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Dynamic Adaptation of Brain Networks from Rest to Task and Application to 

Stroke Research 

Lin Cheng 

Hasan Ayaz Supervisor, PhD 

Shanbao Tong Supervisor, PhD 
 

 

 

 
Examining how motor task modulates brain activity plays a critical role of understanding how cerebral motor 

system works and could further be applied in the research of motor disability due to neurological diseases. Recent 

advances in neuroimaging have resulted in numerous studies focusing on motor-induced modulation of brain activity 

and most widely used strategy of these studies was identifying activated brain regions during motor task through 

event-related/block-design experiment paradigms. Despite progress obtained, motor-related activation analysis 

mainly focused on modulation of brain activities for individual brain regions. However, human brain is known to be 

an integrated network, and the adaptation of brain in response to motor task could be reflected by the modulation of 

brain networks. Thus, investigating the spatiotemporal modulation of task-state brain networks during motor task 

would provide system-level information regarding the underlying adaptation of cerebral motor system in response to 

the motor task and could be further applied in the research of motor disability due to neurological diseases. 

Although the task-state functional connectivity (FC) and networks have been examined by previous studies, there 

are still several aspects needed to be explored: (1) Previous task-state FC studies were mainly based on functional 

magnetic resonance imaging (fMRI) and potential of applying functional near-infrared spectroscopy (fNIRS), which 

is a promising complementary modality to fMRI because of its low cost and relatively high temporal resolution (10 

Hz in sampling rate compared with less than 1Hz in sampling rate for fMRI), in task-state FC studies should be 

explored. (2) In the fMRI studies, the task-state brain network was mainly investigated from the perspective of static 

FC, which focuses on the spatial pattern of the task-state brain networks. However, brain activities and cognitive 

processes are known to be dynamic and adaptive and the newly emerging dynamic FC analysis could further provide 

temporal patterns of the task-state brain networks. Thus, the spatiotemporal pattern of task-state brain network during 

motor task is still needed to be investigated by dynamic FC analysis based on fMRI; (3) Task-state brain network 

analysis has not been applied in the research of stroke, and the relationship between task-state brain network and 

stroke recovery has not been investigated; Therefore, in this thesis, we aim to investigate the task-state brain networks 

during motor task using both static and dynamic FC analysis based on fNIRS and fMRI to reveal the motor task-
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specific spatiotemporal changes of brain networks compared with resting conditions, and further applied the task-

state brain network analysis in the research of stroke recovery 

In this thesis, fMRI and fNIRS were employed to record the brain hemodynamic signals, and static FC and 

dynamic FC were used to investigate spatiotemporal pattern of task-state brain network during motor task. In addition, 

the fMRI data of stroke patients were recorded at four time points post stroke, and the reorganization of task-state 

brain network as well as its relationship to stroke recovery were examined. Specific results are described as follow: 

(1) Through static FC analysis of fNIRS during rest and motor preparation, increased FC were identified during 

motor preparation, especially the FC connecting right dorsolateral prefrontal cortex (DLPFC) with contralateral 

primary somatosensory cortex (S1) and primary motor cortex (M1) as well as the FC connecting contralateral S1 

with ipsilateral S1 and M1. Channels located in sensorimotor networks and right DLPFC were also found activated 

during motor preparation. Our findings demonstrated that the sensorimotor network was interacting with high-level 

cognitive brain network to maintain the motor preparation state. 

(2) Through dynamic FC analysis of fNIRS during rest and motor execution, increased variability of FC 

connecting contralateral premotor and supplementary motor cortex (PMSMC) and M1 was identified, and the nodal 

strength variability of these two brain regions were also increased during motor execution. Our findings demonstrated 

that contralateral M1 and PMSMC were interacting with each other actively and dynamically to facilitate the fist 

opening and closing. 

(3) Through dynamic FC analysis on fMRI data, two principal FC states during rest and one principal FC state 

during motor task were identified. The 1st principal FC state in rest was similar to that in task, which likely represented 

intrinsic network architecture and validated the broadly similar spatial patterns between rest and task. However, the 

presence of a 2nd principal FC state with increased FC between default-mode network (DMN) and motor network 

(MN) in rest with shorter “dwell time” could imply the transient functional relationship between DMN and MN to 

establish the “default mode” for motor system. In addition, the more frequent shifting between two principal FC 

states in rest indicated that the brain networks dynamically maintained the “default mode” for the motor system. In 

contrast, during task, the presence of a single principal FC state and reduced FC variability implied a more temporally 

stable connectivity, validating the distinct temporal patterns between rest and task. Our findings suggested that the 

principal states could show a link between the rest and task states, and verified our hypothesis on overall spatial 

similarity but distinct temporal patterns of dynamic brain networks between rest and task states.  
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(4) Task-state motor network was applied in the research of motor disability due to stroke and topological 

reorganization of task-state motor network was identified during sub-acute phase post stroke. In addition, for the first 

time, our study found the topological configuration of task-state motor network at the early recovery stage were 

capable of predicting the motor function restoration during sub-acute phase. In general, the findings demonstrated 

the reorganization and potential prognostic value of task-state brain network after stroke, which provided new insights 

into understanding the brain reorganization and stroke rehabilitation. 

In summary, this thesis used two neuroimaging modalities (fMRI and fNIRS) to investigate how brain networks, 

especially the motor network and high-level cognitive network, would reorganize spatiotemporally from resting-state 

to motor tasks through both static and dynamic FC analysis, and further applied the task-state brain network analysis 

in the research of motor disability due to stroke. Our findings revealed the underlying spatiotemporal adaptation of 

brain networks in response to motor task and demonstrated the potential clinical prognostic value of task-state motor 

network during stroke recovery. The novelties of this thesis are as follow: (1) dynamic FC was innovatively applied 

in revealing the motor task-specific spatiotemporal changes of brain networks compared with resting conditions; (2) 

task-state motor network was applied in the research of stroke recovery; (3) static and dynamic FC analysis were 

innovatively applied in fNIRS data. 

KEY WORDS: Cerebral motor system, fMRI, fNIRS, functional connectivity, functional brain networks, stroke. 

  



xiv 

 

 

 



1 

 

 

Chapter 1: Introduction 

1.1 Background and motivation 

Cerebral motor system has been one of the most important topics in neuroscience for decades. The study of 

cerebral motor system began in the late 19th century and earliest experiments were performed on animals, such as 

dogs [1] and nonhuman primates [2]. By electrical stimulation on patients during surgery for the removal of tumors 

and epileptic foci, studies on human cerebral motor system were also performed around mid-20th century [3, 4]. 

However, the early studies mainly focused on the mapping of cerebral motor system and it was difficult to research 

how cerebral motor system worked at that time. 

Recent advances in neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron 

emission tomography (PET), and functional near-infrared spectroscopy (fNIRS), have benefitted studies of cerebral 

motor system tremendously. Most widely used approach of these studies was identifying cerebral activation during 

motor tasks through event-related/block-design experiment paradigms. Activations were identified in several brain 

regions during motor tasks, which contributed to the understanding of how cerebral motor system works during motor 

tasks. For example, increased activity in both ipsilateral and contralateral primary sensorimotor cortex has been 

identified during finger movements through PET [5] and fMRI [6-9] (Please see Fig. 1.1 for example). Local 

increases of the oxy-hemoglobin concentration (HbO2) and decreases of the deoxy-hemoglobin concentration (Hb) 

in the motor cortex during motor stimulation have also been demonstrated in several fNIRS studies [10-13]. In 

addition to the sensorimotor cortex, several adjacent cortical regions, such as supplementary motor area, premotor 

cortex, posterior parietal cortex, and the secondary somatosensory cortex, also showed increased activities induced 

by motor tasks [14, 15].  
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Figure 1.1 PET/MRI superimposition. PET data for t-values during right finger movements and left finger 

movements displayed on a color scale (white > 10, red > 5.41, yellow > 4.79, and green > 3.50) 

superimposed onto the averaged transformed MRI data. This figure is edited based on the figures adopted 

from [5] with courtesy. 

 

In addition to the study of cerebral motor system, activation analysis was also applied in the research of stroke 

as well as the treatments of stroke. fMRI data of stroke patients showed hyper-activation in contralesional motor 

regions and secondary motor regions which were not normally involved in motor tasks for health subjects [16-20]. 

Based on activation analysis, previous studies found that the contralesional activation was also related to the severity 

of the motor function impairment. For example, patients with severe motor deficits exhibited higher activation in 

contralesional primary motor and premotor area, which was not found in the patients with mild motor deficits [21] 

(Fig. 1.2). Activation analysis was also applied in the longitudinal studies of stroke recovery, which found that the 

initial hyper-activation in contralesional and secondary motor regions gradually diminished and shifted to ipsilesional 

sensorimotor areas [16, 22, 23]. 
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Figure 1.2 BOLD signal changes for hand movements of (A) healthy subjects and (B) stroke patients. 

The central sulcus is marked with dashed lines. This figure is adopted from [24] with courtesy. 

 

In spite of the progresses obtained through activation analysis, it generally focused on illustrating cerebral regions 

of activation under motor task, rather than characterizing the integrated cerebral motor system involved in the motor 

tasks. Brain has been demonstrated to consist of discrete, large-scale networks with widely spaced nodal regions, 

which have highly correlated activity across time and such correlation was interpreted as functional connectivity (FC) 

[25-29]. FC estimated from resting state (i.e., no task engagement) is dominating this field [30-32]. The first resting-

state fMRI study demonstrated that BOLD time courses of left sensorimotor cortex were correlated with the BOLD 

time courses of right sensorimotor cortex under resting condition [33]. Recently, the most studied resting-state 

network is the default-mode network (DMN), which is consisted of the precuneus/posterior cingulate, the lateral 

parietal area and mesial prefrontal cortex, and has been reported to be actively engaged under resting conditions but 

relatively de-activated during tasks [34]. Because previous studies have reported that resting-state FC is able to 

indicate the intrinsic brain network architecture, the resting-state FC, especially the activity of DMN, has been widely 

used in a lot of research studies [35] to reveal the functional organization of a variety of cerebral functional systems 

[36] and the modulation of brain organization induced by neurological/psychological disorders [37]. For example, 

with respect to the application of resting-state FC/brain networks in stroke research, previous studies found significant 
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alteration of inter-hemispheric FC between the bilateral motor areas [38], and modulated topological configuration 

of motor network based on resting-state fMRI post stroke [39] (see Fig. 1.3 for example).  

 

 

Figure 1.3 Synopsis of changed FC between brain regions post stroke. Among these brain regions, a 

number of intra-hemispheric (blue) and inter-hemispheric (orange) FC are identified to be changed in 

stroke patients. Numbers on FC indicate the publication in which a change in FC is reported. Arrow heads 

indicate the available directional information of the FC. This figure is adopted from [40] with courtesy. 

 

 Nevertheless, since there is no task engagement under resting conditions, resting-state FC is not capable of 

revealing the task-specific changes of FC/brain networks, which play critical roles in understanding how the brain 

achieve different functions. Therefore, task-state FC is a promising approach to reveal the task-specific changes of 

brain organization and has been used to investigate how task loads modulate functional brain organization to further 

understand the working mechanisms of a variety of cerebral functional systems [41-44]. For example, in working 

memory system, increasingly negative correlations emerged in the dorsal region of the posterior cingulate cortex 

during steady-state N-back task [45].In addition, regions engaged in auditory [46] and visual [47, 48] functions also 

demonstrated modulated FC during corresponding tasks. For cerebral motor system, motor-related network was 
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reported to be modulated during voluntary movements based on fMRI [41] and MEG [49]. In addition, the FC 

strength was related with the rate of finger tapping in key regions of the motor network [50].  

However, previous studies on task-state FC/brain network, especially for the motor tasks, are relatively rare and 

not very comprehensive. Most of the studies only adopted conventional static FC analysis, which focuses on the 

spatial pattern but ignores the temporal patterns of task-state brain networks. In addition, most of the studies are 

performed based on fMRI, and fNIRS, which also measures the hemodynamic signals but with lower cost, has rarely 

been applied in the task-state FC/brain network studies. Finally, though task-state FC/brain network might provide 

extra information about underlying mechanism of neural response under specific task state, no studies have tried to 

investigate it in the research of stroke to the best of our knowledge.  

Therefore, based on above considerations, the purpose of this thesis is to investigate the task-state brain networks 

under motor tasks using both static and dynamic FC analysis based on fNIRS and fMRI to reveal the motor task-

specific spatiotemporal changes of brain networks compared with resting conditions, and further applied the task-

state brain network analysis in the research of stroke recovery. 

1.2 Approach and contribution 

In order to achieve the purpose of this thesis, two neuroimaging modalities, i.e., fMRI and fNIRS, are adopted to 

record the brain hemodynamic signals. In addition, static FC analysis, static network analysis based on graph theory, 

and dynamic analysis are employed to investigate the task-state brain networks under motor task. Therefore, in this 

section, introduction of above approaches are provided. Furthermore, contributions of this thesis is also highlighted 

in this section. 

1.2.1 Neuroimaging techniques 

1.2.1.1 Principles of fMRI 

fMRI is a functional neuroimaging procedure using MRI technique which measures brain activity by detecting 

hemodynamic changes associated with blood flow [51]. The most widely used form of fMRI is blood-oxygen-level 

dependent (BOLD) contrast, which was discovered by Ogawa and colleagues [52]. 

In normal clinical application, the MRI signal comes mostly from the protons of water in tissue, which depends 

on the density of these protons. Under the large static magnetic field produced by the MRI magnet, the proton 

magnetic moments is parallel to static magnetic field. After applying a pulse of radiofrequency magnetic field, the 

alignment of the proton magnetic moments is changed and then recovers to the original alignment in several tenths 
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of a second to seconds. During the recovery, the magnetization generated in the direction transverse to the static 

magnetic field induces a signal in a coil surrounding the scanned object. The recovery rate is described by relaxation 

time T1, which depends on the relevant water molecules contained in different tissues. In addition, another type of 

relaxation is also able to distinguish tissue types, such as the time constants associated with loss of signal once the 

magnetization has been sampled (T2 and T2*). 

For BOLD-fMRI, the BOLD-contrast is based on the fact that paramagnetic deoxy-hemoglobin, comparing with 

diamagnetic oxy-hemoglobin, possesses a strong magnetic moment. Therefore, the local field variations in and 

around blood vessels generated by interaction of the bulk magnetization of deoxygenated blood with the external 

field lead to destructive interference from signal within the tissue voxel, resulting in shorter T2* relaxation time [52, 

53]. During activated neuronal activity, increased energy consumption induced by neuronal activity results in 

increased blood flow. However, blood flow actually increases to a greater extent than what is necessary for simply 

providing oxygen and glucose for the increased energy consumption. As a result, oxygen extraction decreases with 

greater neuronal activity and the T2* becomes longer and the MRI signal intensity increases relative to the baseline 

state [54] (Fig. 1.4).  

 

 

Figure 1.4 Schematic diagram showing the hemodynamic variables that change during neuronal activity. 

In the basal state, deoxy-hemoglobin in the capillaries and venules causes microscopic field gradients to 

the established field around the blood vessels. This in turn leads to a decreased signal in a gradient echo 

magnetic resonance imaging sequence. In the activated state, there is a significant increase in blood flow, 

but only a modest increase in oxygen consumption. This results in a lower deoxy-hemoglobin 
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concentration in the capillaries and venules and thus results in a reduction in the microscopic field 

gradients and an increase in the signal intensity. CBV = cerebral blood volume; deoxyHb = deoxy-

hemoglobin. This figure is edited based on the figure adopted from [54] with courtesy. 

1.2.1.2 Applications of fMRI 

Since fMRI is entirely non-invasive and possesses excellent spatial resolution and quite good temporal resolution, 

it has had a major impact in cognitive neuroscience and played a growing role in translational medicine and clinical 

practice [55].  

In the past two decades, fMRI covers all domains of cognitive neuroscience. All kinds of fMRI-based 

experiments have been designed to investigate how brain works to realize different cognitive functions, such as motor 

(Fig. 1.5) [56-58], auditory [59-61], visual [62-64], memory [65, 66], learning [67, 68] and etc. 

 

 

Figure 1.5 Top row: Activation in one subject during executed movements (EM) of the right hand in five 

slices. Bottom row: Activation of the same subject during imagined movements of the right hand for the 

same slices. This figure is edited based on the figure adopted from [56] with courtesy.  
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Though the application of fMRI in clinical practice is still developing, it has already started to make some 

clinically meaningful contributions to clinical neuroimaging, such as neurosurgical planning [69, 70], the research of 

clinical syndromes [71] and the development of new therapies [72, 73]. Especially for the research of clinical 

syndromes, fMRI is adopted to functionally characterize both neurophysiological and psychological disorders, such 

as schizophrenia [74, 75], stroke (Fig. 1.3) [24], Parkinson's disease [76], and Alzheimer's disease [77], and 

investigate the underlying pathological mechanism from a systemic view. 

1.2.1.3 Principles of fNIRS 

Like fMRI, fNIRS is to capture the hemodynamic change induced by neuronal activity. During activated neuronal 

activity, increased energy consumption induced by neuronal activity results in increased blood flow. However, blood 

flow actually increases to a greater extent than what is necessary for simply providing oxygen and glucose for the 

increased energy consumption. As a result, oxygen extraction decreases with greater neuronal activity. Since oxy-

hemoglobin and deoxy-hemoglobin possess characteristic optical properties in the visual and near-infrared light range, 

the change in concentrations of these molecules can be captured using optical techniques [78]. Under the near-infrared 

light range between 700-900 nm, the major component of most tissue, water, absorbs very little energy, while the 

oxy-hemoglobin and deoxy-hemoglobin absorb a considerable amount of energy at these wavelengths (Fig. 1.6) [79]. 

Therefore, through measuring absorption changes at two wavelengths (one for oxy-hemoglobin and the other for 

deoxy-hemoglobin) based on the modified Beer-Lambert law [80], changes in the relative concentrations of these 

two hemoglobin can be calculated, which can be further used to assess brain activity in the specific region [81-83]. 
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Figure 1.6 Absorption characteristics of oxy-hemoglobin, deoxy-hemoglobin, and water according to the 

light wavelength. This figure is adopted from [79] with courtesy. 

 

1.2.1.4 Applications of fNIRS 

As fNIRS is a safe, portable and very affordable neuroimaging modality, it has been applied in different fields. 

For basic research, fNIRS has been applied in brain computer interface [84], neuroergonomics [85], pain research 

[86], and sleep research [87]. With respect to cognitive neuroscience, applications of fNIRS have been reported in 

the research of attention [88], emotion [89], language [90], memory [91], and etc. In addition, fNIRS has also been 

adopted to investigate neurological and psychological disorders, such as Alzheimer’s disease [92], stroke [93], 

schizophrenia [94], and etc. 

1.2.2 Static FC analysis 

In order to understand how multiple brain regions interact with one another, FC was introduced in the functional 

neuroimaging. FC represents a novel approach, which is capable of examining the neural activities of brain regions 

that are functionally connected no matter whether they are anatomically distant [25]. FC is usually defined as the 

synchrony of neural activities among brain regions and can be studied during both active tasks and resting state [35]. 
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Since the conventional FC analysis is based on the whole time courses of signal under the assumption that the brain 

network would be relatively stable during the recording, it is also named static FC analysis [95]. 

