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Abstract 

 

The lymphocytes of an organism harbor a diverse collection or repertoire of antigen 

receptors (antibodies (Ab) on B cells and T cell receptors (TCR) on T cells). This diversity of the 

adaptive immune repertoire is important for effective immune defense. In my thesis, I have 

developed computational methods to study the diversity and landscape of the immune repertoire 

using data from next-generation sequencing experiments and have applied these tools to the study 

human B cells in the blood and in different tissues. The first tool I developed was an efficient and 

accurate means of identifying the nearest germline-encoded variable (V) region gene in Ab and 

TCR rearrangements using anchoring sequences. I used this method to demonstrate that the length 

of the V gene sequence and its level of somatic mutation influenced the reliability of V gene 

assignment. Only with adequate V gene assignment can closely related sequences be reliably 

grouped together into clones (i.e. sequences from lymphocytes that likely derive from a common 

progenitor cell). With this method, I contributed to a computational pipeline that can process 

millions of antibody or TCR sequences in hours to days, unlike earlier methods. I used this 

method to identify and track expanded B-cell clones through the human body, creating an atlas of 

clonal connections between the blood, bone marrow, spleen, lung, mesenteric lymph node, 

jejunum, ileum and colon. To power the analysis to study clonal overlap between the tissues, I 

performed rarefaction analysis on biological replicates to determine how many replicates and how 

large the clones needed to be to have confidence in clones being present or absent in the different 

tissue sites. To quantify the level of overlap between two-tissue sites, I used the cosine statistic 

and showed that my analysis was robust to different measures of clones and clone size. To 

visualize the tissue distribution of large clones, I created line-circle plots, in which clones are 

displayed as lines with circles corresponding to the tissues. The sizes of the tissue circles were 

proportional to clone copy numbers and the colored wedges within the circles indicated the 

fraction of sequencing libraries that contained sequences from the clone. My analysis revealed the 
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clones tended to partition into two large networks in the human body, one in blood-rich tissues 

such as the bone marrow, spleen and lung, and another network that was more separated from the 

blood, in the gastrointestinal tract. I also used methods to visualize and characterize the 

diversification within B-cell clones due to somatic hypermutation, including lineage tree analysis, 

the analysis of four-fold silent mutations (mutations that do not change the amino acid sequence), 

methods for studying intermingling of lineage tree branches (clumpiness) and the use of Bayesian 

modeling approaches. I used these methods to show that GI tract clones in the human body harbor 

higher levels of somatic hypermutation and that there is extensive sharing of sequence variants 

within individual clonal lineages between different sites within the GI tract. Finally, I studied 

selection of mutations within clonal lineages over time in patients with an autoimmune disease 

(Sjogren’s syndrome) and showed that large clones that were resistant to B-cell depletion therapy 

were under negative selection. Together, my analysis tools provide a useful means to 

systematically and quantitatively characterize diversity at the population (repertoire) level and at 

the clonal level. These tools can be applied to future immune repertoire profiling to study immune 

responses to vaccines, cancer and infectious disease.  
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Introduction 

 

Immune diversity 

The collection of B or T cells (lymphocytes) in an organism is referred to as the immune 

repertoire. The B-cell repertoire in an adult human is estimated to exceed 100 billion different 

specificities [1] and similar diversity has been described for T cells [2]. This diversity of the 

repertoire is important to immune functions [3-5]. It allows the immune system to respond fairly 

quickly to almost any foreign antigen [6]. Quantifying repertoire diversity is useful for evaluating 

immune competence in health and disease. For example, limited repertoire diversity has been 

associated with frailty and old age [7] and oligoclonal T cell responses are associated with less 

effective anti-tumor immunity [8]. The expansion of cells that derive from a common precursor 

(e.g. clones) is important in malignant conditions such as lymphoma and leukemia [9, 10] as well 

as in pre-malignant conditions such as MGUS and MBL [11, 12] or in autoimmunity, where large 

clones may be pathogenic. Finally, the diversity of antigen-specific cells is useful for monitoring 

immunity to vaccines [13]. Hence, we wish to know if the immune system is functioning well by 

measuring the diversity of the immune repertoire.  

Diversity of the B-cell immune repertoire is generated in two rounds of diversification 

and selection [3, 14, 15]. The first round occurs in the bone marrow, where the variable regions of 

antibodies are assembled through a process of V(D)J recombination that is carried out by 

recombinase activating genes (RAG1 and RAG2, [16]). First the diversity (D) and joining (J) gene 

segments are combined and then the upstream variable (V) region gene is rearranged to DJ. In 

addition to the combinatorial diversity of different V genes (45-50 in humans), D genes (27) and J 

gene (6) [17], there is variation at the junctions between the recombined gene segments. This 

junctional modification occurs by various mechanisms including addition of nucleotides by 

terminal deoxynucleotidyl transferase (TdT) [18], palindromic nucleotide additions (mediated by 
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RAG) and exonucleolytic nibbling (mediated by non-homologous end-joining machinery) [19]. 

