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Abstract

Advances in Micro Electro-Mechanical Systems (MEMS) technology, including MEMS sen-

sors, have allowed the deployment of small, inexpensive, energy-efficient sensors with wireless

networking capabilities. The continuing development of these technologies has given rise to

increased interest in the concept of wireless sensor networks (WSNs). A WSN is composed

of a large number (hundreds, even thousands) of sensor nodes, each consisting of sensing,

data processing, and communication components. The sensors are deployed onto a region of

interest and form a network to directly sense and report on physical phenomena. The goal

of a monitoring wireless sensor network is to gather sensor data from a specified region and

relay this information to a designated base station (BSt).

In this study, we focus on deploying and replenishing wireless sensor nodes onto an area

such that a given mission lifetime is met subject to constraints on cost, connectivity, and

coverage of the area of interest. The major contributions of this work are (1) a technique for

differential deployment (meaning that nodes are deployed with different densities depend-

ing on their distance from the base station); the resulting clustered architecture extends

lifetime beyond network lifetime experienced with a uniform deployment and other exist-

ing differential techniques; (2) a characterization of the energy consumption in a clustered

network and the energy remaining after network failure, this characterization includes the

overhead costs associated with creating hierarchies and retrieving data from all sensors ;

(3) a characterization of the effects and costs associated with hop counts in the network;

(4) a strategy for replenishing nodes consisting of determining the optimal order size and

the allocation over the deployment region. The impact of replenishment is also integrated

into the network control model using intervention analysis. The result is a set of algorithms

that provide differential deployment densities for nodes (clusterhead and non-clusterhead)

that maximize network lifetime and minimize wasted energy. If a single deployment is not

feasible, the optimal replenishment strategy that minimizes deployment costs and penalties

is calculated.
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Notation and Abbreviations

Symbol Description
A area of deployment, a subset of R2

ADC analog-to-digital converter
BECR biased energy consumption rate
BSt base station or sink node
CSMA Carrier Sense Multiple Access
CDMA Code Division Multiple Access
Cj number of cluster-heads in band j
cs cost of an individual sensor node
Ct(yt) cost associated with ordering yt nodes in period t
CH cluster-head node
d cost associated with deploying too few nodes in a band
DSSS Direct Sequence Spread Spectrum
E expected value operator
E0 initial energy of a sensor node

Ej
r energy consumed by all nodes in band j in a single round

Ercv energy consumed in receive mode
Etx energy consumed in transmit mode

Ej
w wasted energy (residual energy in the network after network

failure) in band j
Fjt marginal cumulative distribution function (CDF) of wjt

Fjt+L leadtime CDF
Ḡt CDF of W̄t

GK reference to Gupta and Kumar [2000]
G(r) geometric random graph with parameter r, the radius of con-

nectivity
Gt CDF of Wt

G(V,E) a graph consisting of a set of vertices (V ) and edges (E)
h cost associated with deploying too many nodes in a band
hc hop count
J number of bands
j band index
K Fixed cost for deploying a batch of nodes
L network lifetime
L leadtime

M̄t =
∑J

j=1 µjt; mean of W̄t

MCU microcontroller unit
Ni number of nodes in band i
NCH non-cluster-head node
P(λ) Poisson distribution with parameter λj

Continued. . .
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Symbol Description
Pc continuous power consumption
pc probability of connectivity
pj probability of being a cluster-head in band j
PPP Poisson point process
QoS quality of service
R radius of the A
rs sensing radius of a node
rtx, rc maximum range of communication
RX radio receiver
SINR Signal to Interference plus Noise
Sj number of non-cluster-heads in band j

S̄2
t =

∑t+L−1
s=t S2

t ; variance of W̄t

S2
t variance of Wt

t time index
T terminal stage/ mission lifetime
TDMA time division multiple access
TX radio transmitter
W̄t failures in all bands during the interval t . . . t+ L
wjt number of failures in band j in period t
Wt failures in all bands during period t
WSN wireless sensor network
x = (x1, . . . , xN ) sensor locations
X̃∆

t number of nodes plus outstanding orders minus target levels
over all bands

x̃jt number of nodes minus target level in band j
X̃t number of nodes minus target levels over all bands

xt = (xjt)
J
j=1

xjt Number of active nodes in band j at the beginning of period
t

ŷt = (ys)
t−1
s=t−L; vector of orders placed in the last L− 1 periods

(not yet allocated)
yt number of nodes ordered at the beginning of period t
zjt number of nodes delivered to band j in period t (allocation)
α path loss exponent
αcov multiplier to the minimum density for connectivity that will

provide minimum coverage
λj parameter of a Poisson point process (node density) in band

j
λcon value of λ that provides minimum density for connectivity

µ̂jt =
∑t+L

s=t µjt; expected number of lead-time failures in band j
from period t

µjt = E(wjt); expected number of failures in band j during period
t

Φ(·) φ(·); standard normal cdf and pdf
Continued. . .
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Symbol Description
ρjt target level for band j at t

σ̂2
jt =

∑t+L
s=t σ

2
jt; variance of the leadtime distribution Fjt+L

σ2
jt = V ar(wjt); variance of the distribution Fjt

σ duty cycle: number of sensor reports per period
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1. Wireless Sensor Networks (WSNs) and Deployment Strategies

1.1 WSNs and their Applications

A wireless sensor network (WSN) [Akyildiz and Vuran 2010, Pottie 1998b, Stankovic

2008, Swami et al. 2007, Zhao and Guibas 2004] consists of spatially distributed au-

tonomous sensors that monitor physical or environmental processes such as tempera-

ture, sound, vibration, pressure, motion or pollutants. The sensor nodes are equipped

with radio transceivers, a processing unit, power supply, and one or more sensors (see

Figure 1.1). They are deployed onto an area of interest (A) in order to sample the

physical environment. After deployment, the nodes communicate with other nearby

nodes (within their transmission radius) to form a network. The goal of this network

is to relay data from the sensors to a central processing station, called a sink node,

or base station (BSt).

Unlike conventional ad-hoc wireless communication networks, which are mainly

used to exchange data between nodes, WSNs provide a direct interface to the physical

world. Some other important differences between WSNs and other wireless ad-hoc net-

works are related to the severe limitations on energy capacity, computational power,

transmission power, and memory in sensor nodes. In addition, the number of nodes

that are deployed in WSNs is typically much higher, as is the density of deployment.

Sensor nodes usually do not have unique addresses as do nodes in ad-hoc networks,

which typically employ TCP/IP [Akyildiz et al. 2002].

Decisions about how many sensors should be deployed, where the sensors should be

deployed, and how the network should be organized are crucial to designing a WSN

that can meet mission objectives. These objectives include the quality of sensing

coverage (does the WSN sample the area with sufficient resolution?), the quality of
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Figure 1.1: The components of a generic wireless sensor node.

estimation (how well does the WSN represent the physical phenomenon of interest

over the area?), and the lifetime of the network (how long can the WSN provide

a representation of the physical space without intervention?). The issue of sensing

coverage is related to the density of sensors over the area, while the issue of estimation

is related to both the density of the sensors and the capacity of the network. If the

available bandwidth is insufficient, sensors may not be able to communicate their

estimates of the area with sufficient fidelity. Since sensor nodes possess limited energy

supplies, nodes will begin to fail due to energy depletion. The lifetime of the network

is determined by the rate that nodes fail.

Unlike in peer-to-peer ad hoc networks, data gathered in a monitored area must

often be delivered from many sources to a single destination (sink node). Nodes in

WSNs must forward traffic for other nodes that are further away from the sink node.

Consequently, nodes that are closest to the sink node typically expend their energy at

a faster rate than more remote nodes. When enough nodes have failed, there will not

be sufficient number of sensor nodes to provide sensing coverage and/or relay traffic

(i.e., the network will experience connectivity loss).
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A key question is how to deploy a sensor network in order to meet lifetime, ca-

pacity, and performance requirements. This question is related to the scalability of

WSNs. The scalability challenge is related to the traffic pattern exhibited by most

WSNs (many-to-one communication). As the area of deployment becomes larger, and

as more nodes are deployed to cover the area, the amount of traffic being relayed (and

the energy expended) by nodes close to the sink node increases, while the available

bandwidth decreases.

While traditional networks aim to provide high quality of service (QoS) levels,

WSNs often aim to reduce energy consumption and prolong the lifetime of the net-

work [Duarte-Melo and Liu 2006] while maintaining a minimum quality of monitoring

(QoM). WSNs also have different constraints on deployment that depend on energy

consumption and lifetime. Sensor nodes carry limited, generally irreplaceable, power

sources that must power the node for months or years with no human intervention.

For this reason, and because sensor nodes are prone to unpredictable failures, nodes

should be ’over-deployed’ beyond the nominal requirements of the application. Since

sensor networks are to be deployed in large numbers and with high density, manual

placement of nodes is often infeasible. Manual placement may also be impractical

because the monitored area is dangerous (e.g., chemical or biological agents may be

present), or inaccessible (e.g., environmental monitoring or scientific data collection

takes place over inhospitable terrains). One approach to deployment is for nodes to be

placed randomly over the monitored region through airdrop or from moving vehicles.

The nodes then self-organize to form a network (Figure 1.2). The number of nodes

to be deployed and the density of nodes in different regions must be chosen to meet

requirements on connectivity, coverage, capacity, cost, and the lifetime of the network.

We refer to the choice of node densities (and their organization) as the deployment

strategy.
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 (a) Random Deployment  (b) Link Formation and Routing to Base
Station

Figure 1.2: Sensor nodes are randomly distributed across an area to be monitored. Af-
ter deployment, nodes communicate with their neighbors to form links. Sensed data are
forwarded through one or more hops until they reach the base station.

1.1.1 Applications of WSNs

Applications of dense distributed sensor networks include monitoring climate (e.g.,

Simic and Sastry [2003]), seismic activity (e.g., Werner-Allen et al. [2005]), and acous-

tic signals. Some WSNs are used for medical and intelligence data gathering. Others

for inventory monitoring. Examples of working systems include a habitat monitor-

ing network [Osterweil et al. 2004] and a sensor network used to monitor volcanic

activity [Werner-Allen et al. 2005]. WSNs are also a promising solution for military

command, control, computing, intelligence, surveillance, reconnaissance, and target-

ing (C4ISRT) systems (e.g., Akyildiz and Vuran [2010]). However, the vast potential

of wireless sensor networks remains at present largely unrealized. The few sensor net-

works that have been deployed have consisted of few nodes (typically less than 30)

that were placed manually inside the monitored region. Nevertheless, recent successes
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in the development of cheap, ultra-low power devices with processors, sensors and

radios built into a single system-on-a-chip (SoC) provide hope that large scale real-

izations of WSNs consisting of tens or even hundreds of thousands of tiny nodes may

soon be a reality. In the meantime, there remain many open problems and oppor-

tunities for improvements in WSN design and control. The research in this area has

focused on a broad range of applications, including battlefield monitoring, environ-

mental monitoring, and scientific data gathering [Simic and Sastry 2003]; inventory

management [McKelvin et al. 2005], and several others.

1.2 WSN Deployment Optimization and Control

Developing deployment strategies that meet lifetime, capacity, and cost require-

ments is complicated by the unique traffic patterns for messages in WSNs. Unlike

processing in peer-to-peer ad hoc networks, data gathered in a monitored area must

often be delivered from many sources to a single destination (the base station, BSt).

Because sensor nodes have limited communication range, these messages must be re-

peated over multiple hops until they reach the BSt (assuming that the monitored area

is large compared to the communication range of a sensor node). Suppose the region

of deployment, A, is modeled as a disk of radius R with the BSt located at the origin

(Fig. 1.3(a)). Nodes are deployed uniformly on A to cover the region and maintain

connectivity from all nodes to the BSt (Fig 1.3(b)). Now suppose that A is divided

into annular bands of equal width 1.3(c), and define the energy density [Duarte-Melo

et al. 2003] in each band as the amount of energy available in the band per unit area.

Figure 1.4 gives an illustration of the impact of the many-to-one communication

over multiple hops on the energy consumption in different bands under these model

assumptions 1. The x-axis depicts time and the y-axis is the energy density (the

1Figure 1.4 is a simplified rendering drawn for illustration of the BECR effect. Figure 3.14 shows
the same trend using data supplied from simulation.
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amount of energy in the band per unit area). Each line in the figure represents the

energy density for a single band over time in a uniformly deployed WSN. Initially,

each band has equal energy density (because nodes are uniformly deployed). However,

as time progresses, the nodes that are nearest the BSt will be burdened with a much

greater amount of traffic, and will therefore “die” more quickly (this phenomenon is

referred to in [Xu et al. 2005] as the biased energy consumption rate, BECR ). The

network is no longer operable once the nodes closest to the BSt are unable to forward

messages from the next band outward; the lifetime of the network will thus be quite

often the lifetime of the first band of nodes near the BSt.

Unbalanced energy consumption

The introduction of an organizational structure into the network helps to mitigate

the unbalanced consumption of energy across the WSN by allowing nodes to share

local measurements and reduce the number of messages that are forwarded through

the network. Organization designs generally fall into one of two categories: flat or

hierarchical [Sadler 2005]. Figure 1.5 shows a flat organization and a hierarchical

organization. Figure 1.5(a) shows nodes that are all connected to their nearest neigh-

bors. The bold line through the network depicts an example data path from a single

sensor back to the BSt. Figure 1.5(b) represents the hierarchical organization. The

nodes are divided into relay nodes (clusterheads) and sensor nodes. Instead of con-

necting to all of their neighbors, sensors connect to their nearest relay node in order

to send data to the BSt. Thus, all data are gathered from sensors to by the assigned

relay node, and the relay nodes form a separate network (shown as the“upper tier”

in the figure) to forward sensor data to the BSt.

In a flat organization (Figure 1.5(a)), nodes are peers in the sense that all nodes

act as both a relay and a sensing device at all times. Node management is performed
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R

(a) A is modeled as a disk of radius R. (b) Nodes are uniformly deployed over
A

(c) A is divided into annular bands of
equal width.

Figure 1.3: Introduction of the model for A and the use of annular bands to compute energy
density with respect to distance from the BSt.

through consensus protocols, where nodes cooperate to select a subset of nodes that

will remain active while others “go to sleep” (e.g., the Coverage-Centric Active Nodes

Selection (CCANS) protocol, Zou and Chakrabarty [2005]). These protocols are de-

signed to increase the likelihood that the active node subset is sufficient to meet

connectivity and coverage requirements. In hierarchical (clustered) organizations, a

subset of nodes (clusterheads) are designated to control the communications of the

other nodes within this communication range (non-clusterheads). The clusterheads
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Figure 1.4: Energy is consumed at a greater rate when nodes are closer to the base station.
The dashed line represents the energy density of the nodes nearest the base station; the
bold solid line represents the energy density of the nodes in the outer band. In a uniform
deployment, the lifetime of the network is the lifetime of the inner band.

are exclusively responsible for forwarding messages to the base station after collecting

sensed data from the non-clusterheads 2. The number and placement of clusterheads

need to be sufficient to support a connected overlay network for delivering data to

the base station. The advantage of clustered WSNs is that they provide a suitable

structure for fusing spatially correlated data received from non-clusterheads and for-

warding a compressed version of the data along the clusterhead overlay network.

However, this compression cannot be repeated on increasing hierarchical levels

because the sensor data will de-correlate in clusters that cover large areas. Because

2The terms clusterhead and relay are often used interchangeably. However, a clusterhead is a
relay that is also responsible for node management, while a relay is only responsible for forwarding
messages from other nodes.
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the clusterhead overlay is also performing many-to-one communication over multiple

hops, the lifetime of the overlay is also the lifetime of the band that contains the

clusterheads that are forwarding the most information. In Chapter 3, we show that

when nodes are uniformly distributed over A and nodes alternate the responsibility of

being a clusterhead (e.g., Heinzelman et al. [2000]), the lifetime of the entire network

is the lifetime of the nodes nearest the BSt.

 
(a) Depiction of a flat organization. (b) Depiction of an hierarchical organization

Figure 1.5: Flat vs. hierarchical network organization.

Balanced energy consumption is not possible

In the next two sections, we motivate the need for new approaches to WSN de-

ployment that can maximize the lifetime of the network while reducing the residual

energy remaining in the network at failure. We first emphasize that a deployment

that would balance the energy consumption per unit area in all bands of the network

simultaneously is not possible. We then select a recent proposed approach to sub-
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optimal energy balancing in bands around the sink node, and show that the density

requirements to implement the procedure are not practical, even for modest network

sizes.

In [Wu et al. 2008a], the authors model A as a 2-dimensional disk with radius

R and a sink node at the center. A is divided into annular bands of width r =

1, which is the transmission radius of any node (see Figure 1.3(c)). The work was

motivated by the problem of unbalanced energy consumption due to the effect of

many-to-one multi-hop communication in WSNs discussed above. The goal was to

minimize the imbalance in the total energy consumed by nodes across the annular

bands. The authors proposed to deploy nodes in a non-uniform fashion over the

network, providing more nodes for the bands near the sink node.

In a flat network without any data compression, when a node is relaying a packet,

it has to expend two units of energy for every relayed packet, while to send its own data

it expends one unit energy. Obviously, if a large fraction of a node’s communication

activities are dedicated to relaying, it will expend energy at a much higher rate than a

node that has no relaying responsibilities. Letting Eo denote the initial energy stored

in each node at deployment, Ei denote the total energy consumed in band i per round

3, and Ni denote the number of nodes in band i, the network lifetime (assuming energy

consumption across all bands is balanced) is given by

EoN1

E1
=

EoN2

E2
= . . . =

EoNR−1

ER−1
=

EoNR

ER
. (1.1)

In words, the expected lifetime of a single band is the ratio of the total available

energy in the band and the rate of energy consumption per round. If if this ratio is

equal for all bands, then we say that the energy consumption is balanced, and the

3A round is defined as a single reporting cycle where all nodes have completed sending K mea-
surements to the BSt.
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lifetime of the network (in rounds) is given by any of the ratios in Eq. 1.1.

It is easy to show that, since the outermost band does not forward any traffic,

completely balanced energy depletion is impossible (this is counter to suggestions for

fully balanced deployments, e.g., Liu [2006]). This fact is expressed in Theorem 4.1

in [Wu et al. 2008a]; consequently, the authors define sub-balanced energy depletion

as the balance attained when nodes in all bands except the outermost band exhaust

their energy simultaneously.

In order to determine if it is possible to achieve sub-balanced energy depletion,

the authors define the lifetime of a band as the ratio of the total energy in the

band and the energy consumed in the band per unit time, and set each of these

terms equal to one another (that is, Eq. 1.1 without the last term). This expression

establishes a relationship between the lifetime of the network and the criteria for

sub-balanced energy depletion. Starting with this expression, the authors prove that

sub-balanced energy depletion is achievable only if the number of nodes grows in

geometric progression with a common ratio q > 1 from the outer bands to the inner

bands except the outermost one.

Example of a network designed for sub-balanced energy depletion

[Wu et al. 2008a] provide an example of a network deployment where sub-balanced

energy depletion is achieved (q-switch). However, their approach requires careful

placement of nodes in the bands, and a special routing protocol. The approach in-

volves deploying nodes from the outer band to the inner band in numbers that satisfy

the constraint:

Ni

Ni+1
=

⎧
⎪⎪⎨

⎪⎪⎩

q, q > 1, 1 ≤ i ≤ R− 2

q − 1, i = R− 1,
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R

R-1

R-2
Data

Figure 1.6: This figure shows the placement of nodes in a network that can achieve sub-
balanced energy depletion. Each node from band 1 to band R−2 can communicate directly
with q different nodes in the adjacent band. This arrangement requires a disjoint set of q
nodes in the neighboring band for each node. This placement is used to support the q-switch
routing protocol, which allows nodes to evenly distribute their messages to each of their q
downstream neighbors. Graphic is adapted from [Wu et al. 2008a].

The number of nodes deployed in the outermost band (i.e., i+ 1 = R) is determined

by the coverage and connectivity constraints of the network. Then, these nodes are

placed in such a way that each node in band R can communicate directly with (q−1)

different nodes in band R − 1, and nodes in band i + 1 can communicate with q

different nodes in band i, for i = 1 . . . R − 2. In Figure 1.6 this placement is shown

for q = 3. The placement strategy supports the proposed routing protocol, q-switch

routing, where nodes evenly distribute messages to be relayed to the sink node among

their q neighbors in the adjacent band.

Simulation of the q-switch algorithm for a random deployment

The q-switch algorithm provides a method for deploying a WSN with sub-balanced

energy consumption. However, the approach has a significant drawback for the large-

scale WSNs considered here and in [Wu et al. 2008a]. q-switch requires specific place-
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ment of nodes, which would be impractical for a large network. To illustrate the

density requirements for a random deployment over a modest area size, we can con-

sider employing q-switch over an area of radius R = 4 with transmission range r = 1.

In order to choose a density for the outermost band, we apply results from [Xue and

Kumar 2004a], who proved that a network with n randomly placed nodes is asymptot-

ically connected with probability one as n increases if each node is connected to more

than 5.17 ln(n) neighbors. They also show through simulations that connectivity can

be achieved with high probability for only 1.5 ln(n) neighbors. If we assume that the

nodes are deployed according to a Poisson point process (PPP) (see Section 1.3.3 for

an explanation of a PPP) with mean λ, the expected number of one-hop neighbors of

a sensor with communication radius r is λπr2. Since λ is approximately the density

of nodes in a fixed area, we can use the minimum criteria for connectivity to derive

the minimum number of required nodes in band R by solving NRπ
AR

= 1.5 ln (NR) for

NR, where AR is the area of the outer band and NR is the number of nodes to deploy

in the outer band. For a network with R = 4, the solution is NR = 120. If we choose

q = 2, the number of nodes for the R − 1 band is NR(q − 1) = 120. The remaining

values are N2 = 240 and N1 = 480. This deployment (using random placement) is

shown in Figure 1.7(a).

Implementing the q-switch routing algorithm for a random deployed network is

difficult since the nodes are not carefully placed within the bands. For example, it

was not possible to find N2 = 240 disjoint subsets of q nodes from band 1 for the

random deployment in this example. Even if it were possible, the complexity of the

algorithm used to find such pairings would make the routing protocol impractical. In

order to approximate the intent of the q-switch protocol, the simulation was designed

so that nodes would select q nodes from the adjacent band at random and uniformly

distribute messages across this subset (q-switch requires a unique set of q neighbors



14

(a) Initial deployment

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
Network after 98 periods
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Figure 1.7: Example simulation of the non-uniform random deployment strategy proposed
in [Wu et al. 2008a].

for each node). After 98 iterations of the simulation, the number of node failures in

each band was (304, 160, 102, 32) for bands 1-4 respectively. Figure 1.7(b) shows the

remaining nodes after 600 nodes have consumed all of their energy. There are no

nodes remaining in the third band (bands are counted from 1 to N from the BSt

outward) and these failures prevent messages from being sent from bands 4 and 5 to

the BSt. However, many nodes are still active in the first band. A key observation is

that the distribution of residual energy among nodes that are still active in band 1; a

majority of the nodes remaining in band 1 have nearly half of their energy reserves at

network failure. From this simulation it appears that our random version of q-switch

does not provide sub-balanced energy depletion. The reason for the imbalance in the

energy consumption is that, as nodes exhausted their energy in outer bands, fewer

messages were being sent through the inner bands.

Another drawback of the q-switch approach is that the number of nodes required

grows very quickly with the number of bands. Figure 1.8 shows a semi-log plot of the

required number of nodes needed, for the first band only, to meet the requirements

of the approach. Even for modest sized networks and the smallest value of q, the
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Figure 1.8: This figure shows a semi-log plot of the required number of nodes to be deployed
in the first band only as the network radius increases from 2r to 10r. The requirements are
computed for common ratios q = 2, 3, 4.

number of nodes required is not practical. The large number of nodes required for

balanced energy consumption emphasizes the need for techniques, such as clustering,

that reduce the overall number of redundant messages in the network.