Several analysis methods are used to estimate the static FC. The most widely used methods are seed-based 

analysis, region-of-interest (ROI) based analysis, and independent component analysis (ICA). For seed-based 

analysis, the representative signal of a predefined seed is extracted and then its synchronies with other voxels are 

calculated to identify the regions which are significantly correlated with the seed [35]. The most commonly employed 

approach to estimate the synchrony is Pearson’s correlation. Please see the Fig. 1.7 for the details of seed-based 

analysis [96]. Seed-based FC analysis has been employed in numerous studies, including cognitive neuroscience 

studies [97, 98] and studies of neurological and psychological disorders [99, 100]. With respect to the ROI-based 

analysis, it is similar with the seed-based analysis. The ROI-based analysis does not only predefine one seed, but 

predefine several ROIs and the synchrony is estimated between each pair of ROIs. Since the ROI-based analysis is 

able to construct a network among ROIs, it is commonly employed in brain network analysis [101, 102]. 

 

 

Figure 1.7 Illustration of seed-based FC analysis. The representative signal of a predefined seed is 

extracted and then its synchronies with other voxels are calculated, resulting in maps of co-activated brain 

regions. This figure is adopted from [96] with courtesy. 

 

The seed-based analysis and ROI-based analysis are based on priori assumptions, which require predefinition of 

seed and ROIs. ICA, by contrast, is a statistical data-driven method without any priori assumptions and is able to 
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identify statistically independent components of the resting-state signals [103]. Since ICA is not employed in this 

thesis, details of this method is not provided here. 

1.2.3 Static network analysis based on graph theory 

In addition to static FC analysis, studying the brain’s structural and functional system as networks would provide 

a powerful new way to investigate the physiological basis for information processing and mental representations [104, 

105]. Through the graph theory, we are able to explore the functional brain networks by regarding the brain regions 

as nodes and FC among them as edges in a graph (Fig. 1.8) [106]. Based on graph theory and network science, 

methodological advances enable us to quantify the topological features of brain networks, such as small-worldness 

[107], modularity [108], hierarchy [109], and centrality [110]. These graph theoretical properties have already been 

applied in numerous studies of cognitive neuroscience [111], neurology [39], and psychiatry [112]. 
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Figure 1.8 Schematic diagram of construction for structural brain network (left) and functional brain 

network (right). This figure is adopted from[106] with courtesy. 

 

1.2.4 Dynamic FC analysis 

Like we discussed above, conventional static FC analysis is most commonly based on a whole recording time 

course and represents an implicit assumption that the FC is relatively static over this period of time. However, this 

assumption may not be entirely justified as brain activities and cognitive processes are known to be dynamic and 

adaptive [113, 114], an observation that has been repeatedly confirmed by work focused on time-varying multivariate 

connectivity patterns [115] as well as work focused on time-frequency analysis methods [116]. As a result, several 

dynamic FC studies have appeared and focus on the dynamics in the FC among two or more brain regions [117, 118]. 

Among the rapidly increased dynamic FC studies, two methods are most commonly employed. The first one is 

to capture pairwise variations in inter-regional synchrony and the second one is to identify changing patterns of 

synchrony at a multivariate level. For the first method, the whole signal time courses are divided into several windows 

and the pairwise synchrony are estimated at each window. After that, the variability of the pairwise synchrony is 

estimated through calculating the temporal variance of the synchrony across windows and is named FC variability 

(FCV) [119]. FCV has been adopted by several studies to investigate the daydreaming [119], schizophrenia [120], 

and cognitive neuroscience [95]. The first method is relatively simple and straightforward, but it mainly focuses on 

the temporal patterns of dynamic FC. 

With respect to the second method, the whole signal time courses are also divided into several windows and the 

brain networks are estimated at windows [121]. After that, a k-means clustering is performed on the correlation 

patterns of brain networks over windows to identify FC state matrices (Please see Fig. 1.9 for details) [122]. The 

second method is able to provide both spatial and temporal information of dynamic FC and has been applied in 

several fields, including basic cognitive neuroscience [122] and psychological disorder research [123]. 
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Figure 1.9. Demonstration of the approach to identify time-varying patterns of FC through ICA and k-

means clustering method. This figure is adopted from [117] with courtesy. 

 

1.2.5 Contributions 

In this thesis, the research focus is the task-state brain networks under motor task. The purpose of this thesis is 

to investigate the task-state brain networks under motor tasks using both fMRI and fNIRS to reveal the motor task-

specific spatiotemporal changes of brain networks compared with resting conditions, and further applied the task-

state brain network analysis in the research of stroke recovery. fMRI and fNIRS are employed to record the brain 

hemodynamic signals, and static FC, dynamic FC and graph theory are used to investigate the task-state brain network. 

The contributions of this thesis are: 1) reveal the motor task-specific spatiotemporal changes of brain networks 

compared with resting conditions; 2) demonstrate the reorganization of task-state motor network and its potential 

clinical prognostic value during stroke recovery; 3) explore the potential of performing static and dynamic FC 

analysis based on fNIRS data. 

1.3 Outline 

In this section, an outline of the subsequent chapters is provided. In chapter 2 and chapter 3, the task-state brain 

networks are investigated during motor preparation and motor execution based on fNIRS using both static FC and 

dynamic FC analysis. In chapter 4, the focus is the spatiotemporal reorganization of dynamic task-state brain 

networks during motor execution and the dynamic FC analysis is employed to reveal spatial and temporal patterns 
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of FC based on fMRI data. In chapter 5, the task-state brain network analysis is applied in the investigation of stroke 

recovery. The reorganization and potential clinical prognostic value of task-state motor network during stroke 

recovery are examined. In chapter 6, the findings of this thesis is summarized and the conclusion is given.
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Chapter 2: Reorganization of static task-state brain network during motor 

task based on fNIRS 

2.1 Introduction 

In the chapter 2 and chapter 3, the task-state brain networks were investigated during motor preparation and 

motor execution based on fNIRS using both static FC and dynamic FC analysis. In addition to investigating the task-

state brain networks during motor tasks, exploring the potential of performing static FC and dynamic FC analysis 

was another critical purpose. 

Unlike the explicit cognitive processes during rest and movement, the cognitive process during transition period 

between rest and movement, which usually corresponds to the preparation period preceding movement, is implicit 

[124]. Although there is no actual movement in the transition period, modulation of brain activity has been observed, 

such as the Readiness Potential recorded by scalp electrodes around 500 milliseconds before a movement [125-128]. 

However, detailed information of brain activities during the transition period, such as how brain regions interact with 

each other to establish the motor preparation through FC, is still a pending question [129]. Thorough understanding 

of it would help with the investigation of the adaptation of brain networks for upcoming movement, and would have 

implications for improving the precision and latency of anticipation-based brain-computer interfaces [130-132], for 

neuroergonomic research related to human system integration and automation [133, 134], and various 

neurorehabilitation approaches such as neurofeedback-based motor function rehabilitation [135, 136]. 

Several recent fMRI studies have utilized FC analysis to investigate brain dynamics during preparation of 

movement. Newton and colleagues found that correlations increased within the sensorimotor network during 

transition from rest to finger tapping [137]. In addition, Treserras and colleagues found that the DMN and 

sensorimotor network were functionally correlated through an interaction between the posterior cingulate cortex, and 

precuneus (PCC/Pcu) and the medial superior parietal cortex in the upper precuneus during transition period between 

resting and motor task state [129]. Also, a positive relationship between DMN and right sensorimotor cortex while a 

negative relationship of DMN with left sensorimotor cortex during transition period were also reported [137]. Other 

than the FC-based analysis, a transcranial magnetic stimulation (TMS)-based study found that the excitability of the 

motor cortex contralateral to the moving hand increased, whereas the excitability of the ipsilateral motor cortex 

decreased during transition period [138].  
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Although findings from these studies were encouraging, and fMRI recordings provided extensive detail of the 

spatial distribution and relationship of activations, the relatively short time length of transition period made the 

temporal resolution very critical for reliable FC analysis during the transition period. fNIRS, which measures 

hemodynamic response similar to fMRI but can provide much higher sampling rate, therefore is a good candidate for 

further follow-up studies for the investigation of the temporal dynamics of the brain network modulation during the 

transition period [139-141]. In addition, compared with fMRI, fNIRS is cost effective (close to zero run-time cost) 

and without any operation ambient sound which would help focusing on the task at hand, especially for the transition 

period [142, 143]. fNIRS has been applied to neuroergonomics, such as the examination of workload and training-

related brain dynamics with human performance assessment [144, 145]. For FC analysis, fNIRS has emerged as a 

new tool that complements the fMRI-based FC analysis and also enable new applications because of its portable and 

wearable nature. For example of patients with brain-injured or intensive care patients in remote country or outdoors 

environments, or participant groups that cannot be easily transported to an fMRI facility maybe monitored with 

portable fNIRS. The reliability of fNIRS in FC analysis has already been demonstrated by several studies. One of the 

early pilot studies by White and colleagues demonstrated robust correlation maps of fNIRS-based FC in motor and 

visual cortices [146]. Another study investigated resting-state FC in bilateral sensorimotor and auditory cortices 

through fNIRS [147]. Mesquita and colleagues further used fNIRS to investigate the FC over the whole head during 

resting state and found strong correlations between two hemispheres for both sensorimotor and visual cortices [148]. 

Other than the seed-based FC analysis method [149] used in the above three studies, ICA-based FC analysis was also 

used in fNIRS and its feasibility was validated [150]. Furthermore, analysis of frequency-specific FC [151] and 

Granger causality [152] have also been reported on fNIRS. In addition, several studies have investigated the 

topological configuration of brain networks through fNIRS [153, 154]. 

In addition to the resting-state FC analysis, fNIRS can also be used to assess task-state FC. Relatively high 

temporal resolution capacity enables fNIRS to capture more information regarding the task modulation riding on the 

intrinsic brain networks through the task-state FC.  

In this chapter, fNIRS was used to examine the static FC during the transition period between rest and hand 

movement. Given the relatively high temporal resolution of fNIRS, the fNIRS-based FC during transition period was 

expected to provide more information regarding adaptation of brain networks for the upcoming task. Understanding 

the fine detailed relationship of movement intention could be utilized to improve precision and latency of future 

intention-based brain-computer interface and neuroergonomics research in general. 
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2.2 Methods 

2.2.1 Participants 

Nineteen healthy right-handed volunteers (12 Males; Age: 20-30 years, 24.68±3.06 years) participated in this 

experiment. Subjects did not have any history of mental health, seizures, head injury, or neurological dysfunction 

(e.g. stroke or seizure). All subjects provided written informed consent and procedures were reviewed and approved 

by the Institutional Review Board of Drexel University.  

2.2.2 Data acquisition 

Neuroimaging data was collected by the 24-channel Hitachi ETG-4000 NIRS system (Hitachi Medical Co., 

Tokyo, Japan) at the Cognitive Neuroengineering and Quantitative Experimental Research Collaborative, Drexel 

University (www.drexel.edu/conquer/; Philadelphia, PA, USA). The absorptions of the near-infrared light at two 

wavelengths (695nm and 830mm) were measured with a sampling rate of 10 Hz and the changes of the oxygenated 

hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) concentrations were calculated by the modified 

Beer-Lambert law [80] at each time point for each channel. Eighteen fiber probes (10 emitter probes and 8 detector 

probes) were placed on subjects’ head using a custom-made cap (Fig. 2.1(A)) and the probes were arranged with Cz 

(according to the international 10/20 system) located directly in the center of the probes. The probes were connected 

to the recording device by flexible optical fiber bundles. As a result, 24 optical channels (12 for each hemisphere) 

were recorded (Fig. 2.1(C)). The positioning of the probe array was determined according to the international 10-20 

system and referred to prominent anatomical landmarks such as the bilateral tragus, nasion and inion [140]. Also, 

based on the measured real coordinates of the probes, we used NIRS-SPM [155] to perform spatial registration and 

obtained the standard coordinates of probes and channels in MNI (Montreal Neurological Institute) space (Fig. 2.1(B) 

and (C)).  According to the MNI coordinates of channels, four ROIs (i.e. Primary Motor Cortex, Premotor and 

Supplementary Motor Cortex, Primary Somatosensory Cortex and Dorsolateral Prefrontal Cortex; Abbrev. M1, 

PMSMC, S1 and DLPFC) were covered by the channels in each brain hemisphere (Fig. 2.1(C)). 

http://www.drexel.edu/conquer/
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Figure 2.1. (A) Probes configuration and cap placement during the experiment. (B) Positions of the 

eighteen probes on standard brain template (MNI). (C) Positions of the twenty-four channels on standard 

brain template and the colors represent the region of interest (ROI) they locate in. 

 

2.2.3 Experiment protocol 

Experiment protocol was completed in a single sitting and had three main parts/sessions. The first session 

consisted of three blocks which were rest, left fist opening and closing (FOC) and right FOC. Each block lasted for 

4 minutes. During the rest block, subjects were instructed to relax and refrain from any movement. After the rest 

block, subjects were cued to perform left FOC and right FOC with randomized order. During the FOC, “0” and “1” 

were displayed to pace subjects’ movements. Subjects were instructed to open their fist when they saw “0” and close 

when they saw “1”. The frequency was set as opening and closing once per second (Fig. 2.2(A)). There were six 

trials in session 2 and each trial consisted of three blocks which were rest, transition period and left/right FOC. Rest 

and FOC blocks were identical to the session 1 only with different length (30s in session 2). During transition periods 

which were between rest and FOC, subjects had already known which hand they were going to use in the coming 

FOC block through the cue displayed just after rest block, but they were instructed to get ready for the upcoming 

movement without any movement and waiting for another cue to start the FOC. When the starting cue was displayed, 

they started FOC as soon as possible. Therefore, the transition periods in session 2 were defined as preparation period 

preceding the externally-triggered movement [156]. We applied three different lengths of transition periods (5s, 15s 

and 30s) for both left FOC and right FOC (Fig. 2.2(B)). For session 3, only transition period was different from 

session 2. In session 3 (Fig. 2.2(C)), there was no cue for FOC start and subjects should decide when to start FOC by 

themselves which made these transition periods equivalent to preparation period preceding self-initialed movement 
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[156]. In order to make the analysis feasible, we told subjects neither to make the length of transition period too long 

(more than 30s) nor too short (less than 5s). There was also six trials in session 3 (three for left and three for right). 

During the experiment, subjects’ immobility was visually checked and no excessive motion was found for any 

subjects. 

2.2.4 Data preprocessing 

Raw fNIRS data were band-pass filtered within 0.01 Hz to 0.1 Hz to remove the physiological noise such as 

respiration and cardiac activities, following previous studies [146, 150, 152, 153]. One of the participants’ data were 

rejected due to low signal quality and artifacts. In addition, motion artifacts were marked by visual inspection (i.e., 

spikes and deformed burst with large changes of magnitude in less than 1s would be marked as motion artifacts) and 

confirmed with a variation of coefficient based algorithm using the suggested parameters in these studies [157, 158]. 

The Sliding-window Motion Artifact Rejection (SMAR) algorithm uses statistical filtering to automatically mark 

temporally localized artifacts on fNIRS signals and has been shown to be effective for various types of noises such 

as Burst and Gaussian [158]. We used oxy-Hb signal changes in the current analysis since previous findings showed 

that oxy-Hb was the most sensitive to locomotion-related activities [159-162]. 
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Figure 2.2. Illustration of the experiment protocol. (A) Protocol of session 1 consisted of three blocks 

which were rest, right FOC and left FOC and each block lasted for 4 minutes; (B) One of the six trials in 

session 2 consisted of three blocks which were rest, transition period and left/right FOC and the FOC was 

initialed by a cue; (C) One of the six trials in session 3 consisted of three blocks which were rest, transition 

period and left/right FOC and the FOC was initialed by subjects themselves. Note that the order of cues 

of “Left hand” and “Right hand” were randomized for all three sessions. 
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2.2.5 FC analysis 

For FC analysis, five segments of data were used to generate FC which included three blocks (rest, left FOC and 

right FOC) in session 1 and two 30s-long transition periods preceding the left and right FOC (left trans and right 

trans) in session 2. For each segment of each subject, oxy-Hb time courses of channels located in the same ROI were 

averaged to generate a representative oxy-Hb time course for this ROI. Thus, eight representative oxy-Hb time 

courses (four for each brain hemisphere) were obtained. Based on that, the pair-wise FC was estimated by Pearson’s 

correlation analysis and the correlation coefficient (r) was transformed to z-score by Fisher’s transformation [163]. 

As a result, an 8×8 association matrix was obtained for each segment of each subject. Element aij in an association 

matrix represent the FC strength between the ith ROI and the jth ROI (Fig. 2.3).  In order to find how transition 

periods and FOC would modulate the FC compared with resting state, group-level paired t-tests were performed to 

identify significantly changed FC during transition periods and FOC compared with resting-state. False Discovery 

Rate (FDR) approach was used to do the multiple comparison correction [164].  

 

 

Figure 2.3. Summary of the ROI-based FC analysis. A representative time course of oxy-Hb for each 

ROI, that is the mean time course of channels in the ROI, was obtained and the pair-wise FC was 

estimated by Pearson’s correlation of time courses for two ROIs. 
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2.2.6 Activation analysis 

For each channel, baseline-adjusted mean level of oxy-Hb was calculated for each block in session 2 and 3. The 

first 10 time points (1s) of each block were regarded as the baseline and the data of each block were adjusted by 

subtracting the mean of corresponding baseline. After that, baseline-adjusted mean level of oxy-Hb was obtained by 

averaging the baseline-adjusted time courses of each block across time. With respect to the transition-related 

activation, activation during left trans and right trans were estimated for session 2 and 3 respectively. For each session, 

the six transition blocks were divided into two conditions (left trans and right trans) according to which hand was 

cued. An averaged baseline-adjusted mean level of oxy-Hb was obtained for left trans and right trans for each subject, 

and group-level paired t-tests were used to compare left trans and right trans with resting state for each channel and 

FDR approach was used to do the multiple comparison correction [164]. For FOC-related activation, the FOC blocks 

in session 2 and 3 were put together to do the same analysis as transition-related activation.  

2.3 Results 

2.3.1 Modulated FC during transition period 

For FC analysis, significantly increased FC were found during left FOC, left trans and right trans compared with 

resting state (Fig. 2.4), while no significantly changed FC was found during right FOC. Table 2.1 listed increased FC 

during left FOC, left trans and right trans. There were more modulated FC during transition periods than FOC periods 

and the average strength of FC during transition periods was greater than that during rest and FOC periods according 

to the average association matrices (Fig. 2.4(D-G)). With respect to increased FC during transition period compared 

with resting state (Fig. 2.4(B) and (C)), most FC were inter-hemispheric FC for both left trans and right trans. 

