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Flexural Vibrations and Resonance of
Piezoelectric Cantilevers with a

Nonpiezoelectric Extension
Zuyan Shen, Wan Y. Shih, and Wei-Heng Shih

Abstract—A piezoelectric cantilever (PEC) is a flexural
transducer consisting of a piezoelectric layer [e.g., lead zir-
conate titanate (PZT)] bonded to a nonpiezoelectric layer
(e.g., stainless steel). A PEC with a thin nonpiezoelectric
extension has two distinctive sections, each with a different
thickness, different axial density, and elastic-modulus pro-
files and has been increasingly used as an in-situ biosensor.
It has the advantages of dipping only the nonpiezoelectric
extension part in an aqueous solution without electrically
insulating the piezoelectric section as well as serving as the
bonding pad for receptor immobilization. In this study, we
examined the effect of the thin nonpiezoelectric extension
on the flexural resonance spectrum and resonance vibra-
tion waveforms of PEC; in particular, how the length ratio
between the piezoelectric section and the nonpiezoelectric
extension section affects the resonance frequencies and res-
onance peak intensities of PEC. Theoretical resonance fre-
quencies and resonance vibration waveforms were obtained
using an analytical transcendental equation we derived by
solving the flexural wave equation. Both experimental and
theoretical results showed that the two-section structure
distorted the flexural vibration waveforms from those of
PEC without an extension. As a result, the higher-mode
resonance peaks of PEC with a nonpiezoelectric extension
could be higher than the first resonance peak due to the
two-section structure. With PEC that has a piezoelectric
section of 0.25-mm thick PZT bonded to 0.07 mm thick
stainless steel of various length l1 and a 0.07-mm thick
nonpiezoelectric extension of length l2, we showed that the
first-mode-to-second-mode resonance peak intensity ratio
had a maximum of 5.6 at l1�l2 = 0�75 and the first-mode-
to-second-mode resonance frequency ratio a minimum of
2.2 at l1�l2 = 1�8. These findings will undoubtedly help
optimize the design and performance of PEC.

I. Introduction

A piezoelectric cantilever (PEC) is a flexural oscil-
lator consisting of a piezoelectric layer [e.g., lead zir-

conate titanate (PZT)] bonded to a nonpiezoelectric layer,
e.g., stainless steel or SiO2. Figs. 1(a) and (b) schemat-
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ically show a PEC without and with a nonpiezoelectric
extension, respectively. The latter represents a cantilever
with two distinctive sections, each with a different thick-
ness and different density and elastic-modulus profiles.
They both are used in biological [1]–[5] and chemical [6]–
[12] detection. The nonpiezoelectric extension also may be
narrower than the piezoelectric section [13]. Mechanical
bending oscillations can be generated by applying a small
alternating current (AC) voltage (< 1 V) across the thick-
ness of the piezoelectric layer via the converse piezoelectric
effect, which in turn induces a measurable piezoelectric
voltage in phase with the applied voltage by the direct
piezoelectric effect. A piezoelectric cantilever’s mechanical
resonance frequency and resonance peak intensity can be
detected easily by monitoring the maximum in the real
part or phase angle of the complex electrical impedance
versus frequency spectra. Monitoring a cantilever’s res-
onance frequency has many applications. In mass detec-
tion, a piezoelectric cantilever’s resonance frequency shift
is measured to quantify the small mass attached to the
cantilever surface [14]. In liquid property characterization,
both the resonance peak frequency and the resonance peak
width of a piezoelectric cantilever inserted in the liquid are
measured to simultaneously determine the liquid’s viscos-
ity and density [15]. In liquid-solid transition detection,
an abrupt resonance frequency shift with respect to tem-
perature is measured to identify the transition [16]. For
biological and chemical detection [1]–[10], receptors selec-
tive to a target analyte are immobilized on the cantilever
surface, detection of target analytes binding to the recep-
tors on the cantilever surface is accomplished by monitor-
ing a cantilever’s resonance frequency shift. In dynamic
scanning force microscopy applications, a force gradient is
detected by monitoring the impedance change of a can-
tilever operated at its natural resonance frequency [17].
Compared to silicon-based microcantilever resonators that
require an external actuator for driving and an external
optical system for detection, PEC oscillators have the ad-
vantage that they can electrically self-excite and self-detect
with the actuator, the resonator, and the detector all in
one device. Because silicon-based microcantilevers rely on
an external piezoelectric actuator located at the base of
the cantilever [18], [19], the generated oscillations are in-
sufficient to withstand damping in water [18]. In contrast,
with a built-in piezoelectric layer a piezoelectric cantilever
generates strong vibrations that can withstand damping
in water [8], [9], thus capable of in-water, in-situ biologi-
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(a)

(b)