Then, if the heavy chain is functional, the light chain is rearranged. Light chains come in two 

flavors, kappa and lambda. If kappa rearrangement fails to produce a useful or non-autoreactive 

antibody, the locus is deleted and rearrangement of lambda occurs (reviewed in [20]). Light chain 

rearrangement is also mediated by RAG but only involves V genes and J genes, no D gene. Also, 

TdT expression is much lower during light chain rearrangement, so there is less junctional 

diversity. Further combinatorial diversity of the antibody (and TCR) repertoire is achieved by the 

pairing of different heavy chains to light chains to form the receptor. The final product, in the case 

of the B cell, is an IgM antibody molecule, which is a tetramer, consisting of two identical heavy 

chains and two identical light chains. Only one kind of antibody or TCR is expressed on most 

lymphocytes (allelic exclusion), allowing selection of a lymphocyte to be coupled to its specific 

receptor.  

The second round of diversification only occurs in B cells and consists of DNA point 

hypermutation (known as somatic hypermutation, SHM) of the antibody variable region during an 

immune response. SHM is carried out by the enzyme AID (activation-induced cytidine deaminase) 

[21] and, when coupled with selection for improved binding to antigen, results, over time, in 

affinity maturation (or improved antibody binding). SHM leads to intra-clonal diversification and 

can be used to study the dynamics of an immune response. Over time mutations accumulate, so 

the level of mutation can be used as a surrogate marker for how long an immune response has 

been going on. Furthermore, the nature of the mutation (whether it results in a change of the amino 

acid sequence) provides insight into selection of the clone. In general, B cells that are under 

positive selection have mutations in the complementarity determining regions (CDRs), or the parts 

of the antibody that are important for binding to the antigen, whereas they tend to have silent 

mutations in the framework regions (the conserved regions of the antibody that are important for 

maintaining its structure), reviewed in [22]. 
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Repertoire diversity is thus composed of different expanded clones (inter-clonal 

diversity) and (for antibodies only) of sequence variants within individual clones (intra-clonal 

diversity). Therefore, to characterize B-cell repertoire receptor diversity we need to understand the 

diversity between and within B cell clones. Because the immune repertoire is so large, we need to 

collect massive data sets to be able to do this. Fortunately, with the advent of next-generation 

sequencing (NGS), we are able to collect data on immune repertoires ranging from hundreds of 

thousands to millions of cells [23]. However, even with this technology, we still are usually 

undersamping the true diversity of the immune system. Moreover, since we cannot usually track 

the development of clones over time, we must infer the genes the clone started out with from 

cross-sectional measurements of the repertoire. In this cross-sectional view of the repertoire in the 

blood, for example, some B-cell clones are newly formed (e.g. transitional B cells that are new 

bone marrow emigres) and have antibody V genes that are identical to the germline-encoded 

sequence, while other B cells are more mature (harboring somatic hypermutations, due to antigen 

exposure and selection). To complicate matters, NGS has an error rate of ~1% [24], so some of the 

sequences may appear to be different from germline due to sequencing error, or less commonly 

PCR error, rather than bona fide SHM.  

 

Identifying Clones 

The unit of immune selection is the clone, or a collection of cells with highly similar 

antigen receptors (Ab or TCR) that derive from a common progenitor cell. To study clones and, by 

extension, immune repertoires, we need to be able to reliably group their Ab or TCR sequences 

into clones. To do this, we identify the germline source of each sequence and divide them into 

clones based on V and J gene identity and similar CDR3 sequences. The CDR3, or third 

complementarity determining region, is the portion of the antibody (or TCR) heavy chain 

sequence where the V, D and J genes come together. Thus the CDR3 is the most diverse part of 

the antibody structure and is the most reliable part of the sequence to serve as a clonal 
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“fingerprint”. For the analysis of bulk populations of cells, we focus on the heavy chain because it 

has the most diverse CDR3 and, in the case of antibodies, it tends to harbor higher levels of SHM 

than the light chain. If we have data from single cells, we can use both the heavy chain and light 

chain sequences (paired) for clonal identification. After we have divided the sequences into 

clones, based upon their antibody sequences, we can determine sufficiency of sampling for clone 

detection and, we can analyze the diversity between clones and within clones.  

 

V gene assignment 

First, we need to identify the germline source of each sequence to group them into clones. 

The sequence data we get lack the information of the original germline gene. Thus, we need to 

identify the sequence and associate it with the closest germline gene in terms of the number of 

mutations [25, 26]. We assume that the germline gene with the fewest mutations compared to the 

sequence will be our best guess as to what the actual gene is. However, some germline genes are 

very similar to each other, especially if they derive from the same gene family [17], so our second 

best guess for the closest corresponding germline V gene may be only slightly worse or even 

indistinguishable from our first guess (“V-ties”). This issue is worsened if our sequences are more 

mutated and/or shorter in length. Thus, we need a method that can distinguish between the true 

mutation from the germline and quantify the differences. 

 

VH replacement and footprints 

During receptor editing, heavy chain or light chain V regions of self-reactive receptors 

can be modified by further gene rearrangement (reviewed in [20]). In the case of the antibody 

heavy chain, an upstream VH gene can invade into a pre-formed V(D)J rearrangement on the same 

chromosome via a cryptic heptamer that resides near the 3’ end of ~90% of human VH genes. This 

type of editing rearrangement is called VH replacement. During VH replacement, sometimes the 
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rearrangement can leave a “footprint” of the old V gene at the 3’ end (downstream of the cryptic 

heptamer), resulting in elongation of the framework region 3 (FWR3) sequence of the newly 

formed V region [27]. Since VH replacement cannot be directly observed in a normal immune 

repertoire, footprints are an indirect indicator of VH replacement. However, given the similarity of 

the FWR3 region among germline VH genes, it is not always possible to determine which VH 

gene was there initially, or if the altered sequence is even due to VH replacement at all.  