1.3 Fundamentals of Energy Constrained WSNs

The deployment strategy influences the limits of many properties of a WSN, such

as energy, coverage, connectivity, capacity, cost, and lifetime. In this section, we will

discuss each of these properties in an effort to derive a model for the constraints and
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objectives towards the deployment strategy proposed in Chapters 3 and 4, and the

replenishment strategy discussed in Chapter 5. For more comprehensive analysis of

these properties, we refer to the surveys in [Akyildiz et al. 2002, Ghosh and Das 2008,

Sadler 2005].

1.3.1 Stages of a Wireless Sensor Network

The activity of a WSN can be divided into four primary stages: deployment, clus-

tering and/or route selection, data retrieval, and replenishment. In this section we

briefly describe each one of these stages in order to introduce some particular require-

ments, constraints, and associated challenges before discussing them in detail in later

sections. We also highlight some of the interplay between the requirements for these

stages.

Deployment

The deployment of a sensor network can be either random or deterministic; we

focus exclusively on random deployments. Since the deployment random, control over

where the sensors are placed in an area of interest is limited to a coarse resolution.

It is for this reason that we focus on the density of sensors over large areas and

not the exact number and configuration on the monitored regions, A. As mentioned

earlier, we assume that the nodes are deployed from air or from a moving vehicle. The

density of sensors must be chosen to meet criteria for network lifetime, coverage of the

monitored area, average connectivity of the network, and cost. The selection of sensor

densities must also be made in conjunction with decisions about network hierarchy,

Multiple Access Control (MAC) schemes, and routing. Deploying many nodes will

require additional command overhead related to hierarchy, MAC, and routing to

control congestion, while too few nodes will require more frequent replenishments in
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order to meet coverage and connectivity requirements.

Command messaging (clustering and route selection)

Once nodes are deployed, they are required to self-organize to create a connected

network. In a flat network (no hierarchical strategy), each sensor must find a path

back to the sink node in order to deliver measurements. This task requires forming

routes by passing control messages between local nodes to create a connected net-

work. If a clustering strategy is used, then nodes must be provided an algorithm

for selecting a clusterhead, forming clusters, and exchanging measurements between

non-clusterheads and their associated clusterhead.

Data retrieval

Once sensors have taken measurements, the data must be delivered back to the

sink node. If a flat network is chosen, each node is responsible for delivering its read-

ings to the sink node through the network. In order to avoid collisions and delays,

a MAC scheme must be specified in addition to a routing algorithm. In a clustered

network, separate MAC/routing schemes must be provided for intra-cluster commu-

nication (where non-clusterheads (NCHs) exchange data with the clusterheads (CH))

and inter-cluster communication (where CHs exchange messages in order to pass

measurements to the sink node.

Replenishment

The replenishment of a WSN involves introducing additional sensors to the mon-

itored area in order to maintain connectivity and coverage until the end of the net-

work’s mission lifetime. The motivation for adding additional sensors when (or just

before) they are needed is to reduce network cost and increase network lifetime. Sim-
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ply increasing the number of initially deployed sensors while keeping all of them in

use will eventually begin to decrease the network lifetime due to the additional energy

consumed by control overhead messages and increased data retrieval messages. Net-

work capacity will diminish due to increased contention to access the medium. Also,

the cost of the deployment will increase due to the large number of sensors being

deployed. Decisions about when, where, and how many additional sensor should be

added to the network in order to reduce cost and extend lifetime are discussed in

Chapter 5.

1.3.2 Energy consumption

Energy resources of a sensor node are consumed by four main components (Figure

1.9): the processor, radio, sensing module, and timing element. The subset of com-

ponents that are active at any given time depends on the state of the node. These

states include transmit, receive, idle, sensing, and DSP active (other states are pos-

sible, depending on the application). The energy consumed in a node will depend

upon the proportion of time that nodes spend, and the amount of energy consumed,

in each of these states. Some of these states will cost considerably more than others,

so managing node state transitions is critical to reducing energy consumption and

extending lifetime; this observation is especially true for the transceiver.

As an example of the power consumed in each state, the FireFly [Rowe et al. 2004]

node designed at Carnegie Mellon University draws a total of 24.8mA of current (with

a 3V supply) when the radio is in use and the CPU is active. The device is comprised of

an Atmel ATmega1281 8-bit micro-controller with 8KB of RAM and 128KB of ROM

and a Texas Instrument CC2420 IEEE 802.15.4 standard-compliant radio transceiver

for communication. According to the data sheet [Chipcon 2004], the receive state

requires 18.8mA, while the CPU requires 6mA. When both the radio and the CPU
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are idle, the node draws only 0.2µA.

The processor in a sensor node is primarily used for digital signal processing (DSP)

and will therefore be active whenever the transceiver is active in order to provide

support for (de)modulation and (de)coding and any other functions performed on

the signal before the DAC in the transmit state and after the ADC in the receive

state. Additionally, the processor will be active in the sensing state to perform DSP,

compress data, and, occasionally, execute decision logic on the sensor input. The

amount of power consumed by the processor for these tasks depends on the complexity

of the functions, the frequency of the processor, and the amount of information that

must be stored and retrieved to complete operations. The processor will also consume

power in its idle state due to leakage current. The processor can be turned off when

idle in order to reduce power consumption, though the benefit of turning the processor

on and off diminishes when the unit is used often since there is a cost associated with

powering up the device from the off state [Wang and Yang 2007].

Sensor

ADC

Processor

Memory

Transceiver

Power 
Ampliifier

Timing

Figure 1.9: Energy is consumed by four main components in a typical sensor node: the
sensing component, the timing component, the processor, and the radio transceiver.

According to data sheets for most standard WSN transceiver modules (e.g., Chip-
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Table 1.1: Power consumption in transmit mode for the Texas Instruments CC2420
SmartRF ®chip. The device consumes 18.8mA in receive mode.

dBm level current (mA) power (mW)
-25 8.5 15.3
-15 9.9 17.82
-10 11 19.8
-5 14 25.2
0 17.4 31.32

con [2004]), the power required to transmit a single bit is comparable to the power

required to receive a single bit when the transmitter is being used at full power (typi-

cally 0dBm). Table 1.1 shows the power consumption in transmit mode for all 5 power

levels provided on the Texas Instrument CC2420 chip with a regulated 1.8V supply.

In receive mode, the module consumes 18.8mA (33.84mW).

In other cases, however, the transceiver may require as much as 2-3 times more

power in the receive state than in the transmit state (e.g., Shih et al. [2001]). This

incremental requirement is due to additional functionality including carrier acquisi-

tion and synchronization and decoding. The complexity of these functions may be

further increased when robust signaling, such as direct sequence spread spectrum, is

employed. The major factor that determines the transmit energy consumption Etx

is the path loss, which requires an adjustment in the transmit power level, while

the power consumption in the receive mode Ercv is determined by the complexity of

the modulation and coding scheme. In general, when considering the cost per bit,

Etx ≥ Ercv. However, the cost Etx is only borne during transmission, whereas Ercv

is continually a factor whenever the node is ‘listening.’ Consequently, the fraction of

time that the receiver is in the listening state is a major factor in the total energy

cost at the transceiver. The percent of time a node is in an active state (e.g., transmit

or receive) is referred to as the duty cycle.
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To approximate the energy consumption, we can use a first-order radio model

including blocks for the transceiver and signal processing similar to [Heinzelman et al.

2000, Shih et al. 2001]. The transmit energy is described by

Etx = esp + dα × eamp, (1.2)

where esp is the energy cost of the signal processing associated with generating the

signal, eamp is the output energy determined at the power amplifier of the transmitter,

and a simple geometric path loss model is assumed. The propagation loss is assumed

[Sadler 2005] to be proportional to

1

dα
, 2 ≤ α ≤ 4, (1.3)

where α is the path loss exponent and d is the distance (meters). At the receiver, let

Ercv denote the receiver energy and let Esp = signal processing energy. The units are

Joules/bit, and Etx and Ercv are then scaled by the packet length M (bits). Finally,

let Eidle = µErcv be the energy consumed in the idle state, where µ ≪ 1.

Using this model, we can illustrate how the duty cycle affects the energy consump-

tion. As an example, let Ercv = Etx = 1 and σ = duty cycle. Figure 1.10 shows the

radio energy consumption versus the duty cycle for values of µ =0.001, 0.01, and 0.1.

The figure shows that for low duty cycles, the energy consumption is dominated by

Eidle, while at high duty cycles, the energy consumption is dominated by the cost of

receiving and transmitting. A high duty cycle can be a consequence of high message

rates, long periods of time in the ‘listening’ state, or a combination of both. There-

fore, in order to reduce the energy consumption with respect to the duty cycle, nodes

should minimize the number of bits transmitted by compressing the data before for-

warding to the base station and avoiding redundant messages. Also, nodes can reduce
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Figure 1.10: The duty cycle (percent of time nodes are active) determines the extent to
which the energy in the node is predominantly consumed by the transceiver or the idle state
components (e.g., timing element).

the time spent in the ‘listening’ state through scheduling techniques and network or-

ganization such as clustering [Bandyopadhyay and Coyle 2003b]. If the message rates

are relatively low, then nodes can be placed into an idle state until the next scheduled

communication. This type of coordination requires nodes to be synchronized, and the

precision of this synchronization depends on the accuracy of the timing element (as

discussed in Section 1.3.10).

1.3.3 Connectivity

A WSN is connected when a path exists between all nodes. These paths need

not be direct; it is usually sufficient that every node can reach the base station,

which implies a path between all nodes. However, we note that interference, fad-

ing, dynamic clustering protocols, and random node failures cause transient topology
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changes, which may result in a short-term connectivity loss. For this reason, it is bet-

ter to consider the average connectivity over time. Connectivity is a function of the

node locations (density and coverage area), radio channels, transmission power, and

traffic patterns 4. In some applications, initial connectivity can be ensured by careful

node placement along with channel measurement and power adjustment. However, in

most situations, nodes will be deployed randomly on the monitored area, so a natu-

ral model for analyzing connectivity in WSNs is a random geometric graph [Penrose

1999].

A graph G is a pair (V,E) of vertices (nodes) V and edges (links) E ⊆ [V ]2. A pair

of vertices vi and vj ∈ V are directly connected if there is an edge vivj ∈ E. A path

is a subset of G of the form V = {v0, v1, v2, . . . , vk} and E = {v0v1, v1v2, . . . , vk−1vk}.

If any two vertices in G are linked by a path, then G is connected. Random graphs

are graphs whose properties, such as the number of vertices or edges, are determined

randomly. In a geometric random graph , G(r), a parameter r is introduced and a set

of vertices are distributed uniformly at random in a metric space, R. Then, for any

pair of vertices vi and vj ∈ V , there is an edge vivj ∈ E if and only if the distance

between vi and vj is less than r (the communication range) in Euclidean space. The

assumption that the vertices are distributed uniformly allows us to model the spatial

distribution function (the probability that there are n vertices within a unit space)

using a homogeneous spatial Poisson distribution or Poisson point process (PPP) [Hall

1988, Kingman 1992, Stoyan et al. 1995]. Just as a stationary 1-D Poisson process

has a constant rate λ that determines the expected number of “events” or “arrivals”

that occur per unit time, λ is the expected number of vertices in a unit area on R,

or the density. Thus, if the density of the PPP is λ, the number of vertices located in

a region of area A is λA and the probability that there are k nodes in this region is

4What we are calling “traffic patterns” is usually characterized by a traffic matrix that gives the
volume of data between origins and destinations in a network.
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distributed as

P (N(A) = k) =
e−λA (λA)k

k!
. (1.4)

.

Now consider a randomly deployed sensor network with n total nodes, where the

nodes are placed under a homogeneous spatial Poisson distribution with parameter

λ into a 2-dimensional area of size A. Assume the geometric path loss model of Eq.

1.2. Furthermore, any two nodes within distance r = rc are able to form a link.

Let Ar = λr2, which is the area covered by a transmission with radius rc. Then,

N = λAr is the expected number of nodes within the transmission radius of the node

(sometimes called the “average degree” of the nodes in the network). Given this model,

we can consider the problem of finding a value of λ that will ensure connectivity in R.

Extending the setup above with a slotted ALOHA model (a contention-based multiple

access model where nodes access a shared channel by sending messages at the start of

discrete time slots, [Abramson 1970]) and setting the value of rc equal for all nodes,

[Kleinrock and Silvester 1978] performed average throughput analysis to show that

N = λAr ≈ 6 achieved the best trade-off between throughput and connectivity. This

value of the optimal average degree came to be called the “magic number.” However,

as pointed by [Philips et al. 1989], as the value of A increases under the Poisson

model, there is a finite probability of a network partition using this (or any) static

value of N . More recently, [Xue and Kumar 2004b] showed that the average degree

of sensor nodes should scale with O(logN), so that P (connected) → 1 as N → ∞.

In many studies that consider connectivity in geometric random graphs and sen-

sor networks, (e.g., Bettstetter [2004], Dousse et al. [2002], Gupta and Kumar [1998],

Wan and Yi [2004], Xue and Kumar [2006]), the problem of ensuring connectivity in

randomly deployed sensor networks is posed in the following way: given a density λ
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and an area A, what value of r will ensure connectivity? Other studies aim to find

a density λ for fixed A and r that will ensure connectivity. The results are equiva-

lent for either form, and both suggest a trade-off between connectivity and capacity:

increasing r will increase the likelihood of connectivity, but larger transmission radii

suggest more interference between nodes, impacting the network’s throughput. On the

other hand, increasing λ for a fixed A and r will ensure connectivity while also cre-

ating more interference between nodes. [Xue and Kumar 2006] show that the critical

transmission range for connectivity on a graph of unit area is given by

πr2c (n) =
logn+ c

n
. (1.5)

In an extensive study of properties of geometric random graphs, [Bettstetter 2004]

shows that a random graph Gn(rc) with n total nodes over area A and a communi-

cation radius rc assigned to every node is connected with probability pc if:

rc >

√
A

nπ
(lnn− ln ln

1

pc
). (1.6)

This result takes into consideration the complicated boundary effects introduced

by finite graphs that are ignored in a classical analysis of geometric random graphs,

since the spatial Poisson distribution is assumed to be sampled from an infinite space.

[Wan and Yi 2004] extend these results for the case of K-connectivity, where each

node is to be connected to at least K other nodes.
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1.3.4 Effect of interference

A condition for successful transmission from node i to node j is that the Signal to

Interference plus Noise Ratio (SINR) should be above a predetermined threshold β:

Pr(i, j)

No + γ
∑

k ̸=i,j Pr(k, j)
> β, (1.7)

where Pr(x, j) is the power of the signal received at j from x, No is the thermal

background noise, and γ is the orthogonality factor, which models the extent to

which nodes in each others tx/rx range are coordinated. For example, if the nodes

are all coordinated by a single clusterhead and perfectly adhere to a slotted schedule

where no transmissions overlap, then this situation corresponds to γ = 0. In the

case of γ = 0, the SINR is replaced with the SNR and the connectivity analysis is

performed using a Boolean model (if nodes are in range, then are connected, otherwise

they are not). When γ > 0, the connectivity is influenced by the summation in the

denominator of 1.7. This model suggests that there is an upper limit on the node

degree; the bound was shown to be K " 1 + 1
γβ in [Dousse et al. 2005]. In order to

improve connectivity in this case, the value of γ should be made small by coordinating

transmissions so that they do not occur simultaneously (e.g., using TDMA, CDMA,

and CSMA schemes).

1.3.5 Capacity

The capacity of a network refers to the maximum theoretical rate that the network

can deliver data from sources to destinations. The per-node capacity can be computed

from the capacity, and gives the average maximum transmission rate for individual

nodes. We may also speak about the bandwidth capacity, or available bandwidth in

bit/s; it defines the maximum throughput across a communication channel. Therefore,
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the capacity refers specifically to maximum theoretical bounds on throughput for a

channel, a network, or a single node. From the perspective of a single node, there are

two common ways to measure data delivery. It may be measured by the number of

bits per second per node that the network can deliver, referred to as the per-node

throughput. Per node capacity may also be measured by the number of bits-meter

per second per node, referred to as the per-node transport capacity. This metric was

first defined by [Gupta and Kumar 2000] (GK) for ad hoc wireless networks. The

transport capacity is the total transport length (in meters) of all of the bits in the

network per unit time; this definition is different from the Shannon capacity since

it involves physical distance. GK found that for n nodes in a peer-to-peer ad hoc

network, with a common shared channel of bandwidth W Hz, the best total network

transport capacity scales like O(W
√
n)5 The transport capacity is expressed in terms

of the per-node capacity by dividing by n, yielding O(W/
√
n). The conclusion is that

networks with a large number of nodes are probably not feasible, since as the number

of nodes becomes large the available throughput to each node tends to zero.

The applicability of GK’s work for characterizing the capacity of WSNs is some-

what limited because the results are based on the assumption that communications

are made between randomly selected source and destination pairs transmitting un-

correlated information. In a study of the feasibility of large scale WSNs, [Servetto

2002] showed that although the per-node throughput of the network does tend to

zero as the network size increases, so does the amount of information generated by

each transmitter, due to correlation. In [Wang et al. 2005], the authors address the

energy constraints and many-to-one communication in WSNs by analyzing capac-

ity with respect to the cumulative amount of information that a relay can handle

subject to lifetime and energy constraints. [Duarte-Melo and Liu 2003] and [Marco

5Order notation O(x) generally indicates that the largest term scales with x.



28

et al. 2003] extend the results from GK’s work to account for many-to-one traffic as

is encountered in WSN applications, comparing results for clustered and flat network

organizations.

In a clustered network, one must make a distinction between the capacity of an

individual cluster and the capacity of the clusterhead (CH) overlay network. The

capacity of the CH overlay network will depend heavily on whether CHs compress

the data received from the nodes in the cluster or act as simple relays of all packets

sent from their non-clusterheads (NCHs). A common assumption is that the CH

overlay network is on a separate channel from the channel that the clusters use for

communication, so the two layers do not interfere.

The foundation for analyzing either inter- or intra- cluster capacity is the inter-

ference model. Let si and sj be two nodes with distance di,j between them. The

transmission from si to sj will be successful if

di,j ≤ rc and dk,j > rc (1.8)

for any node sk that is simultaneously transmitting. There are two ways that the nodes

may interfere with each other. First, a node will obviously interfere with another node

if it is within the communication radius R (see Figure 1.11(a)). Second, a node may

interfere with another node that is transmitting if it is within distance 2R because if

node si is within 2R of sk and the intended receiver sj is located within the overlapping

area, the transmission will fail due to interference (Figure 1.11(b)). The interference

model in Eq. 1.8 implies that no node can receive more than one transmission at a

time and that no node can send and receive at the same time.

Now consider a single cluster operating on a separate channel with S NCHs. For

simplicity, we will assume that sources share the resource (time) by transmitting
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Figure 1.11: Two causes of node interference.

following a schedule consisting of time slots6. Then we have a sequence of S time

slots, one for each NCH to transmit to the CH. If W is the capacity of the shared

channel, the maximum throughput is achieved when the CH is busy 100% of the time,

which implies a intra-cluster capacity of W/S. However, in most WSN applications

nodes transmit a few small packets per unit time (usually on the order of hours).

In addition, if the CH is energy constrained, then achieving maximum throughput

(i.e., being 100% busy) would be undesirable. The same result applies to CHs if every

CH is directly connected to the base station, as is assumed in many studies (e.g.,

Duarte-Melo and Liu [2003], Heinzelman et al. [2000]).

In the case of the inter-cluster capacity, when CHs are not directly connected to

the base station, the capacity becomes more of an issue; capacity of W/S is no longer

achievable. As the network scales in size, the clusterheads must support more relay

traffic from the outer regions of the network, in addition to collecting data from the

sensors. The capacity of the overlay will be determined by whether or not CHs com-

press data before forwarding it; the average number of nodes in a cluster; the number

of clusters; and the ratio of the deployment region’s radius and the communication

6The same analysis could be used for different shared resources, such as frequency or codes.
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radius. Although [Duarte-Melo and Liu 2003] do not consider multi-hop communi-

cation between CHs and the base station, we can apply their results for multi-hop

traffic in a flat network, assuming that CHs compress the data from their NCHs and

forward a single packet of constant size at each sampling of the region. The authors

show that the capacity of the flat network with n nodes, each with communication

radius rc on an area of radius R, can achieve a maximum throughput of

C =
R2W

n (2R2 − rc2)
(1.9)

which is slightly worse than the results of GK. In this model, as the communication

radius increases, the capacity improves, since nodes will send messages over fewer

hops, thus reducing the number of transmissions. Also, larger transmission radius rc

implies that more nodes are directly communicating with the base station. The reason

why the results do not necessarily imply that large scale WSNs are infeasible is that,

besides the argument made in [Servetto 2002] regarding correlated data, WSNs do

not, in general, require high throughput in order to function.

If high throughput is required, then it has been shown by [Hu and Li 2004b]

that the limited energy in the network would be the limiting factor on the network’s

capacity, not the interference. The authors compare energy-constrained network ca-

pacity and interference-constrained network capacity. Energy-constrained capacity is

the maximum number of bits that can be injected into the network by each node

without causing network failure as a result of energy depletion. The definition of

energy-constrained capacity follows from the observation that the maximum amount

of data that can be transmitted in any given time period are limited by the energy

available during the same time period. This definition also holds for WSNs that use

renewable energy sources, such as solar. [Hu and Li 2004b] show that for fixed den-

sities the energy-constrained capacity scales much worse (with n) than interference-
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constrained capacity (assuming that the area of the region is scaling with n to preserve

the fixed density.) When the area is fixed and the density of nodes is increased, the

authors show that the energy-constrained capacity is comparable to the interference

constrained capacity.

Our consideration is the amount of time that nodes will spend waiting to access

the channel after they make a measurement. We use this period of time to estimate

how much energy is consumed by nodes in each sensing round as a function of the

number of active nodes in a unit area.

1.3.6 Coverage

The concept of sensor coverage is central to the goal of WSN deployment. Since

the sensors are being deployed for the purpose of measuring a physical space, it is

natural to ask “how well will the sensors represent the desired features they are

deployed to measure?” As pointed out in [Meguerdichian et al. 2001], coverage is a

measure of the quality of service (QoS) of the sensing function and is subject to a

range of interpretations across a variety of sensor types and applications. Nevertheless,

a general definition of coverage in the literature is the guarantee that each location

in the targeted physical space is within the sensing range of at least one sensor.

Some of the work in coverage studies use the ratio of the covered area to the size of

overall deployment region as a metric for the quality of coverage [Huang and Tseng

2005]. However, most recent literature has focused on the worst case coverage, or least

exposure, which measures the probability that a target would travel across an area

without being detected (e.g., [Clouqueur et al. 2002]).

In developing a model for sensor coverage, most studies begin by using a stationary

2-D Poisson point process (PPP) to describe the locations of the sensors. Two widely

adopted sensing models are the Boolean sensing model and the general sensing model
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[Liu and Towsley 2004]. In the Boolean model (applied in, for example, Shakkottai

et al. [2003]), each sensor can sense the environment within its sensing range, rs. A

location is said to “covered” by a sensor if it lies within the sensor’s sensing area. The

entire space is partitioned into two regions: the covered region (the region covered by

at least one sensor) and the vacant region. An object is detected if it passes through

the covered region. If two sensors are within 2rs of each other, they are said to

form a cluster. Since an object cannot traverse a cluster without being detected, the

objective is to form enough clusters as to prevent a target from passing through the

region undetected. This interpretation of coverage is problematic, however, because

the definition of sensing range is not clear, since the quality of a sensor’s measurement

across a distance is related to the signal-to-noise ratio, not just the distance. Also,

many sensors are point sensors (e.g., chemical sensors); they do not detect objects at

a distance but rather must come in physical contact with the object in order to sense

it.