Especially, FC connecting the right DLPFC with contralateral (right side in left trans and left side in right trans) S1 

and M1, and FC connecting contralateral S1 with ipsilateral (left side in left trans and right side in right trans) S1 and 

M1 were significantly increased for both right trans and left trans, implying the relationship between modulated FC 

during the transition period and the side of FOC subjects were about to perform. 
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Figure 2.4. Significantly increased (p<0.05) FC during left FOC (A), left trans (B) and right trans (C) 

compared with resting-state by paired t-test. In addition, the average association matrices across subjects 

were illustrated for rest (D), left FOC (E), left trans (F), and right trans (G). M1 = Primary motor cortex; 

PMSMC = Premotor and supplementary motor cortex; DLPFC = Dorsolateral prefrontal cortex; S1 = 

Primary somatosensory cortex. 

 



24 

 

Table 2.1. Results of paired t-test of FC during left FOC, left trans and right trans compared with resting 

state. 

FC t-value Unc. p 

Left FOC > Rest 

R. PMSMC – R. S1 2.134 0.024 

R. PMSMC – L. S1 2.122 0.024 

Left trans > Rest 

R. S1- R. DLPFC 1.936 0.035 

R. S1 – L. S1 2.374 0.015 

R. S1 – L. M1 1.757 0.049 

R. S1 – L. PMSMC 1.742 0.050 

R. M1 – R. DLFPC 2.399 0.015 

R. M1 – L. M1 2.207 0.021 

R. DLPFC – L. S1 1.995 0.032 

L. S1 – L. M1 1.806 0.044 

Right trans > Rest 

R. S1 – R. M1 2.979 0.009 

R. S1 – R. PMSMC 2.166 0.031 

R. S1 – L. S1 3.066 0.008 

R. S1 – L. PMSMC 1.923 0.045 

R. S1 – L. DLFPC 1.984 0.041 

R. M1 – R. DLPFC 1.975 0.045 

R. M1 – L. S1 2.522 0.018 

R. PMSMC – R. DLPFC 2.347 0.026 

R. DLPFC – L. S1 1.932 0.047 

R. DLPFC – L. M1 2.388 0.024 

R. DLPFC – L. PMSMC 2.031 0.041 

Unc. p = uncorrected p value; M1 = Primary motor cortex; PMSMC = Premotor and supplementary motor 

cortex; DLPFC = Dorsolateral prefrontal cortex; S1 = Primary somatosensory cortex. R. = right; L. = left. 
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2.3.2 Task-related activation 

In addition to FC analysis, activation analysis is another method which can directly demonstrate how transition 

periods modulate brain activities. Activated channels during FOC and transition periods were identified by paired t-

tests and multiple comparison was corrected by FDR. Activated channels were identified (FDR corrected p < 0.05) 

during FOC periods (Fig. 2.5(A) and 5(B)) as well as transition periods in session 3 (Fig. 2.5(E) and 2.5(F)), which 

corresponded to the preparation before self-initialized movement. Table 2.2 listed these activated channels and their 

statistical results. Nine channels were activated during left FOC, which located in bilateral DLPFC, right PMSMC, 

and right M1, and three channels located in left PMSMC and left M1 were activated during right FOC (Table 2.2). 

For transition periods in session 3, fifteen channels were activated during left trans, which located in bilateral DLPFC, 

bilateral M1, bilateral S1 and right PMSMC, and eight channels located in bilateral M1, right S1, right PMSMC and 

right DLPFC were activated during right trans (Table 2.2). However, no channels were activated during transition 

periods in session 2, which corresponded to the preparation before externally-triggered FOC, after multiple 

comparison correction by FDR, even though several activated channels were identified before multiple comparison 

correction (Fig. 2.5(C) and 2.5(D)).  
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Figure 2.5. Activation of channels during left FOC (A), right (B), left trans and right trans in session 2 

(C, D), and session 3 (E, and F). Note that activation of channels during left and right trans in session 2 

did not survive the multiple comparison correction by FDR. Spheres represent the channels and color of 

the spheres indicate which ROI they locate in according to the legend in the figure. Larger spheres indicate 

that these channels were activated and smaller ones mean no activation in these channels. 
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Table 2.2. Activated channels and the paired t-test results (after FDR correction) during left and right 

trans in session 3, as well as left and right FOC. 

Activated channels during trans in session 3 Activated channels during FOC 

Channel (ROI) 
t-

value 

FDR. p Channel (ROI) t-value FDR. p 

Left trans in session 3 Left FOC 

1 (R.M1) 2.390 0.029 2 (R.PMSMC) 3.052 0.025 

2 (R.PMSMC) 2.512 0.025 4 (R.PMSMC) 2.475 0.044 

3 (R.S1) 3.288 0.013 5 (R.PMSMC) 2.980 0.025 

4 (R.PMSMC) 2.722 0.023 6 (R.M1) 2.293 0.047 

5 (R.PMSMC) 3.053 0.017 7 (R.PMSMC) 2.998 0.035 

6 (R.M1) 3.358 0.013 9 (R.M1) 2.474 0.044 

7 (R.PMSMC) 3.050 0.018 10 (R.DLPFC) 3.360 0.025 

8 (R.S1) 2.298 0.033 
12 

(R.PMSMC) 
3.046 0.025 

10 (R.DLPFC) 3.426 0.013 17 (L.DLPFC) 2.744 0.030 

11 (R.S1) 2.165 0.037    

12 (R.PMSMC) 3.410 0.013    

15 (L.S1) 2.567 0.025    

16 (L.M1) 2.893 0.018    

17 (L.DLPFC) 2.229 0.036    

18 (L.M1) 3.016 0.018    

Right trans in session 3 Right FOC 

3 (R.S1) 2.368 0.045 14 (L.DLPFC) 3.111 0.031 

5 (R.PMSMC) 2.509 0.045 16 (L.M1) 3.200 0.031 

6 (R.M1) 2.908 0.045 19 (L.DLPFC) 3.246 0.031 

8 (R.S1) 2.377 0.045    

10 (R.DLPFC) 3.885 0.018    

11 (R.S1) 2.589 0.045    

16 (L.M1) 2.687 0.045    

23 (L.M1) 2.494 0.045    

FDR. p = FDR corrected p value; R. = right; L. = left. 
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2.4 Discussion 

In this chapter, we examined how the transition period between rest and FOC modulated the motor-related brain 

activities from the perspectives of static FC and activation. Our results demonstrated that not only would the actual 

movement in FOC modulate the brain activities, but also the transition period without actual movement modulated 

the brain activities from the perspectives of both FC and activation. 

For FC analysis, our results showed that FC connecting the right DLPFC with contralateral S1 and M1, and FC 

connecting the contralateral S1 with ipsilateral S1 and M1 were significantly increased for both right trans and left 

trans (Fig. 2.4). These findings might give us an idea about how brain would achieve the preparation state before 

actual motor task execution. DLPFC is an intensively researched brain region and many functions have been 

attributed to it such as executive control of motor system [165] and response inhibition [166]. Specifically, right 

DLPFC might be involved in the attention to motor timing and decision on when to move based on other studies [167, 

168]. In addition, M1 and S1 is known to be the primary brain regions in charge of sensorimotor function. Thus, it 

was reasonable to believe that these increased FC indicated that right DLPFC was controlling M1 and S1 to maintain 

the preparation state. Based on the functions of DLPFC found by previous studies, the controlling aspect might 

consist of two parts. First part was to make the sensorimotor system be ready for the upcoming motor task. 

Furthermore, since which hand subjects would use in the upcoming task had already been cued, DLPFC might also 

exert control over contralateral M1 and S1 to withhold the execution of motor task during the preparation, which was 

supported by previous finding that DLPFC might be important for making the decision on when to move and 

withholding movement until the right moment [169]. Increased FC connecting contralateral S1 with ipsilateral S1 

and M1 further indicated an interaction of bilateral sensorimotor system to process the sensory information and 

further collaborate with DLPFC to balance the activities in both hemispheres and maintain the preparation state. In 

summary, these findings proved that brain regions with high-level cognitive functions such as DLPFC collaborated 

with sensorimotor networks in bilateral hemispheres to maintain the preparation state, under which motor system 

was ready for the upcoming motor task but also was withheld to execute motor task until the right moment. 

With respect to comparison between FOC and rest, only two FC were found significantly increased (unc. p<0.05) 

in left FOC which were FC between right PMSMC and right S1 as well as left S1 (Fig. 2.4(A)). Premotor and 

supplementary cortex was known to play an important role in control of movement, especially for the sequential 

movement according to previous studies [170, 171]. During FOC, subjects were instructed to open and close their 

fist according to the numbers displayed on the screen. Therefore, there might be an interaction between the sensory 
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component and control component to pace the movement based on external information during this process. The two 

increased FC between right PMSMC and bilateral S1 might be the “bridge” of information transmission and PMSMC 

contralateral to moving hand was receiving sensory information from bilateral S1 through them and therefore exerted 

control over FOC.  

For activation analysis, more activation were identified during transition periods in session 3, which corresponded 

to preparation before self-initialed FOC (Fig. 2.5(E) and 2.5(F)), as no channels survived the multiple comparison 

correction during transition periods in session 2. Previous studies had similar findings by examining the readiness 

potentials before movements and they found that the readiness potential preceding self-initialed movements was 

significantly greater compared with externally-triggered movements [172, 173]. Nevertheless, right DLPFC was 

activated during left trans and right trans in both session 2 and session 3, which further supported our speculation of 

the important role that right DLPFC played in the preparation state through the FC analysis. In addition, bilateral S1, 

M1 and PMSMC which were key brain regions for motor execution and motor control, were also activated even 

though there was no actual movement, which was in line with previous study [156]. In general, combing these 

activated channels together, the activation findings also supported our speculation, through FC analysis, that brain 

regions with high-level cognitive functions such as DLPFC collaborated with sensorimotor networks in bilateral 

hemisphere to maintain the preparation state. 

Activation during FOC was not our major target in this chapter, it was for the validation of our study by 

comparing with other studies. According to our results, motor-related brain regions contralateral to the moving hand 

were activated during FOC (Fig. 2.5(A) and 2.5(B)), which was similar with other studies based on either fNIRS or 

fMRI [174, 175]. Therefore, the results and findings in our study should be reliable. 

In addition, our findings regarding transition periods, especially the modulated FC, could potentially be applied 

in anticipation-based BCI. Previous studies of anticipation-based BCI mainly targeted the anticipation-related 

potentials obtained through EEG and developed classification methods to detect the anticipation-related potentials to 

guide the BCI [132, 176, 177]. However, our findings might provide another option for anticipation-based BCI. The 

increased FC during transition period before actual movement could be used to guide the BCI. Especially, the 

relationship between modulated FC during transition period and the side of FOC subjects were about to perform, that 

is, FC connecting the right DLPFC with contralateral (right side in left trans and left side in right trans) S1 and M1, 

and FC connecting contralateral S1 with ipsilateral (left side in left trans and right side in right trans) S1 and M1 were 

increased during transition periods, would further help the BCI to understand the anticipation of subjects more 

specifically. 
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2.5 Chapter conclusion 

In this chapter, we used fNIRS to evaluate how the transition period preceding the task would modulate the task-

state brain network compared with the rest period. We found several increased FC during transition period, especially 

the FC connecting right DLPFC with contralateral S1 and M1 as well as the FC connecting contralateral S1 with 

ipsilateral S1 and M1. In addition, channels located in sensorimotor networks and right DLPFC were also found 

activated during transition period by activation analysis. These results demonstrated that sensorimotor network was 

interacting with high-level cognitive brain network during transition period to maintain the preparation state.  

In this thesis, the purpose is to reveal the motor task-specific spatiotemporal changes of brain networks compared 

with resting conditions, and further applied the task-state brain network analysis in the research of stroke recovery. 

This chapter revealed the task-specific spatial changes of brain networks under motor preparation and motor 

execution compared with resting conditions using static FC analysis, which enriched our understanding of how motor 

network would work under motor preparation and motor execution, especially the interaction between motor network 

and cognitive network under different conditions. This knowledge could be applied in a lot fields, such as the 

anticipation-based BCI mentioned above, and the research of stroke based on motor preparation.  
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Chapter 3: Modulation of dynamic task-state brain network during motor 

execution based on fNIRS 

3.1 Introduction 

Recent neuroimaging studies have been focusing on motor-modulated brain activities through either activation 

analysis [178-182] or static FC analysis [41, 49]. As a rapidly growing method, dynamic FC analysis, which takes 

the dynamic and adaptive brain activities into account, provides new insights into the dynamic patterns of brain 

networks. fMRI-based dynamic FC analysis has been a major methodological innovation [117, 118, 183], using 

sliding-window correlation analysis from seconds up to minutes [116, 122, 123, 184]. Dynamic FC analysis provides 

not only the temporal dependence of the brain’s organization during cognitive processes [116], but also clinically 

valuable information [123]. In sliding-window-based analysis of fMRI data, the window size is crucial for the 

robustness and sensitivity of FC estimation [115, 118]. Therefore, neuroimaging modality with higher temporal 

resolution would be beneficial for dynamic FC analysis [118]. fNIRS has emerged as a new tool that is 

complementary to fMRI-based FC analysis, especially dynamic FC analysis. fNIRS also facilitates new applications 

for its portable and wearable nature. The reliability of fNIRS in static FC analysis has already been documented [146-

154, 185]. However, to the best of our knowledge, no studies have used fNIRS to perform dynamic FC analysis, 

though it has relatively higher temporal resolution than fMRI.  

In this chapter, our aim was to reveal how task-state brain network would be modulated by motor task execution 

from the perspective of dynamic FC and also to explore applicability of dynamic FC analysis on fNIRS. fNIRS data 

were recorded from nineteen volunteers during a FOC task, as well during resting state. Dynamic FC was estimated 

by both sliding-window correlation and the new phase synchronization approach which was proposed recently as a 

promising method in dynamic FC analysis [186, 187]. 

3.2 Methods 

3.2.1 Participants 

Nineteen healthy right-handed volunteers (12 Males; Age: 20-30 years, 24.68±3.06 years) participated in this 

experiment. Subjects had no history of mental health, seizures, head injury, or neurological dysfunction (e.g. stroke 
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or seizure). All subjects provided written informed consent and procedures are reviewed and approved by the 

Institutional Review Board of Drexel University.  

3.2.2 Data acquisition 

Neuroimaging data was collected by the 24-channel Hitachi ETG-4000 NIRS system (Hitachi Medical Co., 

Tokyo, Japan) at the Cognitive Neuroengineering and Quantitative Experimental Research Collaborative, Drexel 

University (www.drexel.edu/conquer/; Philadelphia, PA, USA), using the same procedure of chapter 2 (Fig. 3.1). 

 

 

Figure 3.1. (A) Probes configuration and cap placement during the experiment. (B) Positions of the 

eighteen probes on standard brain template (MNI). (C) Positions of the twenty-four channels on standard 

brain template and the colors represent the region of interest (ROI) they locate in. 

 

3.2.3 Experiment protocol 

Experiment protocol was completed in a single sitting and has two sessions. The first session was resting state 

and subjects were instructed to relax and refrain from any movements. The second session was right FOC, during 

which “0” and “1” were displayed to pace subjects’ movements. Subjects were instructed to open their fist when they 

saw “0” and close when they saw “1”. The frequency was set as opening and closing once per second. Both sessions 

lasted for 4 minutes. During the experiment, subjects’ immobility was visually checked and no excessive motion was 

found for any subjects. 

http://www.drexel.edu/conquer/
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3.2.4 Data preprocessing 

Raw fNIRS data were band-pass filtered within 0.01 Hz to 0.1 Hz to remove the physiological noise such as 

respiration and cardiac activities, following previous studies [146, 150, 152, 153]. One of the participants’ data were 

rejected due to low signal quality and artifacts. After that, data were first corrected for motion artifacts using the 

CBSI method, which used Deoxy-Hb data to estimate movement in Oxy-Hb data through decorrelation [188]. Then, 

the data was further corrected for residual motion artifacts using the Sliding-window Motion Artifact Rejection 

(SMAR) algorithm, which used statistical filtering to automatically mark temporally localized artifacts on fNIRS 

signals and had been shown to be effective for various types of noises [158]. We used Oxy-Hb signal changes in the 

current analysis since previous findings showed that Oxy-Hb was the most sensitive to locomotion-related activities 

[159, 160]. 

3.2.5 Dynamic FC by sliding-window correlation analysis 

For both rest session and FOC session, Oxy-Hb time courses of channels located in the same ROI were averaged 

to generate a representative Oxy-Hb time course for this ROI. Thus, eight representative Oxy-Hb time courses (four 

for each hemisphere) were obtained. Then, representative Oxy-Hb time courses were analyzed by sliding windows 

(size: 30 s) with a step of 2 s, resulting in 105 windows in total [95, 122]. Within each window, the pair-wise FC was 

estimated by Pearson’s correlation analysis and an 8×8 association matrix (AM) was obtained for each window (Fig. 

3.2).  

3.2.6 Dynamic FC by phase synchronization analysis  

In addition to the sliding-window-based dynamic FC analysis, phase synchronization analysis was also used to 

evaluate the dynamic FC through mean phase coherence (MPC). For a real-valued signal 𝑠(𝑡), its analytic signal is 

defined as  

𝑧(𝑡) = 𝑠(𝑡) + 𝑗𝐻{𝑠(𝑡)} = 𝐴(𝑡)𝑒𝑗𝜙(𝑡)                                       (3.1) 

where 𝐴(𝑡) and 𝜙(𝑡) = arg[𝑧(𝑡)] = 𝑎𝑟𝑡𝑎𝑛
𝐻{𝑠(𝑡)}

𝑠(𝑡)
 are the instantaneous amplitude and instantaneous phase of 

signal 𝑠(𝑡), respectively, and 𝐻{∙} is the Hilbert transform [186, 187]. Let 𝑠(𝑛) denotes 𝑠(𝑛∆𝑡), i.e., the observation 

of 𝑠(𝑡) at time 𝑛∆𝑡, and �̂�(𝑛) denotes the estimation of 𝜙(𝑡) at time 𝑛∆𝑡, where ∆𝑡 is the sampling interval (0.1 s in 

this experiment).  
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Figure 3.2. Illustration of sliding-window-based dynamic FC analysis. The representative Oxy-Hb time 

courses were analyzed by sliding windows (size: 30 s) with a step of 2 s, resulting in 105 windows in 

total.The pair-wise FC was estimated by Pearson’s correlation analysis and an 8×8 association matrix 

(AM) was obtained for each window. 