 

B cell selection 

As described above, the diversity of B cells is first established in the bone marrow by 

combining randomly selected V, D and J genes, pairing different heavy and light chains and 

through diversification at the junctions between the recombining gene segments. In the periphery 

(secondary lymphoid organs), only those clones having antibodies that recognize antigens that are 

stimulatory to the immune system are selected to proliferate. The selected clones are subject to an 

affinity maturation process, in which the cells go through somatic hypermutation and those with 

improved affinity proliferate. In both stages of antibody diversification, B cells expressing 

autoreactive receptors are also negatively selected [28]. In general, if we consider changes in 

repertoire structure from the perspective of clonal selection [29], the competition of clones can be 

divided into clonal shift (the competition between clones) and clonal drift (the competition among 

cells within a clone) [30]. 

 

Clonal shift 

To study the clonal shift, our main limitation is the requirement of large coverage of 

repertoire. Only with decent coverage can we confidently quantify the diversity (or even the 

presence of absence) of clones. Otherwise, the lack of diversity could be the result of under-

sampling. To deal with this issue, we require multiple replicate sampling and a method to measure 
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the coverage. Rarefaction analysis has long been used in ecology and has proven to be a robust 

way to estimate diversity of a community [31], and thus is a good method to adapt to our immune 

diversity analysis. When quantifying clonal overlap, we need to take into account both the number 

and the sizes of the clones, and visualize their overlap within and between samples and anatomic 

sites. Further complicating the analysis, there are multiple ways to define the size of clone. We 

need to deploy clone-size thresholding that affords some correction for differences in sequencing 

depth (which can influence unique sequence numbers), while not relying exclusively on 

resampling to establish clone size cut-offs. 

 

Clonal drift 

To study clonal drift, we need to differentiate between true diversification due to 

selection and random noise due to sequencing error of HTS [32]. Most of the sequencing errors 

can be removed by re-sequencing and filtering out singletons. The ability to detect selection from 

mutated sequences is a critical part of many studies. A major methodology to do so is to compare 

the levels of synonymous (no change in amino acid) and non-synonymous (results in amino acid 

change) mutations [33-36]. In neutral selection, the non-synonymous to synonymous ratio is about 

3. Elevated levels indicate positive selection, while decreased levels indicate negative selection 

[37, 38]. It is expected that complementary determining regions (CDR) undergo positive selection 

while framework regions (FWR) undergo negative selection, as the CDR is where the receptor 

interacts with antigen and the FWR is important for maintaining the structure. Selection can be 

estimated using a binomial test [22]. To cancel the impact of selection on our measurement of 

mutation frequency (which can be used to study the number of cell divisions while the AID 

enzyme is engaged), we can use synonymous mutations with four-fold degenerate. Such four-fold 

silent mutations tolerate any point mutation at the third position of codons, and are least affected 

by selection. Thus, they are good indicators of baseline mutation burden. Lastly, we can use 
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clumpiness [39] as a measure of the degree of intermingling of sequence variants among different 

tissues within clonal lineages.  

 

Overview of Experimental Questions in the Thesis 

The overarching theme of my thesis work was to analyze the clonal diversity in human 

B-cell repertoires. In general, if we consider changes in repertoire structure from the perspective of 

clonal selection [29], the competition of clones can be divided into clonal shift and clonal drift 

[30]. Unfortunately, both processes are difficult to identify. The large amount of data generated 

from NGS also calls for computationally efficient approaches for clone identification and 

characterization. Thus, my findings regarding immune repertoires can be divided into questions of 

clonal identification and the measurement of inter and intra clonal diversity.  

In my first aim I developed methods for accurately and rapidly identifying the nearest 

corresponding germline V gene or genes to rearranged V region sequences. Currently existing 

methods have failed to adequately address cases in which multiple germline genes are equally 

possible [24]. In my first aim, I developed methods to categorize germline genes that cannot be 

differentiated under certain levels of somatic mutation and sequencing length. I also estimated the 

sampling level of the repertoire by using rarefaction analysis. By calculating the diversity of 

clones in different samples we can estimate the number of additional samples needed to achieve a 

certain level of coverage. These statistical tools were incorporated into ImmuneDB, which is a 

database for the storage, analysis and visualization of immune receptor repertoire data [40]. In 

addition to developing a method for germline V gene assignment and testing the adequacy of that 

assignment under different conditions of sequence length and SHM [41], I analyzed repertoire 

diversity in the FWR3. For the FWR3 analysis, I focused on studying diversity due to VH 

replacement and tested the hypothesis that longer FWR3 sequences harbor VH replacement 

“footprints”. I observed that these footprint-like sequences could not be differentiated from 
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random FWR3 and CDR3 sequence diversification [42]. Additionally, I found that the number of 

footprints were positively correlated to CDR3 length in both in-frame and out-of-frame 

rearrangements and that they fit well with a Poisson distribution. These findings suggested that 

VHR footprints are not good indicator of VH replacement [42]. 