The general model is meant to incorporate the signal degradation of the sensor’s

sensing capability as the distance between the sensor and the target increases. For

a sensor s, a sensing signal at a point x on the region is given by [Liu and Towsley

2004]

S(s, x) =

⎧
⎪⎨

⎪⎩

α
d(s,x)β if A ≤ d(s, x) < B

0 otherwise
, (1.10)

where d(s, x) is the distance between s and x, α is the energy emitted by the events

at x, and A and B define the range of a sensor’s sensing capability. The sensing signal

decays according to a power law with exponent β. The sensor field intensity Ix at

point x is defined as the sum of the sensing signals of all sensors in the region, i.e.,

Ix =
∞∑

i=1

S(si, x). (1.11)



33

A point x is deemed covered if Ix is greater than or equal to some threshold. This

definition of coverage fits naturally into a decision fusion framework, where sensors

collaborate to determine whether or not an event occurred in a region of surveillance.

In this general sensing model, the sensing range is not an explicit boundary, but

rather can be thought of as a threshold of the false alarm rate (probability that the

sensors detect a target or event that is not present.) This definition of sensing range

incorporates the statistical nature of WSNs with regard to the nature of the event

being sensed and the capabilities of the sensor (a noise term could also be added to

Eqns. 1.10 and 1.11). This definition is primarily useful for distributed detection with

a network of sensors that take measurements from one of two hypotheses and com-

pare a likelihood criterion to a threshold (e.g., [Anandkumar et al. 2008], who seek to

maximize the Neyman-Pearson detection error exponent subject to a constraint on

average (per node) energy consumption.) But not all sensor networks are deployed

to detect the presence or absence of an event. The goal of a data-gathering WSN

or field-gathering WSN [Duarte-Melo and Liu 2006] is to periodically sense the envi-

ronment and report an analog sensor value to the base station at regular intervals.

This application is not compatible with a binary detection framework. As an exam-

ple, consider a network deployed for the purposes of monitoring the air quality near

a major metropolitan area (e.g., Hamel et al. [2006]). Each sensor would report the

density of particulate matter and the location of the sensor at predefined intervals.

The density of deployment in this case would be the required resolution of spatial

data required in order to apply distributed parameter estimation methods for local-

izing the diffusive source, determining its space-time concentration distribution, and

predicting its cloud envelope evolution. Other examples of such diffusive sources are

biological agents, toxic chemicals, explosives, hazardous materials, and temperature

fields.
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Although some research has been done recently on the problem of designing opti-

mal estimators under bandwidth [Ribeiro and Giannakis 2006] and energy constraints

[Li and Al Regib 2007] in wireless networks, and specifically for the case of monitoring

diffusive sources [Zhao and Nehorai 2007], the subject of a minimum sensor density

for these estimators, as far as we can tell, does not appear to have been covered. It ap-

pears that the notion of a sensing range is more meaningful in the context of finding a

deployment to optimize detection of an event [Anandkumar et al. 2008, Rajagopalan

et al. 2005], while for data gathering sensor networks, solving a parameter estimation

problem, it is less useful.

A suitable criterion for coverage in monitoring networks is the monitoring quality .

The monitoring quality of a sensor network is a measure of how well the sensor reports

represent the underlying measured process in space and time. We can define these

quantities in terms of the distortion between the temporal and spatial measurements

and the real process by modeling the underlying reality as a spatio-temporal random

process or random field in space and time. Temporal distortion arises due to a mis-

match between the rate of changes in the random field and the sampling rate of the

sensor network. If the sampling rate is less than the Nyquist frequency required to re-

construct the spatio-temporal random signal, the reconstruction will exhibit aliasing

and other distortions.

Spatial distortion results from an undersampling of the area of interest, and this

is the quantity of interest here. Thus we assume that the monitoring network is

synchronized in the sense that all sensors take a measurement at about the same

time, report to the base station, and “go back to sleep.” We also assume that the rate

of the sensing-reporting cycle satisfies the Nyquist rate and that the field does not

change faster than the time it takes to collect samples from every sensor. The spatial

distortion depends on the number and placement of actively participating sensors
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over the area. The average spatial distortion Dmse over an area A is defined as

Dmse(A) = ∥A∥−1

∫

x∈A
E
[
Z(x)− Ẑ(x)

]2
dx, (1.12)

where Z and Ẑ represent, respectively, the real and reconstructed values at points

x ∈ A. The inner expectation is with respect to the spatial distribution of nodes in

A.

Without making assumptions about prior knowledge (knowledge that could be

used for an application specific data fusion technique), we could compute the value

of Ẑ by taking linear combinations of values reported by sensors in a neighborhood.

This standard technique is called kriging [Williams 1998].

We do not consider specific underlying processes or monitoring quality require-

ments in this study, although a specific expression for Dmse can be added as a con-

straint to the lifetime optimization problem. Instead we will assume, as is done in

much of the literature, that the minimum density for coverage is linearly proportional

to the minimum density for connectivity.

1.3.7 Lifetime

The lifetime of a WSN is the time span from the initial deployment to the in-

stant that the network is considered non-functional. When a network is considered

non-functional is, however, application specific. Various definitions of network life-

time are possible, such as time to first node failure (e.g., Wang et al. [2006]), or

time to appearance of the first network partition (i.e., connectivity failure). Lifetime

analysis is difficult since the network lifetime depends on many factors including net-

work architecture and protocols, data collection initiation, lifetime definition, channel

characteristics, and energy consumption model. The use of energy-aware routing pro-

tocols and efficient MAC protocols can increase the lifetime by reducing the amount
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of energy consumed by redundant messages, maximizing the amount of time nodes

spend in the idle state, and reducing packet collisions that result in costly retrans-

missions. Data collection initiation refers to the manner in which nodes are triggered

to sense and communicate. In event-based networks, nodes will communicate sensor

data if a threshold on the sensor is exceeded, for example if a motion sensor detects

an intruder. In time-triggered networks, the class to which data gathering networks

belong, nodes sense and report according to a schedule. In some clustered networks,

the schedule is coordinated by the clusterheads; the trigger may also be maintained

by a timer on each node, assuming nodes are synchronized. The lifetime definition is

determined by the nature of the application (critical or non-critical) and the number

of redundant nodes that are deployed. Finally, an analysis of lifetime will depend on

the models used for energy consumption in the nodes and the assumptions about the

channel characteristics. For example, if the energy consumed by a component in the

idle state is high relative to the total costs of communication, the energy model given

in Eq. 1.2 will not provide an accurate lifetime result.

Upper bounds on lifetime have been derived for various WSNs. [Bhardwaj and

Chandrakasan 2001] and [Hu and Li 2004b] derive upper bounds on network lifetime

in flat architectures based on the assumption that all data are relayed to the base

station via an optimal number of hops. Many studies use network flow techniques

to bound the lifetime of flat networks with known topology (e.g., Bhardwaj and

Chandrakasan [2002], Duarte-Melo et al. [2003], Giridhar and Kumar [2005]). Sev-

eral efforts have derived lifetime upper bounds in flat organizations However, studies

on the lifetime analysis of of hierarchical organizations are relatively scarce. In one

study by [Duarte-Melo and Liu 2002], the authors bound the lifetime of the WSN by

optimally allocating energy to sensors in a clustered network.

[Chen and Zhao 2005; 2007] study the average lifetime of WSNs in a general
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setting; they do not specify a network architecture, the data collection initiation,

or the channel and the energy consumption model. The energy consumed in the

network is divided into two types: continuous energy consumption (energy consumed

by the clock, current leakage, analog sensors, etc.), and reporting energy (sensing and

communication, not including any sensors that are on continuously). Chen and Zhao

provide a theorem, derived from the strong law of large numbers, stating that in a

WSN with total non-rechargeable initial energy Etotal, the average network lifetime

E[L], measured as the average amount of time until the network dies, is given by

E[L] = Etotal − E[Ew]

Pc + σE[Er]
, (1.13)

where Pc is the constant continuous power consumption over the whole network,

E[Ew] is the expected wasted energy (i.e., the total unused energy in the network

when it dies), σ is the average sensor reporting rate defined as the number of data

collections per unit time, and E[Er] is the expected reporting energy consumed by

all sensors in a randomly chosen data collection. Not surprisingly, Eq. 1.13 implies

that reducing the expected reporting energy and the expected wasted energy leads to

prolonged network lifetime. This theorem assumes that lifetime is defined as the time

span until any sensor in the network dies (the first death) or no sensor has enough

energy for transmission during a data collection (the first failure in data collection). A

more general framework for analyzing lifetimes for situations where lifetime is defined

with respect to a percent of nodes failing (called α-lifetime) can be found in [Zhang

and Hou 2005a], where a loose upper bound on the maximum α-lifetime is given.

The lifetime of a sensor network will also depend on other factors beyond (but

not independent of) the deployment strategy, hardware, routing, network architecture,

etc. For example, the desired quality of the output of the network (e.g., how well it

estimates a source) will affect the number of nodes required to sense the phenomenon
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as well as the rate required to convey the minimum amount of information to the base

station. In these cases, rate-distortion based information theoretic arguments would

provide a fundamental characterization of the quality-rate tradeoff [Pottie 1998a].

These additional cases can also be added into the general framework of the lifetime

theorem above.

1.3.8 MAC protocols

Due to the unique operating environment that WSNs occupy, a large number of

research studies have been published on the topic of media access control (MAC)

protocols for sensor networks. As we have emphasized in the previous sections, the

application often plays a significant role in the design of particular metrics and pro-

tocols; this is certainly the case with controlling multiple access communication in

possibly dense (but likely low-bandwidth) applications related to WSNs. The specifics

of the available hardware such as radios and clocks (discussed in the next section) all

have different capabilities, costs, and energy consumption that affect the applicability

of a particular MAC protocol.

WSN MAC protocols can be classified into two general classes: scheduled proto-

cols and random (or unscheduled) protocols. The most common scheduled method

employs time division multiple access (TDMA), where a single sensor uses a partic-

ular time slot. The most popular unscheduled protocols use channel sense multiple

access (CSMA), where a sensor measures the assigned frequency to see if it is busy

before transmitting. There are many protocols that specify some hybrid of these two

schemes. A good survey of the most popular MAC protocols was published by [Kredo

and Mohapatra 2007].
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Figure 1.12: Illustration of the funneling-MAC protocol [Ahn et al. 2006]

Funnel effect on the MAC

One of the most important issues that arises in the selection and design of a MAC

protocol is the many-to-one data flow that challenges most WSN applications. Where

the choice of MAC protocols is concerned, this unique traffic flow results in very

different traffic characteristics over different spatial areas. In much of the literature

(e.g., Wang and Liu [2011]), the critical challenge stems from the fact that the closer

a sensor node is to the base station, the more packets it needs to relay. The effect

is sometimes referred to as the funneling effect. The funneling effect means that the

region close to the base station is heavily burdened and will experience significant

collisions if the MAC layer uses a CSMA-based protocol, but the regions that are

farthest from the base station will not have nearly as much traffic, so the use of CSMA

is more practical there. The use of TDMA, however, requires additional overhead and

organization in order to assign nodes to time slots (and the time slots may need to

be synchronized often). As an example of a proposed solution to the funneling effect,

Figure 1.12 illustrates the funneling-MAC protocol [Ahn et al. 2006], where nodes

closer to the sink node communicate using a hybrid of TDMA and CSMA, while

nodes that are farther away from the sink use pure CSMA. The funneling effect also
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has an impact on the choice of clustered vs. flat network hierarchies, as we discuss in

Section 3.6.

1.3.9 Routing

When categorizing routing protocols for WSNs, the literature tends to consider

network hierarchical schemes as well as route selection techniques as part of the rout-

ing protocol. To an extent, the hierarchical arrangement is also prominent in the WSN

MAC literature. Intuitively, the organization of the network plays a role in both re-

source sharing and in routing. This cross-layer emphasis is more pronounced in sensor

networks because the data are spatially related; local measurements have more corre-

lation, so there is more opportunity for increased efficiency through compression. The

common categories for routing protocols are flat, hierarchical, geometric or location-

based, and data-centric. Geographic routing requires that each node can determine

its own location and that the source is aware of the location of the destination. In

data-centric routing, the sink sends queries to certain regions and waits for data from

the sensors located in the selected regions. Since data are being requested through

queries, attribute-based queries are necessary to specify the properties of data. Di-

rected Diffusion [Heinzelman et al. 1999] is a popular example of a data-centric pro-

tocol. Hierarchical routing schemes involve the use of clustering (low-energy adaptive

clustering hierarchy (LEACH) [Heinzelman et al. 2000] is probably the most well-

known of this category). In flat protocols, each node is employed in the same way to

cooperate with neighbors and exchange data to the sink node.

1.3.10 Synchronization and timing hardware

A final design consideration that we will discuss is the choice of the timing com-

ponent [Barooah and Swami 2008]. A trade-off exists between the cost of the timing
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device, the amount of time nodes spend in the active state awaiting messages, and

the energy consumed by nodes transmitting synchronization messages. To maintain

synchrony across the network, each node may use its own clock, and then rely on com-

munications between nodes to account for the clock drift between nodes. If the node

clocks are very accurate, then synchronization messages will be infrequent. However,

accurate clocks are much more expensive and require much more energy than cheaper,

less accurate clocks (for a survey of oscillator types, their cost, power consumption,

and accuracy, see [Sadler 2005] and [Schmid et al. 2009]).

The clock signal is a periodic signal with some nominal frequency f0. The clock

signal increments a hardware counter every 1/f0 seconds. Every clock signal will

deviate from its intended nominal frequency for various reasons (e.g., changes in

pressure or temperature). This deviation is termed frequency error, denoted as fe(t) =

f0 − f(t), where f(t) is the frequency of the clock signal at time t. This error, called

the frequency drift, is commonly expressed in parts per million (ppm).

In the example given in Section 1.3.2, the exceptionally low current draw in the

idle state for the Firefly is attributable to the use of two separate clocks connected to

the processor (a third clock is provided for the radio); one clock for active states that

operates at 8Mhz and a low-power clock that operates at 33Khz during idle states.

The 33Khz clock is driven by a low-power crystal oscillator with a frequency tolerance

of ±20 ppm, which implies an accuracy of 20× 10−6 seconds after one second.

Let td be the clock drift of a single node; then the worst case drift between two

nodes (drifting in opposite directions) is 2td. Now suppose that nodes are scheduled

to communicate in non-overlapping time slots of width ts; nodes are also scheduled to

receive messages (enter the listening state) from other nodes in these scheduled time

slots. If we assume that, in order for two nodes to communicate their time slots must

overlap by at least 90%, then the communications will begin to fail after the clocks
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(a) 100% overlapping time slots. (b) The relative times for nodes A and
B has drifted far apart so that less than
90% of the time slots are overlapping

Figure 1.13: The top bar depicts the perceived time from the perspective of a node A. The
highlighted block is the reserved time slot for communicating with node B (bottom bar).
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and the width of communication time slots for five different clock accuracies.
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each drift by td =
1
2(0.1)ts (see Fig. 1.13). If d is the accuracy in ppm of the oscillators

on the nodes, the period of time until the clocks drift this far apart is tf = td106

d . Every

tf seconds the nodes will have to send ‘resynch’ messages to recalibrate their clocks.

In the case of an oscillator with 20 ppm accuracy, these resynchronization messages

would have to be sent 6 times per minute. Figure 1.14 shows the number of times per

hour that nodes will have to resynchronize with respect to the size of the time slots,

for several oscillator accuracies.

1.4 Main Contributions and Outline of the Remainder of this Thesis

The previous sections introduced the key elements of a WSN design. In the re-

maining chapters of this thesis we will introduce techniques for planning a deployment

and replenishment strategy for a large-scale monitoring WSNs, developed from mod-

els built with many of these design elements. In the next chapter, we introduce related

work in WSN deployment strategies. The differences between our proposed approach

and the related literature are discussed and summarized in Tables 2.1 and 2.2.

In Chapter 3, we develop a model for the message traffic and energy consumption

in WSNs (Section 3.2), using random point processes to model the expected number

of clusterheads and the expected sizes of clusters. This model is used to formulate

an optimization problem whose objective is to maximize the lifetime of the network

while minimizing the wasted energy remaining in the network upon network failure

(Section 3.3). The solution to this optimization problem provides an approach for

deploying WSNs to extend lifetime. Observations from calculations and simulations

support the claim that controlling both the clusterhead densities and the total node

densities with respect to the distance from the base station results in longer lifetimes

over strategies that either deploy nodes uniformly and/or only control the clusterhead

density. This work was first presented in [Dorsey and Kam 2009]. To our knowledge,
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this was the first paper to study random differential deployments of sensor nodes

where both the node density and the clusterhead densities are decision variables in

the optimization.

In Chapter 4, we revisit the deployment issue to discuss the impact of some of

the simplifying assumptions that we (and most other studies) have included in the

network model. All of the studies discussed in the related works section assume an

ideal MAC. This assumption excludes the impact of nodes waiting to access the

medium or possible collisions between nodes. Additionally, in all of the studies we

have surveyed that use concentric bands to model distances from the base station,

there is an assumption that a message traverses exactly one hop to next band toward

the base station. Chapter 4 studies the impact of the hop-count distributions as

messages are forwarded from sensors to the base station, the variance in the size of

clusters, and the impact of intra-cluster contention on the energy consumption. We

show that the hop-count distribution and the energy consumed by nodes as they wait

to access the medium do have an impact on the expected lifetime of the network.

In Chapter 5, we consider the problem of extending the lifetime of an initial de-

ployment by added additional nodes in batches, subject to lead times for delivery.

The problem is cast as a dynamic programming problem, which is then modified to

reduce the dimensionality, resulting in an approximate dynamic programming prob-

lem consisting of two parts: the size of the optimal batch and the optimal allocation

of nodes across the region. The problem formulation originates from the inventory

control literature in Operations Research. We adapt this formulation for the problem

of replenishing WSNs by adding a node failure forecast that considers the impact of

deploying new nodes onto the network, and a myopic allocation strategy suited to

node failure patterns. Results from simulation are provided. This work was initially

presented in [Dorsey and Kam 2010], and it is the only study, to our knowledge, that
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deals with node replenishment to extend the lifetime of large WSNs.

Chapter 6 concludes the thesis with a discussion of the results and their implica-

tions.
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2. Survey of WSN Deployment Strategies

2.1 Overview of WSN Deployment Strategies

We present a review of recent strategies developed for WSN deployment. We

focus on the deployment of stationary sensors, and so we will not discuss recent

work on mobile sensors (e.g., Wang et al. [2008]) or deployments during which nodes

are adjusted after the initial placement. For a comprehensive survey on the state of

research on optimized node placement in WSNs, see [Younis and Akkaya 2008],[Younis

et al. 2006] and the references therein.

In most of the literature, static deployment strategies typically employ one of

Static
Sensor 

Deployment

Architecture

Clustered

Flat

Deployment Types

Objectives/
Constraints

Devices

Grid

Deterministic

Random

Cost

Connectivity

Coverage

Lifetime

Homogeneous

Heterogeneous

Capacity

Figure 2.1: A taxonomy of WSN deployment strategies. The highlighted boxes indicate the
architecture, deployment type, the various constraints and objectives, and the device type
used in the proposed approach. We also study the flat architecture for comparison.



47

three possible approaches: deterministic deployment, grid-based deployment,

and random deployment. In a deterministic deployment, each node placed exactly

at an arbitrary location in the sensing field. In a random deployment, nodes are

placed on the field according to a random spacial distribution. In this thesis, we

focus on the set of deployment types, objectives, and constraints highlighted in the

WSN deployment taxonomy in Figure 2.1. We consider clustered, or hierarchical,

architectures (although the flat architecture is analyzed as a special case where all

nodes are clusterheads), and discuss only random deployments. Devices are assumed

to be homogenous (i.e., all sensor nodes have the same communication capabilities).

Objectives and constraints on the network include cost, connectivity, capacity, and

the lifetime of the sensor network.

2.2 Related Work

One of the first studies to analyze the problem of random device deployment

in a large-scale WSN was [Xu et al. 2005]. In their study, Xu et al. propose three

random deployment strategies for relay nodes in a heterogeneous WSN: connectivity-

oriented, lifetime-oriented, and a hybrid strategy. In each of the strategies, the sensor

nodes are initially distributed randomly according to a uniform distribution with a

density that will ensure the desired coverage. A distribution of relay nodes is then

provided to meet the primary objective. The simplest of the three strategies is the

connectivity-oriented strategy, since it involves deploying both sensor nodes and relays

according to a uniform distribution, providing maximal connectivity everywhere on

the monitored area, A. The study introduces the biased energy consumption rate

(BECR) phenomenon in WSNs, where relay nodes that are closer to the base station

will consume energy more quickly than relays that are farther away. This phenomenon

is addressed by a lifetime-oriented strategy, which computes an optimal weighted



48

random deployment designed to provide relay node densities that are proportional to

the expected energy consumption at locations on A.

[Mhatre et al. 2005] derive a random deployment of heterogeneous nodes that

minimizes cost while meeting lifetime, connectivity, and coverage constraints. How-

ever, they consider a scenario where a satellite or aircraft periodically passes over

the field of deployment and gathers data from the relay nodes. Under these circum-

stances, there is no convergence of data into the base station because the relays are

communicating via a single hop to a mobile base station, and therefore the problem

of biased energy consumption is not considered. There are several other proposed de-

ployment techniques that assume that relay nodes or clusterheads can communicate

with the base station in a single hop, including the analysis of the LEACH protocol

by [Heinzelman et al. 2002].

Other related works assume that the nodes will be deployed in stages. [Sun and

Shayman 2007] propose initially deploying nodes uniformly over the region to provide

coverage, and then deploying nodes with more energy and greater transmission range

in order to provide a connected network. [Wang et al. 2007] propose a three-stage

deployment where nodes are uniformly deployed first. Then relays (with more energy

and greater range) are deployed to provide a minimum set covering by “putting sensors

to sleep” that provide redundant coverage. Finally, additional relays are added to

ensure connectivity. Many of the papers assume that relays and sensors are equipped

with different hardware. Generally, as specified in commercial wireless sensor network

standards such as Zigbee [Alliance 2005] , these authors assume that the relays are

either tethered to an external power supply or have a much longer battery life than

that of a sensor node, and that the transmission range is much larger than the sensor

nodes.
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Table 2.1: Summary of objectives, decision variables and constraints used in selected
related literature.

Author Objective Decision Variable(s) Constraint(s)
Bandyopadhyay
and Coyle [2003a]

Min total energy
consumption

CH density and max
number of hops between
NCHs and CHs

Connectivity

Mhatre et al.
[2005]

Min cost Node densities and ini-
tial energy

Lifetime, con-
nectivity, and
coverage

Sun and Shayman
[2007]

Max lifetime Ratio of relays to SNs Connectivity and
energy

Wang et al. [2007] Min cost Ratio of relays to SNs Lifetime and
connectivity

Sheldon et al.
[2005]

equal CH energy
consumption

Density of CHs None specified

Liu et al. [2006] Max lifetime Node densities with re-
spect to distance from
BSt

Coverage and
connectivity

Wang et al. [2006] Max lifetime Density of nodes in
bands

Number of avail-
able nodes

Liu [2006] Maximize percent
coverage

Density of nodes in
bands

Traffic loads
among different
bands must be
equal; number of
nodes available

Iranli et al. [2005] Max lifetime Number and locations of
CHs

Number of avail-
able nodes

Wu et al. [2008b] Min residual ener-
gy/ max lifetime

Density of nodes in
bands

Minimum data de-
livery ratio

Dorsey and Kam
[2009]

Min residual ener-
gy/ max lifetime

Node and CH densities
with respect to distance
from BSt

Coverage and
connectivity

In most of the proposed strategies, the deployment is derived from the solution

to a constrained optimization problem. The objectives of the optimization problems

range from minimizing total cost of deploying the network (including the cost of

sensors and the number of deliveries), to minimizing the probability of false alarm

in detecting an intruder, depending on the application and assumptions about the

hardware. Constraints are typically related to connectivity, coverage of the region,

energy, cost, and network lifetime. The definitions of these constraints and also vary.
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Table 2.1 lists the objectives, constraints, and decision variables for some of the related

literature, and Table 2.2 contains information about definitions, models, and key

assumptions.

Table 2.2: Summary of device assumptions, deployment types, and lifetime definitions for
various related work.

