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Abstract 

Developing a Modeling Framework for Nonstationary Urban Hydraulic Analyses  

Ge Pu 

Naresh Devineni, Ph.D. 

Franco Montalto, Ph.D. 

 

Multiple recent national and international climate assessment reports suggest that the 

frequency, duration and intensity of future extreme precipitation in the North East US 

will increase. Urban cities in this region like Philadelphia are extremely vulnerable to 

these impacts due to their combined sewer overflows (CSO). These are mainly due to the 

fact that the sewer systems receive higher than normal flows during heavy precipitation. 

Hence, they seek to incorporate the best available information about current and future 

climate and understand the extent of their impacts on their stormwater network. 

This project intends to develop a general modeling framework for integrating multiple 

sources of information such as rain gauge data and climate scenarios for extreme rainfall 

events with prescribed duration using a Hierarchical Bayesian modeling technique. It 

aims to develop a stochastic temporal rainfall field simulator for the analysis of the 

extreme rainfall precipitation events. The approach here is to minimize uncertainties in 

stationary hydraulic assessment models with non-stationary ones. Five extreme rainfall 

models were developed for improvements with both stationary and non-stationary 

modeling frameworks. Recommendations and evaluations of these model outcomes are 

evaluated and discussed to provide a critical path towards informing climate adaptation 

decision on the ground. 



xiii 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Page Is Left Blank Intentionally



1 
 

 

Introduction 

Climate Change and its effects on Extreme Precipitation Events in the Northeast US 

Climate change is very likely to alter the future precipitation patterns globally; it is 

expected to see increases in rainfall intensity, duration and frequency in the region of 

Northeast (NE) US. According to the National Climate Assessment (2014), there was a 

five inch increase observed between 1895 and 2011 in this region. Meanwhile, NE US 

has experienced more increase in extreme precipitation events (EPE) than any other 

regions of US. This increase was documented as much as 70% from 1895 to 2010. IPCC 

(2014) has also confirmed these findings with various observations in EPE over the USA 

between the mid-20th and the early 21st century. 

Increasing trend of EPE is very likely to continue, because it is among the expected 

impacts of greater global warming (Wolff et al., 2014). Yet, EPE have historically caused 

various damages around the globe, in the forms of large scale flooding (Coumou and 

Stefan, 2012), health related issues (Luber et al., 2014; White House, 2014), agricultures 

impacts (Freidline, 2011; Hatfield et al., 2011), as well as significant ecological impacts 

(Darwin, 1978; Knapp et al., 2008). In 2015, EPE (as part of Extreme Weather Events) 

are now the second most likely to happen global risks according to the World Economic 

Forum (2015).  

Meanwhile, NE US is especially vulnerable to future EPE increase due to its aging storm 

water infrastructures. Urban cites such as Philadelphia and New York will be 

significantly impacted due to their combine sewer systems. Not only these systems are 

hard and expensive to retrofit, but also poses significant hazards during EPE. This is 

mainly due to the fact that the sewer systems receive higher than normal flows during 
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heavy precipitation. Treatment plants are unable to handle flows that are more than twice 

design capacity and when this occurs, a mix of excess stormwater and untreated 

wastewater discharges directly into the City’s waterways at certain outfalls. Cities are 

concerning about CSOs because of their effect on water quality and recreational uses. 

Hence, it is vital to incorporate the best available information about current and future 

climate and understand the extent of their impacts on urban stormwater management in 

the NE US.   

 

Nonstationary Framework for EPE IDF Analysis 

The extent of climate change impacts on EPE is still yet uncertain, because projections of 

future climate are still being debated. Yet, due to recent years of increases in EPE, the 

growing need for climate adaptation and mitigation strategies is becoming stronger and 

stronger (Milly et al., 2007; Craig, 2010; Tarlock, 2012; Sivapalan and Jos 2009). 

Especially in the field of water resource management, this change from stationary to non-

stationary is increasingly looked-for (Milly et al., 2007; Tarlock, 2012; EPA 2014; Cheng 

et al. 2014). While stationary framework assumes modeling parameters remain constant 

over time, nonstationary framework does not (Olson et al. 1998). Thus, nonstationary 

methods of modeling can enable one to directly link EPE with other related information 

such as climate indicators. 

On the other hand, Intensity-Duration-Frequency (IDF) is currently one of the many 

important tools one could use to predict the future EPE frequencies. IDF analysis outputs 

have traditionally been utilized in municipalities to set standards for various water related 

designs regulations. This relationship can be dated back as early as 1932 (Guo 2006). For 
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detailed description of IDF calculation methods, please refer to Guo (2006) and 

Sivapalan and Blöschl (1998). There are two outstanding problems when utilizing the 

current stationary IDF approaches. First, current precipitation frequency (PF) data is very 

outdated. The most recent national update of precipitation IDF was completed in 1977 

(Frederick et al. 1977), while latest updates of IDF varies from state to state. Among the 

9 states in the NE US, only three states (PA, NJ, and DL) have updated their IDF data to 

yet still 2004, whereas the rest have no new records since the 1977 national PF study 

(NOAA 2006). Second, traditional IDF utilized stationary methods to construct EPE 

probabilities for informing water resource design regulations. Temporal, spatial and 

climate relationships are ignored. However, these associations could potentially be 

significant in predicting future patterns of EPE. More importantly, IDF data plays 

significant role in conducting hydrologic model simulations. Rainfall data is the primary 

input of these models. Thus, uncertainties generated from the two problems mentioned 

above directly affect the outcomes of hydrologic analysis, which in turn will mislead 

downstream water resource policies and practices. Given this fact and the recent increase 

in EPE, as well as future predicted patterns of these events (Wolff et al., 2014), more 

accurate and robust IDF evaluation strategies are ever more needed to prepare for future 

EPE in a changing climate. 

Thanks to the advances in multivariate statistical analysis and hierarchical modeling 

techniques, nonstationary approaches of IDF analysis are now possible (Cheng et al. 

2014). These approaches enable the consideration of multiple indicators in an EPE model, 

such as climate, temporal and spatial indicators. In theory, dynamic models with 

hierarchical modeling frameworks can have better precisions and predictions than static 
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models (Cheng et al. 2014). Olson et al. (1998) was among one of the many first attempts 

to analyze IDF in nonstationary conditions. Recently, Cheng et al. (2014) utilized 

nonstationary extreme value analysis on central United States EPE. He addressed the 

detailed theory behind how to model EPE in a nonstationary framework. 

For this study, the intended goals are to 1) develop a multi duration modeling framework 

for stationary IDF analysis. This model will not only be more efficient when generating 

IDF plots under various rainfall accumulation intervals (RAI), but also takes in 

consideration of the inter-correlation of EPE data among various RAI. This correlation is 

vital to be considered, because univariate IDF modeling has many limitations, such as the 

fact that RAI are not the actual durations of rainfall events (Kao 2008). 2) Identify the 

nonstationarity in the existing EPE data, and justify the need for a nonstationary 

modeling framework 3) Develop and compare various nonstationary EPE models with 

different indicators, as well as the stationary models. 4) Incorporate predictive capability 

into developed models 5) Compare and identify the best model to be carried out for 

future steps.  

 

Methods 

Rainfall and Climate Datasets  

Rainfall data utilized in this study was obtained from the National Oceanic and 

Atmospheric Administration (NOAA) Global Hourly dataset at the National Climate 

Data Center data portal. The duration of data is from 1941/1/1 11:00:00 to   2010/12/01 

23:00:00. All rainfall data was recorded at the Philadelphia International Airport (PHL) 
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on an hourly basis, and the original data was in the unit of 100 of an inch. Climate data 

utilized in this research includes El Niño-Southern Oscillation (ENSO) related datasets, 

NINO3, NINO3.4 and NINO4 indexes (NOAA 2015) recorded monthly from 1941/1/1 

00:00:00 to 2010/12/01/23:00:00. These indexes document the monthly anomalies of sea 

surface temperatures (SST) at averaged over three regions off the coast of Ecuador and 

Colombia. NINO3 covers the area 5°N-5°S latitude, 150°W-90°W longitude. NINO3.4 

covers the area 5°N-5°S latitude, 120°W-180°W longitude. NINO4 covers the area 5°N-

5°S latitude, 150°W-150°E longitude. During El Niño years, all NINO indexes peak 

above 0, and the tendency reverse during La Niña years. Other climate indexes such as 

multidecatial climate oscillations were also considered initially, but then discarded due to 

the fact that prior research done by Hu and Feng (2012) show ENSO has a significant 

role in influencing US summertime precipitation variations. Also, this decision was 

reached because of data unavailability in the other indexes from 1941 to 2010. 

 

Estimation of Model Parameters and Results 

All model parameters shown in this study was produced through coupling R (R Core 

Team 2014) and Openbugs (Thomas et al. 2006). Openbugs utilized the Markov Chain 

Monte Carlo methods as the basis for estimation, which involves six fundamental steps: 1) 

constructing a model 2) define prior distribution for model parameters 3) upload model 

inputs 4) define initials for parameters 5) estimate parameters and results with 10000 

iterations 6) check for convergence if “Rhat” is greater than 1.1. Theory behind these 

steps are explained in detail by Cheng et al. (2014). All coding for this estimation process 

was done in R and then interface with Openbugs to complete the necessary steps for 
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estimating model parameters and results. Codes for constructing all models involved with 

this project are attached in the appendix. 