In my second aim, I characterized clonal shift by comparing the incidence and overlap of 

clones from different samples of a given tissue or across different tissues or anatomic sites. I 

quantified the clonal shift of the B-cell repertoire in different tissues by quantifying the level of 

clonal overlap within and across these tissues. The requirement for multiple replicate sampling 

was the main experimental constraint of this research. I was fortunate to collaborate with 

experimenters from University of Pennsylvania and Columbia University to overcome this 

limitation. They provided a massive sequence data set from eight different anatomic compartments 

in six different human organ donors [43]. I used rarefaction analysis to ensure good coverage and 

calculated cosine similarity within and between tissues. The cosine similarity analysis gave more 

weight to clones with larger size. I showed that large B-cell clones partitioned into two broad 

networks—one network spanning the blood, bone marrow, spleen and lung, while the other was 

restricted to tissues within the gastrointestinal (GI) tract (jejunum, ileum and colon).  

In my third aim, I studied clonal drift of B cell clones in different human tissues. In B 

cells, we have a unique opportunity to study clonal drift since as they can undergo somatic 

mutation of their rearranged antibody genes. In my third aim, using the aforementioned dataset, I 

compared unique and four-fold synonymous mutations of clones within tissues, and found that GI 

tract clones displayed extensive sharing of sequence variants among different portions of the tract 

and had higher frequencies of somatic hypermutation, suggesting extensive and serial rounds of 

clonal expansion and selection in different tissues. Clumpiness analysis showed shared variants of 

clonal tree leaves in gut tissues, suggesting localized proliferation after SHM. Additionally, by 

studying big clones from a Sjögren’s syndrome patient across six time points and applying 
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selection pressure analysis using baseline [44], I showed that the clone was under negative 

selection. 
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!

!
!
!

!
!
Supplementary,Table,1:,PCR,Primers.!!Shown!are!the!nucleotide!sequences!of!the!
primers!used!for!PCR!amplifications!(see!Methods!for!PCR!details).!!
!
!
!

NexteraR2)Hu)VH1)LD0 5’)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCATGGACTGGACCTGGAG)3’0
NexteraR2)Hu)VH2)LD0 5’)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGGACACACTTTGCTCCAC)3’0
NexteraR2)Hu)VH3)LD0 5’)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTANCCATGGAGTTTGGGCTGAG)3’0
NexteraR2)Hu)VH3)21)LD0 5’)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCATGGAACTGGGGCTC)3’0
NexteraR2)Hu)VH4)LD0 5’)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGAAACACCTGTGGTTCTTCC)3’0
NexteraR2)Hu)VH5)LD0 5’)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCAACCGCCATCCTCG)3’0
NexteraR2)Hu)VH6)LD0 5’)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCTGTCTCCTTCCTCATCTTCC)3’0
NexteraR1)Hu)JHmix10 5’)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTACGTNCTGAGGAGACGGTGACC)3’0
NexteraR1)Hu)JHmix20 5’)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCNCTGAGGAGACGGTGACCA)3’0
NexteraR1)Hu)JHmix30 5’)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGNCTGAGGAGACGGTGACCAGG)3’0

Leader Primer Mixes 

NexteraR2)Hu)VH1)FW10 5’)0GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGCCTCAGTGAAGGTCTCCTGCAAG0)3’0
NexteraR2)Hu)VH2)FW10 5’)0GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCTGGTCCTACGCTGGTGAAACCC0)3’0
NexteraR2)Hu)VH3)FW10 5’)0GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTGGGGGGTCCCTGAGACTCTCCTG0)3’0
NexteraR2)Hu)VH4)FW10 5’)0GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTCGGAGACCCTGTCCCTCACCTG0)3’0
NexteraR2)Hu)VH5)FW10 5’)0GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGGGGAGTCTCTGAAGATCTCCTGT0)3’0
NexteraR2)Hu)VH6)FW10 5’)0GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCGCAGACCCTCTCACTCACCTGTG0)3’0
NexteraR1)Hu)JHmix40 5’)0TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTACGTNCTTACCTGAGGAGACGGTGACC0)3’0
NexteraR1)Hu)JHmix50 5’)0TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCNCTTACCTGAGGAGACGGTGACC0)3’0
NexteraR1)Hu)JHmix60 5’)0TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGNCTTACCTGAGGAGACGGTGACC0)3’0

FR1 Primer Mixes 
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!
!
!
!
!
!
!
!

!
!
Supplementary,Table,2:,Donor,Tissue,Amplicon,Libraries.!!Shown!are!the!numbers!
of!sequencing!libraries!for!each!donor!tissue.!!LD!=!leader!primer!mixes<!FR1!=!
framework!region!1!primer!mix.!!!!
!
!

Donor% Primers% PBL% BM% SPL% Lung% MLN% Jejunum% Ileum% Colon%

D145% LD% 6% 6% 6% 6% 6% 6% 6% 6%
D149% LD% 3% 6% 6% 6% 6% 6% 6% 6%
D168% LD% 6% 5% 6% 6% 6% 6% 6% 6%
D181% LD% 9% 9% 3% 6% 6% 6% 6% 6%
D181% FR1% 8% 7% 8% 5% 8% 8% 8% 8%
D182% LD% 9% 6% 6% 6% 6% 6% 6% 6%
D207% LD% 6% 6% 16% 6% 6% 6% 6% 6%
D207% FR1% 37% 29% 31% 20% 30% 14% 19% 19%
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Discussion 

	  

Summary 

The diversity of cells and clones in the B-cell repertoire is key to the immune system’s 

ability to defend against pathogens by responding specifically to the antigens they produce [3-5]. 

