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“If I cease searching, then, woe is me, I am lost. That is how I look at it -

keep going, keep going come what may.”

– Vincent van Gogh, The Letters of Vincent van Gogh, July 1880

To Ma, Baba, Didi and Diya...



iii

Acknowledgments

This dissertation is the culmination of the most enlightening journey of my life.

Throughout this wonderful adventure, there were some individuals who were my con-

tinuous source of motivation and support. It is humbling to reflect on their sacrifices

for me and I would like to express my sincere gratitude and respect for them.

I sincerely thank my advisor Dr. Moshe Kam for his constant guidance and

encouragement throughout my years of study at Drexel University. I am and will

forever remain in awe of his knowledge, humility and infallible dedication to his craft

and would always cherish everything I learned while working with him. He had always

been the friend, philosopher, guide I needed to get through graduate school.

I cannot over emphasize the role my parents and my sister played in pushing me

to be who I am today. I owe to them a debt of gratitude for their love, support,

understanding and for being the constant source of motivation.

I am thankful to my colleagues and friends in Data Fusion Laboratory for the many

memorable moments and stimulating discussions. Finally, I would like to thank the

other members of my dissertation committee, Dr. Paul Kalata, Dr. Leonid Hrebien,

Dr. Matthew Stamm, Dr. Chris Rorres for their advice and support.



iv

Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Fusion Objectives and Sensor Types . . . . . . . . . . . . . . . . . . . 1

1.2 Data Fusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Data Fusion Architectures . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Multi-Sensor Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I DISTRIBUTED DETECTION - CLASSICAL FRAMEWORK . 13

2. CLASSICAL DISTRIBUTED DETECTION AND FUSION . . . . 14

2.1 Distributed Detection without Fusion . . . . . . . . . . . . . . . . . . 14

2.2 Distributed Detection with Fusion . . . . . . . . . . . . . . . . . . . . 16

2.3 Optimization Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Parallel Decision Fusion Survey . . . . . . . . . . . . . . . . . . . . . 19

2.5 Distributed Detection with Identical Sensors . . . . . . . . . . . . . . 21

2.6 Person-By-Person Optimization . . . . . . . . . . . . . . . . . . . . . 22

2.7 Application to Present Work . . . . . . . . . . . . . . . . . . . . . . . 23



v

3. OPTIMAL DISTRIBUTED NEYMAN-PEARSON FUSION . . . . 24

3.1 Distributed Neyman-Pearson Decision Fusion . . . . . . . . . . . . . 25

3.2 Person-By-Person Optimization . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 PBPO-Optimal Local Detector Thresholds . . . . . . . . . . . 32

3.2.2 PBPO-Optimal Global Fusion Rule . . . . . . . . . . . . . . . 34

3.3 Examples and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . 39

II DISTRIBUTED DETECTION WITH HUMANS AS INFOR-
MATION SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. EVIDENCE THEORY AND THE HARD/SOFT FUSION PROB-
LEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 The Hard/Soft Fusion Problem . . . . . . . . . . . . . . . . . . . . . 42

4.2 Soft Sensors and Imperfect Data . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Types of Imperfect Data . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Frameworks for dealing with Imperfect Data . . . . . . . . . . 45

4.3 Evidence Theory and Belief Model . . . . . . . . . . . . . . . . . . . 49

4.3.1 Elements of Belief Model . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Special Classes of Belief Mass Assignments . . . . . . . . . . . 54

4.3.3 Source Reliability and Discounting . . . . . . . . . . . . . . . 56

4.3.4 Belief Combination . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.5 Belief Space and Decision Space . . . . . . . . . . . . . . . . . 60

4.3.6 Computational Complexity . . . . . . . . . . . . . . . . . . . . 60

4.4 Application of Evidence theory to Present Work . . . . . . . . . . . . 61

5. HARD/SOFT FUSION USING BELIEF CALCULUS . . . . . . . . 63

TABLE OF CONTENTS TABLE OF CONTENTS



vi

5.1 Consensus Operator and Probability Expectation . . . . . . . . . . . 64

5.1.1 Opinion Tuple . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.2 Probability Expectation . . . . . . . . . . . . . . . . . . . . . 66

5.1.3 Focused Frame of Discernments . . . . . . . . . . . . . . . . . 68

5.1.4 Consensus Operator . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.5 Logical Operators and Opinions . . . . . . . . . . . . . . . . . 70

5.2 Fusion of Detection Probabilities . . . . . . . . . . . . . . . . . . . . 71

5.3 Hard/Soft Fusion Algorithm . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Example 1: Identity Recognition . . . . . . . . . . . . . . . . 78

5.4.2 Example 2: Object Localization . . . . . . . . . . . . . . . . . 86

5.4.3 Example 3: Image Analysis . . . . . . . . . . . . . . . . . . . 88

6. HIERARCHICAL EVIDENCE TREES . . . . . . . . . . . . . . . . . 92

6.1 Generalized Hierarchical Evidence Structure . . . . . . . . . . . . . . 94

6.1.1 Propagating Belief Masses of Singleton Elements of a Parent
Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.2 Propagating Belief Masses of Composite Subsets of a Parent
Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.3 Belief Propagation in Evidence Tree: Example . . . . . . . . . 107

6.2 Fusion Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Case I: All observers provide opinions toward a fixed tree . . . 109

6.2.2 Case II: Fusion between disparate opinion spaces . . . . . . . 111

6.2.3 Case III: Hard/Soft fusion . . . . . . . . . . . . . . . . . . . . 114

6.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

TABLE OF CONTENTS TABLE OF CONTENTS



vii

7. HARD/SOFT FUSION: DISCUSSION AND FUTURE WORK . . 120

III APPLICATION OF PARALLEL DISTRIBUTED DETECTION
AND FUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8. ACTIVE AUTHENTICATION WITH BIOMETRIC SENSORS . . 124

8.1 Context of Active Authentication . . . . . . . . . . . . . . . . . . . . 125

8.2 User Authentication via Biometrics . . . . . . . . . . . . . . . . . . . 126

8.2.1 Mouse and Keyboard Dynamics . . . . . . . . . . . . . . . . . 126

8.2.2 Multi-Biometric Systems . . . . . . . . . . . . . . . . . . . . . 127

8.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.2 Feature Classification . . . . . . . . . . . . . . . . . . . . . . . 131

8.4 Decision Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5 Behavioral Sensor Fusion Performance . . . . . . . . . . . . . . . . . 135

8.5.1 Multilevel Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.6 Additional Modalities for Active Authentication . . . . . . . . . . . . 139

8.6.1 Suite of High and Low Level Biometrics . . . . . . . . . . . . 140

8.6.2 Feature Sets and Classification . . . . . . . . . . . . . . . . . . 141

8.6.3 Fusion of High and Low Level Biometric Features . . . . . . . 142

8.7 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 143

9. HYPOXIA DETECTION USING KALMAN FILTER . . . . . . . . 145

9.1 Context and Relevant Work . . . . . . . . . . . . . . . . . . . . . . . 145

9.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

TABLE OF CONTENTS TABLE OF CONTENTS



viii

9.3.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.4 Fusion of Oximeter Signals . . . . . . . . . . . . . . . . . . . . . . . . 151

9.4.1 Oximeter Noise Model . . . . . . . . . . . . . . . . . . . . . . 154

9.4.2 Kalman Filter Formulation . . . . . . . . . . . . . . . . . . . . 159

9.5 Model Validation with Synthetic Data . . . . . . . . . . . . . . . . . 162

9.6 Filter Performance on Real Data . . . . . . . . . . . . . . . . . . . . 164

9.7 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 167

10.SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Appendix A:Multi-Hypothesis Detection Probability Fusion . . . 182

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



ix

List of Tables

3.1 Optimal Distributed Fusion Algorithm . . . . . . . . . . . . . . . . . . . 31

5.1 Initial belief mass assignments from soft sensors for example 1. . . . . . . 80

5.2 Sensor parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Unnormalized support assignments for example 1. . . . . . . . . . . . . . 85

5.4 Normalized combined support values toward each proposition for example
1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Belief support assignments for example 2. . . . . . . . . . . . . . . . . . 87

5.6 Combined support values for each proposition for example 2. . . . . . . . 88

5.7 Support assignments for example 3. . . . . . . . . . . . . . . . . . . . . . 91

5.8 Combined support values for each proposition for example 3. . . . . . . . 91

6.1 Belief Mass Assignments for Θ1[H0]. . . . . . . . . . . . . . . . . . . . . 108

6.2 Belief Mass Assignments for Θ1[H1]. . . . . . . . . . . . . . . . . . . . . 108

6.3 Combined support values for hierarchical hard and soft opinions. . . . . . 117

8.1 Statistics on the 10-user dataset. . . . . . . . . . . . . . . . . . . . . . . 130



x

List of Figures

1.1 A centralized data fusion system. . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A distributed data fusion system. . . . . . . . . . . . . . . . . . . . . . . 5

1.3 A parallel decision fusion system. . . . . . . . . . . . . . . . . . . . . . . 7

1.4 A sequential data fusion system. . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 A Tree topology for distributed detection. . . . . . . . . . . . . . . . . . 9

2.1 Parallel distributed detection without fusion. . . . . . . . . . . . . . . . . 14

2.2 Parallel distributed detection with fusion. . . . . . . . . . . . . . . . . . 16

3.1 Probability mass function of local detector likelihood for parallel decision
fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Variation of global probability of detection (PD0) and γ with local sensor
false alarm rate (p) for identical sensors. . . . . . . . . . . . . . . . . . . 30

3.3 ROC curves under various SNR for distributed Neyman-Pearson detec-
tion using optimal distributed fusion algorithm (Table 3.1); Distributed
Neyman-Pearson detection using PBPO; and Centralized Neyman-Pearson
detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Performance comparison of the three systems when local detector obser-
vations are Exponential and Gamma distributed. . . . . . . . . . . . . . 38

4.1 The distributed hard/soft fusion scheme. . . . . . . . . . . . . . . . . . . 43

5.1 Distributed fusion of detection probabilities . . . . . . . . . . . . . . . . 71

5.2 Framework for hard/soft fusion using evidence combination. . . . . . . . 74

5.3 Eros-B satellite images showing newly constructed sites. . . . . . . . . . 89

5.4 Image processing (Shadow removal and edge extraction) of satellite images. 90

6.1 Generalized hierarchical structure of belief frames. . . . . . . . . . . . . . 95



xi

6.2 A three level evidence tree. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Schematic of Hard/Soft fusion scenario with hierarchical evidence trees.
(BMA: Belief Mass Assignment) . . . . . . . . . . . . . . . . . . . . . . . 114

8.1 The duration (in seconds) of each user’s interaction with the computer
throughout the 5-day week with idle periods removed. An idle period is
defined as a continuous period of time without any mouse or keyboard
interaction with the computer. . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 The relative amount of biometric data per-type per-user extracted from
the interaction of each user with their computer throughout the 5-day
week. The variability between the users is noticeable. . . . . . . . . . . . 129

8.3 The mouse movement metrics are computed from a set of continuous move
events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 The keystroke dynamics metrics are computed from time between the press
and the release event and vice versa. . . . . . . . . . . . . . . . . . . . . 130

8.5 An example of a histogram constructed from the training set for the em-
pirical probability distribution of user 0 for the “Keystroke Dwell Time”
feature (sensor 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.6 Behavioral sensor fusion scheme for active authentication. . . . . . . . . 133

8.7 ROC curves for incremental and global sensor fusion with one biometric
sensor taken out at a time. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.8 Zoomed in version of Figure. 8.7. . . . . . . . . . . . . . . . . . . . . . . 136

8.9 ROC curves for incremental sensor fusion with mouse and keyboard sen-
sors removed at a time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.10 Multilevel decision fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.11 Receiver Operating Characteristic for two step fusion. . . . . . . . . . . . 139

8.12 False alarm rates (FAR) and mis-detection rates (FRR) for 4 represen-
tative selection of sensors of the 1024 possible combinations for fusion.
These four cases are: (1) all high and low level modalities are used; (2)
all modalities except for web browsing are used; (3) all modalities except
for stylometry sensors are used; (4) all modalities except for web browsing
and stylometry are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

LIST OF FIGURES LIST OF FIGURES



xii

9.1 Simulated altitude profile and oximeter readings. . . . . . . . . . . . . . 152

9.2 Oximeter noise for a particular subject. . . . . . . . . . . . . . . . . . . . 153

9.3 Oximeter noise autocorrelation. . . . . . . . . . . . . . . . . . . . . . . . 154

9.4 Oximeter noise variation model. . . . . . . . . . . . . . . . . . . . . . . . 158

9.5 Performance of proposed Kalman filter model for simulated data. . . . . 163

9.6 Kalman filter estimate and raw oximeter readings for blood oxygen satu-
ration level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.7 Autocorrelation of innovation sequences for three sensors (Real and Sim-
ulated). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

LIST OF FIGURES LIST OF FIGURES



xiii

List of Symbols

Symbol Reference Description

|A| Cardinality of set A

A Complement of set A

A ∪B Set union of sets A and B

A ∩B Set intersection of sets A and B

Hi ith Hypothesis

P (A) Probability of event A

E(.) Expected value

P (Hi) Prior probability of hypothesis Hi

N Number of sensor/detectors in a distributed fu-
sion system

zi Raw observation of the ith sensor/detector

ψ(zi) Section 2.1 Local detector decision rules

ui Chapters 2, 3, 8 Binary local decision of ith detector

u0 Chapters 2, 3, 8 Binary global decision of decision fusion center

PFi
Chapters 2, 3, 8 False alarm rate of ith local detector

PDi
Chapters 2, 3, 8 Detection rate of ith local detector

PF0 Chapters 2, 3, 8 False alarm alarm rate of decision fusion center

PD0 Chapters 2, 3, 8 Detection rate of decision fusion center

α Section 2.3, Chap-
ter 3

Chosen global false alarm probability under
Neyman-Pearson criterion



xiv

tg Sections 2.3, 3.1 Global likelihood ratio test threshold

tloc Chapter 3 Local detector likelihood ratio test threshold

Λ(u) Section 3.1 Global likelihood ratio at fusion center as a func-
tion of local decisions

P (X|Hi) Section 3.1 Conditional distribution of random variable X
under hypothesis Hi

p Chapter 3 Local false alarm rate for identical detectors

q Chapter 3 Local mis-detection rate for identical detectors

γ Chapter 3 Convex combination coefficient for randomized
Neyman-Pearson test

Θ Chapter 4 Frame of discernment under Dempster-Shafer
theory

θi Chapter 4 A particular element of the frame of discernment

φ Chapters 4, 5, 6 Null element in the power set of the frame of dis-
cernment

b(X) Chapters 4, 5, 6 Belief function toward proposition X

d(X) Chapter 5 Disbelief toward proposition X

u(X) Chapter 5 Evidential uncertainty toward proposition X

pl(X) Chapters 4, 5, 6 Plausibility toward proposition X

ri Chapter 4 Reliability of the ith soft source

BetP (X) Chapters 4, 5, 6 Pignistic probability transformation

BetP∆(X) Chapter 6 Non-normalized Pignistic probability transforma-
tion over a frame ∆

⊕ Chapter 4 Dempster’s belief combination operator

� Chapters 4, 6 Conjunctive belief combination operator

List of Symbols



xv

⊗ Chapter 4 Disjunctive belief combination operator

ωX Chapter 5 Opinion tuple toward proposition X

Si Chapters 5, 6 ith soft source

ωSi
X Chapter 5 Opinion tuple toward proposition X held by soft

source Si

a(X) Chapter 5 Relative atomicity of proposition X

a(X|Y ) Chapter 5 Conditional relative atomicity of proposition X
given proposition Y is true

Pe(X) Chapter 5 Probability Expectation

Θ̃X Chapter 5 Focused frame of discernment with focus on
proposition X

gi Chapter 5 Posterior detection probability of hypothesis H1

from ith local detector

(ν, ρ) Chapter 5 Symmetric Beta distribution parameters to
model soft and hard sensor support assignments

Ω Chapter 6 Root frame in evidence tree

Θi[P ] Chapter 6 Child frame at level i > 0 under parent frame P

mΘj [P ](X|P ) Chapter 6 Scaled belief mass assigned toward subset X of
child frame Θj[P ]

m∆h(X) Chapter 6 Bayesian belief mass assigned toward subset X of
a frame ∆ by a hard source

m∆s(X) Chapter 6 Bayesian belief mass assigned toward subset X of
a frame ∆ by a soft source

Ψ Chapter 6 Consolidated frame or decision layer at some level
of the evidence tree

Pr Chapter 6 Pignistic probability vector on a decision layer

w(k) Chapter 9 Process noise vector at time k

List of Symbols



xvi

v(k) Chapter 9 Measurement noise vector at time k

G(k) Chapter 9 Process noise matrix at time step k in state dy-
namics equation

B(k) Chapter 9 Kalman filter input matrix at time step k

H(k) Chapter 9 Kalman filter observation matrix at time step k

Q(k) Chapter 6 Process noise covariance matrix at time k

R(k) Chapter 6 Measurement noise covariance matrix at time k

(k|k − 1) Chapter 9 Denotes quantity at time k given a measurement
at time k − 1

(k|k) Chapter 9 Denotes quantity at time k given a measurement
at time k

P (k|k) Chapter 9 State estimation error covariance matrix at time
k given a measurement at time k

P (k|k − 1) Chapter 9 State estimation error covariance matrix at time
k given a measurement at time k − 1

a1,a2 Chapter 9 Second order auto-regressive model parameters
for temporally correlated measurement noise

e(k) Chapter 9 Zero mean Gaussian noise at time k driving the
AR model of measurement noise.

List of Symbols



xvii

Abstract
Distributed Detection and Fusion in Parallel Sensor Architectures

Sayandeep Acharya
Moshe Kam, Ph.D.

Parallel distributed detection system consists of several separate sensor-detector nodes

(separated spatially or by their principles of operation), each with some processing

capabilities. These local sensor-detectors send some information on an observed phe-

nomenon to a centrally located Data Fusion Center for aggregation and decision mak-

ing. Often, the local sensors use electro-mechanical, optical or RF modalities and are

known as “hard” sensors. For such data sources, the sensor observations have struc-

ture and often some tractable statistical distributions which help in weighing their

contribution to an integrated global decision. In a distributed detection environment,

we often also have “humans in the loop.”. Humans provide their subjective opinions

on these phenomena. These opinions are labeled “soft” data. It is of interest to

integrate “soft” decisions, mostly assessments provided by humans, with data from

the ”hard” sensors, in order to improve global decision reliability. Several techniques

were developed to combine data from traditional hard sensors, and a body of work

was also created about integration of “soft” data. However relatively little work was

done on combining hard and soft data and decisions in an integrated environment.

Our work investigates both “hard” and “hard/soft” fusion schemes, and proposes

data integration architectures to facilitate heterogeneous sensor data fusion. In the



xviii

context of “hard” fusion, one of the contributions of this thesis is an algorithm that

provides a globally optimum solution for local detector (hard sensor) design that sat-

isfies a Neyman-Pearson criterion (maximal probability of detection under a fixed

upper bound on the global false alarm rate) at the fusion center. Furthermore, the

thesis also delves into application of distributed detection techniques in both paral-

lel and sequential frameworks. Specifically, we apply parallel detection and fusion

schemes to the problem of real time computer user authentication and sequential

Kalman filtering for real time hypoxia detection.

In the context of “hard/soft” fusion, we propose a new Dempster-Shafer evidence

theory based approach to facilitate heterogeneous sensor data fusion. Application

of the framework to a number of simulated example scenarios showcases the wide

range of applicability of the developed approach. We also propose and develop a

hierarchical evidence tree based architecture for representing nested human opinions.

The proposed framework is versatile enough to deal with both hard and soft source

data using the evidence theory framework, it can handle uncertainty as well as data

aggregation.

Abstract
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1: INTRODUCTION

Data Fusion is the process of combining information from several different sources

pertaining to the same event, environment or phenomenon. The objective is to de-

velop a robust and more complete description of the environment or process of interest

than would be normally available with data from a single source. The field of data

fusion is of significance in any application where a large amount of data must be com-

bined, fused and distilled to obtain information of appropriate quality and integrity on

which decisions can be made. Data fusion finds application in many military systems,

in civilian surveillance and monitoring tasks, in process control and in information

systems.

1.1 Fusion Objectives and Sensor Types

The basic intuition behind incorporating multiple information sources to collect infor-

mation is that the aggregated data might be more reliable (less noisy) and therefore

can aid in better understanding of the phenomenon under surveillance. Typically, the

fusion objectives of a specific application scenario include one or more of the following

functions [1]:

• Detecting presence of an object or environmental condition

• Object recognition and classification

• Target tracking
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• Health monitoring and flagging changes

• Intelligent decision making and situation assessment

If sensors used to collect observations merely duplicate information acquisition, the

fusion process essentially incorporates redundancy for enhancing reliability. This

situation might not facilitate better understanding of the phenomenon in question.

Therefore, most multi-sensor fusion systems incorporate heterogeneous sensors so that

a wide range of information with varying degrees of uncertainty can be collected and

fused for end decision making. Under the broader perspective of considering sensors

as information sources, such heterogeneous multi-sensor systems can have humans as

sources as well.

According to current terminology [2], sensors which are traditional in the mode of

operation and have well defined statistical error characteristics like electro-mechanical

or electro-optic sensors are termed as Hard sensors where as human sources which

typically produce ambiguous or imprecise information are termed as Soft sensors. The

classical field of fusion deals with hard sensors and the task becomes that of developing

probabilistic algorithms for data fusion. On the other hand, since human opinions

are subjective and very difficult to mathematically model, probabilistic approaches

generally fail to reliably define fusion systems with humans as information sources.

As is presented in Chapter 4, in such situations, tools from evidence theory can be

used to facilitate fusion of Hard and Soft sensors.

1 1.1 Fusion Objectives and Sensor Types
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1.2 Data Fusion Models

In any data fusion problem, there is an environment, process or quantity whose true

value, situation or state is unknown. It would be unreasonable to expect that there is

some single source of perfect and complete knowledge about the problem of interest

and so information must be obtained indirectly from sources which provide imperfect

and incomplete knowledge, using these to infer the information needed. In the fusion

problems we study, the state of the environment is represented as a set of hypothesis

denoted by H. The binary hypothesis detection problem deals with the situation

when the environment is assumed to be either in state 0 denoted by hypothesis H0

or state 1 denoted by hypothesis H1. Since most multi-hypothesis situations can be

represented in terms of a hierarchy of binary hypotheses, all the algorithms described

herewith assumes the environment to be modeled by a binary hypothesis set.

The data fusion systems studied here involve multiple sensors or detectors collect-

ing observations (henceforth called local observations) about the environment, and

transmitting a processed version of the observation to a fusion center which is re-

sponsible for data aggregation. The end goal is to combine the received data in an

optimal or near-optimal form so that a reliable and informed decision can be made

about which hypothesis might be true. In a binary hypothesis detection problem, the

decision on the set of hypotheses is represented as follows

u =


1, if H1 is accepted

−1, if H0 is accepted.

(1.1)

1 1.2 Data Fusion Models
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Figure 1.1: A centralized data fusion system.

1.3 Data Fusion Architectures

We consider a set of sensors physically distributed around an environment. In a

centralized data fusion system, the raw sensor observations are communicated to a

central fusion center that solves a classical hypothesis testing problem and decides

on one the possible hypotheses. Figure 1.1 shows the basic scheme for a centralized

fusion system.

In this scheme, the N local sensors do not perform any significant data compres-

sion; they send forward their raw observations zi, i = 1...N to the central fusion

center which then combines the incoming data to produce a global decision. A dis-

tinct alternative, (e.g., [3]), is a distributed 1 data fusion system, where each sensor

has an associated local processor which can extract useful information from the raw

sensor observations prior to communication. A summary of the local observations

1Often the configuration introduced in [3] and its variations are inappropriately also referred to
as decentralized, however there are some significant architectural differences between decentralized
and distributed configurations [4].

1 1.3 Data Fusion Architectures
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Figure 1.2: A distributed data fusion system.

(test statistics) is sent to the fusion center which then makes a decision on the basis

of the messages received. The fusion center faces an hypothesis testing problem (the

messages received from the local sensors are considered as the fusion center’s observa-

tions). Additional issues that need to be addressed are the signal processing schemes

at the individual local sensors and the nature of information transmitted from the

sensors to the fusion center.

The move to more distributed, autonomous, organizations is clear in many infor-

mation processing systems. This is most often motivated by two main considerations;

the desire to make the system more modular and flexible, and a recognition that a

centralized structure imposes unacceptable overheads on communication and central

computation. Figure 1.2 shows the basic scheme for a distributed fusion system.

1 1.3 Data Fusion Architectures
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In a distributed fusion scheme, the intermediate local processors may make hard

decisions and transmit these results to the fusion center for decision combination.

Other options include transmission to the fusion center of multi-level decisions in-

stead of binary decisions, transmission of only changes from a baseline or previous

decision, transmission of quantized observations. In all of these cases, the intermedi-

ate data compression leads to information loss. Hence even though the distributed

scheme is modular, easier to implement and has much less communication bandwidth

requirements, it almost always has suboptimal performance (irrespective of the per-

formance metric) as compared to a centralized architecture where the fusion center

works with all available information. For any fusion system design, the centralized

scheme can therefore be assumed to provide an upper bound on the performance

and serve the standard for comparative analysis. We are facing here a tradeoff be-

tween detection performance and the required information storage, communication

and processing required to achieve this performance.

Several different topologies all of which fall under the umbrella of distributed

fusion have been proposed. They include the following.

• Parallel Decision Fusion: In this scheme, shown in Figure 1.3, the local

sensors form a bank of data collection nodes which map their observation vectors

to local decisions ui, i = 1...N . These are then sent forward through dedicated

communication channels to the decision fusion center which then processes the

received local decisions and produces a global decision on the set of hypotheses.

For a binary hypothesis set, the local and global decisions can be represented

1 1.3 Data Fusion Architectures
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Figure 1.3: A parallel decision fusion system.

with 1 bit and are of the form as shown in (1.1). This architecture is by far the

most studied distributed fusion topology and all the results presented in this

thesis assume a similar parallel distributed decision fusion system.

Variations of the topology shown in Figure 1.3 sometimes incorporate addi-

tional features like feedback from fusion center ([5–7]) as well as inter sensor

communication [8]. An excellent survey of the most seminal works in the field

of distributed detection can be found at ([1], Chapter 5).

• Sequential or Tandem Fusion: In serial configuration of N sensors, the

(j−1)th sensor passes its quantized information to the jth sensor which generates

its quantized information based on its own observation and the quantized data

received from the previous sensor in the sequence [9]. The first sensor in the

network uses only its own observations to compute its quantized data for use

by the next sensor. The last sensor in the network acts as the fusion center and

1 1.3 Data Fusion Architectures
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Figure 1.4: A sequential data fusion system.

makes the final decision on the set of hypotheses. Figure 1.4 shows a sequential

fusion topology.