 

Return Level Interpolation 

As mentioned earlier, detailed theory behind IDF interpolation methods are well 

documented by Guo (2006), and Sivapalan and Bl öschl (1998). In general, return levels 

were produced by the following equation: 

 ௫ܲ =
1
௫ܶ
 Equation 5 

Where Px is the probability of exceeding a given rainfall amount, x, Tx is the return 

period of the same given rainfall amount, x. This given rainfall amount, x, is the return 

level.  

 

Stationary Univariate and Multivariate Duration Extreme Rainfall IDF Models 

Model 0 processes rainfall data independently among various RAI. NOAA PHL climate 

data was processed through an IDF Curve Generator (IDFCG), and various IDF curve 

plot based on different RAI were then generated. This IDFCG was developed in R (R 

Core Team 2014) with the utilization of the extRemes (Gilleland 2011), xts (Ryan and 

Ulrich 2014), data.table (Dowle et al. 2014), and lubridate (Grolemund and Wickham 

2011) packages. The purpose of this tool is to transform hourly rainfall data into plots of 

IDF curves through series of steps, which includes data importing, cleaning, rainfall 

accumulations, extreme value extractions, GEV statistics analyses (Gilleland and Katz 
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2011), and IDF curve graph generations. Detailed code involved in developing this model 

is shown in the appendix.  

The purpose of Model 1 is to generate more accurate and efficient IDF curves with 

considerations of the correlations among different RAI. This model was accomplished 

through multivariate normal distribution theory. While traditional univariate IDF analysis 

were conducted independently among various RAI, Multiduration Model (MDM) not 

only speeds up the IDF curve generation process, but also reflects the correlations among 

RAI. Theory behind this model is explained in detail by Renard and Lang (2006). 

General set up of Model 1 is shown in equation 1 and 2.  

:1ܯ  ,ௗܽ)ݒ݁ܩ~ ݈ܽݐ݋ݐܴ ܾௗ , ܿௗ) Equation 5 

 ൭
ܽଵ
⋮

ܽହௗ

൱ ܸܰܯ ~ ቌ
μୟଵ

⋮
μୟହୢ

 ,
σୟଵ

ଶ ⋯ ,ଵܽ)ݒ݋ܿ ܽହௗ)
⋮ ⋱ ⋮

ହௗܽ)ݒ݋ܿ , ܽଵ) ⋯ σୟହ
ଶ

ቍ Equation 6 

where M1 is model 1, Rtotal is the PHL AMRD, ad, bd and cd are the parameters of model 

1, MVN means multivariate normal distribution, cov means covariance of two given 

values, and σଶ  means the variance of a given value. a1 to a5d means the location 

parameters for each RAI, here the RAI are for 1 hr to 5 days. Upon completion of this 

model, ad, bd and cd were estimated in Openbugs. Reconstruction of each return level 

based on these estimated parameters was accomplished in R with the extRemes package.  

Data selected for Model 0 and 1 input are the PHL AMRD. Since Model 0 does not have 

any nonstationarity involved, there are no predictors necessary for examination. Model 1 

has no predictors involved as well, but it takes in consideration of the covariance between 

various RAI to ultimate produce the model parameters a1,b1, and c1.  
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Upon selecting data input for Model 0 and 1, simulations of each model was completed. 

Results from each model output were compared and analyzed. Difference between these 

two models was interpolated and discussed. Suspected benefits of Model 1 over Model 0 

was elaborated as well.  

 

Stationary and Nonstationary EPE Models  

Justification of Nonstationarities in PHL AMRD 

Initial data exploratory analysis began with data cleaning in R (R Core Team 2014), 

which was to convert original datasets into more appropriate format for further 

investigations. Upon completion of cleaning and organizing the original data, the 

interpolated data was accumulated according to different RAI: 1hr, 6hr, 12hr, 24hr, 3days 

and 5days. Then, annual maximum values of EPE were extracted from each of the RAI 

accumulated data. Nonstationarity in the dataset was investigated through timeries and 

time-frequency (wavelet) plots. Timeseries plot was constructed in R (R Core Team 

2014). Productions of wavelet plots were accomplished in the KNMI Climate Explorer 

(Truet and Oldenborgh 2013). These charts were made through an application developed 

by Torrence and Compo (1998) based on Wavelet Analysis methodologies. Purposes of 

these charts are to decompose a time series into time–frequency space, where one is able 

to determine both the dominant modes of variability and how those modes vary in time. 

Both timeseres and wavelet plots were constructed to not only to justify the 

nonstationarities of PHL AMRD over time, but also to identify the potential influences of 

such nonstationarities.  
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Model Basis 

While various parametric and nonparametric methods are applicable to nonstationary 

frequency analysis of hydrometerological data (Khaliq 2006), trends in recent years are 

shifting toward utilizing the Generalized Extreme Value theorem (Lima 2015). Walshaw 

(2013) documents the definition and assumptions of GEV in further details. Stationary 

models developed through GEV in this study assume all parameters remain constant over 

time, while the nonstationary model assumes the opposite. Variations of parameters in the 

nonstationary model would assumed to be impacted by different indicators such as 

climate, time, and moving average of extreme rainfall values.  

Annual extreme rainfall values, Re, is mathematically assumed to follow the classical 

GEV distribution (Sang 2008; see examples in Lima et al. 2015 and Mondal et al. 2015), 

Gev means a GEV distribution based on stationary parameters µ (location), σ(scale), 

ξ(shape): 

 ܴ௘~ ݒ݁ܩ(μ, σ, ξ) Equation 1 

where the cumulative distribution of Gev is: 

(ݔ)ݒ݁ܩ  = exp {− ቂ1 + ξ ∗ ቀ
ݔ − μ

σ ቁቃ
ିଵ

ஞ} Equation 2 

If we assume the location parameter, μ, vary over time, and then the value of it can be 

modeled as a function of n indicators: 

 μ(t) = f(xଵ(ωଵ), xଶ(ωଶ), xଷ(ωଷ), … … x୬(ω୬)) Equation 3 

where f means a particular function of some parameters and indicators, which can be 

linear, exponential or others. ω indicates the respective time of indicators, which can be 

records before or within the time Re was recorded. Predictable functionality would be 
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developed if utilizing past ω to inform future Re. These exact same concept shown in 

Equ. 3 can be applied to the scale parameter, σ: 

 σ(t) = f(xଵ(ωଵ), xଶ(ωଶ), xଷ(ωଷ), … … x୬(ω୬)) Equation 4 

For the shape parameters, ξ, of the GEV distribution, the relationships between ξ and their 

indicators are assumed to be very complex (Lima et al. 2015). Due to the time constrains, 

ξ were assumed to remain constant for all of the models in this study. Upon completing 

the model formulations, each parameter involved were estimated through Bayesian 

Inference Using Gibbs Sampling methodology (Thomas et al. 2006). 

 

Model Formulation 

Model 2 was developed through a traditional univariate GEV framework in Openbugs 

(Thomas et al. 2006). Equation 7 explains how this model was formulated. 

:2ܯ   ,ܽ)ݒ݁ܩ~ ݐܴ ܾ, ܿ) Equation 7 

Where M2 is Model 2, Rt is the maximum PHL AMRD during a giving duration. Gev is 

the GEV distribution. a, b, and c refers to the location, scale and shape parameters of this 

model. 

Model 3 was developed through a Hierarchical GEV framework. Model 3 utilizes a given 

ENSO index (NINO3, NINO3.4 or NINO4) averaged over a given duration as the climate 

indicator for modeling PHL EPE. Below, Equation 8, 9 and 10 together explain how this 

model was formulated: 

:3ܯ  ,௧,ଷܽ)ݒ݁ܩ~ ݐܴ ܾ௧,ଷ, ܿ) Equation 8 

 ܽ௧,ଷ = ℎܽଵ݌݈ܽ + ଵܽݐܾ݁ ∗  Equation 9 ݋ݏ݊݁
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 ܾ௧,ଷ = ℎܽଶ݌݈ܽ)ݏܾܽ + ଶܽݐܾ݁ ∗  Equation 10 (݋ݏ݊݁

where M3 is Model 3, Rt is the maximum PHL AMRD during a giving duration. Gev is 

the GEV distribution. at,3 , bt,3, and c refers to the location, scale and shape parameters of 

this model. alpha1, alpha2, beta1, and beta2 are estimated parameters from Model 3. enso 

refers to a given ENSO index averaged over a given duration. Unlike model 2, the 

location and scale parameters of the GEV distribution in this model, at, was effected by 

the enso values and change over time. Model 3 takes in consideration of climate 

information during the PHL EPE modeling process. One needs to note that it is assumed 

linear relationship in both Equation 7 and 8.  