 

Once the instantaneous phase time courses of two coupled ROIs were obtained, which were denoted by �̂�1(𝑛) 

and �̂�2(𝑛). Phase synchrony between two ROIs can then be quantified using MPC [189]. Temporal MPC was used 

to estimate the phase synchrony among Oxy-Hb time courses of ROIs in study. The instantaneous phase time courses 

were divided into short sliding windows (size: 3 s; 30 sampling points) with a step of 1.5 s, resulting in 159 windows 

in total, so that the sampling points in each window were enough to estimate reliable phase synchrony [190], which 

can be regarded as FC among ROIs. The MPC-based phase synchrony was estimated as follow: 

𝜆 =  
1

𝑁
|∑ 𝑒𝑗(�̂�1(𝑛)− �̂�2(𝑛) )𝑁−1

𝑛=0 |                                                 (3.2) 

where N denotes the number of sampling points in a window. As a result, for each of the 159 windows, an 8×8 

association matrix is obtained (Fig. 3.3).  
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3.2.7 Variability analysis of FC and ROI 

In order to examine the dynamic patterns of ROIs as well as FC between ROIs, the FCV and nodal strength 

variability (NV) were estimated over time for both rest and FOC. The FCV based on two methods was calculated as 

follow: 

𝐹𝐶𝑉𝑖𝑗 =
1

𝑀
× √∑ (𝐹𝐶𝑖𝑗

𝑘 − 𝐹𝐶̅̅̅̅
𝑖𝑗)2𝑀

𝑘=1                                        (3.3) 

where M represents the number of sliding windows; 𝐹𝐶𝑖𝑗
𝑘  denotes the FC between ROI i and ROI j at window k; 

𝐹𝐶̅̅̅̅
𝑖𝑗 denotes the mean of 𝐹𝐶𝑖𝑗

𝑘  across sliding windows. For nodal strength of ROIs, the NV was calculated as follow: 

𝑁𝑉𝑖 =
1

𝑀
× √∑ (𝑁𝑖

𝑘 − 𝑁𝑖)2𝑀
𝑘=1                                                  (3.4) 

where 𝑁𝑖
𝑘 =  ∑ 𝐹𝐶𝑖𝑗

𝑘𝑅
𝑗=1,𝑗≠𝑖 , representing the nodal strength of ROI i at window k and R denotes the number of 

ROIs; 𝑁𝑖 denotes the mean of 𝑁𝑖
𝑘 across sliding windows. 
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Figure 3.3. Illustration of dynamic FC analysis based on phase synchronization. Through Hilbert 

transform, the instantaneous phases are extracted from preprocessed time series and then are divided into 

small sliding windows with size of 3 s and step of 1.5 s, resulting in 159 windows. For each window, the 

phase synchrony between each pair of ROIs is estimated through MPC and an 8×8 association matrix is 

obtained. 

 

3.3 Results 

3.3.1 Increased dynamic FCV during FOC 

In order to investigate how the FOC would modulate the dynamic FC among motor-related ROIs, the FCV was 

compared between rest and FOC by paired t-test. Multiple comparison correction was performed using False 
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Discovery Rate (FDR) approach [164]. For dynamic FC based on sliding-window correlation analysis, statistical 

results (Table 3.1) showed that the FCV of L. M1-L. PMSMC (FDR-corrected p = 0.034) and L. M1 – R. S1 (FDR-

corrected p = 0.045) were significantly increased during FOC comparing with rest (Fig. 3.4). With respect to dynamic 

FC based on phase synchronization analysis, similar results (Table 3.1) were obtained that the FCV of L. M1 – L. 

PMSMC (FDR-corrected p = 0.031) was also significantly increased during FOC (Fig. 3.5). 

 

 

Figure 3.4. (A) Significantly increased FCV based on sliding-window correlation analysis (L. M1 – L. 

PMSMC: FDR-corrected p = 0.034; L. M1 – L.S1: FDR-corrected p = 0.045) during FOC compared with 

rest. (B) Map of t-value of paired t-test, and the blue outlined squares represent the FC with increased 

FCV during FOC compared with rest.  
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Table 3.1. Statistical Results of Paired t-test of FCV between FOC and rest 

FC t-value Unc. p FDR p 

Dynamic FC by sliding-window correlation analysis 

L. PMSMC – L. 

M1 

3.562 0.001 0.033 

L. M1 – R.S1 3.108 0.003 0.045 

Dynamic FC by phase synchronization analysis 

L. PMSMC – L. 

M1 

3.602 0.001 0.031 

Unc. p = uncorrected p value; FDR p = FDR corrected p value. 

 

 

 

Figure 3.5. (A) Significantly increased FCV based on phase synchronization analysis (L. M1 – L. 

PMSMC: FDR-corrected p = 0.031) during FOC compared with rest. (B) Map of t-value of paired t-test, 

and the blue outlined squares represent the FC with increased FCV during FOC compared with rest.  
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3.3.2 Increased NV during FOC 

For dynamic FC based on two methods, the nodal strength as well as NV were estimated. NV based on two 

methods were also compared between rest and FOC, respectively. According to the statistical results of paired t-test, 

the NV based on phase synchronization analysis was not changed significantly between rest and FOC. However, with 

respect to the nodal strength based on sliding-window correlation analysis, the NV increased significantly during 

FOC comparing with rest in L. PMSMC (FDR-corrected p = 0.045) and L. M1 (FDR-corrected p = 0.046) (Fig. 3.6). 

Note that these two ROIs were also involved in the dynamic FC with significantly increased FCV during FOC for 

both methods (Table 3.1). 

 

 

Figure 3.6. Increased NV based on sliding-window correlation analysis in L. M1 (FDR-corrected p = 

0.046) (A) and L. PMSMC (FDR-corrected p = 0.045) (C) during FOC compared with rest. Subjects are 

coded by different colors and the error bars indicate the standard errors of the mean. 

 

3.4 Discussion  

In this chapter, two methods, which were sliding-window correlation analysis and phase synchronization analysis, 

were adopted to estimate the dynamic FC during rest and FOC based on fNIRS. Similar results were found based on 

two methods. Specifically, the FCV of L.PMSMC - L.M1 was increased during FOC comparing with rest, which 

was found based on two methods. 

M1 and PMSMC were reported to be the key brain regions in the motor system [191, 192]. However, they are in 

charge of different aspects of motor function based on their properties. The strong presence of large corticospinal 
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neurons is a unique property of M1. Among the corticospinal neuros which arise from M1, 31% are considered large 

and these neurons represent 79% of all large corticospinal neurons, which are important for the fractionation of 

independent finger movement as they directly influence the lateral motor-nuclei in the spinal cord [193, 194]. Based 

on the findings of unilateral ablations of M1 in the rhesus monkey, the importance of M1 for generating movement 

of the distal forelimb muscles was proven as monkeys still had difficulties in grasping small objects and making 

isolated movement of the wrist six months post lesioning [195, 196]. With respect to PMSMC, studies found that it 

was critical for implementing associations between arbitrary cues and motor responses. An experiment on monkey 

discovered that dorsal premotor (PMd) neurons discharged after the presentation of an arbitrary cue which instructed 

the monkey to make a particular motor movement [197]. In a TMS study, subjects’ abilities to use color cues to select 

appropriate motor responses were disrupted after low-frequency repetitive TMS, which reduced the neuronal 

excitability, was applied over PMd [198]. In addition, PMSMC also plays significant role in the control of hand 

movements required for the manipulation of objects. Several neuroimaging studies identified changes of brain 

activity in PMSMC when subjects altered grip forces during precision grip [199], and changed finger configurations 

while manipulating objects by tactile exploration [199]. 

Though M1 and PMSMC are in charge of different motor function based on their features, the interaction between 

them contributes significantly to the motor system. According to previous studies, the interaction between M1 and 

PMSMC reflected the hierarchical organization of the motor system in humans [200, 201]. In a TMS study, neural 

modulation occurred in a small number of brain regions, including non-primary motor areas and subcortical motor 

structure, after M1 stimulation. However, after PMSMC stimulation, neural modulation occurred in multiple brain 

regions, including motor regions in frontal cortex and associational regions in the parietal and prefrontal cortices 

[201]. Visual, auditory, and/or other information that affected movements was usually processed by associational 

and higher order sensory cortices and then was communicated to the PMSMC [202]. Thus, PMSMC was collecting 

motor-related information from other cortices and used it to assist M1 in motor execution through its interaction with 

M1. 

In this chapter, through dynamic FC, new insights into the interaction between M1 and PMSMC during motor 

execution were provided. The FCV of L.PMSMC - L.M1 was increased during FOC comparing with rest. The FOC 

task was a visual-cued hand movement, which required subjects to open their fist when “0” was displayed and to 

close their fist when “1” was displayed. Thus, based on the above information regarding the features of M1 and 

PMSMC, it was reasonable to speculate that the PMSMC was collecting processed visual information from other 

cortices, and used it to assist the M1 to control the hand movement, especially implementing associations between 
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arbitrary cues and motor responses. Thus, the increased FCV between M1 and PMSMC reflected they were 

interacting with each other dynamically during FOC, as the increased FCV represented active dynamic interaction 

[28], and it also demonstrated that our findings fitted previous studies about motor system. In addition, the NV in M1 

and PMSMC were also increased during FOC, further indicating their active dynamic interaction. 

Another purpose of this chapter was to explore the potential of application of fNIRS in dynamic FC analysis. 

Though dynamic FC analysis is a hot topic recently, most studies were based on fMRI [117, 118]. To the best of our 

knowledge, no studies have tried to perform dynamic FC analysis through fNIRS. The reliability of fNIRS in static 

FC analysis has already been demonstrated by several studies [146-148]. Actually, the features of fNIRS, including 

portability, wearability, especially relatively higher temporal resolution than fMRI, make it a promising modality for 

dynamic FC analysis. For instance, the size of sliding window in correlation analysis is 30 s, with 300 fNIRS samples 

under the sampling rate of 10 Hz. In contrast, for regular fMRI scanner with TR of 2 s, there would be only 15 

samples in a window of 30 s, which would hardly result in reliable FC estimation [115, 203]. With its relatively high 

temporal resolution, fNIRS is also able to detect potentially interesting transients [115, 118]. To the best of our 

knowledge, this is the first study on dynamic FC analysis of fNIRS, which offer new insights into the dynamic 

interaction between M1 and PMSMC during motor execution. 

In this chapter, in addition to sliding-window correlation analysis, phase synchronization analysis was also used 

to estimate dynamic FC. Phase synchronization analysis employed the concept of analytic associates based on the 

Hilbert information [187] to extract the phase information and estimate temporal/spatial phase synchrony of time 

series. This method was recently adopted in the dynamic FC analysis based on fMRI. In that fMRI study, because of 

high spatial resolution, spatial phase synchrony was estimated, resulting in an instantaneous measure of local FC 

[204]. In our study, given relatively high temporal resolution and low spatial resolution, temporal phase synchrony 

was estimated. Though the temporal phase synchrony cannot result in an instantaneous measure of FC, the window 

was still shorter than that used in sliding-window correlation analysis, indicating that phase synchronization analysis 

can detect the dynamic changes of FC during in a shorter time scale than sliding-window correlation analysis. In 

addition, the results based on phase synchronization analysis were similar with that based on sliding-window 

correlation analysis. Thus, phase synchronization is a promising method in the fNIRS-based dynamic FC analysis. 

3.5 Chapter conclusion 

In this chapter, the task-state brain networks were investigated during motor execution based on fNIRS using 

dynamic FC analysis. fNIRS data were recorded from nineteen volunteers when they were resting and performing 
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FOC task. Dynamic FC was estimated by sliding-window correlation analysis and phase synchronization analysis of 

fNIRS. In addition, dynamic FC was compared between rest and FOC to investigate the modulation of motor task on 

dynamics of motor-related FC and network. The FCV of L.PMSMC - L.M1 as well as their NV were increased during 

FOC comparing with rest, which was consistent by either sliding-window correlation analysis or phase 

synchronization analysis. Our results demonstrated that contralateral M1 and PMSMC were interacting with each 

other dynamically during FOC, and the relatively high temporal resolution of fNIRS provides robust FC estimation 

and transient detection simultaneously.
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Chapter 4: Spatiotemporal pattern of task-state brain networks during motor 

tasks based on fMRI 

4.1 Introduction 

In this chapter, the spatiotemporal pattern of task-state brain networks during motor task was investigated based 

on fMRI. Like the fNIRS, the task-state brain networks can be investigated using static FC analysis and dynamic FC 

analysis. However, so far, several fMRI studies have examined the task-state brain networks during a variety of tasks, 

including motor tasks, using static FC analysis [41, 49, 50, 205-208]. Therefore, in this chapter, the focus was 

examining task-state brain networks during motor task using dynamic FC analysis, and an introduction of fMRI 

studies using static FC analysis to investigate the task-state brain networks during motor tasks was provided first.  

Jiang and colleagues conducted an fMRI study to investigate modulation of FC during motor task compared with 

resting state [41]. They recorded the fMRI data of eight healthy right-handed volunteers during resting state and 

finger tapping task. Based on a newly developed approach, which took into account n-to-1 FC using 1-to-1 FC 

measures, instead of conventional pairwise FC, their findings showed that a large organized brain network related to 

motor function existed in the resting brain, More importantly, they further revealed that the brain network could be 

modulated during the motor task state. Figure 4.1 illustrated the main finding of this study, they estimated the 

normalized FC degree of nodes Γ̅ to describe the amount of information of a node receiving from the particular 

network. In order to examine the modulation of brain network during motor task state, paired Student’s t-test was 

adopted to compare the Γ̅ of each brain region between two states. Significant difference in Γ̅ for some pairs of brain 

regions were identified (Fig. 4.1). 
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Figure 4.1. Difference in Γ̅ between resting state and motor task. *p < 0.05; **p < 0.01; ***p < 0.001 

(paired t-test). R: Right; L: Left; FG: fusiform gyrus; SCb: superior cerebellum; M1: primary motor cortex; 

Th: thalamus; SPL: superior parietal lobule; SMA: supplementary motor area; PMC: premotor cortex; 

DN: dentate nucleus; AICb: anterior inferior cerebellum; PCG: postcentral gyrus; BG: basal ganglia; 

PICb: posterior inferior cerebellum; Cu: cuneus. This figure was adopted from [41] with courtesy. 

 

Another fMRI targeted to investigate the task-related modulation on interregional correlations within the motor 

system [50]. fMRI data of eleven healthy right-handed subjects were recorded during resting state and three steady-

state finger tapping tasks with different tapping rates being 1, 2 and 4 Hz. Based on the four steady-state functional 

scans (rest, 1, 2, 4 Hz tapping), partial correlation maps were generated to illustrate the partial correlation between 

the average M1 time course and the time course of every voxel, excluding the effects of the global time course. Then, 

the FC between motor-related brain regions and M1 was examined under four states to evaluate the modulation of 

FC within motor system by the varying task demands. According to the results, the FC of several brain regions with 

M1 was modulated by tapping rate, indicating that the task demand was a significant factor in determining the FC of 

some brain regions to PM, and the FC measured during tapping increased compared with resting state in general. 

In addition to above two studies, several fMRI studies adopted static FC analysis to investigate the task-state 

brain network during motor preparation [129], and fist-edge-palm task [209]. Since the task-state brain networks 

have already been investigated by several fMRI studies using static FC analysis, this thesis focused on investigating 

the spatiotemporal patterns of task-state brain networks during motor task based on fMRI using dynamic FC analysis. 
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Dynamic brain activities have been extensively studied using EEG methods and commonly observed functional 

microstates have been considered to form the basic building blocks of information processing [210-215]. fMRI-based 

investigations using dynamic FC have been the focus of recent methodological innovations and studies are also 

accumulating [117, 118, 183]. Dynamic FC has been explored in fMRI using sliding window correlation analysis to 

examine time scales ranging from seconds to minutes [116, 122, 123, 184]. These studies demonstrated that dynamic 

FC analysis not only delivered a more complete description of the temporal dependence of the brain’s organization 

during cognitive processes, but that this perspective provided clinically valuable information. For example, 

schizophrenia patients exhibited shorter states of strong and large-scale FC than healthy controls during rest, which 

could not be observed when using static FC analysis [123]. Another study of dynamic FC in Alzheimer's disease 

patients showed longer state persistence in the strong anterior DMN sub-network, but shorter states in the strong 

posterior DMN sub-network when compared with healthy elderly subjects during rest [184]. A recent resting-state 

dynamic FC study reported that multiple FC states could co-exist, which was interpreted as an indication of the 

unconstrained mental activities of resting state [122], an observation further supported by positive correlation 

between frequency of “mind-wandering” and FCV of core regions of interest (ROIs) in DMN [119]. 

The above studies showed that the dynamic FC could depict the underlying ongoing cognitive process during 

rest. Furthermore, the spatiotemporal dynamics of brain networks during task may provide more insights into the 

adaptation of the brain in response to modulated cognitive processes [117, 118]. However, investigation on the task-

related modulation of dynamic FC is still in an early stage. To the best of our knowledge, only one study has used 

dynamic FC to investigate the task-related modulation of FCV [95] so far, and found significant task-related 

decreases of FCV at the regional, network and system levels. In addition, the task-induced decrease in FCV was 

significantly correlated with task performance. It was proposed that the task-related reduction in FCV was likely 

related to the stabilization of the FC pattern to a certain task-specific functional organization. Nevertheless, FCV is 

still a relatively simple measure, which can only quantify the overall temporal pattern of dynamic FC but ignore the 

spatial pattern of the networks. New methods are needed to depict the detailed spatiotemporal dynamics of brain 

networks during both rest and task. Thus, we propose to use k-means clustering to investigate spatiotemporal patterns 

of dynamic brain networks during both rest and task. Based on previous findings by static and dynamic FC analysis, 

we hypothesize the presence of overall spatial similarity while distinct temporal patterns between the rest and task. 

In order to test this hypothesis, we analyzed the spatiotemporal patterns of the task-state brain networks during 

motor task and compared with resting state. The hand closing and closing (HCO) task was utilized in our study for 

its easiness to perform and its ability to effectively activate the motor system [216-218]. The HCO task has also been 
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widely used in upper limb rehabilitation after stroke [219-221]. Thus, investigating the alteration of the task-state 

brain networks during HCO may also help understand the mechanisms underlying stroke rehabilitation. In addition 

to the motor-related networks (represented by MN hereafter) activated by HCO, DMN has also been demonstrated 

to be a key network in motor task performance and other cognitive processes [222-224]. Studying the dynamic 

interactions between MN and DMN during HCO could help to reveal the brain’s cognitive adaptation to task demands. 

Therefore, both DMN and MN were selected as networks of interest. Principal dynamic FC states were identified by 

k-means clustering of sliding windows [115, 122]. We then compared the spatiotemporal patterns of principal FC 

states as well as the FCV under both rest and HCO conditions.  

4.2 Methods 

4.2.1 Participants 

Twenty-eight healthy right-handed subjects volunteered for this experiment and two subjects were excluded 

because of excessive head motions (maximal head motion above 2mm or 2°). As a result, data of the twenty-six 

subjects (male/female: 13/13; Age: 54.9 ± 6.3 years) were used for further analysis. All subjects provided written 

informed consents. Procedures were reviewed and approved by the Ethics Committee of Shanghai Second People's 

Hospital, Shanghai, China. 

4.2.2 Task design 

The fMRI experiment for each subject consisted of two FC sessions (REST and HCO) and one block-design 

activation session. During REST session, subjects were instructed to remain motionless, relaxed and awake. During 

HCO session, subjects were asked to perform HCO with the instructed hand at a rate of one time per second paced 

by the cues on the display. For both of these sessions (REST and HCO), 4 minutes and 20 seconds data were used 

for FC analysis. The third session was a block-design task consisting of six REST blocks alternated with five HCO 

task blocks, preceded by an 8-sec inter-task period. Each block lasted for 20s. This block-design session was used to 

generate candidate ROIs of the MN for FC analysis. All subjects were divided into the left hand group (LHG, n=16) 

or the right hand group (RHG, n=10). Subjects were instructed to use only the given hand during HCO task 

performance.  