Author Device
Types

Stages Network
Model

Organization Lifetime

Bandyopadhyay
and Coyle
[2003a]

Relays and
sensors are
equal

Single Disk with BSt
at center

Clustered N/A

Mhatre et al.
[2005]

Relays have
more energy
and greater
range

Single Disk with BSt
at center

Clustered First
loss of
coverage/
connectivity

Sun and Shay-
man [2007]

Relays and
sensors are
equal

Two Disk with
BSt at center,
divided into
bands

Flat First
loss of
coverage

Wang et al.
[2007]

Relays have
more energy
and greater
range

Three Square field
with BSt at
the middle of
one side

Flat N/A

Sheldon et al.
[2005]

Relays have
more energy
and greater
range

Single Disk with
BSt at center,
divided into
bands

Clustered;
CHs do not
sense

N/A

Liu et al.
[2006]

Homogeneous
nodes

Single Disk with BSt
at center

Flat First
loss of
coverage

Wang et al.
[2006]

Homogeneous
nodes

Single Disk with
BSt at center,
divided into
bands

Flat First node
fails

Liu [2006] Homogeneous
nodes

Single Disk with
BSt at center,
divided into
bands

Clustered Coverage
< 70%

Iranli et al.
[2005]

Relays have
more energy
and greater
range

Single Square field
with BSt at
the center

Clustered First node
fails

Continued. . .
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Table 2.2: Summary of device assumptions, deployment types, and lifetime definitions for
various related work.

Author Device
Types

Stages Network
Model

Organization Lifetime

Wu et al.
[2008b]

Homogeneous
nodes

Single Disk with
BSt at center,
divided into
bands

Flat First node
fails

Dorsey and
Kam [2009]

Homogeneous
nodes

Single Disk with
BSt at center,
divided into
bands

Clustered Reports
received
at BSt
< 70%

[Wang et al. 2006] provide a differential node density method to deploy sensors in

order to increase the lifetime of the network. They define the lifetime of the network

as the cumulative active time of the network until the first sensor is out of power. The

field of deployment is modeled as a 2-D disk with a radius R, divided into n bands of

width rc
2 each, based on the distance from the base station. Figure 2.2 shows the model

used in their work. They divide the area into n ‘levels’ from the sink to the outside

(the outer level has radius Rn = R). The boundaries of level i are the circles of radius

Ri and Ri−1. The network architecture is flat. [Wang et al. 2006] do not consider the

case where nodes form clusters and aggregate data before forwarding them to the base

station. Their study also does not consider requirements for connectivity or coverage.

Assuming that the amount of data originating from a band is proportional to the area

of the band, they propose to increase the node density near the base station in order

to reduce the traffic load that each node in the neighborhood of the base station will

have to bear. Their simulations show that the lifetime of this deployment is greater

than that of a uniform deployment.

Using a similar approach, [Liu 2006] divides A into bands of equal width and

considers homogeneous nodes. The objective is to maximize the fraction of A that

is covered by at least one sensor under the constraint that the average rate of mes-

sages being relayed (average load) through nodes should be equal in all bands. The
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constraint is used to ensure load balancing so that, on average, nodes will become

inoperable at the same time. After initial deployment, the nodes communicate with

one another to form clusters using the approach proposed by [Bandyopadhyay and

Coyle 2003b]. Once the clusters are formed, a routing tree is created among the clus-

terheads to forward packets toward the base station. The authors assume that when a

clusterhead is depleted of energy, the base station will send a network reorganization

request to all of the nodes in order to reconstruct the gradient. The reconstruction

algorithm requires that the nodes be aware of their own location and the location of

their neighbors through the use of a GPS device.

[Wu et al. 2008b] show that when A is modeled as a circle with concentric bands

surrounding the base station, equal energy dissipation is not possible for all bands

because the outer-most band is not forwarding any traffic. They suggest that the

number of nodes deployed in each band should increase geometrically from the band

nearest the base station to the outer band in order to minimize the residual energy

left in the network once connectivity is lost due to node failures. The deployment

Figure 2.2: Model of A divided into concentric bands of equal width (from Wang et al.
[2006])
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strategy is proposed in conjunction with a routing protocol that serves to balance

traffic among the nodes. However, this protocol requires significant control over the

placement of the nodes in order to be effective.

In order to balance energy consumption in a clustered network, both intra-cluster

and inter-cluster communications should be considered. One approach, proposed in

[Shu et al. 2005] and also in [Li et al. 2005], is to assign larger cluster sizes to CHs that

are further from the BSt and have fewer packets to relay (see Figure 2.3). However,

this approach is constrained by the maximum power transmission level on the nodes.

In [Gun et al. 2007], the authors propose a deployment strategy where nodes are

deployed with differential densities from the BSt. In order to balance the load between

nodes toward the BSt and nodes toward the outer region, they deploy clusterheads

with variable battery capacities. This approach is limited by the cost of providing

different battery hardware for different nodes and the availability of batteries with

their calculated energy capacities.

Figure 2.3: Larger clusters are assigned to bands that are farther from the base station in
order to balance clusterhead energy consumption.
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The WSN deployment approach proposed in the next chapter extends our paper,

[Dorsey and Kam 2009], where we employ probabilistic CH selection while varying

the density of nodes and probability of being a CH over discrete distances from the

BSt. The objective is to maximize the network lifetime (defined as the time until a

percentage of the sensor reports do not reach the BSt), while minimizing the energy

remaining in the network at network failure. We show that by optimizing the expected

lifetime over node densities and CH densities, the lifetime is extended over other

approaches discussed in the literature.
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3. Non-Uniform Deployment in Clustered WSNs – Part I

3.1 Introduction

We present and extend our previous work on a strategy for deploying a large-scale

clustered wireless sensor network with random (or coarse-grain controlled) placement

[Dorsey and Kam 2009]. The nodes organize clusters using a distributed clustering

algorithm; clusterhead (CH) selection is performed in the manner originally proposed

by [Heinzelman et al. 2000]. The strategy includes differential densities for both sensor

nodes and clusterheads with respect to the distance from the base station in order to

maximize lifetime.

In Section 3.2, we present the network model and assumptions, and derive expres-

sions for energy consumption. An expression is derived to approximate the lifetime of

a differentially deployed random network using the density of clusterheads and non-

clusterheads (NCHs) as variables. In section 3.3 we show how this lifetime expression

provides an objective function to be maximized, subject to constraints on coverage,

connectivity, capacity, and cost. The numerical results in section 3.4 and the sim-

ulation results in 3.5 show that a differential node deployment with a uniform CH

density increases the lifetime of the network over a Uniform deployment. Moreover,

the addition of a suitable differential CH density further increases lifetime over the

differential node deployment with uniform CH density. In the following sections, the

three variations (deployment with uniform node density and CH density, a differential

node deployment with a uniform CH density, and a differential deployment with a

differential CH density) will be referred to as the Uniform, Static p, and Dynamic

deployments, respectively.
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3.2 Network Model and Problem Formulation

This section describes the basic components of the model used to formulate an

optimization problem for WSN design. We make several simplifying assumptions here

for the sake of tractability. They include, (1) the model used to characterize spatially

varying node densities (annular bands of uniformly distributed nodes, each with dif-

ferent parameters); (2) an assumption about the number of hops a message will travel

until it reaches the base station; and (3) an assumption of an ideal channel access

method. The last two simplifications will be removed in Chapter 4, where we compute

the expected number of hops each message will travel in order to reach the next band

and describe a channel access model that accounts for contention.

Models for the distribution of nodes over the deployment area, the network orga-

nization, and the energy consumption for individual nodes are combined in the next

subsections under the simplifying assumptions. These models are used to derive ex-

pressions for the average energy consumption in each band and the energy remaining

in each band at network failure. The energy consumption and residual energy expres-

sions are used as objective functions in the optimization problem outlined in section

3.3.

3.2.1 Area of deployment (A) and distribution of nodes

The monitored area is modeled as a disk of radius R that is divided into J annular

bands of equal width (see Figure 3.1). The width of each band is equal to the commu-

nication radius, rtx. The base station is located at the center of the disk. We assume

that the nodes are to be distributed on the region according to a set of homogeneous

spatial Poisson processes (see Sec. 1.3.6), one process for each band, with intensity

λj for the jth band.
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The number of nodes in band j is a Poisson random variable, Nj ∼ P(λj)1. The

area of band j is Aj and the expected number of nodes in band j is E[Nj] = λjAj,

where Aj = π
(
r2j − r2j−1

)
. The widths of the bands are chosen to be equal to the

communication radius of each node, rtx, so that the number of bands, J is ⌈ R
rtx

⌉2.

Justification of the use of annular bands

The choice of modeling the region as a set of annular bands is meant for ease of

analysis, but it requires some justification. First, we assume that the spatial node

density is symmetric about the sink node. Consider that, as the width of the bands

approaches zero, the set of spatial Poisson processes become a single spatial Poisson

process with an intensity λ(r), a continuous function of the distance r from the base

station. We assume that λ(r) is a smooth and continuous function of r. Then, by the

Mean Value Theorem, there exists a radius rj ∈ [(j−1)rtx, jrtx] such that the number

of nodes in band j is given by

Nj = 2πλ(rj)

∫ jrtx

(j−1)rtx

rdr = πr2txλj(2j − 1), (3.1)

where λj = λ(rj). So the annular bands of uniform spatial Poisson processes are

an approximation of a true underlying process with a continuous parameter that is

assumed to be a smooth function of the distance from the center of the disk. This

assumption appears to be supported by the optimal densities that are computed in

this chapter, which also appear to be discrete samples of a smooth function (e.g.,

Figure 3.5).

1The expression X ∼ P(λ) means “X is (asymptotically) distributed as P(λ)”, where P(λ)
denotes a Poisson distribution with parameter λ

2⌈x⌉ is the smallest integer not less than x.
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r_c

R

Figure 3.1: The area to be monitored is separated into annular bands of width rtx, the
communication radius. The base station is located at the origin of the circle.

3.2.2 Network organization

The network lifetime is measured in terms of rounds, which are of arbitrary length.

During each round, nodes initiate CH selection once and then sample the environment

and report their data to the base station K times.

According to the LEACH protocol [Heinzelman et al. 2000], an individual node

becomes a CH in a given round with probability p. The decision to become a CH is

made at each node by choosing a random number between 0 and 1 at preset time

intervals and comparing this number to the threshold T (n), which is a function of n,

the sensor number. This threshold is

T (n) =

⎧
⎪⎨

⎪⎩

p

1−p(rmod 1
p)

if n ∈ G

0 otherwise,
(3.2)

where r is the current round and G is the set of nodes that have not been CHs in the

last ⌈1
p⌉ rounds. If a node becomes a CH, it broadcasts this decision, and the neigh-

boring nodes that have not become CHs will align to the CH whose advertisement
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has the highest received signal strength (since we use the radio model in Eq. 1.2,

the highest signal strength in free space will correspond to the CH with the shortest

Euclidean distance to the node).

3.2.3 Expected number of clusterheads and non-clusterheads in each band

The network model assumes that all nodes are distributed on the region according

to a Poisson point process(PPP) Nj ∼ P(λ). Since CHs are selected randomly in

each round (see sction 3.2.2), we can think of CH selection as a series of independent

Bernoulli trials {ξn} with mean p over the points of Nj. That is, each of the Nj points

is retained with probability p by a process X1 =
∑N

n=1 ξn, and X1 ∼ P(pλ). Thus,

CH selection constitutes a thinning of Nj. Now the clustered network can be thought

of as a random geometric graph Gn(rtx) with vertices distributed according to two

different types of PPPs; a process with intensity λj,1 = λjpj for CHs and a process

of intensity λj,0 = (1 − pj)λj for NCHs. The expected number of nodes in band j is

λjAj, so the expected number of CHs, E[Cj], in band j is λjAjpj. The expectations

are conditioned on the event {Nj = n}.

Each NCH joins the nearest CH to form a Voronoi tessellation [Preparata and

Shamos 1985], dividing the graph into cells (see Figure 3.2) bounded by lines that

are equidistant from two points (CHs). Each Voronoi cell corresponds to a Poisson

process point with intensity pλ, called the nucleus. Using the results from [Zuyev

1996] and [Bandyopadhyay and Coyle 2003b], if Nv is a random variable denoting the

number of Poisson process points with intensity (1 − p)λ in each Voronoi cell, then

the expected value of Nv is

E[Nv] =
(1− p)λ

pλ
=

1− p

p
. (3.3)

Thus, the number of NCHs associated with a CH in band j is a random variable Sj,
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Figure 3.2: An example of a Voronoi Diagram; each line is equidistant from two points,
where the points represent CHs.

and the expected number of NCHs in each cluster is

E[Sj] =
1− pj
pj

=
λj,0

λj,1
. (3.4)

The following are some additional key assumptions in the development of the

model.

1. An ideal MAC layer is assumed; nodes are scheduled to transmit and receive

according to a sequence that will prevent packet collisions and retransmissions.

2. A message transmitted from a CH in band j to be delivered to the base station

will be forwarded by one node in each of the bands j − 1, j − 2,. . . 1 in order

to reach the base station. The distance between a node and the base station is

equivalent to ⌈distance
rtx

⌉ hops.

3. The nodes all have the same capabilities (homogeneous) and are not able to

adjust their transmit power level.
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4. A shortest-path routing protocol is assumed for the CH overlay network. When

a CH node communicates data to the base station, only CH nodes on the path

to the base-station forward the message.

5. Each sensor node is assumed to be deployed with the same initial energy, E0.

6. No data compression occurs between CHs; all CH messages are forwarded to

the base station.

Assumptions 1 and 2 will be removed in Chapter 4.

3.2.4 Energy consumption

Energy consumed during reporting

We can now consider the energy consumed in each band of the network during

cluster formation, communication between CHs and NCHs, and communication be-

tween CHs. We will also assume that the nodes in different bands can use different

values of p (pj for the jth band). Then, at the start of each round, the nodes each

select a random variable and compare it to the threshold, which is a function of pj.

The expected amount of energy used in band j during cluster formation is the energy

consumed as each of the Cj CHs broadcast their status and each of the Sj nodes

surrounding each CH responds to the broadcast. Each CH receives Sj responses and

transmits once, and each NCH transmits once, so the energy consumed by nodes in

band j in a single round is CjSjErx + CjEtx + CjSjEtx =

Cj (Etx + SjErcv + SjEtx) . (3.5)

Next, each of the NCHs sends a message to their CH after sampling the envi-

ronment. The energy consumed is from the NCHs transmitting once each (CjSjEtx)
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and the CHs receiving these transmissions (CjSjErx). This communication occurs K

times per round, so the energy consumed in the jth band is

KCjSj (Ercv + Etx ) . (3.6)

After each CH aggregates the data from the surrounding nodes, a message is

forwarded to a CH in the next band forward to deliver to the base station node. The

number of messages received by CHs in the jth band is the sum of messages from

the j − 1 band, j − 2 band,...,J band. The CHs then forward to the next band all of

the messages received from the previous band in addition to the messages from their

own aggregation. The energy consumed in the jth band is therefore

KErcv

J∑

k=j+1

Ck +KEtx

J∑

k=j

Ck . (3.7)

Summing all of the above energies and substituting E[Cj] = λjAjpj for Cj and

E[Sj] =
(1−pj)

pj
for Sj gives an expression for the expected total energy consumed in

each round for the jth band as a function of pj and λj, namely:

E[Ej
r ] = λjAjpj

(
Etx +

(1− pj)

pj
Ercv +

(1− pj)

pj
Etx

)

+ KλjAjpj
(1− pj)

pj
(Ercv + Etx ) +

KErcv

J∑

k=j+1

λkAkpk +KEtx

J∑

k=j

λkAkpk .

(3.8)

This expression can be simplified to give the expected energy cost for communication

per round in each band,
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E[Ej
r ] = (K + 1)EtxλjpjAj + (K + 1)EλjAj (1− pj) +KE

J∑

k=j+1

λkAkpk, (3.9)

where E = Etx + Erx.

Estimation of residual energy within bands

Next, we consider the balance of energy usage within a band and the expected

amount of residual (wasted) energy E[Ej
w] left over after a portion of the nodes in the

band have failed. We show that, given a deployment of nodes employing a balanced

CH selection in each round, the nodes that remain alive in a single band after the first

node(s) fail (due to energy loss) will have insufficient energy remaining to perform

the duty of a CH.

That nodes are being designated as CH in a balanced manner (via the LEACH

protocol) suggests that, at a given time (before any node failures) and in a specific

band, the number of times that any node has held the role of CH should be nearly

the same. If there are Cj CHs at any given time among Nj nodes in band j, then all

nodes should be a CH approximately once every Nj/Cj = 1/pj rounds. Therefore, if

a particular node has been a CH n times in round t, we will assume that the other

nodes in the band will have been a CH n or n± 1 times. This is a strong assumption;

there will likely be more variance in the distribution of CH responsibilities. The result

that follows should be considered a lower bound on the wasted energy in each band.

First we consider the energy consumed by a particular node in band j that has

been a CH n times in t rounds. If we denote the energy consumed in a round by a

NCH as ENCH and the energy consumed by a CH in a round as ECH , then the total
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energy consumed by a node after t rounds in band j is

xj(t, n) = (t− n)ENCH + nECH (3.10)

=

(
t− Cj

Nj
t

)
ENCH +

(
Cj

Nj
t

)
ECH .

Then, this node will fail in round tf ∈ Z. The value of tf is computed by solving

E0 − xj(t, n) = 0 for t to get

tf =

⌈
tCj (ENCH − ECH) +NjE0

NjENCH

⌉
. (3.11)

All other nodes in band j that have also been designated as CH n = ⌈Cj

Nj
⌉t times

before (or in round t = tf ) are also failing. The question now is: how much energy

do the remaining nodes have after tf? The nodes that remain after this round have

either been CH exactly n times and will soon fail or they have been CH n− 1 times

(or less). The amount of energy remaining in surviving nodes that have been a CH

n− 1 times in tf rounds is

E[Ej
w] = E0 − xj(tf , n− 1) (3.12)

= E0 −
(
tf −

Cj

Nj
tf

)
ENCH −

(
Cj

Nj
tf

)
ECH (3.13)

= ECH − ENCH . (3.14)

Expression 3.14 is obtained by substituting the expression in 3.11 into 3.13 for tf and

simplifying. The residual energy is insufficient for the CH’s responsibility in a single

round (because ECH −ENCH < ECH). This result suggests the existence of a critical

phase transition in the network, where after the first nodes have failed, the remaining

nodes will either soon fail or will not be able to perform their duties. The length of

this phase (and the number of nodes to fail in each period after the phase transition)



65

will be proportional to 1/pj. The expression for E[Ej
w] is only valid for the first band

that fails (at tf ). The remaining bands will not yet have failed, and will have more

residual energy left; the objective is to minimize this unusable energy (Section 1.3.7,

Equation 1.13 states the relationship between residual energy and network lifetime).

This observation means that we need an expression for the energy in the nodes in

remaining bands at time tf , the time that the first band has failed.

The reason that all bands do not fail at the same time is due to the biased energy

consumption rate effect (BECR, Section 1.2). Some bands must relay more data from

outer bands than others, resulting in different values of ECH for each band (the value

of ENCH is the same for all bands). We will now use the notation Ej
CH to denote the

energy consumed by a node as a CH in band j during a single round. The expected

number of CHs in band j + 1 that relay their traffic to a particular CH in band j is

E[Cj+1]/E[Cj]. Then, the expected value of Ej
CH is

E[Ej
CH ] = K

J−1∑

k=j

E[Ck+1]

E[Ck]
E +KE[Sk]Erx +KEtx, (3.15)

and the expected residual energy per node in band j at tf is3

E[Ej
w] = λjAj (E0 − xj(tf , n− 1)) (3.16)

= λjAj

(
E0 −

(
tf −

E[Cj]

E[Nj]
tf

)
ENCH −

(
E[Cj]

E[Nj]
tf

)
E[Ei

CH ]

)

= λjAj

(
E0 − tf (1− pj)KEtx − pjtfE[Ei

CH ]
)
.

3.2.5 Expected lifetime

Each node starts with the same battery level, E0, and the expected number of

nodes in band j is λjAj. Therefore, the number of rounds until a band is expected to

3The notation tf in this expression refers to the time (rounds) that the first band failed, not the
mathematical expression in 3.11.
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run out of energy (the expected lifetime) is Lj:

E[Lj] =
λjAjE0 − E[Ej

w]

KE[Ej
r ]

. (3.17)

The lifetime of the network is the lifetime of the first band to fail, thus:

E[Lnet] = min
j

Lj. (3.18)

Our problem is to find a deployment strategy that will maximize E[Lnet] subject to

constraints on the node densities regarding the total number of available nodes, the

connectivity of the network, and the coverage of the sensors over A.

3.3 WSN Lifetime Optimization

3.3.1 Computation of optimal CH probability, p and node density, λ

We denote the CH probability in band j as pj and the density of nodes in band

j as λj. We use the boldface p and λ to denote the vectors containing J values for

CH probabilities and node densities, respectively. We seek values of pj and λj for

j = 1 . . . J that will maximize the lifetime of the entire network. This is equivalent to

maximizing the minimum lifetime for all bands. Adding nodes to the area closest to

the base station may increase the expected lifetime beyond the lifetime of the second

band, so the lifetime of the second band will be the lifetime of the network. However,

adding nodes to the second band will increase the amount of traffic to the innermost

band, decreasing its expected lifetime. Optimal values of p and λ will need to balance

the energy consumption over all bands simultaneously.
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3.3.2 Constraints

The lifetime of the network is maximized subject to constraints for connectivity

between CHs and coverage of the monitored area. In our calculation, we estimate

the minimum number of nodes required to provide adequate coverage in band j, and

the number of CHs that provide a connected CH subnetwork. These are expressed as

functions of the transmit radius rtx of the nodes and the area of band j, Aj. Since all

nodes in all bands have a fixed communication radius and area, we can solve Equation

1.6 (which is Equation 28 in Bettstetter [2004]) for n to obtain a minimum CH density

for all bands to provide connectivity λcon. The minimum number of CHs in each band

that guarantee connectivity is:

Cconn
j =

−Aj ·W
(
−πr2tx ln(pc−1)

Aj

)

πr2tx
, (3.19)

and therefore the minimum density is given by

λcon = − 1

πr2tx
W

(
−πr2tx ln (pc−1)

Aj

)
. (3.20)

The function W in Eqns. 3.19 and 3.20 is the LambertW function4 [Corless et al.

1996], which satisfies W (x)eW (x) = x. The domain of the LambertW function is the

interval
[
−1

e , 0
]
. If x is a real number, two real values for W (x) are possible for

−1
e ≤ x ≤ 0, the principal branch W0(x) and a non-principal branch W−1(x). This

non-principal branch (B = −1) gives the desired real result for Cconn (the plot of the

LambertW function is shown in Figure 3.3; the desired branch is shown in red). As a

reminder, the value pc is the desired probability of connectedness. We can show that

the argument of the LambertW function will always be within the required interval

4A MATLAB function that uses Halley’s method to compute the LambertW is described in
http://blogs.mathworks.com/cleve/2013/09/02/the-lambert-w-function/ (accessed 9/20/2013)
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Figure 3.3: The LambertW function. The non-principal branch is shown in red.

to compute the constraint if the parameter pc ≥ 0.7. We want to show that

−1

e
≤ −

πr2tx ln
(

1
pc

)

Aj
≤ 0, ∀i ∈ 1, 2, . . . J. (3.21)

First, we show that the argument is within the interval for j = 1. Since the number

of bands is given by J = ⌈R/rtx⌉, each annulus has width equal to rtx (assuming that

the radius of the deployment area is a multiple of rtx). Therefore, the first band has

area A1 = πr2tx and

−
πr2tx ln

(
1
pc

)

A1
= − ln

(
1

pc

)
. (3.22)

Solving − ln(1/pc) = −1/e for pc gives the minimum connectivity probability that

will yield valid results, pmin
c = e−

1
e ≈ 0.69. The upper bound of pc is 1. In order to
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show that the LambertW argument is in the function’s domain for j = 2, 3, . . . J , note

that, for the jth band,

−
πr2tx ln

(
1
pc

)

Aj
= −

πr2tx ln
(

1
pc

)

π
(
(jrtx)

2 − ((j − 1) rtx)
2) . (3.23)

Now remove ln(1/pc) from the right side of 3.23 and note that the sequence defined

as

SJ
j " − πr2tx

π
(
(jrtx)

2 − ((j − 1) rtx)
2) (3.24)

is greater than −1 for all values of j ∈ [1, J ]. Expressions 3.23 and 3.24 show that the

argument of the LambertW function is is never less than −1/e when pc ≥ 0.7. Also,

since

SJ
j =

{
−1,−1

3
,−1

5
,−1

7
, . . .