Fig. 1. A schematic of a piezoelectric cantilever of uniform thick-
ness (a) and that of a piezoelectric cantilever with a nonpiezoelectric
extension (b).

cal detection. To date, all the demonstrated in-water vis-
cosity and biosensing applications involved piezoelectric
cantilevers with a nonpiezoelectric extension. A nonpiezo-
electric extension is most conveniently used as a probe to
dip into any liquid for sensing applications. Although the
resonance spectra of piezoelectric cantilevers of uniform
thickness are well-known [20], [21] and well-characterized,
very little is known for PECs with two distinctive sec-
tions. Furthermore, a PEC of uniform thickness [Fig. 1(a)]
exhibits the strongest intensity in the first resonance peak
and that of higher-order resonance peaks decreases with
an increasing order [14]. The ratio of the n’th resonance
frequency to the first resonance frequency also is predicted
by the solution of the vibration wave equation of a uniform
beam [14], [20], [21]. In contrast, a PEC with a nonpiezo-
electric extension [Fig. 1(b)] exhibited higher resonance
intensity in the second peak than in the first peak and the
ratio of the frequency of the n’th resonance peak to that
of the first peak was quite different from that of a uniform
beam [3], [8], [9]. Little is known about how the length,
width, and thickness ratios of the nonpiezoelectric exten-
sion to the piezoelectric section affect the cantilever flex-
ural vibrations, its resonance frequencies, and resonance
peak intensities.

The purpose of this paper is to investigate both experi-
mentally and theoretically the effect of the length ratio of
the nonpiezoelectric extension to the piezoelectric section
on the cantilever’s flexural vibrations, resonance frequen-
cies, and resonance peak intensities. Specifically, piezo-
electric cantilevers of various nonpiezoelectric extension
lengths and various piezoelectric section lengths were con-
structed and their flexural vibration waveforms and reso-

Fig. 2. A schematic of a piezoelectric cantilever with a nonpiezoelec-
tric extension. Clearly, there are two distinctive sections, each pos-
sessing a different total thickness as well as different elastic modulus
and mass density distribution in the thickness direction.

nance spectra were examined. Theoretically, a piezoelectric
cantilever with a nonpiezoelectric extension is considered
as consisting of two distinctive sections: the piezoelectric
section and the nonpiezoelectric extension section. Each
section possesses a different thickness, elastic modulus,
and mass density distribution in the thickness direction
(see Fig. 2). The cantilever’s flexural vibration equation
was solved analytically to obtain an analytical expression
for the transcendental equation that can be used to obtain
the cantilever’s flexural vibration waveforms and resonance
spectra numerically.

Previously, Smits and Choi [22] studied the mechan-
ics of a piezoelectric bimorph in an applied electric field.
However, their work applied only to cantilevers of uniform
thickness. In a recent study, Tong and Luo [23] examined
the vibrations and resonance frequencies of cantilevers par-
tially covered by a piezoelectric actuation patch at the rear
end. Although such cantilevers had the two-section geome-
try considered in the present study, the authors considered
only cases in which the patch size was much smaller than
the cantilever length, and the entire cantilever was still
approximated as a uniform beam, i.e., of one thickness,
one elastic modulus, and one mass density [20]. In another
study, Cattafesta, III et al. [24] examined the flexural vi-
brations of a 2.52 cm long piezoelectric cantilever with a
3.81 cm long nonpiezoelectric extension at 200 Hz numeri-
cally using finite-element simulations for micropump appli-
cations. Although the authors considered the two-section
geometry, their study was only for one cantilever size and
focused on the effect of drag on micropump applications.
The present work differs from all previous studies in that
we focused on experimentally and theoretically examining
the effect of the length ratio of a two-section cantilever on
the cantilever’s resonance frequencies and resonance peak
intensities, which no previous studies had examined. In ad-
dition, the analytic transcendental equation obtained for
the two-sectioned cantilevers can be solved easily to obtain
the cantilever resonance frequencies and the resonance vi-
bration waveforms. The fundamental knowledge gained by
this study will undoubtedly help optimize the design and
performances of piezoelectric cantilevers with a nonpiezo-
electric extension.
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II. Experimental