Model 4 was developed through a Hierarchical GEV framework. It utilizes both a given 

ENSO index averaged over a given duration and a PHL EPE moving average dataset as 

indicators for modeling PHL EPE. Equation 10, 11 and 12 explain how this model was 

formulated: 

:4ܯ  ,௧,ସܽ)ݒ݁ܩ~ ݐܴ ܾ௧,ସ, ܿ) Equation 11 

 ܽ௧,ସ = ℎܽଷ݌݈ܽ + ଷܽݐܾ݁ ∗ ݋ݏ݊݁ + ସܽݐܾ݁ ∗ ܴ௧ Equation 12 

 ܾ௧,ସ = ℎܽସ݌݈ܽ)ݏܾܽ + ହܽݐܾ݁ ∗ ݋ݏ݊݁ + ଺ܽݐܾ݁ ∗ ܴ௧) Equation 13 

where M4 is Model 4, Rt is the maximum PHL AMRD during a giving duration. Gev is 

the GEV distribution. at,4 , bt,4, and c refers to the location, scale and shape parameters of 

this model. alpha3, alpha4, beta3, beta4, beta5, and beta6 are estimated model parameters. 

enso refers to a given ENSO index averaged over a given duration. ܴ௧ is a given trend 

indicator of the PHL AMRD. One needs to note that it is assumed linear relationship in 



12 
 

 
 

both Equation 11 and 12. Both location and scale parameters of this model change over 

time, and are impacted by both the NINO3 Index and ܴ௧.  

 

Predictor and Data Selections 

Due to the fact this study is a preliminary investigative study on nonstationary framework, 

only 24hr AMRD was utilized as an example for comparing results among model 2, 3 

and 4. The model that had the best result would then be applied to the rest of the RAI 

cumulated rainfall dataset in future projects. 

Selection processes of various indicators began with first looking into which period of 

year does most of the EPE take place. Duration which cover the 25% to 95% quintiles of 

EPE time of occurrences was selected as the duration of “Rt” in Model 2, 3 and 4. All Rt 

values utilized in these models are the AMRD extract from the selected duration.  

In order to find the most appropriate “enso” values in Model 3 and 4, initial investigation 

began with selecting the most appropriate duration. This was done in KNMI Climate 

Explorer (Truet and Oldenborgh 2013) to correlate averaged HadISST1 1° reconstruction 

(Rayner 2003) at various periods with the selected “Rt” mentioned above. Reason to use 

such dataset was because all NINO indexes (NINO3, NINO3.4 and NINO4) were 

constructed based on the HadISST1 1° data. Among the different periods of comparisons, 

the one has the strongest correlation with “Rt” was selected as the period of average for 

“enso” in Model 3 and 4. Then, each of the three NINO index averaged within this period 

was correlated with the selected “Rt”. Among the three indexes, the one averaged within 

the selected period, and has the strongest correlation was selected as the “enso” values in 
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Model 3 and 4. All of the correlation results were generated through KNMI Climate 

Explorer (Truet and Oldenborgh 2013) and R (R Core Team 2014). Final decision on 

“enso” was also analyzed and justified. 

In addition, temporal trend indicator, ܴ௧, would need to be selected. Such indicator would 

help the model in better recognizing the trend with the original PHL AMRD dataset 

during the same duration as “Rt”. Selection of such indicator was mainly based on 

literature review. According to Krakauer and Devineni (2015), utilization of 30yr 

weighted moving average as an indicator for climate normalization generally have good 

overall performance when compared to other methods. Thus, this study decided to 

utilized the third indicator for the value of ܴ௧. Upon selection, analysis of selected ܴ௧ 

against the original “Rt” was evaluated and to justify this decision.  

 

Comparison between Models 

For Model 2 only, return levels of 100 years and 10 years were reconstructed based on 

the estimated values of a, b and c. Results of these levels against the original AWRD 

dataset was produced. Since Model 2 is a stationary model, its return levels remain 

constant.  

On the other hand, estimated parameters and outcomes in Model 3 and 4 should not 

remain constant overtime, because they are nonstationary. One would also expect that 

outcomes from the nonstationary models do not deviate from Model 2 by significant 

amounts. Significant deviations would indicate a bias in the nonstationary models or 

other possible factors, such as climate anomalies. Comparisons of the various outcomes 
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were conducted, which includes 1) contrasts of location and shape parameters, 2) value 

comparison of alphas and betas 3) model fit results against original dataset based on 

Deviance Information Criterion (DIC), timeseries and ENSO perspectives. On the other 

hand, detailed comparisons were conducted at the 10yr return level, because of the fact 

that Philadelphia stormwater design is heavily based on this level (City of Philadelphia, 

2014). Both AMRD values and probability of exceedance at the 10yr level was contrasted. 

These comparisons were also conducted based on timeseries and ENSO perspectives, as 

well as the selected ܴ௧ for Model 4 only. 

 

Results  

Stationary Univariate and Multivariate Duration Extreme Rainfall IDF Models 

Comparison Between Model 0 and 1 

 

 

 

1.5yr 5yr 10yr 20yr 50yr 75yr 100yr 
1hr 0.269 0.490 0.630 0.794 1.057 1.195 1.302 
6hr 0.079 0.131 0.162 0.196 0.250 0.277 0.298 

12hr 0.049 0.079 0.097 0.116 0.144 0.158 0.169 
24hr 0.029 0.048 0.060 0.074 0.096 0.107 0.116 
3day 0.011 0.018 0.023 0.028 0.036 0.041 0.044 
5day 0.007 0.012 0.015 0.018 0.023 0.026 0.028 

Table 1. Model 0 Output of Extreme Eainfall at PHL (inch/hr) 
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Figure 1. PHL IDF Curves From Model 0 

 

 

 

1.5yr 5yr 10yr 20yr 50yr 75yr 100yr 
1hr 0.283 0.524 0.676 0.853 1.136 1.283 1.397 
6hr 0.048 0.113 0.147 0.182 0.230 0.252 0.268 

12hr 0.023 0.070 0.093 0.116 0.146 0.160 0.169 
24hr 0.011 0.042 0.058 0.073 0.094 0.103 0.110 
3day 0.003 0.016 0.023 0.029 0.037 0.040 0.043 
5day 0.002 0.011 0.015 0.019 0.025 0.027 0.029 

Table 2. Model 1 Output of Extreme Rainfall At PHL (inch/hr) 
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Figure 2. PHL IDF Curves From Model 1 

 

 

 

1.5yr 5yr 10yr 20yr 50yr 75yr 100yr 
1hr -0.014 -0.034 -0.046 -0.059 -0.079 -0.088 -0.014 
6hr 0.031 0.017 0.014 0.014 0.020 0.025 0.031 

12hr 0.026 0.010 0.004 0.000 -0.002 -0.002 0.026 
24hr 0.018 0.006 0.002 0.001 0.002 0.004 0.018 
3day 0.008 0.002 0.000 -0.001 -0.001 0.000 0.008 
5day 0.005 0.001 0.000 -0.001 -0.001 -0.001 0.005 

Table 3. Difference Between Model 0 and 1 Results (inch/hr) 
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1.5yr 5yr 10yr 20yr 50yr 75yr 100yr 
1hr -0.014 -0.034 -0.046 -0.059 -0.079 -0.088 -0.014 
6hr 0.186 0.102 0.084 0.084 0.12 0.15 0.186 

12hr 0.312 0.12 0.048 0 -0.024 -0.024 0.312 
24hr 0.432 0.144 0.048 0.024 0.048 0.096 0.432 
3day 0.576 0.144 0 -0.072 -0.072 0 0.576 
5day 0.6 0.12 0 -0.12 -0.12 -0.12 0.6 

Table 4. Difference Between Model 0 and 1 Results (inch) 

 

 

 

Range of return levels in Model 0 is from the lowest intensity of 0.028 inch per hr at 5day 

100yr rainfall to the highest intensity of 0.269 inch per hour at 1hr 1.5yr rainfall. These 

intensity amounts could also be represented as volumes, which are 3.36 inch and 0.269 

inch, respectively. For Model 1, the range is from 0.029 inch per hour at 5day 100yr 

rainfall to 0.286 inch per hour at 1hr 1.5yr rainfall. These intensity amounts could also be 

represented as volumes, which are 3.48 inch and 0.283 inch, respectively. Model 1 results 

shows uniform increase when compare to Model 0. These results were interpolated from 

Table 1 and 2, and confirmed in Figure 1 and 2. 

When comparing Model 0 and 1 IDF results in details, Table 3 shows deviations as much 

as 0.03 inches per hour exist in the 1hr, 6hr, 1.5yr and 100yr categories. Table 4 shows 

difference as much as 0.6 inch at 1.5yr and 5yr return levels. Both tables confirms that 

Model 0 underestimates in the majority of the return levels, especially at 1.5yr and 100yr. 

