N∑

i=2

(
N

i

)
log2 L

]

(b)
= 1 +

(
1−N2−N

)
log2 L ≤ log2 (2L)

(4.23)

where (a) follows by the inductive assumption and (4.17) & (4.19), and (b) follows from a standard

identity.

We now consider the case of N fixed and show that

τb(N,L) ≤ log2N + 1 ∀ L. (4.24)
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We proceed by induction in N ; the base case of N = 1 is immediate. For the inductive step, let

g(i) , log2(2i) = log2 i+ 1. (4.25)

Observe that the recurrence for τb(·, ·) can be written as

τb(N, 2L) = 1 + E [τb(Z,L)] (4.26)

where Z is a random variable with PMF given as

P (Z = i) =





(
N
i

)
2−N i ∈ {1, . . . , N − 1}

2−(N−1) i = N

(4.27)

and expected value

E [Z] = N

(
1

2
+ 2−N

)
. (4.28)

Applying the law of total expectation we have

τb(N, 2L) = 1 + E [τb(Z,L)|Z > 1]P (Z > 1) (4.29)

which follows from τb(1, L) = 0. Substituting the upper bound gives

τb(N, 2L) ≤ 1 + E [g(Z)|Z > 1]
(
1−N2−N

)
. (4.30)

We have

E [g(Z)|Z > 1]
(a)

≤ g (E [Z|Z > 1])

(b)
= g

(
N

2 (1−N2−N )

)
= log2

(
N

1−N2−N

) (4.31)
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where (a) follows by Jensen’s inequality and (b) follows from

E [Z|Z > 1] =
E [Z]− E [Z|Z = 1]P (Z = 1)

P (Z > 1)

=
N
(

1
2 + 2−N

)
−N2−N

1−N2−N
=

N

2 (1−N2−N )
.

(4.32)

It follows that

E [g(Z)|Z > 1]
(
1−N2−N

)
≤ log2N (4.33)

and we conclude τb(N, 2L) ≤ 1 + log2N .

Binary search is an attractive quantization strategy because it requires at most 2 bits per user

on average to compute the arg max and the delay remains bounded (by the number of users) as

the support set size grows. With the support set being halved at each round of interaction, the

support set size does not equal one until after log2 L rounds of interaction. Using binary search as a

quantization strategy for computing the max has a delay of exactly log2 L rounds (c.f. Proposition 4).

4.5.2 Max search

As described at the end of the previous subsection, binary search has a constant delay of log2 L

rounds when the CEO wishes to compute the max. We propose the following search strategy, which

we refer to as max search: at each round, the users indicate to the CEO whether their source

observation is the largest possible value in the current support. If at least one user replies in the

affirmative, the interaction stops and the max has been found. Only if none of the users have

the largest value does the interaction continue. This strategy is motivated by the following two

observations: 1. for a fixed support set size, as the number of users increases, the PMF of the max

becomes more and more peaked about the larger support set values (cf. Figure 4.3), and; 2. at every

round of interaction, there is a quantization bin of size one and therefore a non-zero probability of

the interaction ending.

The rate for max search can be written recursively as

Rm(N,L) = Nh(pL) + (1− pL)NRm(N,L− 1) (4.34)
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Figure 4.3: Probability mass function for maxiXi when Xi’s are i.i.d. uniform (L = 16) as a
function of the number of users. As N increases, the probability becomes more concentrated
around the larger values.

where pL = 1/L; the delay can be written recursively as

τm(N,L) = 1 + (1− pL)Nτm(N,L− 1). (4.35)

Proposition 8. We have

Rm(N,L) = N

L∑

i=2

(
i

L

)N
h(1/i) (4.36a)

τm(N,L) =

L∑

i=2

(
i

L

)N
. (4.36b)

It follows that

lim
N→∞

Rm(N,L)

N
= h

(
1

L

)
, lim

N→∞
τm(N,L) = 1. (4.37)

Proof. By induction on L. The base case of L = 2 is immediate. For the inductive step we have

Rm(N,L)

= Nh(1/L) +

(
L− 1

L

)N
N

L−1∑

i=1

(
i

L− 1

)N
h(1/i)

(4.38)

which follows from the inductive assumption and (4.34) & (4.36a). The proof for τm follows the
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same arguments.