Piezoelectric cantilevers with a nonpiezoelectric exten-
sion were made by bonding a PZT layer 0.127 mm or
0.25 mm in thickness to a stainless steel layer (Alfa Ae-
sar, Ward Hill, MA) longer than the PZT. The stainless
steel was 0.05 mm to 0.1 mm in thickness. The 0.25-mm
thick PZT was purchased from APC International Ltd.,
Mackeyville, PA; and the 0.127-mm thick PZT was pur-
chased from Piezo Inc., Cambridge MA. The PZT layer
was bonded to the stainless steel layer with a conductive
epoxy (GC Conductive Epoxy, GC Electronics, Rockford,
IL). The resonance spectra of the cantilever were obtained
using an Agilent 4294A impedance analyzer (Agilent Tech-
nologies, Santa Clara, CA). The flexural vibration ampli-
tude along the length of the cantilever was measured with
a Keyence laser displacement meter (Keyence, Woodcliff
Lake, NJ). An XYZ positioner with a 10-µm spatial reso-
lution was used to position the displacement meter relative
to the cantilever to obtain the vibration amplitude at dif-
ferent locations along the cantilever length. The cantilever
was rigidly clamped at the end of the piezoelectric sec-
tion with a steel fixture lined with a rubber buffer layer.
Measurements were carried out with cantilevers of 4 mm
in width. The Young’s modules and densities of the PZT
and stainless steel layers are listed in Table I.

III. Theory

Fig. 2 shows a schematic of a piezoelectric cantilever
with a nonpiezoelectric extension with the section with
the piezoelectric layer denoted as section 1 and the section
with the nonpiezoelectric extension as section 2. Sections
1 and 2 have lengths of l1 and l2, respectively. In the cur-
rent investigation, we neglected the glue layer as it is much
thinner and softer than the piezoelectric layer and the non-
piezoelectric layer. Therefore, section 1 is composed of a
piezoelectric layer and a nonpiezoelectric layer of thick-
ness, tp and tnp, mass density ρp and ρnp, and Young’s
modulus Ep and Enp, respectively. Section 2 is composed
of only the nonpiezoelectric layer of thickness tnp, mass
density ρnp, and Young’s modulus Enp. With w denoting
the cantilever width, the bending modulus of section 1 and
that section 2 can be expressed as:

D1 =

w

(
E2

pt4p +E2
npt

4
np +2EpEnptptnp

(
2t2p +2t2np+3tptnp

)
12 (Eptp +Enptnp)

)
,

(1)

and:

D2 = w

(
Enpt

3
np

12

)
. (2)

The mass per unit length in section 1 and section 2 are:

m1 = w (ρptp + ρnptnp) , (3)

TABLE I
Physical Parameters of the Cantilever with an Extension.

Stainless
PZT steel

Density, ρ ∼Kg/m3 7.5 × 103 7.8 × 103

Young’s modulus, E (N/m2) 6.1 × 1010 20 × 1010

and:

m2 = wρnptnp. (4)

Assuming the vibration is harmonic with time with an an-
gular frequency ω, the axial displacement at any position
x and time t, H(x, t), can be written as H(x, t) = h(x)eiωt

where h(x) represents the axial vibration amplitude at po-
sition, x. We also have assumed that the length and width
of the cantilever are much larger than the thickness, and
that the transverse shear force is negligible so the Euler
Bernoulli theory is valid. Damping also is neglected in the
present treatment. The differential equation that governs
h(x) then can be simplified as [20], [21]:

D(x)
d4h(x)

dx4 − m(x)ω2h(x) = 0, (5)

where D(x) and m(x) are the bending modulus and mass
per unit length of the cantilever at position, x. For a
cantilever with a thin extension as depicted in Fig. 2,
D(x) = D1 and m(x) = m1 in section 1 and D(x) = D2
and m(x) = m2 in section 2. The general solutions that
satisfy (5) have the following form:

h(x) = C11 sin(k1x) + C12 cos(k1x) + C13 sinh(k1x)
+ C14 cosh(k1x), for section 1, (6)

h(x) = C21 sin(k2x) + C22 cos(k2x) + C23 sinh(k2x)
+ C24 cosh(k2x), for section 2. (7)

The clamp boundary conditions at x = −l1 requires that:

h = 0, at x = −l1, (8)

and:

dh

dx
= 0, at x = −l1. (9)

At x = l2, the free end boundary condition requires that
the bending moment and the shear force be equal to 0, i.e.:

d2h

dx2 = 0, at x = l2, (10)

and:

d2h

dx3 = 0, at x = l2. (11)

At the boundary between section 1 and section 2 (i.e.,
x = 0) that the axial displacement (vibration amplitude),
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the first derivative of the axial displacement, the bending
moment, and the shear force must be continuous requires
that:

h(x = 0, sec 1) = h(x = 0, sec 2), (12)

dh

dx

∣∣∣∣
x=0,sec 1

=
dh

dx

∣∣∣∣
x=0,sec 2

, (13)

D1
d2h

dx2

∣∣∣∣
x=0,sec 1

= D2
d2h

dx2

∣∣∣∣
x=0,sec 2

, (14)

and:

D1
d3h

dx3

∣∣∣∣
x=0,sec 1

= D2
d3h

dx3

∣∣∣∣
x=0,sec 2

. (15)

Let:

a ≡ D1

D2
, (16)

and:

b ≡ k1

k2
. (17)