A disadvantage of the serial topology is the delays that may accumulate, since

each sensor has to wait for a decision from the previous sensors. Furthermore,

there is the inherent problem of managing sensor failure, as a malfunctioning

sensor anywhere in the sequence would affect functioning of the entire system.

Another issue is the ordering of nonidentical sensors in serial networks. It might

seem logical to put the best detectors toward the end but counter examples show

that this configuration need not always be optimal [10].

• Tree Structure: Several tree topologies with hierarchical structures were pro-

posed. The sensors at the lowest level of the tree send their processed informa-

tion to the parent sensors who use their own observations and the information

received from child sensors to compute their own summarized data which then

1 1.3 Data Fusion Architectures
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Figure 1.5: A Tree topology for distributed detection.

move up the hierarchy to the sensor at the root location which generates the

global decision. Figure 1.5 shows an example tree topology.

There are many other hybrid structures that have been developed over the years each

having their own assumptions and contexts. Results on distributed detection using

some of the above topologies are discussed in ([11], Chapters 3, 4, 6).

1.4 Multi-Sensor Estimation

Central to the problem of Data Fusion as described in the previous sections, is the

issue of estimation. Fundamentally, an estimator is a decision rule which takes as an

argument a sequence of observations and whose action is to compute a value for the

parameter or state of interest. Almost all data fusion problems involve this estimation

process: we obtain a number of observations from a group of sensors and using this

information we wish to find some estimate of the true state of the environment we

1 1.4 Multi-Sensor Estimation
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are observing. This estimate may be in the form of a binary decision toward some

hypothesis (as discussed in Section 1.2) or a real number signifying the value of some

chosen parameter. Estimation encompasses all important aspects of the data fusion

problem. Sensor models are required to understand what information is provided,

environment models are required to relate observations made to the parameters and

states to be estimated, and some concept of information value is needed to judge the

performance of the estimator (reduction of uncertainty in estimate). In other words,

the estimation problem is central in linking the real world as observed by a sensor to

the decisions we make about how to control or influence our environment.

Instead of explicit decisions toward hypotheses, when the goal is to compute nu-

meric estimates of certain quantities (e.g., physical attributes like position, speed,

percentage of concentration etc.) from noisy observations, one of the most versatile

estimation and fusion algorithms is the Kalman filter [12]. The Kalman filter is a

recursive linear estimator which successively calculates an estimate for a continuous

valued state, that evolves over time, on the basis of periodic observations that of this

state. The Kalman filter employs an explicit statistical model of how the parameter

of interest evolves over time and an explicit statistical model of how the observations

that are made are related to this parameter. A detailed coverage of existing tech-

niques based on the Kalman filter is provided in [13–15]. In Chapter 9 of this thesis,

we pose the problem of Hypoxia detection under the context of distributed detection

and showcase the use of Kalman filter for data fusion.

1 1.4 Multi-Sensor Estimation
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1.5 Thesis Overview

This thesis is organized in three parts.

Part I deals with Hard fusion. The local sensors possess statistical error models

and have known ranges of operation. Chapter 1 introduces the field of Data Fusion,

discusses the various architectures and topologies used in practical system design, and

describes the classical distributed decision fusion problem. Chapter 2 discusses the

development and evolution of the distributed (parallel) decision fusion problem and

the various probabilistic frameworks that are used to solve the same. Previous work

in the area is presented. Chapter 3 presents an original contribution of the thesis,

an algorithm to compute the optimal distributed decision fusion system operating

point under the Neyman-Pearson criterion.

Part II continues the study of parallel decision fusion architectures as it derives

useful when humans also act as information sources. In such situations, the local

sensors are called Soft sensors. We identify algorithms that fuse both Hard and

Soft sensors data (Hard/Soft fusion). Chapter 4 introduces the field of Evidence

Theory (sometimes also referred to as Dempster-Shafer Theory [16]) and defines the

Hard/Soft fusion problem. In Chapter 5, we present a new evidence theory based

architecture that can facilitate Hard/Soft fusion. The proposed algorithm is discussed

and evaluated against several scenarios. Chapter 6 presents a new hierarchical

evidence tree structure that can be used to mathematically model nested, equivocal

or tentative human assessments. Chapter 7 summarizes the thesis contribution on

Hard/Soft fusion and offers future avenues of research.

1 1.5 Thesis Overview
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Part III introduces the application of two classical and well established detection

and fusion algorithms on couple of real world problems (algorithms implemented on

real data sets).

Specifically, Chapter 8, discusses the application of parallel decision fusion tech-

niques to perform identification of an user of a computer using biometric sensors.

The problem we attempt to address is real time identification of whether an user

is legitimate or unauthorized, using information from behavioral biometric systems

(e.g., keyboard and mouse usage). This work poses the problem under the paradigm

of distributed detection and also identifies the extent of marginal contributions of

groups of biometric sensors toward the end fused result, whether an user is authentic

or not.

Chapter 9 illustrates a Kalman filter based parallel fusion system that can aid

in reliable and real time hypoxia (diminished availability of oxygen) detection in

individuals exposed to high altitude environments. The fusion scheme is tested on

actual data collected from multiple test subjects.

Chapter 10 presents the concluding remarks and summarizes the main contri-

butions of the thesis.

1 1.5 Thesis Overview
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Part I

DISTRIBUTED DETECTION - CLASSICAL

FRAMEWORK
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2: CLASSICAL DISTRIBUTED DETECTION AND
FUSION

In many practical situations, one is faced with a decision making problem of choosing

a course of action from a set of possible alternatives. Such situations arise in several

applications ranging from radar detection, medical diagnosis, pattern recognition to

stock market predictions. The general idea is to arrive at a choice represented by

one among a set of hypotheses H1, ..., HM , based on information obtained from data

which are invariably corrupted by noise and therefore uncertain.

2.1 Distributed Detection without Fusion

Distributed detection with parallel topology is the direct extension of hypothesis

testing to the problem where instead of a single decision maker, there are N decision

makers all of which decide individually on a particular hypothesis. For the remainder

Figure 2.1: Parallel distributed detection without fusion.
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of this study, we will focus only on binary hypothesis testing with the two hypotheses

denoted as H0 and H1. The inception of the field of distributed detection as we are

familiar today can be largely attributed to the seminal work of Tenney and Sandell [3].

The architecture used in [3] is shown in Figure 2.1 where two local sensors/detectors

observe a phenomenon and collect noisy observations zi, i = 1, 2.

The objective is to obtain rules ψi(zi) at each detector which are functions of

local observations and produce local binary decisions ui as shown in (1.1) such that

the average cost of decision making (Bayes’ risk) is minimized. The main result in

[3] showed that the local decision rules are not standard likelihood ratio tests but

comprise of coupled nonlinear equations (threshold of detector 1 is dependent on

threshold of detector 2 and vice-versa) with data dependent thresholds which must

be solved simultaneously to obtain the local decision regions. As shown in [17], this

problem of distributed detection is NP complete. The situation gets better under the

assumption that the local observations zi are statistically independent conditioned on

the hypotheses. In that case the decision rules though still coupled no longer have

data dependent thresholds and can be numerically solved. These coupled equations

are the Person-By-Person optimality conditions for the distributed detection problem.

Tsitsiklis and Athans in [17] reported a study on the computational complexity of

discrete models of some basic distributed detection/decision problems. Later the work

in [18] extended the results in [3] for multiple hypothesis and multiple sensors.

2 2.2 Distributed Detection with Fusion
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Figure 2.2: Parallel distributed detection with fusion.

2.2 Distributed Detection with Fusion

In the distributed detection system shown in Figure 2.1, the local decisions were not

sent to a fusion center for global decision making. The addition of fusion center adds

to the complexity of the system but guarantees better reliability in the certainty of

the end decision. A parallel distributed decision fusion system with N local detectors

is shown in Figure 2.2.

The local decision rules ψi(zi) map the local observations zi to binary decisions

ui, i = 1, ..., N which are then combined by the fusion center to produce a global

decision u0 such that

u0 =


1, if H1 is accepted globally

−1, if H0 is accepted globally.

(2.1)

In this classical set up, two inherently different problems need to be considered:

the design of the fusion center decision rule, which strives for an optimal system

2 2.2 Distributed Detection with Fusion
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performance using compressed inputs from distributed sensors, and the design of

local sensor decision rules. These two problems are intertwined with each other and

need to be jointly handled to optimize a specified performance criterion.

2.3 Optimization Criterion

The design of any distributed detection system with or without fusion requires the

solution of decision rules which are optimal in the sense of minimizing some cho-

sen optimization criterion. When the observations collected at all local detectors

are assumed to have defined probability distributions, the design of a distributed

detection system may follow a probabilistic framework (as opposed to fuzzy or ev-

idence theoretic frameworks). The performance of the fusion center and the local

detectors are measured using the probability of false alarm (declare H1 when H0 is

true): PFi
= P (ui = 1|H0) and probability of detection (declare H1 when H1 is true):

PDi
= P (ui = 1|H1), i = 0, 1, ...., N (with PF0 and PD0 representing the false alarm

and detection rates of the fusion center).

In the Bayesian formulation, the optimal decision rules minimize the average cost

function also called the Bayes’ risk function <, defined for a binary hypothesis testing

problem as

< =
1∑
i=0

1∑
j=0

CijP (Hj)P (Decide Hi|Hjis true), (2.2)

where Cij is the cost of making a decision in favor of Hi when Hj is true and P (Hi),

i = 0, 1 are the a priori probabilities of the hypotheses. Under such a formulation, the

2 2.3 Optimization Criterion
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optimal decision rule at the local detectors and at the fusion center is generally of the

form of a likelihood ratio test where the incoming observation vector oj, j = 1, .., K

is used to form the likelihood ratio Λ(o) which is then compared to a threshold as

follows

Λ(o) =
P (o1, ..., oK |H1)

P (o1, ..., oK |H0)

H1

≷
H0

t (2.3)

In the special case when the costs are assumed to be symmetric and set as C00 = C11 =

0 and C01 = C10 = 1, the Bayes’ risk is just the average probability of error. While

minimizing the Bayes’ risk, the threshold t is a function of the a priori probabilities

and chosen costs as shown below

tg =
P (H0)(C10 − C00)

P (H1)(C01 − C11)
, (2.4)

Minimizing Bayes’ risk using a decision threshold as computed in (2.4) requires the

knowledge of the prior probabilities which might not be always available. Also, note

that for the case of decision fusion, the observations at the local detectors are o = z

and the observations at the fusion center are the local decisions o = [ui, ..., uN ] (see

Figure 2.2).

As an alternative, to circumvent the problem of acquiring prior probabilities, the

optimization goal might be defined as to maximize the probability of detection such

that the probability of false alarm is constrained to be PF ≤ α, α ∈ (0, 1), namely the

Neyman-Pearson criterion [19] can be used, where the threshold t is obtained such

2 2.3 Optimization Criterion
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the following is satisfied ∫ ∞
t

P (Λ(o)|H0) = α. (2.5)

In the case of parallel binary decision fusion, the local decisions ui are considered as

the observations of the fusion center. As the local decisions are discrete Bernoulli

random variables, the likelihood ratio Λ(u) (now as a function of the local decisions

u = u1, u2, ..., uN) has a probability mass function and therefore the analogous discrete

form of the expression in (2.5) must be used to calculate the threshold tg.

2.4 Parallel Decision Fusion Survey

Chair and Varshney [20] developed the optimal fusion rule when statistical character-

istics of all the distributed sensors are exactly known and fixed, and the local sensor

outputs are statistically independent conditioned on the hypotheses. For a binary

hypotheses set H = {H0, H1} with known a priori probabilities P (H0) and P (H1)

and symmetric costs (C00 = C11 = 0, and C01 − C10 = 1), if the local decisions are

represented as u1, i = 1, ..., N , the fusion rule that minimizes the global probability

of error is defined as

u0 =


1, if

∑N
i=1wiui > w0

−1, otherwise,

(2.6)

where, w0 = log
(
P (H0)
P (H1)

)
and the optimal weights are given as

wi =


log
(

1−PMi

PFi

)
, if ui = 1

log
(

1−PFi

PMi

)
, if ui = −1.

(2.7)

2 2.4 Parallel Decision Fusion Survey



20

The result in (2.6) is a closed-form expression of the fusion rule of the local deci-

sions and is essentially a weighted sum of the local sensor decisions being compared to

a constant threshold (namely a classical perceptron). The weights wi, i = 1, ..., N by

which the local decisions ui are scaled in the fusion rule are functions of the error prob-

abilities (false alarm PFi
and miss-detection PMi

rates of the local sensor-detectors)

and the constant threshold is a function, in addition, of the a priori probabilities of

the hypotheses set.

A variation of distributed detection was studied in [21] where local detectors com-

municate with each other and fuse the incoming decisions of other detectors locally

to produce an updated local decision. No central fusion center is incorporated in

the scheme. The conditions for joint optimality of local processors and the fusion

center were derived in [22]. This optimization involves solution of coupled nonlinear

equations representing the performance of the local detectors and the global fusion

center. In essence, this study combines the ideas of local decision optimization in

[3] with the fusion rule optimization proposed in [20]. Distributed fusion of corre-

lated local decisions was investigated among others in [23–25]. Krzystofowicz and

Long in [26] developed a Bayesian detection model where the local detectors send

forward posterior detection probabilities to the fusion center which then uses Bayes’

rule to compute the aggregate posterior detection probability. Distributed detection

with feedback have been studied among others in [5, 6, 27]. Thomopoulos et al. in

[28] provided a general proof that the optimal decision scheme that maximizes the

probability of detection at the fusion center for a fixed false alarm rate consists of

a Neyman-Pearson test at the fusion center and likelihood ratio tests at the local

2 2.4 Parallel Decision Fusion Survey
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detectors. The study in [29] investigated the problem of distributed detection and fu-

sion from an information-theoretic point-of-view. Design of the entire parallel fusion

network based on both Bayesian and Neyman-Pearson formulation was considered in

[30] and [31]. A more detailed exposition including distributed detection for multiple

hypotheses can be found in [32].

2.5 Distributed Detection with Identical Sensors

An interesting case is when the observations at each detector are assumed to be condi-

tionally independent and identically distributed. Contrary to common intuition, even

if observations at each detector are identically distributed (given either hypothesis),

it is not optimal for each detector to use identical thresholds as shown by counter

examples in [3, 33]. The use of different thresholds at each detector makes the PBPO

solution of local decision rules intractable especially when the the number of detectors

N is large. This is due to the fact that a search over all nonidentical local decision

rules is required. If the local decision rules were constrained to be identical, the

complexity of the distributed detection problem is drastically reduced. Furthermore

[34] showed that when the observations at each detector are independent and are cor-

rupted by identical Gaussian noise, then no optimality is lost if local likelihood ratio

tests employ identical thresholds. Chen et al. in [35] showed that local decision rules

of the optimum system are almost identical and therefore marginally different from

decision rules obtained under identical decision rule constraint. Numerical results in

[36] showed that the restriction of identical decision rules leads to negligible loss of

performance.

2 2.5 Distributed Detection with Identical Sensors
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2.6 Person-By-Person Optimization

As mentioned before, optimizing a distributed decision fusion system in its entirety

involves deriving the optimal decision rules for both the local detectors and the fusion

center. This distributed binary decision fusion system design can be viewed as a Team

Decision Problem and a general method for seeking such simultaneous optimization

is through the Person-By-Person Optimization (PBPO) method. The distributed

detection system is viewed as a team of two members. The group of local detectors

forms one member and the decision fusion center is the other member. Performance

of each member of the team is optimized separately with the assumption that the

other members have already been optimized. This approach requires simultaneous

solution of nonlinear coupled equations for local detector thresholds and the global

fusion rule. Still, the PBPO optimal solution is not guaranteed to achieve the true

team optimum [37]. Only under the special condition when the objective function to

be minimized is convex, PBPO solution achieves the team optimum. Furthermore,

system design equations resulting from PBPO procedure represent necessary and not

in general, sufficient conditions to determine the globally optimum solution.

For a N detector binary decision fusion system with non-identical detectors, the

PBPO procedure results in N equations, one for each local detector and 2N equations

for the fusion center. A simultaneous solution of these N+2N nonlinear coupled equa-

tions yields the PBPO solution to the binary distributed hypothesis testing problem.

The system wide optimization problem using the PBPO procedure was solved under

Bayesian framework in [22, 30] and under the Neyman-Pearson criterion in [31]. The

2 2.6 Person-By-Person Optimization
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proposed PBPO solutions require simultaneous solution of non-linear coupled equa-

tions for decision thresholds, which can become difficult as the number N of local

detectors increases.

2.7 Application to Present Work

One of our objectives is to develop an algorithm that provides the optimal local and

global decision rules without having to solve a set of coupled nonlinear algebraic

equations. Such efforts are not new- the system-wide PBPO optimal solutions were

provided under the Bayesian framework in [22] and using the Neyman-Pearson crite-

rion in [31]. However, PBPO solutions are not generally team optimal, and therefore

we desire to develop an alternative algorithm that can achieve the team optimal

operating point for a distributed binary decision fusion system.

2 2.7 Application to Present Work
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3: OPTIMAL DISTRIBUTED NEYMAN-PEARSON
FUSION

We study the parallel binary distributed detection architecture shown in Figure 2.2. N

local sensors/detectors observe a phenomenon. Each local detector decides whether

to accept one of two binary hypotheses on the observed phenomenon (H0 or H1),

and it transmits its decision (ui = −1, accept H0 or ui = 1, accept H1) over an ideal

communication channel to a decision fusion center, where the local decisions are fused

to a global decision u0 as to whether to accept H0 or H1. As mentioned in Chapter 2,

several of the works particularly [3, 22, 31] that studied the same problem used the

PBPO procedure for designing the entire system (local and fusion center decision

rules).

We propose an alternate algorithm [38] that avoids the need to solve a set of

nonlinear coupled equations, and provides the system wide optimal operating point

(local detector and fusion center decision thresholds) of the parallel binary decision

fusion system. In the distributed system, both the local detectors and the decision

fusion center use the Neyman-Pearson criterion i.e, the algorithm designed here fixes

the global false alarm rate and attempts to compute the local detector likelihood

ration test thresholds and the global fusion rule that achieve the maximum global

detection probability. The principal effort in the design turns out to be to solve for the

roots of a certain N th order univariate polynomial. We also compare the performance

of our method with the performance of the Person-by-Person Optimization (PBPO)
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approach and that of a centralized detection scheme.

3.1 Distributed Neyman-Pearson Decision Fusion

In the distributed decision fusion system shown in Figure 2.2, the ith local sen-

sor/detector decision with i = 1, ..., N and the global fusion center decision (i = 0)

are of the form:

ui =


1, if H1 is decided

−1, if H0 is decided.

(3.1)

The Neyman-Pearson test fixes the global false alarm rate (P (u0 = 1|H0)) at a pre-

specified level α < 1 and then attempts to achieve the maximum global probability of

detection (P (u0 = 1|H1)). The final fusion center decision rule becomes a likelihood

ratio test [19], and takes the form

Λ(u) =
P (u1, ..., uN |H1)

P (u1, ..., uN |H0)

H1

≷
H0

tg. (3.2)

The threshold tg is computed such that the global false alarm is equal to α (Note, we

only consider the equality constraint P (u0 = 1|H0) = α). Assuming that the local

decisions are independent (conditioned on the hypothesis), we have

Λ(u) =
N∏
i=1

P (ui|H1)

P (ui|H0)
=

N∏
i=1

Λ(ui)
H1

≷
H0

tg. (3.3)

As the local decisions ui are binary, the conditional probability distributions P (Λ(ui)|H0)

and P (Λ(ui)|H1) for the ith sensor are discrete as shown in the Figure 3.1. We use

3 3.1 Distributed Neyman-Pearson Decision Fusion



26

(1− PFi
)

PFi

1

0
PMi

1−PFi

1−PMi
PFi

Λ(ui)

P (Λ(ui)|H0)

(a) Under H0.

PMi

(1− PMi
)

1

0
PMi

1−PFi

1−PMi
PFi

Λ(ui)

P (Λ(ui)|H1)

(b) Under H1.

Figure 3.1: Probability mass function of local detector likelihood for parallel
decision fusion.

PMi
, PFi

to denote the Mis-detection Rate (MD) (P (ui = −1|H1)) and False Alarm

Rate (FA) (P (ui = 1|H0)) of the ith sensor, respectively.

The problem of system wide optimization of a distributed system inherently is ex-

tremely difficult. However, the complexity drastically reduces when the observations

at each local detector are assumed to identically distributed. Furthermore, a choice

of identical local detector thresholds generate asymptotically optimum solution [35]

and numerically the assumption of identical local detectors leads to little or no loss

of performance [39], [36].

For our work, we consider a decision fusion system consisting of N identical local

detectors with local false alarm and mis-detection rates given respectively as PFi
=

PF = p and PMi
= PM = q, with p, q ∈ (0, 1), i = 1, ..., N . The likelihood ratio Λ(u)

at the fusion center is computed using discrete Bernoulli random variables (local

binary decisions ui), and the conditional probability mass functions P (Λ(u)|H0) and

3 3.1 Distributed Neyman-Pearson Decision Fusion
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P (Λ(u)|H1) can be expressed using the binomial distributions as

P (Λ(u)|H1) =
N∑
k=0

(
N

k

)
(1− q)k(q)N−k.

[
δ

{
Λ(u)−

(
q

1− p

)N−k (
1− q
p

)k}]

(3.4)

and

P (Λ(u)|H0) =
N∑
k=0

(
N

k

)
(p)k(1− p)N−k.

[
δ

{
Λ(u)−

(
q

1− p

)N−k (
1− q
p

)k}]
,

(3.5)

where the (Kronecker) delta function δ(.) is defined as

δ(x) =


0, if x 6= 0

1, if x = 0

In the case of N identical detectors, the distributions in (3.4) and (3.5) will have

N + 1 probability masses. Let us index them by k = 0, 1, ..., N . An arbitrary global

false alarm probability PF0 = α can be realized as a convex combination

α =(1− γ)
N∑
k=k′

(
N

k

)
(p)k(1− p)N−k + γ

N∑
k=k′−1

(
N

k

)
(p)k(1− p)N−k, (3.6)

where k′ is the smallest value of k ∈ [0, 1, ..., N ] such that

α >

N∑
k=k′

(
N

k

)
(p)k(1− p)N−k
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and the parameter γ ∈ [0, 1] is given by

γ =
α−∑N

k=k′

(
N
k

)
(p)k(1− p)N−k∑N

k=k′−1

(
N
k

)
(p)k(1− p)N−k −∑N

k=k′

(
N
k

)
(p)k(1− p)N−k

. (3.7)

The global probability of detection then becomes

PD0 =(1− γ)
N∑
k=k′

(
N

k

)
(1− q)k(q)N−k+ γ

N∑
k=k′−1

(
N

k

)
(1− q)k(q)N−k. (3.8)

We are looking for the value of the likelihood ratio Λ(u) such that the sum of all

the probability masses at and to the right of Λ(u) is equal to α. For identical sensors,

the fusion rule is always k out of N [11, 29]. In this case, the desired Λ(u) must satisfy

the following

Λ(u) =

(
q

1− p

)N−k (
1− q
p

)k
(3.9)

for some k ∈ [0, 1, ..., N ]. In that scenario, the parameter γ reduces to either 0 or 1.

Let k∗ denote the value of k that satisfies the global false alarm constraint namely

PF0(k∗) = α =
N∑

k=k∗

(
N

k

)
(p)k(1− p)N−k, (3.10)

and the corresponding global probability of detection is

PD0(k∗) =
N∑

k=k∗

(
N

k

)
(1− q)k(q)N−k. (3.11)
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The system-wide optimal solution is therefore the pair (p, k∗) obtained by solving

(3.10) for p for every k∗ ∈ [1, ..., N ] and then choosing the pair that maximizes

(3.11). Since α < 1, k∗ 6= 0. Noting that for a fixed k∗, the summand in (3.10) is

a monotonically increasing function of p, the solution for p in (3.10) in the feasible

region of (0,1) is unique. Therefore, if the N roots of the equation

N∑
k=k∗

(
N

k

)
(p)k(1− p)N−k − α = 0 (3.12)

are evaluated for every k∗, there would be up to N distinct solutions (one for each

k∗). Each one of these solutions would correspond to a value of the global probability

of detection (from (3.11)). The optimal local false alarm rate would then be the one

that provided the maximum global probability of detection. We illustrate with a

simulated example.

Example: Let the local detector observations zi be of the form

zi =


m+ ei under H1

ei, under H0,

(3.13)

where ei is Normally distributed with zero mean and standard deviation σ (N (0, σ2))

and m is a known constant. As an example, we use here m = 3 and σ = 6. We assume

that there are N = 6 sensors, and that each sensor collects K = 5 observations before

making a decision. The global false alarm rate is chosen to be α = 0.05. In Figure 3.2

we show the variation of the global probability of detection as the local sensor false
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Figure 3.2: Variation of global probability of detection (PD0) and γ with local
sensor false alarm rate (p) for identical sensors.

alarm rate (p) is varied . Note that the x axis runs only till the value of p such that the

chosen global false alarm α is greater than or equal to the rightmost probability mass

of the conditional distribution P (Λ(u)|H0). It is notable that the curve representing

the global probability of detection (blue line) has N cusps at the locations where γ

switches between its maximum and minimum values (implying a change in k∗); it is

not differentiable there. The maximum PD0 is obtained from the N global detection

rates corresponding to the N feasible p values (p ∈ (0, 1)) obtained by solving (3.10)

for every k∗ ∈ [1, ..., N ].

The computational burden involved with this approach is to compute roots of

the N th order univariate polynomial (3.12). We summarize the algorithm [38] in

Table 3.1.

In the following section, we briefly discuss the PBPO approach frequently used

for a distributed decision fusion system design and then proceed to compare the

3 3.1 Distributed Neyman-Pearson Decision Fusion



31

Table 3.1: Optimal Distributed Fusion Algorithm

1. For N sensors, consider possible values of k∗ in the range [1, 2, ..., N ].

2. Solve for the roots of (3.10) for each value of k∗. For each k∗ there will be
up to N distinct roots. Let the root which is in the feasible region of [0, 1]
for a particular k∗ be denoted by pα(k∗).

3. Assuming the local detector observations have a continuous distribution,
compute the corresponding local detector threshold (tloc) using pα(k∗) as
follows ∫ ∞

tloc

P (Λ(ui)|H0) = pα(k∗).

4. Compute the corresponding local mis-detection rate qα(k∗) as follows∫ tloc

−∞
P (Λ(ui)|H1) = qα(k∗).

5. For each possible value of k∗, namely 1, 2, ..., N , compute the global proba-
bility of detection PD0(k∗) using (3.11) with q = qα(k∗).

6. Find the value of k∗ that provided the maximum value of PD0(k∗).

7. The corresponding pα(k∗) is the local false alarm for the local sensors that
would provide the best global detection rate for the maximum global false
alarm of α.

performance of the PBPO approach with the proposed scheme (Table 3.1) through

numerical examples.