}
→ 0

as J → ∞, the argument of the LambertW function in 3.19 and 3.20 is never greater

than 0.

We also set a coverage constraint in terms of the connectivity constraint λcon. As

noted in Sec. 1.3.6, derivations for coverage bounds are usually arrived at through

the same arguments as for connectivity in random graphs. Also, several authors have

provided results that show a linear relationship between connectivity and coverage

(e.g., Zhang and Hou [2005b]). Thus, the constraint for coverage is simply λj ≥

αcovλcon, where αcov > 0 is a parameter that is determined by the application. Finally,

we assume that there is a fixed number of nodes to be deployed (inventory).

3.3.3 Optimization problem

The optimization problem is to maximize the minimum band lifetime over the

CH probabilities p and the node densities λ, subject to the inventory, coverage and
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connectivity constraints:

max
p,λ

Lnet (3.25)

subject to

λjpj ≥ λcon (3.26)

λj ≥ αcovλcon (3.27)
J∑

j=1

Nj ≤ inventory (3.28)

0 ≥ pj ≤ 1 (3.29)

λj ≥ 0

The constraints are set to ensure that the following are satisfied:

1) The initial density in each band is greater than the minimum density required for

coverage (3.26) and connectivity (3.27).

2) The total number of sensors deployed is not greater than the number of sensors

available (3.28).

Problem transformation

The objective function (3.25) is a maximization over the band with the minimum

lifetime. In order to make the problem more tractable and to retain a value of the

network lifetime during optimization, we introduce an additional scalar variable, z

and then reformulate the problem with new objectives and an additional constraint:

max
p,λ

z (3.30)
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subject to

Lj − z ≥ 0 (3.31)

λjpj ≥ λcon (3.32)

λj ≥ αcovλcon

J∑

j=1

Nj ≤ inventory

0 ≥ pj ≤ 1

λj ≥ 0

This formulation seeks to maximize z subject to Lj − z ≥ 0, or Lj ≥ z for all bands

j . . . J . However, since z is a scalar it does not provide an active bound for all bands,

but only the band with the minimum lifetime. Thus, this formulation is equivalent to

the max-min optimization implicit in 3.25.

3.4 Numerical Results

The objective function and constraints above were written in A Modeling Language

for Mathematical Programming (AMPL) [Fourer et al. 1989] and calculated using a

numerical solver (Sparse Nonlinear OPTimizer, SNOPT [Gill et al. 2002]) for three

variations on the variables p and λ. In the first variation, we assumed that λ and p

were scalars; the lifetime was maximized over a single value of p and a single value

of λ. This formulation is equivalent to assuming that the network is to be deployed

with uniform density and a single parameter p determines the CH density over the

network. This is the case of distributed clustering algorithms that use a random

selection to determine CHs. In the second case, we assumed that the density of nodes

could vary over the various regions on the network (λ is a vector), but p was still
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a global scalar parameter; this is similar to the approach described in [Wang et al.

2006] and [Liu 2006]. Finally, we compute optimal vectors λ and p, to demonstrate

the case where the density in each region and the probability of being a CH may vary

between regions. As a reminder, the three cases (deployment strategies) are referred

to as the Uniform, Static p, and Dynamic deployments, respectively.
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Figure 3.4: Expected lifetimes for the three deployment variations.

In all of the numerical calculations in this section, the radius of the region of

deployment is assumed to be R = 100 arbitrary units. The radius of communication

for all nodes is rtx = 6.6 and J = ⌈R/rtx⌉ = 15. The parameter αcov for the coverage

constraint is set to 1.2. Figure 3.4 shows the expected network lifetimes for the three

variations as the number of nodes initially deployed grows. Both Static p and the

Dynamic deployments perform significantly better than the Uniform deployment.

Also, the expected lifetime for the Dynamic deployment is greater than or equal to
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Figure 3.5: Optimal values of λ and p for 5000 nodes deployed over a region with radius
R = 100 and communication range rtx = 100/15 ≈ 6.6.

the Static p deployment.

The computed values of λ,p ∈ RJ for a Dynamic deployment of a 5000-node

network with R = 100 and rtx = R/15 are shown in Figure 3.5. The strategy is to

deploy nodes very densely near the base station, but to keep the number of CHs

to a minimum in order to meet the connectivity constraint. In the outer bands, the

objective is to deploy just enough nodes to meet connectivity and coverage constraints.

In the specific example of Figure 3.5, the bands beyond band 8 are deployed with the

minimum density of nodes and CHs to satisfy the constraints

λjpj ≥ λcon

λj ≥ αcovλcon.

The coverage parameter is αcov = 1.2, so 80% of the nodes are meeting the minimum
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Figure 3.6: As the coverage constraint (parameterized by αcov) increases, the percent of
nodes that are designated to be CHs in the outer bands decreases.

CH requirement while the remaining 20% provide enough nodes for coverage (we

assume that CHs can sense the environment as well). If we increase the density of

nodes required for coverage by increasing αcov, the value for p in the outer bands will

decrease (see Figure 3.6).

As the total number of nodes increases, the Dynamic deployment strategy will

increase the density of nodes near the base station until the expected lifetimes of

these bands are close to those of the middle bands. Then additional nodes will be

added to the middle bands to maintain sub-balanced energy consumption. As more

nodes are added to the outer bands, the probability of being a CH is decreased

(the CH probability is always kept as close as possible to the value required by the

connectivity constraint). This process is documented in Figure 3.7; the x and y axes

are the band number and the number of nodes available for deployment. The z-axis
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(a) Values of p across bands as the number of deployed nodes N increases. As more
nodes are added to the outer bands, the probability of being a CH is decreased.
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(b) Values of λ across bands as the number of deployed nodes N increases. The density
of nodes near the base station increases until the expected lifetimes of these bands are
close to those of the middle bands. Then additional nodes are added to the middle
bands to maintain sub-balanced energy consumption.

Figure 3.7: Samples of optimal values of p and λ as the number of deployed nodes increases.
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in Figure 3.7(a) shows the value of p in each band as the total number of nodes grows

and Figure 3.7(b) shows the selected densities (λj) for all bands j = 1 . . . 15.
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Figure 3.8: In the Dynamic p deployment, the amount of wasted energy decreases as more
nodes are added to the network.

Although the Dynamic deployment has an expected lifetime that is always greater

than that of the Static p deployment, the lifetimes appear to scale similarly with both

methods. However, the Dynamic deployment appears to have an advantage over the

Static p deployment with respect to the expected residual energy in the network.

Figure 3.8 shows the energy remaining in the network after the first band fails. The

amount of wasted energy is plotted logarithmically in order to show the general trend

as the initial number of nodes to be deployed grows. The figure shows that the amount

of wasted energy in the network for both the Static p and Uniform deployments grows

as the number of nodes increases, while for the Dynamic deployment, the residual
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energy tends to zero for an increasing number of nodes. The plot suggests that the

Dynamic deployment is able to balance more effectively the amount of energy per unit

area consumed, or energy density for each band. Thus, the expected lifetimes for all

bands will tend to converge as the number of nodes N increases. The difference in the

ability to balance the energy consumption between Static p and Dynamic deployments

is evident from Figures 3.9 and 3.10. In Fig 3.9, the expected lifetimes for each of the

outer bands continue to grow as N increases (we will revisit this result in the next

chapter), indicating that more energy will be wasted when the first band (and thus

the network) fails. In the Dynamic deployment, the expected lifetimes for bands far

from the base station remain constant until they converge onto the maximum network

lifetime.
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Figure 3.9: The expected lifetime for each band in the Static p deployment (band 1 includes
the nodes nearest the base station).
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Figure 3.10: The expected lifetime for each band in the Dynamic p deployment (band 1
includes the nodes nearest the base station).

3.5 WSN Lifetime Simulation With Optimal Deployment

The optimization problem in Section 3.3.3 was solved for increasing numbers of

deployed nodes and the results were used as parameters in a simulation. In the sim-

ulated network, the lifetime of the WSN was defined as the first iteration when less

than 70% of messages reached the base station. The parameters of the simulation were

the same as used in the optimization problem (see Table 3.1). The simulations were

performed using MATLAB for each of the three variations over initial node invento-

ries of 1500 - 2500 and 6 bands; each data point represents an average of the results

from 10 different random deployments. For each experiment, nodes were deployed

according to PPPs with intensities obtained by solving the optimization problem;

an example simulation setup is shown in Figure 3.11. At the start of each period,

each node decides to become a CH according to the LEACH protocol [Heinzelman
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Figure 3.11: Example simulation topology. The lines indicate potential paths, the red dots
are NCHs, and the blue dots are CHs. This is an example of a Dynamic deployment where
the inner bands are using a clustered organization while the outer bands are using a flat
organization.

et al. 2000] , announces its status, and links with nearby nodes. The CHs also form

links with other CHs in range. If a CH does not have any neighboring CHs, it will

force one of its neighbors to perform to become a CH. Then, a Bellman-Ford shortest

path algorithm [Bellman 1956] is applied to the adjacency matrix containing distance

metrics so that each CH can find paths from itself to the base station (we assume

shortest path routing). Once the paths are formed, each node sends 10 messages to

its CH and each CH forwards 10 messages along a path to the BSt. Energy levels

are tracked for each node, and if a node’s energy falls below a minimum energy level,

it is removed from the network and the adjacency matrix is updated. This process

continues as long as more than 30% of CH messages are received at the base station

(BSt).
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Table 3.1: Simulation parameters

Parameter Value

Initial energy for each node 10 J
Transmit cost (Etx) 180 nJ/bit
Receive cost (Erx) 200 nJ/bit
Length of each packet 400 bits
Radius of A 60m
Communication radius (rtx) 10m
Width of each band 10m

3.5.1 Simulations

The simulated lifetimes for each of the variations are shown in Figure 3.12(a);

numerical calculations of the expected lifetimes for the same network setup are shown

in Figure 3.12(b). The simulated network lifetimes are close to the expected lifetimes

(comparing Figures 3.12(a) and 3.12(b)). In addition, the relative lifetimes for the

different variations are very close to those from the expected lifetimes computed in

Section 3.4. Variations in the expected lifetimes for individual tests were due to two

factors: (1) the paths taken from CHs to the base station were not always direct,

and (2) the number of NCH nodes associated with a CH varied from the average

((1 − p)/p). These deviations are due our use of expected values for point processes

that are derived from asymptotic results. Nevertheless, the variations appear to have

a negligible effect with respect to expected lifetimes in simulation.

In Section 1.1 we described the effect of biased energy consumption in many-to-one

wireless sensor networks over multiple hops. Figure 1.4 depicted the nature of energy

consumption (in terms of energy density) closer to the BSt and showed that we could

expect large amounts of wasted energy after the first band is depleted of energy and

is no longer able to forward messages. Figure 3.14 shows that the simulation values
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for the energy densities in a Uniform deployment exhibit the same behavior (the bold

line indicated the energy density of the innermost band). The energy density for the

first band begins much higher in the Dynamic deployment than the rest of the bands

(Figure 3.13). Therefore, although the energy density is this band is depleting at a

faster rate than any other band, it has sufficient reserves to remain active until other

bands deplete their energy.

3.6 Observations on the Deployment Strategies

The optimization problem and the model for energy consumption for the Dynamic

deployment allowed nodes in different bands to have different values of p and λ.

Currently, clustering algorithms program a value of p for all nodes that is determined

before deployment. This value of p is set to ensure that there are enough CHs to

provide a connected network and to minimize the amount of energy consumed in

the process of monitoring the area and delivering messages to the base station. We

studied a strategy where each node is programmed with a look-up table of p values

that correspond to distance from the base station. By adding an additional degree of

freedom in the network design, we are able to extend the lifetime of the network and

reduce the wasted energy in the network at failure. The advantage to this approach in

planning and deploying large WSNs is that, with no additional cost to a traditional

clustering protocol, and no additional hardware, our proposed strategy will increase

the lifetime of a WSN deployment over a Uniform deployment.

One of the few studies analyzing the advantages of using a flat vs. hierarchical

network organization for many-to-one WSNs was written by [Duarte-Melo and Liu

2003]. It provides evidence that small networks would benefit from the use of clusters.

For larger networks, they argue that it is better to use a flat network. The reasoning

for this observation is that in large networks, many nodes need to be deployed in
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order to cover the area in the outer regions, so organizing clusters may be a waste

of energy since the size of the clusters will be small. However, the flat network will

result in poor capacity since all of the nodes near the BSt will be competing for the

shared channel to transmit their data (as discussed in Sec. 1.3.5). There seems to

exist a trade-off between capacity and energy consumption when choosing between

a flat network or a hierarchical network. Viewing the Dynamic deployment strategy

computed in Sec. 3.4 with this trade-off in mind, however, we see that the Dynamic

deployment provides a strategy that balances this trade-off by providing a hybrid

approach (an example of a hybrid network obtained from Dynamic deployment was

shown in Figure 3.11).

If the objective for a large network is to cover the region while minimizing com-

munications (energy) and maximizing capacity (by minimizing messages to the base

station), then an appropriate strategy would be to use a hierarchical organization

near the base station and to gradually reduce the number of clusters moving toward

the outer bands. This is the approach that the Dynamic deployment is providing. In

Figure 3.5, the value of p for the outer bands is near 80%. That is, only 20% of the

nodes in the outer bands are NCHs. However, if most CHs do not have NCHs asso-

ciated with them, then the outer bands are essentially flat networks with few NCHs

to help meet the coverage requirements. If the coverage parameter αcov is equal to

1, meaning that the coverage and connectivity constraints are the same, all nodes in

the outer bands are CHs. Figure 3.5 also shows that the value of p close to the base

station is small (approx. 2%), which means that very few nodes will be competing to

send data to the base station. This value of p for the innermost band is close to the

optimal value for CH probability computed in [Heinzelman et al. 2002] for a Uniform

deployment.
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(a) Simulated lifetimes for N = 1500 . . . 2500 nodes, using the parameters λ
and p obtained from the solution to the optimization problem.
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(b) Expected lifetimes for N = 1500 . . . 2500 nodes given by the solution to the
optimization problem.

Figure 3.12: Comparison of the simulated lifetimes and the expected lifetimes for N =
1500 . . . 2500 nodes. The three lines represent the lifetimes for the Uniform, Static p, and
Dynamic deployments.
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Figure 3.13: Simulated energy densities for the Dynamic deployment; the bold line is the
inner band.
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Figure 3.14: Simulated energy densities for each band in a Uniform deployment; the bold
line is the inner band.
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4. Non-Uniform Deployment in Clustered WSNs – Part II

4.1 Introduction

In the previous chapter, we described the network model and constraints for an

optimal deployment of sensor nodes for a monitoring network. We derived network

constraints, and expressions for energy consumption and residual energy using some

simplifying assumptions. We compared the optimal solutions for three deployment

strategies: Uniform deployment, Static p deployment, and Dynamic deployment. We

computed expected lifetimes using the the corresponding optimization problems and

showed that the best performance, in terms of expected lifetime and residual energy

at the time of network failure, was achieved under the Dynamic deployment strategy.

Simulations verified the optimization results.

In this chapter, we remove some of the simplifying assumptions, reformulate the

optimization problem for the more realistic model, update some the numerical results,

and discuss the consequences. Expressions for the cost of intra-cluster communication

are extended to include the costs associated with setting up clusters and the energy

consumed in each cluster on exchanging data with the clusterhead (CH). These exten-

sions involve specifying a MAC scheme for intra-cluster communication and re-writing

the energy equations to include the effects of cluster size. In the previous chapter, we

relied on the expected number of non-clusterheads (NCHs) associated with each CH

to compute the expected cost of intra-cluster communication. In this chapter we in-

clude the variance of the cluster sizes in order to account for the overhead introduced

by large clusters. We also remove the assumption that each CH is communicating with

a CH in the neighboring band each time data are forwarded toward the sink node.

Thus, the inter-cluster communication overhead will include the costs of additional
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hops that may be required to cross a band. We analyze the effect of these additional

hops, and redesign the deployment strategies.

4.2 Network Model

The network model and notation remains the same as the previous chapter (see

section 3.2). The probability that a node will be a CH in band j is pj, and λj is the

density of nodes in band j. The monitored area is a disk of radius R that is divided

into J annular bands of width rtx each, with the base station located at the center

of the disk. Nodes are assumed to be distributed in the region according to a set of

homogeneous spatial Poisson processes with intensity λj for the jth band. The area

of band j is denoted Aj.

The number of nodes in band j is a Poisson random variable, Nj ∼ P(λj). The

area of band j is Aj and the expected number of nodes in band j is E[Nj] = λjAj,

where Aj = π
(
r2j − r2j−1

)
. The widths of the bands are chosen to be equal to the

communication radius of each node, rtx, so that the number of bands, J is ⌈ R
rtx

⌉

The next two sections derive expressions for the total energy consumed in each

round of sensing and reporting in the jth band as a function of pj and λj. We consider

the energy consumed in each band of the network during

A1 Cluster formation;

A2 Intra-cluster communication: communication between CHs and NCHs;

A3 Inter-cluster communication: communication between CHs.

4.3 Cluster Formation and Intra-Cluster Energy Consumption

In this section, we derive expressions for A1 and A2. We describe the MAC protocol

for the intra-cluster communication and derive a new expression for energy consump-
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tion that includes the effects of command messaging, idle periods, and exchanging

data between the NCHs and the CH.

4.3.1 Media access control (MAC)

The MAC scheme assumed for intra-cluster communication is a hybrid of carrier

sense multiple access (CSMA) and time division multiple access (TDMA). The combi-

nation of TDMA and CSMA has been shown to reduce energy consumption in WSNs

(e.g., the Z-MAC protocol, [Rhee et al. 2008]). CSMA is used between the NCHs and

CHs after the initial cluster set-up in order to synchronize to the CH clock and to

receive a time slot and frequency channel for sending messages. Once the NCHs have

obtained time slots and are synchronized to the CH, the NCHs can avoid contestation

within the cluster using the contention-free TDMA MAC. At the end of a round, new

CHs are selected and the procedure is repeated.

In the energy consumption derivations for the intra-cluster communication, we

distinguish between the energy consumed while transmitting and receiving data and

the energy consumed by control messages. We also introduce additional notation for

energy spent while the radio is in an idle mode (the radio is sensing the channel

but is not receiving nor transmitting data), awaiting access. Let Etx and Erx denote

the energy expended to transmit and receive a single data packet, respectively. Let

Etxc and Erxc represent the energy expended in transmitting and receiving control

messages. Finally, let El denote the energy expended while the node is in idle for a

single time slot.

4.3.2 Cluster formation (set-up period)

The intra-cluster MAC protocol consists of three periods: the set-up period, the

contention period , and the steady-state period, shown in Figure 4.1. During the set-up
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Figure 3.2 Illustration of a single round for TDMA

3.2.1 Cluster Set-Up Phase

During the set-up phase, each nodemust decide whether it could become a cluster-head

based on its energy level. Elected cluster-heads broadcast an advertisement message to all

other nodes claiming to be the new cluster-heads. Next, each non-cluster-head node joins

the cluster in which communications with the cluster-head requires the minimum amount

of energy. Once the clusters are built, the system enters into the steady-state phase.

3.2.2 Steady-State Phase

The steady-state phase is divided into a contention period and frames. The duration

of each frame is fixed. During the contention period, all nodes keep their radios on. The

cluster-head builds a TDMA schedule and broadcasts it to all nodes within the cluster.

Figure 4.1: Illustration of the separation of the set-up period, the contention period, and
the steady-state TDMA period assumed in the intra-cluster MAC scheme.

period, each node decides whether it would become a CH. This determination is based

on the node’s energy level and the number of times it has served as CH. Elected CHs

broadcast an advertisement message to all other nodes, announcing their becoming

new CHs. Next, each NCH node joins the cluster whose announcement has the highest

received signal strength. The expected amount of energy used in band j during cluster

formation is the energy consumed as each of the Cj CHs broadcast their announcement

and each of the Sj nodes surrounding each CH responds to the advertisement. Each

CH receives Sj responses and transmits once and each NCH transmits once, so the

energy consumed is CjSjErxc + CjEtxc + CjSjEtxc =

Cj (Etxc + SjErxc + SjEtxc) . (4.1)

Once the clusters are declared, the system enters into the steady-state period.

4.3.3 Steady-state period and the Contention Period

The steady-state period begins with the initial contention period, where NCHs

communicate with the CH using nonpersistent CSMA to obtain a time slot (the time
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slots are assigned to the NCHs by the CH during the contention period). The choice

of nonpersistent CSMA is motivated by the fact that, although it may incur high

delays, it is very efficient [Bruno et al. 2002].

The steady-state period is divided into a contention period and frames. The dura-

tion of each frame is fixed. During the contention period, all nodes keep their radios

on. The CH builds a TDMA schedule and broadcasts it to all nodes within the cluster.

There is one data slot allocated to each node in each frame. Each source node turns

its radio on and sends its data to the CH over its allocated slot-time. It keeps its radio

off at all other times. With the basic TDMA scheme, a node always turns its radio

on during its assigned time slot whether it has data to transmit or not. If the node

has no data to send, the node operates in idle mode, which is an energy-consuming

state. When a frame ends, the next frame begins and the procedure is repeated. The

CH collects the data from all the source nodes and forwards the aggregated data to

the base station. After a predefined time, the system begins the next round and the

process is repeated.

4.3.4 Energy consumption During the Contention Period

During the contention period, the communication between the CH and all other

nodes is accomplished by using non-persistent CSMA. Suppose η is the throughput

of non-persistent CSMA when there are Sj attempts to access the channel per packet

time1. The energy consumption by a single node during the contention period is

1

η
Etxc +

Sj − 1

η
El + Erxc. (4.2)

1η is the maximum throughput for the nonpersistent CSMA used in the contention period of the
TDMA scheduling. We shall use the capacity derived by [Kleinrock and Tobagi 1975], η = 0.815.
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The CH node receives control packets and dissipates energy in the amount

SjErxc + Etxc. (4.3)

Therefore the average total energy consumed due to contention at each cluster is

[
1

η
Etxc +

Sj − 1

η
El + Erxc

]
+ SjErxc + Etxc (4.4)

= Sj
1

η
Etxc + Etxc +

Sj(Sj − 1)

η
El + 2SjErxc.

4.3.5 Total energy consumption for intra-cluster set-up and communica-

tion

A round consists of K sessions or frames. Energy consumed exchanging one frame

from each NCH in all clusters in a band is CjSj (Erx + Etx ), and this occurs K times

per round, so the energy consumed in a band due to frame exchanges in all clusters

is:

KCjSj (Erx + Etx ) . (4.5)

The energy consumed due to initial broadcast for cluster group decisions is

Cj (Etxc + SjErxc + SjEtxc) (4.6)

The energy consumed per band due to the contention period preceding delivery of

TDMA slots is

Cj

(
Sj

(
Etxc

η
+

(Sj − 1)El

η
+ Erxc

)
+ SjErxc + Etxc

)
(4.7)

Summing all of these expressions, the energy consumed in each band due to intra-
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cluster communication is

Cj (Etxc + SjErxc + SjEtxc) + Cj

(
Sj

(
Etxc

η
+

(Sj − 1)El

η
+ Erxc

)
+ SjErxc + Etxc

)

+KCjSj (Erx + Etx ) . (4.8)

After substitutions and collecting terms according to the different types of energy

consumed (transmit and receive control, idle, transmit and receive data), we can write

the energy consumed during cluster set-up and organization, and after K rounds of

data exchange in a single cluster as

Eintra = −λjAj (−pj − pj2η + pj2 − pjη)Etxc

pjη
(4.9)

−λjAj (−Kpjη +Kpj2η)Etx

pjη

−λjAj (−3 pjη + 3 pj2η)Erxc

pjη

−λjAj (−Kpjη +Kpj2η)Erx

pjη

−λjAj (−El + 3Elpj − 2Elpj2)

pjη
.

