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I n high school, Ashley planned to
become a graphic designer. How-
ever, when attempting to tackle
flash programming in the graph-
ics design course, frustration set

in. Although graphic designers use
Flash, the original WYSIWYG pro-
gramming style has largely given way
to a Java-like language aimed at soft-
ware developers. Then the need to do
Web programming arose as well.
Ashley decided that learning Flash and
Web programming was too great a
barrier, and instead majored in art. 

What were the real causes of
Ashley’s difficulties? It’s possible that
a problem-solving style, learning style,
or lack of confidence made learning
these software tools seem more formi-
dable than it would to someone else. 

Gender differences in these and
other domains, such as psychology,
marketing, and neuroscience, strongly
suggest that females process informa-
tion and solve problems in different

ways than males do.1,2 We have been
investigating whether software design
should take these sorts of gender dif-
ferences into account. 

Recognition of the possibility that
software could erect barriers to
females has only recently emerged.1,3

There is, however, research on other
relationships between gender and
computers, such as on gender differ-
ences with computer display hard-
ware,4 gender-oriented marketing
strategies for Web-based shopping,5

and computer game software content.6

Other work has focused on factors
affecting females’ interest in computer
science as a career choice, including the
academic climate, educational strate-
gies, human resource management,
education, and social and cultural fac-
tors7-9—just about everything except
how the software works.

We use the term gender HCI
(human-computer interaction) to refer
to research into how software relates

to gender differences. Our particular
focus is on how gender-neutral soft-
ware works, not on gender-oriented
content. Specifically, we have concen-
trated on software aimed at support-
ing everyday users doing problem
solving. Examples of this sort of soft-
ware include spreadsheets, CAD sys-
tems, macro builders, educational
software authoring systems, and
media authoring systems. 

The issues involved in supporting
both genders’ use of problem-solving
software are important for two rea-
sons. First, such experiences could
impact the pipeline of women in infor-
mation technology, essentially closing
it off. If a female’s early experience
with software that is supposed to sup-
port her problem-solving efforts is
negative and discouraging, how likely
is she to eventually choose a career in
information technology?

Second, the productivity of end-user
problem solvers, regardless of whether
they might someday become software
developers, also raises concerns. If
they fail to take relevant gender dif-
ferences into account in the design of
problem-solving software, developers
can introduce barriers into the soft-
ware that interfere with the success of
half the population the software is
intended to support. 

INVESTIGATIVE METHOD 
Our method for conducting this

investigation consists of four steps: 

1. Draw from theory and previous
empirical gender-difference work
from other domains—such as
computer confidence, perceived
risk, information processing, com-
puter gaming, and technology
adoption models—to hypothesize
gender issues and their causes that
could arise from gender-based dif-
ferences in the use of problem-
solving software. 

2. Use empirical methods to investi-
gate whether these issues do actu-
ally arise in problem-solving
software. 

3. Use the results of the first two steps
along with qualitative empirical
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work involving low-cost proto-
typing to derive and refine ap-
proaches to address the issues. 

4. Use quantitative empirical meth-
ods to evaluate the approaches’
effectiveness. 

Several of the hypotheses we devel-
oped in the first step of our investiga-
tive method predict that in a software
environment with problem-solving
features, gender differences will have
a significant impact on the adoption
and use of these features, due at least
in part to differences related to risk
perception and confidence.

Gender differences:
Is there a case?

Gender differences regarding com-
puter confidence have been widely
studied, revealing that females—both
computer science majors and end
users—have lower confidence than
males in their computer-related abili-
ties.1,8 Of particular pertinence is the
concept of self-efficacy,10 a person’s
judgment about his or her ability to
carry out a specific course of action to
achieve a goal. 

According to self-efficacy theory,
this trait is critical in problem solving
because it influences the use of cogni-
tive strategies, the amount of effort put
forth, the coping strategies adopted in
the face of obstacles, and the final per-
formance outcome. This, combined
with other research that found females
more risk-averse than males, implies
that females’ low self-efficacy regard-

ing computing tasks will render them
less willing to explore and adopt new
features. 