Because both section 1 and section 2 vibrate with the same
frequency, ω, from (5), it follows that:

ω2 =
D1

m1
k4
1 =

D2

m2
k4
2. (18)

Therefore, the wave vectors in section 1 and section 2 obey
the following relationship:

b ≡ k1

k2
= 4

√
D2

D1

4

√
m1

m2
. (19)

Eq. (19) indicates that, for any flexural vibration, the ra-
tio, b, between the two wave vectors, k1 and k2 is fixed by
the ratios, D1/D2 and m1/m2, which depend only on the
material constants and geometry of the cantilever. Defin-
ing X11, X12, X21, and X22 as in (20)–(23) (see next page).
Using the boundary conditions, (8)–(15), and the expres-
sions (16)–(23), we can obtain the expressions of seven of
the eight coefficients C11, C12, . . . in terms of the eighth
one as shown in (24)–(31) (see next page). Eqs. (26) and
(27) lead to the transcendental equation:

X11

X12
=

X21

X22
, (32)

or (33) (see next page). Because a, b, l1, and l2 are con-
stants that depend only on the materials and geometry of
the cantilever, (32) or (33) can be solved numerically to
obtain the eigen values, k2,n for the wave vector, k2 where
n = 1, 2, 3, . . . denotes the nth mode. The nth-mode eigen
value, k1,n, for k1 and the nth-mode resonance frequency
fr,n = ωr,n/2π, then can be obtained, respectively, us-
ing (19) and (18). The coefficients for the nth-mode axial
vibration amplitude, hn(x), then can be obtained numer-
ically in terms of C14 using the expressions depicted in

Fig. 3. Phase-angle-versus-frequency spectrum of a 12-mm long
piezoelectric cantilever with an 8-mm long stainless steel extension.
The vertical lines denote the calculated resonance frequencies.

(24)–(31). Note that, when l1 = 0 (l2 = 0), the cantilever
becomes one with a uniform cross section, (33) becomes:

cosh(k2l2) cos(k2l2) = −1, for l1 = 0, (34)

and:

cosh(k1l1) cos(k1l1) = −1, for l2 = 0, (35)

as expected for a uniform-cross-sectioned cantilever of
length l2 and l1, respectively.

IV. Results and Discussions

Fig. 3 shows the phase-angle-versus-frequency reso-
nance spectrum of a PZT/stainless steel cantilever with
a stainless steel extension in which section 1 had a PZT
layer 12-mm long, 4-mm wide, 0.25-mm thick bonded to a
stainless steel layer 0.07-mm thick and the stainless steel
extension was 8-mm long. Off resonance, the cantilever
behaved as a capacitor exhibiting a phase angle of −90◦.
At resonance, the flexural motion gave rise to a peak in
the real part of the impedance. And, hence, a peak in the
phase angle. Denoting the nth-mode resonance frequency
as fr,n, the four resonance peaks were fr,n = 708, 1520,
5400, and 8440 Hz, for n = 1, 2, 3, and 4, respectively. All
four peaks had Qn

∼= 50 where Qn ≡ fr,n/∆fr,n with fr,n

and ∆fr,n denoting the peak frequency and peak width
at half the peak height of the nth-mode resonance, respec-
tively. The ratios fr,n/fr,1 were, respectively, 2.2, 8.0, and
12.2, for n = 2, 3, and 4. Clearly, these ratios were very
different from the values, 6.27, 17.55, and 34.39 known for
a cantilever with a uniform cross section [14], [20], [21].

From the transcendental equation for cantilevers with
an extension, (33), we can see the nth-mode eigen values,
k1,n, k2,n, are related to D1, D2, m1, m2, l1, and l2. Be-
cause the ratios D1/D2, m1/m2, and l1/l2 can be arbitrary,
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X11 ≡
[
b(1 − ab2) sinh(k2l2) − b(1 + ab2) sin(k2l2)

]
[sinh(k1l1) cos(k1l1) + cosh(k1l1) sin(k1l1)]

+
[
(1 − ab2) cosh(k2l2) − (1 + ab2) cos(k2l2)

]
[sinh(k1l1) sin(k1l1) − cosh(k1l1) cos(k1l1)]

+
[
(1 + ab2) cosh(k2l2) − (1 − ab2) cos(k2l2)

]
,

(20)

X12 =
[
b(1 − ab2) sinh(k2l2) − b(1 + ab2) sin(k2l2)

]
[sinh(k1l1) sin(k1l1) + cosh(k1l1) cos(k1l1)]

+
[
(1 − ab2) cosh(k2l2) − (1 + ab2) cos(k2l2)

]
[cosh(k1l1) sin(k1l1) − sinh(k1l1) cos(k1l1)]

+
[
b(1 − ab2) sin(k2l2) − b(1 + ab2) sinh(k2l2)