4.4 Routing protocol

We consider a basic greedy forwarding algorithm, where every node attempts to

forward a packet to a node that is both within its transmission range and closer to the

sink than itself (closer in the sense that the Euclidean distance between the sink and

this target node is smaller). Greedy forwarding tries to bring the message closer to

the destination in each step using only local information. Thus, each node forwards

the message to the neighbor that is most suitable from a local point of view. The

most suitable neighbor can be the one who minimizes the distance to the destination
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in each step. Since all CHs are attempting to forward data to the same destination,

these routes are formed by creating a routing tree rooted a the sink node.

4.5 Sources of Uncertainty in the Energy Consumption Model

In Chapter 3, we stated the assumption that each CH communicates directly

with a CH in the next band. We also based the energy consumption model for intra-

cluster communications on the expected number of of NCHs associated with each CH

using our derivation from homogeneous PPPs. In reality, the number of associated

NCHs will have significant variance due to the fact that our network is not truly a

homogeneous PPP, but a collection of annular bands with different intensities. Also,

the number of hops that will be required for a message to reach the sink from band

j will not, in general, be exactly j. In this section, we examine the distributions of

these factors and attempt to introduce them into the optimization problem in order

to provide more a more realistic problem statement.

4.5.1 Cluster size

The expected value for the number of NCHs in a cluster in band j is 1−pj
pj

. The

distribution of cluster sizes is Poisson, so the variance is equal to the mean. In sim-

ulations, the variance of 1−pj
pj

appears to be a valid approximation for the different

cluster sizes. Figure 4.2 shows a typical deployment over 6 bands. The dark lines

indicate the value 1−pj
pj

for the band and the red points indicate the actual number of

nodes in a cluster with respect to distance from the sink node.

4.5.2 Hop-count statistics

A significant source of uncertainty in the energy consumption model is the hop-

count distribution. If we assume that each CH in a band communicates with exactly
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Figure 4.2: The number of NCHs associated with a cluster are shown by the red points.
The dark lines indicate the expected value for cluster sizes in the band. The variances of
the points appear to be approximately in line with the expected value.

one CH in the next band toward the sink, then the mean energy consumed by nodes

in a particular band can be computed by summing the number of CH in each of the

bands that are farther from the sink node. However, without enforcing such com-

munications between bands, we cannot ensure that this count would provide a good

approximation of the energy consumed in an area. As an illustration, Figure 4.3 shows

the distributions for the number of hops to reach the sink node with respect to the

distance from the sink node for the Dynamic deployment strategy. For example, the

figure shows that, for a 6-band network, the maximum number of hops is as high as

8, and the distribution of hop counts is not the same for each band. This suggests

that some bands will be consuming more energy than others while relaying messages

across the band.

In order to see how the CH density in two adjacent bands can affect the hop count

distribution, we perform a simple experiment. We simulate a two-band network and

vary the density of CHs over the second band while holding the first band’s density
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Figure 4.3: Simulation results illustrate the difficulties of the assumption that a message
originating from a node in band k travel over k hops to reach the destination. The x-axis
denotes the distance from the sink node divided by the annular band width. The y axis
shows the probability of a specific hop count to the sink, given that the message originates
at a particular distance from the sink node. Eight (8) conditional distributions are shown
(one for each hop count).

constant. Figure 4.4(a) shows the distribution of the number of hops required to reach

a node in the next band when the CH density is fixed in the first band to be 0.1.

The y-axis represents the density of CHs in the second band, varying from 0.01 to

0.1. Here we notice that, for CH densities that are lower (but high enough to provide

connectivity), the distribution of hop counts peaks at a single hop, but quickly moves

to a peak at 2 hops as the density increases. Figure 4.4(b) shows the same simulation,

except the density of CHs in the first band is set to 0.01. Here we see that, as the

density in the second band increases, the distribution of the number of hops required

to exit the band spreads to include peaks at 2 and 3 hops.

In order to make an approximation of the energy consumed due to forwarding mes-

sages back to the sink, we require some statistics about the hop-count distribution on

the WSN that we can include in the optimization problem. Specifically, we require a
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statistic related to the probability P (hc = k|j), the probability that a CH in band j

is hc hops from the nearest CH in band j + 1, for all j ∈ 1, . . . , J − 1. The general

problem of deriving hop-count distributions, even for completely homogeneous Pois-

son point process models, is difficult, due to the involved spatial dependence problem

(see, for example, Rahmatollahi and Abreu [2012] and Zhang et al. [2012]). The spa-

tial dependence problem arises because the event that a randomly chosen destination

node is a kth hop node from a randomly chosen source node is not independent of

the event that another randomly chosen node is a ith hop node for 1 < i < k.

Denote by A(x,R) the intersectional area of two disks, each with radius R, with a

distance x between them. This is called the circle-circle intersection (see Figure 4.5).

The area of the intersection for equal sized circles is

(a) The fixed density of CHs in band 1 is
0.1

(b) Using a lower CH density in the first
band (0.01)

Figure 4.4: Illustration of the affect of CH density on the hop count distribution. Distribu-
tions for hop counts for varying p and λ in band 2 and a fixed density for band 1. The x axis
indicates the number of hops required to reach the next band. The y axis shows the density
of CHs in the second band. The z axis shows the values of the conditional distribution
P (hc = k|λ2p2). The left plot shows the hop count distribution for a dense deployment; the
right plot is a sparse (but connected) deployment.
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Figure 5 Diagram for the computation of the second hop
distribution
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where

A2(x, R1, R2) = R2
1 cos−1

(
x2 + R2

1 − R2
2

2xR1

)

+ R2
2 cos−1

(
x2 + R2

2 − R2
1

2xR2

)
(20)

− 1
2
√

[(R1 + R2)2 − x2][x2 − (R1 − R2)2]

and assumed R1 ≤ R2 (the other case can be obtained
by simmetry). R1 and R2 are the transmission ranges of
the source and the target node, respectively. In our case
R1 = R2 = R. The diagram related to the third hop
distribution f (3|x) is shown in Figure 6. In this case, a node at
distance x from the source has HC equal to 3 if the following
conditions are jointly verified:

1 The intersecting region between the source and the
target node coverage areas (empty region in Figure 6)
must be empty in order to exclude all the cases where
the target node has HC equal to 2.

2 Two further nodes must exist with the following
properties. The first node (node with HC equal to 1 in
Figure 6) must be in the transmission range of the
source and must not be within the intersecting region
between the source and the target node (empty region in
Figure 6). Moreover, a further node (with HC equal to 2
in Figure 6) must exist in the transmission range of the
target node and its position must be such that this node
is also in the transmission range of the first node (but
not of the source). In Figure 6 we report a possible
scenario for this case. A3(x) is the feasible region for
the second point. That is, the transmission area of a
node placed within A3(x) has a non void intersection
with the portion of the source transmission area where
the first point can be placed (all coverage area minus the
empty region, as specified above). Once the position for
the second point has been fixed, the first point can be
placed within an area A∗ which is given by the
intersection between the transmission area of the
second point and the transmission area of the source
minus the empty region.

The target node has hop count 3 if the two conditions above
are verified, that is, if the minimum number of transmissions
for a packet sent by the target node to get to the source is 3. As
can be easily understood by the geometry of the problem, the
resolution of this statistics is rather tedious. Moreover, due
to the form of the involved integral it is also impossible to
obtain it in exact close form (Niculescu and Nath, 2004a,b).

Figure 6 Diagram for the computation of the third hop
distribution
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In the next section, we present an approximate approach
based on a Markov Chain representation of the underlying
hop count assignment process, which is able to provide
accurate approximations of the connectivity statistics.

3.3 A recursive algorithmic approach to the
computation of hop count statistics

The hop count statistics is strictly related to the shortest hop
path concept. The analysis that follows is mainly based upon
this observation. In deeper detail, if a target node has hop
count equal to n this means that the minimum number of
intermediate nodes that connect it with the destination is
n − 1. The key idea of our analysis is to build, starting at
the source, a process that, at every step of the forwarding
process, selects the set of nodes leading to the maximum
advancement towards the target device. This concept can
be better understood by referring to Figure 7, where we
depict the first hop selection in our hop count assignment
process. During this first step, we need to pick the nodes
in the coverage area of the source that are the closest to the
destination (target node at distance x). It shall be observed
that, by geometric considerations, some nodes are equivalent
for the purpose of the advancement. In particular, in the
figure nodes F1 and F2 lead to the same advancement as
they are both placed at the same distance R1 from the target
node. This equivalence is very important as it allows to
model the hop count assignment process by only tracking the
remaining distance towards the destination. The probability
that the maximum advancement in the first step is, say a1
(R1 = x − a1), given that the initial distance between the
source and the target node is x, can be easily evaluated by
multiplying the probability that no nodes are present within
the intersecting area A2(x, R1, R) (see Figure 7) by the
probability that there is at least one node in the coverage

Figure 4.5: Illustration of the intersection of two disks separated by a distance x, used to
compute the 2-hop distribution.

2R2 arccos
(
1/2

x

R

)
− 1/2

√
(4R2 − x2) x2. (4.10)

If x < R, then P (hc = 1|x) = 1. When R < x ≤ 2R, the probability that the hop

count is 2 is given by P (hc = 2|x) = 1 − e−λA(x,R)(λA(x,R))2/2!. This expression

gives the probability that the intersection (area shaded in Figure 4.6) contains at

least one node. However, for hop counts greater than 2, the computation becomes

very complicated, and closed-form solutions are not available for hop counts above 3

without making additional independence assumptions.

If we are using a greedy forwarding routing algorithm, then the problem of esti-

mating the hop-count distribution simplifies somewhat. The simplification is realized

since we are only interested in the number of hops required to forward a message

from band j to band j − 1. As the bands are defined to have width equal to the

transmission radius, and as the CH densities are selected to ensure that there is a

neighbor within the band, we are only interested in the probability of a CH in one

band having a reachable destination in the next band toward the sink node. In order

to obtain the probability of there being a next hop neighbor in the next band, we
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A(x,R1,R2) 
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R2 
x 

Figure 4.6: The dashed circle is the transmission radius of a node in the outer band. The
area of intersection with the next band toward the sink node is computed using Eq. 4.11.

first need the area of intersection between the circle around a random node and the

next band. We can compute the area of intersection using the circle-circle intersection

formula for circles of different radii. Letting r1 = rtx, r2 be the radius of the outer

edge of the j − 1 band, and x the distance between a node in band j and the sink

node (see Figure 4.6), the area of intersection is given by

Acc(x, r1, r2) = r1
2 arccos

(
1/2

x2 + r12 − r22

xr1

)
+ r2

2 arccos

(
1/2

x2 + r22 − r12

xr2

)
(4.11)

−1/2
√(

(r1 + r2)
2 − x2

) (
x2 − (r1 − r2)

2) .

We let xj = x− (j − 1)rtx = x− r2; this is the distance between a node in band j

and the outer edge of band j− 1. Then denote the intersection of the transmit region

of a node in band j and band j − 1 as Accj(xj, r1, r2). Then, the probability that the

number of hops for a node in band j, a distance xj from the outer edge of band j− 1

will be greater than one is
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P (hc > 1|xj) =

(
Aj−1 − Accj(xj, r1, r2)

Aj−1

)Cj−1

. (4.12)

We denote the area of an annular band inside of band j whose inner edge is a distance

xj from the outer edge of band j and has width dxj as Adxj . Then,

P (xj|j) = 1−
(
Aj − Adxj

Aj

)
. (4.13)

The probability of a node in band j having a hop count greater than one to reach

j − 1 is

P (hc > 1|j) =
∫ xj=rtx

xj=0

P (hc > 1|xj)P (xj|j)dxj. (4.14)

By discretizing the width of the small annular bands and replacing the integral 4.14

with a summation, we can estimate the number of nodes in band j that will require

more than a single hop to reach the next band as λjpjAjP (hc > 1|j) = CjP (hc >

1|j). This expression is included in the energy cost for the inter-cluster communi-

cation in the optimization problem. As an example, Figure 4.7 shows the edges of

the CH network in red for a sample deployment. The values of λ and p are λ =

[0.417, 0.198, 0.104, 0.059, 0.029, 0.029] and p = [0.110, 0.122, 0.249, 0.463, 0.967, 1.0].

The expected number of nodes that will require more than a single hop to exit the

band is computed to be [0, 11.4, 25.5, 33.4, 41.2, 49.6]

We performed the same experiment that produced Figures 4.4(a) and 4.4(b), and

used the discretized expression for the total probability in Eq. 4.14. We computed

the expected number of nodes that have a hop count greater than one in band 2,

given the density of CHs in band 1. The results are shown in Figure 4.8. Figure 4.8(a)

shows the prediction when the density of CHs is fixed to 0.1 in band 1, and Figure

4.8(b) shows the prediction for the sparser density of 0.01 in band 1. The black lines

are comprised of point estimates for each CH density value in band 2. From these
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Figure 4.7: Example deployment with λ =[0.417 , 0.198, 0.104, 0.059, 0.029, 0.029] and
p = [0.110, 0.122, 0.249, 0.463, 0.967, 1.0].

figures we see that although there is significant variance in the number of nodes with

additional hops requirements to leave the band, our prediction follows the trend well.
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(a) The fixed density of CHs in band 1 is 0.1
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Figure 4.8: Predictions for the number of nodes with hop counts greater than one compared
to actual number for varying p and λ in band 2 and a fixed density for band 1. The black
lines are the model predictions and the red lines are the actual values from simulation.
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4.6 Energy Consumption for Inter-cluster Communication

In this section, we state the expression for A3 of section 4.2, the energy consumed

while performing inter-cluster communication. The expression for the energy con-

sumed while relaying messages forward to the sink node through the CH overlay (Eq.

3.7) is

KErcv

J∑

k=j+1

Ck +KEtx

J∑

k=j

Ck .

This expression counts one message for each of the expected number of CHs in each

band as they are received and forwarded along toward the sink. We now include the

term CjP (hc > 1|λj, pj) to account for the expected amount of energy due to the

density of CHs in adjacent bands. Then, the updated expression for the inter-cluster

communication costs is

Einter = KErx

J∑

k=j+1

Ck(1 + P (hc > 1|k) +KEtx

J∑

k=j

Ck(1 + P (hc > 1|k). (4.15)

4.7 Maximum Lifetime Optimization Problem with Updated Energy Model

The formulation of the optimization problem is similar to the problem stated in

Section 3.3.3, with the following additions. First, the energy consumption formula

used to evaluate the expected lifetime E[Lj] now include the energy consumed dur-

ing intra-cluster communication, Eintra (Eq. 4.9). These additions account for the

amount of energy consumed in a cluster with respect to the size of the cluster. Con-

trol messages, idle time spent waiting to exchange data with the CH messages, and

the amount of data shared with the CH all contribute to the intra-cluster energy ex-

penditures. This addition to the energy model is important because it factors how the

energy consumed due to congestion in large clusters will affect the expected network
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lifetime. The expected lifetime formulation in the previous chapter did not account

for this effect. For the same reason, we also include the variance of the cluster sizes,

instead of just the expected number of NCHs in a cluster, when computing the intra-

cluster energy consumption. Also, the expected lifetime formulation now includes the

expected amount of energy that will be consumed due to the number of hops required

to relay messages to the next band (Eq. 4.15). The expected lifetime formulation in

the previous chapter assumed that a source node in band j could reach a destination

node in band j−1 in a single hop. This addition is important in the expected lifetime

formula because it accounts for the effect that choices of λ and p in adjacent bands

will have an effect on the expected number of hops a message will require to exit

a band. The computation of the expected remaining energy, E[Ej
w] is also updated

with the new energy consumption terms. The constraints on the problem remain ex-

actly the same as before, and the objective is still to find the values of p and λ that

maximize the minimum expected lifetime over all bands:

max
p,λ

z (4.16)

subject to

Lj − z ≥ 0

λjpj ≥ λcon

λj ≥ αconλcon

0 ≥ pj ≤ 1

λj ≥ 0.
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4.7.1 Examples of expected lifetimes with the updated model

Again, we compare the three deployment strategies (Uniform, Static p, and Dy-

namic). However, now we remove the node inventory constraint from the problem (we

set a an arbitrarily large total inventory) and solve the lifetime objective with a trade-

off on the cost (total number of nodes). That is, we let a parameter w ∈ [0, 1] vary

while solving an objective wz− (1−w)
∑

J Nj. The variable z is maximum expected

lifetime, and Nj is the number of nodes deployed in band j. The results are plotted

in Figure 4.9. As expected, it shows that the Static p and the Dynamic deployments

perform much better in terms of lifetime for a given cost than the Uniform deploy-

ment. While the Dynamic deployment always dominates the Static p deployment for

a given cost/lifetime solution, the margin is smaller than the results in the last chap-

ter (see Figure 3.5) where we did not account for intra-cluster contention and the

effects of the hop-count distributions. Also note that when the energy consumption

due to congestion in the intra-cluster communication was considered in the expected

lifetime calculation, the Uniform deployment could no longer increase lifetime beyond

a certain point by adding more nodes.

With a better understanding of the way that the density of CHs in a given band

affects the hop-counts in the network, the diminishing margins make sense. Increasing

the value of p for a band will generally increase the number of nodes that will require

additional hops to reach the next band. Figure 4.8 shows that this increase is approx-

imately linear in the density of the CHs, and the linear proportionality constant is

determined by the number of available CHs in the next band. In the simulation of the

last chapter, the Dynamic deployment did consistently better than the Static p sim-

ulations (Figure 3.12(a)), and the numerical solutions for the optimization problem

showed better expected performance for the Dynamic deployment. One advantage

of the Dynamic deployment (as computed in the optimization problem, Eq. 3.30)
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Figure 4.9: The numerical solution of the expected lifetime with respect to the number of
nodes deployed for the the three compared approaches.

was its ability to minimize the wasted energy; the numerical solutions in Figure 3.8

showed that as the number of nodes deployed on the network increased, the amount

of residual (wasted) energy would continue to decrease.

In Chapter 3, we saw numerical results suggesting that if one could vary both the

CH density and the node density, this capability would reduce the amount of residual

energy remaining after network failure. However, Figure 4.10 shows that both the

Static p and the Dynamic deployment strategies can find a solution that decreases

the residual energy as the number of nodes increases. These observations suggest that

when we include the energy consumed due to congestion and additional hops to reach

the BSt in the lifetime function, the advantages of the Dynamic deployment over the

Static p deployment are reduced.
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5. Sensor Node Replenishment

5.1 Introduction

So far we have considered the problem of extending the lifetime of the WSN

for a given inventory of sensor nodes through strategic placement over the field of

deployment. In this chapter, we discuss a replenishment strategy for further extending

the lifetime of a network to meet a mission requirement by deploying batches of

additional nodes.

A natural question might be: “why not just deploy more nodes at the initial

installation of the network?” There are two reasons why a replenishment strategy

would be required instead of a larger initial deployment. First, as the calculations

and simulations in Sections 3.4, 3.5, and 4.7.1 suggest, the marginal lifetime increase

provided by deploying more nodes begins to diminish as the size of the sensor network

grows. Consequently, the benefit-to-cost ratio is decreasing as the initial number of

sensors deployed (denoted N0) grows. Therefore, the number of initial nodes required

to meet a long mission requirement will become prohibitively expensive. Second,

as discussed in Section 1.3.5, the quality of the network will also deteriorate with

increasing N0 due to capacity limits on cluster-heads and at the base station (Hu

and Li [2004a] argue that the capacity constrained lifetime of a WSN will decrease

in the order of 1/
√
N0). That is, the number of nodes required to meet the lifetime

requirement may result in a poor quality network.

A replenishment strategy adds new nodes to the network at subsequent stages

in order to meet mission requirements (connectivity, coverage, lifetime, etc.). The

number of nodes added in any period should be sufficient to meet the expected number

of nodes that fail between replenishments. If too few nodes are added, there may be
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a loss of coverage or connectivity, or an increase in the average energy consumed in

the network due to excessively long paths from a clusterhead to the base station.

Adding too many nodes in a replenishment may result in higher costs than necessary

to meet the mission requirements, while affecting network capacity and increasing the

network energy consumption. The objective of the replenishment strategy is to meet

mission requirements while minimizing the total cost of the mission. The total costs

associated with a replenishment strategy are (1) penalties associated with having too

many or too few active nodes, (2) the actual cost of the sensor nodes, and (3) the

fixed cost of deploying them on the the monitored region.

Relation to Sleep Scheduling Approaches

Another class of solutions for sensor replenishment that has been discussed in

the literature is to overdeploy nodes in the monitored area and then put a subset of

them to sleep. Then, as the network begins to fail, the sleeping nodes are ‘awakened’

to replace the failing nodes. With suitable modifications to a few cost parameters,

these sleep scheduling replenishment schemes can be treated as special cases within

the general replenishment controller proposed in this chapter. However, there may

be logistical reasons not to use a sleep scheduling strategy even though the effect is

the same as replenishment. For example, prolonged exposure to harsh terrain and

weather would make node failures more likely.

5.1.1 Replenishment Control Overview

To date, there has been little discussion of the specific problem of WSN replen-

ishment in the literature. However, there exists a large body of closely-related work

within the operations research, management science and decision science communities

devoted to the control of inventories in supply chains (called inventory management,
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or inventory control, e.g., Axsater [2006]). Related work in the systems and control

engineering disciplines can be found in the optimal control literature (e.g., Bertsekas

[1995]). In general, inventory control problem are studied using mathematical models

from optimal control, dynamic programming, and network optimization.

A block diagram describing the replenishment problem is illustrated in Figure 5.1;

each step is numbered. The blocks failure forecast and controller are assumed to reside

at the base station (BSt). (1) At the beginning of time period, t, there are xj nodes

in band j. (2) During this time period wj nodes fail in band j. (3) The failure forecast

block uses the number of failures in each band during this time period to compute

the expected number of nodes to fail in each band over a selected planning horizon.

These estimates are provided to the controller. (4) The replenishment controller uses

the estimates to compute the number of nodes that should be ordered (y), and an

allocation (z) for these nodes across all J bands, L periods into the future. (5) If

an order was placed at period t − L, the batch is received at time t. (6) When the

order is delivered, the nodes are allocated to bands according to (z). During period

t, the number of nodes in each band is affected by node failures (w); these failures

are detected by the controller at the beginning of the next period.

The WSN deployment model introduced in Fig. 5.1 bears close resemblance to a

classical problem in inventory control called the multi-period multi-location inventory

and supply problem [Krishnan and Rao 1965]. In this problem, an inventory system

consists of a central depot which supplies J retailers where random demands for a

single commodity must be filled. The inventories are reviewed and decisions are made

periodically. The decisions to be made (centrally, at the depot) are 1. the amount of

stock to order from the supplier to be delivered to the depot, and 2. the fraction of

the order each retailer will receive.

The simplest form of the multi-period multi-location inventory and supply problem
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Figure 5.1: Overview of the replenishment control problem: The number of nodes in a band
j at any time is given by xj . As nodes fail in each band according to the random processes
(wj(t)), the controller receives information about the number of failures in each band; a
forecast of future failures for each band is used to choose a batch size yt of nodes to order
and the placement over all bands that will minimize expected future costs. When the nodes
arrive after a lead-time (L), they are delivered to each of the J bands according to the
minimum cost allocation.

can be solved using dynamic programming, yielding an optimal policy consisting of a

simple rule. This rule dictates that if the inventory at any of the retailers falls below

a level s, then one should order enough supply to fill each of their inventories back

up to s. Two basic assumptions are included in this simple formulation. First, the

demand at each retailer is assumed to be stationary and normally distributed about a

known mean with a constant, known variance. Additionally, no fixed cost is incurred

for orders from the supplier. The only costs are a penalty for stockouts at a retailer,
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a holding cost for storing items, and the unit cost per item purchased. This pricing

scheme means that the depot can place frequent orders for small batches in order to

meet demand at the retailers without penalty.