It has therefore been the underlying theme of my thesis that analyzing repertoire diversity will lead 

to a greater understanding of the different states of immune system and its modes of function. In 

the previous sections I presented a series of tools that can computationally analyze the diversity of 

the human B-cell repertoire, and, with some modification, immune repertoires in general. My 

immune repertoire diversity analyses consists of three major aims: (1) identification of the 

germline V gene source; (2)quantifying competition between clones (clonal shift), and (3) 

quantifying competition within clones (clonal drift).  

I have also applied the tools that I and others have developed to show that: 

(1) Most VH alleles and some genes cannot be discriminated at a confidence above our 

threshold of statistical significance from other members of the same VH gene/family, even at low 

levels of somatic hypermutation [41]. 

(2) That descriptions of VH footprints in normal repertoires can be explained as sampling 

artifacts resulting from VH similarities in FWR3 and the non-templated nucleotide patterns at the 

V(D) (N1) and DJ (N2) junctions [42]. 

(3) Tissue-based B-cell repertoires of humans segregate between gut and blood-rich tissues. 

The clones that are found in the gut are more mixed between the different component tissues 
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(jejunum, colon, ileum). Additionally, B cells found in the tissues and most especially the jejunum 

are highly mutated [43]. 

(4) B-cell depletion-resistant clones in Sjogren’s syndrome exhibit chronic negative selection 

of mutations of their rearranged antibody genes [45]. 

In my thesis, I have created several computational tools for analysis and visualization of 

high throughput, immune-repertoire profiling data including: 

(1) A tool to rapidly and reliably identify germline genes using conserved anchor positions in 

the V gene sequence. 

(2) A tool to estimate the probability of confusing similar V genes and output “V-ties” based 

on sequence length and mutation frequency. 

(3) A tool to calculate the additional number of samples needed to achieve certain coverage 

of repertoire and the diversity of the repertoire given different numbers of sub-samples, as well as 

visualizing the results. 

(4) A tool to calculate the cosine similarity between different compartments of the human 

body. The tool can be used on any two-sample comparison such as tissue, B-cell subset, etc. 

(5) A tool to compare germline sequences to rearranged V region sequences, and output 

mutations and their frequencies in a clone. 

 High throughput sequencing provides a means to sequence large numbers of clones at 

low cost. But the large quantity of data generated requires computational tools for analyzing data 

in a convenient and efficient way. All of the tools I have developed are available on my github site 

at https://github.com/bochaozhang and on our lab github site at 

https://github.com/DrexelSystemsImmunologyLab. The integration of some of my tools into our 

analysis pipeline permits an integrated analysis and visualization of the immune repertoire, as well 

as analysis of clones across different data sets. It also allows for modification of different analysis 
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parameters, such as how clones are defined and how clone sizes are calculated. These tools are 

fundamental to all immune repertoire studies and have been integrated into ImmuneDB [40], 

providing an easy and reliable way to analyze large quantities of sequencing data and describe 

immune repertoire diversity at the sequence and clonal levels. 

 

Identification of the nearest germline V gene 

Identification of the nearest corresponding germline V gene is the crucial first step in 

many analyses of gene rearrangement data. In general we consider the V(D)J recombination of B 

cell unique to a clone. For this reason the first step of clonal analysis is the association of each B 

cell receptor sequence to the germline genes segments that comprise its V(D)J or VJ 

recombination [46]. Making such associations and estimating the accuracy of identification is 

difficult because germline genes can be highly similar [17] and may undergo somatic mutation 

[47]. In addition, while high-throughput sequencing methods generate large numbers of sequences 

at a low cost, providing a way to essentially map the immune repertoire, they can have high 

sequence error rates. For this reason, it is critical to categorize, as much as possible, the reason for 

uncertainty in germline gene assignment. What is error and what is a-priori uncertainty? Some 

germline V genes cannot be well discriminated beforehand. However, they are not completely 

unknowable as they are similar only to other specific V genes and can be discriminated from most 

other germline V genes.  

 I showed that my Anchor method is the fastest way to identify clones, as it only relies on 

a string comparison for the initial alignment. In the minority of sequences that lack the anchor 

sequence, more time-consuming alignments can be deployed such as local alignment or IgBLAST 

with a short window length. After the first round of germline V gene identification with my 

Anchor method, I estimated the expected variability in our data. Based on the alignment length 

and mutation frequency of the first-round identification, I could calculate the likelihood of error 



	   94	  

due to mutation (or other sequence changes) using a simple hypergeometric test. V genes that I 

calculate as being impossible to distinguish at a given length/mutation/error rate will be identified 

as coming from one of several potential germline sources. Such V genes that cannot be 

discriminated are called V-ties. When constructing clones in later steps these V genes will be put 

in the same clone as they are indistinguishable. One of the advantages of assigning a germline 

identified at a level above that of the gene but below that of the family (i.e. can be one of a small 

set of genes from the same VH family) is helpful when determining mutations later. We can 

ignore the positions that differ between the confused genes and which remain unassigned and 

focus only on positions where we can identify somatic change.  