This scheme has very low rate and delay as the number of users N gets larger. Using this

scheme, however, the CEO does not have the ability to select a desired rate-delay trade-off. In the

next subsection, we extend this simple search strategy to a family of search strategies that give

the CEO the ability to operate at a desired rate-delay trade-off. We conclude by noting that even

though max search is designed to enable the CEO to interactively compute the max, Proposition 6

establish it as a quantization strategy for computing the arg max as well.

4.5.3 Extended max search

We extend the quantization strategy of the previous section into a family of quantization strategies.

The previous strategy worked by asking the users to indicate whether or not their state Xi =

maxX (t) at each iteration t, terminating when at least one user replied in the affirmative. We

extend this strategy by asking the users to indicate which of the K − 1 largest values of X (t) they

have or indicating their state is not one of these values. For example: consider L = 5 and K = 4.

The quantizer for this parameter set would be n = (2, 1, 1, 1). Like the quantization strategy of the

previous section, this family of strategies has the property that iteration continues if and only if all

N users’ states are in the first bin. Unlike the previous strategy, we are not able to write a closed

form expression for the rate and delay components when selecting quantizers from this family of

quantizers. However, we are able to prove several non-trivial and import properties of this family.

We begin by giving a formal description of the family. For notational compactness, let 1k be

the k-tuple of all ones and denote tuple concatenation as ⊕. Suppose we are in a state s = (N,L).

Define

L(L) = {(L− k + 1)⊕ 1k−1 : k = 2, . . . , L} . (4.39)

For example: L(4) = {(3, 1), (2, 1, 1), (1, 1, 1, 1)}. Our first result shows that for any quantizer

n ∈ L(L), permutation of the bin sizes results in a quantizer with a higher cost. Recall Assumption 1

of §4.4 where we took the search space of quantizers to be the set of partitions instead of compositions.

Our justifications for this assumption were concerns of computational complexity (Figure 4.2, left)
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and the observation that the optimal solution was still found when searching over partitions for small

problem instances (Figure 4.2, right). Since permutation of an integer partition gives (in general) a

composition, the next result is a further justification of Assumption 1.

Proposition 9. For computing the max of the users’ values, the K-level quantizer

n = (L−K + 1)⊕ 1K−1 (4.40)

has lower cost than any other quantizer obtained by permutation.

Proof. Let nm be the quantizer obtained from n by shifting the bin of size L−K + 1 m locations

to the right. For example n3 = 13 ⊕ (L−K + 1)⊕ 1K−4. The stage cost of the quantizer

(1− λ)R
(
a(t), s(t)

)
+ λτ

(
a(t), s(t)

)
(4.41)

is invariant to permutation. The expected cost to go of the quantizer n is

(
L−K + 1

L

)N
C

(t+1)
M (N,L−K + 1) (4.42)

and the expected cost to go of the quantizer nm is

N∑

i=1

ρ(i)C
(t+1)
M (i, L−K + 1)

ρ(i) =

(
N

i

)(m
L

)N−i(L−K + 1

L

)i (4.43)

Taking the difference we see

N−1∑

i=1

ρ(i)C
(t+1)
M (i, L−K + 1) ≥ 0 (4.44)

and conclude that n has better cost than nm. As the choice of m was arbitrary, the result holds for

any permutation.



89

An attractive property of L(L) is that |L(L)| = L − 1 where as the number of all quantizers

is exponential in L. If we could show that L(L) was sufficient for solving (4.4) (instead of the set

of all quantizers) optimally, it would represent a significant reduction in computational complexity.