Model 1 is observed to underestimate at 1hr RAI, but the deviations less than 0.08 inches. 
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 DIC 
Model 0 

1hr 
6hr 

12hr 
24hr 
3days 
5days 

 
-68.45 
-15.74 
5.61 

45.36 
54.61 
69.89 

Model 1 542.5 
Table 5. DIC results from Model 0 and 1 

 

 

 

DIC results of Model 0 are separated by each RAI. Table 5 shows 1hr in Model 0 has the 

least difference between model results and the original dataset. This variation increase as 

the RAI increases. 5 days has the largest DIC, and this shows longer RAI would 

contribute to more DIC in Model 0. Since Model 1 modeled all of the RAI together, there 

is only one DIC value for all of the RAI together. Model 1 DIC is significantly larger 

than all of the DIC results in Model 0. This means the MDM has a much larger deviance 

from the original dataset than Model 0. Although, this statement might not be appropriate 

due to the fact that both models utilized different methods of IDF constructions. 
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Stationary and Nonstationary EPE Models  

Justification of Nonstationarities in PHL AMRD 

 

 

 

  

Figure 3.PHL AMRD at various RAI vs. Time, also includes information referenced 
from Teegavarapu (2012) and NOAA (2015) on the years of El Niño, La Niña and 
natural conditions. Color-coded areas represents time periods of two consecutive 
years or more El Niño or La Niña events. One needs to note that the ENSO index 
started from 1950, so there are no available information on El Niño or La Niña 
before then (NOAA 2015).   

 

 

 

There is a clear upward trend in the AWRD data set at various RAI after 2000 as shown 

in Figure 3. The general trends among all RAI are fairly consistent with each other. 

Significant spikes in data are observed during 1955, 1960, 1971, 1975, 1994 and 2000. 

Four out of six of the spikes occurred during La Niña years. No significant increase was 

observed during El Niño years except 1994. This graph also shows nonstationarity within 

the dataset at the occasional spike before 2000 and the upward trend afterwards. 
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Figure 4.Wavelet Plots of PHL AMRD, the bold contour in the graphs means the 
95% confidence level, anything falls outside of the contour is not significant. Also, 
axes of all six charts are exactly the same, and presented on the outside of the six 
plots. It is important to note that ENSO activities usually fall in the 2 to 5 years 
region. Multi-decadal oscillations such as Pacific Decadal Oscillation (PDO) and 
North Atlantic Oscillations (NAO) would often appear above 20 years period. These 
plots were generated through were generated through KNMI Climate Explorer 
(Truet and Oldenborgh 2013). 

 

 

 

Regarding to the climate effects on the AMRD data are shown in Figure 4. There is a 

clear band of influence from 1995 to 2010 and between 2 to 5 years periods, while the 

6hr, 12hr and 5 days have the strongest signals within these bands. Especially, when at 

6hr and 12hr, these bands are extended into 1980. 12hr, 24hr, 3days and 5days charts all 

contain a narrow band from 1995 to 2010. These bands are at 30 years for 12hr, and at 40 

years for the other RAI. 
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Predictors Selections and Justifications for Model 2 to 4 

 

 

 

 
Figure 5. Time of Occurrences Boxplot of PHL AMRD 

 

 

 

As shown in Figure 5, 25% to 95% quintile of 1941 to 2010 EPE occurred during JJAS 

(June to September) based on all PHL AMRD data. Thus, a decision was made to utilize 

AMRD values from this time period as “Rt” for Model 2, 3 and 4. Correlation results 

between JJAS AMRD and HadISST1 1° are shown in the appendix. From these results, it 

was decided to utilize MAM averaged NINO indices for “enso” in Model 3 and 4. 

Further correlations was investigated between various MAM averaged NINO indices 

with the PHL JJAS AMRD. Results of this further investigation are shown in the 

appendix. Based on these results, average MAM (March to May) NINO3 index has the 

strongest relation with JJAS 24hr annual maximum rainfall values. Once this observation 
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was drawn from the dataset, this study reached a decision to utilize JJAS AMRD in 

conjunction with the MAM NINO3 averages as to enhance the predictability of these 

models. In this way, Model 3 and Model 4 could potentially be used to predict JJAS 

extreme rainfall depth with MAM NINO3 average. This setup could potentially transform 

Model 3 or 4 into appropriate warning systems for detecting future JJAS EPE 

probabilities months in advance.  

 

 

 

 
Figure 6. MAM Average NINO3 Index vs. JJAS PHL AMRD, both linear regression 
and the locally weighted scatterplot smoothing (lowess) are plotted in this chart. 
Correlations between the two data sets were calculated with spearman’s correlation, 
because the JJAS AMRD data set is not normally distributed. Directions of El Niño 
and La Niña events were indicated near the NINO3 index axis to inform how SST 
changes during these events.   

 

 

 

Spearman’s Correlation = -0.312 

p value = 0.0142 
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Justification of selecting NINO3 as “enso” for Model 3 and 4 was further investigated 

through Figure 6. The correlation between the two datasets is -0.312, which means the 

MAM average NINO3 index is moderately correlated with the PHL JJAS annual rainfall 

extremes. P value also show this correlation to be significant at 0.0142, which is lower 

than 5% (assumed significant level) and the null hypothesis of no correlation can be 

safely rejected.  

 

 

 

 
Figure 7. 30yr Moving Average of JJAS PHL AMRD vs Orginal Dataset 

 

 

 

Selection of 30yr moving average is generally appropriate in representing the trend exists 

in the original PHL AMRD dataset according to Figure 7. This moving average 

successfully picked up both the slight increase and decrease from 1941 to 1985, and the 

significant increase after 2000. Ultimately, JJAS PHL AMRD, MAM averaged NINO3 
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index and 30yr moving average of JJAS PHL AMRD were selected for “Rt”, “enso”, and 

“ܴ௧”, respectively.   

 

Comparisons among Model 2 to 4 

Model 2 Results 

 

 

 

 
Figure 8. Model 2 Generated Return Level Against Actual JJAS AMRD, Since 
Model 2 is a stationary model, the return levels remain constant. 

 

 

 

Model 2 results show the stationary 10yr and 100yr return level base on the original JJAS 

AMRD are at 1.341 inch and 2.576 inch, respectively. 5 out of 69 years of AMRD exceed 

the 10yr return level, which mean the probability of exceeding is 7.24%. For the 100yr 
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return level, only 1 out of 69 years exceed that. Thus, the probability of exceeding is 

1.45%.  These results were interpolated form Figure 8. 

Location Parameter Comparisons 

 

 

 

 
Figure 9. Comparison of Location Parameter Between Model 2 and 3, it presents the 
distribution of Model 3 simulated location parameter, “at,3”, compare to the Model 2 
location parameter, “a”. Due to the fact that a does not change over time, so the 
stationary Model 2 results are constant, which are shown as dash lines in these plots. 
Note that the outliers, which are more than 1.3 times of the upper quartile are 
excluded from this plots. Red rectangles added into this plot is for identifying if the 
models have successfully picked up increasing trend shown in Figure 3 after year 
2000. 

 

 

 

Majority of the Model 3 location parameter are very similar to the 75%, 50% and 25% 

quartiles of those in Model 2, as shown in Figure 9. However, there are years where the 

quintiles are significantly above the Model 2 levels, these years includes 1941, 1983, and 

1998. Majorities of maximum and minimum excluding the outliers are fairly consistent at 

0.7 and 0.53, respectively. Years which does not fall within this range of maximum and 
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minimum includes 1941, 1983, 1987, 1992, 1993 and 1998. Area inside the red rectangle 

shows that Model 3 location parameter does not pick up the increasing trend after 2000 as 

seen in Figure 3. 

 

 

 

 
Figure 10. Comparison of Location Parameter Between Model 2 and 4, it presents 
the distribution of Model 4 simulated location parameter, “at,4”, compare to the 
Model 2 location parameter, “a”. Due to the fact that a does not change over time, 
so the stationary Model 2 results are constant, which are shown as dash lines in 
these plots. Note that the outliers, which are more than 1.3 times of the upper 
quartile are excluded from this plots. Red rectangles added into this plot is for 
identifying if the models have successfully picked up increasing trend shown in 
Figure 3 after year 2000. 

 

 

 

Meanwhile, majority of location parameters in Model 4 are different from Model 2 

results are shown in Figure 10. Variations are very significant during 1941, 1983, 1987, 

1992, 1993, and 1998. These significant differences occur at where Model 4 location 

parameters are lower than Model 2. 1950, 1968, 1971, 1985, 1989, and 1999 are where 

Model 4 has slightly higher location parameters than the Model 2 results. Area inside the 
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red rectangle shows that Model 4 location parameter successfully picked up the 

increasing trend after 2000 as seen in Figure 3. 

 

Scale Parameter Comparisons 

 

 

 

 
Figure 11. Comparison of Scale Parameter Between Model 2 and 3, it presents the 
distribution of Model 3 simulated scale parameter, “bt,3”, compare to the Model 2 
location parameter, “b”. Due to the fact that “b” does not change over time, so the 
stationary Model 2 results are constant, which are shown as dash lines in these plots. 
Note that the outliers, which are more than 1.3 times of the upper quartile are 
excluded from this plots. Red rectangles added into this plot is for identifying if the 
models have successfully picked up increasing trend shown in Figure 3 after year 
2000. 