4.2.3 Image acquisition 

All images were acquired with a 3.0 T Signa Excite Gemse MRI system (GE Healthcare, Milwaukee, WI, USA) 

at Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. The head of the subject 
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was snugly fixed by a foam pad to reduce head movements and scanner noises. 3D structural MRI was acquired from 

each subject using a T1-weighted MPRAGE sequence (TR = 5.6 ms; TE = 1.7 ms; filp angle = 12°; matrix size = 

256×256; voxel size = 1×1×1 mm3), yielding 196 contiguous sagittal slices (1 mm thick) covering the whole brain. 

BOLD data were acquired with an EPI sequence (TR = 2000 ms; TE = 30 ms; flip angle = 90°; matrix size = 64×64; 

voxel size = 3.75×3.75×4 mm3) for each subject.  

4.2.4 FC data preprocessing 

For both REST and HCO periods, identical preprocessing procedures were performed using SPM8 (Wellcome 

Trust Centre for Neuroimaging, University College London, London, UK) and MATLAB scripts from the DPARSFA 

toolbox [225]. The data of the first 10s (5 volumes) were discarded to avoid magnetization equilibrium effects and 

to allow the subjects to get ready for the experiments. The remaining fMRI data were spatially realigned to the mean 

image and then were slice-timing corrected using the middle slice as the reference frame, de-trended and band-pass 

filtered (0.01 Hz – 0.08 Hz). In addition, the fMRI data were co-registered with each subject’s anatomical data using 

mutual information as the cost function. fMRI data were interpolated using 4th degree B-spline method [225] for its 

lower spatial resolution than anatomical images. The anatomical images were then segmented [226]. Spherical ROIs 

with 10 mm diameter were centered at predefined coordinates and warped to the subject’s native brain-space based 

on the deformation field obtained from segmentation step. The representative BOLD time course for each ROI was 

defined as the average over all voxels within the ROI in the native brain space. Nuisance covariates, including Friston 

24 parameters of head motion [227], white matter and cerebrospinal fluid signals were then regressed out from the 

representative BOLD time courses.  

4.2.5 Motor network ROI identification 

In order to define the motor-related brain regions, activation based on block-design session was analyzed. 

Separate preprocessing was performed for block-design session data with SPM8 and DPARSFA toolbox, including 

spatial realignment to the mean volume of a series of images, slice-timing correction, co-registration, spatial 

normalization to the MNI template, spatial smoothing (4 mm isotropic kernel) and high-pass filtering (eliminating 

slow signal drifts with a period longer than 128 s). For the first-level analysis of each subject, general linear model 

(GLM) in SPM8 was used to generate the individual activation map. Boxcar vectors for task blocks were convolved 

with the hemodynamic response function (HRF) and the head movement parameters were included as covariates to 

remove head motion artifacts. One-sample t-test based on single-subject contrasts obtained in the first-level analysis 

were performed for LHG and RHG, respectively, resulting in group-level activation mappings (p<0.001). By 
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combining group-level activation maps of LHG and RHG, we obtained the MNI coordinates of 44 activated motor-

related brain regions. 

4.2.6 Analysis of dynamic FC 

ROIs included regions in MN and DMN. For MN, the coordinates of the 44 activated local maxima obtained 

during the block-design session were regarded as the coordinates of ROIs. The coordinates of the 46 ROIs in DMN 

were defined according to [228]. Thus, there were a total of 90 ROIs in the network-of-interest (denoted as DMN-

MN hereafter) in total. The representative BOLD time courses of all ROIs were obtained by the methods in Data 

Preprocessing section. 

For each subject, representative BOLD time courses of REST and HCO were analyzed by sliding windows (size: 

30 TRs or 60 s each) with a step of 1 TR (2 s), resulting in 96 windows in total [95, 122]. The choice of sliding 

window size was justified by previous studies, which reported that cognitive states may be correctly identified from 

covariance matrices estimated on as little as 30-60 s of data [118, 229]. Within each sliding window, Fisher-

transformed correlations were calculated between representative BOLD time courses of every pair of ROIs and a 

90×90 association matrix was estimated. 

4.2.7 Clustering  

In order to identify reoccurring FC states, the k-means clustering algorithm [230] was implemented to classify 

the sliding windows into a set of separate clusters by their association matrices. L1 distance function (Manhattan 

distance or L1-norm), defined as 

𝑑1(𝒑, 𝒒) = ∑ |(𝑝𝑖 −  𝑞𝑖)|𝑛
𝑖=1                                                 (4.1), 

was used to estimate the within- and between- clusters distances [231], where 𝑑1(𝒑, 𝒒) represents the L1 distance 

between two vectors 𝒑, 𝒒 in an n-dimensional real vector space, 𝑝𝑖  and 𝑞𝑖  represent the ith elements of 𝒑 and 𝒒 

respectively. 

As described by Allen and colleagues [122], two-step clustering was used. In the first step, the sliding windows 

with local maxima in spatial variance of association matrices were selected as exemplars for each subject. Then, k-

means clustering was performed on those exemplars selected from subjects. The clustering was repeated 100 times 

independently with a random initial centroid position every time and the best result was selected so as to increase the 

chance of escaping the local minima. The optimal number of clusters was determined based on the elbow criterion 

of cluster validity index, i.e., the ratio of within-cluster distances to between-cluster distances using k from 2 to 10 
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[122]. For LHG, one set of exemplars was selected from sliding windows of 16 subjects for REST and HCO 

respectively. For the clustering of exemplars in LHG, the optimal numbers of clusters were estimated as 6 (i.e., k=6) 

in each session (REST and HCO). With respect to RHG, identical procedures were performed and k=4 was estimated 

as optimal in each session (REST and HCO). In the second step, the centroids of resulting clusters for each session 

and each group were used to initialize the clustering used in the analysis of the full sliding time-windows. 

4.2.8 FCV over time 

FCV was estimated to further examine the temporal patterns of dynamic FC during both REST and HCO in each 

network: DMN, MN, DMN-MN and the inter-network connecting DMN and MN (denoted as iDMN-MN hereafter). 

FCV of a network was estimated by calculating the standard deviation of the averaged FC strength in a network 

across all sliding time-windows [95, 119], that is,  

FCV =  √
1

𝑀
× ∑ (�̅�𝑖 − �̅�)2𝑀

𝑖=1                                                   (4.2) 

where �̅�𝑖 represents the mean strength of FC among networks in the 𝑖th window, �̅� represents the mean of 𝑥�̅� across 

all sliding windows, and 𝑀 is the number of the windows.  

4.2.9 Statistical analysis 

In order to evaluate how the task modulated the temporal patterns of FC states, the frequency of state shifting 

(number of shifting times between FC states within 125 TR-long recording time) was compared between REST and 

HCO for both LHG and RHG. Since the frequency of state shifting was count data, they did not follow a normal 

distribution and ANOVA was not considered statistically appropriate. 

According to previous studies, generalized linear model (GLM) with Poisson distributed error can be used to 

perform statistical analysis for count data [232, 233]. Nonetheless, the Poisson distribution requires the mean equals 

to the variance, whereas the variance of our data was significantly larger than the mean, which is called 

“overdispersion”. Thus, the best option for our data is to specify that the data follow the negative binomial distribution 

according to previous studies [234, 235]. A generalized linear model with negative binomial distributed error was 

used to examine the effect of session (REST vs. HCO) as well as group (LHG vs. RHG) on the state shifting frequency 

[234, 235]. The negative binomial regression model is as follows: 

�̃�𝑖𝑗 = exp (𝛼 + 𝛽1𝑠𝑗 + 𝛽2𝑔𝑖)                                       (4.3) 

where �̃�𝑖𝑗 is the expected state shifting frequency for subject 𝑖 (𝑖 = 1 to N; N = 26) during session 𝑗 (REST and HCO), 

𝑠𝑗  represents the categorical variable of the session (i.e., 𝑠𝑗  = 1 for REST; 𝑠𝑗  = 0 for HCO), 𝑔𝑖  represents the 
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categorical variable of the group (i.e., 𝑔𝑖 = 1 for subjects in LHG, 𝑔𝑖 = 0 for subjects in RHG), 𝛽1 and 𝛽2 are the 

coefficients to be estimated and 𝛼 is the intercept. If the estimated 𝛽1 is significantly greater (less) than zero, the 

statistical result would indicate that the state shifting frequency during REST is greater (less) than that during HCO. 

If the estimated 𝛽2 is significantly greater (less) than zero, the statistical result would indicate that the state shifting 

frequency of LHG is greater (less) than that of RHG. Incidence rate ratios (IRR, i.e., exp(𝛽)) were calculated [235], 

which indicates the relative difference of state shifting frequencies between two categories (e.g., REST vs. HCO; 

LHG vs. RHG). Taking 𝛽1 as an example, with all other factors being equal, the greater IRR(𝛽1) is, the greater state 

shifting frequency in REST is, comparing with that in HCO. In addition, the Chi-square goodness of fit test was 

conducted to how much the data could fit a negative binomial model [236]. 

4.3 Results 

4.3.1 FC states by k-means clustering 

As estimated by the elbow criterion of cluster validity, the optimal number of clustering FC states was six in 

LHG and four in RHG for both REST and HCO states. In both groups, only two principal FC states were identified 

in all subjects during REST. The remaining FC states during REST (4 FC states in LHG and 2 FC states in RHG) 

were absent in multiple subjects. While for HCO condition, only one principal FC state was identified in each handed 

group. Centroids of the principal FC states for REST and HCO in both groups were illustrated in Fig. 4.2. Similarities 

of principal FC states between LHG and RHG were estimated through correlational analysis, indicating significant 

similarities between the principal FC states in two groups (i.e., the 1st principal FC state of LHG REST and RHG 

REST: R = 0.619, p < 0.001; the 2nd principal FC state of LHG REST and RHG REST: R = 0.449, p < 0.001; the 1st 

principal FC state of LHG HCO and RHG HCO: R = 0.672, p < 0.001). In addition, in both groups, significant 

similarity was observed between the principal FC state in HCO and the 1st principal FC state in REST (i.e., LHG:  R 

= 0.716, p < 0.001; RHG: R = 0.626, p < 0.001). 

4.3.2 Dwell time ratios of principal FC states in REST 

To understand the temporal patterns of dynamic FC in REST, we examined the “dwell time” of the two principal 

FC states in REST. Dwell time ratio, i.e., the number of windows in one principal FC state over the total number of 

windows, was defined to quantify the “dwell time” of the corresponding state. Mixed-design ANOVA with one 

between-subjects variable (i.e., GROUP: LHG vs. RHG) and one within-subjects variable (i.e., STATE: the 1st 

principal FC state vs. the 2nd principal FC state) were performed. The main effect of STATE was significant (F(1,19) 

= 4.773, p = 0.042), but the main effect of GROUP was not significant (Fig. 4.3). The statistical results demonstrated 
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that the “dwell time” of the 1st principal FC state was significantly longer than that of the 2nd principal FC state in 

REST for either LHG or RHG. 

 

 

Figure 4.2. (A-B) Centroids of two principal FC states of REST in LHG; (C) Centroid of the only 

principal FC state of HCO in LHG; (D-E) Centroids of two FC principal FC states of REST in RHG; 

(F) Centroid of the only principal FC state of HCO in RHG. DMN: ROI 1 to ROI 46; MN: ROI 47 to 

ROI 90. 

 

4.3.3 Difference between two principal FC states in REST 

In addition to “dwell time”, FC pattern between the two principal FC states were also investigated for both LHG 

and RHG. Paired t-test showed significantly different FC between two principal FC states in REST (p < 0.01). 
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For LHG (Fig. 4.4(A)), among the 132 significantly different connections, 13 (percentage in all connections in 

DMN: 13/1035 = 1.26%) corresponded with the DMN, and 46 (46/946 = 4.86%) were found in the MN and 73 

(73/2024 = 3.61%) were present in the iDMN-MN. For RHG (Fig. 4.4(E)), 147 significantly different connections 

were identified, with 11 (1.06%) located in the DMN, 41 (4.33%) in the MN, and 95 (4.69%) were associated with 

iDMN-MN. For both LHG and RHG, all significantly different connections increased in strength during the 2nd 

principal FC state in contrast to the 1st principal FC state of REST. The majority of significantly different connections 

were located in the iDMN-MN for both LHG and RHG. As the matrix of principal FC state was symmetric, only the 

lower part of diagonal was shown in Figs. 4.4(A) and 4.4(C). Figure 4.4 also presents the ROIs and significant 

connections between other regions. We observed that there were less significantly different connections in the DMN 

compared with MN and iDMN-MN networks in both LHG and RHG groups.  

In addition to the specific differences in FC, the overall similarities of the DMN, MN, and iDMN-MN networks 

with the principal FC states were also investigated by correlational analysis (correlation coefficient was r-to-z 

transformed by Fisher transformation) for each subject. Mixed-design ANOVA with one between-subjects variable 

(i.e., GROUP: LHG vs. RHG) and one within-subject variable (i.e., NETWORK: DMN, MN, and iDMN-MN) was 

performed. Post-hoc comparisons of transformed correlation coefficients in each network (i.e. DMN, MN and iDMN-

MN) were adjusted using Bonferroni correction.  It was noted that the transformed correlation coefficients of iDMN-

MN between the principal FC states were significantly smaller than those of either DMN or MN (Fig. 4.5).  

 

 

Figure 4.3. Illustration of dwell time ratio of principal FC states in LHG and RHG in REST. Error bars 

indicate the standard error of the mean (SEM) across subjects. 
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Figure 4.4. Illustration of significantly different FC between the principal FC states of REST in LHG (A) 

and RHG (E);  ROIs in DMN (blue nodes) connected by significantly different DMN FC in LHG (B) and 

RHG (F); ROIs in MN (red nodes) connected by significantly different MN FC in LHG (C) and RHG 

(G); and ROIs in DMN (blue nodes) and MN (red nodes ) connected by significantly different iDMN-

MN  FC in LHG (D) and RHG (H). The size of the nodes indicates the ROI degree of FC (i.e., the number 

of significantly different FC connected to ROI). PCC = posterior cingulate cortex; mPFC = medial 

prefrontal cortex; SFG = superior frontal gyrus; MTG = middle temporal gyrus; M1 = primary motor 

cortex; S1 = primary somatosensory cortex; SMA = supplementary motor cortex; STG = superior 

temporal gyrus; ACC = anterior cingulate cortex; IFG = inferior frontal gyrus; PMC = premotor cortex; 

AG = angular gyrus; Cb = cerebellum; PHG = parahippocampal gyrus. 
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Figure 4.5. Similarities (indicated by correlation coefficient, which was r to z transformed) of DMN, MN, 

and iDMN-MN between two principal FC states in REST for LHG and RHG respectively. Error bars 

indicate the standard error of the mean (SEM) across subjects. 

4.3.4 Differences in state shifting frequency between REST and HCO 

In order to compare the dynamic patterns of the networks in REST and HCO, we investigated the state shifting 

frequency (i.e., number of shifting times across different FC states including non-principal states) in both groups. 

Table 4.1 lists the results of negative binomial regression model estimation. The estimated coefficient for session 

type variable (1 for REST and 0 for HCO) was positive and significantly different than zero (p = 0.030). Even though 

the coefficient of group variable (1 for LHG and 0 for RHG) was also positive, it did not significantly differ from 0. 

The IRR for the session variable was 3.212, indicating that with all other factors being equal, an average increase of 

212.2% in the state shifting frequency was observed during REST compared with HCO. The statistical results suggest 

that state shifting frequency was significantly increased during REST compared with HCO in either group. In addition, 

Chi-square goodness-of-fit test suggested that the negative binomial model could be appropriately used to fit the data 

since the null hypothesis that the data were consistent with the negative binomial model could not be rejected (p = 

0.191). 

4.3.5 Different FCV between REST and HCO 

For each subject, the FCVs of DMN, MN, DMN-MN, iDMN-MN were calculated for both REST and HCO. 

Mixed-design ANOVA with one between-subjects variable (i.e., GROUP: LHG vs. RHG) and one within-subject 

variable (i.e., SESSION: REST vs. HCO) were performed for each network examine the effect of session on the FCV. 

Significant main effect of session type was found on FCV of the DMN-MN (F(1, 24) = 5.466, p = 0.028), MN FC 
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(F(1, 24) = 9.131, p = 0.006) and iDMN-MN FC (F(1, 24) = 6.404, p = 0.018) (Fig. 4.6). These results suggest that 

the FCV of the DMN-MN network, MN, and iDMN-MN significantly decreased during HCO compared with REST 

for both LHG and RHG groups.  

 

Figure 4.6. Demonstration of FCV in the DMN-MN during REST and HCO in the LHG (A) and RHG 

(E); FCV in the DMN in LHG (B) and RHG (F); FCV in the MN in LHG (C) and RHG (G); and FCV in 

the iDMN-MN in LHG (D) and RHG (H). Blue circles and each red diamonds represent FCV during 

REST and HCO respectively for individual subjects. Error bars with corresponding markers represent the 

mean and its standard error of mean (SEM) across subjects. 
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Table 4.1. Estimated coefficients of negative binomial regression model for incidence rate ratios in state 

shifting frequency. 

 Estimate (IRR) Std. Error z value p value 

(Intercept) -1.486  0.582 -2.554 0.011* 

Coefficient (Group) 0.673 (1.960) 0.558 1.206 0.228 

Coefficient (Session) 1.167 (3.212) 0.537 2.171 0.030* 

 

 

4.4 Discussion 

In this chapter, the dynamic FC of brain networks including DMN and MN, as well as their variability (FCV), 

were examined using sliding windows and k-means clustering. Principal FC states were identified and their 

spatiotemporal patterns were compared between REST and HCO. During REST, two principal FC states were 

identified in both the LHG (Figs. 4.2(A) and 4.2(B)) and RHG (Figs. 4.2(D) and 4.2(E)), with significant similarities 

between the two groups. For HCO, a single principal FC state was identified in LHG (Fig. 4.2(C)) and RHG (Fig. 

4.2(F)), which also featured a significant similarity between the two groups. These results indicated a correspondence 

of principal FC states between both groups across both REST and HCO experimental conditions. When comparing 

principal FC states in REST and HCO, significant similarity was also found between the single principal FC state in 

HCO and the 1st principal FC state in REST regardless of the hand used (Fig. 4.2). This finding verified our hypothesis 

on the overall spatial similarity of dynamic FC between rest and task states. Previous studies on static FC have 

observed overall FC similarity between rest and task [34, 237, 238]. Specifically, Cole and colleagues used static FC 

to investigate the similarities of large-scale networks, which covered hundreds of brain regions encompassing every 

major brain system, examining differences between dozens of task sessions and the resting state. Their results 

proposed that task-state functional networks were shaped primarily by an intrinsic network architecture that was also 

present during rest, and secondarily by evoked task-related network changes [239]. In another study on the 

relationship between structural connectivity (SC) and FC, Hermundstad and colleagues found that structural 

properties (i.e., length, number and spatial location of white matter fibers) were indicative of the strength of FC in 

both rest and task states [240]. These results based on static FC both proposed that the brain networks during both 

rest and task might be primarily shaped by a common intrinsic network architecture. Our dynamic FC study found 

similar principal FC states between REST and HCO, which were the 1st principal FC state in REST and the only 
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principal FC state during HCO. We observed that these two related principal FC states were dominant during REST 

and HCO as measured by dwell time ratios (Fig. 4.2). Thus, we speculated that the common intrinsic network 

architecture, which primarily shapes both resting-state and task-state network in static FC study, presented itself in 

similar dominating principal FC states observed in REST and HCO. Despite these similarities with static analysis, 

dynamic FC can provide more information than static FC. The 2nd principal FC state in REST might reflect a specific 

mental activity in REST not present during HCO, and its absence in HCO might represent a focus on motor task 

execution. A previous study demonstrated that mental activity during rest was unconstrained and individuals could 

freely engage in several types of mental activity [241]. This unconstrained mental activity might be represented in 

part by the 2nd principal FC state of REST. 