 V-ties are also helpful to germline gene identification as they can reduce noise in 

mutations and give more confidence to identification. For example, not using V-ties could lead to 

an over-estimation of the clonal diversity. Sequences with same CDR3 and J gene, and V genes 

that may be confused with others may be put in different clones when using traditional methods of 

germline assignment. But if these sequences were first assigned V ties as germlines they would be 

put in the same clones with an appropriate ambiguous but clearly defined V gene assignment. This 

can further reduce the noise caused by misidentification. Hence, the use of V-ties and my Anchor 

method yields faster and more reliable identifications while determining at what level of 

categorization (family, gene or allele) the identifications are definitive [41].  

 

VH footprints 

Another stage in receptor formation is receptor editing [48]. It has been observed that in 

some cases a non-functional V(D)J recombination or one that is self-reactive can be saved by 

switching out the V gene segment [49]. In some cases this switching out step leaves a “footprint” 

of the old VH gene at the 3’ end of the new VH gene [27]. Given my previous analysis of V gene 

similarities, I suspected that often identification of such footprints could be confounded by the 
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high level of similarity of the FWR3 of different VH [41, 50] and the heightened induced 

variability of CDR3 [51]. Therefore, I asked to what extent these observed footprint patterns could 

be explained by chance differences in the FWR3 and CDR3. To answer this question, I compared 

the patterns of footprints in in-frame and out-of-frame V region sequences derived from 42,221 

unique sequences of peripheral blood B-cells from a healthy human adult subject. In both in-frame 

and out-of-frame CDR3s there was a positive correlation between the number of footprints 

observed and CDR3 length. Moreover, footprints were found at both junctions of V(D) and (D)J. 

Finally, the occurrence of footprints from in-frame and out-of-frame CDR3s fit well with a 

Poisson distribution. Therefore, we concluded that the patterns identified as VH footprints may be 

the results of random noise. Thus, while VH replacement certainly occurs [48], footprint analysis 

is a poor measure of its frequency at least in normal immune repertoires [42]. 

 

Quantification of competition between clones  

With the identification of germline genes and the establishment of clones, I can study the 

differential selection and competition of clones. Differences in the form of clonal competition can 

influence the clonal makeup of B-cell repertoires in different regions of the human body [52]. The 

tissue distribution and trafficking of B-cell clones influences how infections are controlled 

throughout the body. Animal studies indicate that tissue localization of B-cells and plasma cells is 

important for protective immunity and homeostasis of bacterial microflora [53-55]. However, 

tissue-based B-cell subsets are not well understood in humans. Unlike laboratory mice, humans 

are outbred, and live for decades in diverse environments with exposures to many different 

antigens and pathogens. Furthermore, most studies of human B cells have sampled only the blood 

or tonsils; the latter are often inflamed when removed, hardly a physiologic specimen. 

Consequently, how clones are localized to specific regions or tissues in the human body is not well 

understood for B cells. To make a snapshot of this localization, I focused on the level of B-cell 

clonal overlap among different tissues.  



	   96	  

To truly describe difference in overlap we must be certain that clones are not missed due 

to lack of sampling. Proving a negative is impossible, the next best thing we can do is to estimate 

our sufficiency of sampling. To do so I chose to perform by sample rarefaction analysis [31]. 

Since the unit of sampling is not an individual clone but a sample of clones from a single tissue or 

anatomic compartment, it is best to use sample-based rarefaction. Applying this method, I found 

that an additional 5-70 samples were needed to reach 0.75 coverage with clones of at least two 

sequence instances in D207, our most deeply sequenced donor. Peripheral blood, as expected, had 

the most diverse repertoire (perhaps in part because there is extensive mixing in the blood), needed 

more than 150 additional samples to reach 0.75 coverage. Such numbers of samples were 

impossible to acquire. Therefore, we instead opted to exclude the smaller clones from our 

analyses. The immune repertoire has a much greater number of small clones than large clones 

[56]. By increasing the clone size threshold and excluding smaller clones, the repertoire diversity 

was substantially reduced and it was easier to achieve adequate coverage. As a result, with clones 

of at least 20 sequence instances, most tissues were sufficiently sampled in D207 to reach 0.75 

coverage.  

The next question was how to quantify the distribution of B-cell clones and map them to 

different tissues. Simply counting the number of clones would neglect the fact that some clones 

were more expanded and may play a more important role in the repertoire composition. To answer 

this question, I used cosine similarity to calculate the normalized number of shared clones between 

each sample. The cosine similarity not only takes the number of shared clones but also their sizes 

into account. To take into account the difference in the numbers of sequencing libraries, cosine 

similarity is calculated with both the number of sequence instances and the number of sequencing 

libraries as a vector, to address the similarity between tissues. Cosine similarity gives more weight 

to clones that are more expanded or found in multiple replicate samples and the they will 

contribute more to the final score. Also, cosine similarity always gives score range from 0 to 1, 

where 0 means no similarity at all and 1 means completely similarity, providing a normalized 
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score for better visualization and comparison of different tissue pairs within the same figure. 

Through this analysis, I revealed how clones are distributed across the different tissue pairs.  

Analysis of similarities in the B-cell clonal makeup in the blood (PBL), bone marrow, 

spleen, lung, mesenteric lymph node (MLN), jejunum, ileum and colon, comparing between each 

pair of tissues, revealed two prominent networks of expanded clones in the six donors. One 

network comprised the PBL, bone marrow, lung and spleen, and the other network consisted of 

the jejunum, ileum and colon. Clones in the MLN spanned both the blood-rich sites and the GI 

tract, but exhibited greater overlap with the GI tract. This supports the existence of two major 

networks of expanded B-cell clones, one in blood-rich tissues and a separate network in the GI 

tract. To rule out blood contamination, clones with sequences in PBL samples were removed. The 

network of overlapping clones within the blood-rich sites was more diminished than the GI tract 

network.  