 

 

 

When comparing Model 3 and 2 scale parameters, as shown in Figure 11, departures 

from Model 2 are very similar to the location parameter comparison as shown in Figure 9. 

Positive deviations from Model 2 occur at year 1941, 1983, and 1998. Majority of 
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maximums and minimums excluding the outliers are fairly consistent at 0.35 and 0.156, 

respectively. Area inside the red rectangle shows that Model 3 scale parameter did not 

pick up the increasing trend after 2000 as seen in Figure 3. 

 

 

 

 
Figure 12. Comparison of Scale Parameter Between Model 2 and 4, it presents the 
distribution of Model 4 simulated scale parameter, “bt,4”, compare to the Model 2 
location parameter, “b”. Due to the fact that “b” does not change over time, so the 
stationary Model 2 results are constant, which are shown as dash lines in these plots. 
Note that the outliers, which are more than 1.3 times of the upper quartile are 
excluded from this plots. Red rectangles added into this plot is for identifying if the 
models have successfully picked up increasing trend shown in Figure 3 after year 
2000. 

 

 

 

Scale parameter comparison between Model 4 and 2 reviles that Model 4 is roughly one 

quartile below the Model 2 results before 2000, as shown in Figure 12. Same spikes in 

Figure 11 at years of 1941, 1983, and 1998 are reflected here. Area inside the red 

rectangle shows that Model 4 scale parameter successfully picked up the increasing trend 
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after 2000 as seen in Figure 3. Majority of maximums and minimums before 2000 

excluding the outliers are fairly consistent at 0.30 and 0.155, respectively. 

 

Comparisons of shape parameters 

 

 

 

 

Figure 13. Comparison of Shape Parameter Among Model 2 to 4, this plot shows the 
distribution of estimated shape parameter from each model.  

 

 

 

Among Model 2, 3 and 4, distributions of shape parameter show Model 3 has the highest 

shape parameter, while Model 4 has the lowest. At the median level, Model 3 shape 

parameter is 0.236, while Model 2 and 4 has 0.212 and 0.172, respectively. At the 
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maximum level, Model 3 shape parameter is 0.775, while Model 2 and 4 has 0.686 and 

0.630, respectively. 

 

Comparisons of alpha values 

 

 

 

  

Figure 14. Comparison of alpha1 and alpha3, this plot shows the distribution of 
estimated alpha values in equation 9 and 12.  

 

 

 

alpha1 alpha3
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Figure 15. Comparison of alpha2 and alpha4, this plot shows the distribution of 
estimated alpha values in equation 10 and 13.  

 

 

 

:3ܯ  ,௧,ଷܽ)ݒ݁ܩ ~ ݐܴ ܾ௧,ଷ, ܿ) Equation 8 

 ܽ௧,ଷ = ℎܽଵ݌݈ܽ + ଵܽݐܾ݁ ∗  Equation 9 ݋ݏ݊݁

 ܾ௧,ଷ = ℎܽଶ݌݈ܽ)ݏܾܽ + ଶܽݐܾ݁ ∗  Equation 10 (݋ݏ݊݁

:4ܯ  ,௧,ସܽ)ݒ݁ܩ ~ ݐܴ ܾ௧,ସ, ܿ) Equation 11 

 ܽ௧,ସ = ℎܽଷ݌݈ܽ + ଷܽݐܾ݁ ∗ ݋ݏ݊݁ + ସܽݐܾ݁ ∗ ܴ௧ Equation 12 

 ܾ௧,ସ = ℎܽସ݌݈ܽ)ݏܾܽ + ହܽݐܾ݁ ∗ ݋ݏ݊݁ + ଺ܽݐܾ݁ ∗ ܴ௧) Equation 13 

Recall equation 8 to 12 above, alpha1 and alpha2 both contribute to location parameters of 

Model 3 and 4, respectively. Since alpha1 has a higher distribution than alpha3 are shown 

in Figure 14. On the other hand, the higher distribution of alpha2 over alpha4 was 

confirmed in Figure 15. When comparing Model 3 against Model 4, alpha1 is 

alpha2 alpha4 



32 
 

 
 

significantly higher than alpha3, while same relationship persists between alpha2 and 

alpha4.  

 

Comparisons of beta values 

 

 

 

 

Figure 16. Comparison of beta1, beta3 and beta4, this plot shows the distribution of 
estimated beta values in equation 9 and 12.  

 

 

 

beta4 beta1 beta3 
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Figure 17. Comparison of beta2, beta5 and beta6, this plot shows the distribution of 
estimated beta values in equation 10 and 13.  

 

 

 

Recall equation 8 to 12 above, beta1 and beta3 link the influence of enso with the location 

parameters of Model 3 and 4, respectively. beta2 and beta5 link the influence of enso with 

the scale parameters of Model 3 and 4, respectively. Figure 16 show that Model 3 

location parameter has positive influence from enso, Model 4 has the opposite. Scale 

parameters of both models has similar amount of influence as shown in Figure 17. beta4 

and beta6 link the influence of ܴ௧,with the location and scale parameters of Model 4, 

respectively. Values of beta4 and beta6 show that ܴ௧  has similar influence on both 

location and scale parameters of Model 4. It is interesting to notice that Model 4 location 

parameter has an opposite way of linking enso impact from Model 3. Together, higher 

alpha and beta values for “enso” in Model 3 contributes to higher location parameters 

beta6 beta2 beta5 
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than Model 4. The negative enso impact on Model 4 location parameter confirms the 

trend seen in Figure 11 and 12. 

 

Comparisons between Original JJAS AMRD and Model Outputs 

 

 

 

 
Figure 18. Model 3 vs. Original, it presents the distribution of Model 3 simulated 
AMRD against the original observations. Note that the outliers, which are more 
than 1.3 times of the upper quartile are excluded from this plots. 
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Figure 19. Model 4 vs. Orginal, it presents the distribution of Model 4 simulated 
AMRD against the original observations. Note that the outliers, which are more 
than 1.3 times of the upper quartile are excluded from this plots. 

 

 

 

Observations in Figure 18 show Model 3 predicted results have no strong correlation with 

the trends in the original AMRD dataset. 25%, 50% and 75% quantiles of Model 3 

produced AMRD show stationary pattern during the entire study period. On the other 

hand, Figure 19 show Model 4 AMRD has shown nonstationarity when compare to the 

original AMRD. Before 2000, trends of increase and decrease in original AMRD was 

reflected in the Model 4 AMRD results. After 2000, the increasing trend of AMRD was 

also reflected in Model 4, especially at the upper maximum level excluding outlines. 
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 DIC 
Model 2 45.36 
Model 3 49.45 
Model 4 44.53 

Table 6. DIC results from each Model 

 

Model fit results of Model 2 to 4 were also analyzed under statistical methods. DIC 

results shown in Table 5 demonstrates that Model 4 has the best overall fit to the original 

AMRD, because the DIC values is the smallest.  

 

 

 

 
Figure 20. Model 3 Results against Original AMRD Return Levels. This figure 
matches the Model 3 JJAS AMRD output with original data shown as red dash line. 
Blue lines were drawn to show the 100yr, 10yr and 2yr return level of the original 
JJAS AMRD data. Black lines were drawn from the Model 3 output at the same 
return levels. 
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Figure 21. Model 4 Results against Original AMRD Return Levels. This figure 
matches the Model 4 JJAS AMRD output with original data shown as red dash line. 
Blue lines were drawn to show the 100yr, 10yr and 2yr return level of the original 
JJAS AMRD data. Black lines were drawn from the Model 3 output at the same 
return levels. 

 

 

 

From results show in Figure 20 and 21, Model 3 and 4 generated 2yr return period in 

general is fairly similar as the 2yr return period from Model 2. For 10yr return period, the 

deviations between Model 2 and Model 4 results are small, while Model 3 increase 

slightly. This increase is amplified at the 100yr return level when comparing Model 3 to 

Model 2, while Model 4 does not deviate much from the Model 2 JJAS AMRD 100yr 

return level. Model 3 did not pick up the increasing trend in JJAS AMRD after 2000, 

while Model 4 did. This increasing trend amplifies from 2yr to 100yr return levels. 
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Figure 22. Comparison of 10yr Return Level Against Actual Extreme Rainfall, This 
focus on one single return level is mainly due to the fact that Philadelphia 
stormwater design is heavily based on 10yr return levels (City of Philadelphia, 
2014). One need to note that all return level related information are referred to the 
right axis, and the nonstationary model that has a similar trend from the original 
AMRD dataset should have a better modeling performance. 

 

 

 

Detailed trends at the 10yr return level are shown in Figure 22. Model 4 correlates well 

with the trends in the original JJAS AMRD data set, while Model 3 results do not. 

Increasing trend after 2000 is much better captured by Model 4 than Model 3. Although, 

both Model 3 and 4 are above the Model 2 JJAS AMRD 10yr level. Before 2000, the 

average difference is about 0.005 for Model 4 and 0.16 for Model 3.  
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Figure 23. 10 year Return Level Exceedance Comparison, Model 2 has the 
stationary probability of 0.1 because it was developed in a stationary framework. 
Unlike Model 2, Model 3 and 4 both have probabilities of exceedance changing over 
time due to nonstationarity. 

