1. MOTIVATION & BACKGROUND

*Department of Defense (DoD) mandated JP-8 jet fuel as the single

fuel forward for all military applications, to the extent possible.
-Includes running JP-8 with compression ignition (Cl) engines in
ground applications, as well as flight.

-United States Air Force is military’s largest consumer of JP-8.
sFuture advanced propulsion systems will utilize model simulations for
design and thus chemical kinetic mechanisms are required for full
simulations coupled to computational fluid dynamic (CFD) codes.
*The chemical composition of JP-8 is very complex.

-JP-8 consists of hundreds, if not thousands of hydrocarbon
compounds.

-Compounds range in carbon numbers and chemical classes.

*To gain understanding of JP-8 combustion, properly selected
surrogate mixtures of fewer components are studied.

-2-10 surrogate components comprise mixture.
-n-propylcyclohexane (n-PCH) is a surrogate component that
represents the cycloalkane chemical class for JP-8.

-Coal derived JP-8 from a hydro treating process contains on average

97.3% cycloalkanes. ON

2. OBJECTIVES

sImprove our ability to simulate real fuel combustion in design of

future air-breathing propulsion devices.

*To accomplish the objectives three research tasks have been

identified:

(1) Understand and quantify combustion properties of real fuels.

(2) Select appropriate surrogate components.

(3) Develop detailed reaction kinetic models and strategies for
model reduction.

3. EXPERIMENTAL FACILITIES
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Fig. 1 - PFR Schematic

Table 1 - Initial experimental conditions for n-PCH Reactivity Decrease due

4. EXPERIMENTAL METHODOLOGY

*The PFR is designed to study the effects of temperature and
pressure on the oxidation of hydrocarbon fuels with relative
isolation from fluid mechanics and temperature gradients.
*PFR experiments are conducted using the Direct Transfer

Controlled Cool Down (DT-CCD) methodology.

-PFR is pre-heated to the maximum reaction temperature of

approximately 850 K.

-Once PFR maximum reaction temperature is stabilized the first
sample is extracted and the controlled cool down begins.

*PFR samples extracted at selected temperatures with the sample
probe and then injected into GC / MS / FID for online analysis.
-Identification and quantification of unknown species from

GC / MS / FID performed with retention time matching, mass

spectrum matching (NIST ‘08) and chromat
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Fig. 2 - PFR Photo

ogram analysis.

Fig. 3 - GC / MS / FID Photo

5. RESULTS AND DISCUSSION
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*Discussion (Fig. 4):
-CO is a good indicator
of reactivity in the low
to intermediate
temperature regime.
Refer to Fig. 4 for CO
production (pink line)

during n-PCH oxidation.

-Temperature Increase,

to competing reaction
pathways defines
Negative Temperature
Coefficient (NTC)
Behavior.

-n-PCH NTC begins at
approximately 660 K
with a CO molar

6. SELECTED RESULTS
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Fig. 5 - Key alkenes produced from n-PCH
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Fig. 6 - Key cycloalkenes produced from n-PCH
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7. SELECTED RESULTS
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Fig. 7 - Key aldehydes produced from n-PCH

8. SUMMARY AND FUTURE WORK

sLow to Intermediate temperature (550-850 K) oxidation of n-PCH was studied in a
at lean conditions, pressure of 8 atm and constant residence time of 120 ms.
*Reactivity, as indicated by CO production, exhibits classical NTC behavior.
Intermediate species identified and quantified with GC / MS / FID.

Intermediate species observed by class include: straight chain alkenes, cycloalkeng
aldehydes, ketone-substituted cycloalkanes, carboxylic acid, two-ring structures.
*Carbon balances ranged from 70%-100%. Seventy intermediate species measured
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[ —C0 —C02 + n-propylcyclohexane | fraction of 850 ppm.

Fig. 4 - Reactivity map for n-PCH

*Oxidation behavior of n-PCH is very similar to results obtained from n-BCH oxidatig
*Future experiments with n-PCH will be done at higher fuel loading to increase the
magnitude of intermediate species production. Further experiments to be perform|
establish reproducibility and error estimation for kinetic modeling.

o€ 9107 1€ siaded Je[iliis pue Uoneln elepelan



https://core.ac.uk/display/190328296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	Slide Number 1