A limitation of using cosine similarity to assess overlap is that it only takes into account 

the relationship of two tissues at a time. Clones can and do span more than two tissues. Roughly, 

the clones can be divided into global (found in six to eight tissues), regional (three to five tissues), 

two-tissue and single-tissue clones. I visualized the clonal networks using line circle plots that I 

developed. Both the regional and two-tissue clones echoed the patterns of overlap observed in 

paired tissue analysis: the clones were usually present in either the GI tract or the blood-rich 

tissues. Even global clones that spanned essentially all tissues and were generally the largest 

clones, were never as expanded in both regions. Thus even a clone that is found in both gut and 

blood-rich tissues is clearly more expanded in only one of them. This I feel confirms the existence 

of two distinct networks even in more expanded clones that we inferred from the pairwise 

comparisons. While it still remains an open question what forces are maintaining this segregation 

and how it relates to antigen specificity, it is clear that we must take it into account when querying 

the blood for tissue based and especially gut-based immune responses.  
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Quantification of clonal drift  

One of the fascinating aspects of studying B-cell repertoires is the presence of somatic 

mutations within clonal lineages. Mutations can provide information about antigen experience and 

the extent of clonal expansion [57, 58]. Comparing the patterns of mutations in members of a 

clone opens a unique window into the relative history of the individual members of a clone and the 

overall selection pressures they undergo.  

Different mutation and selection pressures can reflect the development of B cells as they 

age and encounter antigens in the human body. Using sequencing data from patients with 

Sjögren’s syndrome (SjS), I identified large expanded clones that persisted in the blood of one 

patient despite the fact that the patient received B-cell depletion therapy with rituximab (anti-

CD20). The expanded clones harbored large number of synonymous mutations but only a few, 

non-synonymous mutations, indicating that the expanded clones were under negative selection. 

This was corroborated by selection analysis. Using BaSELINE [44]. I found that both CDR and 

FWR exhibited negative selection and that in fact CDRs were the more negatively selected 

regions. The negative selection in the CDRs may have occurred because the clone had evolved to 

the point where it could no longer improve its affinity through mutation. Any further non-

synonymous mutation thereby may lower the antibody affinity for its antigen, suggesting the clone 

has high affinity to a specific antigen. Alternatively the receptor is either highly cross reactive or 

only needs weak but constant activation. Any change in receptivity (through the change of even a 

single amino acid) might abrogate the functional competence of the receptor. 

The analysis of somatic hypermutation also enhanced our understanding of how 

individual cells compete within clones. One of the major tools we used to analyze the patterns of 

mutation in a clone was the construction of clonal lineages. Clonal lineage analysis allows us to 

identify mutations that are especially important in a clone -- for instance, those that are shared by 

all of the members of a clone (and therefore are found in the trunk of the tree) versus those that are 

very recent or only appear in some parts of the lineage tree (such as the leaves). One of the issues 
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with studying mutations is how to differentiate between real mutations and artificial mismatches 

from germline. They could be the result of misidentifying germline, not having the correct 

germline allele in the germline sequence library and/or sequencing error. To rectify this, we both 

considered V-ties and filtered out sequences and mutation variants that only occurred once in a 

person. Despite these corrections, it is clear that many of our mutations may still be errors. For this 

reason, even as we constructed lineages we only took into account gross structures of the mutation 

relationships. Even with these severely constrained data sets, several interesting patterns arose. 

Looking at the overall level of mutation, clones with higher levels of mutation were more frequent 

in the GI tract tissues than in the PBL or the bone marrow, suggesting that there are more memory 

B-cells and/or plasma cells (terminally differentiated B cells that secrete antibodies) in the tissues. 

When we wanted to see which tissues had clones that had expanded the most we measured their 

height. To cancel out the impact of selection, I also looked at the number of four-fold degenerate 

synonymous mutations. Counting four-fold synonymous mutations along the longest branches of 

the lineages in clones, we found that clones from the colon had substantially more of these 

mutations than clones in lung, spleen, PBL or bone marrow. From this analysis we proposed that 

the gut clones underwent more immune responses, which would be consistent with them having 

undergone the greatest number of divisions while the mutation process was engaged [59]. 

 As a final step in analyzing the lineages in different tissues, we used a clumpiness 

measure estimate the degree of intermingling of sequence variants among different tissues within 

the leaves of the individual clonal lineages. Clumpiness is a measurement of the tendency of two 

tissue types to be close on a given lineage tree [39]. In the lineage tree of a clone that spans two or 

more tissues, a higher clumpiness value indicates that members of the clone exhibit more 

intermingling (mixing and overlapping of sequence variants in the different tissues). We found 

clones with PBL and another tissue are the least mixed, followed by clones mixing blood and GI 

tract tissues, then blood tissue clones and, finally, GI tract clones, which were the most mixed. The 

fact that identically mutated sequences can often be found at multiple GI sites can be explained if 
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mutated clones disseminate throughout the GI tract, yet also undergo serial rounds of mutation and 

selection. 