 

 

 

Figure 23 shows the average of exceedance at the 10yr return level is roughly around 15% 

for Model 3. However, some significant spike in Model 3 results was observed, which 

includes 1941, 1984, 1986, 1993, and 1998. Model 4 has a rough average around 11% 

exceedance before 1995, then the probability increase towards 17%. Figure 23 reflects 

the trends in Figure 22, where Model 3 overestimate the Model 2 10yr return level by 

roughly 5%. Model 4 has a difference from Model 2 at roughly 1% before 1995, and it 

successfully picked up the increasing trend after 2000 in original JJAS AMRD as shown 

in Figure 3.  
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Figure 24. ENSO Impact on Model 3 Results, this plot was produced to examine 
how MAM ENSO effect Model 3 JJAS AMRD outcomes, compare that with the 
original dataset. Both blue points and the regressions are plotted in this chart from 
the 95%, 50% and 5% of all datasets. Red regression lines and points were from the 
original JJAS AMRD. 

 

 

 

 
Figure 25. ENSO Impact on Model 4 Results, this plot was produced to examine 
how MAM ENSO effect Model 4 JJAS AMRD outcomes, compare that with the 
original dataset. Both blue points and the regressions are plotted in this chart from 
the 95%, 50% and 5% of all datasets. Red regression lines and points were from the 
original JJAS AMRD. 
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ENSO impact on the difference between original JJAS AMRD and Model Outputs, 

shown in Figure 24 and 25, demonstrated that Model 3 and 4 captures majorities of the 

original data within their 95%, 50% and 5% percentiles. However, Model 3 deviations 

from the original at the 95% are greater than Model 4. Slopes of trends in both model 

outputs are not similar to the original dataset regression line. Although, Model 4 is closer 

to Model 2 than Model 3, because Model 4 follows the original decreasing trend, shown 

in Figure 6, where Model 3 did not. 

 

 

 

 
Figure 26. ENSO Impact on Exceeding 10yr Return Levels, This plot represents 
how ENSO affect the results of exceeding 10yr return level in Model 2, 3 and 4 
results. Black line and points represent the results from Model 3, while Model 4 
results are shown in blue points and line. Model 2 probability of exceedance remains 
stationary at 10% in red. 
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On the other hand, ENSO impact on exceeding 10yr return levels, as shown in Figure 26, 

demonstrates that Model 3 results has a positive correlation between MAM average 

NINO3 Index with PHL JJAS AMRD, while Model 4 has the opposite trend. Degrees of 

departure from Model 2 results are greater in Model 3 than Model 4. Model 3 results 

show that El Niño will increase PHL JJAS AMRD to up to 20% of probability, while La 

Niña will decrease it to about 11.5%. On the other hand, Model 4 shows the opposite, La 

Niña events will increase the chance of exceedance to 12%, while El Niño decrease it to 

the stationary 10% level. 

 

 

 

 
Figure 27. 3D Plot of Model 4 Results, this was produced through adding the 
information of 30yr moving average into the chart shown in Figure 26. It not only 
explains how ENSO affect the probability of exceeding the stationary 10yr level, but 
also helps to understand how the moving average indicator affects the model 
outcome dynamically with ENSO. 
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Model 4 3D plot, Figure 27 reflects the same observations in Model 4 results as shown in 

Figure 26. Also, points of high chances of exceedance between -0.5 to 0.5 degrees (also 

as known as the “natural” condition in ENSO) are due to corresponding high moving 

average values. In this range, 30 year moving average has a significant impact on 

probability of exceeding 10 year in the natural ENSO regions.  

 

Discussion and Conclusion 

This paper offers two improvements on the existing EPE modeling practices. One 

introduces a multivariate model in stationary IDF analysis for faster and more accurate 

data interpolations. The other completely replaces the traditional framework with non-

stationary EPE models, which takes in considerations of climate, temporal and possible 

spatial indicators. These two improvements are vital to the future water resource planning, 

especially to improve the resilience and adaptiveness of urban storm water designs in a 

changing climate.  

For the stationary IDF improvement, one could utilize model 1 as a faster and better IDF 

analysis tool, because it not only can model various RAI together in one simulation, but 

also can link in the relationship between various RAI. This study demonstrates the 

difference between analyze IDF independently and dependently among different RAI can 

have impact on the final IDF results. Results in this project reflect that the deviation can 

be as much as 0.6 inch as shown in Table 4. Even through this difference is small, such 

deviation could contribute to large scale damage downstream. For example, if the 
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impervious area is 10000 ft2, 0.6 inch of difference could contribute to a 500 ft3 of 

additional runoff, which could potentially cause many associated downstream problems.  

On the other hand, preliminary analysis in this study confirms the fact that PHL EPE does 

not follow a stationary trend. The nonstationarity in PHL AWRD is verified by two main 

observations: 1) Significant increase in AWRD after 2000 are observed in Figure 3. One 

also need to note this trend was confirmed by NOAA’s Climate Extreme Index (Gleason 

et al. 2008). Reason to this increase is inconclusive. On the other hand, it was observed in 

the NOAA dataset (2015) that from 2005 to 2010 that there is a consistent transition from 

El Niño to La Niña or vice versa for each year except 2008. This transition was not 

observed as frequent as in the years before 2005. From this figure, one could also 

conclude that there is a strong relationship between increases in annual rainfall extreme 

depth and La Niña years. Meanwhile, El Niño years suppress or maintain PHL AMRD. 2) 

Clear ENSO connection to all RAI was conformed in Figure 4, and the connection is 

strong from 1995 to 2010. Even though associations with Multi-Decadal Oscillations are 

not very significant, one obvious reason is because the analyzed data only contained 69 

years of data. One would assume that if more data was recorded, theses associations 

would be clearer.  

Under these nonstationary conditions, the traditional IDF modeling based on stationary 

framework is surely not appropriate. This means the need for a nonstationary EPE models 

is justified. If one utilize the traditional IDF return level modeling, as shown in Model 2, 

the risk of such decision is significant. This study reveals that with both nonstationary 

models increase the probability of exceeding the 10yr return level by 6% at maximum, 
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and 1% at minimum. Most importantly, the chance of exceedance does not follow a 

stationary trend as shown in Figure 23.  

Various comparisons among Model 2 to 4 results show that Model 4 has the best overall 

performance in modeling the original JJAS AMRD. DIC results in Table 5 have 

confirmed this fact. Model 4 follows the trend of the original data when comparing the 

ENSO effects, where Model 2 and 3 does not. On top of that, it successfully picked up 

the increasing trend of AWRD in Figure 3 after 2000. There is some bias inside Model 3. 

Not only because it did not show significant nonstationarity, but also it overestimates the 

AWMD at both 100yr and 10yr return levels. The above findings have proven success in 

Model 4 to be the best candidate for future modeling work.  

 

Future Work 

Future work of this study will address the cross validation of models in this study, which 

will ultimately address the model fit to the original dataset. This cross validation would 

utilize the model to predict AMRD based on consecutive or random selected periods 

from 1941 to 2010, and then validate it against the original dataset. On the other hand, it 

would also be appropriate to cross validate the results from Model 3 and 4 with 

consecutive or random time intervals. This would test how well does the predictive 

function operates. 

Meanwhile, there are still vast amount of possible modeling indicators and spatial 

relationships one could add to the Models in this study. Possible indicators could include 

the concentration of CO2 in the atmosphere, AMRD at nearby locations, pressure index 
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at nearby sites and so on. It is possible that the nonstationary model could improve 

accuracy when more strong correlated indicators are introduced.  

Another possible next step for this study is to plug in the output of this model into 

hydrologic modeling software, such as SWMM. One could utilize the nonstationary 

interpolated in models developed by this study to investigate how frequent does one node 

(ex. drainage pipe or storm basin) will overflow on an annual basis. Future practitioners 

could utilize this information to either improve the existing stormwater network or better 

manage the present systems.  
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Appendix 

Model Scripts 
#model0 
#Standard IDF curve------------------------------------------ 

library("Kendall") 

library("extRemes") 

library("xts") 

library("data.table") 

library("lubridate") 

 

##DO NOT SOURCE THIS SCRIPT, JUST RUN IT--------- 

##data cleaning functions/time conversion-------- 

clda<-function(input){ 

  t1 <- read.csv(input, header=FALSE, stringsAsFactors=TRUE) 

  t2 <- t1[3:length(t1[,3]),] 

  t3 <- data.frame(t2[,3],sprintf( "%04d", as.numeric(t2[,4])),t2[,9]) 

  t3$year<-substr(t3[,1],1,4) 

  t3$month<-substr(t3[,1],5,6) 

  t3$date<-substr(t3[,1],7,8) 

  t3$Hour<-substr(t3[,2],1,2) 