3.2 Person-By-Person Optimization

A general method for seeking system-wide design of a decision fusion system is through

the Person-By-Person-Optimization (PBPO) method. The distributed detection sys-

tem is viewed as a team of two members. The group of local detectors forms one

3 3.2 Person-By-Person Optimization



32

member and the fusion center is the other member. Performance of each member

of the team is optimized separately with the assumption that the other member has

already been optimized. This approach requires simultaneous solution of nonlinear

coupled equations for local detector thresholds and the global fusion rule. Still, the

PBPO optimal solution is not guaranteed to achieve the true team optimum [37]. For

an N detector binary decision fusion system with non-identical detectors, the PBPO

solution is obtained by simultaneous solution of N + 2N nonlinear coupled equations.

When the local detectors are identical and the observations at the local detectors

are independent conditioned on the hypothesis, the number of equations for PBPO

approach under Neyman-Pearson criterion drops down to three (3). Next, we outline

the PBPO solution for identical sensors using the Neyman-Pearson criterion.

3.2.1 PBPO-Optimal Local Detector Thresholds

Under the Neyman-Pearson criterion, the global probability of detection is maximized

under the constraint that the global false alarm satisfies PF0 ≤ α. We therefore form

the objective function (Lagrangian) to be maximized as

F = PD0 + λ(PF0 − α), (3.14)

where λ is the Lagrange multiplier. Using (3.10) and (3.11) for identical local detec-

tors, we have

F =
N∑

k=k∗

(
N

k

)
(1− q)k(q)N−k + λ

[
N∑

k=k∗

(
N

k

)
(p)k(1− p)N−k − α

]
. (3.15)
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Expanding (3.15) in terms of q and p, the probability of mis-detection and false alarm

of a local detector respectively, we have

F =(1− q)
N∑

k=k∗

(
N

k

)
(1− q)k−1(q)N−k + λ

[
p

N∑
k=k∗

(
N

k

)
(p)k−1(1− p)N−k − α

]
.

(3.16)

Let us define the expressions

Vp =
N∑

k=k∗

(
N

k

)
(p)k−1(1− p)N−k,

and

Vq =
N∑

k=k∗

(
N

k

)
(1− q)k−1(q)N−k.

The expression in (3.16) becomes

F = (1− q)Vq + λ(pVp − α). (3.17)

Since Vq is sum of positive real numbers, Vq 6= 0. Hence we have

Fq =
F

Vq
= (1− q) +

λVp
Vq

(p− α

Vp
). (3.18)

Maximizing Fq implies that each local detector maximizes its own probability of

detection (1 − q) subject to the constraint that its local false alarm is bounded as
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p ≤ α
Vp

. Each local detector performs a likelihood ratio test as

P (zi|H1)

P (zi|H0)

H1

≷
H0

tloc, (3.19)

where zi are the observations for the ith detector and the local threshold tloc is com-

puted such that the local false alarm is fixed at p = α
Vp

. In other words, (3.18)

becomes the Lagrangian for a local detector. Under the Neyman-Pearson criterion,

tloc is given by the Lagrange multiplier [19] - therefore implying tloc = λVp
Vq

, where λ is

the threshold for the global likelihood ratio test (tg in (3.2)). From the local detector

optimization, we obtain

tloc =
λVp
Vq

, (3.20)

p =
α

Vp
. (3.21)

3.2.2 PBPO-Optimal Global Fusion Rule

Since the local detectors are identical, the global fusion rule is a k out of N rule. The

optimal k (denoted by k∗) can be obtained by noting that the Lagrange multiplier

in (3.14) is effectively the threshold of the global likelihood ratio test or the value of

Λ(u) at which the global false alarm constraint (P (u0 = 1|H0) = α) is satisfied, and

therefore from (3.9) we have

(
q

1− p

)N−k∗ (
1− q
p

)k∗
= λ. (3.22)
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Taking natural logarithm of both sides, we have

k∗
[
log(

1− q
p

)− log(
q

1− p)

]
= log(λ)−Nlog(

q

1− p) (3.23)

Since the constraint is PF0 ≤ α, we can express the optimal k∗ as

k∗ =

 log(λ)−Nlog( q
1−p)[

log(1−q
p

)− log( q
1−p)

]
 , (3.24)

where d e is the ceiling function defined over the set of integers (Z) as

dxe = min{s ∈ Z|s ≥ x}.

The complete PBPO solution for identical sensors under Neyman-Pearson criterion

therefore requires the simultaneous solution of the coupled nonlinear equations (3.20),

(3.21) and (3.24).

In general the PBPO solution does not converge to the team optimum solution.

Bauso and Pesenti in [37] showed that the necessary and sufficient condition for a

PBPO solution to converge to the team optimum is satisfied when the team cost

function has a unique local minimum. This is not the general case for the problem we

study, as shown, for example, in Figure 3.2 where the global probability of detection

is not unimodal with respect to the local detector false alarm rate, p. Therefore

the simultaneous solution of (3.20), (3.21) and (3.24) is not expected to achieve the

team optimum solution for all ranges of global false alarm. Furthermore, the PBPO

Receiver Operating Characteristics (ROC) is a collection of different ROC curves
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(each corresponding to a different value of the optimal k∗); the collective PBPO ROC

is formed using the upper envelopes of each of those constituent ROC curves. Due

to this feature, even though the ROC curves corresponding to any particular k∗ is

concave, the overall PBPO ROC curve is not concave as the PBPO optimal k∗ changes

over various ranges of global false alarm rates. The above mentioned properties are

illustrated in the comparative analysis presented in the next section.

3.3 Examples and Discussion

We provide a performance comparison of our method with the PBPO approach using

ROC curves for several scenarios. We also include the performance of a centralized

fusion scheme, where the fusion center receives the raw observations and computes

the global decision with no involvement of local detectors. Since the centralized ar-

chitecture performs no local data compression, it provides an upper bound on the

performance of a parallel fusion system. In the scenario for the centralized architec-

ture, the fusion center receives Kc = NK observations and uses a Neyman-Pearson

test with specified false alarm probability to arrive at a decision. We consider the

following three cases:

1. Observations are Gaussian distributed with different means under the two hy-

potheses, namely:

P (zi|H1) ∼ N (m,σ2) (3.25)

P (zi|H0) ∼ N (0, σ2). (3.26)
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(a) ROC for m = 3 (b) ROC for m = 4

(c) ROC for m = 5 (d) ROC for m = 6

Figure 3.3: ROC curves under various SNR for distributed Neyman-Pearson
detection using optimal distributed fusion algorithm (Table 3.1); Distributed
Neyman-Pearson detection using PBPO; and Centralized Neyman-Pearson de-
tection.

where the standard deviation σ = 6. ROCs are shown in Figure 3.3 for three

systems, namely a) Distributed detection using optimal distributed fusion algo-

rithm (Table 3.1); b) Distributed Neyman-Pearson detection using PBPO; and

c) Centralized detection. Four different values were used for m (this basically

represents varying SNR values) in (3.25), namely 3, 4, 5 and 6. Figure 3.3 shows

the extent to which the optimum detection scheme (Table 3.1) improves over
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(a) Exponential distribution (b) Gamma distribution

Figure 3.4: Performance comparison of the three systems when local detector
observations are Exponential and Gamma distributed.

PBPO. The centralized system is of course better than both.

2. Observations are Exponentially distributed,

P (zi|H1) ∼ Exp(1/2) (3.27)

P (zi|H0) ∼ Exp(1/3). (3.28)

3. Observations are Gamma distributed,

P (zi|H1) ∼ Gamma(1, 2) (3.29)

P (zi|H0) ∼ Gamma(1, 1). (3.30)

Figure 3.4 shows the ROC curves for the cases when local observations were Expo-

nential and Gamma distributed, and documents the improvement provided by the
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optimal algorithm (Table 3.1). Depending on the distribution of the local detector

observations, some values of global false alarm may not have a corresponding PBPO

solution. Several such regions are noticed in Figure 3.4.

3.4 Summary and Future Work

We considered system-wide optimization of a distributed decision fusion system where

a group of local sensor/detectors perform binary hypothesis testing on observations

from a common volume of surveillance, and communicate their decisions to a decision

fusion center. The objective is to maximize global probability of detection under a

global probability of false alarm constraint. The local detector decision thresholds and

the global fusion rule were derived by computing the roots of a N th order polynomial

whereN is the number of local detectors. The proposed method was compared against

the traditional PBPO approach. ROC curves of several scenarios demonstrate the

extent to which the optimal solution outperforms PBPO, and the extent to which it

is over performed by a centralized detection scheme (where all the raw observations

are transmitted to the fusion center).

The major computational burden in the proposed algorithm arises from the re-

quirement of solving for roots of certain N th order univariate polynomials. In practical

scenarios, distributed detection systems may consist of large number of sensors N ,

which may make the proposed algorithm difficult to implement. However, newer root

finding algorithms [40, 41] can possibly aid in developing the proposed algorithm

further and provide an efficient means of practical implementation.

Furthermore, the proposed algorithm assumes an equality constraint on the global
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probability of false alarm (PF0 = α). It is not straightforward to generalize the

algorithm when the inequality constraint PF0 ≤ α is used. Such a constraint may

provide optimal ranges for local thresholds and it would be interesting if such bounds

could be derived.
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Part II

DISTRIBUTED DETECTION WITH HUMANS AS

INFORMATION SOURCES
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4: EVIDENCE THEORY AND THE HARD/SOFT
FUSION PROBLEM

Distributed detection as presented in the previous chapters dealt with Hard sen-

sors, in the sense that the sensors/detectors have well defined statistical performance

characteristics. However, modern trends in data assimilation and aggregation appli-

cations increasingly show that apart from such electronic or mechanical Hard sensors,

humans too often act as information sources. It is therefore desirable to incorporate

their decisions in the fusion scheme. Humans acting as information sources rather

than information analysts are termed soft sensors. The task of a distributed detec-

tion system involving a heterogeneous mix of hard and soft sensors is to combine local

information sources so as to generate a reliable global decision or support value to-

ward one of the hypotheses. The fusion algorithms that can facilitate such Hard/Soft

combination often require additional tools to those used with hard sensors alone.

4.1 The Hard/Soft Fusion Problem

Figure 4.1 gives a generic representation of the Hard/Soft fusion problem. The idea

is to bring information from human sources which are sometimes imprecise and un-

certain in nature to a form which is compatible for fusion with outputs from hard

sensors/detectors.

The first issue in modeling soft sensors is to identify means of knowledge extrac-

tion. Broadly, we identify the following two avenues which are closely related and
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Figure 4.1: The distributed hard/soft fusion scheme.

have sufficient overlap.

• Indirect: The indirect method essentially deals with the extraction of infor-

mation from texts or database systems. It requires tools like natural language

processing, text parsing or data mining. Some possible and popular sources

may include

– Global Positioning System (GPS) annotated audio and video

– Social media data: Facebook, Twitter

• Direct: This method gathers information by direct evaluation of human opin-

ions toward a fix set of outcomes or a crisp hypothesis set. Data are gathered

using surveys, polls or crowd sourcing.

Here we deal only with direct method of information extraction from soft sources.

4 4.1 The Hard/Soft Fusion Problem
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4.2 Soft Sensors and Imperfect Data

Once the knowledge elicitation method has been fixed, the next most important

challenge in handling soft data is the difficulty in modeling and representing the

imperfectness. Imperfect data can be characterized as being imprecise, uncertain, or

both. Additionally there are other imperfections like vagueness or incompleteness.

The qualitative problem is how to choose a suitable framework to represent and

characterize such imperfect information as there is no general formalism to describe

all kinds of imperfect data. Once a generic framework for data representation is

chosen, the quantitative aspect of the problem asks how to quantify the soft source’s

confidence accorded to a realization (for example: how the belief of an event is set to

be 0.8 and not 0.6).

4.2.1 Types of Imperfect Data

There are various ways of defining classes of imperfect data. The distinction between

such classes is not strict and there are overlaps. Some of the most used classifications

of imperfect data are the following:

• Subjective and Objective data: The subjective information is an informa-

tion which is dependent on the source of information. This means that the

source of information has given an interpretation of the data. Usually, humans

are the main contributors of such information. The information is subjective

due to the limitations of language or to the limitations of understanding.

• Uncertain and Imprecise data: Uncertainty represents our state of knowl-
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edge about an item of information. Imprecision is a characteristic of an infor-

mation that is expressed often by a set of values. For example, ”The detected

object is a F-18 plane” is a precise and certain information. However, ”The

detected object might be a F-18 plane with a degree of confidence of 60%” is

an example of an uncertain information as the information is precise but not

sure. The information ”The detected object is one of the planes {F-18, Boeing

747, F-16, Mig-29}” is an imprecise information. Our state of knowledge is that

the detected object is one of the element of the set but we are unsure about

the exact one. Usually, the information provided by a general soft source is

both imprecise and uncertain and the framework chosen to represent such data

therefore should be able to handle both of them.

• Vague and Incomplete data: This kind of data is due specially to the limi-

tation of the vocabulary and is in most of the cases subjective data. We refer to

information which describes a class of objects, but the limits of this class are not

well known. For example, ”The observer spotted a reconnaissance plane flying

very high” is vague, because of the lack of precision in ”high”. Incomplete data

are a combination of imprecise and uncertain information. Incomplete data

are represented by the upper limit of our degree of confidence (also called the

possibility) of an event.

4.2.2 Frameworks for dealing with Imperfect Data

Research over the past three decades have resulted in a number of theories which aid

in representation of imperfect data. In a typical application, the variety of sources
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provides different kinds of imperfect data and no theory is universal in applicability

(capable of handling uncertain, vague or imprecise information). Some of the most

popular theories are listed below. In the subsequent discussions, we will denote the

set of all hypotheses by Θ purely due to notational compatibility with the common

form of the mathematical expressions in evidence theory. This set basically carries

the same meaning; that of a set of disjoint hypotheses as was denoted by H in Part I.

• Probability Theory: The probability theory has been the most popular

framework to be used to deal with almost all kinds of imperfect information,

partly because it was the only existing theory. The measure of probability ex-

presses the degree of confidence that someone assigns to the occurrence of a

realization of an event. If Θ = {θ1, θ2, ..., θn} denotes the set of possible mu-

tually exclusive realizations/hypotheses, then probability theory assigns precise

probability numbers to each member of Θ. In reality such assignment is hardly

possible since no one knows the chances of occurrence of an event with 100%

accuracy. Probability theory enables fusion of information coming from various

sources by using the expression of total probability.

P (A) =
N∑
i=1

P (A|sourcei)P (sourcei)

where the A is the event under consideration. When the prior probabilities are

unknown or there is no reliable information about them, probability theory as-

signs equal probability to all elements of Θ. This is the way to model ignorance

in probability theory. This theory can also deal with imprecision, but the prob-
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ability of an imprecise event is strongly dependent of the probabilities of precise

events. In a lot of cases, the prior information is not available and the user does

not have all the data to solve the problem. Moreover, imperfect information,

especially the imprecise one, is hardly modeled with the probability theory. For

this kind of imperfect information, other theories were proposed.

• Dempster-Shafer Theory of Evidence: The Dempster-Shafer’s theory of

evidence 1 (henceforth we will refer to this theory as Evidence theory) was

introduced by Dempster in [42] and later developed by Shafer in [16] as an

alternative to the probability theory to fulfill the need of dealing with both

imprecision and uncertainty in observed data. Confidence values are associated

to elements of the power set 2Θ instead of Θ as in probability theory. This helps

in modeling inherent ignorance and uncertainty of the sources. The theory can

handle incomplete information and also provide an upper and lower bound on

the likelihood of an event. Fusion of data from various sources can be done

using Dempster’s rule of combination.

• Rough Sets: The rough sets theory [43] was proposed to deal with the aspect

of imprecision. The basic concept of the rough sets theory is to replace an

uncertain imprecise information by two imprecise but certain information: the

lower and upper approximations. The combination of imprecise information

is realized by applying set theory to the approximations. The salient feature

of the rough sets theory is that there is no need to quantify the information’s

1In literature different naming conventions like Dempster Shafer Theory, Evidence Theory, Belief
Theory have been used to refer th this theory
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uncertainty.

• Fuzzy Sets: Zadeh in [44] developed the idea of fuzzy sets which is based on

the concept of uncertain membership to a set. If X is an uncertain subset of

Θ called also a fuzzy set then, its membership function is µX(θi) ∈ [0, 1], where

µX(θi) describes the degree of membership of θi to X. The theory of fuzzy sets

deals especially with vague, ill defined, or ambiguous data.

• Possibility theory: The possibility theory [45, 46] is a tool able to deal with

both imprecision and uncertainty. For every θi ∈ Θ is defined a possibility

measure, which represents a limit of the degree of confidence given to it. The

possibility measure, π(θi), takes values in the [0,1] interval and π(θi) = 1 means

that the event is possible, but does not mean that it is also certain.

The reason why there are multiple frameworks is that there are different types

of uncertainty and a better posed underlying theory was not discovered yet. In this

thesis, the term ”uncertainty” generally refers to epistemic uncertainty because it

corresponds to beliefs held by an observer or human source about the world. For

dealing with aleatory uncertainty related to randomness and chance, probability the-

ory is usually the preferred framework. Lack of information may lead to uncertainty

which is the result of ignorance rather than randomness. The Bayesian view is that

ignorance can be adequately represented using probability theory by applying equal

probability to all possible hypotheses. In contrast, belief function theory distinguishes

between these types of uncertainty and thus makes ignorance explicit.
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4.3 Evidence Theory and Belief Model

Belief function theory was originally developed by Shafer in [16]. It was designed

keeping in mind the solution to the inherent difficulties of probability theory in work-

ing with imperfect data. Central to the theory is the notion of evidence and how

different pieces of evidence should be combined in order to make inferences. Belief

function theory can be interpreted as a generalization of Bayesian probability theory.

Example: Consider the situation when an observer is offered a bet on the outcome

of a coin toss. Without any prior knowledge, there is no reason to trust that the coin

is fair. What should the observer’s belief about the possible outcomes be in this state

of total ignorance? In the Bayesian framework, both the outcomes are modeled as

equiprobable with P (Heads) = P (Tails) = 0.5. The Bayesian belief in the case of

total ignorance is therefore equivalent to the situation where the coin has been tested

extensively and is determined to be fair.

In contrast, a belief function can explicitly represent the state of ignorance by

assigning a belief mass to the total frame m(Θ) = m(Heads, Tails) = 1. Such a

belief mass assignment abstains from assuming any true probability distributions of

the states. This is the critical difference between Bayesian probability and the belief

model and bodes very well in representing vague and ignorant opinions of human

sources/observers.

Evolution of Belief Theory A detailed account of the historical development of

belief function theory is given in [47]. The theory developed by Shafer [16] builds on

previous works by Dempster on upper and lower probabilities [42]. There have been
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long debates between proponents of Bayesian framework and belief theory about the

question whether Bayesian probability theory is sufficient for modeling uncertainty

or whether belief function theory is more appropriate [48]. However, many of the ar-

guments are more of a philosophical nature and deal with the rational interpretation

of belief and probabilities. There exist multiple schools of thought about the inter-

pretation of beliefs and probabilities, comparisons of which can be found in [49, 50].

Dempster’s original work [42] on one-to-many mappings applied to a probabil-

ity space leads to lower and upper bounds of probabilities and thus constitutes a

probabilistic interpretation of belief. In contrast, Shafer’s approach in [16] can be

interpreted as being non-probabilistic because the framework defined by Shafer has

its own axioms and is not derived from probability theory. However, the existence of

some partially-known probability measure corresponding to a belief function is usu-

ally still assumed. The transferable belief model (TBM) [49, 51, 52] developed by

Smets rejects the notion of an underlying probability measure altogether. The TBM

consists of two levels: a credal level where beliefs are represented and combined, and

a pignistic level where decisions are made based on probabilities derived from the

credal level. A host of seminal works in the field of belief theory and its applications

to expert systems can be found in [53].

4.3.1 Elements of Belief Model

The first step in applying the belief model is to define a finite set of mutually exclusive

and exhaustive possible states or hypotheses called a Frame of Discernment that the

event under observation can take. The frame of discernment helps form a set of all
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feasible outcomes of the event and each such outcome is referred to as a proposition.

If Θ is used to define such a set of disjoint hypotheses and forms the frame, then

the power set of Θ represented as 2Θ is sometimes an useful choice as the set of

propositions. In that case, all elementary states of the set of propositions will be

called atomic sets, as they do not have any subsets. For example: if Θ = {θ1, θ2, θ3}

is a set of mutually exclusive elements forming the frame, then the power set would

look like 2Θ = {θ1, θ2, θ3, {θ1, θ2}, {θ2, θ3}, {θ1, θ3},Θ}.

The next step is for an observer or human source to assign belief masses to the

various propositions which are members of 2Θ. In this step lies the most significant

difference between Dempster-Shafer theory and the Bayesian approach since unlike

the latter, the belief masses in Dempster-Shafer theory are assigned to elements of 2Θ

and not to Θ. Hence, Dempster-Shafer theory allows us to deal with evidence toward

not only the singleton elements but composite sets like {θi∪θj}, ∀θi ∈ Θ as well. The

belief mass assignment is basically associating numbers m(X ) : 2Θ 7→ [0, 1] to each

subset X ∈ 2Θ such that they obey the following constraints.

m(X) ≥ 0 (4.1)

m(φ) = 0 (4.2)∑
X∈2Θ

m(X) = 1. (4.3)

where φ is the null set. Any subset X of Θ such that m(x) > 0 is called a focal

element. Ignorance in evidence theory is modeled by granting a nonzero mass to the

set Θ. When m(Θ) is zero, the data can be said to be not ignorant but can still
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be imprecise. Some critical points of differences between evidence theory and Bayes’

probability theory manifest when the above expressions are compared with the basic

axioms of probability. These distinctions are referred below:

In evidence theory it is not required that

• m(Θ) = 1

• m(X) ≤ m(Y ), ifX ⊂ Y

• there be a relationship between m(X) and m(X)

Furthermore, any belief mass assigned to a composite set is allowed to seep down to

its constituent subsets in an unknown manner. For instance a mass assigned by a

source to a composite set {θ1, θ2} would be inferred as the confidence of the source

toward the occurrence of either θ1 or θ2 but the source is uncertain as to which one.

This is the primary reason why evidence theory can deal with uncertainty of sources of

information better than probability theory. The belief mass assigned to a proposition

X can be thought of as the proportion of all relevant and available evidence that

supports the truth of X. It does not however represent belief in the subsets of X. The

belief function on the other hand is generally the total belief that is committed to a

particular proposition (including all its subsets). The belief function b(.) : 2Θ 7→ [0, 1]

of a particular proposition X is defined as

b(X) =
∑

A⊆X m(A), A,X ∈ 2Θ . (4.4)

In contrast to Bayesian probability theory, in belief function theory, additivity of
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beliefs is not required. This means

b(X) + b(X) ≤ 1,∀X ⊆ Θ. (4.5)

If the belief masses are normalized a direct consequence of (4.4) is

b(Θ) = 1. (4.6)

Another term called plausibility, pl() : 2Θ 7→ [0, 1] is defined as

pl(X) =
∑

A∩A 6=φm(A), X,A ∈ 2Θ . (4.7)

The quantity b(X) can be interpreted as the cumulative evidence toward the truth

of the proposition X. The plausibility pl(X) can be viewed as the total evidence

that does not contradict X. Note that functions m(X), b(X), pl(X) are in one-to-one

correspondence and can be seen as three facets of the same piece of information. From

the definitions, some simple properties about belief and plausibility are as follows:

b(X) ≤ pl(X) (4.8)

b(φ) = pl(φ) = 0 (4.9)

b(Θ) = pl(Θ) = 1 (4.10)

pl(X) = 1− b(X) (4.11)

b(X) + b(X) ≤ 1 (4.12)
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4.3.2 Special Classes of Belief Mass Assignments

Based on the definition of belief masses (4.3), there are certain classes of belief mass

assignments that deserve special mention.

1. Categorical Belief Mass: A belief mass assignment is called categorical if it

is normalized and has only one focal element.

m(X) = 1, X ⊆ Θ (4.13)

The belief mass assignment is called dogmatic if the focal element X is a strict

subset of Θ.

2. Simple Support Belief Mass: A normalized belief mass assignment is called

simple support if it has at most two focal elements, one of them being the frame

of discernment.

m(X) = s,X ⊆ Θ, 0 < s < 1 (4.14)

m(Θ) = 1− s. (4.15)

3. Vacuous Belief Mass: A belief mass is called vacuous if it is categorical and

the focal element is the frame of discernment. A vacuous belief mass assignment

represents complete ignorance about the set of alternatives.

m(Θ) = 1. (4.16)
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4. Consonant Belief Mass: A belief mass assignment is called consonant if

the focal elements form a strict hierarchy (are nested). In other words, for focal

elements X1, X2, ..., Xj of a consonant belief mass assignment the following must

be satisfied for some combination,

X1 ⊆ X2 ⊆ ... ⊆ Xj, Xi ∈ Θ. (4.17)

As a result of the above definition, consonant belief mass assignments have

|Θ|+ 1 focal elements (where |.| is the cardinality of a set).

5. Bayesian Belief Mass: A Bayesian belief mass assignment is normalized and

has only atomic sets (subsets of the frame with cardinality 1) as focal elements.

m(X) > 0, ∀X ∈ 2Θ : |X| = 1

m(X) = 0, otherwise.

(4.18)

Evidently, such a belief mass assignment satisfies the Kolmogorov axioms [54]

and therefore such belief masses become same as Bayesian probabilities with

the following result

b(X) = pl(X) = probability of(X). (4.19)

As long as the belief mass assignment does not satisfy (4.18), the belief and plausi-

bility can be interpreted as lower and upper bound of an unknown probability function
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(defining the likelihood of the occurrence of a proposition). This interpretation al-

though is only applicable if the belief model is built using Shafer’s approach with

the assumption of an underlying probability distribution as opposed to Smets’ TBM

framework. The underlying probability of a proposition X, P (X) is related to belief

and plausibility functions by

b(X) ≤ P (X) ≤ pl(X).

4.3.3 Source Reliability and Discounting

Belief theory provides an operator called the discounting operator that can be used

to scale belief mass assignments based on the reliability of an information source.

Reliability, here is defined as source’s tendency to assign the correct outcome full

belief. This can be estimated from simulations over training sets collected from the

source. The idea of reliability of a source is analogous to the concepts of probabilities

of detection and false alarm used to define the performance of hard sensors/detectors.

Let ri ∈ [0, 1] represent the reliability of the ith source. The discounting operation

produces the discounted belief mass assignment mi(X; ri) from the original source

belief mass assignment mi(X) for each X ⊆ Θ where

mi(X; ri) =


rimi(X), X ⊆ Θ,

rimi(X) + (1− ri), otherwise.