We began our investigation into gen-
der’s possible impact on software-
based problem-solving activities in
Experiment 1, a qualitative reanalysis
of feature usage from data collected in
a prior experiment unrelated to gender.
We recruited this study’s participants,
all noncomputer science students, pri-
marily from the business school.

We found that differences in feature
activity showed a striking tendency to
align by gender. For example, Figure 1
shows the activity profiles of a male
and a female user, both fairly repre-
sentative of other experiment partici-
pants of the same gender. As the figure
shows, overall, the males’ amounts
and types of feature usage differed
noticeably from those of the females. 

Feature acceptance
Following up on Experiment 1,

Experiment 2 was a quantitative lab-
oratory study in which 27 male and
24 female end users debugged spread-
sheet formulas as their problem-solv-
ing task.11 The research spreadsheet
system contained a variety of features
that have previously been shown to
help end users test and debug spread-
sheet formulas.12

We partitioned the features into
three categories for analysis: familiar
features such as editing formula text
boxes, features taught during the
experiment’s tutorial such as check-
marks and arrows, and unfamiliar

features that were untaught such as
Xs. We sought to determine how
much males and females used these
three feature types, the relationships
between their feature usage and their
self-efficacy, and the implications of
these findings for task success.

Table 1 shows several statistical
results from this experiment. There
were indeed gender differences in self-
efficacy, with female results signifi-
cantly lower. Further, females were
significantly slower to try out the new
features and also were significantly
less likely to adopt them for repeated
use. Females gravitated toward the
familiar feature of editing formulas,
whereas males were more likely to try
less familiar features early.

Interestingly, the relationship be-
tween self-efficacy and feature usage
differed for males and females. For
females, low self-efficacy predicted
low effective feature usage. For the
males, however, self-efficacy was not
a predictor.

An obvious question then arises:
Were the females correct in believing
they had such limited abilities? The
evidence does not suggest this; rather,
it points toward females’ low self-effi-
cacy and their low usage of the new
problem-solving features as hin-
drances to their performance. 

First, we found no significant differ-
ence in the males’ and females’ perfor-
mance in fixing the bugs provided.
However, females proved significantly
more likely to introduce new bugs that
they never fixed. This seems tied to
their heavy reliance on formula editing
instead of the other problem-solving
features—formula editing is the only
way users can introduce new bugs. 

Second, females agreed significantly
more than the males with this state-
ment: “I was afraid I would take too
long to learn [the untaught feature].”
However, despite the gender differ-
ences in expectation of their ability to
learn the untaught feature, the sub-
jects showed no significant gender dif-
ferences in their actual learning of it.
It appears that the females perceived
inappropriately low self-efficacy,
which inhibited their use of a new fea-
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Figure 1. Activity profiles of one male and one female in a problem-solving software 

environment show that the male performed more actions and used more features than 

the female did.
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everything because I feel like it. I
don’t even know if this is really nec-
essary, but it’s fun.

In fact, these gender differences in
views toward the same feature are
consistent with reports of gender dif-
ferences regarding motivation for
using technology, majoring in com-
puter science, and how children talk
about the use of technology.6,8 In par-
ticular, the male participant’s com-
ment about using the guards “because
I feel like it” is similar to oft-reported
reasons males give for majoring in
computer science: technology for the
fun of it. 

The tinkering factor
Male M4’s playful experimenta-

tion—tinkering—is often encouraged
in educational settings because of its
expected educational benefits.13 Tinker-
ing with problem-solving software
could yield similar positive benefits if it
encourages users to incidentally and
iteratively gain knowledge of the soft-
ware’s features, as M4 did. But the edu-
cation literature reports that tinkering
is a strategy that males adopt more
often than females,14 possibly leaving
females without the advantages they
could gain from this strategy. 

An exploratory analysis of Experi-
ment 2’s data showed that males did
significantly more tinkering with the

ture and in turn prevented them from
receiving its benefits. In effect, their
inaccurate assessment of ability be-
came a self-fulfilling prophecy.

Attitudes toward new features 
Several other experiments—both

qualitative and quantitative—that we
have conducted all revealed some
form of gender difference in self-effi-
cacy. The qualitative experiments con-
sistently illustrate a common attitude
in the females: low self-efficacy seems
to hinder their ability to cope with
new, unfamiliar features. 