As a first step, we show for a given quantizer n 6∈ L(L) how to select a quantizer nr ∈ L(L) that

asymptotically in N has performance no worse than n.

Consider a K-bin quantizer n = (n1, . . . , nK); if n1 = L − K + 1, then n ∈ L(L). Otherwise

n1 < L −K + 1 and n 6∈ L(L). Let nr = (L −K + 1) ⊕ 1K−1 ∈ L(L) be the quantizer with the

same number of bins as n. For example: if n = (2, 2, 1) then nr = (3, 1, 1).

For notational compactness in the rest of the section, denote the current state as s = (N,L)

(which is fixed and known) and the state in the next iterations as s′ = (N ′, L′) (which are discrete

random variables whose PMF depends on the select quantizer). The cost when using n is

Cn(N,L) = (1− λ)NH(n) + λ+ En [C(N ′, L′)] (4.45)

where

En [C(N ′, L′)] =

k∑

j=1

N∑

i=1

Pn [N ′ = i, L′ = nj ]C (i, nj) , (4.46a)

and

Pn [N ′ = i, L′ = nj ] =

[(n1:j

L

)N
−
(n1:j−1

L

)N] (N
i

)
ρij (1− ρj)N−i

1− (1− ρj)N
,

(4.46b)

and ρj =
nj
n1:j

. The cost when using nr is

Cnr (N,L) = (1− λ)NH(nr) + λ+ Enr [C(N ′, L′)] (4.47)

where

Enr [C(N ′, L′)] =

(
L−K + 1

L

)N
C(N,L−K + 1). (4.48)
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Figure 4.4: Comparison of the cost for n = (11, 5) and nr = (15, 1) for the state s = (N =
2, L = 16). nr does not outperform n in terms of cost for all λ.

Taking the difference we have

∆n,nr = Cn(N,L)− Cnr (N,L)

= (1− λ)N (H(n)−H(nr))

+ En [C(N ′, L′)]− Enr [C(N ′, L′)] .

(4.49)

The difference in the stage costs of quantizer n and nr is expressed in terms of the difference in

entropies of the induced probability mass functions H(n)−H(nr) ≥ 0 where the inequality follows

from the fact that q is majorized by b and x log x is convex [58].

Unfortunately, the difference in the expected cost to go is not always positive. In fact, the

difference in the expected cost to go can be negative enough to offset the positive difference in the

quantizer rates. In Figure 4.4 we consider the case of N = 2 and L = 16 and compare the costs

of the non-L(16) quantizer n = (11, 5) to the nr ∈ L(16) quantizer (15, 1). For certain values of

λ, Cn(N,L) is less than Cnr (N,L). This does not disprove the sufficiency of L(16) in solving (4.4)

optimally; the range of λ for which Cn(N,L) < Cnr (N,L) does not coincide with the range of λ for

which C(N,L) = Cnr (N,L). The above derivation allows us to prove that L(L) is asymptotically

sufficient for solving (4.4) optimally.

Proposition 10. L(L) is asymptotically sufficient for minimizing the cost associated with interac-
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tively computing the max. The set L(L) cannot be made smaller without losing this property. For a

given value of L and n 6∈ L(L)

lim
N→∞

∆n,nr ≥ 0 (4.50)

where nr ∈ L(L) has the same number of bins as n.

Proof. The proof proceeds by induction with an inductive assumption that only quantizers from

L(L(t)) for t ≥ 1 are used for subsequent rounds.

For the state (N,L), ∆n,nr is asymptotically (in N) non-negative. By assumption n 6∈ L(L),

therefore L−K+1 > n1 ≥ n2 ≥ · · · ≥ nK ≥ 1. This, in turn, implies that n̂1 = (n1)⊕1L−K+1−n1
∈

L(L−K + 1) is a valid quantizer for the state s′ = (N (t), L(t) −K + 1) and

CM (s′) ≤ (1− λ)N (t+1)H(n̂1) + λ

+

(
n1

L(t) −K + 1

)n
CM (N (t), n1).