(4.20)
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4.3.4 Belief Combination

In any inferencing or decision making problem, belief functions representing different

pieces of evidence need to be combined in a meaningful way. This is why combination

rules are a major building block of belief function theory. Typically, each piece of

evidence is represented by a separate belief function on the same frame. Combination

rules are then used to successively fuse all these belief functions in order to obtain

a belief function representing all available evidence. The combination rule organic

to the belief theory proposed by Shafer is referred to as the Dempster’s rule ([16],

Chapter. 3) and is arguably the most important among all belief combination rules.

Assuming two independent belief mass assignments m1 and m2 from sources S1 and

S2 for the same frame, the combined mass (m1 ⊕ m2) obtained by the Dempster’s

rule of combination is computed as

(m1 ⊕m2)(X) =

∑
A∩B=X m1(A)m2(B)

1−K , x 6= φ (4.21)

(m1 ⊕m2)(φ) = 0

where, the K is the normalizing factor given by

K =
∑

A∩B=φ

m1(A)m2(B) (4.22)

K represents belief mass associated with conflict or a measure of the disagreement be-

tween the sources of information S1 and S2. It is determined by summing the products

of the basic mass assignments of all sets where the intersection is null. The denomina-
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tor in (4.21) assures that the resulting combined mass satisfies
∑

X (m1 ⊕m2)(X) =

1, X ∈ 2Θ. The more normalization required, the more conflicting the evidence and

when K = 0, no normalization is required. Dempster’s rule cannot be used when

K = 1. In other words when the sources are completely in disagreement, (4.21) fails.

Normalizing with the factor 1−K has the effect of completely ignoring conflict and

attributing any belief mass associated with conflict to the null set. Algebraically the

Dempster’s rule is both associative and commutative. This can be represented as

Commutativity: m1 ⊕m2 = m2 ⊕m1.

Associativity: m1 ⊕ (m2 ⊕m3) = (m1 ⊕m2)⊕m3.

The normalizing step which essentially disregards conflict between constituent

belief mass assignments might result in logically unintuitive outcomes in certain situ-

ations. This was brought forward in the famous criticism of Dempster’s rule by Zadeh

through the example shown in [55, 56]. A considerable research effort since Zadeh’s

example has resulted in a jungle of combination rules each having its advantages and

weaknesses. A moderately exhaustive survey of belief combination rules can be found

in [57]. Most of the new combination rules are variations of Dempster’s rule and only

differ in how they manage the conflicting evidence.

Conjunctive Combination Rule: The conjunctive combination rule (denoted by

�) is a modified version of Dempster’s rule and was first proposed in the Transferable

Belief Model (TBM) framework [51, 52]. Since the TBM framework explicitly allows

unnormalized belief functions, the normalization step performed by Dempster’s rule is
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omitted. Otherwise it is identical to Dempster’s rule. For two belief masses (possibly

unnormalized) the conjunctive combination rule is defined as

(m1 �m2)(X) =
∑

A∩B=X

m1(A)m2(B), X ⊆ Θ. (4.23)

Contrary to Dempster’s rule the conjunctive rule in (4.23) is always defined and also

allows non zero belief masses to be assigned to the null set φ. For example, in the case

of totally conflicting belief masses the conjunctive combination rule would produce a

combined belief mass of (m1 �m2)(φ) = 1.

Some prominent combination rules based on the conjunctive operation as defined

in (4.23) are the Yager’s rule [58], Weighted Average Operator (WAO) [59], Consensus

Operator [60, 61] and the suite of rules called Proportional Conflict Redistribution

(PCR) rules developed in [62, 63].

Disjunctive Combination Rule: The disjunctive combination rule [64] (denoted

by ⊗) is applicable when only one of the several pieces of evidence holds. In other

words, whereas Dempster’s rule and the conjunctive combination rule act like a logical

AND operation where all the distinct pieces evidence on which the constituent belief

masses are based off are considered as possible, disjunctive rule acts like a logical OR

operation. For two belief masses (possibly unnormalized) the disjunctive combination

rule is defined as

(m1 ⊗m2)(X) =
∑

A∪B=X

m1(A)m2(B), X ⊆ Θ. (4.24)
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As the set A ∪ B is never empty unless both focal elements are individually empty,

there is no conflict resulting from the disjunctive rule and hence no need for normal-

ization. Some prominent disjunctive combination rules are Dubois and Prade’s rule

[64, 65].

4.3.5 Belief Space and Decision Space

Belief theory is a method of specifying imprecise evidence that results in classes of

subjective probabilities (i.e., belief and plausibility intervals). To facilitate decision

making, probability transformations are used to map such subjective probabilities

in the belief space to a probabilistic measure in the decision space which satisfies

the Kolmogorov axioms and that can be used to infer a decision about a particular

hypothesis. As described by Smets [49, 66], probability transforms map from the

credal to the pignistic level. The pignistic transformation proposed by Smets [66, 67]

has been one of the first and most popular transformations. For a belief mass m

associated to a frame Θ, the pignistic transformation BetP (.) : Θ 7→ [0, 1], ∀X ∈ Θ

is defined as

BetP (X) =
∑

A⊆ΘA 6=φ

|X ∩ A|
|A| m(A). (4.25)

Several other such probability transforms have been proposed such as [60, 68–70].

4.3.6 Computational Complexity

One of the major criticisms directed against belief function theory is its computa-

tional complexity. Since belief masses can be assigned to arbitrary subsets of the

space under consideration (belief masses are assigned to elements of 2Θ instead of
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Θ), the complexity of representing and combining belief functions is exponential in

the worst case [71]. The larger the cardinality of the frame, more is the number of

computations for belief combination. Couple of strategies for reducing such computa-

tional complexity associated with belief functions would be to use frames with small

focal sets or to exploit independence of evidence and thereby frames defined on such

evidence.

4.4 Application of Evidence theory to Present Work

As discussed in the previous chapters, many optimal and suboptimal fusion methods

exist for fusion of data from hard sources. However, very few frameworks have so far

been developed for Hard/Soft fusion. Furthermore, there are no working examples

that test such frameworks on practical scenarios. One of the goals of this thesis is to

develop frameworks which can facilitate Hard/Soft fusion and test such algorithms

against realistic situations.

The Dempster-Shafer or evidence theory framework has proven itself to be an

extremely versatile tool to deal with imperfect data. This study specifically deals

with how evidence theory can be used toward problems concerning combination of

imperfect data from soft sources and how such schemes can be helpful for Hard/Soft

data fusion. We propose evidence theory based architectures which are versatile to

receive and fuse both and hard and soft data for inferencing and decision making.

Specifically we use the combination rules and probability transformations proposed in

[60] to build a belief theoretic framework for modeling soft information sources. Data

from such sources are then combined with hard sensors for final decision making. We
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present the relevant details in the following chapter.

We also develop new, hierarchical evidence tree based frameworks that can handle

complicated and equivocal human statements about a certain hypothesis set.
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5: HARD/SOFT FUSION USING BELIEF CALCULUS

The Hard/Soft fusion problem was described in Chapter 4 (see Figure 4.1). The goal

is to mathematically model subjective and inherently uncertain data from human

sources so as to transform such data to forms compatible for fusion with hard sensor

data. The Hard/Soft fusion problem with the so called human in the loop situation

is new and therefore challenging as compared to the classical problem of distributed

detection with physics based hard sensors with known or estimable statistical error

characteristics. Current state of the art in the field of data fusion lacks any substantial

work facilitating such Hard/Soft data integration [72]. Couple of frameworks and

approaches [2, 73, 74], were proposed but had not been actually implemented and

verified with simulated or real data. Some studies have tested algorithms which

mainly deal with the indirect method of knowledge elicitation (see Section 4.1) and

caters to very specific data sets [75, 76].

Here we present the study in [77], where we developed a framework based on

techniques in evidence theory, that can be used as an easy to implement hard and

soft fusion algorithm. Through a variety of realistic examples, the algorithm is shown

to be capable of integrating data provided by hard sensors like GPS sensors and

satellite imaging devices with data provided by soft sensors like reports from humans

or context analysis by domain experts. Toward this end, we form a probabilistic

representation of soft sensor data using evidence theory’s belief mass assignment and
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a Consensus operator [60], for combining human opinions with uncertainties. We

then use the probability fusion rule proposed in [26] to form a hard and soft data

fusion system. This approach brings all sensor outputs to the same probabilistic

framework prior to fusion and therefore eliminates the inherent differences in hard

and soft sensor data types. This work was one of the first that showcased and tested

an implementable Hard/Soft fusion architecture. Before illustrating the algorithm,

we provide some necessary background material.

5.1 Consensus Operator and Probability Expectation

Dempster’s rule of combination (4.21) has difficulty of dealing with contradicting

belief mass assignments from multiple sources. The conjunctive combination rule

(4.23) can handle all degrees of contradiction but assumes an open world and therefore

allows a nonzero belief mass assignment to the null set φ. The disjunctive combination

rules (4.24) performs a logical OR like operation and hence may lead to bias in the

combined result. There are many other rules in the above mentioned categories

all of which handle uncertainty in different manners. The Dempster’s rule (4.21)

normalizes and in effect filters out the conflict, redistributing it to all focal elements

of the power set. Other rules like Yager’s rule [58] assigns the conflict to the frame and

thus increases ignorance. The Consensus operator which was proposed as the belief

combination rule under the theory of Subjective Logic developed in [61] performs

an averaging operation and can handle conflicts in a manner which is intuitively

more appealing. Under circumstances where there is a set of conflicting belief mass

assignments, the Consensus operator appears to be a better choice for combining such

5 5.1 Consensus Operator and Probability Expectation



65

data (see example in [60]). In cases where there is no conflict, Dempster’s rule and

the Consensus operator perform almost similarly.

5.1.1 Opinion Tuple

A new metric called ’opinion’ forms the basic building block of the consensus operator.

The opinion ω is a tuple consisting of 4 pieces of information, namely the belief

(b), disbelief (d), uncertainty (u) and relative atomicity (a). The opinion about a

proposition X basically has the form

ωX = (b(X), d(X), u(X), a(X)). (5.1)

We have already defined the belief function b in (4.4). The disbelief in a proposition

X is the belief in X and is defined as

d(X) =
∑

A∩X=φm(A), X,A ∈ 2Θ. (5.2)

The uncertainty for a given set X is expressed as the sum of the belief masses on

supersets or on partly overlapping sets of X.

u(X) =
∑

A∩X 6=φ,A 6⊆X m(A), X,A ∈ 2Θ, X 6= φ. (5.3)

As shown in [61], the following holds:

b(X) + d(X) + u(X) = 1, X ∈ 2Θ.
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Based on the definitions of belief and plausibility shown in (4.4),(4.7) the following

can be inferred

pl(X) = 1− d(X), (5.4)

pl(X)− b(x) = u(x). (5.5)

The fourth co-ordinate of the opinion tuple is called the relative atomicity and is

denoted by a(). For any particular set X, the atomicity of X is the number of

atomic sets it contains or basically its cardinality, denoted by |X |. In [61] the relative

atomicity of a proposition X relative to another proposition Y is defined as

a(X|Y ) =
|X ∩ Y |
|Y | . (5.6)

5.1.2 Probability Expectation

In the framework of Subjective Logic, the credal or belief level is mapped to the

pignistic or decision level through the transformation Probability Expectation. For a

frame of discernment Θ, the probability expectation represented as Pe(X) : 2Θ 7→

[0, 1], is defined by

Pe(X) =
∑
Y

m(X)a(X|Y ), X, Y ∈ 2Θ. (5.7)

Note that the above definition (5.7) is similar to the construction of the expression of

total probability in (4.2.2). Therefore, an analogy can be drawn by comparing relative
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atomicity with conditional probability. In (5.7), the term m(Y ) is the belief mass

assigned to set y and the term a(X|Y ) denotes the amount of confidence toward the

truth of set X that can be generated if the set Y is true. The probability expectation

Pe(X) for any particular proposition X is a mapping of the 4 tuple opinion ω on to

the probability space [0 1] and is the expected probability of X being true (note that

the expectation is not in the statistical sense but based on the evidence and belief

mass assignments) such that

∑
i

Pe(Xi) = 1, Xi ∈ 2Θ. (5.8)

In general, the relation in (5.8) holds only when the sets of propositions are the

singletons. In case focal elements have composite sets as well, a normalization might

be required [78].

The definition in (5.7) is equivalent with the pignistic probability described in

[51], and is based on the principle of insufficient reason; A belief mass assigned to

the union of n atomic states is split equally among these n states. The probability

expectation of a given state is thus determined by the belief mass assignment and

the atomicities. It should be noted that the probability expectation function removes

information and that there can be infinitely many different belief mass assignments

that correspond to the same probability expectation value.
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5.1.3 Focused Frame of Discernments

In order to simplify the representation of beliefs for proposition sets, we will use

focused frame of discernments which will always be binary, i.e., it will only contain

(focus on) one particular set and its complement. More precisely it can be defined as

follows. Let Θ be a frame of discernment and let X ∈ 2Θ. The frame of discernment

denoted by Θ̃X containing only X and X where X is the complement of X in Θ is then

called a focused frame of discernment with focus on X. Josang in [61] showed that the

focused frame of discernment and the corresponding belief mass assignment will for

the proposition in focus produce the same belief, disbelief and uncertainty functions as

the original frame of discernment and its associated belief mass assignment. In other

words, if Θ is the original frame with b(X), d(X) and u(X) as the belief, disbelief

and uncertainty functions for proposition X then in the focused frame Θ̃X with focus

on X (i.e. containing X and X), the belief mass assignment is defined as follows

m
Θ̃X (X) = b(X), (5.9)

m
Θ̃X (X) = d(X), (5.10)

m
Θ̃X (Θ̃X) = u(X). (5.11)

The focused relative atomicity of the proposition X is however defined as

a
Θ̃X (X) =

Pe(X)− b(X)

u(X)
(5.12)
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where Pe(X) is calculated using (5.7). The focused relative atomicity is defined as

in (5.12) so that the probability expectation value of proposition X is equal in both

the original and the focused frames. Hence, instead of working with a complex set of

propositions, the focused frame which by definition is binary, allows a much simpler

and tractable way to implement the consensus operator.

5.1.4 Consensus Operator

Based on the concepts explained above, the consensus operator can be defined as a

mathematical framework which can be used to combine multiple opinion vectors each

owned by a separate soft sensor. This results in a fused opinion tuple which is the

aggregate opinion about the particular proposition. In [61] the consensus operator

for combining two opinions ωS1
X = (bS1

X , d
S1
X , u

S1
X , a

S1
X ) and ωS2

X = (bS2
X , d

S2
X , u

S2
X , a

S2
X )

respectively owned by soft sensors S1 and S2 about a proposition X, is defined as

follows.

bS1,S2

X = (bS1
x u

S2
x + bS2

x u
S1
x )/κ

dS1,S2

X = (dS1
x u

S2
x + dS2

x u
S1
x )/κ

uS1,S2

X = (uS1
x u

S2
x )/κ (5.13)

aS1,S2

X =
aS1
x u

S2
x + aS2

x u
S1
x − (aS1

x + aS2
x )uS1

x u
S2
x

uS1
x + uS2

x − 2uS1
x u

S2
x

.

where κ = uS1
X +uS2

X −uS1
X u

S2
X . The assumption in the above formulation is that κ 6= 0.
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5.1.5 Logical Operators and Opinions

In evidence theory the set of propositions is the power set of the chosen frame. The

assumption was however that the power set is defined on a set consisting of only

disjoint elements. In other words, only one elementary state of the system can be

true at any given time. If for example, let us consider a set Θ consisting of disjoint

elements {θ1, θ2, θ3} such that θi ∩ θj = φ, i 6= j. The power set 2Θ would contain the

following elements {θ1, θ2, θ3, {θ1, θ2}, {θ2, θ3}, {θ3, θ1},Θ}. Standard set theory says

the element {θi, θj} = θi∪θj implies θi or θj or both. However, if the assumption is that

the elements θi, i = 1, 2, 3 are disjoint, then the terms {θi, θj} in the power set only

means θi or θj. The case of set theoretic intersection of θi ∩ θj is not included. Hence

if a belief mass assignment is designed with such an assumption on the frame then the

probability expectation of the cases like θi∪ θj or θi∩ θj with θi∩ θj 6= φ, i 6= j cannot

be computed using the definition in (5.7). Josang in [61] proposed a framework for

applying logical operations like AND, OR and NOT on opinion tuples and probability

expectations. The expressions for applying AND and OR operations on probability

expectations are provided below.

Let Θ1 and Θ2 be two distinct binary frames of discernment with X ∈ Θ1 and

Y ∈ Θ2 as two propositions. If the probability expectations of the propositions X

and Y defined over Θ1 and Θ2 are Pe(X) and Pe(Y ) respectively, then the combined
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Figure 5.1: Distributed fusion of detection probabilities

probability expectations of X ∩ Y (logical AND) and X ∪ Y (logical OR) satisfy

Pe(X ∩ Y ) = Pe(X)Pe(Y ) (5.14)

Pe(X ∪ Y ) = Pe(X) + Pe(Y )− Pe(X)Pe(Y ). (5.15)

5.2 Fusion of Detection Probabilities

In the familiar scheme of a distributed detection system (see Figure 2.2), the goal

at the fusion center is to combine local binary decisions to decide among a set of

hypotheses. Contrary to this distributed decision fusion model, the framework de-

veloped by [26] assumes the same topology but allows the local detectors use the

Bayes’ rule locally to compute posterior detection probabilities which are then sent

forward to the fusion center. The fusion center again uses Bayes’ rule to combine

the local detection probabilities to generate a global posterior detection probability.

The fusion of probability design is shown in Figure 5.1. The scheme assumes a binary

hypotheses set. We have also derived the generalized detection probability fusion rule
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for multi-hypothesis set (see Appendix A).

In a system of N sensors observing a fixed volume represented by the binary

hypothesis set Θ = {θ1, θ2}, each sensor outputs the local detection probability of

the occurrence of θ1 based on its own observations zi, i = 1, ..., N . We denote the

local detection probabilities as P (θ1|zi) = gi. At the fusion center, f(g1, ..., gN |θ1)

is the conditional joint density of detection probabilities. The posterior detection

probability at the fusion center can be defined as

η(g1, ..., gm) = P (θ1|g1, ..., gm). (5.16)

Using Bayes rule and theorem of total probability the expression for posterior detec-

tion probability can be written as

η(g1, ..., gm) =

(
1 +

[
P (H1)

1− P (H0)

f(g1, ..., gN |θ1)

f(g1, ..., gN |θ2)

]−1
)−1

(5.17)

where P (H1) and P (H0) are the the prior probabilities of propositions θ1 and θ2

respectively. Equation (5.17) is the fusion rule to combine detection probabilities

obtained from multiple sensors. Instead of detection probability, we choose to use the

term ’degree of support’ since data obtained from sensors and also belief functions may

not be exactly probabilities but rather probabilistic measures. The joint probability

density functions f(.) provides a statistical characterization of the sensor system and

is determined by the individual design. Among the known parametric families of

densities, the Beta family can be used to model the sensor data because they are rich
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in shapes and most importantly their domain is the interval [0, 1]. Beta distribution is

also the conjugate prior for Binomial events. Therefore, for a vast category of sensors,

the Beta distribution can be used to model the likelihood functions. In the discussion

that follows, the symmetric Beta distribution with different parameter sets (ν,ρ) are

used to characterize the likelihood functions of the different sensors (the choice of

symmetric beta distribution was merely to ease the mathematical calculations). The

observations of each sensor are assumed to be independent of each other conditioned

on the hypotheses.

5.3 Hard/Soft Fusion Algorithm

Once a finite set Θ of possible states forming the frame is decided, observers (human

sources) are asked to assign belief masses or measures of confidence to the various

propositions X which are members of 2Θ. The human observer statements considered

here are uncertain and represented as for example I am 40% sure about proposition

A and unsure about the others. Such a statement can be modeled with a belief mass

assignment toward a frame Θ as m(A) = 0.4, m(Θ) = 0.6 and m(X) = 0,∀X 6=

A,Θ, X ⊆ Θ.

We assume n = |2Θ| − 1. The observers can base their decisions on prior knowl-

edge, experience and/or data gathered or reported by other individuals, newspaper

articles, television images etc. The belief mass assignments allow the computation of

the opinion tuples and the corresponding probability expectations. Equations (5.14)

and (5.15) must be used when the requirement is to obtain probability expectation

values for union or intersection of elementary propositions. The probability expecta-
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Figure 5.2: Framework for hard/soft fusion using evidence combination.

tion values can then be combined with the probabilistic measures obtained from hard

sensors using a fusion of probability rule such as the one proposed by Krzysztofowicz

and Long [26]. The process is shown in Figure 5.2. There are L soft sensors S1 to SL.

All of them assign belief masses to each element of the proposition set, X1 to Xn. In

Figure 5.2, the assigned belief masses are represented by mij where i represents the

soft sensor and j is the proposition number. The 4 coordinates needed to produce

an opinion tuple (5.1) are computed and the corresponding opinions toward various

propositions are formed. Each such opinion has an owner in the form of the soft sensor
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who assigns belief masses to the proposition set. Each of the soft sensors S1 to SL will

own opinions about each of the propositions in the set X1 to Xn. The opinion held by

soft sensor Si about proposition X would be represented as ωSi
X = (bSi

X , d
Si
X , u

Si
X , a

Si
X ).

In the situation when multiple soft sensors provide opinions about a set of proposi-

tions, the Consensus operator is used to combine the various opinion tuples owned by

different soft sensors but pertaining to the same proposition, to form the aggregate

opinion tuple vector for that particular proposition. For the n propositions X1 to

Xn, these aggregate opinion tuples are represented by ω1 to ωn in Figure 5.2, each

having a form as shown in (5.1). The consensus operator is associative and hence be-

lief combination can be updated sequentially. However, if n > 2 beliefs are available

simultaneously, then the following generalized consensus operator for combining opin-

ions can be used. For opinion tuples ωiX = (biX , d
i
X , u

i
X , a

i
X), i = 1, 2, ..., L held by L

soft sensors about the same proposition X, the tuple ω1...L
X = (b1...L

X , d1...L
X , u1...L

X , a1...L
X )

defined as

b1...L
X =

∑L
i=1 b

i
X

(∏
j 6=i u

j
X

)
∑L

i=1

(∏
j 6=i u

j
X

)
− (L− 1)

(∏L
i=1 u

i
X

)
d1...L
X =

∑L
i=1 d

i
X

(∏
j 6=i u

j
X

)
∑L

i=1

(∏
j 6=i u

j
X

)
− (L− 1)

(∏L
i=1 u

i
X

)
u1...L
X =

∏L
i=1 u

j
X∑L

i=1

(∏
j 6=i u

j
X

)
− (n− 1)

(∏L
i=1 u

i
X

) (5.18)

a1...L
X =

∑L
i=1

[
aiX

(∏
j 6=i u

j
X

)
(1− uiL)

]
∑L

i=1

(∏
j 6=i u

j
X

)
− L

(∏L
i=1 u

i
X

) ,
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represents the combined opinion tuple about proposition X. In the last expression

of (5.18), aiX represents the focused relative atomicities obtained from (5.12). The

combined values of belief b1...L
X , uncertainty u1...L

X and relative atomicity a1...L
X are then

used in (5.7) to provide the aggregate probability expectation value for the proposition

X. Since the probability expectation of both the original and focused frames are the

same, while using (5.7), the power set of the focused frame is used, i.e., containing

sets X and X only. Hence, the expression for the aggregate probability expectation

for a proposition X simplifies to

Pe(X)1...L = b1...L
X + (d1...L

X × 0) + (u1...L
X × a1...L

X ) (5.19)

In Figure 5.2, these are represented as Pe1 to Pen.

The hard sensor data are processed to produce a support values corresponding

to each proposition. In other words, each hard sensor data will be a vector of sup-

port values each element of which is the support value corresponding to a particular

proposition. The vector D = [D1, D2, ..., Dn] in Figure 5.2 corresponds to the data

from one hard sensor. The elements Di, i = 1, ..., n are the support values for the n

propositions X1 to Xn. In the scheme, there can be multiple such vectors each from

a different hard sensor. All such vectors D from the hard sensors are fused with the

probability expectation values obtained from (5.19), using the fusion rule described

in (5.17) to generate fused support values for each proposition. A simple rule like

choosing the proposition with maximum support can subsequently be used to make

a decision about the frame.
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While implementing the fusion rule in (5.17), there will be as many vectors of

probabilistic support values as the total number of propositions. Each such vector will

correspond to a particular proposition and will consist of support values obtained from

all the sensors irrespective of hard and soft. Such a construction can be allowed since

both the soft sensor and hard sensor data are now in the same format of probabilistic

measures and there is no need to distinguish between them. The expression in (5.17)

needs to be used for all such vectors separately to obtain fused support values for

each member of the proposition set. Examples in the next section will elucidate this

fact. We summarize the whole algorithm as follows:

1. Fix a set of cases to be considered and form the frame

2. S
¯
oft Sensors

• Develop belief mass assignment toward the frame for each soft sensor.

• Use (4.4), (5.2), (5.3) to form the partial focused opinion tuples (note the

focused relative atomicities are yet to be computed).

• Use (5.7) to form probability expectations for all propositions.

• Use (5.12) to obtain focused relative atomicities.

• Use (5.18) and (5.19) to form fused opinion tuples and probability expec-

tations.

3. H
¯

ard Sensors

• Process hard sensor data to obtain support values for all the propositions.

This processing is application and data specific.
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4. Use (5.17) to perform final fusion.

5.4 Examples

5.4.1 Example 1: Identity Recognition

This example simulates a situation with two soft sensors and two hard sensors and

uses the data from each of them to calculate the final degree of support for the

propositions under consideration.

Situation: A heist scenario was simulated where a valuable object was stolen from

a secured place. Two persons A and B were asked to perform this act. The location

was monitored using two cameras capable of sending live video feed to a computer.

Let Θ = {A,B,C}. The proposition ”Unknown C” was added to Θ and caters to

the case when the perpetrator is unidentified. This is a simulated situation and the

truth is the set (A ∪B).

Soft Sensor modeling: There can be the following two cases:

1. The elements of Θ are disjoint and the intersection θi ∩ θj = φ, i 6= j

2. The elements are not mutually exclusive and the intersection θi ∩ θj 6= φ, i 6= j

We do not provide an example supporting case 1 and perform the soft sensor modeling

based on the assumption that any two propositions in Θ can occur simultaneously.

The ternary set Θ was chosen as the frame. In addition to the probability expectations

of the elements of Θ, we wish to find out probability expectations for the following

cases as well: (A ∪ B), (B ∪ C), (C ∪ A) where the elements A, B and C are not

disjoint i.e. (A∪B) means A or B or both and similar meaning holds for other unions
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as well. Set theoretic operations are not applicable on opinion tuples and probability

expectation calculations unless the frame of discernments are distinct [61]. In other

words, equations (5.14) and (5.15) can be applied only when there are two distinct

frames Θ1 = {X,X} and Θ2 = {Y, Y } with X ∩ Y = φ, X ∩ Y = φ and X ∩ Y = φ.