For example, Experiment 3 in-
volved a qualitative think-aloud study
that added a guards feature to the
research environment, with red circles
akin to those of Excel’s data valida-
tion feature, which circles out-of-
range values. The comments of female
participant F1 exemplify the attitude
that has consistently emerged from
females with low self-efficacy in these
experiments: 

What’s this little arrow doing?
They’re everywhere! So, I need to
take this—oh, my goodness. Now
what’s happening? … too much
happening. 

Experiment 3 also revealed that the
males and females perceived features
differently. For example, while using
the guards feature, female F3 said, 

I don’t think that you can get a -5 on
the homework. No, it can’t be. So 0
to 100 [is the guard I’m entering],
ok. Ok, hmm … So, it doesn’t like
the -5 [...]. They can get a 0, which
gets rid of the angry red circle. 

In contrast to F3’s focus on the guard
feature as a way to get her spreadsheet
to work correctly, male M4 initially
focused on the feature itself: 

The first thing I’m going to do is go
through and check the guards for
everything, just to make sure none
of the entered values are above or
below any of the ranges specified.
So, I’m going to put guards on

untaught feature than females did,
which might explain the males’ greater
interest in it. Given the strongly sug-
gestive evidence from Experiments 2
and 3 of tinkering differences by gen-
der, we embarked on Experiment 4 to
investigate whether the self-efficacy
factor would discourage females from
tinkering and whether this would be
tied to negative outcomes for them. 

Experiment 4’s design15 resembled
Experiment 2’s, but added a compar-
ison with a second software environ-
ment that added features intended to
provide greater support. We term the
second software environment high
support, and the original software
environment low cost. For both gen-
ders, we measured participants’ tin-
kering, self-efficacy, and effectiveness
in the high-support and low-cost 
environments. 

The results revealed several differ-
ences between the genders in their tin-
kering practices and how these related
to self-efficacy and to effectiveness.
Males tended to be comfortable with
tinkering, which seemed to match
many of their problem-solving styles.
But this was not wholly a good thing
for the males: they also had a tendency
to tinker to excess. 

Figure 2 depicts these tinkering ten-
dencies and their relationships to
effective outcomes. On the female side
of Figure 2, starting at the bottom, the

Table 1. Experiment 2’s statistical results, with bold values showing statistical 

significance at p <.05.

Result type Outcome  

Self-efficacy Mann Whitney: p <.018 (males higher) 
Self-efficacy predicts effective feature usage: Linear regression (males no, females yes):

Type taught Males: p <.551, F(1,25)=.365, R2=.015
Type untaught Females: p <.046, F(1,22)=4.52, R2=.177 

Likelihood of initially trying new features: ANOVA (males used earlier):
Type taught Taught: p <.005, F(1,49)=8.69
Type untaught Untaught: p <.073, F(1,40)=3.40 

Likelihood of adopting new features for repeated use: Various methods (males more):
Type taught ANOVA: p <.03, F(1,49)=4.971
Type untaught Fisher’s exact test: p <.01

Bugs fixed Mann Whitney: p <.651 (no difference) 
Bugs introduced Fisher’s exact test: p <.015 (females more)
Thought features would take too long to learn Mann Whitney: p <.017 (females more) 
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tiveness suffered. Research from the
education field has shown that if stu-
dents are given a wait time of three
seconds or more after a classroom
response, their critical thinking about
that response improves.13 We found
similar results: Pauses after any action
were predictive of more understand-
ing and more effective use of problem-
solving features. 

Second, the differences in the soft-
ware environments affected male and
female tinkering behavior differently.
Females tinkered about the same
amount in the two software environ-
ments, but males’ tinkering—roughly
comparable to the females’ in the high-
support environment—skyrocketed in
the low-cost environment, where tin-
kering was easy to do and males were
willing and eager to tinker to excess.
This was not the case for females.

The results suggest that tinkering in
either environment helped females
gain valuable information about the
features, leading to positive outcomes.
However, there were both positive
and negative ties between tinkering
and females’ self-efficacy. 