(4.51)

Next, there exists some k∗ such that n2 ≥ · · · ≥ nk∗ > 1; if not then n ∈ L(L). We have that

CM (i, nj) ≥ λ j ≤ k∗ CM (i, nj) = 0 j > k∗. (4.52)

Finally, for notational compactness let ν = L−K+1
L < 1.
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We then have

∆n,nr

(a)

≥ (1− λ)N
(
H(n)−H(nr)− νNH(n̂1)

)

+

k∗∑

j=1

N∑

i=1

Pn

[
N (t+1) = i, L(t+1) = nj

]
C (i, nj)

− νn
((

q1

L−K + 1

)N
C(N,n1) + λ

)

(b)
= (1− λ)N

(
H(n)−H(nr)− νNH(n̂1)

)

+

k∗∑

j=2

N∑

i=1

Pn

[
N (t+1) = i, L(t+1) = nj

]
C (i, nj)− νNλ

(c)

≥ (1− λ)N (H(n)−H(nr)− νnH(n̂1))

+

k∗∑

j=2

N∑

i=1

Pn

[
N (t+1) = i, L(t+1) = nj

]
λ− νNλ

= (1− λ)N
(
H(n)−H(nr)− νNH(n̂1)

)

+ λ
(n1:k∗

L

)N
[

1−
(

n1

n1:k∗

)N
−
(
L−K + 1

n1:k∗

)N]

(4.53)

where

(a) follows from (4.46), (4.48), (4.49), (4.51), and (4.52)

(b) follows from

Pn

[
N (t+1) = i, L(t+1) = q1

]
=





0, i < n

(
q1
L

)n
, i = n

(4.54)

and

(c) follows from (4.52)

n1:k∗ = L− k+ k∗ > K − k+ 1 and therefore the right hand side of (4.53) has a non-negative limit

because

lim
N→∞

λ
(n1:k∗

L

)N
[

1−
(

n1

n1:k∗

)N
−
(
L−K + 1

n1:k∗

)N]
= 0. (4.55)

The set L(L) contains one and only one quantizer for each possible bin size. If this set were
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smaller, then for a given n the quantizer nr (which has the same number of bins as n) may not be

in L′(L) ⊂ L(L).

In general, there exists values of N and L for which L(L) is not sufficient. Let Q(L) be the set

of all quantizers for support set of size L. For U ⊂ Q, define

∆(U , λ) = min
q∈U

C(λ, q)−min
q∈Q

C(λ, q)

∆(U) = max
λ

∆(U , λ) ∆(U) = min
λ

∆(U , λ).

(4.56)

Here ∆(U , λ) is understood as the λ-dependent “gap to optimality” when using quantizers from U

only instead of all quantizers Q; ∆(U) and ∆(U) are (respectively) the worst-case and best-case gap

to optimality. From these definitions, we have 0 ≤ ∆(U) ≤ ∆(U).

The top left side of Figure 4.5 is a plot of ∆(L(L)) and ∆(L(L)) and the bottom left side is a

plot of ∆(Q(L) \L(L)) and ∆(Q(L) \L(L)) as a function of L. When N = 2 and L ≤ 34, ∆(L) = 0

and ∆(Q \ L) > 0. This means that for all λ, the optimal quantizer for N = 2, L can be taken

from L and there is no value of λ for which the optimal quantizer can be taken from Q \ L. These

two inequalities imply that L is necessary and sufficient for minimizing the cost. When N = 2 and

35 ≤ L ≤ 76, from the figure 0 = ∆(L) < ∆(L) and 0 = ∆(Q \ L) < ∆(Q \ L). This means that

there exists a value of λ such that the optimal quantizer n∗ 6∈ L. The right side of Figure 4.5 plots

the gap to optimality for L(L) as a function of λ for representative values of L. The top right of

the figure plots the absolute magnitude of this gap, whereas the bottom right shows the magnitude

of this gap as a relative percentage of the optimal value. The worst-case gap is growing in L (as