For this example we therefore define 3 distinct sets of propositions as follows:

F1 = {A,A,ΘA = {A,A}};

F2 = {B,B,ΘB = {B,B}}; F3 = {C,C,ΘC = {C,C}}.

To obtain the belief masses, video snapshots captured from the cameras were pre-

sented to 18 different individuals and all of them were asked to independently provide

feedback in the form of confidence in the occurrence of the propositions. The indi-

viduals were asked to provide a number between 1 and 10, higher value representing

more confidence. The data was collected independently for the 3 sets of propositions.

The normalized set of those values were used as the belief mass assignments for the

propositions. Depending upon the situation, the individuals can be witnesses, in-

vestigators or experts. Henceforth the data obtained from them will be referred to

as just soft sensor data. Two soft sensors were randomly sampled from the set of

18 and corresponding belief masses were used for calculation of probability expecta-

tions. The sampling was repeated 100 times. Table 5.1 lists one such set of belief

mass assignment for soft sensors S1 and S2.

An opinion will be represented as ωSi
X = (bSi

X , d
Si
X , u

Si
X , a

Si
X ) , i = 1, 2. Si de-

notes the owner of the opinion and X is the proposition in focus. The parameters

(bSi
X , d

Si
X , u

Si
X , a

Si
X ) are the belief, disbelief, uncertainty and focused relative atomicity
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Table 5.1: Initial belief mass assignments from soft sensors for example 1.

Propositions Belief bS1 Belief bS2

A 0.488 0.130

A 0.366 0.779
ΘA 0.024 0.065

B 0.727 0.501

B 0.182 0.333
ΘB 0.091 0.166

C 0.539 0.2

C 0.385 0.6
ΘC 0.077 0.2

respectively of the proposition X according to owner Si. The focused opinion tuples

for the belief mass assignments in Table 5.1 are presented below.

ωS1
A = (0.488, 0.366, 0.024, 1/2); ωS2

A = (0.130, 0.779, 0.065, 1/2)

ωS1
B = (0.727, 0.182, 0.091, 1/2); ωS2

B = (0.501, 0.333, 0.166, 1/2)

ωS1
C = (0.539, 0.385, 0.077, 1/2); ωS2

C = (0.200, 0.600, 0.200, 1/2)

Note that the relative atomicity in the above opinions is 1/2 since the distinct sets of

propositions are formed from binary frames of discernment. The combined opinion

tuples and the probability expectations toward each proposition were calculated using

(5.18) and (5.19). The aggregate probability expectations are provided below.

PeS1,S2(A) = 0.250, P eS1,S2(B) = 0.442, P eS1,S2(C) = 0.308.
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Using the expression in (5.15) for applying logical OR operation to opinion tuples,

the following probability expectation values were computed:

PeS1,S2(A ∪B) = 0.581, P eS1,S2(B ∪ C) = 0.614, P eS1,S2(C ∪ A) = 0.481.

The vector of probability expectations toward the propositions {A,B,C, (A∪B), (B∪

C), (C ∪ A)} so obtained by averaging over 100 runs was used for fusion with hard

sensor data.

Hard Sensor modeling: The hard sensors are 2 cameras which are situated at two

different positions monitoring the location of the object and can provide video data.

A database of 118 images was created. Image analysis was done by a face recognition

software [79] which compared test images with those stored in the database and also

provided corresponding degrees of similarity (based on the norm of the vector between

average eigen faces of each image class and the test image). The images of the entities

A and B which were well defined propositions in the soft sensor model were included

in the database and were tagged (the scheme can be shown to work even in the case

where images of entities included as members in the frame are not recorded). Image

frames were extracted from the video captured by the cameras and a face extraction

algorithm was used to separate the face regions in the image frame. These sub images

of faces were suitably resized and were compared individually with the database. A

threshold was chosen with the goal that any degree of similarity above that threshold

would be considered as a match. The procedure to obtain the degree of support values
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is explained below. Taking into account that the prime suspects are A and B, the

following cases were considered.

Case 1: Let the maximum cardinality of elements of the proposition set be cardmax.

In this example cardmax = 2. Lets consider the case when the image frame contains

f ≥ cardmax face images, two of which separately have their maximum degrees of

similarity with A and B whereas the other (f − 2) images do not have a match with

anyone in the database. In such a situation, the maximum degrees of similarity with

A and B are taken to be support values for the corresponding propositions A, B

respectively and the (f − 2) faces are ignored since there is no way to compare them

against any reference. On the other hand if k images (k ≤ f − 2), have matches with

the database (i.e., k images when compared individually against the database, provide

k corresponding maximum degrees of similarity all of them being above the threshold),

the average of the k maximum degrees of similarity is considered to be the support

value for the proposition C. The support values for any composite propositions

are obtained as the sum of the support values of the constituent propositions. For

example, the support value for the proposition (A ∪ C) would be the sum of the

supports for A and C.

Case 2: When the frame contains only 2 facial regions and both of them match with

A and B, then the support for the proposition C is taken to be a very small number

ε > 0 and the support for the non atomic propositions containing C is calculated as

the sum of ε and the support value of the other constituent proposition. For example,

support for (A ∪ C) would be support of A +ε.

Case 3: When k faces match with images in the database, none of them being either
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A and B, then the average of the k maximum degrees of similarity is taken to be the

support for proposition C. The support values for propositions A and B are taken to

be ε.

Case 4: If the number of facial regions detected in the frame is f < cardmax, then

the support values for the propositions with cardinality greater than f are taken to

be a small number ε > 0.

Case 5: When among k facial regions which match with entries in the database, only

one matches with either of the propositions A and B, then average of the remaining

k−1 maximum degrees of similarity is considered to be the support for the proposition

C. The support for the proposition among A and B with which there was no match

is assigned a small number ε > 0.

For the subsequent steps we chose ε = 0.05. In the simulation, one camera (hard

sensor 2 in Table 5.3) feed had a single facial region and hence for this data, all

propositions with more than 1 constituent element were assigned a support value

of 0.05. For the other camera (hard sensor 3 in Table 5.3), the video had two facial

regions which matched with A and B. This above situation resulted in non conformity

between camera results since for one of the camera feeds, only one face was detected

and therefore the corresponding decision supported a singleton proposition whereas

the other camera data with two faces, supported one of the non atomic cases. This

closely resembles a situation in reality where due to reasons like view angle, lighting

conditions, occlusion etc., cameras at different vantage points do not see the same

objects in similar number or state.

Without loss of generality in this example scenario, the soft sensor data which
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Table 5.2: Sensor parameters.

Hypothesis Sensor 1(Soft) Sensor 2(Hard) Sensor 2(Hard)
h=1(alternate) ν=3,ρ=2 ν=3,ρ=1 ν=4,ρ=1

h=0(null) ν=2,ρ=3 ν=1,ρ=3 ν=1,ρ=4

has been referred to in terms of probability expectation, was assumed to be beta

distributed with certain set of parameters. The soft sensor thereby was included as

a part of the cluster of 3 sensors. All of them produced an output vector of degree

of support (each being a 6 element vector for 6 propositions). The corresponding

likelihood functions were modeled using symmetric Beta distribution with each sen-

sor having a different set of (ν,ρ) parameters under different hypotheses. The hard

sensor (essentially the face recognition algorithm associated with each camera) Beta

distribution parameters were empirically estimated with ν/(ν + ρ) representing fre-

quency of correct identifications and ρ/(ν+ρ) representing the frequency of incorrect

identifications when the face recognition algorithms were tested against a training

set.

Recall that belief combination is performed using Consensus operator by using

focused binary frames essentially containing two hypotheses. Therefore for each fo-

cused frame, h = 1 in Table 5.2 represents the proposition in focus is true whereas

h = 0 represents the complement of the focused proposition is true.

Two soft sensors were randomly sampled from a group of 18. Their opinions were

combined and a probability expectation vector obtained. The sampling was done

100 times and an averaged probability expectation vector was computed. The two
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Table 5.3: Unnormalized support assignments for example 1.

Sensors Propositions
A B C A ∪B B ∪ C C ∪ A

1 0.268 0.326 0.227 0.773 0.732 0.674
2 0.234 0.288 0.237 0.05 0.05 0.05
3 0.305 0.274 0.05 0.579 0.279 0.310

Table 5.4: Normalized combined support values toward each proposition for
example 1.

Propositions
A B C A ∪B B ∪ C C ∪ A

Final Fusion 0.090 0.132 0.001 0.748 0.014 0.016

camera data vectors were then fused with this average probability expectation vector.

Table 5.3 shows the support values (unnormalized probability expectation values from

soft sensors averaged over 100 runs and degree of support values from hard sensors)

for the various propositions.

Each column in this table forms a vector g = [g1 g2 g3] and the elements gi,

i = 1, 2, 3, are the support values from all sensors toward a particular proposition.

Using (5.17) for each column in Table 5.3, the final support values for the propositions

were calculated. Table 5.4 shows the final normalized result against the propositions.

It can be inferred that the opinions from human experts and hard sensor data

when combined, results in a cumulative value which supports the proposition (A∪B)

to the maximum extent. This coincides with the actual truth.

In almost all real scenarios the truth is unknown and the proposition which the
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above technique will support depends heavily on the belief mass assignments and the

efficiency of the hard sensor data processing software used. The above process can be

employed in an expert system followed by a decision making module. Depending upon

the application, a decision rule like a threshold comparison can be used to produce

an informed result.

5.4.2 Example 2: Object Localization

The example simulates a situation with four soft sensors and one hard sensor and uses

the data from each of them to calculate the final degree of support for the propositions

under consideration.

Situation: Let there be a possible geographic region which is of interest for under-

taking archaeological digging. This location was chosen near Valley Forge Memorial

Park, Philadelphia. A feasible latitude-longitude position was fixed and assumed to

be the true location. Four persons were asked to find out the location of the site within

a region of 0.1 mile radius. None of them had any knowledge of the true position.

One of the persons had a Global Positioning System (GPS) tracker attached to him

which could send out position data to a centrally located server. All the individuals

were also given pictures of how the location would roughly look like physically. It

was also assumed that the individuals never got separated during their search.

Two cases were considered: the persons are within 0.1 mile of the site denoted by

I, the persons are outside 0.1 mile region denoted by O. The humans could see the

geographical location and compare with the pictures. This helped the observers to

send out reports with answers to the 2 propositions under consideration. A similar
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Table 5.5: Belief support assignments for example 2.

Sensor1 Sensor2 Sensor3 Sensor4 Sensor5
Propositions (Soft) (Soft) (Soft) (Soft) (Hard)
<0.1 mile(I) 0.5 0 0.1 0 1
>0.1 mile(O) 0.4 0.9 0.8 0.99 0.01
Uncertainty 0.1 0.1 0.1 0.01 -

feedback scheme as in example 1 was used. The tracker provided just the hard

location. The location from the tracker data was compared using Google Earth and

support values for the two propositions were obtained. This data was regarded as the

hard sensor data. The process is described as follows: Using the location (latitude-

longitude) from the tracker, its line of sight distance from the assumed true location

was computed. If the calculated distance is less than 0.1 miles, the first proposition

I was assigned a value of 1 and the other O a small value of 0.01 and vice versa. The

small value of 0.01 was assigned instead of zero so that no undefined operations like

division by zero were encountered. Table 5.5 shows a set of support values from the

persons in the field (soft sensors) and the GPS tracker (hard sensor) when the whole

set up was simulated.

The uncertainty of the GPS tracker can be represented in terms of percentage

of correctness of its output. This work did not use any value for that proposition

corresponding to the hard sensor. Some of the soft sensors were in disagreement

as can be noted from Table 5.5. The Consensus operator was used to combine the

conflicting opinions and the probability fusion rule allowed to aggregate the hard

sensor data and the combined opinion to obtain a fused result. The final support
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Table 5.6: Combined support values for each proposition for example 2.

Propositions
I O

Final Fusion 0.841 0.159

values for the various propositions as calculated are provided in Table 5.6. The time

when the data in Table 5.5 was obtained, the group was actually within 0.1 mile of

the true location. The final fused result in Table 5.6 conforms that.

5.4.3 Example 3: Image Analysis

This section illustrates a scenario where a set of satellite images of a particular ge-

ographical location and a set of text based data sources are collected and fused.

Figure 5.3 shows satellite imagery of a couple of newly constructed sites in a location

called Semnan in Iran. These were captured by the Eros-B satellite in 2009 (the

images are widely available on the Internet). There are many articles in newspapers,

defense magazines and on line discussion forums speculating the possible reasons for

such massive construction. Barring the speculations, the unanimous opinion has been

that these constructions are part of a large missile base. This example shows how

the hard satellite image data and soft text based information can be combined to get

support values for a possible set of suitable propositions.

As a first step toward hard sensor data processing, the suitable satellite images

were selected and passed as inputs to an edge extraction module. The images where

edge extraction is very difficult or there are too many objects were not used for

edge analysis. The edge extraction module processed the image in two steps. First
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(a) Possible missile assembly location. (b) Possible missile launch Site.

Figure 5.3: Eros-B satellite images showing newly constructed sites.

it removed the shadows (if any) and second, it filtered the image to extract closed

regions. In this example, the image in Figure. 5.3a was used. Figure 5.4 shows

the result of this processing using a generic shadow removal algorithm based on

pixel intensity comparison and the standard Sobel filter [80] for edge extraction.

Using an a priori specified image scale (meter to number of pixel ratio), the areas

and perimeters of the buildings were obtained. These data points would be helpful

in understanding whether the buildings are big enough to house missile assembly

units or manufacturing equipments. The aforementioned information and the images

were provided to a domain expert for analysis and the support values to the set of

propositions were asked. A collection of text based sources each disjoint from each

other in the sense that neither of them contain same information or are written by the

same author were grouped as the soft data. Two human interpreters were asked to

read through this data set and find threads of importance and relevance considering

the proposition set. The human interpreters provided a set of support values toward
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(a) Image from Figure. 5.3a with shadows
removed.

(b) Closed regions resembling buildings.

Figure 5.4: Image processing (Shadow removal and edge extraction) of satellite
images.

the propositions under consideration, possibly based on abstract and complex traits

like experience, missing clues, information both historical and political.

The set of propositions considered in this example are listed below.

• A-The missile base is a new development to cater to a new class of long range

missiles.

• B-The construction is a sister facility to a larger, already existing base and poses

no new threat.

• C-The construction is shifting of an existing base and abandonment of the latter

and is purely for logistical and economic reasons.

Table 5.7 shows the support values for the set of propositions under consideration.

The fusion of the soft data was performed using Consensus operator and the final

fusion with hard sensor data was performed using (5.17). Table 5.8 lists the final
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Table 5.7: Support assignments for example 3.

Sensor1 Sensor2 Sensor3
Propositions (Hard) (Soft) (Soft)

A 0.5 0.8 0.2
B 0.1 0 0.2
C 0.3 0.1 0.4

Uncertainty 0.1 0.1 0.2

Table 5.8: Combined support values for each proposition for example 3.

Propositions
A B C

Final Fusion 0.727 0.022 0.250

fused support values. No fusion scheme is universal and based on the propositions,

the processing module that analyzes data becomes a dynamic function. The pro-

cessing done for the above example may not be useful for generating support values

toward a different proposition set. However, the example shows that disparate and

heterogeneous sources can be combined to yield a result that can facilitate informed

decision making.

5 5.4 Examples



92

6: HIERARCHICAL EVIDENCE TREES

The belief theory framework was originally introduced by Shafer in [16] as a method of

modeling uncertain evidence. The assignment of belief masses to sets of propositions

and building a support function over a power set handle ignorance and uncertainty

of sources in an intuitive way. Such a modeling method seems very apt to be used to

model opinions coming in from human observers as such data lacks the well defined

structure required for the use of traditional probabilistic reasoning.

For example, suppose that Θ represents a set of mutually exclusive propositions,

then in belief theory, an opinion of an observer who is 40% sure of a particular propo-

sition A ⊆ Θ being true and is ignorant about the other possibilities, can be repre-

sented by a belief mass assignment m : 2Θ 7→ [0, 1] with m(A) = 0.4, m(Θ) = 0.6 and

m(X) = 0,∀X 6= A,Θ. However, in many practical applications of belief functions,

not all opinions are straightforward and might pertain to multiple questions, answers

to which are related in a hierarchical manner. Each question has multiple possible

answers with only one of them being actually true. The set of possible answers to each

question form an exhaustive set of mutually exclusive elements essentially a frame of

discernment. Such hierarchically related frames can be modeled using tree structures.

Work on hierarchical frames was initiated by Gordon and Shortliffe in [81]. They

were concerned with the problem of combining evidence using Dempster’s rule of

Combination when different items of evidence were associated to frames of varied
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refinement. The objective was to implement Dempster’s rule in a computationally

tractable form and in the process Gordon and Shortliffe developed an approximation

for the combination rule. Shafer and Logan [82] took Gordon and Shortliffe’s work

forward and proposed a method to exactly implement Dempster’s rule in a manner

such that the computational complexity is linear. Pearl in [83] developed a Bayesian

approach to the problem of combining evidence in a hierarchical hypothesis space.

In [84], a work on propagation of Bayesian probability judgments in causal trees was

proposed. Some of the other prominent works pertaining to belief propagation in trees

have been [85], [86] and [87]. In all of these works the assumption has been that there

is a fixed root frame, subsets of which branch out according to some partition and

form the various nodes of the tree. In Pearl’s work, the nodes of a tree correspond to

random variables and directions of the links are interpreted as directions of causation.

Thus each variable is influenced by variables above it in the tree and influences the

variables below it.

In the following discussion, we retain the idea of causality but generate the tree

with the assumption that each node is not a subset of a fixed root frame but rather a

different frame in itself. We introduce a class of hierarchically related opinions termed

as Conditionally Refined opinion (CRo) and discuss their formulation. CRo would

describe the opinion which a human observer S would most likely provide under the

following circumstance:

S has some confidence toward a set of disjoint hypotheses. Also, conditioned on each

such hypothesis and independent of the confidence toward it, W may hold an opinion

toward a proposition belonging to a refinement of the hypothesis. For instance, an

6 HIERARCHICAL EVIDENCE TREES
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opinion of the form ”I am 60% sure about the target being an aircraft and 40% sure

about it being a missile but in case its an aircraft, there is high chance it is a fighter.”

would be a CRo.

We assume a class-subclass relationship between the elements of various frames,

i.e a child frame is a more refined representation of its parent element and a child

frame would contain distinct elements of its own which are not contained exactly in its

parent frame. The child frame can be caused only if the parent element is plausible.

A frame is a child frame in the sense that its elements represent special cases of

the broader class which is its parent. Also in the works presented in [81, 82, 87],

the assumption was made that the belief functions assigned to various frames are

simple support or dichotomous functions. This work holds no such assumptions and

can be applied for any form of belief assignments. We also develop algorithms for

belief mass propagation down the tree. The proposed representation is shown to be

applicable to various soft-soft and hard-soft fusion situations. Using the advantages

of the organization of the tree, all belief combination calculations were performed

using small frames and later combined together by a simple concatenation operation

making the proposed scheme a computationally attractive framework.

6.1 Generalized Hierarchical Evidence Structure

Let there be a CRo provided by some observer where the support values are pro-

vided toward a set of hypotheses denoted by Ω and also on its various subclasses or

refinements. In this context, the goal is to create a multi-level structure which main-

tains the hierarchical relationships that exist between frames and also allows fusion.

6 6.1 Generalized Hierarchical Evidence Structure
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Figure 6.1: Generalized hierarchical structure of belief frames.

Figure 6.1 depicts the general multi-level organization. Each element in a frame is

assumed to represent a class and can be divided into subclasses. In that case, the

element being divided would be a parent element and the set of subclasses would

form the child frame. This structure is similar to a Bayes’ network [88] construction,

however here the nodes are frames of mutually disjoint elements instead of random

variables. Furthermore, there are in general multiple elements in a node (elements of

the frame) with each element allowed to have its respective child frames. The hier-

archy of Figure 6.1 is a tree in the strict sense - each child frame below Level 0 has

an unique parent. We refer to all elements without any child frame as leaf elements.

All leaf elements denote the end of the path connecting itself and the ancestor in

the root frame. In the subsequent discussion we will denote the collection of leaf

6 6.1 Generalized Hierarchical Evidence Structure



96

elements belonging to frames in levels up to and including level j − 1 as Rj−1 and an

arbitrary element of this set would be represented as r. The frame Ω in Level 0 is

referred as the root node or root frame and represents the set of mutually exclusive

hypotheses in the coarsest sense. Each hypothesis Hi represents a superclass and can

be refined into a set of subclasses. All such sets would then contain disjoint elements

each representing specific subclasses and therefore would form the child frames. In

the following discussion, we would represent all child frames (frames in Level 1 and

downward) with the notation Θj[P ], where Θ is the common specifier for a child

frame and P within square brackets indicate the parent element and j is the level.

For example in Figure 6.1, Θ1[H1] at level 1 represents the child frame of hypothesis

H1 and Θ2[θ1
1] at level 2 is the child frame of hypothesis θ1

1 which in turn is an element

of the child frame Θ1[H1]. By construction a frame is disjoint with any element in

its ancestor level which is not its parent and also with any frame in the same level

since each frame has unique and disjoint parents. For this generalized structure, we

provide the formulation for belief propagation in the following sections.

6.1.1 Propagating Belief Masses of Singleton Elements of a
Parent Frame

Every frame in the tree has an associated belief mass function and all child frames

emanate from distinct elements of its parent frame. We discuss in this section how to

propagate the belief masses of the singleton parent elements to their child frames. For

the sake of explanation we will use the 3 level tree shown in Figure 6.2 as a running

example. In the generalized (M level tree) context, for each child frame from level

6 6.1 Generalized Hierarchical Evidence Structure
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Figure 6.2: A three level evidence tree.

j, j > 0 onwards, the observer provides a normalized belief mass assignment. Let us

consider a child frame Θj[P ] in level j, j ∈ {1, ..,M} (we assume there are M levels of

refinement) with P as its parent element which by construction must be an element

of a frame in level j−1. Let P be an element of the frame Q. If the normalized belief

mass assigned toward Θj[P ] is represented as m′Θj [P ] then it must satisfy

∑
X⊆Θj [P ]

m′Θj [P ](X) = 1. (6.1)

However, for the opinions in the class of CRo, the observer assigns these masses only

assuming P is true. Hence we consider the masses m′Θj [P ] as conditional masses and

denote them as mΘj [P ](X|P ). Then we define the posteriori belief masses mΘj [P ],

∀X ⊆ Θj[P ], X 6= φ as

mΘj [P ](X) = mΘj [P ](X|P )mQ(P ), (6.2)

6 6.1 Generalized Hierarchical Evidence Structure
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where mQ(P ) is the belief mass of the element P in frame Q. We consider mQ(P ) to

be the total evidence available to be distributed (if required) between subsets of the

refinement Θj[P ] and therefore the scaled belief mass mΘj [P ] is computed such that

mΘj [P ] : 2Θj [P ] 7→ [0, 1] and

∑
X⊆Θj [P ]

mΘj [P ](X) = mQ(P ). (6.3)

The above scaling is performed for all normalized belief mass assignments of child

frames at all levels except the root level. For any child frame at level j > 1, the

scaled belief mass of the parent element in level j−1 should be used to perform (6.2).

In the context of the example tree in Figure 6.2, for simplicity sake consider the case

when the belief mass assignment of the root frame is Bayesian with belief masses

given as mΩ(H1) = m1, mΩ(H2) = m2, mΩ(H3) = m3 and mΩ(Ω) = 0. The belief

masses assigned on Ω satisfy
∑

imi = 1. The whole process of belief propagation is

a top-down approach which starts at level 1 and proceeds downwards along the tree.

Therefore, starting with the frames at level 1, the conditional belief masses of the

child frames are scaled as

mΘ1[H1](X) = mΘ1[H1](X|H1)p1, ∀X ⊆ Θ1[H1]

mΘ1[H2](X) = mΘ1[H2](X|H2)p2, ∀X ⊆ Θ1[H2]

mΘ1[H3](X) = mΘ1[H3](X|H3)p3, ∀X ⊆ Θ1[H3].

6 6.1 Generalized Hierarchical Evidence Structure
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The belief masses of the child frames in level 2 are scaled as follows

mΘ2[A](X) = mΘ2[A](X|A)mΘ1[H1](A),∀X ⊆ Θ2[A]

mΘ2[C](X) = mΘ2[C](X|C)mΘ1[H2](C),∀X ⊆ Θ2[C]

mΘ2[D](X) = mΘ2[D](X|D)mΘ1[H2](D),∀X ⊆ Θ2[D].

6.1.2 Propagating Belief Masses of Composite Subsets of a
Parent Frame

In a generalized M level tree, let us consider the frame Q = {Q1, ..., Qk} at level

j − 1. A belief mass assigned toward this frame will be normalized in case Q is the

root frame or else it will be scaled by the mass of its parent element as discussed in

the preceding section. All the singleton elements Qi are disjoint and can be parents

to different child frames. In the last section we discussed how to transfer the belief

masses of the singletons Qi to subsets of their respective child frames. However, after

this distribution the belief masses assigned to composite subsets of Q must also be

taken into consideration. The aim is not to increase uncertainty but to maintain its

value as one goes down the tree. Therefore, if mQ(X) is a nonzero belief mass toward

X, X ⊆ Q with X = {Qi1 , ..., Qil}, it ∈ {1, ..., k}, l ≤ k and Θj[Qit ], t = 1...l are

the child frames of the elements in X, then the mass mQ(X) is assigned to the set

W = {Θj[Qi1 ]∪ ...∪Θj[Qil ]}. For all Qit which do not have any child frame (in other

words the leaf elements of level j− 1), Θj[Qit ] is replaced by Qit in W . Furthermore,

defined over every level j, let V j be the set of subsets like W . In other words, V j

contains all the subsets in a particular level to which the belief masses of the composite

6 6.1 Generalized Hierarchical Evidence Structure
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subsets of their respective parent frames are assigned. At any particular level j, let

us assume there are k child frames Θj[Pi], i = 1...k with Pi as their respective distinct

parent elements. By taking the union of all frames in a particular level j with the

elements of the set Rj−1, we can form a consolidated frame that encompasses the

whole space of refinement i.e the entire gamut of information contained in the root

frame Ω. We define such a frame at level j as

Ψ = (
⋃
i

Θj[Pi]) ∪ (
⋃

g∈Rj−1

g). (6.4)

Ψ can be thought of as a general decision layer of the tree. It includes all members

of the frames at level j, and all leafs occurring before level j. We do not associate

a level identifier in the notation of Ψ since Ψ may contain elements from multiple

levels. Note that members of the set V j would be contained in the power set of the

consolidated frame Ψ.