]
,

(21)

X21 =
[
b(1 − ab2) cosh(k2l2) − b(1 + ab2) cos(k2l2)

]
[sinh(k1l1) cos(k1l1) + cosh(k1l1) sin(k1l1)]

+
[
(1 − ab2) sinh(k2l2) + (1 + ab2) sin(k2l2)

]
[sinh(k1l1) sin(k1l1) − cosh(k1l1) cos(k1l1)]

+
[
(1 + ab2) sinh(k2l2) + (1 − ab2) sin(k2l2)

]
,

(22)

X22 =
[
b(1 − ab2) cosh(k2l2) − b(1 + ab2) cos(k2l2)

]
[sinh(k1l1) sin(k1l1) + cosh(k1l1) cos(k1l1)]

+
[
(1 − ab2) sinh(k2l2) + (1 + ab2) sin(k2l2)

]
[cosh(k1l1) sin(k1l1) − sinh(k1l1) cos(k1l1)]

+
[
b(1 − ab2) cos(k2l2) − b(1 + ab2) cosh(k2l2)

]
.

(23)

C11

C14
=

X11

X12
[− sinh(kl1) sin(kl1) − cosh(kl1) cos(kl1)] + [sinh(kl1) cos(kl1) + cosh(kl1) sin(kl1)] , (24)

C12

C14
=

X11

X12
[sinh(kl1) cos(kl1) − cosh(kl1) sin(kl1)] + [sinh(kl1) sin(kl1) − cosh(kl1) cos(kl1)] , (25)

C13

C14
=

X11

X12
, (26)

C13

C14
=

X21

X22
, (27)

C21

C14
=

1
2
b(1 + ab2)

{
[− sinh(kl1) sin(kl1) − cosh(kl1) cos(kl1)] X11

X12

+ [sinh(kl1) cos(kl1) + cosh(kl1) sin(kl1)]

}
+

1
2
b(1 − ab2)

X11

X12
, (28)

C22

C14
=

1
2
(1 + ab2)

{
[sinh(kl1) cos(kl1) − cosh(kl1) sin(kl1)] X11

X12

+ [sinh(kl1) sin(kl1) − cosh(kl1) cos(kl1)]

}
+

1
2
(1 − ab2), (29)

C23

C14
=

1
2
b(1 − ab2)

{
[− sinh(kl1) sin(kl1) − cosh(kl1) cos(kl1)] X11

X12

+ [sinh(kl1) cos(kl1) + cosh(kl1) sin(kl1)]

}
+

1
2
b(1 + ab2)

X11

X12
, (30)

C24

C14
=

1
2
(1 − ab2)

{
[sinh(kl1) cos(kl1) − cosh(kl1) sin(kl1)] X11

X12

+ [sinh(kl1) sin(kl1) − cosh(kl1) cos(kl1)]

}
+

1
2
(1 + ab2). (31)

⎧⎪⎨
⎪⎩

[
b(1 − ab2) sinh(k2l2) − b(1 + ab2) sin(k2l2)

]
[sinh(k1l1) cos(k1l1) + cosh(k1l1) sin(k1l1)]

+
[
(1 − ab2) cosh(k2l2) − (1 + ab2) cos(k2l2)

]
[sinh(k1l1) sin(k1l1) − cosh(k1l1) cos(k1l1)]

+
[
(1 + ab2) cosh(k2l2) − (1 − ab2) cos(k2l2)

]
⎫⎪⎬
⎪⎭⎧⎪⎨

⎪⎩
[
b(1 − ab2) sinh(k2l2) − b(1 + ab2) sin(k2l2)

]
[sinh(k1l1) sin(k1l1) + cosh(k1l1) cos(k1l1)]

+
[
(1 − ab2) cosh(k2l2) − (1 + ab2) cos(k2l2)

]
[cosh(k1l1) sin(k1l1) − sinh(k1l1) cos(k1l1)]

+
[
b(1 − ab2) sin(k2l2) − b(1 + ab2) sinh(k2l2)

]
⎫⎪⎬
⎪⎭

,

=

⎧⎪⎨
⎪⎩

[
b(1 − ab2) cosh(k2l2) − b(1 + ab2) cos(k2l2)

]
[sinh(k1l1) cos(k1l1) + cosh(k1l1) sin(k1l1)]

+
[
(1 − ab2) sinh(k2l2) + (1 + ab2) sin(k2l2)

]
[sinh(k1l1) sin(k1l1) − cosh(k1l1) cos(k1l1)]

+
[
(1 + ab2) sinh(k2l2) + (1 − ab2) sin(k2l2)

]
⎫⎪⎬
⎪⎭⎧⎪⎨

⎪⎩
[
b(1 − ab2) cosh(k2l2) − b(1 + ab2) cos(k2l2)

]
[sinh(k1l1) sin(k1l1) + cosh(k1l1) cos(k1l1)]

+
[
(1 − ab2) sinh(k2l2) + (1 + ab2) sin(k2l2)

]
[cosh(k1l1) sin(k1l1) − sinh(k1l1) cos(k1l1)]

+
[
b(1 − ab2) cos(k2l2) − b(1 + ab2) cosh(k2l2)

]
⎫⎪⎬
⎪⎭

.