Figure 4.5 shows as well), but the gap is still very small, at less than 0.35%, when L = 76. There

is a range of λ > 0.6 for which gap to optimality is identically zero—this range is where the delay

component of cost is weighted more heavily than the rate component. A minimum delay of 1 can

be achieved with the quantizer (1, . . . , 1) which is in L(L). Finally, for L1 < L2 the interval of λ for

which L(L1) is not sufficient is a subset of the interval for which L(L2) is not sufficient.

The previous counterexample was for the case of N = 2 and we needed L ≥ 35 for L(L) to no

longer be necessary and sufficient for optimally solving (4.4). When N gets larger, the value of L at
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which L(L) is no longer necessary and sufficient gets larger as well.

In summary, when computing the max interactively we know that L(L):

1. is not an optimal search space for solving (4.4) in general;

2. is asymptotically (L fixed, N increasing) sufficient for solving (4.4);

3. has linear growth (vs. exponential for all quantizers), and;

4. incurs a small decrease in performance when it is not optimal.

As we show in §4.6, adding binary-search quantizer to L(L) results in a simplified search space for

computing the arg max with little to no incurred penalty. Depending upon the system where this

interactive quantization strategy is employed, the large reduction in computation costs may more

than make up for the small increase in cost that occurs when using L(L) for selecting quantizers.

4.6 Results

In this section, we investigate the rate-delay trade-offs, both for the optimized scalar quantizer

scheme (§4.4) and the proposed heuristics (§4.5). For brevity, when we refer to optimal rate-delay

trade-offs, we are referring to the rate-delay trade-offs of the optimized scalar quantizer scheme. We

begin by considering the optimal rate-delay trade-offs for a collection of representative distributions

and show that the uniform distribution represents a worst-case distribution. This makes sense as

the uniform distribution is entropy-maximizing for a given support set size. We then investigate

the rate-delay trade-offs for binary and max search, demonstrating that these schemes can closely

approximate the optimal rate-delay trade-off.

4.6.1 Optimized interactive quantization rate-delay trade-offs

For a comparison of the rate-delay trade-offs for various distributions, we consider the following

representative distributions parameterized with L and p which effects the concentration of the dis-

tribution.

gX(x;L, p) =
(1− p)L−x−1p

1− (1− p)L , x = 0, . . . , L− 1 (4.57)
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and,

bX(x;L, p) =

(
L

x

)
px(1− p)L−x, x = 0, . . . , L− 1. (4.58)

The distribution gX(x;L, p) is shown in Figure 4.6 (top left); the effect of varying p is to vary the

“distance” from a uniform distribution. Also plotted in Figure 4.6 is the optimal rate-delay trade-

offs for both the arg max (top center) and the max (top right) functions. As p is made smaller, the

trade-offs get worse in that a larger delay is incurred for smaller rates. The distribution bX(x;L, p) is

shown in Figure 4.6 (bottom left); unlike gX(x;L, p) the “spread” of the distribution is not sensitive

to the parameter p. Looking at the rate-delay trade-offs (bottom center & left), p has little effect

on the performance of the optimized scheme.

Figure 4.7 (top left) shows the rate-delay trade-offs for these distributions for both arg max and

max as computed by solving (4.4) and finding the optimal homogeneous quantizer at each round.

The trade-offs for uniform are worse than for the other distributions. For a given upper limit on

delay, uniformly distributed sources will require more rate than the other two distributions. For a

fixed alphabet size, as the number of users is increased (upper right), the trade-offs for the uniform

distribution gets better. Figure 4.7 (bottom row) shows how the rate-delay trade-offs for computing

arg max and max become identical as the number of users increases (cf. Proposition 6). We see that

when N is small, the CEO is able to compute the arg max with either a lower rate (fixed delay) or

lower delay (fixed rate) than it would require for computing the max with the same fixed rate or

delay. This difference is especially large in the low rate/high delay regime. Doubling the number of

users from 2 to 4 significantly reduces this difference.