Though the 2nd principal FC state in REST might indicate unconstrained mental activity during REST, what kind 

of brain activity it represents and its role in the “default mode”, especially for motor system, are still not well 

understood. From the perspective of individual connection changes in FC, differences between two principal FC 

states in REST were most numerous in the iDMN-MN and MN.  In addition, all significantly different FC increased 

in strength during the 2nd principal FC state compared with the 1st principal FC state (Fig. 4.3). Furthermore, from 

the perspective of overall network pattern, the differences between these two principal FC states were mainly 

observed in the iDMN-MN (Fig. 4.3). Strengthened interactions between DMN and MN during the 2nd principal FC 

state of REST, was consistent with  previous findings that core ROIs in DMN, such as PCC, most frequently engaged 

with non-DMN ROIs through inter-network FC [119, 242]. A recent study using network control theory investigated 

how the brain shifts between cognitive states based on network organization of white matter microstructure. The 

authors found that the “default mode” during resting state was a pluripotent “ground status” which was able easily to 

migrate to multiple task-based statuses with less cognitive effort by using connections between DMN and other 

networks [243]. Taken together with these findings, our results implied that during the REST, DMN could be 

interacting with MN through iDMN-MN FC, manifested by the 2nd principal FC state, to establish a “default mode” 

of the MN and prepare for the subsequent motor tasks. During HCO itself, maintaining the “default mode” in motor 

system may have been of no need, resulting in an absence of a 2nd principal FC state. 

In addition, according to the model described in Table 4.1, the maintenance of “default mode” for motor system 

in REST might be a dynamic process, that is, the DMN-MN network could be observed to frequently shift between 

the two principal FC states. Concordantly, FCV of the DMN-MN network significantly decreased during HCO 

compared with REST (Fig. 4.5(A)), a finding which was also in line with recent findings during an attention task 

[95]. With respect to the individual networks, FCV of MN and iDMN-MN also decreased during HCO (Figs. 4.5(C) 
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and 5(D)), while no significant change of FCV was observed in DMN (Fig. 4.5(B)). Considering the findings of 

principal FC states, the increase of FCV in iDMN-MN and MN was probably due to the frequent shift between the 

principal FC states in REST as the differences between two principal FC states were mainly located in iDMN-MN 

and MN. During HCO, such a dynamic maintenance of “default mode” in motor system would disappear and result 

in a stable and lower FCV in iDMN-MN and MN [244]. These findings verified our hypothesis that differences in 

temporal patterns of dynamic FC between REST and HCO still existed and could reflect distinct mental states present 

in REST and HCO. 

Unlike the MN and iDMN-MN, the FCV of DMN did not change significantly in HCO compared with REST, 

implying a special role for the DMN in REST and HCO. During the REST, the DMN might not only interact with 

MN, but also with other networks such as the auditory network, attention network, etc. When involved in a motor 

task, the MN and iDMN-MN were relatively stable due to an absence of influence of DMN on the motor system, but 

the DMN might still be interacting with other networks to establish a “default-mode” for other brain functions. 

Previous studies reported the FCV during resting state was partially caused by the predominance of mind-wandering 

or day-dreaming during this “uncontrolled” state [95, 119]. Another study suggested that mind-wandering might be 

part of a larger class of mental phenomena that enable executive processes without diminishing the potential 

contribution of DMN to other cognitive functions [245]. These descriptions correspond to our speculation that DMN 

was interacting with multiple function-related networks during REST and its interaction with non-motor networks 

was not diminished during HCO. 

4.5 Chapter conclusion 

This chapter investigated the spatiotemporal patterns of task-state brain networks during motor task using fMRI, 

and focused on the dynamic FC analysis method. We examined FC states and FCV in REST and HCO using sliding 

windows and k-means clustering. Two principal FC states in REST and one principal FC state in HCO were identified. 

The 1st principal FC state in REST was similar to that in HCO, which likely represented intrinsic network architecture 

and validated the broadly similar spatial patterns between REST and HCO. However, the presence of a 2nd principal 

FC state with increased iDMN-MN in REST with shorter “dwell time” could imply the transient functional 

relationship between DMN and MN to establish the “default mode” for motor system. In addition, the more frequent 

shifting between two principal FC states in REST indicated that the brain networks dynamically maintained the 

“default mode” for the motor system. In contrast, during HCO, the presence of a single principal FC state and reduced 

FCV implied a more temporally stable FC, validating the distinct temporal patterns between REST and HCO. Our 
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findings suggested that the principal states could show a link between the rest and task states, and verified our 

hypothesis on overall spatial similarity but distinct temporal patterns of dynamic brain networks between rest and 

task states. These results showed the effectiveness of dynamic FC analysis when applied to brain activities during 

rest and task states, and offer new insights into understanding the adaptation of brain networks in response to task 

performance. 

As we proposed in the chapter 1, the purpose of this thesis is to reveal the motor task-specific spatiotemporal 

changes of brain networks compared with resting conditions, and further applied the task-state brain network analysis 

in the research of stroke recovery. The chapter 2 revealed the task-specific spatial changes of brain networks 

compared with resting condition. Because the static FC analysis was used, the findings were mainly from the 

perspective of spatial patterns of brain networks. In chapter 3 and 4, dynamic FC analysis was adopted so as to 

provide not only the spatial patterns but also the temporal patterns of the task-state brain networks. Based on fNIRS 

and fMRI, the spatiotemporal patterns of task-specific changes of brain networks were revealed and the findings 

illustrated that the temporal patterns of brain networks were also very informative. In general, combining chapter 2 

to chapter 4 together, the purpose of revealing the motor task-specific spatiotemporal changes of brain networks 

compared with resting conditions was comprehensively investigated using static FC and dynamic FC analysis based 

on both fNIRS and fMRI modalities, and the findings pieced together the understanding of how brain networks work 

spatiotemporally under motor task compared with resting condition. 
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Chapter 5: Relationship between task-state motor network and motor function 

restoration post stroke 

5.1 Introduction 

In chapter 2 to 4, the task-state brain networks were investigated during motor preparation and motor execution 

based on fNIRS and fMRI using both static and dynamic FC analysis. In this chapter, the task-state brain network 

was investigated during stroke and its relationship with stroke recovery was also examined. 

Longitudinal neuroimaging studies have found recovery-related hyper-activation in contralesional motor areas 

[16] and secondary motor areas [17] during the recovery. Dynamic change of brain activity was found in acute stroke 

based on electroencephalograph (EEG) and event-related de-synchronization (ERD) [246]. In addition, brain 

reorganization also manifested in the change of FC between different brain regions [247]. For example, brain 

reorganization induced by stroke would not only significantly suppress the bidirectional ipsilesional effective 

connectivity between supplementary motor area (SMA) and M1 [248], but also lead to the alteration of inter-

hemispheric FC between the bilateral motor areas [38]. Wang and colleagues further found that the motor execution 

network shifted towards a non-optimal topological configuration with less functional segregation by examining 

topological change of the motor execution network based on resting-state fMRI during the recovery after stroke [39].  

Besides dynamic brain reorganization during the stroke recovery, other studies focused on the prognostic value 

of brain activity and FC at the early recovery stage. The activity of sensorimotor areas around 5 weeks after stroke 

was reported to have close relationship with motor function recovery [249]. Furthermore, Loubinoux and colleagues 

reported relationships between positive outcomes and early activity of ipsilesional M1 (iM1), primary sensorimotor 

area and insula [250]. Resting-state FC of iM1 with several motor areas at early recovery stage has also been found 

positively associated with long-term motor function restoration [251]. 

Previous studies mainly focused on the reorganization of task-related brain activation and resting-state networks 

after stroke. The reorganization of task-state brain network and its relationship with motor function recovery were 

rarely reported. Furthermore, resting-state FC and task-state FC were reported to represent different aspects of 

functional integration [252-254]. Therefore, it is reasonable to infer that the status of resting-state and task-state 

functional brain networks during stroke recovery, as well as network parameters (FC and topological parameters), 

might be different, which was verified by a EEG study [255]. In addition, task-state network might provide new 

information about underlying mechanism of neural response under specific task state and was a promising application 
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of network models [256]. Furthermore, most recovery after stroke occurred in the first three months post stroke [257], 

thus, significant motor function recovery would accompany significant changes of brain in this period. With above 

consideration, we conducted a longitudinal study on the dynamic reorganization of task-state motor execution 

network during finger-tapping task from several days to three months post stroke. Meanwhile, we investigated the 

relationships between the initial status of task-state brain networks and the motor function restoration from stroke 

onset to sub-acute phase (medical stable and no longer than three months post stroke) [258]. 

In this chapter, BOLD data of twelve stroke patients were acquired while performing blocked finger-tapping task 

within 10 days (P1), around 2 weeks (P2), 1 month (P3), and 3 months (P4) after stroke respectively. For the blocked 

finger-tapping task, only the segments of task conditions were concatenated for further analysis. The rest conditions 

were discarded considering that a recent study found that resting-state was not a stationary process which might be 

affected by task state and cannot represent real pure resting-state [259]. Therefore, for each scan, only task-state 

motor execution networks containing 21 motor related brain regions were constructed by within-task FC estimation 

[237, 260, 261] and the dynamic reorganization was evaluated from the perspectives of pair-wise FC and network 

topology. Furthermore, the Spearman’s correlation coefficients between networks parameters at P1 and motor 

function restoration during sub-acute phase (indicated by absolute difference of Fugl-Meyer Index (FMI) between 

P1 and P4) were computed to identify the prognostic network parameters. In general, examining the changes of task-

state motor execution networks in stroke recovery would broaden our understanding of rehabilitation and brain 

reorganization post stroke. 

5.2 Methods 

5.2.1 Subjects 

Twelve stroke patients (male/female: 9/3; mean age: 61.5 years; range of age: 47 to 77 years) were recruited from 

the Ruijin Hospital affiliated to the School of Medicine, Shanghai Jiao Tong University. Inclusion criteria of patients 

were: (i) age from 45 to 80 years; (ii) right handedness; (iii) first-onset ischemic stroke with motor deficits; (iv) no 

history of neuropsychiatric diseases, epilepsy, cerebral vascular abnormalities and trauma; (v) FMI ranging from 50 

to 95. For each patient, fMRI BOLD signals were acquired at four post-stroke time points respectively (i.e., P1, P2, 

P3 and P4 as mentioned in 5.1 Introduction). Starting from P2, some subjects quit in the follow-up fMRI scans, i.e., 

ten of twelve patients participated at P2; seven patients participated at P3 and five patients participated at P4, which 

were listed in Table 5.1. The demographic data and FMIs of patients were also summarized in Table 5.1. The T1-

weighted images of one representative patient at four fMRI scans were illustrated in Fig. 5.1(B). Sixteen age-matched 
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healthy subjects were recruited as a control group. The fMRI data of control group were acquired for only one time 

with the same scanner in Ruijin Hospital. Note that the network topology of healthy subjects has been reported to be 

stable across different time [39]. Thus, we presumed that the data of control group were stable across four time points. 

Inclusion criteria of control group were: (i) age from 45 to 80 years; (ii) right handedness; (iii) no history of 

neuropsychiatric disease, epilepsy, cerebral vascular abnormalities and trauma. The Ethics Committee of Ruijin 

Hospital approved the experiment protocols which were in accordance with the Helsinki Declaration of 1975, and 

each participant gave an informed consent before experiment. 

5.2.2 Task design 

The fMRI experiment for each subject consisted of two consecutive sessions with a 15 min interval. Patients 

performed the finger-tapping task with their unaffected hands in the first session and then with their affected hands 

in the second session, while the control subjects used the left hand in the first session followed by the right hand task 

in the second session. Each session consisted of resting state (30 s) alternated with task state (30 s) for three repetitions, 

preceded by 12 s of preparing period (Fig. 5.1(A)). At resting state, subjects were instructed to remain motionless, 

relaxing and awake; while under finger-tapping task state, subjects tapped the thumb with other fingers one time per 

second under the voice cues delivered by a physician via a speaker. For patients, fMRI data were acquired at four 

time points (P1, P2, P3, and P4) after stroke, while the healthy controls only had one fMRI scan. 

5.2.3 Data acquisition 

All images were acquired by a 1.5 Tesla MRI scanner (Excite HD, General Electric Medical System, Milwaukee, 

WI, USA) and an 8-channel NVHEAD coil in Ruijin Hospital. The head of the participant was snugly fixed by foam 

pad to reduce head movements and scanner noises. Whole brain fMRI BOLD data were acquired from the top of the 

brain to the lower part of the medulla oblongata, using an echo-planar imaging sequence: 32 axial slices, 

thickness/gap=5/0 mm, matrix=64×64, repetition time=3000 ms, echo time=60 ms, flip angle=90º, and field of 

view=240 mm×180 mm. 

5.2.4 Preprocessing of fMRI data 

Before preprocessing of fMRI data, we flipped the data of five right-hemispheric stroke patients from right to 

left, so that lesions for all patients locate in the left hemisphere, which makes the group analysis convenient. Note 

this strategy has been used and validated in previous studies [251, 262]. After that, for each subject, the data of the 

first 12 s preparing period (4 volumes) in each session were abandoned to avoid the magnetization equilibrium effects 

and also allow the subjects to get ready for the experiments. The remaining fMRI data (60 volumes) were 
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preprocessed with SPM8 (Wellcome Trust Centre for Neuroimaging, University College London, London, UK) 

including spatial realignment to the mean volume of a series of images, co-registration, spatial normalization to the 

MNI template, and spatial smoothing (6 mm isotropic kernel). Finally, the fMRI data was high pass-filtered to get 

rid of artifacts in extremely low frequencies (<0.01Hz) and regressed out the spurious variance unlikely to reflect 

neuronal activity (head motion, white matter signal and cerebrospinal fluid signal).  

 

 

Figure 5.1. (A) The diagram of one session in fMRI experiment. The fMRI experiment consisted of two 

consecutive sessions with a 15 min interval. Each session was a block design consisting of three resting 

states (30 s each, R1, R2, R3) alternated with three finger-tapping task states (30 s each, S1, S2, S3). For 

each patient, the FMI was assessed and fMRI data were acquired at 4 different time points (P1, P2, P3 

and P4) after stroke. (B) T1-weighted images of one patient at P1 (<10 days), P2 (2 weeks), P3 (1 month) 

and P4 (3 months) after stroke. The location of lesion (basal ganglia) is indicated by red ellipse. L=left; 

R=right. 
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5.2.5 Regions of interest 

In order to investigate the reorganization of motor related system, we constructed a motor execution network 

consisting of 21 regions of interest (ROIs, see Fig. 5.5) related to the movement of affected hand [39]. 

5.2.6 Activation analysis of fMRI data 

In order to validate the important roles of 21 ROIs in motor execution, we also did activation analysis based on 

blocked finger-tapping task data at P1. For every subject at affected hand session, the box-car vectors for task state 

were convolved with a hemodynamic response function. In addition, the head movement parameters were included 

as covariate to remove the variance induced by head motions, and the default temporal frequency cut off (128 sec 

high pass) in SPM8 was used. After that, the general linear model was used to perform one-sample t-test based on 

single-subject contrasts and obtained the group activation maps (P<0.01, extent threshold= 10 voxels).  

5.2.7 Construction of functional brain networks 

Task-state brain networks were constructed by the within-task FC estimation [237, 260, 261] with the following 

procedures. In each session (moving affected hand and moving unaffected hand), the whole representative time 

course (60 volumes) for each ROI was obtained by averaging across all voxels within a 10 mm diameter sphere 

centered at a predefined coordinate. Based on neurovascular coupling, a neuronal activation typically induces an 

increase in oxygenated hemoglobin and a lower-amplitude decrease in deoxygenated hemoglobin which can be 

detected by fMRI. However, the hemodynamic response is delayed compared with neural activation. So we shifted 

each task block by 6s (2 volume) [260] and then the whole representative time course was then split into segments 

of two different conditions (i.e., rest condition and task condition) After that, the three segments of task conditions 

in each session were concatenated to represent the whole within-task activities (84 s, 28 volumes, Fig. 5.2) in this 

session. Pearson’s correlation coefficients in within-task concatenated segments for all ROIs in pairs were calculated 

to obtain the corresponding symmetric association matrix (denoted by A). Each entry 𝑎𝑖𝑗 in the association matrix A 

represented the FC strength, which was the absolute correlation coefficient between the ith and the jth ROIs. After 

the estimation of FC, each association matrix was converted into an adjacency matrix W by thresholding A. The 

entries (𝑤𝑖𝑗) in W were set to be 𝑎𝑖𝑗 only if they were greater than the threshold (𝜏), and otherwise set to be zeros 

(i.e., 𝑤𝑖𝑗 = 𝑎𝑖𝑗, if 𝑎𝑖𝑗  ≥  𝜏 , and 𝑤𝑖𝑗 = 0, if 𝑎𝑖𝑗 <  𝜏). Here, 𝜏 was selected according to a preset sparsity defined as 

the ratio of the existing edge number over the maximum possible number of edges in a network. After repeating the 

procedures for all association matrices of a subject, at each scanning time point, two task-state motor execution 

networks (for affected and unaffected hand session respectively) were built. 
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We set three constraints for the selection of sparsity: (i) in order to estimate the small-world index by graph 

theory, the average degree of the functional brain networks should not be smaller than 2 × ln (𝑁) (N is the number 

of ROIs. For 𝑁 = 21 the sparsity should be greater than 0.3); (ii) in order to study the dynamic change of the whole 

functional brain networks, at least 99% of the ROIs in the functional brain networks should be connected (in this 

chapter, the sparsity should be larger than 0.4); (iii) in order to reduce the false discovery rate, the sparsity should be 

as small as possible [263]. Under these constraints, we chose 0.41 as the sparsity of motor execution networks. In 

addition, we also calculated the results with sparsities ranging from 0.30 to 0.45 for comparison. 

5.2.8  Graph theoretical analysis of functional brain networks 

There are various parameters which can be used to evaluate features of networks in graph theory. Among them, 

clustering coefficient and characteristic path length are widely used to evaluate the functional segregation and 

integration of brain networks. Previous study about resting-state network reorganization after stroke has already 

found significantly decreased clustering coefficient during stroke recovery [39]. So we adopted these two parameters 

and their ratio called small-worldness index to evaluate the small-worldness of networks. 