For illustration purposes, again going back to Figure 6.2, we note that since mΩ

is Bayesian, its focal set does not have any composite subsets of Ω. Therefore the

set V 1 is empty. However the belief masses of the composite subsets of each frame

in level 1 needs to be redistributed to subsets comprising elements of level 2. The

leaf elements are present on level 1 and level 2 with R1 = {B,E, F} and R2 =

{G,H,B, I, J,K, L,E, F}. Traversing from level 1 to level 2, the scaled belief masses

of composite elements of the frames Θ1[H1],Θ1[H2] and Θ1[H3] are re assigned as

6 6.1 Generalized Hierarchical Evidence Structure



101

mΘ1[H1](A ∪B) → {Θ2[A] ∪B} (6.5)

mΘ1[H2](C ∪D) → {Θ2[C] ∪Θ2[D]}, (6.6)

where the symbol ”→” means ”assigned to the set”. Note that in (6.5) the element B

is included since it is a leaf element and a member of R1. As H1 is the root ancestor of

B and a part of the mass assigned to H1 is contained in B, its exclusion in (6.5) would

mean only partial information being propagated along the tree which is undesirable.

The consolidated frames at the 3 levels of the tree are mentioned below:

Level0 : Ψ = {H1, H2, H3} (6.7)

Level1 : Ψ = {A,B,C,D,E, F} (6.8)

Level2 : Ψ = {G,H,B, I, J,K, L,E, F}. (6.9)

An attractive feature of the tree structure developed here is that multiple frames like

Ψ can be produced based on requirements and all the elements of such frames need

not belong to the same level. The couple of constraints are that the elements of the

frame together must cover the entire information or hypotheses space defined by the

root frame and there must not be any redundancy, i.e if a parent frame is included in

Ψ, it’s child frames should not be included as well. For any such frame Ψ, a pignistic

probability vector can be obtained and used in subsequent decision making. As an

example, considering the tree in Fig. 6.2, some possible consolidated frames might

6 6.1 Generalized Hierarchical Evidence Structure
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take the following forms

Ψ = {A,B, I, J,K, L,E, F}

Ψ = {G,H,B,C,D,E, F}

Ψ = {G,H,B,C,K,L,E, F}

Ψ = {G,H,B, I, J,D,E, F}

Ψ = {A,B, I, J,D,E, F}

However a frame like Ψ = {G,H, I, J,K, L} will not fit into the given structure since it

contains no information about root hypothesis H2 and offers only partial information

about H1 due to the exclusion of the element B. Therefore pignistic probabilities

(4.25) for elements of this frame would not add up to unity.

Recall that the pignistic probability transform defined by Smets in [67] is given

by

BetP (X) =
∑

Y⊆∆,X∈Y

1

|Y |
m(Y )

(1−m(φ))
,∀Y ∈ ∆. (6.10)

In this development, we use a non-normalized version of the pignistic transformation

defined over any arbitrary frame ∆ as

BetP∆(X) =
∑

Y⊆∆,X∈Y

m(Y )

|Y | ,∀X ∈ ∆. (6.11)

The transformation in (6.11) is applied to every frame on a particular level. Since the

scaled belief masses of any frame satisfy (6.3), the pignistic transformation for each

6 6.1 Generalized Hierarchical Evidence Structure
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child frame will satisfy

∑
X∈Θj [P ]

BetPΘj [P ](X) = mQ(P ), (6.12)

where Θj[P ] is the frame at level j on which the transformation is being applied and

P is its parent element belonging to frame Q in level j − 1. The reason for using a

non normalized version of the pignistic transformation is so that (6.12) is satisfied.

A normalized pignistic transformation would have resulted in the sum in (6.12) to

be always unity. Let BetP j represent the vector of pignistic probabilities obtained

by applying the transformation on the set V j at level j and BetPΘj [P ] represent the

pignistic probabilities obtained from the frame Θj[P ]. The dimensions of the vectors

BetPΘj [P ] and BetP j are |Θj[P ]| × 1 and |Ψ| × 1 where |Θj[P ]| and |Ψ| are the sizes

of the frames Θj[P ] and Ψ respectively and Ψ is the consolidated frame at level j

as defined by (6.4). For a certain element of Ψ which is not included in any of the

subsets in V j, its pignistic probability in the BetP j vector will be 0. If there are

k child frames at level j with corresponding parent elements Pi, i = 1...k then the

following holds

|Rj−1|+
k∑
i=1

|Θj[Pi]| = |Ψ|. (6.13)

We form the vector ΓRj−1 with each element m(r) holding the scaled belief mass of a

particular r ∈ Rj−1. Since the combined frame Ψ at level j contains elements of Rj−1

along with the child frames Θj[Pi], i = 1...k, we form the pignistic probability vector
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of Ψ at a specific level j as

Pr =



BetPΘj [P1]

...

BetPΘj [Pk]

ΓR
j−1


+

[
BetP j

]
. (6.14)

Observe that ΓRj−1 is a vector of belief masses of the leaf elements. The pignistic

probabilities of the leaf elements should not be used in ΓRj−1 because of the following

reason: At level j, BetP j is formed using belief masses of composite subsets of the

parent frames which are propagated down to subsets of child frames. Therefore BetP j

already takes partially into account the belief masses of the composite subsets of the

parent frames. Now computing pignistic probability of a particular leaf element which

is a member of the parent frame would again use the same belief masses assigned to

the composite subsets (subsets which contain the leaf element) of that parent frame

which were used in calculating BetP j. This will lead to a part of the belief mass

assigned to a composite subset of a parent frame to be counted twice.

The combined probability vector Pr could also have been obtained from a belief

mass assigned to the frame Ψ directly. For any frame such as one defined in (6.4)

such a belief mass (here denoted by mj
Ψ) would have the form shown in (6.15).

The expression in (6.15) is a normalized belief mass assignment similar to any

belief mass assigned to the power set of Ψ directly. However, the advantage of using

(6.14) is that there is no need to work with the large frame Ψ and its associated
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belief mass mj
Ψ; instead smaller frames and the set V j at each level can be used

to generate partial pignistic probabilities and since the child frames on which the

pignistic transformation is applied are disjoint, the partial probability measures can

then be finally concatenated together as defined in (6.14).

mj
Ψ(X) =



mΘj [Pi](X), if X ⊆ Θj[Pi],∀i = 1...k

mQ(Y ), if X = ∪iΘj[Pi], i ⊆ {1, ..., k}

and Y = ∪iPi, i ⊆ {1, ..., k}

and Pi ∈ Q∀i = 1, ..., k

m(r), if X = r,∀r ∈ Gj−1

0, otherwise.

(6.15)

The pignistic probability so obtained would be same to what would have been

obtained if the transformation in (6.11) was applied on the belief mass mj
Ψ directly.

The need for the vector Pr is to aid in decision making and drawing inferences about

the event under observation.

Continuing with the running example, we illustrate the formation of pignistic

probability vectors for the consolidated frames mentioned in equations (6.8) and (6.9).

At level 1, from each child frame Θ1[H1],Θ1[H2] and Θ1[H3], a pignistic probability

vector can be computed for their respective singleton elements. Let these be denoted
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as BetPΘ1[H1], BetPΘ1[H2] and BetPΘ1[H3] respectively where

BetPΘ1[H1] =

BetPΘ1[H1](A)

BetPΘ1[H1](B)

 ,

with the other vectors formed similarly. As mentioned earlier, the set V 1 is empty

since there are no composite subsets of the frame Ω in level 0 with a nonzero belief

mass. Also since level 0 has no leaf elements, the set R0 is empty. Therefore, the net

pignistic probability vector for the frames in (6.8) is:

Pr =


BetPΘ1[H1]

BetPΘ1[H2]

BetPΘ1[H3]

+

[
BetP 1

]
,

where BetP 1 is a zero vector of dimension |Ψ| × 1.

At level 2, the child frames are Θ2[A],Θ2[C] and Θ2[D] and the associated pignistic

probability vectors are formed similarly as described before. The composite subsets of

parent frames in level 1 whose belief masses would be transferred to elements of V 2 are

{{A,B}, {C,D}, {E,F}}. The masses of these subsets are transferred according to

(6.5) and (6.6). The elements of V 2 then would be{G,H,B}, {I, J,K, L} and {E,F}

with each having a non zero belief mass. Application of the non normalized pignistic

transformation on V 2 would provide probabilistic measures for all the constituent

elements of Ψ defined in (6.9). This vector of probability measures forms BetP 2.
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Therefore, the final net probability vector for the frame in (6.9) is

Pr =



BetPΘ2[A]

BetPΘ2[C]

BetPΘ2[D]

ΓR
1


+

[
BetP 2

]
,

where ΓR
1

=


mΘ1[H1](B)

mΘ1[H3](E)

mΘ1[H3](F )

. Note that, while adding the vectors above, the order

must be maintained so that the probabilities of the same elements get added.

6.1.3 Belief Propagation in Evidence Tree: Example

The following example illustrates the application of the ideas developed in the pre-

vious sections. Let us assume a hypothetical target classification scenario where a

single target is being tracked. Let a CRo be provided against the coarse frame as

Ω = {H0, H1} where H0 = Aircrafts and H1 = Missiles with the refinements de-

fined as Θ1[H0] = {Fighter(F ), Bomber(B), Cargo(C)} and

Θ1[H1] = {Ballistic(Ba), Cruise(Cr)}. A sample belief mass assignment by a soft

source towards Ω can be mΩ(H0) = 0.6, mΩ(H1) = 0.4 and mΩ(Ω) = 0. If in addition

to being 60% sure about the target being an aircraft, let the source also claim an

opinion of the form ”I am 60% sure about the target being an aircraft and 40% sure

about it being a missile but in case its an aircraft, there is high chance it is a fighter”.

Tables.6.1 and 6.2 show a sample belief mass assignment of the observer toward
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Table 6.1: Belief Mass Assignments for Θ1[H0].

Belief Masses F B C {F,B } {B,C } {C,F } Θ1[H0]
Conditional mass (m′Θ1[H0](x)) 0.7 0.2 0 0 0.1 0 0

Scaled mass (mΘ1[H0](x)) 0.42 0.12 0 0 0.06 0 0

Table 6.2: Belief Mass Assignments for Θ1[H1].

Belief Masses Ba Cr Θ1[H1]
Conditional mass (m′Θ1[H1](x)) 0.2 0.7 0.1

Scaled mass (mΘ1[H1](x)) 0.08 0.28 0.04

Θ1[H0] and Θ1[H1] respectively. The pignistic probabilities for the singleton proposi-

tions in each refined frame are computed using (6.11) and are shown below

BetPΘ1[H0]


F

B

C

 =


0.42

0.15

0.03

 ,BetPΘ1[H1]

Ba
Cr

 =

0.1

0.3



The consolidated pignistic probability vector is then given as

Pr =

BetPΘ1[H0]

BetPΘ1[H1]


Here, BetP 1 is a zero vector since the belief mass assigned on Ω is Bayesian. Therefore

instead of working with a big frame Ψ = {Fighter, Bomber, Cargo,Ballistic, Cruise}

and its associated power set which in this example would consist of 32 elements, we

can work with much smaller refined frames Θ1[H0] and Θ1[H1]. As mentioned before,
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(6.15) can provide a normalized belief mass summing up to 1 which would be similar

to a belief mass assigned to the power set of Ψ directly.

6.2 Fusion Scenarios

In general, the class of opinions detailed in the previous sections could arise from soft

sources especially human observers. This section illustrates situations where multiple

such opinions are present with some of them received from hard sensors as well. The

end goal is to use informations from all sources to form an updated tree from where

pignistic probabilities could be computed to aid in decision making.

6.2.1 Case I: All observers provide opinions toward a fixed
tree

This case pertains to the scenario where before the commencement of the fusion

process, the general structure of a CRo with various classes and subclasses have been

decided and are known such that a tree T has already been formed and various frames

placed at its suitable nodes. The observers or sources provide their opinions against

this fixed tree T . In other words, the classes and subclasses remain same, however

each observer assigns different belief masses to the various frames. The fusion can

then be accomplished by using any normalized conjunctive combination operator on

the unscaled or conditional belief masses at each level.

For the fusion of a tree across any level, it is preferred if the Dempster’s rule of

combination is not used. The reason is that Dempster’s rule has very high inertia

when one of the belief masses being combined is categorical with unity mass assigned

to some subset which is neither the empty set nor the total frame. By high inertia
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we mean that combining multiple belief mass assignments with a categorical belief

mass assignment using Dempster’s rule would result in the combined belief mass to

be same as that of the categorical belief mass irrespective of the supports provided

by the non-categorical belief masses. All subsequent combinations (no matter how

large) would not alter the fused result (assuming there is no belief mass with total

conflict). This property in some scenarios may be undesirable. Note that no belief

combination operator can be universal in applicability. However, in the context of

this discussion, any normalized conjunctive combination operator which does not

have an inertia like Dempster’s rule operator can be used. For example, the Weighted

Average Operator (WAO) proposed by Josang et al. in [59] would fit nicely in the

belief combination scheme discussed henceforth. This operator performs conjunctive

combinations, distributes the conflict proportionally to all the subsets of the frame,

and does not provide counter intuitive results under extreme conflict. The fusion

steps for a group of N observers are outlined below:

1. Let mi′

Θj , i = 1, ..., N , j = 1, ...,M be the unscaled or conditional belief masses

assigned by the ith observer toward a frame Θj at level j. For each frame

at every level including the root level, a normalized conjunctive combination

operator � is applied on the unscaled belief masses to obtain

m
(1..N)′

Θj = m1′

Θj �m2′

Θj ...�mN ′

Θj . (6.16)

Note that since all unscaled masses are normalized, the combined result m
(1..N)′

Θj

for every frame will also be normalized.
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2. The combined belief masses for all frames in level 1 are scaled using the com-

bined belief masses of the elements of the root frame Ω. In other words, for any

frame Θ1[Hi] with Hi as the parent in Ω, the scaled mass would be ∀X ⊆ Θ1[Hi]

m
(1..N)

Θ1[Hi]
(N) = m

(1..N)′

Θ1[Hi]
(X)m

(1..N)′

Ω (Hi). (6.17)

3. The process of scaling is applied to all subsequent levels until the leaf frames

are reached. The scaling of belief masses of elements in a frame at level j > 1

are done using the already scaled belief mass of its parent element in level j−1.

Therefore for a child frame Θj[P ] at level j > 1 with parent element P in frame

Q at level j − 1, the scaled belief mass would be, ∀X ⊆ Θj[P ]

m
(1..N)

Θj [P ]
(X) = m

(1..N)′

Θj [P ]
(X)m

(1..N)
Q (P ), (6.18)

where m
(1..N)
Q (P ) is the scaled mass of the parent element P in the frame Q.

The pignistic probability vector can then be computed using (6.14) from the

fused tree.

6.2.2 Case II: Fusion between disparate opinion spaces

In this situation, a tree T is fixed and an observer provides a CRo toward T . Ad-

ditionally another observer provides an opinion but not against the whole tree but

against a single frame Θ. The assumption is that Θ is contained in T at some level

with a parent P .

Case IIa: Let us consider the case when the second observer is 100% sure about

6 6.2 Fusion Scenarios
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the truth being in the class defined by P and the observer distributes the total belief

(unity) through a belief mass assigned to the frame Θ consisting of subclasses of P .

In such a situation the whole tree can be built with an unity mass assigned to every

parent element of the frame Θ all the way up to and including the ancestor in the

root frame Ω. All other belief masses will be zero. Once the tree is built using the

opinion of observer 2 toward frame Θ, the exact steps outlined in Case I could be

performed for combining the tree across all levels to compute the fused result.

Case IIb: The assumption here is that the second observer has information only

about the frame Θ and is ignorant about any other case in the tree T ; by ignorant we

mean the observer has no knowledge whatsoever about any of the other cases. Note

that this is slightly different than the case of total uncertainty which in evidence

theory is represented by assigning a unity mass to the frame. Let the frame Θ be

actually at level j of the tree. The following steps could be used to perform the fusion:

1. If the normalized (unscaled) belief masses for the frame Θ provided by observer

2 are given as m2′
Θ then the combination would be performed as

m
(12)′

Θ = m1′

Θj [P ] �m2′

Θ, (6.19)

where m1′

Θj [P ] is the normalized belief mass provided by observer 1 for the frame

Θ which is located at level j with a parent P in the tree T .

2. The combined belief masses are scaled ∀X ⊆ Θ, as follows

m
(12)

Θj [P ]
(X) = m

(12)′

Θ (X)m1
Q(P ), (6.20)
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where m1
Q(P ) is the scaled belief mass of the parent element P . This mass is

obtained by representing the CRo of observer 1 using the tree T .

3. Since no information is available from observer 2 about any frame in T other

than Θ, the structure and nodes of the tree remain exactly the same as they

were before combination. However, the belief masses for all the child frames

of the elements of Θ now should be scaled according to the new belief mass

m
(12)

Θj [P ]
. For the child frame of a particular element θi ∈ Θj[P ] this is represented

∀x ⊆ Θj+1[θi] as

m
(12)

Θj+1[θi]
(X) = m1′

Θj+1[θi]
(x)m

(12)

Θj [P ]
(θi), (6.21)

where m1′

Θj+1[θi]
is the unscaled normalized belief mass provided by observer

1 toward the child frame Θj+1[θi]. The above operation must be performed

for every child frame having parents in Θj[P ]. Belief masses of elements of

all other frames are kept as they were, since no additional information toward

those elements was received from observer 2 which would necessitate a change

in their belief masses.

In another variation, observer 2 may provide opinions toward a small tree which is

a subset of the original tree T . The same process can then be applied as well to

perform fusion. The method described in this section can also be treated as a belief

revision process since a CRo toward the whole tree must be available before the

fusion process begins. Only then opinions toward a single frame or a subtree can
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be combined. This makes the process sequential. Once a starting CRo is obtained,

subsequent combination can be performed in any order provided the combination

operator is associative and commutative.

Figure 6.3: Schematic of Hard/Soft fusion scenario with hierarchical evidence
trees. (BMA: Belief Mass Assignment)

6.2.3 Case III: Hard/Soft fusion

Let there be a centralized data fusion architecture where a fusion center receives data

in the form of belief mass assignments from multiple distributed sensors and imple-

ments a fusion algorithm to produce a combined result. For the sake of discussion, let

us assume there are two sources which send out belief mass assignments, one is a hu-

man observer sending out a CRo and the other source is a hard sensor. Without loss

of generality, for the sake of simplicity in explanation, let us assume a 2 level (M = 1)

tree with a binary root frame given by Ψ = {H0, H1} and let the corresponding child

frames be Θ1[H0] and Θ1[H1]. Within this scenario a couple of situations can arise

as shown in Fig. 6.3 and explained below:

Case IIIa: The hard sensor classifier can only distinguish between elements of

6 6.2 Fusion Scenarios
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the coarse frame Ω: In this case, the classifier output will be a Bayesian belief mass

assignment towards Ω. We say Bayesian belief mass assignment, since we assume the

classifier sends out probabilities of classification and that pertains to only the atomic

subsets of a frame.

Case IIIb: The hard sensor classifier can distinguish between the elements of the

refined frames: The classifier output will be a Bayesian belief mass assignment toward

either of the refined frames. Here we assume, if a classifier has narrowed down to one

of the refined frames, then it is 100% certain about the class in the coarse frame. In

other words, if a classifier sends out a belief mass assignment toward Θ1[H0], then it

means that the elements of Θ1[H1] which in turn belong to the class defined by H1 are

ruled out. Therefore, the classifier output can be a Bayesian belief mass assignment

toward either of the refined frames and not both. The two cases are elucidated in

detail as follows:

Case IIIa: Let the belief mass assignments toward the coarse frame Ω be denoted

by mΩs and mΩh
for the soft and hard sensors respectively where mΩh

is assumed to

be Bayesian. The human observer also provides normalized belief mass assignments

m′Θ1[H0], m
′
Θ1[H0] toward the refined frames Θ1[H0] and Θ1[H1]. We outline the fusion

steps below:

1. Combine mΩs and mΩh
using any normalized conjunctive combination rule to

form mΩsh
= mΩs �mΩh

where � is the combination operator.

6 6.2 Fusion Scenarios
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2. Scale the normalized belief mass assignments m′Θ1[H0] and m′Θ1[H0] as follows

mΘ1[Hi](X) = m′Θ1[Hi]
mΩsh

(Hi),

∀X ⊆ Θ1[Hi], X 6= φ where i = 0, 1. The scaled belief masses would then satisfy

∑
X⊆Θ1[H0]

mΘ1[H0](X) = mΩsh
(H0)

∑
X⊆Θ1[H1]

mΘ1[H1](X) = mΩsh
(H1).

3. Once the updated tree is available, either the combined belief mass over the

consolidated frame Ψ can be obtained using (6.15) or a pignistic probability

vector can be computed for subsequent decision making. The pignistic prob-

ability vector can be formed by using the transformation defined in (6.11) on

the masses mΘ1[H0] and mΘ1[H1] to form BetPΘ1[H0] and BetPΘ1[H1] respectively.

The consolidated pignistic probability vector would then be given by (6.14). If

mΩs is not Bayesian , then BetP 1 will have nonzero values or else it would be

a |Ψ| × 1 zero vector where |Ψ| = |Θ1[H0]|+ |Θ1[H1]|.

Case IIIb: In this situation, the hard sensor classifier can distinguish between

elements of the refined frames and hence sends out a Bayesian belief mass assignment

toward any one of the refined frames. As the hard sensor sends out the Bayesian

belief mass toward one of the refined frames, it implicitly means the classifier is 100%

sure about which class of the coarse frame is true. In other words, if the classifier

sends out a Bayesian belief mass set toward Θ1[Hi] which is a refinement of Hi, then

6 6.2 Fusion Scenarios
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Table 6.3: Combined support values for hierarchical hard and soft opinions.

Propositions Combined belief mass Pignistic Probability

F 0.469 0.469
B 0.386 0.400
C 0.037 0.051

{F,B } 0 -
{B,C } 0.028 -
{C,F } 0 -
Θ1[H0] 0 -

Ba 0.016 0.020
Cr 0.056 0.060

Θ1[H1] 0.008 -

the following is true

mΩh
(Hi) = 1

mΩh
(X) = 0,∀X ⊆ Ω, X 6= Hi.

Let the Bayesian belief mass assignment obtained from the hard sensor classifier be

toward the refined frame Θ1[Hi] and let it be defined as mΘ1[Hi]h . The situation then

becomes identical to Case IIa described above. The fusion process therefore could

be performed similarly. All the above methods of fusion would suit well for hard soft

data fusion and are compatible with algorithms proposed in [77].

Example: We continue with the hypothetical example discussed in Section 6.1 and

modify it to illustrate the Hard-Soft fusion steps. The soft source belief mass as-

signments both normalized and scaled are as provided in Tables 6.1 and 6.2. Ad-

ditionally, let there be a radar (hard sensor) whose classifier decides the target to
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be an aircraft and assigns a Bayesian belief mass to the refined frame Θ1[H0] =

{Fighter(F ), Bomber(B), Cargo(C)} given as mΘ1[H0]h(F ) = 0.3, mΘ1[H0]h(B) = 0.6

and mΘ1[H0]h(C) = 0.1.

A Bayesian belief mass assignment toward Θ1[H0] means the radar rules out the

possibility of H1 and therefore all elements of its refinement Θ1[H1]. In that case, the

tree when filled up with the data from the radar would have the belief mass provided

above assigned to the child frame Θ1[H0] and the categorical belief mass mΩh
(H0) = 1

and mΩh
(H1) = 0 assigned to the root frame Ω. The frame Θ1[H1] is assigned zero

belief mass. The assignment of zero belief mass is considered as no information. Now

following the steps outlined for Case IIa the belief masses from both hard and soft

sources are combined using the WAO across each level. The resultant combined belief

mass for Θ1[H1] is then scaled accordingly. The combination process in level 0 assigns

a nonzero belief mass to the class H1 which was not supported by the hard sensor.

Therefore, this resultant nonzero mass is used to scale the normalized belief mass

toward Θ1[H1] that was provided by the soft source since no new information about

Θ1[H1] was received from the radar and hence the old information must be retained.

The final pignistic probabilities are calculated using the scaled belief masses. The

final results are provided in Table 6.3. Note that in this example, BetP 1 is a zero

vector. The pignistic probabilities could now be used for decision making, like in the

context of this example, it can be inferred that the target is most likely a fighter.

6 6.2 Fusion Scenarios



119

6.3 Complexity Analysis

Let there be s elements in the root frame Ω of a M level tree (including level 0).

Assuming every element in the tree starting from the elements of the root frame to the

elements of the frames in level M−1 has k children; starting from level 0 downwards,

the consolidated frame Ψ at every level has s, sk, sk2... elements. Hence with increase

in levels of the tree, the size of the consolidated frame increases geometrically with k

as the scale factor. However, in the proposed scheme, both belief mass and pignistic

probability calculations for any consolidated frame Ψ at any level are performed

using the individual child frames in that level with the final result being given by a

simple concatenation operation. Therefore, computational complexity of the proposed

algorithms increases with the tree size only linearly (the operations performed for a

small frame needs to be repeated as many times as the number of frames in a particular

level) but the real intensive calculations which involve summations or products over

all subsets of a frame (pignistic probability and conjunctive belief combination) are

performed over small child frames with small number of subsets. The essence of the

scheme is thus to substitute multiple implementations of the intensive computations

over small frames for a single implementation over a much larger consolidated frame.

Hence, if the tree is formed using small sized frames, then the depth of such a tree

would not affect the implementation of the proposed scheme.

6 6.3 Complexity Analysis
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7: HARD/SOFT FUSION: DISCUSSION AND FUTURE
WORK

The belief theory framework was originally introduced by Shafer in [16] as a method of

modeling uncertain evidence. The assignment of belief masses to sets of propositions

and building a support function over a power set handle ignorance and uncertainty

of sources in an intuitive way. Such a modeling method seems very apt to be used to

model opinions coming in from human observers as such data lacks the well defined

structure required for the use of traditional probabilistic reasoning.

In [77], we proposed an approach based on evidence combination that is able to

take in data in the form of probabilistic support values toward a set of hypotheses

from both hard and soft sensors and combine such data for informed decision making.

Based on an event and available knowledge of its possible outcomes, soft sensor data

is modeled using evidence theory. In the case of more than one soft sensor, the

consensus operator [60] is used to combine multiple belief functions. After processing

hard sensor data to obtain probabilistic support values for various propositions, the

fusion of probability rule [26] is implemented to perform final combination of hard

and soft data.

Depending upon the situation and the nature of hard sensors employed, the tech-

nique to process sensor data may change but the fusion rule would remain the same.

Since there are roles for domain experts and analysts like experience and intuition

based decision making which are extremely difficult to imitate in a computer algo-
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rithm, the whole fusion process does require human intervention and therefore is a

semi-automatic procedure. Although the algorithm is easy to implement, the em-

ployment of large numbers of humans for testing can be logistically challenging and

expensive, and opportunities to re-test the same humans on modified data presenta-

tions and exposition schemes is often difficult. At least in the early stages of testing

and tuning of data fusion algorithms, it may be desirable to use models of human

decision making rather than using actual human-generated data. A few studies in

this direction, which use cognitive psychology models like the two stage dynamic sig-

nal detection model [89] to simulate human decision making have been reported in

[90, 91].