  ###Ignore hour and seconds, POSIXct will fix it 

  t4<-paste(paste(t3[,4],t3[,5],t3[,6], sep="/"),t3[,7],sep=" ") 

  timef<-as.POSIXct(t4,tz="",format="%Y/%m/%d %H") 

  tf<-data.frame(timef,t3[,3]) 

  return(tf) 

} 

 

contab<-function(a,b){ 

  f1<-clda(a) 

  names(f1)<-c("time",b) 
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  return(f1) 

} 

 

#Specially made for PHL 

##import file## 

#PHL.Precip <- read.table("PHL Precip.txt",sep="|",header=TRUE) 

#c<-PHL.Precip 

#PHL<-data.frame(as.POSIXlt(c[,2],"%Y-%m-%d %H:%M:%S", 
tz=""),as.numeric(c[,3])) 

#colnames(PHL)<-c("time","PHL") 

PHL2<-contab("PHL2.txt","PHL") 

#PHL<-rbind(PHL,PHL2[352439:length(PHL2[,1]),]) 

PHL1<-contab("PHL1.txt","PHL") 

PHL<-rbind(PHL1,PHL2) 

 

 

 

##Getiing rid of 999.9------------------------------------------------------------------------------ 

CV999<-function(x){ 

  x[x[,2]==999.9,2]<-NA 

  return(x) 

} 

 

PHL<-CV999(PHL) 

 

 

#padding time series-----------------------------------------------------------------------------------
- 

madetime<-seq(from=as.POSIXct("1900-01-01 00:00:00"), to=as.POSIXct("2014-12-08 
00:00:00"), by="hour") 

mt<-data.frame(list(time=madetime)) 
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time.fill<-function(orginal){ 

  t1<-merge(mt,orginal,all=TRUE) 

  return(t1) 

} 

 

 

PPHL<-time.fill(PHL) 

##*********** 

 

##Remove duplicated timeseries, while keeping maximum recordings------------------------
--------------- 

#use next two lines to test which one to drop 

#summary(PALTA[which(as.numeric(diff(PALTA[,1]))!=3600)-1,2]) 

#summary(PALTA[which(as.numeric(diff(PALTA[,1]))!=3600),2]) 

 

re.rep<-function(x){ 

  t1<-as.xts(x[,2],x[,1]) 

  t2 <- t1[ ! duplicated( index(t1), fromLast = TRUE ),  ] 

  t3<-data.frame(time=as.POSIXct(index(t2),tz="",format="%Y/%m/%d %H:%M:%S"), 
coredata(t2)) 

  return(t3) 

} 

 

 

PPHL<-re.rep(PPHL)[1:1007497,] 

##*********** 

 

##cumulate into nhr rain Data###CHANGE "a" to data input rain column name------------
------------------ 

cumcon<-function(x){ 

  cum<-function(i,n){sum(a[(i-n):i],na.rm=TRUE)} 
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  mapply(cum,x:length(a),x-1) 

} 

hours<-c(1,6,12,24,72,120) 

 

 

a<-PPHL[,2] 

CPHL<-mapply(cumcon,hours) 

##*********** 

 

##add cumulated data---------------------------------------------------------------------------------
-- 

 

addc<-function(c,b){ 

  c$"6hr"<-c(seq(0,0,length=5),b[[2]]) 

  c$"12hr"<-c(seq(0,0,length=11),b[[3]]) 

  c$"24hr"<-c(seq(0,0,length=23),b[[4]]) 

  c$"3days"<-c(seq(0,0,length=71),b[[5]]) 

  c$"5days"<-c(seq(0,0,length=119),b[[6]]) 

  return(c) 

} 

 

PPHL<-addc(PPHL,CPHL) 

##*********** 

 

rm(a,c,PHL.Precip,PHL1,PHL2,ALTA,ALTM,LEHI,LEHI1,LEHI2,MCGU,MILL,MIL
L1,MILL2,MONM,mt,NEPHL,PHL,RDNG,RDNG1,RDNG2,TREN,WILM,CALTA,C
ALTM,CLEHI,CMCGU,CMILL,CMONM,CNEPHL,CPHL,CRDNG,CTREN,CWILM,
hours,madetime) 

 

##produce annual max amount and their dates----------------------------------------------------
-------------- 
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annu.max.dates<-function(n){ 

  xd[is.na(xd[,n])==T,2]<-0 

  t1<-data.frame(xd[1],xd[,n]/100) 

  t3<-as.xts(as.numeric(t1[,2]),t1[,1]) 

  t4<-apply.yearly(t3,which.max) 

  t5<-apply.yearly(t3,max) 

  t6<-data.frame(date=index(t4), coredata(t4),coredata(t5)) 

  t6[t6[,3]==0,2]<-NA 

  t6[t6[,3]==0,3]<-NA 

  t6[,2]<-t6[,1]+t6[,2]*3600 ##unless you need the exact dates 

  t6[,2]<-yday(as.Date(t6[,2])) 

  t7<-data.frame(t6[,2],t6[,3]) 

  return(t7) 

} 

 

an.t.v<-function(cn){ 

  ta1<-lapply(cn,annu.max.dates) 

  awvd<-data.frame((1900:2014),ta1) 

  colnames(awvd)<-
c("Interval","1_t","1_v","6_t","6_v","12_t","12_v","24_t","24_v","3D_t","3D_v","5D_t"
,"5D_v") 

  return(awvd) 

} 

 

 

xd<-PPHL 

FPHL<-an.t.v(2:7) 

##*********** 

rm(xd) 
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###n is column number#### 

IDF<-function(np){ 

   

   

  ##GevFIT#### 

  fit<-fevd(FPHL[42:111,np],type = "GEV") 

   

  ##Return Level#### 

  rl1<-return.level(fit,conf=0.05,return.period=c(1.5,5,10,20,50,75,100,200,250,500)) 

  #convert results into data frame 

  res<-as.data.frame(rl1[1:10]) 

   

  return(res) 

   

} 

 

cob<-lapply(c(3,5,7,9,11,13),IDF) 

result<-data.frame(cob) 

colnames(result)<-c("1hr","6hr","12hr","24hr","3day","5day") 

rownames(result)<-
c("1.5yr","5yr","10yr","20yr","50yr","75yr","100yr","200yr","250yr","500yr") 

 

#plot IDF#### 

result[11,]<-c(1,6,12,24,72,120) 

t.r<-as.data.frame(t(result)) 

par(mar=c(5,5,4,5)+0.1) 

plot(t.r[,11],t.r[,1]/t.r[,11],type="l",col=2,ylim=c(0,2),xlim=c(1,24), 

     cex.axis=1.5,cex.lab=1.5, 

     main="IDF of PHL with Independent RAI",xlab="Duration 
(hr)",ylab="Return.Level/Duration (in/hr)") 
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lines(t.r[,11],t.r[,2]/t.r[,11],type="l",col="light green") 

lines(t.r[,11],t.r[,3]/t.r[,11],type="l",col=4) 

lines(t.r[,11],t.r[,4]/t.r[,11],type="l",col=5) 

lines(t.r[,11],t.r[,5]/t.r[,11],type="l",col=6) 

lines(t.r[,11],t.r[,6]/t.r[,11],type="l",col=8) 

lines(t.r[,11],t.r[,7]/t.r[,11],type="l",col=9) 

#lines(t.r[,11],t.r[,8]/t.r[,11]],type="l",col="dark green") 

#lines(t.r[,11],t.r[,9]/t.r[,11],type="l",col=107) 

#lines(t.r[,11],t.r[,10]/t.r[,11],type="l",col="dark red") 

 

legend('topright' 

       , c("1.5yr","5yr","10yr","20yr","50yr","75yr","100yr") 

       , lwd = 1 

       , col = c(2,"light green",4:6,8:9) 

       , cex = 1.5 

       , ncol=1 

)  

 

write.csv(t.r[,1:10],"Table1.csv") 

 

#Multiduration Model---------------------------------------------------------------------------------
----------------- 

#model1 
model <- function() {           

   

  for (i in 1:nduration) 

  { 

    for (t in 1:ntimes) 

    { 

      predictand[t,i] ~ dgev(a[i],b[i],c[i]) 
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      predictand.new[t,i] ~ dgev(a[i],b[i],c[i]) 

    } 

  } 

   

  for (i in 1:nduration) 

  { 

    b[i] ~ dunif(0,1) 

    c[i] ~ dunif(0,1) 

  } 

   

  for (i in 1:nduration) 

  {                 

    a[i] ~ dnorm(mu.a, tau.a) #multi-level modeling 

    #shared among different durations 

  } 

   

  mu.a ~ dunif(0,0.3) 

  tau.a <- pow(sigma.a,-2) 

  sigma.a ~ dunif(0,0.01) 

   

   

   

}     

 

#model to file 

library(R2OpenBUGS)  

model.file <- file.path(tempdir(),"model.txt")  

write.model(model, model.file) 

 

#Data Input 
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nduration = 6 

ntimes = 70 

predictand = cbind(FPHL[42:111,3],FPHL[42:111,5],FPHL[42:111,7], 

                   FPHL[42:111,9],FPHL[42:111,11],FPHL[42:111,13]) 

data <- list("nduration","ntimes","predictand") 