(33)
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Fig. 4. Resonance vibration amplitude versus x (location) of the 12-
mm long piezoelectric cantilever with an 8-mm long stainless steel
extension shown in Fig. 3. The solid lines represent calculated reso-
nance vibration amplitudes as described in the text.

it is conceivable that the ratios, fr,n/fr,1, can depend on
the ratios of D1/D2, m1/m2, and l1/l2, and thus can be
utterly different from those of a uniform-cross-sectioned
cantilever. Given the cantilever dimensions and the mate-
rial constants given in Table I, we solved the transcenden-
tal equation (33) and obtained 671 Hz, 1502 Hz, 5334 Hz,
and 8552 Hz as the theoretical resonance frequencies. The
theoretical ratios of the nth-mode resonance frequencies to
the first-mode resonance frequency, fr,n/fr,1, were 2.24,
7.94, and 12.75 for n = 2, 3, and 4, respectively. As can be
seen, the calculated resonance frequencies and the theoret-
ical ratios, fr,n/fr,1 compared well with the experimental
values with a relative difference equal to or less than 5%
for all four modes, likely a result neglecting the glue layer
and the damping effect. That the theoretical resonance fre-
quencies agree well with the experimental values and that
the resultant fr,n/fr,1 were very different from those ex-
pected from a uniform-cross-sectioned cantilever indicated
that the present model which allowed different bending
moduli and masses per unit length in different sections
of a cantilever indeed captured the essential physics of a
piezoelectric cantilever with an extension.

Fig. 4 shows the measured resonance vibration ampli-
tudes, h1,exp(x) of Mode 1 (open square), h2,exp(x) of
Mode 2 (open circles), and h3,exp(x) of Mode 3 (open tri-
angles) of the cantilever whose resonance spectrum was
shown in Fig. 3. The resonance displacements, h1,exp(x),
h2,exp(x), and h3,exp(x) were measured with an applied
voltage of 0.5 V at 708 Hz, 1520 Hz, and 5400 Hz, re-
spectively. Note that the resonance vibration or displace-
ment amplitude for cantilevers with an extension showed
considerable “distortion” from that of a uniform-cross-
sectioned cantilever, most notably, an enhancement of the
displacement amplitude toward the free end of the stain-
less steel extension. The distortion was particularly clear
in Mode 2 and Mode 3 resonance displacement ampli-
tudes, h2,exp(x) and h3,exp(x). The higher displacement
amplitude toward the end of the stainless extension was

attributed to the fact that the stainless steel extension
(section 2) was thinner and less stiff than section 1. Theo-
retically, hn,th(x) was calculated using the expressions for
the coefficients depicted in (24)–(31) with C14 as an ad-
justable parameter. The value of C14 was chosen such that
hn,th(x = 12 mm) = hn,exp(x = 12 mm). From Fig. 4, we
can see that the theoretical hn,th(x) agreed well with the
experimental hn,exp(x). The good agreement between the
hn,th(x) and the hn,exp(x) and the agreement for the en-
hancement in the displacement amplitude toward the end
of the stainless steel extension further validated the cur-
rent theory that took into account the difference in the
bending moduli and masses per unit length between the
two sections and that it had the accurate expression for
the bending modulus of section 1.

The effect of l1 was examined with the stainless-steel
extension length, l2 fixed and by varying the length of
section 1, l1. The thickness of the PZT and that of the
stainless steel were the same as those in Figs. 3 and 4. The
resultant measured and calculated resonance frequencies
for l2 = 6 mm and l2 = 4 mm for various l1 are plotted
in Fig. 5(a) and (b), respectively. As can be seen in both
cases, the resonance frequency increased with a decreas-
ing l1 and all the measured resonance frequencies were in
good agreement with the calculated resonance frequencies,
validating the calculations.

From (18), we can see that fr,n/k2
i,n =

√
mi/Di where

i = 1 or 2, denoting section 1 or 2 and n the mode. To show
that the model is general and works for all conditions, we
summarize in Fig. 6 all the results shown in Figs. 3–5 in the
form of fr,n,exp/k2

i,n versus l1/l2, where i = 1 or 2, denot-
ing the section, and n = 1, 2, or 3 denoting the mode. One
can see that, for l1/l2, both smaller and larger than one
and for all resonance modes, fr,n,exp/k2

1,n of section 1 and
fr,n,exp/k2

2,n of section 2 collapsed on the solid lines that
represent the numerical values of

√
m1/D1 and

√
m2/D2,

respectively, indicating that the present model indeed rep-
resents a two-sectioned piezoelectric cantilever in a general
form.