 

Table 5.1. Patient information and the Fugl-Meyer indexes at four fMRI scan time points after stroke. 

No. Age G. Lesion locations 
<10d 

(FMI) 

2wk 

(FMI) 

1mon 

(FMI) 

3mon 

(FMI) 

1 70 M R. lateral ventricle 93 (√) 92 (√) 99 (√) 99 (√) 

2 56 M L. Basal ganglia 53 (√) 55 (√) 61 (√) 66 (√) 

3 68 M L. Parietal lobe 51 (√) 50 53(√) 57(√) 

4 77 F L. Parietal lobe 54 (√) 54 (√) 54 59 

5 47 M R. lateral ventricle 85 (√) 87 (√) 96 97 

6 67 F R. Basal ganglia 73 (√) 77 (√) 79 96 

7 60 F L. lateral ventricle 72 (√) 78 (√) 77 (√) 86 (√) 

8 56 M L. Corona radiate 71 (√) 75 (√) 75 75 

9 69 M L. Basal ganglia 59 (√) 55 62 63 

10 58 M R. Basal ganglia 94 (√) 94 (√) 99 (√) 99 (√) 

11 60 M R. Basal ganglia 63 (√) 62 (√) 71 (√) 81 (√) 

12 50 M L. Basal ganglia 95 (√) 95 (√) 99 (√) 99 

G = Gender; M=Male; F=Female; R = Right; L = Left; yr=year; d=day; wk=week; mon=month; 

FMI=Fugl-Meyer Index; (√) indicates that the fMRI data of the subject were collected as well in the 

corresponding time point.  
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Figure 5.2. A schematic diagram for extracting within-task representative time courses. A temporal shift 

of 6 s (2 volumes) was adopted accounting for the hemodynamic delay. This method was adopted and 

verified by previous studies [237, 260] 

 

For nodal parameters, we chose nodal betweenness as an index of centrality in functional networks, considering 

that  nodal degree is dependent on the size of network and thus may be biased[256]. 

The clustering coefficient and the characteristic path length are two basic parameters characterizing the local and 

the global topological properties of a network respectively [101, 264]. For a weighted graph (representing a functional 

brain network), the clustering coefficient of a node (representing an ROI) j is defined as 

 𝐶𝑖𝑗
𝑤 =  

1

𝑠𝑗(𝑘𝑗−1)
∑

𝑤𝑖𝑗+𝑤𝑖𝑘

2(𝑖,𝑘) 𝑎𝑖𝑗𝑎𝑖𝑘𝑎𝑗𝑘,                      (5.1)

 

where𝑠𝑗 represents the nodal strength, which is defined as the sum of the weights (representing the strength of FC) 

𝑤𝑖𝑗 of the edges (representing the FC) connected to node j, 𝑘𝑗 is the node degree, which is defined as the number of 

the edges connected to node j [265]. The clustering coefficient 𝐶𝑤 of the whole network is accordingly defined as 

the average of the nodal clustering coefficients of all nodes. 𝐶𝑤 indicates how densely the nodes in a network are 

locally connected to each other. 

The characteristic path length of a weighted network is defined as

 
𝐿𝑤 =  

𝑁(𝑁−1)

∑ ∑ 1 𝑙𝑖𝑗
𝑤⁄𝑁

𝑗≠𝑖
𝑁
𝑖=1

                                                       (5.2) 
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where 𝑙𝑖𝑗
𝑤

 
represents the weighted shortest path length between node i and node j , and N is the number of nodes in 

the network [266]. 𝐿𝑤 generally quantifies the length of the shortest path that links two nodes in a network. 

In this chapter, we also calculated the nodal betweenness, which is defined as 

𝐵𝑖 =  ∑
𝑃𝑠𝑡(𝑖)

𝑃𝑠𝑡
𝑠≠𝑖≠𝑡                                                       (5.3) 

for node i, where 𝑃𝑠𝑡(𝑖)  represents the number of shortest paths from node s to node t via node i, and 𝑃𝑠𝑡 is the total 

number of shortest paths connecting node s and node t [267]. 

In order to account for the variability across different scanning sessions and subjects, we calculated the 

normalized clustering coefficient ( 𝐶𝑛 = 𝐶𝑤 𝐶𝑟𝑎𝑛𝑑
𝑤⁄ ), characteristic path length ( 𝐿𝑛 = 𝐿𝑤 𝐿𝑟𝑎𝑛𝑑

𝑤⁄ ) and nodal 

betweenness (𝐵𝑛 = 𝐵𝑤 𝐵𝑟𝑎𝑛𝑑
𝑤⁄ ) by comparing the values of parameters with the corresponding average values across 

50 random graphs with preserved degree distribution [268]. In addition, we computed the small-world index (𝑆 =

 𝐶𝑛 𝐿𝑛⁄ ) to evaluate the small-worldness of the functional brain networks. 

5.2.9 Statistical analysis 

To study the longitudinal trend of task-state motor execution networks during stroke recovery, a mixed-effects 

regression model was adopted to estimate the correlation between network measurements (i.e., FC strength, 

topological parameters) and the days of recovery or FMIs [269]. This model takes advantages of the data from every 

time points of patients, including the available time points of those patients who missed some follow-ups. The model 

is as follows,  

𝑌𝑖𝑗 =  𝜇 + 𝑏𝑖 + 𝑋𝑖𝑗𝛽 + 𝜀𝑖𝑗 ,                                                (5.4) 

where 𝜇 is the common intercept for all subjects, 𝑏𝑖 is the random intercept for the ith patient, 𝛽 is the scalar (i.e., the 

trend) of fix effect. 𝑌𝑖𝑗  denotes a parameter of the brain network for the jth fMRI scan of the ith patient and 𝑋𝑖𝑗 

represents the number of days from stroke onset to the jth fMRI scan of the ith patient when estimating the 

longitudinal trend over time. However, when estimating the relationship with motor function restoration, 

𝑌𝑖𝑗represents the FMI at the jth fMRI scan of the ith patient and 𝑋𝑖𝑗 denotes a parameter of the brain network for the 

jth scan of the ith patient. 𝜀𝑖𝑗 represents the residual error of the model, and K is the number of patients. 

In addition, Spearman’s correlation coefficients between network measurements (topological parameters, FC and 

nodal betweenness) at P1 and the  difference of FMI between P1 and P4 (denoted by 𝐷𝐹𝑀𝐼 = 𝐹𝑀𝐼(𝑃4) − 𝐹𝑀𝐼(𝑃1)) 
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were computed to investigate the link between network measurements at the early stage post stroke and the motor 

function recovery during sub-acute phase. 

5.3 Results 

5.3.1 Dynamic change of task-state motor execution networks 

Cn, Ln and S quantify the local information processing efficiency, the overall information transferring efficiency 

and small-worldness of networks respectively. Two-sample t-tests were performed between patients (Cn: 1.18±0.15; 

Ln: 0.99±0.01; S: 1.19±0.16) and controls (Cn: 1.17±0.12; Ln: 0.99±0.03; S: 1.17±0.13) for these three parameters at 

P1, but no significant results were found. In addition, we examined the changes of these topological parameters over 

recovery time (days after stroke) and their correlations with FMI by mixed-effects regression model (Eq. 5.4). Here, 

we only presented the results in affected hand session to figure out the reorganization of disrupted motor execution 

networks under task state. Note that changes of the topological parameters in unaffected hand sessions were 

calculated but no significant results were found. Hereafter, without specific note, the task-state networks denote the 

task-state networks in affected hand sessions. We found that Cn had a significantly negative (p = 0.04) correlation 

with the FMI (Fig. 5.3(A)). In addition, Ln significantly decreased (p = 0.04) over recovery time (Fig. 5.3(C)) and 

had a significantly negative (p = 0.03) correlation with FMI (Fig. 5.3(B)). However, S did not show any significant 

correlations with recovery time and FMI. Results of topological parameters in motor execution networks are 

presented at a sparsity of 0.41. Nevertheless, we have also calculated results at sparsities from 0.3 to 0.45 and found 

that the statistical results at sparsities around 0.41 were similar (Fig. 5.3(D)).  

5.3.2 Potential prognostic value of topological parameters at early recovery stage 

In order to investigate the potential prognostic value of the topological parameters in task-state motor execution 

networks at early recovery stage, the Spearman’s correlation coefficients between topological parameters at P1 and 

𝐷𝐹𝑀𝐼  were computed to indicate the statistical dependence between these two variables. Significant positive 

correlations with 𝐷𝐹𝑀𝐼 were found for Cn and S (Figs. 5.4(A) and 5.4(B)). Similar results were found at sparsities 

from 0.4 to 0.45 (Fig. 5.4(C)).  
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Figure 5.3. Change of task-state motor execution network over time and FMI. Panel (A) illustrates the 

significant negative (p=0.04) correlation between Cn and FMI; panel (B) shows the significant negative 

(p=0.03) correlation between Ln and FMI; panel (C) demonstrates the significant negative (p=0.04) 

correlation between Ln and days after stroke. Panels (A) to (C) are the results at sparsity of 0.41. Each 

line in panel (D) with the same marker and color as one in panels (A) to (C) represents the p values of 

corresponding results at sparsity from 0.3 to 0.45. The green arrow in panel (D) indicates the p values at 

sparsity of 0.41. Note that the regression lines in panels (A), (B) and (C) were not estimated by standard 

least squares linear regression analysis. Instead, we used mixed-effects regression model which regarded 

all subjects’ data as a panel dataset, and each subject had an individual random intercept and shared a 

common trend as well as a fixed intercept. The lines in panels (A), (B) and (C) represented the common 

trends (i.e., the scalarβ in Eq. (5.4)) and fixed intercepts (i.e., the common intercept μ in Eq. (5.4)) for 

all patients. Therefore, the regression lines for different patients were parallel and spaced by the intercepts 

(i.e., random intercept bi in Eq. (5.4)). 

 

5.3.3 Group-level activated regions of affected hand session 

Based on group-level activation analysis, we found several activated brain regions during affected hand session. 

Among the activated brain regions, we found 14 brain regions which overlapped with most predefined 21 ROIs 
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except for BG. Some of these brain regions were activated in bilateral hemisphere (i.e., Dorsal premotor cortex; 

Ventral premotor cortex; Thalamus; Cerebellum and Supplementary motor area) and some were only activated in 

ipsilesional hemisphere (i.e., Primary motor cortex; Superior parietal lobe and Postcentral gyrus). Table 5.2 listed all 

group-level activated brain regions which overlapped with predefined 21 ROIs during affected hand session at P1. 

Note that there were several activated peaks in some brain regions (i.e., contralesional Thalamus and bilateral 

Cerebellum) and the SCb, AICb and DN of the predefined 21 ROIs are all located in the cerebellum. 

 

Table 5.2. Group-level activated brain regions which overlapped with predefined 21 ROIs during affected 

hand session at P1 

Region (Side) 
z 

value 
p value 

Coordinates (MNI) 

x(mm) y(mm) z(mm) 

Primary motor cortex (IL) 4.20 0.0000 -39 -30 72 

 Dorsal premotor cortex(IL) 3.71 0.0001 -15 -24 81 

Ventral premotor cortex (IL) 3.68 0.0001 -60 9 24 

Supplementary motor area (IL) 3.11 0.0009 -9 -6 81 

Thalamus (IL) 3.30 0.0005 -12 -18 -9 

Superior parietal lobe (IL) 2.87 0.0021 -21 -51 57 

Postcentral gyrus (IL) 2.79 0.0026 -33 -39 33 

Cerebellum (IL) 2.73 0.0032 -33 -54 -27 

2.64 0.0041 -27 -66 -21 

Cerebellum (CL) 3.56 0.0002 30 -51 -27 

3.36 0.0004 6 -81 -15 

Anterior cerebellar lobe (CL) 3.20 0.0007 9 -54 -21 

Dorsal premotor cortex (CL) 3.30 0.0005 36 12 66 

Supplementary motor area (CL) 3.20 0.0008 9 -3 60 

Thalamus (CL) 2.99 0.0014 21 -21 15 

2.93 0.0016 6 -6 12 

2.57 0.0050 3 -15 15 

Ventral premotor cortex (CL) 2.59 0.0048 54 6 9 

IL=ipsilesional; CL=contralesional; 
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5.3.4 Dynamic change of FC 

For FC, two sample t-test was performed between control group and patient group at P1. Eleven FC were 

significantly different (p<0.05) between control group and patient group. Among them, only one FC between cSMA 

and cDN (prefix c representing contralesional) decreased, while other connections increased in stroke patients (Fig. 

5.5(B)). In addition, mixed effects regression model was used to estimate the relationship of FC with recovery time 

and FMI. We found several FC strongly (p<0.05) correlated with recovery time (in red), FMI (in blue) and with both 

recovery time and FMI (in green, Fig. 5.5(A)). In particular, two FC (i.e., iM1-iSCb and iPMv-iAICb) were found to 

have significant positive correlations with both recovery time and FMI, while the iPMd-iTh FC had negative 

correlation with both recovery time and FMI. The quantitative data of these three FC are demonstrated in Table 5.2. 

Combining Fig. 5.5(A) and Fig. 5.5(B), there were four FC (i.e., cPMd-iTh, cPMd-cPMv, iPMd-iTh and cPMv-cBG) 

which both significantly correlated with either recovery time or FMI and significantly increased at P1 comparing 

with control group (indicated by purple lines in Fig. 5.5(B)). Especially, iPMd-iTh FC which negatively correlated 

with both recovery time and FMI was also found increased at P1 comparing with control group (highlighted in Table 

5.3). 

5.3.5 Potential prognostic value of FC at early recovery stage 

In order to examine the potential prognostic value of FC in motor execution networks at early recovery stage, we 

calculated the spearman’s correlation coefficients between FC strength at P1 and 𝐷𝐹𝑀𝐼. Six FC (i.e., iPMv-cPMd, 

iSMA-cPMv, iSMA-cPCG, cPMv-cPCG, iPMv-cBG and cSCb-cDN) at P1 were found to be positively correlated 

(p<0.05) with 𝐷𝐹𝑀𝐼, and another FC (i.e., iTh-cM1) showed negative correlation (p<0.05) with 𝐷𝐹𝑀𝐼 (Fig. 5.6). Their 

quantitative data are listed in Table 5.4. In addition, the FC between cPCG and cPMv at P1 both significantly changed 

compared with control group and correlated with motor function recovery (indicated by yellow line in Fig. 5.6 and 

highlighted in Table 5.4). 
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Figure 5.4. Potential prognostic value of topological parameters in task-state motor execution networks. 

Significant positive correlations between DFMI and topological parameters Cn (A) and S (B) in task-state 

motor execution networks respectively. Panel (C) illustrates the p values of Spearman’s correlation 

coefficients at sparsity from 0.3 to 0.45 in task-state motor execution networks. The green arrow in panel 

(C) indicates the p values of results at sparsity 0.41. 

 

Table 5.3. Quantitative data of three FC significantly correlated with both recovery time and FMI. 

Region Region 
Change over time Change over FMI 

t value p value t value p value 

iSCb iM1 2.56 0.0154 2.12 0.0412 

iAlCb iPMv 2.92 0.0063 2.09 0.0448 

iPMd iTh -2.44 0.0202 -2.49 0.0180 

     FC which changed significantly compared with control group at P1 is highlighted. 
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Figure 5.5. Panel (A) demonstrates the FC significantly (p<0.05) correlated with recovery time (in red), 

FMI (in blue) and with both recovery time and FMI (in green) in motor execution networks. Thin lines 

represent negative correlations and thick lines represent positive correlations. Panel (B) demonstrates the 

FC which significantly changed comparing with control group at P1. Among them, purple lines denote 

the overlapped FC in panel (A) and (B). Thin lines represent decreased FC comparing with control group 

and thick lines represent increased FC in panel (B). L=left; R=right; M1=primary motor cortex; 

Th=Thalamus; SPL=Superior parietal lobule; SMA=Supplementary motor area; PMd=Dorsolateral 

premotor area; PMv=Ventrolateral premotor cortex; SCb=Superior cerebellum; DN=Dentate nucleus; 

AICb=Anterior inferior cerebellum; PCG=Postcentral gyrus; BG=Basal ganglia. 
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5.3.6 Dynamic change and potential prognostic value of nodal betweenness 

Nodal betweenness indicates the importance of nodes in networks. In this chapter, we also investigated the 

dynamic change of nodal betweenness during recovery in task-state motor execution networks. As a result, we found 

significant negative correlations (p<0.05) between nodal betweenness of cDN and 𝐷𝐹𝑀𝐼  although no significant 

correlation was found with recovery time. 

 

Table 5.4. Quantitative data of all six FC significantly correlated with the recovery during the sub-acute 

phase (FC which changed significantly compared with control group at P1 is highlighted.) 

Region Region 
Spearman’s 

R 
p value 

iTh cM1 -0.63 0.0284 

iPMv cPMd 0.78 0.0027 

iSMA cPMv 0.61 0.0360 

iSMA cPCG 0.65 0.0211 

cPMv cPCG 0.63 0.0284 

iPMv cBG 0.73 0.0073 

cSCB cDN 0.72 0.0086 

 

 

 

Figure 5.6. Illustration of FC at P1 significantly correlated with DFMI in motor execution networks. Thin 

lines represent negative correlations and thick lines represent positive correlations. Note that the yellow 



75 

 

line represents the FC which both significantly changed compared with control group and correlated with 

motor function recovery at P1. L=left; R=right. Figures 5.5 and 5.6 were visualized with the BrainNet 

Viewer (http://www.nitrc.org/projects/bnv/). 

 

5.4 Discussion 

Graph theory has been widely used to investigate the change in brain networks organization induced by diseases. 

For example, Alzheimer’s disease patients were reported to show abnormal small-world organization in their brain 

compared with controls [270]. Patients with lesions due to brain tumor and spinal cord injury were reported to show 

disruption in  brain networks topology [271, 272]. With respect to stroke, several studies have also found evidence 

of the reorganization of brain networks. Wang and colleagues, for the first time, found that the motor execution 

network shifted towards a non-optimal topological configuration with less functional segregation by examining 

topological change of the motor execution network based on resting-state fMRI during the recovery after stroke [39]. 

In addition, Ovadia-Caro and colleagues found that the brain networks containing lesions presented more changes 

during recovery compared with networks without lesions [273]. 