#data <- list("y","N") 

 

#parameters 

params <- c("a","b","c","mu.a","tau.a","sigma.a","predictand.new") 

#params <- c("a","b","c","alpha","y.new") 

 

#initial prameters 

inits = NULL 

#inits <- function() 
{ list(a=rnorm(nduration,1),b=rnorm(nduration,0,1),c=rnorm(nduration,0,1), 

#                              sigma.a=runif(nduration,0,1))} 

 

#run model, get result 

out.model1 <- bugs(data, inits, params,model.file, n.iter=10000,DIC=F,debug=T) 

 

#check Rhat 

all(out.model1$summary[,"Rhat"] < 1.1)  

 

#IDF curves 

 

modeltoIDF<-function(n){ 

  a1<-out.model1$sims.list$a[,n] 

  b1<-out.model1$sims.list$b[,n] 

  c1<-out.model1$sims.list$c[,n] 
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  r100<-qevd(1-(1/100),median(a1),median(b1),median(c1)) 

  r75<-qevd(1-(1/75),median(a1),median(b1),median(c1)) 

  r50<-qevd(1-(1/50),median(a1),median(b1),median(c1)) 

  r20<-qevd(1-(1/20),median(a1),median(b1),median(c1)) 

  r10<-qevd(1-(1/10),median(a1),median(b1),median(c1)) 

  r5<-qevd(1-(1/5),median(a1),median(b1),median(c1)) 

  r1.5<-qevd(1-(1/1.5),median(a1),median(b1),median(c1)) 

   

  out<-list(r1.5,r5,r10,r20,r50,r75,r100) 

   

  return(out) 

} 

 

IDFfrommodel<-lapply(1:6,modeltoIDF) 

IDFfrommodelf<-data.frame(cbind(IDFfrommodel[[1]], 

                     IDFfrommodel[[2]], 

                     IDFfrommodel[[3]], 

                     IDFfrommodel[[4]], 

                     IDFfrommodel[[5]], 

                     IDFfrommodel[[6]])) 

 

colnames(IDFfrommodelf)<-c("1hr","6hr","12hr","24hr","3day","5day") 

rownames(IDFfrommodelf)<-c("1.5yr","5yr","10yr","20yr","50yr","75yr","100yr") 

#IDFfrommodelf<-IDFfrommodelf[2:7,1:6] 

View(IDFfrommodelf) 

 

t.r2<-data.frame(t(IDFfrommodelf)) 

t.r2$hour<-c(1,6,12,24,3*34,5*24) 
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View(t.r2) 

par(mar=c(5,5,4,5)+0.1) 

plot(t.r2[,8],as.numeric(t.r2[,1])/t.r2[,8],type="l",col=2,ylim=c(0,2),xlim=c(1,24), 

     cex.axis=1.5,cex.lab=1.5, 

     main="IDF of PHL with Dependent RAI",xlab="Duration 
(hr)",ylab="Return.Level/Duration (in/hr)") 

lines(t.r2[,8],as.numeric(t.r2[,2])/t.r2[,8],type="l",col="light green") 

lines(t.r2[,8],as.numeric(t.r2[,3])/t.r2[,8],type="l",col=4) 

lines(t.r2[,8],as.numeric(t.r2[,4])/t.r2[,8],type="l",col=5) 

lines(t.r2[,8],as.numeric(t.r2[,5])/t.r2[,8],type="l",col=6) 

lines(t.r2[,8],as.numeric(t.r2[,6])/t.r2[,8],type="l",col=8) 

lines(t.r2[,8],as.numeric(t.r2[,7])/t.r2[,8],type="l",col=9) 

#lines(t.r[,11],t.r[,8]/t.r[,11]],type="l",col="dark green") 

#lines(t.r[,11],t.r[,9]/t.r[,11],type="l",col=107) 

#lines(t.r[,11],t.r[,10]/t.r[,11],type="l",col="dark red") 

 

legend('topright' 

       , c("1.5yr","5yr","10yr","20yr","50yr","75yr","100yr") 

       , lwd = 1 

       , col = c(2,"light green",4:6,8:9) 

       , cex = 1.5 

       , ncol=1 

)  

 

t.rf <- cbind(as.numeric(t.r2[,1]), 

             as.numeric(t.r2[,2]), 

             as.numeric(t.r2[,3]), 

             as.numeric(t.r2[,4]), 

             as.numeric(t.r2[,5]), 

             as.numeric(t.r2[,6]), 
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             as.numeric(t.r2[,7])) 

colnames(t.rf)<-c("1hr","6hr","12hr","24hr","3day","5day") 

rownames(t.rf)<-c("1.5yr","5yr","10yr","20yr","50yr","75yr","100yr") 

 

write.csv(t.rf,"Table2.csv") 

 

 

#model2 
model <- function() {  

   

  # Prior  

  a ~ dnorm(0, 5) 

  b ~ dunif(0, 1) 

  c ~ dunif(0, 1) 

   

  # Likelihood  

  for (i in 1:n) 

  { 

    y[i] ~ dgev(a, b, c)  

  } 

   

} 

 

#model to file 

library(R2OpenBUGS)  

model.file <- file.path(tempdir(),"model.txt")  

write.model(model, model.file) 

 

#Data Input 
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y = as.numeric(FPHL6to9[42:111,9]) 

n = length(y) 

data <- list("y","n") 

 

#parameters 

params <- c("a","b","c") 

 

#initial prameters 

#inits = NULL 

inits <- function() { list(a=0.5,b=0.1,c=0.1) } 

 

#run model, get result 

out.model2 <- bugs(data, inits, params,model.file, n.iter=10000,debug=T,DIC=F) 

 

#model3 
model <- function() {  

   

  # Prior 

  alpha_a ~ dnorm(0, 10) 

  alpha_b ~ dunif(0, 10) 

  beta_1_a ~ dunif(0, 1) 

  beta_1_b ~ dunif(0, 1) 

  c ~ dunif(0, 1) 

   

   

  # Likelihood  

  # Layer 1 

  for (t in 1:N) 

  { 

    a[t] <- alpha_a+beta_1_a*ENSO[t] 
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    b[t] <- abs(alpha_b+beta_1_b*ENSO[t]) 

  } 

   

  for (t in 1:N) 

  { 

    y[t] ~ dgev(a[t], b[t], c) 

    y.new[t] ~ dgev(a[t], b[t], c) 

  } 

} 

 

#model to file 

library(R2OpenBUGS)  

model.file <- file.path(tempdir(),"model.txt")  

write.model(model, model.file) 

 

#Data Input 

ENSO = ENSO3mean[,2] 

y = FPHL6to9[42:111,9] 

N = length(y) 

data <- list("y","ENSO","N") 

 

#parameters 

params <- c("a","b","c","alpha_a","alpha_b","beta_1_a","beta_1_b","y.new") 

 

#initial prameters 

inits = NULL 

 

#run model, get result 

out.model3 <- bugs(data, inits, params,model.file, n.iter=10000,debug=T) 
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#all(out.model4$summary[,"Rhat"] < 1.1) 

#model4 
model <- function() {  

   

  # Prior 

  alpha ~ dnorm(0, 10) 

  beta1 ~ dnorm(0, 1) 

  beta2 ~ dunif(0, 0.1) 

  alpha2 ~ dnorm(0, 100) 

  beta3 ~ dunif(0, 10) 

  beta4 ~ dunif(0, 0.1) 

  #b ~ dunif(0, 1) 

  c ~ dunif(0, 1) 

   

   

  # Likelihood  

  # Layer 1 

  for (t in 1:N) 

  { 

    a[t] <- alpha+beta1*ENSO[t]+beta2*mean[t] 

    b[t] <- abs(alpha2+beta3*ENSO[t]+beta4*mean[t]) 

  } 

   

  for (i in 1:N) 

  { 

    y[i] ~ dgev(a[i], b[i], c) 

    y.new[i] ~ dgev(a[i], b[i], c) 

  } 

} 
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#model to file 

library(R2OpenBUGS)  

model.file <- file.path(tempdir(),"model.txt")  

write.model(model, model.file) 

 

#Data Input 

ENSO = ENSO3mean[,2] 

mean = f$y 

y = FPHL6to9[42:111,9] 

N = 70 

data <- list("y","ENSO","N","mean") 

 

#parameters 

params <- c("a","b","c","alpha","beta1","beta2", 

            "alpha2","beta3","beta4","y.new") 

 

#initial prameters 

inits = NULL 

#inits <- function() { list(a=rnorm(N,0,1),b=rnorm(1,0,1),c=rnorm(1,0,1), 

#                           alpha=rnorm(1,0,1),beta=rnorm(1,0,1)) } 

 

#run model, get result 

out.model4 <- bugs(data, inits, params,model.file, n.iter=10000,DIC=F,debug=T) 
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 JJAS PHL 
AMRD 

p-values 

MAM Averaged NINO 3 -0.312 0.0142 
MAM Averaged NINO 3.4 -0.223 0.0163 
MAM Averaged NINO 4 -0.172 0.0111 

Table 7. Spearman Correlation Results from R 
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