A. Effect of l1/l2 on fr,n/fr,1

From the above results, we can see that, unlike can-
tilevers with a uniform thickness that have fixed fr,n/fr,1
ratios where n = 2, 3, . . . , cantilevers with two distinctive
sections of different thickness/bending moduli can have
varying fr,2/fr,1 and fr,3/fr,1 ratios that depend on the di-
mensions and physical parameters of each section. A sum-
mary of the dependence of fr,2/fr,1 and fr,3/fr,1 on l1/l2
is shown in Fig. 7 where we plot fr,2/fr,1 versus l1/l2 and
fr,3/fr,1 versus l1/l2, respectively. The solid lines represent
the calculated values and the full squares the experimen-
tal data. Fig. 7 shows that fr,2/fr,1 (fr,3/fr,1) underwent a
minimum (minima) at intermediate l1/l2 and approached a
constant value at both l1/l2 � 1 and l1/l2 � 1, which was
borne out by the experimental data (full squares). For the
cantilevers we studied in this paper, the minimum value
of fr,2/fr,1 was about 2.2 and occurred at l1/l2 = 1.8,



shen et al.: vibrations and resonance of piezoelectric cantilevers with nonpiezoelectric extension 2007

(a)

(b)

Fig. 5. Resonance frequency versus l1 for (a) l2 = 6 mm; (b) l2 =
4 mm where solid squares, solid triangles, and solid diamonds denote
modes 1, 2, and 3, respectively. The solid lines represent calculated
resonance frequencies.

Fig. 6. fexp/k2
1 (solid symbols) and fexp/k2

2 (open symbols) versus
l1/l2 for all the cantilevers shown in Figs. 3–5. Squares, triangles,
and diamonds represent modes 1, 2, and 3, respectively. The solid
lines represent

√
mi/Di with i = 1 or 2 as described in the text.

(a)

(b)

Fig. 7. (a) fr,2/fr,1 versus l1/l2 and (b) fr,3/fr,1 versus l1/l2 where
the solid squares represent the measured resonance frequency ratio
and the solid lines denote the calculated values.

and the minima of fr,3/fr,1 were about 8 and occurred
at l1/l2 = 1 and l1/l2 = 2.5. The ratios fr,2/fr,1 and
fr,3/fr,1, respectively, approached 6.27 and 17.6 at both
l1/l2 � 1 and l1/l2 � 1 because at l1/l2 � 1 (l1/l2 � 1),
the two-sectioned cantilever asymptotically approaches a
cantilever of uniform thickness of length l2(l1).

B. Effect of l1/l2 on Ir,2/Ir,1

Another characteristic of piezoelectric cantilevers with a
nonpiezoelectric extension is that their highest resonance
peak may not always occur at the first mode, which is
unlike cantilevers of a uniform cross section. We plot the
experimental peak height ratio, I2/I1, versus l1/l2 (full
squares) in Fig. 8(a) where I2 and I1 represent the sec-
ond and first resonance peak heights, respectively. Also
shown in Fig. 8(a) are the asymptotic peak height ra-
tio, I2/I1 = 1/6.24 at l1/l2 = ∞ (open square). Clearly,
there are two regions. In region I where l1/l2 ≥ 1.5,
I2/I1 was always smaller than unity. In region II where
l1/l2 ≤ 1.5, I2/I1 could be larger than unity and peaked
around l1/l2 = 0.6. Examples of spectra in region I in
which the first peak was always higher than the second
peak are shown in Fig. 9(a) with cantilevers of a 8-mm and
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Fig. 8. (a) The measured peak height ratio of Mode 2 to Mode 1
and (b) the calculated [h2(l1)/h1(l1)]/[h2(l1 + l2)/h1(l1 + l2)] versus
l1/l2.