The study in [92] developed a hierarchical evidence tree structure to represent

a special class of nested human opinions call Conditionally Refined opinions (CRo).

Such structures were shown to be able to model equivocal and nested human opinions.

The representation was also shown to be compatible with any belief theoretic soft-soft

and hard-soft fusion methodologies including the scheme proposed in [77]. However

the model in [92] is static in the sense that data pertaining to new classes cannot

be accommodated in an existing tree. Future research can be directed to extend

this work and develop a dynamic tree structure which can aid in sequential fusion

of human opinions. In other words, the tree would evolve temporally with addition

of new nodes and removal of old and irrelevant nodes. A more complex idea of

rearranging new and old nodes based on variable hierarchical relationships could also

be investigated.

Further effort can be directed to develop a generic Hard/Soft fusion system that
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would be almost automated and be able to take in subjective informations from

humans and also data from hard sensors and integrate them in a computationally

efficient manner. Soft (human opinion) data can be collected from surveys or polls

created through crowd sourcing (e.g., Amazon Mechanical Turk) and parsed using

customized text parsers for further processing and fusion with hard data.

7 HARD/SOFT FUSION: DISCUSSION AND FUTURE WORK
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Part III

APPLICATION OF PARALLEL DISTRIBUTED

DETECTION AND FUSION
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8: ACTIVE AUTHENTICATION WITH BIOMETRIC
SENSORS

The interaction between humans and most desktop and laptop computers is often

performed through two input devices: the keyboard and the mouse. Continuous

tracking of these devices provides an opportunity to verify the identity of an user,

based on a profile of behavioral biometrics from the user’s previous interaction with

these devices. We consider the real-time application of this technology for active

authentication. As a user begins interacting with the machine, the classification

system collects behavioral biometrics from the interaction and continuously verifies

that the current user has access permission on the machine. This approach adds an

extra layer of distraction-less access control in environments where a computer is at

a risk of being intermittently accessed by unauthorized users.

We propose a bank of sensors, each feeding a binary detector (trying to distinguish

the authentic user from all others). In this study the detectors use features derived

from the keyboard and the mouse, and their decisions are fused to develop a global

authentication decision. The binary classification of the individual features is devel-

oped using Naive Bayes Classifiers which play the role of local detectors in a parallel

binary decision fusion architecture. The conclusion of each classifier (’authentic user’

or ’other’) is sent to a decision fusion center where we use the Neyman-Pearson crite-

rion to maximize the probability of detection under an upper bound on the probability

of false alarms. We compute the receiver operating characteristic (ROC) curves of
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the resulting detection scheme, and use the ROC curves to assess the contribution of

each individual sensor to the quality of the global decision on user authenticity. In

this manner we identify the characteristics (and local detectors) that are most signif-

icant to the development of correct user authentication. While the false alarm and

mis-detection rates are fixed for the local sensors, the fusion center provides trade-

off between the two global error rates, and allows the designer to fix an operating

point based on his/her tolerance level of false alarms. We test our approach on a

real-world dataset collected from 10 office workers, who worked for a week in an office

environment as we tracked their keyboard dynamics and mouse movements during

interaction with laptops and desktop computers.

8.1 Context of Active Authentication

The tracking of behavioral biometrics for continuous verification of an user’s iden-

tity has received considerable attention in recent years [93]. By monitoring actively

metrics such as keyboard dynamics and mouse movements, classification of user as

authentic or non-authentic has achieved accuracy on par with more traditional non-

continuous approaches [94]. One popular non-continuous approach is for the user to

verify his/her identity by typing a password or a common fixed phrase. The authenti-

cation system then estimates whether the user is who s/he claims to be by analyzing

the biometric parameters associated with the typing of the password/phrase. Con-

tinuous ”active authentication”, on the other hand performs verification of the user

steadily, based on a set of metrics collected during previous interaction with the com-

puter, or updated based on known-user behavior. Due to the unconstrained nature

8 8.1 Context of Active Authentication
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of human-computer interaction, a single biometric is usually not sufficiently robust

to determine the user’s identity. For that reason, many active authentication sys-

tems are (a) multi-modality, namely they monitor multiple features of a single type

of biometric [95], and (b) multi-biometric, namely they consider more than one type

of biometric [96]. In this study we consider multi-modality multi-biometric model for

interaction with a computer through a mouse and keyboard.

We evaluated our algorithms using a dataset collected from office workers in a real-

world office environment. Each user is represented through features collected from

the user’s keyboard dynamics and mouse movements. We fuse these features using

established algorithms for parallel binary decision fusion [20, 97]. The Receiver Oper-

ating Characteristic (ROC) helps quantify the relative importance of each biometric

and each feature.

8.2 User Authentication via Biometrics

8.2.1 Mouse and Keyboard Dynamics

The movement dynamics of the mouse and the keyboard of a personal computer have

been studied for over two decades [98, 99] as the primary human computer interface

input devices. Keystroke dynamics have received most of the attention in behavioral

biometrics studies [100]. The two basic tracked features of inter-key-press interval

[101] and key-press dwell [102] were used as the basis for more complex features such

as digraph latency [103], trigraph latency [104], or keyword latency [105]. These

features provide timing information about a specific configuration of key-press and

key-release events.

8 8.2 User Authentication via Biometrics
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Mouse movement in the authentication domain has received considerably less at-

tention until recently [106]. Mouse movement signals are relatively noisy, requiring

large testing windows for authentication [107]. Zheng et al. [108] were the first to

show meaningful results based on testing windows as small as 20 mouse clicks. Jor-

gensen and Yu [109] studied short-time window continuous authentication and used

touch-based mouse devices.

Most single-modality classifiers considered for mouse and keyboard use statistical

methods [110] such as Naive Bayes, decision trees, linear discrimination analysis and

support vector machines [111]. Some classifiers use trained neural networks [112]. In

this work, our local detectors are Naive Bayes classifiers [113] due to their robustness

to the relatively small amount of training data needed and the ease of design and

implementation.

8.2.2 Multi-Biometric Systems

In the context of continuous authentication, multi-modality biometrics use multiple

asynchronous streams of features to form a sequence of fused verification decisions.

There are several approaches to categorize multi-biometric systems [114]. Most rele-

vant to the approach in this study is division of continuous fusion by Sanderson and

Paliwal into: (1) pre-mapping, (2) midst-mapping, and (3) post-mapping [115]. Here

”mapping” refers to the transformation from data into information (e.g, from the

feature space to the decision space). While pre-mapping fusion has been extensively

studied in other applications [72], in the authentication domain, the feature space

is so varied (and often restricted by privacy concerns) that midst-mapping or post-

8 8.2 User Authentication via Biometrics
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Figure 8.1: The duration (in seconds) of each user’s interaction with the com-
puter throughout the 5-day week with idle periods removed. An idle period is
defined as a continuous period of time without any mouse or keyboard interaction
with the computer.

mapping fusion have been preferred. We use the post-mapping (or decision fusion)

approach in this study.

8.3 Experimental Setup

8.3.1 Dataset

The dataset used in our study comes from 10 users in a simulated work environ-

ment. The users were tracked throughout a working week (5 sequential days) in

their use of the mouse and keyboard as they sought to accomplish various writing

tasks such as summarizing on-line opinion articles. The productivity, task-selection,

and mouse/keyboard use ratio varied from user to user as shown in Figure 8.1 and

8 8.3 Experimental Setup
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Figure 8.2: The relative amount of biometric data per-type per-user extracted
from the interaction of each user with their computer throughout the 5-day week.
The variability between the users is noticeable.

Figure 8.2.

A tracking application logged two types of behavioral biometrics on the granularity

of 5 milliseconds:

• Mouse movement, mouse click, and mouse scroll wheel events.

• Keystroke dynamics (include press, hold, release durations) for all keyboard

keys including special keys.

Figures 8.3 and 8.4 illustrate the mouse and keystroke dynamics features.

Table 8.1 shows statistics on the biometric data in the dataset. The table con-

tains data aggregated over all 10 users and all of the available user-days. The
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Figure 8.3: The mouse movement metrics are computed from a set of continuous
move events.

Figure 8.4: The keystroke dynamics metrics are computed from time between
the press and the release event and vice versa.

keystroke events include both the alpha-numeric keys and special keys such as shift,

backspace, ctrl and alt.

Table 8.1: Statistics on the 10-user dataset.

Metric Total
Sensor 1: Keystroke Dwell Time 915,624
Sensor 2. Keystroke Interval Time 750,253
Sensor 3: Mouse Curvature Distance 3,462,912
Sensor 4: Mouse Curvature Angle 3,462,912

Table 8.1 shows the total quantity of features extracted from the raw data for

each of the four sensors. The number of keystroke intervals is significantly less than

keystroke dwell time because only intervals that were part of bursts of continuous

typing were collected.

8 8.3 Experimental Setup
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8.3.2 Feature Classification

Data from each user were broken down into three segments relative to the duration

of each user’s non-idle periods of activity (see Figure 8.1):

1. Training Segment: for the construction of the empirical feature distribution;

2. Characterization Segment: for the estimation of the false alarm and mis-detection

rates of the sensor for the use by the decision fusion center; and

3. Testing Segment: for the estimation of the local sensor performance compared

to the fused sensor performance.

For each user we trained the classifier on the first 60% of the data, characterized

the error rates of the trained classifier on the following 20%, and tested the local and

the fused sensors on the remaining 20%.

For each local sensor, we use the Naive Bayes Classifier [116] for mapping from the

feature space to the decision space. This classifier is constructed during the training

phase and used for binary classification in the characterization and testing phases.

In the training phase, the empirical distribution for feature probabilities are con-

structed from the frequency of each feature in the training segment of each user’s

data. An example histogram-based distribution for the “keystroke dwell time” met-

ric for the first user is shown in Figure 8.5. It shows the estimated probability of

dwell time (in seconds). Two such histograms are constructed for each user j. The

first histogram was constructed from the training segment of the data of that user.

The second histogram was constructed from all the training segments of the other
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Figure 8.5: An example of a histogram constructed from the training set for
the empirical probability distribution of user 0 for the “Keystroke Dwell Time”
feature (sensor 1).

users. This latter set of training segments is meant to represent all other computer

users. These two histograms are the empirical feature distributions associated with

each user.

In the characterization and testing phases, for each user and each metric, the

Naive Bayes Classifier considers a collection of ζ (set to 10 in this study) most recent

events {z1, z2, ..., zζ} associated with that metric (e.g, keystroke dwell time). It then

uses the maximum a posteriori (MAP) rule to pick the most likely hypothesis:

H∗ = argmax
i∈{0,1}

P (Hi)

ζ∏
k

P (zk|Hi), (8.1)

where H1 is the “authentic” class, H0 is the “non-authentic” class, discussed further

in §8.4, and H∗ is the most likely class associated with the observed biometric data.
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Figure 8.6: Behavioral sensor fusion scheme for active authentication.

Given the open-world model considered in this paper, for the local sensor classifiers,

we considered P (H0) = P (H1) = 0.5. The feature probability P (zk|Hi) is estimated

by a non-parametric distribution (like the one in Figure 8.5).

8.4 Decision Fusion

We employ a decentralized parallel binary decision fusion [20, 97] scheme to integrate

the set of local binary decisions to a global binary decision. The local detectors are

designed as binary Naive Bayes Classifiers each attached to a single feature of the

mouse or the keyboard. The ith local detector is characterized by its probability

of correct detection (PDi
= 1 − PMi

; and its probability of false alarm (PFi
). Here

we selected to design a decision fusion center that integrates the local decisions in

the Neyman-Pearson sense [97]: for an upper bound on the global probability of

false alarm, the fusion center maximizes the global probability of detection. The

distributed decision fusion scheme is depicted in Figure 8.6. It involves 4 different
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sensors (2 Mouse and 2 Keyboard) shown in Table 8.1, each connected to a local

detector that announces whether or not the user is authentic. The experimental

setup involved collecting data from 10 users and creating 10 schemes (local detectors

and a Decision Fusion Center), each one designed to identify one of the 10 users and

reject all others. The jth fusion center, (j = 1, ..., 10) distinguishes the hypothesis

(H1 = User j is present; against H0 = User j is not present).

Each sensor, designed as a Naive Bayes Classifier uses its own observations to

decide on the hypothesis for the corresponding user. The local decisions are of the

form

ui =


1, if H1 is accepted (user is authentic)

−1, if H0 is accepted (user is non-authentic)

(8.2)

The fusion center performs a Neyman-Pearson test [117] for fusion and for each user

it functions the same way; the fusion center for the jth user takes in the four local

decisions and calculates the likelihood ratio for N sensors (in this study, N = 4);

Λ(uj) =
P (uj1, ..., u

j
N |H1)

P (uj1, ..., u
j
N |H0)

H1

≷
H0

tjg. (8.3)

Assuming that the local decisions are independent (conditioned on the hypothesis),

we have

Λ(uj) =
N∏
j=1

P (uj1|H1)

P (uj1|H0)
× ...× P (ujn|H1)

P (ujN |H0)

H1

≷
H0

tjg, (8.4)

where the threshold tjg is computed such that the global false alarm at the fusion

8 8.4 Decision Fusion
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center for the jth user (P j
F0

) is αj. In other words, tjg is obtained such that

∑
Λ(uj)≥tjg

P (Λ(uj)|H0) = αj. (8.5)

Once the threshold t∗j is determined, the global probability of detection (P j
D0

) at the

fusion center for the jth user becomes

P j
D0

=
∑

Λ(uj)≥tjg

P (Λ(uj)|H1). (8.6)

As the global conditional distributions are discrete, only certain global false alarm

values would be possible which would make the receiver operating characteristics con-

tain a collection of disjoint points. To allow realization of an intermediate false alarm

rate, the fusion center employs a randomized Neyman-Pearson test and computes the

probability of using (one of the two) thresholds accordingly.

As the specified global false alarm rate PF0 varies from 0 to 1, the global detection

rate (PD0 = 1 − PM0) is calculated to create the Receiver Operating Characteristic

(ROC) curves.

8.5 Behavioral Sensor Fusion Performance

The fusion setup used for generating the ROC curves is shown in Figure 8.6. The 4

sensors are assumed to be fixed Naive Bayes Classifiers and the fusion center performs

a Neyman-Pearson test to fuse the local detector decisions. A total of 10 users and 10

systems were tested. To compare the contributions of each sensor towards the fused

8 8.5 Behavioral Sensor Fusion Performance
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Figure 8.7: ROC curves for incremental and global sensor fusion with one bio-
metric sensor taken out at a time.
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Figure 8.8: Zoomed in version of Figure. 8.7.
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Figure 8.9: ROC curves for incremental sensor fusion with mouse and keyboard
sensors removed at a time.

result, each sensor was removed (one at a time) and the ROC curve of the resultant

system generated.

Figure 8.7 shows the ROC for user 1. Figure 8.8 shows a zoomed-in version of

same plot. It is noticeable that fusion is profitable and produces the highest possible

global detection rates for given false alarm rates. All the sensors are very similar

in performance and therefore have comparable marginal contribution to the global

performance. Similar results were obtained for the decision fusion centers designed

for the remaining 9 users. In general this approach of using ROC curves for sensor

analysis can help in creating a hierarchy of sensor importance such that for a known

tolerable global false alarm, the appropriate groups of sensors could be identified and

used (and some sensors of only marginal contribution can be dropped).
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Figure 8.10: Multilevel decision fusion.

Figure 8.9 shows the resultant ROC curves when either the two mouse sensors or

the two keyboard sensors were removed incrementally. For small values of global false

alarm rates, it is observable that removing the keyboard sensors and combining just

the mouse sensors degrades the global performance more than removing the mouse

sensors and combining only the keyboard sensors.

8.5.1 Multilevel Fusion

We may ask, how much would performance be affected when decisions associated with

the same kind of sensors are combined first and then the results of such intermediate

fusions are fused by the main fusion center. In the fusion scheme shown in Figure 8.10

all the mouse and keyboard sensors, were combined first, separately, using Neyman-

Pearson criterion; the outputs were then fused at the main fusion center. The false

alarm at the intermediate fusion centers were chosen the same as the false alarm of
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Figure 8.11: Receiver Operating Characteristic for two step fusion.

best individual sensor of that class. For user 1, Figure 8.11 shows the resultant ROC

curves at the user fusion center.

Not surprisingly, performing intermediate fusion degrades the overall system per-

formance for low values of false alarm rate.

8.6 Additional Modalities for Active Authentication

In few separate studies [118–120] we extend the work in [121], and consider real time

user authentication using high level biometrics such as stylometry and web brows-

ing, in addition to low level mouse and keyboard features. Specifically we employ

four classes of biometrics: keystroke dynamics, mouse movement, web browsing and

stylometry. Stylometric analysis, in particular is well developed. However, its appli-

cation to continuous verification of user identity is new. The basic assumption behind
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stylometry is that every person has a unique linguistic style (stylome, [122]) that can

be quantified and measured in order to disntiguish between different authors.

Depending on the what task the user is engaged in, some of the biometric sensors

may provide more data than others. For example, as the user browses the web,

the mouse and web browsing sensors will be actively flooded with data, while the

keystroke dynamics and stylometry sensors may only get a few infrequent updates.

This observation motivates the application of fusion under a distributed topology to

gain continuous monitoring of users.

8.6.1 Suite of High and Low Level Biometrics

We collected behavioral biometrics data from the same simulated work environment

described in Section 8.3.1. However, due to the incorporation of linguistic modalities

like stylometry, a larger data set was collected from 5 users each working for 40 hours

per week over a duration of 4 weeks. This larger data set was essential for training

of support vector machines used to perform classification based on linguistics. The

following suite of biometric sensors was used during data collection.

• Low-level sensors:

– M1: mouse curvature angle

– M2: mouse curvature distance

– M3: mouse direction

– K1: keystroke interval time

– K2: keystroke dwell time

8 8.6 Additional Modalities for Active Authentication
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• High-level sensors:

– W1: website domain visit frequency

– S1: stylometry (1000 char., 30 min. window)

– S2: stylometry (500 char., 30 min. window)

– S3: stylometry (400 char., 10 min. window)

– S4: stylometry (100 char., 10 min. window)

8.6.2 Feature Sets and Classification

For stylometry, the feature set used was a variation of the Writeprints [123], which

includes a vast range of linguistic features across different levels of text. This rich

linguistic feature set is aimed at capturing the users writing style. With the special

character placeholders, some features capture aspects of the users style usually not

found in standard authorship problem settings. For classification we used sequen-

tial minimal optimization (SMO) support vector machines with polynomial kernel,

available in Weka [124]. Support vector machines are commonly used for authorship

attribution [125] and documented to achieve high performance and accuracy.

The low-level metrics of keystroke and mouse dynamics detectors, along with the

domain visit frequency detector, all use support vector machines.

We used the same SVM classifier as for low-level sensors, and the feature vector of

the visit frequency to the 20 most visited websites in the dataset, the top five of which

were: google.com (7.0%), bing.com (7.0%), facebook.com (5.0%), yahoo.com (4.1%),

and wikipedia.org (2.9%). The visit frequency of any one of these popular websites is

8 8.6 Additional Modalities for Active Authentication
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Figure 8.12: False alarm rates (FAR) and mis-detection rates (FRR) for 4 repre-
sentative selection of sensors of the 1024 possible combinations for fusion. These
four cases are: (1) all high and low level modalities are used; (2) all modalities
except for web browsing are used; (3) all modalities except for stylometry sensors
are used; (4) all modalities except for web browsing and stylometry are used.

not a good classification feature. However, taken together, the 20 dimensional feature

vector forms a sufficiently representative profile of a user to be used in continuous

authentication.

8.6.3 Fusion of High and Low Level Biometric Features

The same parallel binary decision fusion architecture as described in Section 8.4

was applied, however with the representative collection of both high and low level

8 8.6 Additional Modalities for Active Authentication
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behavioral biometric sensors.

The rows of the table in Figure 8.12 are four representative combinations of the 10

sensors listed in Section 8.6.1 and the false alarm (FAR)/mis-detection (FRR) rates

that result when these sensors are fused. A check mark in this table designates which

of the sensors is included in the fusion process for that row. There are 1024 possible

combinations. We selected these four to highlight the marginal contribution of sty-

lometry and web browsing modalities when fused with the low level modalities. A

closer inspection of the second and the fourth rows in the table reveals that discarding

the stylometric sensors results in an order of magnitude deterioration in the global

false alarm rate. This observation provides experimental support for the hypothesis

that high level biometrics may be more beneficial as compared to low level modalities

in the context of computer user detection accuracy. The plots in Figure 8.12 indicate

that stylometry contributes more to reducing the error rates than web browsing.

8.7 Discussion and Future Work

We illustrated the use of behavioral sensors towards active authentication of users of

computer systems. Four (4) behavioral features based on mouse and keyboard usage

were used to train 4 classifiers which then became part of a distributed fusion scheme.

Each classifier (”local detector”) generated decisions on the hypothesis set, authen-

ticating (or refusing to authenticate) a particular user, and the fusion center then

performed a Neyman-Pearson test for a final authenticate/non-authenticate decision.

ROC curves for the various fusion centers were generated, which revealed a hierarchy

of sensor importance and would be helpful in identifying economical groups of sensors
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to be used in user authentication. In future work, a wider variety of features could

be included and an attempt might be made to tune the local detectors better toward

improving the performance of the fusion center.

Even though it seems that stylometry is relatively the most efficient in identify-

ing users, it has the inherent dis-advantage of requiring large amounts of data for

proper classification. In general, more data would increase classification accuracy but

compromise a quick detection. On the other hand, using small data collection win-

dows would result in almost real time classification but with higher false alarm and

mis-detection rates. This trade-off must be considered before employing stylometric

sensors for real time user authentication.

Improved features sets from both low and high level modalities could provide

a robust training sample for a particular user and therefore would lead to lower

classification error rates when the validation system is used for identifying unknown

users. The idea of fusing multiple modalities can be extended to identify adversarial

users who might attempt partial spoofing (imitating authorized users) [120].

Furthermore, the idea of using behavioral features to develop unique user traits can

also be applied for validating mobile device users. Features like texts, GPS location

or applications used (frequency and type) can be extracted to train support vector

machine or logistic regression based classifiers. Outputs from such classifiers can be

fused to authenticate the identity of the device user.

8 8.7 Discussion and Future Work
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9: HYPOXIA DETECTION USING KALMAN FILTER

In this chapter, we develop models and fusion rules for oximeters that detect the

onset of hypoxia. Hypoxia is a medical condition affecting portions of the body that

are deprived of oxygen supply. Prolonged exposure to cerebral oxygen deficiency

can lead to unconsciousness or even death. The onset of hypoxia in humans is of

concern for those operating in high altitudes, and in military flights characterized by

high-acceleration maneuvers. Using oximeters for measuring blood oxygen saturation

levels is a common means to detect hypoxia in real time. Many types of oximeters

can be used for this task but all are prone to complicated noise characteristics and

bias inaccuracies. It may therefore be advisable to collect and combine data streams

from multiple oximeters for more reliable Hypoxia/No Hypoxia decisions (compared

to decisions made by a single oximeter). Here we develop statistical noise models

for three popular types of oximeters (Respironics Novametrix 515B, Nonin forehead

pulse oximeter 9847, and Masimo Rad-87). We also combine data streams from these

oximeters using a Kalman filter. The result is a smooth and reliable estimate of blood

oxygen saturation level which can be used to detect the onset of hypoxia [126].

9.1 Context and Relevant Work

Hypoxia is diminished availability of oxygen to the cells of the body [127]. It can

occur due to inadequate oxygenation of the lungs for extrinsic reasons, deficiency of

oxygen in atmosphere, venous-to-arterial shunts (intrapulmonary or intra cardiac),
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inadequate transport and delivery of oxygen, or inadequate tissue oxygenation or

oxygen use. Exposure to severe hypoxia can lead to death of cells and depressed

mental activity. Sometimes it culminates in coma and reduced work capacity of

the muscles. Hypoxia occurs most commonly in people traveling to high altitude,

performing strenuous exercise or work for prolonged periods of time at high altitudes.

Another population at risk is combatants such as fighter pilots who undertake high

G maneuvers.

Measuring the blood oxygen saturation (SpO2) is the most common and easiest

way to instrumentally determine the presence of hypoxia. A healthy human has on

average a SpO2 value of 95-100%. SpO2 values below 90% are considered low, and are

taken as a possible indication of onset of hypoxia. The most common non-invasive

device used to measure blood oxygen saturation levels is the pulse oximeter. The

device uses a photo detector to measure the difference in the extinction curves of

hemoglobin and oxygenated hemoglobin using light of different wavelengths [128],

[129]. The common types of oximeters are applied either on the finger or on the

forehead of the subject being monitored.

Hypoxia monitoring has been reported in several previous studies. A hypoxia

detection and warning system was patented as a Aviation Hypoxia Monitor [130],

which has a single pulse oximeter attached to the ear and provides a visual and audio

signal if the blood level of a subject decreases significantly. The Hypoxia Detection

and Warning System in [131] is composed of an electrochemical oxygen sensor located

within the breathing mask of a pilot. It provides a vibratory warning within the

mask when partial pressure of oxygen in the system falls below a set point. In [132],

9 9.1 Context and Relevant Work
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a personal hypoxia monitoring system is proposed which uses the cross-correlation

between heart rate, respiratory rate, blood flow velocity and blood oxygen saturation

levels to identify the onset of hypoxia.

Even though pulse oximeters are very popular in operating rooms, emergency

medical aids, and ambulatory use by heart and respiratory-system patients, oximeters

are prone to inaccuracies due to several sources, most notably light scattering inside

blood tissues. They are also affected by noise artifacts due to motion, ambient light

interference, respiratory maneuvers, and pooling of blood at the point of measurement

due to body orientation. In situations where fast and reliable hypoxia detection is

required, a single pulse oximeter may not be sufficient, and it may be advantageous

to use a combination of several such devices.

In a study conducted at the Naval Air Warfare Center Aircraft Division (NAW-

CAD) [133], three oximeters from different manufacturers were used simultaneously.

These were Respironics Novametrix 515B (transmittance type on finger), and two

reflectance type oximeters - Nonin pulse oximeter 9847 and Masimo Rad-87 (used on

the forehead). The current study describes an attempt to fuse their observations using

Kalman filtering so as to obtain a smoother and more reliable estimate of the blood

oxygen saturation level than what one can get from a stand-alone single oximeter. The

algorithm we propose can be executed in real time and has moderate computational

requirements (computations can be carried out using wearable processors).