As with our other experiments, pre-
task self-efficacy was an important
predictor of effectively using the fea-
tures. One type of tinkering in the
high-support environment—a pattern
of intermittently tinkering in fits and
starts—was predictive of a drop in

rectangle depicts the amount of tin-
kering. Regardless of software envi-
ronment, increased tinkering was
significantly predictive of females’
testing effectiveness, as the red arrow
pointing up shows. Following the next
red arrow up shows that, just as in the
previous study, increasing testing
effectiveness was significantly predic-
tive of increased bugs fixed for the
females. 

Moving across to the male side of
Figure 2, the predictive relationship
between effective testing and bugs
fixed also held true for the males, but
unlike the females, the tie between
males’ tinkering and testing effective-
ness was insignificant. Further, males’
tinkering was inversely predictive of
bugs fixed. 

The predictive relationship between
effective testing and bugs fixed also
held true for the males, but unlike the
females, the tie between males’ tin-
kering and testing effectiveness was
insignificant. Further, males’ tinkering
was inversely predictive of bugs fixed. 

The differences between the males’
and females’ tinkering behaviors, and
the benefits that derived from them,
appear to be tied to two factors. First,
some males exhibited a tendency to
tinker without pausing much. In fact,
males paused significantly less often
than the females, and, when they did
such pauseless tinkering, their effec-

post-task self-efficacy. The more the
females tinkered intermittently in this
environment, the larger their drop in
self-efficacy. 

One possible interpretation of the
findings from Experiments 2 and 3 is
that as the females received increased
feedback from the high-support envi-
ronment through their tinkering, they
became more convinced that they
would not be able to master its more
complex features. Another possibility
is that in the less complex environ-
ment, there was suggestive evidence
linking increased tinkering frequency
to increased self-efficacy for the
females after the task.

This suggests that females’ self-effi-
cacy could be more sensitive than
males’ to tinkering with software in
which the user interface seems to con-
tain obstacles, such as excessive com-
plexity. The males did not experience
changes in self-efficacy tied to tinker-
ing in either environment. 

The males’ biggest tinkering-related
problem was that too much tinkering
interfered with their effectiveness. The
females’ biggest problem was that,
while they found tinkering helpful in
some circumstances, under others it
interfered with their self-efficacy. 

GUARDING AGAINST 
SOFTWARE BARRIERS 

To maintain its creative edge, an
organization must encourage a diver-
sity of ideas. This holds true for the
employees who create the software an
organization builds, and also for the
employees who use software in prob-
lem-solving activities—like Ashley. 

In fact, Ashley is a male. His story is
true. Ashley went on to a college
career in art, and ultimately won the
most prestigious academic award his
university bestows. He enjoys art, but
regrets his decision not to pursue
graphic design. Now that Ashley has
graduated, the barriers to making the
switch back to graphic design loom
even higher because he no longer has
access to the educational support
structures available to students. Still,
at home after work, he strives to over-
come the barriers that prevent infor-
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Figure 2.Tinkering effectiveness. Males’ and females’ tinkering affected their debugging

effectiveness in unexpectedly opposite ways.The direction of the stylized arrows depicts

a measure’s increase or decrease, while the red arrows show the significance of the

regression relationships between measures.



mation technology from being a good
fit to his strengths.

Although gender differences in self-
efficacy, motivation, problem-solving
styles, learning styles, and information-
processing styles are all implicated in
this issue, we must remember that no
single female will likely have every
trait statistically associated with
females, nor will any single male likely
have every trait statistically associated
with males. For example, some males
process information in the compre-
hensive style statistically associated
with females, and some females
process information in the more lin-
ear style associated with males. Thus,
designing software in ways that sup-
port these differences does not penal-
ize either gender—it helps everyone.

A mple evidence suggests that gen-
der differences exist in the ways
people solve problems. Our

results show that these differences are
highly relevant to users’ ability to gain
benefits from the features that exist in
software. As we continue this work,
we hope to ultimately identify specific
features and attributes of software
that present barriers so that alterna-
tive choices can be made available to
the software users. ■
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