9.2-mm PZT section and a 4-mm nonpiezoelectric exten-
sion length (l1/l2 = 2.0 and 2.3, respectively). Examples
of spectra in region II are shown in Fig. 9(b) with can-
tilevers of a 2-mm, 4-mm, 6-mm, 8-mm, and 10-mm PZT
section, respectively, and an 8-mm nonpiezoelectric exten-
sion length (l1/l2 ranging 0.25–1.25). Clearly, as can be
seen from Figs. 8(a), 9(a) and (b), the ratio l1/l2 played
an important role in determining the resonance peak in-
tensity ratio. This came about because the resonance elec-
trical impedance signals were solely determined by the vi-
bration amplitude within the piezoelectric layer. How the
peak height of a higher-mode resonance compared to the
peak height of the first-mode depended mainly on how
the higher-mode vibration amplitude within the piezo-
electric layer compared to that of the first mode, which
could be strongly affected by the ratio of the length of the
piezoelectric section to that of the nonpiezoelectric exten-
sion, l1/l2. To illustrate this point, we plot the calculated
h1(x) and h2(x) versus x in Fig. 10(a) for the cantilever
with l1 = 9.2 mm and l2 = 4 mm (l1/l2 = 2.3) whose
spectrum was shown as the solid line in Fig. 9(a) and
that for the cantilever with l1 = 6 mm and l2 = 8 mm
(l1/l2 = 0.75) whose spectrum was shown in Fig. 9(b)
as the dash line, respectively. From Fig. 10(a), it can be
seen that second-mode vibration amplitude, h2(x) exhib-
ited a nodal point near x = 0. Note that the second peak
of this cantilever was absent in Fig. 9(a) as consistent
with the presence of the nodal point at x = 0 shown in
Fig. 10(a) which indicated that there was little bending
stress and, therefore, little induced piezoelectric voltage
near x = 0. In contrast, for l1/l2 = 0.75, the second-
mode vibration amplitude within the piezoelectric section
(x ≤ l1) was higher than that of the first mode, indicating
a higher stress and hence a higher piezoelectric response,
although the first-mode vibration amplitude was higher

(a)

(b)

Fig. 9. (a) Phase-angle-versus-frequency of cantilevers with l1/l2,
≥ 1.5 [l2 = 4 mm and l1 = 8 mm (solid line), 9.2 mm (dash line)].
(b) That of cantilevers with l1/l2 ≤ 1.5 [l2 = 8 mm and l1 = 10 mm
(i), 8 mm (ii), 6 mm (iii), 4 mm (iv), and 2 mm (v)], respectively.

than the second mode toward the free end (x = l1 + l2) of
the nonpiezoelectric extension section. As a summary, we
plot the calculated, normalized vibration amplitude ratio,
[h2(l1)/h1(l1)]/[h2(l1 + l2)/h1(l1 + l2)] as the solid curve
in Fig. 8(b) to compare with the experimental peak height
ratio, I2/I1 in Fig. 8(a). Clearly, the normalized vibra-
tion amplitude ratio, [h2(l1)/h1(l1)]/[h2(l1+l2)/h1(l1+l2)]
versus l1/l2 exhibited a peak around l1/l2 = 0.6, as sim-
ilar to the experimental peak height ratio, I2/I1 shown
in Fig. 8(a), indicating that the resonance peak height is
closely related to the relative vibration amplitude of the
PZT part (as normalized by the amplitude at the free end).

It would be of great interest to compare the current
analytical model with existing numerical finite element
method (FEM) models. We are not aware of any FEM
models that have the same geometry as that studied by
the current analytical model. To go further and predict
the quantitative behavior of vibration amplitude and res-
onance peak height ratio, we must consider the vibration
of the cantilevers under a driving condition. In the future,
we will investigate the theory for vibration behavior under
driving conditions using a FEM model.
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(a)

(b)

Fig. 10. The calculated h1(x) and h2(x) versus x for (a) the can-
tilever with l1 = 9.2 mm and l2 = 4 mm (l1/l2 = 2.3) and that of
(b) the cantilever with l1 = 6 mm and l2 = 8 mm (l1/l2 = 0.75),
respectively.

V. Conclusions

For the practical need of a probe to be dipped into liq-
uid for sensing applications as well as the benefits of added
flexibility, a piezoelectric cantilever sensor with a nonpiezo-
electric extension was studied. We have examined both ex-
perimentally and theoretically the resonance behavior of
piezoelectric cantilevers with a nonpiezoelectric extension
of various lengths and length ratios between the two sec-
tions. Experimentally, piezoelectric cantilevers of various
length and various length ratios between the nonpiezoelec-
tric extension section and the piezoelectric section were
constructed, and their resonance spectra and resonance
vibration waveforms were examined. Theoretically, an an-
alytic transcendental equation was derived that was solved
numerically to obtain resonance frequencies and vibration
waveforms to compare with experimental results. Both the
theoretical and experimental results showed that the pres-
ence of a nonpiezoelectric extension distorted the flexural
vibration waveforms from those of cantilevers of a uni-

form thickness. As a result, it also changed the resonance
frequency ratios and the peak intensity ratios between dif-
ferent resonance modes. For a PEC with a 0.25-mm thick
PZT layer and a 0.07-mm thick stainless steel layer, the
first-mode-to-second-mode resonance frequency ratio ex-
hibited a minimum of about 2.2 at l1/l2 = 1.8, and the
first-mode-to-second-mode resonance peak intensity ratio
showed a maximum of 5.6 at l1/l2 = 0.75.
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