4.6.2 Extended max search rate-delay trade-offs

As noted in §4.5, as the size of the support set L increases the number of possible quantizers gets

large quickly. Based on the simple quantization strategies of binary search and max search, we

proposed the extended max search family L(L) of quantizers. Figure 4.8 shows the rate-delay trade-

off when the search space of (4.4) is taken to be 1. binary & max search with the entropy coding

quantizer (1, . . . , 1) (solid line); 2. binary & extended max search (which includes the entropy coding
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for various values of p. PMFs are shown in the top row, rate-delay trade-offs for arg max in the
center row, and max in the bottom row.
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Figure 4.8: Rate-delay trade-off for various quantizer search spaces when computing arg max
(left) and max (right). The source distribution was uniform with support set size L = 16 and
the number of users was N = 4.

quantizer) (circle markers), and; 3. all possible quantizers (dashed line). The left side is for the case

of computing the arg max and the right side is for the case of computing the max. Binary & max

search together can achieve the minimum rate and minimum delay ends of the trade-off curve for

both functions, but performs poorly in efficiently trading off delay for rate. For computing the

arg max, extended max search is almost equal to the optimal trade-off curve, deviating in the low

rate/high delay regime. For computing the max, extended max search equals the optimal trade-off

curve. By Proposition 6 and Figure 4.7, we know that as N increases the cost of computing the

arg max is equal to the cost of computing the max. Even though extended max search is designed

with computation of the max in mind, Figure 4.8 and Proposition 6 show that it is an effective

quantizer search space for computing the arg max.

4.7 Conclusion

In this chapter, we considered the problem of a CEO computing a function of distributed users’ state

as a model for distributed resource allocation. We proposed interactive scalar quantization as an

achievable scheme for reducing the required rate to enable the CEO to compute the desired function

losslessly at the expense of an increase in delay. We solved for optimal rate-delay trade-off of scalar

quantization via a dynamic program. We established that asymptotically (in the number of users
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N), the cost to compute arg max is the same as the cost to compute max. By considering simple

quantization schemes based on binary search and max search, we designed a family of quantization

strategies that is nearly optimal with a significantly reduced computational cost.

In the present work, we assumed that every user was using the same quantizer (i.e. homogeneous

quantization). We know that in the rate-distortion problem, heterogeneous quantization can achieve

a lower rate for a given distortion than homogeneous quantization [3, 46]. A future direction for

the present work would be to extend the model to incorporate different quantizers at the different

users. Small numerical experiments have demonstrated that substantial further reduction in the rate

required to calculate the extremum at a bounded expected delay can be obtained by switching from

homogeneous to heterogeneous designs. A potential obstacle is the dramatic increase in the size of

the search space; the size of the search space is equal to the size of the search space of homogeneous

quantization raised to N .

The current work demonstrates that the required rate can be reduced by tolerating a small

increase in delay; in a similar manner, the required rate can be reduced by tolerating a small

increase in distortion [3, 46]. The model of these two lines of inquiry could be combined into a single

framework to quantify the rate savings that could be realized by tolerating both delay and distortion.

This would require suitably modifying the cost function of (4.4) to include a term for distortion.

At each round, the CEO would decide if the distortion is low enough to stop or if communication

should continue.
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Chapter 5: Conclusions

This study sought to investigate techniques for minimizing the overhead from data collection and/or

trade off performance for reductions in overhead in communication networks. Three distinct problem

instances were considered:

1. lossless transmission of distributed correlated sources across a network with capacity con-

straints;

2. scalar quantization for lossy distributed extremization, and;

3. interactive scalar quantization for lossless distributed extremization.