However, even with these simplifying assumptions, the task of computing an opti-

mal policy using dynamic programming can be formidable if the number of retailers is

large. For J retailers and a lead-time of L, the problem will have a J +L-dimensional

state space, and the number of states in a dynamic programming problem grows

exponentially in the number of dimensions. This is known as the “curse of dimen-

sionality” in dynamic programming. For any but the smallest J, L, and terminal time,

T , computing the exact solution will be impractical.

The version of this problem that we are considering will be more complicated.

First, we assume that there is a nonzero fixed cost for deploying a batch of sensors

(of any size). This value could include the cost of ordering nodes, outfitting nodes

with sensors, and the cost of transporting these nodes to the field either by aircraft or

vehicle. Second, we suppose that there is a delay between the placement of an order

and the time it can be delivered to the field (lead-time). Finally, we know (from our

previous analysis of the failure patterns of nodes) that the failure model will not be

stationary. Therefore, in addition to the computational constraints provided by the

dimensionality of the problem, our problem requires a failure model that can estimate

with precision the number (and location) of failures beyond a short horizon. Since a

dynamic program solves the multi-stage problem by starting at the terminal time (T )

and computing the optimal decision path backwards in time, a full characterization

of the failure process is required.
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5.1.2 Summary of proposed replenishment controller

This chapter describes and extends work that was first presented in [Dorsey and

Kam 2010], which. In the next section we will provide expressions for the costs asso-

ciated with ordering new nodes, deploying nodes, and penalties for deploying too few

or too many nodes to bands in the network. This effort will result in a full dynamic

programming setup of the problem (Section 5.2.3). In the subsequent sections, we

will introduce a tractable approximation of the problem through the use of a my-

opic allocation policy (Section 5.3.1), where an order received from L periods ago is

divided up among the bands in order to minimize the expected costs in the current

period, ignoring costs in subsequent periods. Then, using results from [Zipkin 1982],

an approximation of the myopic allocation problem (Section 5.3.2) in terms of aggre-

gate state variables (introduced in Section 5.2.3) is described. This approximation is

integrated back into the full dynamic program, to yield a new problem in terms of

aggregate state variables (not in terms of the distribution of nodes over all bands).

Finally, we describe a transformation of the cost function that allows us to shift fu-

ture costs (incurred L periods into the future) to the present. The final result is a

single-dimensional dynamic program.

The myopic allocation policy presents a trade-off between optimality and compu-

tational complexity. If failures are observed as stationary and uncorrelated, then the

cost of the myopic aggregation policy is a lower bound on the true cost of the opti-

mal solution. The extent to which failures are observed as stationary will depend on

the fluctuation in the distribution of the residuals from the failure forecasting model

described in section 5.4. In the case of non-stationary, correlated failures, a recent

paper [Truong 2012] shows that the myopic policy is the tightest known approxima-

tion bound for this problem, and that the expected cost is at most twice the expected

holding cost plus the expected shortage cost of the optimal policy.
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In Section 5.4, the Holt-Winters forecast model [Holt 1957] is introduced to esti-

mate the number of node failures over the next lead-time period. We present simula-

tion data that suggest that the residuals of the forecast model are Gaussian, but the

parameters of this model are non-stationary. The costs of the myopic allocation policy

and the full dynamic programming approach are compared in Section 5.8 for a three-

band deployment. The simulations show that, for this scenario, the approximation

results in total costs (shortage and surplus penalties, and fixed delivery costs) that

are approximately 20% higher than those of the full dynamic programming controller.

However, the full DP approach takes nearly 700 times as long to compute a solution

as the approximate dynamic programming controller.

5.2 Description of WSN Replenishment Problem

5.2.1 Notation and definitions

The notation for the replenishment problem will follow the convention that vari-

ables in boldface are vectors. The ‘hat’ symbol above a variable indicates that it is

a aggregation over time or a vector of values over time. Otherwise, vectors always

have J elements, one for each band. We identify some variables related to the state

of the system, including the number of active nodes in a band at the beginning of a

period, batches of nodes ordered for deployment, and the allocation of the order over

bands. These are listed in the box below (State variables). Using this notation, we

can describe the state of the system at the beginning of period t as (xt, ŷt). Here xt

contains the number of nodes in each band at time t and ŷt is the vector of all orders

that have been placed before time t that have not yet been delivered.
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State variables

L Lead time

t Period index

T Mission lifetime requirement

j Band index (j = 1 . . . J)

xjt Number of active nodes in band j at the beginning of period t

xt = (xjt)
J
j=1

yt Number of nodes ordered at the beginning of period t

ŷt = (ys)
t−1
s=t−L Vector of orders placed in the last L − 1 periods that have

not yet been allocated

zjt Number of nodes delivered to band j in period t (allocation)

zt = (zjt)
J
j=1

Next we introduce some variables related to the failure model, and the cost vari-

ables.
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Notation related to failures

wjt Number of failures in band j in period t

Fjt Marginal cumulative distribution function (CDF) of wjt

µjt = E(wjt) Expected number of failures in band j during period t

σ2
jt = V ar(wjt) Variance of the distribution Fjt

µ̂jt =
∑t+L

s=t µjt Expected number of lead time failures in band j starting in

period t

σ̂2
jt =

∑t+L
s=t σ

2
jt Variance of the lead time distribution Fjt+L

Also, let Φ and φ denote the standard normal cdf and pdf, respectively.

Cost variables

Ct(yt) Cost associated with ordering yt nodes in period t

K Fixed cost for deploying a batch of nodes

cs Cost of an individual sensor node

h Cost associated with deploying too many nodes in a band

d Cost associated with deploying too few nodes in a band

The costs h and d are incurred in each period whenever the number of nodes in a

band is above or below a specified target level. Let ρjt denote the target for band j
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in period t. Then, the cost associated with the level in band j at the end of period t

is d(xjt− ρjt)−+h(xjt− ρjt)+, where the + and − superscripts denote functions that

return the absolute value of the argument if it is positive or negative, respectively,

and zero otherwise.

Since we are interested in the deviation of xjt from the target for our cost calcu-

lations, we will introduce the variables

x̃jt = xjt − ρjt,

and

x̃t = (x̃jt)
J
j=1 .

5.2.2 Costs

The costs associated with deploying nodes (K), and the actual price of the nodes

(cs) for a batch size yt is given by

Ct(yt) = 1(yt > 0)K + csyt,

where

1(yt > 0) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if yt > 0,

0, otherwise.

If no nodes were ordered for period t, then the deployment cost (yt > 0)K and sensor

cost (csyt) are zero. If yt > 0, then the fixed cost K is incurred independent of how

many nodes are ordered. When K is large, the controller will avoid ordering small

batches and placing orders too often. If K = 0, the controller will replenish nodes in

small batches to replace ones that failed in the previous time period.

The single period expected costs related to node levels (penalty costs) across all
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bands in period t are

Qt(zt, x̃t) =
J∑

j=1

qjt (zjt, x̃jt) ,

where

qjt (zjt, x̃jt) = hE [x̃jt + zjt − wjt]
+ + dE [x̃jt + zjt − wjt]

− .

The formula qjt is used to compute the expected penalty for having more nodes or less

nodes than the target level ρjt in band j at time t. Since x̃jt is the current deviation

from the target, this expression for a single period is ideally zero (the target deviation

and the allocation in band j at time t offset the node failures). The expectation in

taken with respect to wjt, the number of failures in band j at time t.

We can rewrite this expression in terms of the marginal cumulative distribution

function (CDF) of wjt by integrating Fjt up to the sum of the target deviation and

the allocation:

qjt (zjt, x̃jt) = d (µjt − (x̃jt + zjt)) + (d+ h)

∫ x̃jt+zjt

−∞
Fjt(u)du (5.1)

This formulation will help to derive the myopic allocation policy and its approxima-

tion.

5.2.3 System dynamics and recursive equations

The initial state is given by the node level deviations from target and the out-

standing node orders to be delivered in time period t, (x̃t, ŷt). During period t, and

order may be placed to be delivered at t+L, and there are wt ≥ 0 node failures. If an

order is received in the current time period, it will be allocated to the monitored area

according to zt. Then the state of the system in the next period will be (x̃t+1, ŷt+1):

x̃t+1 = x̃t + zt −wt,
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ŷt+1 = (yt−L+1, . . . yt−1, yt).

We can now state the recursive Bellman equation whose solution provides the

optimal policy for the problem. Let ft(x̃t, ŷt) denote the minimum total expected

costs in periods t through T , given that the system starts in the initial state (x̃t, ŷt).

Then, the Bellman equation computes the minimum cost from the current time t to

the final time period T over the decision variables yt and zt, the number of nodes

ordered and their allocations to bands in each time period. The Bellman equation is

written as

fT+1 = 0 (5.2)

ft(x̃t, ŷt) = min
yt,zt

[Ct(yt) +Qt(zt, x̃t) + E [ft+1 ((x̃t + zt −wt), ŷt)]] .

The function ft(x̃t, ŷt) consists of the fixed costs Ct(yt) that include the sensor node

costs and the fixed cost for delivery (K) and the single period node level penalties

Qt(zt, x̃t). The last term contains recursion that sums the fixed costs and node level

penalties for the expected node failures in the future. The domain of yt and zt are

constrained by

J∑

j=1

zjt = yt−L (5.3)

yt ≥ 0

zt ≥ 0.

This formulation of the dynamic equation suffers from high dimensionality because

it has to find order sizes yt and allocations zjt for all bands and for all time periods.



117

Moreover, the order sizes and allocations are not independent, since the possible

allocations of nodes over bands depends on the number of nodes that are to be

ordered (this is the first constraint in Eq. 5.3). Also, a failure probability distribution

for all t = 0 . . . T and all j is assumed. In order to make the problem easier to solve, we

will amend the problem so that we may consider separately the problem of choosing

the number of nodes to order, yt, and the number of nodes to allocate to each band,

zt. This effort will involve the introduction of a few aggregate variables, where the

aggregation takes place over the J bands and L periods.

Aggregate variables

We first define two aggregate failure random variables,

Wt =
J∑

j=1

wjt

and

W̄t =
t+L−1∑

s=t

Ws.

Wt is the sum of all node failures in time period t over all J bands. W̄t is the sum of

node failures in all bands and over the time period t . . . t + L. Thus, W̄t is the total

number of failures over the next lead-time. Wt and W̄t are assumed to be normal

random variables with cdfs Gt and Ḡt, and characterized by means

Mt =
J∑

j=1

µjt, and M̄t =
t+L−1∑

s=t

Mt

and variances

S2
t , and S̄2

t =
t+L−1∑

s=t

S2
t .
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The assumption of normality is justified by the observed distribution of residuals of

the failure model to be shown in Section 5.4. Finally, we define variables that store

the aggregate number of active nodes over J bands and L periods, relative to the

target levels. Let

X̃t =
J∑

j=1

x̃jt −
J∑

j=1

ρjt,

X̃∆
t = X̃t +

t−1∑

s=t−L

ys.

X̃t is the sum of the node level target deviations over all bands, and X̃∆
t is the sum

of X̃t and all orders that have been placed but have not yet been delivered.

5.3 Approximation of the Dynamic Program

In this section, we introduce some results from [Federgruen and Zipkin 1984] and

[Zipkin 1982] that allow separation of the ordering problem from the allocation prob-

lem and rewrite the dynamic programming problem (Eq. 5.2) as a one-dimensional

dynamic program. First we define the myopic allocation problem.

5.3.1 Myopic allocation problem

A myopic allocation problem involves dividing a batch of nodes ordered L periods

ago among the bands in the network in order to minimize the expected costs in the

current period, ignoring costs in subsequent periods. For any period t ≤ T , the myopic
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allocation problem is given by

Rt(x̃t, yt−L) = min
zt

Qt(zt, x̃t) (5.4)

subject to: zt ≥ 0,
J∑

j=1

zjt = yt−L.

Rt is the minimum value of the node level penalty costs, Qt, defined in Section 5.2.2,

over all possible allocations of the order placed in period t−L, and the vector zt that

minimizes Qt is the optimal allocation.

5.3.2 Approximation of the myopic allocation problem

In [Zipkin 1982], the authors describe a method for approximating the minimal

cost of an allocation problem, by a simple, closed-form aggregate cost function. This

technique allows us to state Rt as a function of the scalars X̃t and yt−L instead of the

J-vector x̃t. Note, however, that although we are approximating the minimum value

of the expected single-period penalty cost function Qt, the actual myopic allocation

is still given by Eq. 5.4 (we still need to choose a vector zt such that Qt is equal to

the approximation and meets the constraints). We begin by restating Qt from Section

5.2.2:

Qt(zt, x̃t) =
J∑

j=1

qjt (zjt, x̃jt) ,

where

qjt (zjt, x̃jt) = d (µjt − (x̃jt + zjt)) + (d+ h)

∫ x̃jt+zjt

−∞
Fjt(u)du.

The variables µjt and x̃jt are substituted with the aggregate variables Mt and X̃t,
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and the allocations zt are replaced with the number of nodes to arrive in time t, yt−L.

Also, Fjt(u) is replaced with the standard normal cdf Φ
(

u−µjt

σjt

)
. The approximate

single-period penalty cost function Qt is written as

Qt =
J∑

j=1

qjt = d
(
Mt −

(
X̃t + yt−L

))
+ (d+ h)

J∑

j=1

∫ x̃jt+zjt

−∞
Φ

(
u− µjt

σjt

)
du. (5.5)

Since the minimization in (5.4) is computed over zt (not the order size, y), and d and

h are both positive, the myopic allocation problem reduces to

Rt(x̃t, yt−L) = min
zt

[
J∑

j=1

∫ x̃jt+zjt

−∞
Φ

(
u− µjt

σjt

)
du

]
(5.6)

subject to: zt ≥ 0,
J∑

j=1

zjt = yt−L.

Denote the approximation of the minimum value of the myopic allocation, Rt,

as R̂t. Zipkin derives an expression for R̂t in two steps. In the first step, the non-

negativity constraint, zt ≥ 0, in (5.4) and (5.6) is relaxed. Under this relaxation, all

bands collapse into a single aggregate band. The allowance of negative values for some

entries in zt implies, in effect, that some nodes may be “taken” from one band and

moved to another. With this relaxation, it is possible to separate the decision of how

many nodes to order and the decision about where to allocate them once the order

arrives.

This relaxation of the problem is justified by what is termed the “allocation as-

sumption” in inventory control [Eppen and Schrage 1981]. This assumption states
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that, when a order arrives, we can make an allocation such that the probability of

falling below the target levels in each band is the same in the next period. This as-

sumption is contingent on the batch size being large enough to accommodate this al-

location; if the batch size is sufficiently large, then the relaxation of the non-negativity

constraint will not affect the solution to the minimal cost problem (5.4).

In the second step, the optimality conditions for the remaining problem (after

relaxation of the constraints) are manipulated (see Zipkin [1982]) to yield (using

Φ−1
jt (

u−µjt

σjt
) = µjt + σjtΦ−1(u)):

J∑

j=1

(
µjt + σjtΦ

−1

(
d+ ξ

d+ h

))
= X̃t + yt−L,

which is equivalent to

Mt + S2
tΦ

−1

(
d+ ξ

d+ h

)
= X̃t + yt−L, (5.7)

where ξ is the Lagrange multiplier. Since the Lagrange multiplier is equal to the

derivative of the minimum value of the relaxed problem, i.e. ξ = ∂Rt/∂yt−L, we can

obtain the approximation R̂t by solving (5.7) for ξ,

ξ = −d+ (d+ h)Φ

(
X̃t + yt−L −Mt

St

)

and integrating over yt−L to get

R̂t

(
X̃t, yt−L

)
(5.8)

≡ d
(
Mt − X̃t

)
− dytL + (d+ h)

∫ X̃t+yt−L

−∞
Φ

(
U −Mt

St

)
dU

= d
(
Mt −

(
X̃t + yt−L

))
+ (d+ h)

∫ X̃t+yt−L

−∞
Φ

(
U −Mt

St

)
dU,



122

where the constant term of the integration is d
(
Mt − X̃t

)
.

5.3.3 Integration of the approximate myopic allocation into the dynamic

program

The Bellman equation for the original dynamic programming formulation of the

replenishment problem stipulated a minimization of the total expected costs over the

number of nodes to order y and where the nodes should be deployed z. Eq. 5.2 is now

restated for reference:

ft(x̃t, ŷt) = min
yt,zt

[Ct(yt) +Qt(zt, x̃t)) + E [ft+1 ((x̃t + zt −wt), ŷt)]] .

Using the aggregate variables introduced in Section 5.2.3, an approximation to ft

is

f̂t
(
X̃t, ŷt

)
= min

yt,zt

{
Ct(yt) +Qt(zt, x̃t) + E

[
f̂t+1

(
(X̃t + yt−L −Wt), ŷt

)]}
.

In the recursion term f̂t+1, the allocation zt was replaced with yt−L, and the node

level deviation vector, x̃t, was replaced with the sum level deviation over all bands, X̃t.

Thus, the single period node level penalty Qt(zt, x̃t) is independent of both the fixed

costs Ct(yt) and the recursion f̂t+1. Therefore, we can rewrite f̂t as two independent

minimizations,

f̂t
(
X̃t, ŷt

)
=

min
yt

{
Ct(yt) + E

[
f̂t+1

(
(X̃t + yt−L −Wt), ŷt

)]}

+min
zt

{Qt(zt, x̃t)} ,
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where the second minimization is the myopic allocation. Therefore, the minimizations

over yt and zt are separate. This suggests that, up to the approximation f̂t+1, the

myopic allocation is optimal in period t. At this point, the dimensionality of the

minimization over yt is L+ 1, instead of L+ J , and the allocation minimization has

dimension J . Since the cost minimizations for orders and their allocations can be

separated, the problem can now be reduced to a problem in terms of X̃ and yt by

replacing minzt {Qt(zt, x̃t)} with the value of the approximate myopic allocation R̂t

(Eq. 5.8). This yields a problem with L+ 1 dimensions:

f̂t
(
X̃t, ŷt

)
=

R̂t

(
X̃t, yt−L

)

+min
yt

{
Ct(yt) + E

[
f̂t+1

(
(X̃t + yt−L −Wt), ŷt

)]}
.

5.3.4 Cost shifting

The final step in reducing the dynamic program that solves the replenishment

problem is to shift the way that the costs are counted. Note that, once an order is

placed, there is nothing that can be done at time t to affect the situation in any band

until period t+L. Therefore, we do not change the nature of the problem by counting

in period t the expected penalty costs previously incurred in period t+ L.

Viewed from period t, the number of nodes over the entire network in period t+L

will be

X̃t+L = X̃t +
t−1∑

s=t−L

ys −
t+L−1∑

s=t

Ws (5.9)

= X̃∆
t − W̄t,
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Where X̃∆
t is the sum of X̃t and all orders that have been placed but have not

yet been delivered, and W̄t is the sum of all expected node failures overall bands and

through time periods t . . . t+L. The expected penalty cost in period t+L is therefore

Pt

(
X̃∆

t , yt
)

(5.10)

= EW̄t

[
R̂t+L

(
X̃∆

t − W̄t, yt
)]

=

∫ {
d
(
Mt+L −

(
X̃∆

t − W̄t + yt
))

+ (d+ h)

∫ X̃∆
t −W̄t+yt

−∞
Ḡt+L(U)dU

}
dḠt

(
W̄t

)
,

where Ḡt is the aggregate failure distribution (summed over J and L) with mean and

variance defined in Section 5.2.3. By reversing the order of integration

Pt

(
X̃∆

t , yt
)
= d

((
Mt+L + M̄t

)
−
(
X̃∆

t + yt
))

+ (d+ h)

∫ X̃∆
t +yt

−∞
H(U)dU, (5.11)

whereHt is the convolution of the two normal distributions, Ḡt and Φ
(

X̃t+L+yt−Mt+L

St+L

)
.

At this point, we can define gt
(
X̃∆

t

)
as the minimum total expected ordering and

penalty costs incurred in periods t through T , given the network state is X̃∆
t in period

t. Starting with the terminal costs, gT−L+1 = 0, and for t ≥ T − L,

gt
(
X̃∆

t

)
= min

yt≥0

{
Ct(yt) + Pt

(
X̃∆

t , yt
)
+ E

[
gt+1

(
X̃∆ + yt −Wt

)]}
. (5.12)

This is a single-dimension dynamic program with no lead time, failuresWt, and convex

penalty costs Pt. The form of this dynamic program (with fixed plus linear ordering

costs) is known to result in a solution of type (s, S) [Clark and Scarf 1960]. That



125

is, if the number of nodes in the network is below s, then we order enough nodes to

increase X̃t up to S.

In order to treat the non-stationarity of the lead-time failure rate, we require a

forecasting method that will adapt to trends in the failure distribution parameters.

So far we have explicitly stated that the lead-time failure distribution is a normal

distribution Ḡt with time-varying means and variances M̄t and S̄2
t . In the next sec-

tion we will describe the lead-time failure model and justify the use of the normal

distribution to characterize lead-time failures.

5.4 Failure Process Model

The future values of the failure process are unknown and therefore can be treated

as a random variable. Since replenishment opportunities are constrained by the fixed

lead-time, L, our primary focus is the expected number of node failures in all bands

over a finite planning horizon, Th that is greater than or equal to the lead-time. These

lead-time failures (LTF) are the aggregate of unknown future values Wt defined as

W̄t =
∑t+Th−1

t=1 Wt.

We use a trend-corrected exponential smoothing method first introduced by [Holt

1957] in order to estimate the LTF distribution from the time series of observed

failures. Essentially this model is a decomposition of the series of lead-time failures

into three components: (1) the current base level of failures; (2) the rate of increase

or decrease of the base level; and (3) an error term.

Subplots 2-4 in Figure 5.2 shows this decomposition for a simulation running for

85 periods until network failure (with no replenishment). Subplot 1 (top) shows the

number of failures in the entire network for each period. Subplot 2 shows the base level

parameter of the process. It appears that the parameters of the failure distribution are

non-stationary as the base level is increasing with time. Although this figure suggests
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an increasing failure rate, the actual mean failure rate shows flat, decreasing, and

increasing trends as we replenish the network with new nodes. Subplot 3 shows the

rate of change in the base level, and the bottom subplot shows the residual errors

between the model and the data. The model is updated after each observation. The

general smoothing formula is

Wt = lt−1 + bt−1 + et (5.13)

lt = lt−1 + bt−1 + αet

bt = bt−1 + αβet

where lt is the base level term, bt is the rate of change in the base level (trend), and

et is the random error component. The constants α and β are called the smoothing

parameters.

After each observation of the failures, the error et is computed as Wt − Ŵt, where

Ŵt is the predicted number of failures in period t and Wt is the actual number of

failures. The unknown parameters α and β are determined by minimizing the squared

prediction error. The model is fully specified by the distribution of the error term et.

We assume that the errors are independent and identically distributed, following a

normal distribution with mean 0 and unknown variance σ2. Figure 5.3 shows the

histogram of the residual error term and a Q-Q plot comparing the data to a normal

distribution. The data set was tested for normality using a Shapiro-Wilk test [Shapiro

and Wilk 1964], resulting in a p-value of 0.98.
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Figure 5.2: Subplot (1) shows the total failures for a single simulation run (to network
failure). Subplots 2-4 show the decomposition of the failure process into (2) base level, (3)
trend, and (4) error.

The calculations for forecasting the sensor lead-time failures are

Ŵt = l̂t−1 + b̂t−1 (5.14)

l̂t = l̂t−1 + b̂t−1 + α
(
Wt − Ŵt

)

b̂t = b̂t−1 + αβ
(
Wt − Ŵt

)
.

In order to obtain an estimation of the failures for period t . . . t+ k at the end of

period t, we compute l̂t + kb̂t. The mean and variance of the lead-time failures are
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Figure 5.3: Testing normality of error data.

computed as:

M̄t = lt + Thbt

and

S̄2
t = S2

t

[
1 +

Th−1∑

k=1

(α + kβ)

]
.