Wang and colleagues also investigated the dynamic reorganization of motor execution network during stroke 

recovery [39]. In contrast to the motor execution network at resting-state in Wang’s work, in this chapter we focused 

on the reorganization of motor execution network under task state, which might provide new information about 

underlying mechanisms of neural response under specific task state [256]. According to our results, the characteristic 

path length Ln of motor execution network significantly decreased over recovery time and was negatively correlated 

with motor function restoration, which was different from the increased Ln (although insignificantly) reported in 

Wang’s study[39]. This inconsistent results may be due to the different states of subjects, that is, Wang et al. studied 

the motor execution network in resting-state, while our results are of the motor execution network in task state. The 

clustering coefficient Cn of motor execution network did not show significant change over recovery time but had a 

significant negative correlation with motor function restoration. Note that the significant relationship between Ln and 

recovery time was only found in a small range of sparsity around 0.41, but notably, results at sparsities from 0.4 to 

0.45 were close to a significant level. In addition, the significant correlations between Ln (or Cn) and FMI do exist in 

a large range of sparsity.  

http://www.nitrc.org/projects/bnv/
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The significant decrease of Ln in task-state motor execution networks during recovery time demonstrated the 

enhanced efficiency in global information transferring. As Ln was calculated based on weighted networks, we 

attributed this phenomenon to the strengthening FC which would shorten the weighted characteristic path length and 

further result in a decreasing Ln. Our inference was validated by Fig. 5.5 that majority (10 among 14) of the FC with 

significant change over recovery time in task-state motor execution networks (red and green lines in Fig. 5.5(A)) 

were increased. Moreover, both Cn and Ln in task-state motor execution networks had significant negative correlations 

with FMI. Since decreasing Cn and Ln indicated a randomizing trend of the network topology, our results suggested 

that the motor function restoration was associated with randomizing task-state motor execution networks. Wang and 

colleagues found similar results in resting-state motor execution networks [39]. In contrast, task-state motor execution 

networks in unaffected hand sessions showed few reorganizations and no significant changes or correlations with 

FMI over recovery time. This is in line with the findings that stroke patients and healthy controls shared similar task-

based fMRI activation pattern when moving their unaffected hand [248]. Moreover, compared with control group, 

the motor execution network had significant changes in some FC at P1 (Figs. 5.5(B) and 5.6), but showed no 

significant change in the topological configuration, which is similar with the results reported in Wang’s study [39]. 

We therefore speculated that the FC and topological configuration were influenced at different stages of the stroke 

recovery. 

Besides the dynamic brain reorganization after stroke, the potential prognostic value of neuroimaging data at 

early recovery stage post stroke was another focus of current stroke studies. Our results showed that Cn and S of task-

state motor execution networks within ten days after stroke had significant positive correlations with the motor 

function restoration during sub-acute phase (indicated by 𝐷𝐹𝑀𝐼). According to graph theory, higher Cn and S at early 

recovery stage indicate more optimal configuration of networks after stroke and therefore result in better motor 

function restoration during sub-acute phase. Previous studies had reported the prognostic value of brain activity and 

FC in stroke recovery [249-251]. However, to the best of our knowledge, our study, for the first time, observed the 

brain network topology as prognostic of functional recovery. 

Besides the topological parameters, the FC in task-state motor execution network also underwent changes which 

significantly correlated with FMI during stroke recovery (Fig. 5.5). We found FC between ipsilesional cerebellum 

(iAICb, iSCb and iDN) and other key motor areas (bilateral M1, bilateral Th and cBG) significantly increased during 

the recovery (Fig. 5.5(A)). Recent studies validated that the cerebellar networks consisting of cerebellum, subcortical 

areas and cerebral cortex contributed to the motor and non-motor functions [274-276]. Our results also substantiated 

that the activated cerebellar network played a critical role in stroke recovery. In addition, three ipsilesional 
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connections (iM1-iSCb, iPMv-iAICb and iPMd-iTh) were found to be significantly correlated with both FMI and 

recovery time (see the green lines in Fig. 5.5(A)), implying that the change of FC in task-state motor execution 

networks mainly occurred in ipsilesional hemisphere. This result was in line with previous findings of increased 

ipsilesional intra-hemispheric synchronization after stroke [277, 278]. Furthermore, enhanced FC of iPMv-iAICb 

and iM1-iSCb confirmed the critical role of cerebellar networks in stroke recovery. When taking into account control 

group, eleven FC were found significantly altered at P1 comparing with control group (Fig. 5.5(B)). Among them, 

four increased FC (i.e., cPMd-iTh, cPMd-cPMv, iPMd-iTh and cPMv-cBG) overlapped with FC with dynamic 

changes over recovery. Especially, all these four FC had negative correlation with FMI and one of them (iPMd-iTh) 

even had negative correlation with both FMI and recovery time. These results suggested that the strength of these FC 

increased at the acute stage due to lesion induced by stroke, but gradually decreased and approach the normal level 

as control group as the motor function recovered during recovery. 

The 21 ROIs in motor execution network were defined based on previous studies. To validate the important roles 

of the 21 predefined ROIs, we also did activation analysis for affected hand session at P1, and found that most ROIs 

of the 21 predefined ROIs were activated except for Basal ganglia (BG), which may be attributed to the lesion 

locations of patients that six of twelve patients had lesions in BG (Table 5.1). Although there was no activation in 

BG, we still found FC between cBG and iPMv significantly correlated with the recovery during sub-acute phase 

(Table 5.4), which implied the important role of BG in motor function recovery after stroke. In order to substantiate 

that adding inactivated BG into the motor execution network will not affect the results of topological parameters, we 

also did the same analysis for the motor execution network without bilateral BG, and found significant negative 

(p=0.02) correlation between Cn and FMI, significant negative (p=0.001) correlation between Ln and FMI, significant 

negative (p=0.04) correlation between Ln and days after stroke, and significant positive correlations of DFMI with Cn 

(p=0.01, Spearman’s R=0.63) and S (p=0.03, Spearman’s R=0.54), which is in line with the results of the motor 

execution network including bilateral BG. 

With respect to the potential prognostic value of FC, the increase of FC between bilateral key motor areas at the 

early stage of stroke was positively correlated with the motor function restoration during sub-acute phase (Fig. 5.6). 

Our findings were supported by a previous task-based fMRI study, which reported that increases of activity in 

bilateral motor cortices was significantly correlated with motor functional recovery [279].  

For nodal betweenness, the significance of cDN in predicting the motor function recovery during sub-acute phase 

was found in task-state motor execution networks. Considering the increased activity in contralesional cerebellum 

during the recovery of motor function after stroke reported in previous studies [39, 280], our results not only 
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confirmed the important role of contralesional cerebellum in the recovery but also substantiated its potential 

prognostic value in stroke.  

5.5 Chapter conclusion 

In summary, this chapter reported the topological reorganization of task-state motor execution networks during 

sub-acute phase post stroke. Especially, we found the topological configuration of task-state motor execution 

networks at the early recovery stage were capable of predicting the motor function restoration during sub-acute phase. 

In addition, we found increasing FC between ipsilesional cerebellum and motor cortices in task-state motor execution 

networks and the significance of cDN in predicting the motor function recovery during sub-acute phase. In general, 

this chapter demonstrated the reorganization and potential prognostic value of task-state brain network after stroke, 

which provided new insights into understanding the brain reorganization and rehabilitation after stroke. 

In this thesis, other than the understanding of task-specific spatiotemporal changes of brain networks under motor 

task compared with resting condition, further application of task-state brain network in the research of stroke is 

another key component of the purpose of this thesis. In this chapter, the task-state brain network was applied in the 

research of post-stroke motor function restoration, which validated the effectiveness of task-state brain network in 

the stroke research and provided an alternatively way to investigate the stroke-induced reorganization of brain 

activities other than activation analysis and resting-state FC analysis.
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Chapter 6: Summary and conclusion 

Examining the modulation of task-state brain network during motor task plays a critical role of understanding 

how cerebral motor system works and could be further applied in the research of stroke. Recent advances in 

neuroimaging have resulted in numerous studies focusing on motor-related modulation of brain activity and most 

widely used strategy of these studies was identifying activated brain regions during motor task through event-

related/block-design experiment paradigms. Despite progress obtained, motor-related activation analysis mainly 

focused on modulation of brain activities for individual brain regions. However, brain has been demonstrated to 

consist of discrete, large-scale networks. Investigating the task-related spatiotemporal modulation of brain networks 

is still in an early stage. Thus, this thesis used two neuroimaging modalities (fMRI and fNIRS) to investigate how 

brain networks, especially the motor network and high-level cognitive network, would reorganize spatiotemporally 

from resting-state to motor tasks through both static and dynamic FC analysis, and further applied the task-state brain 

network analysis in the research of motor disability due to stroke. Our findings revealed the underlying 

spatiotemporal adaptation of brain networks in response to motor task and demonstrated the potential clinical 

prognostic value of task-state motor network during stroke recovery. 

6.1 Modulation of static task-state brain networks during motor preparation based on 

fNIRS 

Through static FC analysis of fNIRS during rest and motor preparation, increased FC were identified during 

motor preparation, especially the FC connecting right DLPFC with contralateral S1 and M1 as well as the FC 

connecting contralateral S1 with ipsilateral S1 and M1. Channels located in sensorimotor networks and right DLPFC 

were also found activated during motor preparation. Our findings demonstrated that the sensorimotor network was 

interacting with high-level cognitive brain network to maintain the motor preparation state. 

6.2 Modulation of dynamic task-state brain network during motor execution based on 

fNIRS 

Through dynamic FC analysis of fNIRS during rest and motor execution, increased variability of FC connecting 

contralateral PMSMC and M1 was identified, and the nodal strength variability of these two ROIs were also increased 
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during motor execution. Our findings demonstrated that contralateral M1 and PMSMC were interacting with each 

other actively and dynamically to facilitate the fist opening and closing. 

6.3 Spatiotemporal modulation of dynamic task-state brain network during motor 

execution based on fMRI 

Based on fMRI data, two principal FC states during rest and one principal FC state during motor execution were 

identified using dynamic FC analysis and k-means clustering. The 1st principal FC state during rest was similar to 

that during motor execution, which likely represented intrinsic network architecture. However, the presence of a 2nd 

principal FC state during rest with shorter “dwell time” could imply the interaction between DMN and MN through 

inter-network FC. In addition, the more frequent shifting between two principal FC states during rest indicated that 

the brain networks dynamically maintained the “default mode” for motor system. In contrast, because of focusing on 

motor execution, there was reduced FCV and only a single principal FC state during motor execution. Our findings 

suggested overall spatial similarity of primary principal FC states, but distinct temporal patterns of principal FC states 

between rest and motor execution. 

6.4 Topological reorganization and its potential clinical prognostic value of task-state 

brain network 

Task-state motor network was applied in the research of motor disability due to stroke and topological 

reorganization of task-state motor network was identified during sub-acute phase post stroke. In addition, for the first 

time, our study found the topological configuration of task-state motor network at the early recovery stage were 

capable of predicting the motor function restoration during sub-acute phase. In general, this thesis demonstrated the 

reorganization and potential prognostic value of task-state brain network after stroke, which provided new insights 

into understanding the brain reorganization and stroke rehabilitation. 

6.5 fNIRS is a promising neuroimaging modality for static and dynamic FC analysis 

Previous static and dynamic FC studies were mainly based on fMRI. However, fNIRS has emerged as a new tool 

that is complementary to fMRI-based FC analysis, especially for dynamic FC analysis because of its relatively higher 

temporal resolution and lower cost than fMRI. In this thesis, we explored the potential of fNIRS in both static and 

dynamic FC analysis. Our results demonstrated that fNIRS was a promising and reliable neuroimaging modality for 
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static and dynamic FC analysis, and the relatively high temporal resolution of fNIRS provided robust FC estimation 

and transient detection simultaneously.
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Chapter 7: Future work 

In this thesis, we investigated the task-specific spatiotemporal changes of brain networks under motor task 

through both static and dynamic FC analysis using fNIRS and fMRI, which deepened the understanding of how 

cerebral motor system work under different mental conditions. In addition, we explored the application of task-state 

brain networks in the research of stroke and demonstrated the relationship between task-state brain network features 

and motor function restoration post stroke. However, the applications of task-state brain network in stroke research 

and other fields are far broader and a lot of work are needed to be explored in the future. 

7.1 More applications of task-state brain networks in stroke research 

In this thesis, task-state brain network was used in the stroke research and the topological configuration of the 

task-state brain network was demonstrated to relate to the motor function restoration post stroke. However, more 

applications of task-state brain networks in stroke research could be explored in the future.  

In chapter 2, we found that several FC, including FC between sensorimotor network and cognitive network, 

increased during motor preparation without any actual hand movements, and more increased FC were identified 

during motor preparation than motor execution. In addition, most increased FC during motor preparation were inter-

hemispheric. Previous studies found that post-stroke loss and recovery of sensorimotor function was associated with 

acute deterioration and subsequent retrieval of inter-hemispheric FC within sensorimotor system [281, 282]. Thus, 

the task-state brain network during motor preparation could be applied in both indicating motor function restoration 

and helping the treatment of stroke-induced motor dysfunction. First, since the motor preparation would lead to the 

increasing of inter-hemispheric FC within sensorimotor network and the inter-hemispheric FC were correlated with 

motor function recovery, it would be reasonable to speculate that the task-state brain network during motor 

preparation would be very effective to indicate the motor function restoration post stroke, which could potentially 

contribute to the neuroimaging-based evaluation of stroke recovery. In addition, like motor imagery, motor 

preparation could also be used in the motor function restoration since it is able to increase the inter-hemispheric FC 

within sensorimotor network. For stroke patients with severe deficit, motor functional restoration through actual 

motor movements might not be feasible. Thus, motor preparation paradigms without any actual movements could be 

used in the motor rehabilitation exercise as it could activate sensorimotor network, especially the inter-hemispheric 
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FC. Furthermore, since motor preparation task is easier to perform than motor imagery task, we think it would be a 

very promising exercise in motor rehabilitation for severely impaired stroke patients. 

With respect to the methods used in stroke research, task-state brain networks applied in the stroke research were 

estimated through static FC analysis in this thesis. However, the brain activities and cognitive processes were proven 

to be dynamic and adaptive. Dynamic FC analysis is able to provide more information, especially the temporal 

information, than static FC analysis. Through dynamic FC analysis, schizophrenia patients exhibited shorter states 

of strong and large-scale FC than healthy controls during rest, which could not be observed when using static FC 

analysis [123]. Another study of dynamic FC in Alzheimer's disease patients showed longer state persistence in the 

strong anterior DMN sub-network, but shorter states in the strong posterior DMN sub-network when compared with 

healthy elderly subjects during rest [184]. Therefore, if the task-state brain networks based on dynamic FC analysis 

could be applied in stroke recovery, not only the stroke-induced spatial reorganization but also the stroke-induced 

temporal reorganization of task-state brain networks would be revealed, which might further deepen our 

understanding of spatiotemporal reorganization of functional brain networks post stroke. 

7.2 Brain stimulation on FC and brain networks 

The studies performed in this thesis were mainly observation studies, which targeted to identify changes of task-

state brain networks and relationships between task-state brain networks and stroke recovery. However, the ultimate 

goal of neuroimaging studies is the application of these findings obtained the observation studies. With respect to the 

application in the treatment of stroke, brain stimulation-based stroke treatment is an appropriate application for the 

findings of task-state brain networks in this thesis. 

In fact, previous studies have developed a strategy to use functional neuroimaging to guide the brain stimulation-

based stroke treatment. For example, based on previous findings that patients with good recovery usually had higher 

activities in motor cortex of lesioned hemisphere but lower activities in motor cortex of intact hemisphere, two 

strategies were developed to treat the stroke using brain stimulation methods, which were either upregulating the 

excitability in the lesioned hemisphere or downregulating the excitability in the intact hemisphere (Fig. 7.1) [283]. 
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Figure 7.1 Targets for intervention strategies based on possible pathophysiological mechanisms. 

Movements of the paretic hand are associated with unbalanced interhemispheric inhibition targeting the 

motor cortex of the lesioned hemisphere in patients with subcortical stroke. Two interventional 

approaches might normalize this pattern leading to improvements in motor function: upregulation of 

excitability of the motor cortex of the lesioned hemisphere and downregulation of excitability of the 

motor cortex in the intact hemisphere. This figure was adopted from [283] with courtesy. 

 

The previous studies were mainly based on the activation analysis and focused on individual brain regions. 

However, the brain was demonstrated to consist of FC and networks. If we could modulate the FC and brain networks 

through brain stimulation methods, it would be more effective to help the treatment of stroke. Paired associative 

stimulation has been demonstrated to be able to alter the FC [284], which provided a technique to modulate the FC 

through brain stimulation methods. In addition, a recent study identified the controllability of brain networks, which 

offered a mechanistic explanation for how the brain moves between cognitive states drawn from the network 

organization of white matter microstructure [285]. Through the controllability of brain networks, it would be possible 
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to modulate the brain networks through several key elements in the brain networks. Thus, if we could combine the 

controllability of brain networks and paired associative stimulation technique together, it would be possible for us to 

modulate the key features of the brain networks identified in this thesis so as to help the treatment of stroke more 

effectively in the future. 

7.3 Application of task-state brain networks in other areas 

In this thesis, stroke rehabilitation research was proposed as a clinical application of task-state brain networks. 

However, other movement disorders and neurological diseases also stand to benefit from the task-state brain network 

analysis. One potential conditions is early detection of auto-immune disease such as Amyotrophic Lateral Sclerosis 

(ALS) onsets that currently eludes clinical markers. Exploring the role of task-state brain networks in indicating the 

onset of ALS would be a very attractive and meaningful topic in the future.  

In addition, the task-state brain network analysis could also be applied in the kinesiology and brain-computer 

interface (BCI). For example, our findings regarding motor preparation could potentially be applied in anticipation-

based BCI. Previous studies of anticipation-based BCI mainly targeted the anticipation-related potentials obtained 

through EEG and developed classification methods to detect the anticipation-related potentials to guide the BCI [132, 

176, 177]. However, our findings might provide another option for anticipation-based BCI. The increased FC during 

motor preparation before actual movement could be used to guide the BCI. Especially, the relationship between 

modulated FC during motor preparation and the side of FOC subjects were about to perform, that is, FC connecting 

the right DLPFC with contralateral (right side in left trans and left side in right trans) S1 and M1, and FC connecting 

contralateral S1 with ipsilateral (left side in left trans and right side in right trans) S1 and M1 were increased during 

motor preparation, would further help the BCI to understand the anticipation of subjects more specifically. 

7.4 The research of motor-related structural brain networks 

With respect to the imaging modalities, this thesis used two functional imaging modalities (fNIRS and fMRI) 

and mainly focused on the functional aspect of the brain networks. However, investigating the brain networks from 

the structural perspective is also very important and might provide the underlying mechanism of how cerebral motor 

system work under both normal and pathological conditions. 

Diffusion tensor imaging (DTI) has already been applied in the stroke research and neuronal tract damage, 

especially the damage of corticospinal tract, has been identified by DTI by previous studies [286, 287]. However, the 

integration of structural and functional brain networks would be the main direction of the future, which would not 
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only provide more comprehensive information regarding the brain organization but also offer new tools to investigate 

the brain networks under both normal and pathological conditions (Fig. 7.2) [288]. Thus, if we could collect data 

using both functional and structural modalities under both normal and pathological conditions, it would be possible 

for us to investigate the integrative spatiotemporal patterns of motor-related brain networks under different conditions 

as well as exploring the methodological advances in integrating functional and structural brain networks together in 

the future. 

 

Figure 7.2 Convergence: structural and functional brain network organization. (A) Whole-brain fiber 

bundles reconstructed from diffusion tensor MRI are colored according to their connection similarity. (B) 

The human brain’s structural network constructed from DTI. (C) Repertoires of spatial modules have 

emerged from the analysis of spontaneous BOLD fluctuations in the brain at rest. (D) Hierarchical 

(modular) resting-state functional network. The figure was adopted from [288] with courtesy. 
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