5.1 Lossless transmission of distributed correlated sources across a net-
work with capacity constraints

In the first problem instance, the optimal lossless transmission of distributed sources across a network

with capacity constraints was formulated as the solution to a linear program with an exponential

(in the number of sources) number of constraints. Previous works have only made use of the

fact that SW rate region is a contrapolymatroid as part of an iterative subgradient method [11].

Building upon earlier work that established the set of achievable rates as the intersection of the

SW rate region with the polymatroid defined by the min-cut capacities, the present work identifies

when the SW vertices are all feasible and gives an explicit characterization of all the vertices of the

intersection of polymatroid with a contrapolymatroid for certain sub-/supermodular set functions. It

is further shown that the size of the representation of the SW rate region is related to the conditional

independence relationships among the sources and in some cases (e.g., Markov random fields) may

require significantly fewer inequalities to describe the rate region. These properties were leveraged

to develop a relationship between optimal solutions and the corner points of the SW rate region.

A simple, but natural counter-example demonstrated that an optimal rate allocation may not be a
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vertex of the SW rate region. The results concerning the feasibility of all the SW rate region vertices

naturally extends from the single sink problem to the multi-sink setting.

5.2 Scalar quantization for lossy distributed extremization

In many resource allocation problems, a centralized controller needs to award some resource to a

user selected from a collection of distributed users with the goal of maximizing the utility the user

would receive from the resource. This can be modeled as the controller computing an extremization

of the distributed users’ utilities. The overhead rate necessary to enable the controller to reproduce

the users’ local state can be prohibitively high. Two approaches to reduce this overhead are lossy

estimation and interactive communication.

In the lossy estimator framework, rate savings are achieved by tolerating a bounded expected

reduction in utility. A layered approach of scalar quantization followed by entropy encoding was

designed for distributed function extremization in the context of a resource allocation problem. A

natural, non-quadratic distortion that measured the reduction in system performance was proposed

and an exact expression as a function of the quantizer parameters was provided. The Karush-Kuhn-

Tucker necessary conditions for optimal HomSQ are given. The existence of a more efficient (i.e.,

achieving the same distortion at a lower rate) HetSQ scheme was proven by a suitable modification of

an optimal HomSQ scheme. By considered several example source distributions, it was demonstrated

that the performance of HetSQ may be close to fundamental limits.

It is known that vector quantizers are more efficient than SQs, even when the source outputs

being blocked into vectors are independent [22, 30]. Recent results have shown that local vector

quantizers followed by SW encoding is optimal for certain two-terminal problems with continuous

distributions [27, 28]. This motivates the consideration of vector quantization in future work.

5.3 Interactive scalar quantization for lossless distributed extremization

In interactive communication, rate savings come at the expense of delay. Motivated by the per-

formance of scalar quantization in the lossy estimator framework, interactive scalar quantization is

utilized as an achievable scheme for reducing the required rate to enable the CEO to compute the
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desired function losslessly at the expense of an increase in delay. The optimal rate-delay trade-offs

for scalar quantization were formulated as the minimum cost solution of a dynamic program and

it is established that asymptotically (in the number of sources), the costs to compute the different

extremization functions are equal. A family of quantization strategies is formulated that is nearly

optimal with a significantly reduced computational complexity to search over.

For the interactive communication framework, it was assumed that every user was using the

same quantizer (i.e. HomSQ). A future direction for the present work would be to extend the

model to incorporate different quantizers at the different users. Small numerical experiments have

demonstrated that substantial further reduction in the rate required at a bounded expected delay

can be obtained by switching from HomSQ to HetSQ.

This study has demonstrated that the overhead can be reduced by tolerating a small increase in

delay; in a similar manner, the overhead can be reduced by tolerating a small increase in distortion

[3, 46]. The model of these two lines of inquiry could be combined into a single framework to quantify

the overhead reduction that could be realized by tolerating both delay and distortion.
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