 

Summary and Future plans 

The study of B cell sequence repertoires in this thesis has opened new ways to study their 

diversity. At every level of analysis, there are distinctions that we cannot make a priori. However, 

we can quantify our uncertainty so that at least what we do know and what we do not know are 

clearly defined. The tools I developed provide investigators with the means to analyze and 

visualize high-throughput, immune-repertoire profiling data. Given our current ways of sampling 

the repertoire, there are differences in germline association, and thus clonal relationships, that 

cannot be identified. On the other hand, they are not completely unknowable as germline V genes 

are similar only to other specific V genes and can be discriminated from most other germline V 

genes. Based on the alignment length and mutation frequency of the first-round identification, we 

can calculate the likelihood of misidentification. V genes that we calculate as being impossible to 

distinguish at a given length/mutation/error rate will be identified as V-ties. Then these V genes 

will be put in the same clone as they are indistinguishable later when constructing clones. In this 

way, one can have more reliable identifications and know at what level of categorization (family, 

gene or allele) the identifications are definitive. At the level of clonal competition, the sampling 

coverage of the repertoire is often unknown. Sample-based rarefaction analysis provides a way to 

estimate how well we have sampled the repertoire and can help us quantify the likelihood of false 

negatives. Using these tools I identified two major networks B cell clones in the blood-rich and GI 

tract tissues in human body. The clarity with which we could identify these two networks of 

expanded clones leads to the next step of research where we will ask if they are the result of 

different selection pressures in mucosal and lymphoid tissues and intestinal tissues or to some 

differences in circulation or lymphocyte trafficking? Or do these networks arise because of some 

other hitherto undescribed environmental effect such as different commensal bacteria?  
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This atlas of clones also provides normative data for future studies of tissue-specific and response-

specific maps of repertoire in the immune response to antigens. At the level of competition within 

clones, mutation analyses showed that the GI clones were the most mutated, which is consistent 

with them having undergone the greatest number of immune responses. Here again, using 

specifically designed tools and computational approaches to quantify relationships of B cells 

within clonal lineages, selection was found to act differently in the gut and blood tissue clones. 

Using clumpiness analysis, jejunum, ileum and colon were found to have more mixing while 

blood tissues developed along separate lineage lines.  

One of the obvious future plans is to analyze the directional relationship between GI-tract 

tissues and blood-rich tissues. We have already made the clones into lineage trees and labeled the 

nodes by tissue. Our assumption was the naïve B cells circulating in blood would reside in gut and 

go through somatic mutation and selection locally. It would be interesting to see if in a mixed 

tissue tree (one that has both blood nodes and gut nodes) the gut nodes are always descendants of 

blood nodes. I have tried this with our current data, but there were not enough trees that had both 

blood and gut nodes, and were complex enough to yield a meaningful data for a robust analysis. 

With more data, the relationship may be clear enough to give significant results. Such an analysis 

would yield insights into the direction of trafficking and/or maturation of B cell clones as they 

flow through the body.  

Another way to study trafficking is to sample tissues and/or blood at multiple time points. 

However, with humans, such analysis in tissues would likely be limited to unique circumstances, 

such as an individual undergoing serial monitoring biopsies of the GI tract for evaluation of 

inflammation, malignancy or transplantation tolerance. Longitudinal tracking of clones could yield 

interesting insights into how B cell subsets develop and/or are maintained in humans. This could 

be performed in blood or, better yet, using blood and bone marrow samples from the same 

individuals. Another area where longitudinal clone tracking could provide interesting insights is in 

autoimmune disease, where large clones may be pathogenic. Using the tools I developed to 
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computationally identify and measure the sizes of clones, we could track these clones through 

different time points in a patient with a B-cell autoimmune disease such as Sjogren’s syndrome, 

and determine if the size of large persistent clones correlate with disease activity or response to 

therapy. Tracking clones also has obvious importance in the clinical evaluation of patients with B-

cell malignancies such as acute lymphoblastic leukemia, chronic lymphoblastic leukemia, 

lymphoma and multiple myeloma. My analysis of VHR footprints could be extended to evaluate 

diversification of acute lymphoblastic leukemia clones by VHR, improving the ability to not only 

diagnose but also monitor disease (particularly in patients where there is evolution of the ALL B 

cell clone by further rearrangement).  

Another approach to studying B cell maturation and function is to use flow cytometry to 

evaluate the immunophenotype of the cells and then corroborate the phenotypic data with 

sequence analysis by sequencing sorted subsets of B cells. For example, one can distinguish 

memory B cells from naïve B cells through the expression of the cell surface marker CD27 and the 

presence of class switching (from IgM to other heavy chain isotypes). One can also look for 

plasma cells, which have a distinctive phenotype. This type of analysis is under way, in 

collaboration with the Shlomchik laboratory (University of Pittburgh). Consistent with our 

prediction that the GI tract has more memory B cells, we observe more B cells that express CD27 

and exhibit evidence of class switching (IgG or IgA+) in the GI tract, compared to the peripheral 

blood. This finding is also consistent with the literature, in which class-switched B cells and 

plasma cells are more abundant in the tissues. Coupling immunophenotype to the BCR or TCR is 

just the beginning. With the advent of single cell approaches, it may be possible in the very near 

future to integrate the phenotype, BCR or TCR (with paired chain sequencing) and other features 

of the cell, such as its transcriptome or epigenome [60].   
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