9 9.1 Context and Relevant Work
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9.2 Data Collection

We used raw pulse oximeter data from the Time of Useful Consciousness study [133]

carried out by NAWCAD, Patuxent River, MD. The study used 45 datasets from 26

volunteers (4 females and 22 males) who provided their informed consent under an

approved NAWCAD IRB human research protocol. The subjects were exposed to a

varying altitude profile ranging from 0 to 18,000 ft, simulated using a Reduced Oxygen

Breathing Device (ROBD) [134]. The profile ascended at 1,000 ft/s to 10,000 ft and

remained unchanged for 10 minutes, then ascended to 18,000 ft at the same rate and

remained there for 20 minutes, and then descended at the same rate to ground level

(0 ft). The volunteers spent up to 20 minutes at the equivalent of maximum altitude

of 18,000 ft, during which time the data from a finger pulse oximeter (Respironics

Novametrix 515B), and two forehead pulse oximeters (Nonin 9847 and Masimo RAD-

87) were recorded. Subjects were exposed to one to three repetitions of the profiles.

9.3 Background

9.3.1 Kalman Filter

We use the standard model of a discrete dynamic system as a first order linear dif-

ference equation,

x(k) = F (k)x(k − 1) +B(k)u(k) +G(k)w(k), (9.1)

where x(k) ∈ Rn is the state of interest at time instant k, u(k) ∈ Rr is a known control

input and w(k) ∈ Rq is a random vector referred to as the process noise. F ∈ Rn×n is

9 9.2 Data Collection
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the system matrix relating past state to the state at time instant k. B ∈ Rn×r defines

the influence of control inputs on the state at time k. The matrix G ∈ Rn×q relates

the process noise to the state at time k. The state observation model is defined as

z(k) = H(k)x(k) + v(k), (9.2)

where z(k) ∈ Rm(m ≤ n) is the observation vector, H(k) ∈ Rm×n is the observation

matrix at time instant k, and v(k) ∈ Rm is the measurement noise.

In this general setup, the optimal filtering problem is to estimate the state x(k)

at every time instant using only the noisy observations z(k). When the estimator

is assumed to be linear in the state variables, the standard Kalman Filter (KF) [12]

is the best linear estimator in the mean squared error sense. The KF formulation

below assumes that the process and measurement noises are uncorrelated, Gaussian

and have zero mean, namely

E[w(k)] = E[v(k)] = 0, ∀k, (9.3)

with corresponding covariance

E[w(k)wT (l)] = Q(k)δkl, (9.4)

E[v(k)vT (l)] = R(k)δkl. (9.5)

Here δ() is Kronecker’s delta. The process and measurement noises are also assumed

9 9.3 Background
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to have no cross correlation, namely

E[w(k)vT (l)] = 0,∀k, l. (9.6)

When the Gaussian assumptions on the measurement and process noises are relaxed,

the KF, though suboptimal, still remains the best linear estimator. A number of

variants of KF were developed to deal with nonlinear systems (Extended KF, Un-

scented KF), and correlated noise (e.g., State Augmentation approach, measurement

differencing). See [13, 14] for additional information about extensions of the KF.

The KF algorithm produces state estimates that minimize the mean-squared esti-

mation error conditioned on a given observation sequence. The estimate of the state

at a time k given all the information up to and including time k will be represented

as x̂(k|k). The estimate of the state at time k given only information up to time k−1

is the one step prediction and is denoted as x̂(k|k−1). The corresponding estimation

error covariances are denoted respectively as P (k|k) and P (k|k − 1). Starting with

the initial estimates x̂(0|0) and P (0|0), the KF estimation algorithm constitutes the

following Prediction and Measurement Update steps:

Prediction of state and variance at time k

x̂(k|k − 1) = F (k)x̂(k − 1|k − 1) +B(k)u(k) (9.7)

P (k|k − 1) = F (k)P (k − 1|k − 1)F T (k)

+G(k)Q(k)GT (k) (9.8)
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The update of state estimate and variance at time k on the basis of predicted state

and variance from previous step and the new observation z(k) is given by

x̂(k|k) = x̂(k|k − 1)

+K(k)[z(k)−H(k)x̂(k|k − 1)] (9.9)

P (k|k) = [I −K(k)H(k)]P (k|k − 1).

[I −K(k)H(k)]T +K(k)R(k)K(k)T , (9.10)

where the Kalman gain K(k) is defined as

K(k) = P (k|k − 1)HT (k).

[H(k)P (k|k − 1)HT (k) +R(k)]−1. (9.11)

The quantity I(k) = [z(k)−H(k)x̂(k|k−1)] is called the innovation sequence. When

the assumptions about process and measurement noise statistical characteristics are

satisfied, the autocorrelation of the innovations sequence has an impulse at zero lag

(white noise).

9.4 Fusion of Oximeter Signals

Quick and reliable detection of the onset of hypoxia is of paramount importance

for efficient delivery of medical assistance to hypoxia victims. The majority of the

current work on hypoxia detection has been focused on developing better stand-

alone oximeters for monitoring blood oxygen saturation levels. Biological signals are

9 9.4 Fusion of Oximeter Signals



152

Figure 9.1: Simulated altitude profile and oximeter readings.

generally noisy and are subject to many unavoidable external factors such as motion

and temperature fluctuations. Therefore, most oximeters when used independently

in non-clinical dynamic settings tend to suffer from inaccuracies. The objective of the

current study is to fuse several oximeter outputs in real time using an appropriately

designed KF to generate an estimate of the blood oxygen saturation level which

would be more accurate and reliable for hypoxia detection than any of the individual

oximeter inputs. Figure 9.1 shows a sample of the collected data obtained from a

particular subject. The top figure is the emulated altitude profile and the bottom

figure is the raw observations (blood oxygen saturation levels in %) collected from the

9 9.4 Fusion of Oximeter Signals
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Figure 9.2: Oximeter noise for a particular subject.

three oximeters. The sampling rate of each oximeter was 60 Hz. The noise samples

in these measurements were assumed to be high frequency and therefore extracted

for each oximeter by low pass filtering the raw signals and collecting the residues.

Figure 9.2 shows the extracted noise from the three oximeters for a particular subject.

These noise samples are approximately zero mean but are temporally correlated. This

property can be observed better through the normalized noise autocorrelations shown

in Figure 9.3. Unlike uncorrelated noise (which has an autocorrelation function with

an impulse at zero lag and negligible magnitude everywhere else), the oximeter noise

samples we observed have wider decaying oscillatory autocorrelations. Moreover, the
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Figure 9.3: Oximeter noise autocorrelation.

statistics of the noise seem to change with time, which in our case correspond to the

level of blood oxygen saturation (in the bottom figure of Figure 9.1, the oximeter

readings tend to have higher variance when the signal level goes below 90%).

9.4.1 Oximeter Noise Model

One of the challenges in developing a proper KF for the the three oximeters is to

incorporate the colored (temporally correlated) measurement noise observed in the

oximeter measurement data in the KF’s formulation and design. Here, we model

the noise as the output of a second order Autoregressive (AR) process driven by

zero mean white Gaussian noise. The decaying oscillations of the autocorrelation
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of the noise samples (see Figure 9.3) motivated our choice of the order of the AR

process (AR(2) process favors change in sign between terms of the process and also

exhibits oscillations). Furthermore, we would use the state augmentation approach (

[13], section 7.2) to incorporate colored noise in the KF formulation. For a l-order AR

model for the colored measurement noise, using state augmentation would result in the

dimension of the system increasing by l ∗M , where M is the number of sensors being

fused. Therefore, higher order AR models would require KF iterations over large

matrices which are computationally costly and may exhibit undesirable numerical

instability. The need to avoid the increase in dimension of system matrices when

higher order AR models are used was another motivation to use an AR(2) model

for the colored measurement noise. Furthermore, simulations showed marginal or no

improvement in terms of least square error, when higher order AR models (order

higher than 2) were used. The AR(2) model for a colored observation signal v(k)

(measurement noise from an oximeter) is

v(k) = a1v(k − 1) + a2v(k − 2) + e(k), (9.12)

where ai for i = 1, 2 are the AR parameters and e(k) ∼ N (0, σ2
e(k)) is zero mean

Gaussian noise input to the AR system. We denote the variance of the colored

sequence v(k) at time k by σ2
v(k). Multiple runs of data were recorded for each subject

for the same altitude profile during the data collection phase. For each subject, data

from a single run were used as a training set to estimate model parameters.

The training set data were used to estimate the AR(2) parameters a = [a1, a2]T in
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(9.12) for each subject by a least squares approach which can be represented through

the Normal equations ([135], Chapter 8, page 225) as follows:

a = (ATA)−1AT b (9.13)

where

A =



v(2) v(1)

v(3) v(2)

. . .

v(n− 1) v(n− 2)


(9.14)

and b = [v(3) v(4) · · · v(n)]T . This estimation scheme was repeated for all the subjects

in the data collection process, therefore providing a parameter set associated with

each test subject. The process of parameter estimation helps in computing subject

dependent noise models but may not be suitable for subjects outside the test set.

As observed before from Figure 9.1, the oximeter noise standard deviations change

(increase) as the observed readings go below 90% blood oxygen saturation level. We

denoted the observation of an oximeter at time k by z(k), and predicted the standard

deviations of the measurement noise at every time instant using a quadratic regression

model

σpred(k) = β1 + β2d(k) + β3[d(k)]2, (9.15)

where the predicted standard deviation σpred(k) at time instant k, is a function of
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d(k) = z(k) − 90; the difference between z(k) (noisy blood oxygen saturation level

measured by an oximeter at time k) and 90% saturation level. The parameters

β = [β1 β2 β3]T are again estimated using the Normal equations. The noise samples

for each oximeter were retrieved after low pass filtering the raw captured signal in

the training set and collecting the residue. The mean of the noise samples were small

enough and for simplicity sake were assumed to be zero. These noise samples were

used as observations in the Normal equations (used to define the matrices A and

b) - for estimating the parameters β. Let us represent the upper and lower bounds

within which the measurement noise standard deviation varies, by Smax and Smin,

respectively. These bounds can be estimated from the predicted standard deviation

σpred(k) (defined in (9.15)) as

Smax = max(σpred(k)),

Smin = min(σpred(k)).

The computed bounds were used to generate a first-order model for the variation of

measurement noise standard deviation versus the difference between the raw obser-

vations z(k) and 90% blood oxygen saturation level, as shown in Figure 9.4.

At a time instant k, the standard deviation of the measurement noise σv(k) can

be estimated as

σv(k) =

[
Smax− Smin

−50

]
(z(k)− 90− 10) + Smin (9.16)
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Figure 9.4: Oximeter noise variation model.

Next, let us denote the autocorrelation of the measurement noise v(k) at lag j

and at time instant k as Rk
vv(j). The expressions for Rk

vv(j) at lags 1 and 2 can be

derived as (see [136], section 5.2 for details)

Rk
vv(1) =

[
a1

1− a2

]
σ2
v(k), and (9.17)

Rk
vv(2) = a1 ∗Rk

vv(1) + a2 ∗ σ2
v(k). (9.18)

The variance of the zero mean Gaussian noise sequence e(k) in (9.12) can then be

estimated using (9.17) and (9.18) as

σ2
e(k) = σ2

v(k)− a1R
k
vv(1)− a2R

k
vv(2) (9.19)
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9.4.2 Kalman Filter Formulation

We aim to develop a KF formulation to estimate the blood oxygen saturation level

by using data from 3 different oximeters. We consider the blood oxygen saturation

level (in %) as the scalar state x to be estimated and define its dynamics with a first

order system as

x(k) = Fx(k − 1) + w(k), (9.20)

where x(k) is the actual blood oxygen saturation level at time instant k. The system

matrix F is considered to be constant, equal to 1. w(k) is the zero mean Gaussian

process noise with variance Q. In other words, we model the evolution of the blood

oxygen saturation level as a simple random walk. Since there are three (3) oximeters

providing readings simultaneously at every time instant k, the measurement equation

becomes

z(k) =


z1(k)

z2(k)

z3(k)

 =


1

1

1

x(k) +


v1(k)

v2(k)

v3(k)

 (9.21)

where zi(k) and vi(k) are, respectively, the observation (noisy blood oxygen saturation

level) and the measurement noise of the ith oximeter for i = 1, 2, 3. We assume

that the measurement noises are not correlated, i.e, E[vi(k)vj(l)] = 0 , ∀k, l and

i, j = 1, 2, 3, i 6= j.

On the other hand, the measurement noise samples vi(k) are temporally correlated

(colored). Colored measurement noise can be handled in multiple ways in the context
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of Kalman filtering. Two of the most popular methods are the state augmentation

approach ([13], section 7.2) and the measurement differencing approach ([137], section

11.2). Here we follow the standard state augmentation approach. It augments the

the actual state vector x(k) in (9.20) with the colored noise samples vi(k) which are

the output of a linear system as defined in (9.12).

The AR(2) model in (9.12) has the state space representation

 v(k)

v(k − 1)

 =

 a1 a2

1 0


v(k − 1)

v(k − 2)

+

e(k)

0

 (9.22)

The representation in (9.22) is used for modeling the measurement noises for all three

(3) oximeters, but possibly with different parameters a1 and a2 for each oximeter.

The original system in (9.20) is then augmented as shown in (9.23).



x(k)

v1(k)

v1(k − 1)

v2(k)

v2(k − 1)

v3(k)

v3(k − 1)


=



F 0 0 0 0 0 0

0 a1
1 a1

2 0 0 0 0

0 1 0 0 0 0 0

0 0 0 a2
1 a2

2 0 0

0 0 0 1 0 0 0

0 0 0 0 0 a3
1 a3

2

0 0 0 0 0 1 0





x(k − 1)

v1(k − 1)

v1(k − 2)

v2(k − 1)

v2(k − 2)

v3(k − 1)

v3(k − 2)


+



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0





w(k)

e1(k)

0

e2(k)

0

e3(k)

0


(9.23)

In (9.23), aij, i = 1, 2, 3 and j = 1, 2 are the AR parameters for the ith oximeter

estimated using (9.13). ei(k) is the input at time instant k for the AR model of the ith

oximeter measurement noise (see (9.12)). The corresponding augmented measurement
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equation becomes

z(k) =


1 1 0 0 0 0 0

1 0 0 1 0 0 0

1 0 0 0 0 1 0





x(k)

v1(k)

v1(k − 1)

v2(k)

v2(k − 1)

v3(k)

v3(k − 1)



(9.24)

The augmented measurement equation in (9.24) no longer has any direct mea-

surement noise, and therefore the matrix R in (9.10) and (9.11) is 0. This can lead

to numerical instability in the KF updating process. A diagonal matrix with a small

trace can be used for R in order to ensure stability and non-singularity of the various

matrices involved [138].

Qa(k) =



Q

σ2
e1

(k)

0 0
σ2
e2

(k)

0

0 σ2
e3

(k)

0


(9.25)

The standard KF, as described by equations (9.7) - (9.11), can then be applied on the

augmented system to obtain the desired state estimate. The covariance matrix for

the augmented process noise vector at time instant k represented as Qa(k) is given
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in (9.25), where σ2
ei(k), i = 1, 2, 3 is the variance of the AR model input noise process

for the ith oximeter as computed from (9.19).

To make sure that the augmented covariance matrix is positive definite, the zero

diagonal elements of Qa(k) can be replaced by a small positive number ε > 0. This

modification does not make appreciable difference to state dynamics since the corre-

sponding rows in the process noise coefficient matrix in (9.23) are zero.

9.5 Model Validation with Synthetic Data

Analysis of the oximeter observations collected from the training set, showed that the

measurement noise for each oximeter is temporally correlated and the variance also

varies depending on whether the observation value is above or below 90% blood oxygen

saturation level. This situation motivated us to use a second order AR process to

model the measurement noise which was then incorporated into the KF using the state

augmentation approach. To test the validity of the assumed noise models, synthetic

blood oxygen saturation level data were generated and corrupted with temporally

correlated noise. The standard deviation of the noise was made to vary as a first

order function of the difference between the true data and 90%.

Observations for three sensors were simulated with colored measurement noise.

Figure 9.5 shows the performance of the state augmented Kalman filter model when

applied on the simulated data. The top figure shows the true signal (simulated blood

oxygen saturation level), the noisy observations from the three (3) oximeters (true

signal corrupted by temporally correlated noise with data dependent variance), and

the KF estimate of the simulated blood oxygen saturation level. The bottom figure
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Figure 9.5: Performance of proposed Kalman filter model for simulated data.

shows the autocorrelation of the innovation sequences. Second order whiteness of a

random sequence can be tested by a statistical test as defined in ([139], page 16-8).

The test involves using the biased estimate of autocorrelation defined as

cy(τ) =
1

N

N−t∑
t=1

y(t+ τ)y(t), τ ≥ 0 (9.26)

to form the test statistic

T =
N

c2
y(0)

m∑
i=1

c2
y(i). (9.27)
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Here the sequence y is zero mean with length N . The parameter m is a chosen

maximum lag for whiteness testing. The test statistic T is distributed chi-squared,

χ2(m) (χ2 with m degrees of freedom) if the sequence y is zero mean white. For a

fixed significance level, the test statistic can be compared to a threshold to validate

the second order whiteness. If T is greater than the threshold, the sequence y is

declared non-white at the chosen significance level.

The test described above, when applied on the innovation sequence obtained after

Kalman filtering the simulated data, declared the innovation sequences to be second

order white at 0.05 significance level. The maximum lag m was chosen to be 100.

The whiteness of the innovations statistically validates the functioning of the KF

with the proposed noise models on simulated observations corrupted with colored

measurement noise with time varying variance.

9.6 Filter Performance on Real Data

A standard KF was implemented on the augmented system defined by (9.23) and

(9.24) with original process noise variance Q = 0.005. The AR model parameters

and noise variances were estimated using (9.13) and (9.19) where the matrix A was

built using the noise samples extracted after low pass filtering of the training data.

For each subject, the estimation process was repeated for each oximeter to generate

three(3) sets of parameters for the 3 corresponding oximeters. Figure. 9.6 shows the

Kalman filtered estimate of the blood oxygen saturation level (in black line) given the

raw observations from the three oximeters for a particular subject. The process noise

variance Q was assumed to be a moderate 0.005, reflecting the average confidence on
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Figure 9.6: Kalman filter estimate and raw oximeter readings for blood oxygen
saturation level.

the state dynamic model.

Since the random walk model in (9.20) is one of the first attempts to capture the

dynamics of the blood oxygen saturation level, the choice of a moderate process noise

variance is probably prudent.

The performance of the filter can be assessed by analyzing the autocorrelation

of the innovation sequences. The top figure in Figure 9.7 shows the autocorrelation

of the innovations obtained by applying the Kalman filter on simulated data (recall

that the innovations from simulated data were statistically declared white). The

middle figure provides the autocorrelation of the innovation sequences obtained after

9 9.6 Filter Performance on Real Data
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Figure 9.7: Autocorrelation of innovation sequences for three sensors (Real and
Simulated).

Kalman filtering of the real data using the proposed colored noise models. The

bottom figure shows the autocorrelation of the innovation sequences when KF was

applied on the real data with the measurement noised assumed to be white. The

colored noise model appear to significantly improve the filter performance. Even

though the innovation sequences generated from the real data are not white, there is

significantly less correlation among innovation samples at higher lags when compared

to the autocorrelations shown in Figure 9.3.
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9.7 Discussion and Future Work

We proposed the fusion of multiple oximeter signals using a Kalman filter where the

colored measurement noise was modeled using a second order AR process. The re-

sults are not perfect (autocorrelation of the innovations not white); it would probably

be useful to try other models of correlated noise. For instance a multiplicative noise

model like the Autoregressive Conditional Heteroskedasticity (ARCH) [140], [141] can

be attempted to model the oximeter measurement noise. Time varying autoregres-

sive models (TVAR) may also be used. Other techniques like particle filtering ([13],

Chapter 15) might be used to take into account non-Gaussian noise distributions.

The model parameters were derived using training data sets for each subject. In

other words, for each subject tested in the data collection process, an individual set

of parameters was estimated. These parameters however, may not be suitable for

subjects not included in the data collection process. An on-line learning algorithm

capable of reliably estimating model parameters on the run using incoming data from

multiple sensors would be more useful as part of a generic real time hypoxia detection

scheme. To enhance the design of such generic systems, future work could include

improving the noise model, incorporating multi modal sensing, and developing pre-

filtering steps based on human dynamics.

Our study assumed that the state dynamics are autonomous (zero input). However

an attempt can be made to derive a relation between altitude and blood oxygen satu-

ration level which could then possibly be incorporated in the KF formulation with the

altitude variation being the input. This effort may also pave the way to incorporating
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information from multiple heterogeneous sensors like altimeter, accelerometers, anti-

G-suit pressure (for fighter pilots), in a combined framework which can potentially

detect the onset of hypoxia more reliably in real time. The end combined result can be

further used as an activation trigger signal to control hypoxia mitigation technologies

as well.

In addition, Figures 9.2 and 9.3 show a strong similarity in noise characteristics

for the three oximeters. This similarity might be due to some physiological processes

in the body and perhaps is not a property of the oximeters. This observation needs

to be investigated further.
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10: SUMMARY

A multitude of issues under the context of distributed detection and estimation were

presented in this thesis. Both Hard and Hard/Soft fusion scenarios were investigated

and multiple schemes for tractable fusion were proposed. In hard sensor fusion,

we proposed a new alternative algorithm that computes the fusion center and local

detector operating points for a binary hypothesis decision fusion problem. Unlike the

more traditional PBPO approach, the proposed algorithm does not require solutions

of nonlinear coupled algebraic equations and is also guaranteed to achieve global

optimality. A number of simulated example cases demonstrated the degree by which

the proposed algorithm outperformed the traditional approach.

In Hard/Soft sensor fusion, we considered the special situation in distributed de-

tection scheme where apart from hard sensors, humans also act as information sources.

The literature at present lacks well defined hard/soft fusion algorithms and there is

even more scarcity of practical examples. The hard/soft fusion research discussed in

this thesis attempted to alleviate this scarcity of well defined hard/soft fusion schemes

and presented practical and implementable frameworks and algorithms. Techniques

from evidence theory and belief calculus were used to develop a versatile hard/soft

fusion framework. The proposed scheme was tested against a variety of simulated

example scenarios to demonstrate the range of applicability of the algorithm. Fur-

thermore, an original tree based hierarchical structure was developed to represent a
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class of tentative and equivocal human opinions called Conditionally Refined opinion

(CRo). Rigorous mathematical algorithms for belief propagation across the levels of

hierarchy were proposed as well. Several algorithms were developed for both soft/soft

and hard/soft fusion of information represented using a CRo.

The final part of the thesis discussed applications of distributed detection tech-

niques on two real world problems. We employed parallel binary decision fusion

algorithms to differentiate between legitimate and unauthorized computer users. A

wide variety of biometric sensors which monitored behavioral characteristics of the

user were chosen and formed the bank of local detectors. ROC curves showed the

advantage of fusion through the increased detection performance as compared to in-

dividual sensors/detectors. In the second case, we used state augmented Kalman

filter to estimate hypoxia by measuring blood oxygen saturation levels in various in-

dividuals exposed to high altitudes. In the process, statistical pulse oximeter noise

models were developed. The study showed significant improvements in the estimated

saturation levels and possibly could be used as the ground work to validate and build

a robust real time hypoxia detection system.
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Appendix A: Multi-Hypothesis Detection Probability Fusion

Krzystofowicz et al. in [26] proposed a Bayesian detection model for a cluster of

distributed sensors where each sensor provides a detection probability instead of an

observation vector or a local decision. The premise of the problem handled was fusion

of such detection probabilities in a binary hypothesis space using Bayes’ theorem. In

this appendix a multiple hypothesis generalization of the same rule is derived.

Let Ω = {H1, ..., Hm} be an exhaustive m − ary hypothesis space on which de-

cisions are to be made. A cluster of N sensors observe a situation and each sensor

sends out a vector of detection probabilities for each of the hypothesis. For the ith

sensor, the vector would be represented as

Gi = [gi(H1), ..., gi(Hm)]T

with i = 1, ...N . For convenience sake, we drop the argument Hi and represent Gi as

[g1i, ..., gmi]
T . Note that, in every Gi, each element is a detection probability on an

exhaustive set and hence the following holds ∀i = 1, ..., N

m∑
j=1

gji = 1. (A.1)

Every vector Gi contains m components which are non-negative and satisfy (A.1).

This makes the set of all such vectors form a m−1 dimensional simplex residing in Rm.
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Each point Gi in the simplex can be thought of as a probability mass function since

its components are non-negative and sum to 1. The Dirichlet distribution defined as

a distribution over probability mass functions of length m can be used to model the

vectors Gi, i = 1, ..., N . For each vector Gi, let αi = [α1i, ..., αmi] be the parameter

vector with α0i =
∑m

j=1 αji. Then Gi is Dirichlet distributed with the parameter set

αi and the distribution function given as

fi(Gi;αi) =
Γ(α0i)∏m
j=1 Γ(αji)

m∏
j=1

(gji)
αji−1. (A.2)

Dirichlet distribution is the multivariate generalization of the Beta distribution and

therefore the marginal distributions of the components of the vector Gi will be Beta

distributed as follows

gij ∼ Beta(αji, α0i − αji). (A.3)

Let us define the m×N matrix G as

G = [G1 G2 ... GN ].

Expanding the matrix G, we have

G =



g11 g12 ... g1N

g21 g22 ... g2N

...

gm1 gm2 ... gmN


(A.4)
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We note that each row of the matrix G represents the detection probabilities obtained

from all the N sensors toward a particular hypothesis which can be identified by the

row number. Let us assume the prior probabilities of the m hypotheses arranged

in order to be given by P (H1), P (H2), ..., P (Hm). For an arbitrary row, say jth,

j = 1, ...,m row of the matrix G, the joint probability distribution would be given by

ξj(gj1, gj2, ..., gjN) =
m∑
k=1

f(gj1, gj2, ..., gjN |Hk)P (Hk). (A.5)

Using Bayes’ rule, the posterior detection probability of hypothesis Hj conditioned

on the detection probabilities g1j, g2j, ..., gnj can be obtained as follows

ηj(gj1, gj2, ..., gjN) = P (Hj|gj1, gj2, ..., gjN)

=
f(gj1, g2j, ..., gjN |Hj)P (Hj)∑m
k=1 f(gj1, gj2, ..., gjN |Hk)P (Hk)

=

[
1 +

∑m
k 6=j f(gk1, gk2, ..., gkN |Hk)P (Hk)

f(gj1, gj2, ..., gjN |Hj)P (Hj)

]−1

(A.6)

Assuming the local detection probabilities are independent conditioned on the hy-

potheses, we have

f(gj1, gj2, ..., gjN |H) =
N∏
i=1

f(gji|H). (A.7)

Using (A.7) in (A.6) we have

ηj(gj1, gj2, ..., gjN) =

1 +

∑m
k 6=j

[∏N
i=1 f(gki|Hk)P (Hk)

]
∏N

i=1 f(gji|Hj)P (Hj)

−1

. (A.8)
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The net resultant posterior detection probability vector would then be

η = [η1, η2, ..., ηm]T . (A.9)

Appendix A Multi-Hypothesis Detection Probability Fusion
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