The variance depends only on the smoothing parameters and the length of the plan-

ning horizon, not on the observed failure rates. In fact, the smoothing parameters α

and β are determined using a least-squares minimization of the forecast error over

the planning horizon from simulation data. Different values of Th will yield different

parameter values. The result of the trend-corrected smoothing and a 20 period fore-
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cast of the failure rate are shown in Figure 5.4 for the initial test data. The colored

bands around the forecast in the bottom subplot are the 0.95 confidence intervals of

the forecast.
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Figure 5.4: Holt smoothing technique and forecasting for a planning horizon of 20 periods.

5.5 Allocation Strategy

Once a batch order is received at the controller, the total batch size is to be divided

among the individual bands according to an allocation strategy. Many heuristics are
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described in the literature for allocating stock to multiple retailers. Most of these

studies use the fraction of customer demand at each retailer to distribute orders.

Since we are observing failures in each band while waiting for an order to arrive, it

makes sense to distribute the new batch among the bands according to which bands

are experiencing the most failures. However, in our case, we have overdeployed nodes

at the bands near the base station at the initial deployment, and it is neither necessary

nor desirable to maintain these high densities as the network approaches the mission

lifetime. Therefore, we introduced a moving target level for each band ρjt in Sec. 5.2.1;

these target levels decrease linearly from the initial deployment levels in each band

down to the critical levels required for connectivity and coverage over the length of

the mission time. The intent is to have the minimum number of nodes remaining on

the field as the mission ends.

We are considering two variables in the allocation decision. The first is the fraction

of failures that have occurred in a band j over the last L periods; this fraction is

denoted v1,j. The second is the fraction of deviation from the moving target level ρjt

for band j, denoted v2,j = (ρjt − xjt) /
∑J

j=1 (ρjt − xjt). The allocation is then given

as a linear combination of v1,j and v2,j:

zj = yt−L [av1,j + (1− a)v2,j] , (5.15)

where a is a constant expressing the weight given to the two variables.

An updated block diagram (revised from Figure 5.1) of the approximate replen-

ishment controller is shown in Figure 5.5. The approximate DP controller and the

myopic allocation blocks are now separate. The input to the failure forecast is an

aggregate of all of the node failures in all bands at the end of the last period. The

failure forecast provides the approximate DP controller with an estimate of the mean

and variance of the expected node failures over the next planning horizon. The ap-
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Figure 5.5: Overview of the approximate replenishment controller. (1) The deviation of the
node level from the target level in a band j at any time is given by x̃j . (2) Node failures
in all bands are provided to the approximate controller as the aggregate variable W . (3)
The failure forecast method uses this information to compute an estimate of the mean
and variance of the aggregate failures in all bands over the next planning horizon. (4) The
forecast of future failures and the aggregate of node level deviations (X̃) is used to compute
the batch size yt to order. (5) When the order arrives after the L periods, a myopic allocation
policy is used to decide how to divide the order among the J bands.

proximate DP controller computes the using the output from the failure forecast, and

the sum of node level deviations over all bands and all orders that have been placed

but not delivered. When computing the optimal order size, the approximate DP con-

troller uses an approximation of the minimum cost of a myopic allocation, R̂t, instead

of computing the allocation z and the order size y that will minimize expected future

costs. The allocation is computed when the nodes arrive, using a myopic allocation

strategy.
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Figure 5.6: Plot of the total failures in each period during a typical simulation run.
The vertical bars represent replenishments.

5.5.1 Effect of replenishments on failure rates

Each time a replenishment is delivered to the network area, nodes that have limited

energy resources due to assuming the role of clusterhead will be relieved of this role

as new nodes that have not yet been assigned a clusterhead role will be more likely

to do so (this is a function of the clusterhead selection protocol). Therefore, each

replenishment has an effect on the failure process. Without accounting for this effect,

the LTF predictions near the time of replenishment will be subject to error, and the

failure process model parameters will become unstable. Figure 5.6 shows the effect

of replenishments on the failure process. The figure shows the aggregate number of

failures in each period (summed over all bands). Beneath the graph of the failure

process are bars that represent the times a batch of nodes was delivered. The height

of the bars indicate the number of nodes delivered (divided by 100). The failure

trend appears to remain relatively stable, while the base level abruptly drops by

some amount right after replenishment. In order to account for the effect of the
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replenishments, we introduce an additional term to the base level update equation,

−ωy0u[t − t0] where y0 is the number of nodes scheduled to be delivered at time t0,

u is the unit step function, and ω is a scaling factor whose value is obtained through

offline simulation. The additional term has the effect of reducing the expected number

of failures beyond the time of replenishment. Once an order has been placed, the

controller factors the reduction in the failure rate in its forecast of the lead-time

failures, and the result is that the controller places larger orders less often, avoiding

the large fixed cost for deployment.

5.6 Simulations

To test the replenishment strategy, we implemented the replenishment controller

in the MATLAB simulation from Chapter 3. The values for the smoothing parameters

were computed using a separate series of simulation runs where we allowed the network

to run to failure. We also fixed the value of a, the allocation parameter from Sec. 5.5

to a constant value of 0.25. The simulation topology was similar to Figure 3.11. We

used 6 bands and an initial deployment of 1700 nodes. The replenisher computed

forecasts of failures for 20 periods into the future at each stage, hence the dynamic

program was solved for a 20-period planning horizon. In order to see the effects of

varying lead-times, we ran the simulation for lead-time values of 5, 10, 15, and 20. In

each simulation, the mission lifetime was set to 250, more than 3 times the maximum

lifetime of the initial deployment. We set the penalty costs to d = 3 and h = 1.5, and

the fixed cost K was set to 500.

Figures 5.7(a)-5.7(c) show the total number of nodes active in the network with

respect to time for 5, 10, 15 and 20 period lead-times and a 20-period planning

horizon. The straight lines represent the sum of the target levels for all bands over

time,
∑6

j=1 ρjt.
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Figure 5.7: Simulation results: node level of the entire network over time, with replenish-
ments. The black oscillating curves are the total number of active nodes in the network.
The straight red line is the sum of the target levels over all bands.

Figure 5.8 shows the number of active nodes in each band scaled by the area of

each band (the node densities) over time. The allocation levels given to each band are

evident from the “jumps” in the density. Note that at the end of the mission lifetime,
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the bands densities are near equal (i.e., the network ends in a uniform deployment).
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Figure 5.8: Node densities in each band over time with allocations.

5.7 Discussion of Replenishment Simulations

In this chapter, we have extended the deployment strategy from Chapter 4, where

we have added a replenishment controller in order to extend the lifetime of an initial

deployment to meet a mission lifetime. The use of a replenishment strategy is justified

by the fact that, as we add additional nodes to the initial deployment, the increase

in the lifetime of the network begins to flatten out. Moreover, the quality of the

network, in terms of capacity and interference, begins to decrease. We have shown

that the problem of replenishing networks with differential node densities is similar

to the problem of multi-location inventory control. We showed that the formulation

of this type of problem requires a dynamic program with a large state space, and

that the non-stationarity of the failure rates further increases the complexity of the

problem. Using a technique introduced by Zipkin, we reduced the problem size to

a single dimension. The technique requires us to apply the allocation assumption,

which holds that, given an order arriving from L periods in the past, the order size
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will be sufficient to replenish each location in such a way that the probability that

any of the bands will fail over the next lead-time is roughly equal. This assumption

holds for our problem the initial deployment and the target levels for replenishment

are obtained from the deployment strategy from chapter 4. The initial deployment

strategy specifies a differential deployment that aims to balance the residual energy in

each band so that a minimum amount of energy is wasted at the end of the network.

Another reason that the allocation assumption holds in our case is the way that

nodes are allocated to bands in the myopic allocation strategy. The myopic allocation

considers both the deviation at the current time period from band target levels and

the fraction of failures over the past lag time in each band.
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Figure 5.9: An example of phase transitions in the node failure rate for a single band.

Figure 5.9 shows the cumulative failures of a single band over time. The graph

exhibits what appears to be three phases of failure (each phase is boxed in the figure):

(1) an initial phase, where no nodes are failing, (2) a “linear” phase, where nodes
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begin failing at an approximately constant rate, and (3) a critical phase, where nodes

are failing with an exponentially increasing rate. The interpretation of the transition

between the linear and critical phases is that, at the beginning of the critical phase,

the number of nodes in the band is near the minimum levels set for connectivity

guarantees; thus, messages sent from a CH must traverse many more hops to exit the

band, and so more energy is being consumed in the band. If bands were allowed to

enter this critical phase, the exponential smoothing method used to forecast failures

would not be able to track the failure trend accurately, insufficient nodes would be

ordered to balance the bands, and the network would fail prematurely. By considering

the fraction of failures as well as the target level deviations, we are reacting to both

the long-run failures and the recent changes in the failure trends. The result is that

the myopic allocation helps to prevent bands from exiting the linear phase.

We tested the replenisher for various lead-time values. The effect of a longer lead-

time appears in Figure 5.7(d) for L=20. In this case the lead-time is equal to the

planning horizon. We can see from the figure that, in this case, the replenisher consis-

tently under-ordered, resulting in node levels well below the targets. A trend between

the lead-time and the amounts that node levels fall below the targets becomes clear

as we look at Figures 5.7(a)-5.7(d), which show the number of active nodes over time

for L = 5, 10, 15, and 20. Since a penalty is incurred for node levels below the target

in each period, the effects of the lead-time can be easily seen by comparing the total

cost (penalties and actual costs) of a replenishment versus the lead-time as shown in

Figure 5.10.

In Section 5.3 we derived a cost function gt, which represents the minimum total

expected ordering and penalty costs incurred in periods t through T . In our im-

plementation, gt is computed in each period over the planning horizon, since the

non-stationarity of the failure process precludes us from planning out until the end
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Figure 5.10: The effect of the lead-time on the total cost of the mission.

of the mission lifetime. The value of yt (the order) that minimizes gt is the optimal

batch size for period t. Figure 5.11 shows two instances of gt from our simulations.

The dashed line represents the case where the optimal batch size is zero, thus no

order is placed. The solid line represents a case where the minimum value for gt cor-

responds to yt = 477. The jump in the cost functions at yt = 0 corresponds to the

fixed cost for ordering and deploying the nodes. If the fixed cost is increased, the time

that an order is placed will be delayed, and the size of the order will increase. The

values of the penalty costs d and h will also affect the frequency of orders and the size

of the batches. Therefore, given a fixed lead-time, it may be possible to simulate a

network prior to deployment in order to find penalty values that will result in better

performance.
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Figure 5.11: Characteristic shape of the cost function, gt. The minimum of the cost function
specifies the number of nodes to order. The dashed line shows a curve where the optimal
decision is not to order any nodes. The solid line shows a minimum at 477, so the decision
is to order nodes.

5.8 Comparison with the Full Multi-band DP Controller

In this section we compare the total costs, including the fixed cost for deploy-

ment, the penalties for surpluses and shortages of nodes, and the number of nodes

delivered, for a three-band deployment using both the multi-band dynamic program-

ming controller from Eqs. 5.2 and 5.3, and the proposed approximation given in Eq.

5.12. Recall that the motivation for introducing the relaxed version of the full dy-

namic programming problem was due to the potentially large dimensionality of the

state space. The dimensionality of the full DP problem grows exponentially with the

mission time, the number of bands, and the lead-time. The approximate controller

reduces the problem to a single-dimension dynamic program with zero lead-time by

separating the computation of the optimal number of nodes to order over the next

lead-time and the allocation of these nodes among the bands once the order arrives.
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This relaxation provides means that significantly fewer points need to be computed

to obtain the optimal solution (in the sense that the number of nodes to order and

the bands over which to allocate them minimizes the cost function in Eq. 5.12).

As an illustration, consider the number of feasible points that would have to be

computed for the optimal allocation of a given number of nodes across 7 bands. The

number of ways to allocate Y nodes among J bands is equivalent to the number

of ways to write Y as a sum of J positive integers. This is known in combinatorics

as the Bars and Stars problem, where one wants to find all the possible ways to

partition Y stars with J bars. For example, one possible partition of 7 stars with

2 bars is 2 + 2 + 3 = 7 or ⋆ ⋆ | ⋆ ⋆| ⋆ ⋆ ⋆ . The total number of possible ways to

partition Y stars with J bars (or allocate Y nodes to J bands) is given by
(
Y−1
J−1

)
,

so the number of points to compute grows very rapidly. For 7 bands and an order

of 300 nodes, there are nearly 944 billion possible allocations. The approximate DP

avoids this calculation when ordering nodes by approximating the minimum cost of

of the allocation using only the number of nodes ordered and the sum of all node

level deviations (Section 5.3.2). When a batch arrives the approximate DP controller

allocates them according to the most recent information about node level deviations

and the fraction of failures across bands. In the full DP approach, we would calculate

the cost function for each of these possible allocations for every possible order size

over L time steps. By comparison, the relaxation of the full DP problem allows us to

compute the optimal order size with respect to the aggregate lead-time failures as if

there were only a single band, and then compute the best allocation once the nodes

arrive.

There will certainly be a loss of optimality when using the approximate DP formu-

lation; the goal of this section is to provide a cost comparison of the two approaches

for a single deployment scenario. The increased costs incurred by the approximation
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are a result of a loss of information to the controller when it views all lead-time fail-

ures as an aggregate statistic. Specifically, there are occasions where node levels in

one band are below the target while levels were above target in another band. These

deviation values from the target levels are received by the controller as aggregates

where the negative and positive levels have cancelled each other out, indicating that

no bands are below target level. The effect is that the controller may delay an order,

or place too small an order.

5.8.1 Simulation setup and cost comparison

To make the simulation times feasible, we chose a smaller scenario with three bands

and an initial deployment of about 250 nodes to compare the costs between the full

DP approach and the approximate controller. The mission lifetime was set to 200

rounds. The two controllers each begin with the same initial deployment computed

using the Dynamic deployment strategy from Chapter 4. They both apply the same

lead-time failure forecasting method from Section 5.4. The full DP approach receives

a forecast of the distribution of lead-time failures for each band and each time step

over the planning horizon. The approximate controller uses an aggregate distribution

of the sum of lead-time failures over all bands and for the entire planning horizon.

Both controllers can order up to 70 nodes in a batch. The fixed cost K was set to

300, and the shortage (d) and surplus (h) costs were set to 0.9 and 0.1, respectively.

The cost of a sensor (cs) was set to 1.

We ran 80 simulations for the comparisons. Each controller was evaluated 10 times

for each of the four lead-times, L = 5, 10, 15, and 20. The distribution of the average

times to compute a solution for a single round for the approximate controller is shown

in Figure 5.12(a). The approximate controller took about 4 seconds to compute a

single order and allocation solution, including the time required to estimate the lead-
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Figure 5.12: Comparison of the average times to compute the minimum cost order and
allocation for the approximate DP and the full DP controllers. Each data point is the
average for one simulation. The full DP controller typically requires more than 700 seconds
to compute the solution for a single round in a three-band problem. The approximate DP
controller requires an average of 4 seconds per round.

time failure distribution. The average time distribution for the full DP controller

is presented in Figure 5.12(b). The full DP controller required over 700 seconds per

round to evaluate the cost function over the 3 bands and a 20 period planning horizon;
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each full DP simulation took approximately 40 hours to complete.
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Figure 5.13: Comparison of the total costs (ordering costs and node level penalties) for the
full DP controller and the approximate controller over lead-times of 5, 10, 15, and 20. The
full DP approach is shown in dark columns.

The costs incurred by the replenishment controller include the ordering costs and

penalties related to node levels in each round. The ordering cost as a function of the

order size is given by

Ct(yt) = (yt > 0)K + csyt.

The penalties across all bands in round t are

Qt(xt) =
J∑

j=1

h (xjt − ρjt)
+ + d (xjt − ρjt)

− .

The total cost is the sum of all of the ordering costs and penalty costs over the 200

round simulation time. Both controller types are evaluated using the same metric.
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Figure 5.13 shows the average total costs over 10 simulations for each lead-time.

The dark columns indicate the average cost of the full DP controller and the light

columns are the costs for the approximate controller. In these simulations, the approx-

imate controller is between 17% and 24% more costly than the full DP controller. Both

controllers show an increasing total cost with respect to lead-time. It is not clear from

these results whether the costs increase at the same rate as the lead-time increases.
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Figure 5.14: Comparison of the shortage penalties for the full DP controller and the ap-
proximate controller over lead-times of 5, 10, 15, and 20. The full DP approach is shown in
dark columns.

Figure 5.14 shows the penalties incurred by both controllers for having node levels

below the target level. The approximate controller shortage penalties are consistently

higher than for the full DP controller. The rate of increase over the lead-times also

appears higher for the approximate controller. Figure 5.15 shows the average shortage

and surplus penalties as a percent of the total cost of the mission. Here we can see that

the shortage penalties for the approximate controller are always a higher percentage of
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the total mission cost than for the full DP controller. However, the shortage costs are

consistently a lower percentage of the total costs for the approximate controller than

the full DP controller. These observations suggest that the approximate controller

is either under-ordering, not ordering early enough, or not ordering as often as the

full controller does. However, both controllers show the same trend as the lead-time

increases. At shorter lead-times, both controllers pay a larger percentage of penalties

for being above target thresholds. Then, as lead-times (and total costs) increase, both

controllers pay a larger percentage of the total cost to shortages.

5.9 Cost Comparison for the Full DP and the Approximation
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Figure 5.15: Comparison of the percentage of the total costs from shortages and surpluses
for the full DP controller and the approximate controller over lead-times of 5, 10, 15, and
20.

We conclude that the difference in costs between the approximate controller and

the full DP controller are primarily due to shortage costs. Figures 5.16(a) and 5.16(a)

show the average surplus penalties and the average number of nodes deployed for
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both controllers. The average surplus penalties for both controllers is nearly the same

with the exception of the 20 round lead-time (where the DP controller has higher

surplus penalties). The number of sensors added to the network over the mission

lifetime is also very similar. In the 15-round lead-time, the average number of sensors

deployed is higher for the approximate controller than the DP controller, even though

the average shortage penalties are lower for the full DP controller. It appears that the

full DP controller is reducing costs over the approximation by ordering nodes sooner

than the approximate controller.
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Figure 5.16: Comparison of surplus penalties and the number of nodes added to the network
over the mission lifetime for the full DP controller and the approximate controller over lead-
times of 5, 10, 15, and 20. The full DP approach is shown in dark columns.
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6. Conclusion

Over the past 15 years, the concept of Wireless Sensor Networks (WSNs) has

invited a large amount of research. This research addressed a diverse set of topics

related to wireless communications, large-scale modeling and simulation, distributed

algorithm design, and power-aware versions of routing protocols, MAC protocol de-

signs, time-synchronization, and signaling. Much of the appeal of WSN research de-

rives from the elimination of some traditional constraints that are present in network

research. Unlike typical wireless data networks, WSNs are not subject to the require-

ments of application and transport layer standardization such as TCP/IP. WSNs also

introduce an interesting new set of issues pertaining to sensor coverage of a monitored

area, event detection probability, the amount of energy consumed in an idle state, and

the number of sensor nodes required to monitor an area. The relatively short life-span

of a (presumably inexpensive) sensor node also leads to new and interesting definitions

of network state. In wireless communication networks, the network state is typically

given by metrics related to throughput, for example, queue length and channel state.

In a WSN, the network state is often given in terms of the active set of nodes, or the

set of awake nodes to control network coverage, connectivity, and lifetime. Thus, the

questions one must ask when designing a controller for a sensor network are often

about how many nodes to deploy, and where they should be deployed. Other related

challenges are how these nodes should organize to form a network, and how the data

should be routed to the base station. Another unique feature of sensor networks is the

inherent many-to-one traffic pattern. Whether the WSN is event-driven, periodic, or

user-driven (a network user requests information from the WSN), the data must be

gathered from disparate physical locations and delivered to a single terminal node.

In this study, we have addressed problems associated with deploying a monitoring



149

WSN over a large area. These problems, each of which are related, include maximizing

the active lifetime of the network (given a specified number of nodes to deploy),

reducing the amount of wasted energy (the amount of energy remaining in the network

upon failure), addressing the biased energy consumption rate (BECR) phenomenon

inherent in WSNs, and ensuring connectivity and coverage as the network experiences

node failures. We also address the problem of replenishing nodes after the initial

deployment in cases where a single deployment is not feasible for longer lifetime

requirements.

Some studies have addressed these issues by designing network architectures and

algorithms whose focus is reducing the number of messages that are passed through

the network. These include the efficient clustering algorithms developed in [Bandy-

opadhyay and Coyle 2003b] and [Heinzelman et al. 2000]. Other authors addressed

the problem of unbalanced energy consumption and network lifetime through the ad-

dition of relay nodes with more powerful transmitters that can reach the base station

in a single (or a few) hops. More recent work, emphasizing the role that BECR plays

in determining the lifetime of the network, has focused on the use of a differential de-

ployment in order to balance energy consumption in the network and extend lifetime.

These include strategies for adding relay nodes in a clustered architecture [Xu et al.

2005], deploying sensor nodes in a flat architecture [Wang et al. 2006], and deploying

sensor nodes that may be either clusterheads or non-clusterheads Liu [2006]. In our

survey of the literature, we have not found any work that addresses the problem of

replenishing WSNs.

We have focused on networks deployed with homogenous node types; all nodes

act as either a clusterhead node or a non-clusterhead node. We further considered

clusterhead selection similar to the LEACH protocol, where nodes act as a clusterhead

with a specified probability. We have derived an expression for the expected lifetime
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of a network as a function of the specified probabilities of being a clusterhead and

the density of nodes in annular regions surrounding the base station. We also derived

an expression for the wasted energy remaining in the network at the time of network

failure. These two expressions were employed as objective functions in an optimization

problem (maximiziation of network lifetime) with decision variables p = {pj}Jj=1, the

vector whose elements are the specified clusterhead probabilities for each annular

region, and λ = {λj}Jj=1, the node density in each region. This optimization problem

is computed with respect to constraints on capacity, coverage, and connectivity, which

we have derived using results from the literature. The result is, for given constraints

on coverage, capacity, the number of available nodes for deployment, and the size

of the region of deployment, the optimization program will provide an optimal node

densities, λ and clusterhead probabilities p that maximizes the lifetime of the initial

deployment. We have shown that this solution provides an initial deployment that

will extend the lifetime of the network (by an average of 20%) beyond an optimal

differential deployment where the clusterhead density is the same in all regions, as well

as a uniform deployment (with an average percent increase of 200%). Furthermore, our

approach minimizes the wasted energy remaining in the network. Thus, our approach

to computing the optimal deployment for a given number of nodes improves existing

techniques with no additional cost and little added complexity (all that is required is

to pre-program nodes with the optimal values of p, or provide a means for nodes to

estimate their distance from the base station and select the appropriate value from a

table).

Another benefit of our approach is that it generalizes work that has been done

on computing optimal clusterhead densities in a clustered architecture. Usually, the

decision of whether or not to use a clustered architecture is first made, then the

optimal clusterhead densities are computed. The approach described in this study
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may be used to determine whether a clustered architecture is optimal, and will provide

the appropriate densities. Furthermore, our approach provides a deployment strategy

that combines both flat and hierarchical architectures; the output of the optimization

problem specifies a hybrid deployment when appropriate.

Finally, we have provided a method for determining the order size and allocation

of nodes over all regions given an initial deployment and a mission lifetime. We have

shown that the problem of determining the orders and allocations of sensor nodes to

replenish the network is analogous to a single warehouse multi-location inventory re-

plenishment problem extensively studied in the Operations Research literature. Our

results show that, for moderate lead-times, the allocation assumption is valid for

this problem, and the full dynamic program required for solving the problem can be

approximated by a single-dimensional problem without lead-times. We show a rela-

tionship between the lead-time and the cost of the network deployment. Our approach

provides a minimum cost replenishment strategy that can easily be computed in a

small fraction of the time that a dynamic programming approach requires. The so-

lution minimizes the cost of keeping the network active until the end of the mission,

subject to performance constraints (coverage and capacity).
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