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ABSTRACT
Spherical Nanoindentation:
Insights And Improvements, Including Stress-Strain Curves and
Zero Point Determination
Alexander J. Moseson
Dr. M. W. Barsoum

Instrumented nanoindentation is a valuable method for mechanical
characterization. Typically, sharp tips are used to indent surfaces and well-
established techniques used to determine the hardness and moduli values of a
wide range of materials. Spherical indentation tips, though less common, offer
the distinct advantage of providing useful insight into the elasto-plastic
transition region. In this thesis the results of continuous stiffness measurements
with spherical indenters - with radii of 1 um and/or 13.5 pym - and Hertzian
theory are used to convert indentation load/depth curves to their corresponding
stress-strain curves. We applied the technique to a wide range of materials,
including fused silica, aluminum, iron and single crystals of sapphire and ZnO.
In all cases, the stress-strain curves clearly showed the elastic, plastic, and elasto-
plastic regions. The modulus and hardness obtained by our method show, for the
most part, a strong correlation with bulk and Vickers values obtained on the

same surface, respectively. When both the 1 pm and 13.5 um indenters were



X

used on the same material, for the most part, the indentation stress-strain curves
traced one trajectory. Furthermore, accurate determination of the “zero point”,
tirst contact between an indenter tip and sample surface, has to date remained
elusive. Herein a relatively simple, objective procedure by which that zero point
can be determined accurately and reproducibly using a nanoindenter equipped
with CSM option and a spherical tip is described. The method relies on applying
a data shift, which insures that stiffness versus contact radius curves are linear
and go through the origin. The method was applied to fused silica, sapphire
single crystals and polycrystalline iron with various indenter sizes, to a zero
point resolution of 2 nm. Errors of even a few nm can drastically alter plots and
calculations which use the data, including stress vs. strain curves. The method is the
first to use a parameter inherently not affected by zero point to correct the
displacement and all subsequent uses thereof, which is highly sensitive to zero
point. The applications of this method range from increased accuracy for all tests
including stress vs. strain, to sample leveling, to individual grain
characterization, and beyond. Finally, I herein present our most recent work,

including further insights into the characterization of individual grains.






CHAPTER 1. BACKGROUND
Please Note: The content of this section has been adapted from two papers for
which Alex Moseson was a primary or co-author.!?
1.1 Background on Instrumented Indentation
The field of Materials Science and Engineering has three primary purposes: i)
understand current materials, ii) develop new materials, and iii) develop and
support applications of materials. For all three intertwined paths,
characterization, whereby the properties and behavior of materials are observed,
is critical. With limitless applications, as every physical object is by definition
made of some material(s), nearly all material properties are of interest, be they
mechanical, electrical, chemical, or otherwise. Temperature can be observed with
a thermometer, and length with a ruler, but more complex and/or subtle
properties require ever more sophisticated characterization techniques. Our
theoretical understanding of materials advances in step with our ability to

experiment and observe, as the scientific method demands, in the real world.

In this thesis, I present work done over the course of two years, which adds
accuracy and functionality to a mechanical characterization method known as
“instrumented indentation” or “nanoindentation.” The concept of the technique

is simple: a tip with known geometry is pushed into the surface of a material,



and the applied force and tip displacement are precisely measured. The result is
essentially a hybrid of the information-rich stress-strain curves typically obtained
from bulk compression tests and indentation hardness testing, with all its
valuable advantages. It is assumed that the reader already has a working

understanding of these two techniques.

Bulk compression applies a force along some linear axis of a bulk material, and
measures the force, displacement, and perhaps other parameters such as strain.

The most common representation of the data is a stress-strain curve.

Instrumented Indentation arose as a research field in the mid-1980’s. Compared
to other well-established techniques, this one is in its infancy. It is based
however, on the much simpler “hardness” testing. In its simplest form, this was a
test of a material’s ability to resist scratching by another material. It was
expressed on the semi-quantitative Mohs scale, developed by German Friedrich
Mohs in 1812.3> Next came indentation hardness, wherein typically, a single
indent is made with a tip of known size, hardness, and geometry, and the
dimensions of the residual indent examined. Harder materials will resist the
material more, and thus have a smaller residual indent. and the size of the These

indentation hardness tests (as opposed to the antiquated scratch tests) apply a



known force with a tip of known geometry, and hardness is proportional to the
size of the permanent indent created, squared. A schematic of a typical modern
nanoindenter is shown in Figure 1. The actual electronic and physical
configuration will vary by device, but the concept remains the same. An indenter
tip, on the end of a shaft, is forced onto a sample by a load actuator. Sensors,
such as LVDTs (Linear Variable Differential Transducers) precisely measure
depth and force, on the order of nanometers and mN, respectively. The key
advantages of nanoindentation above competing methods are extremely high
precision, the ability to investigate the material microstructure such as individual
grains and orientations, essentially non-destructive testing, and the ability to

characterize thin films.
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Figure 1: Schematic of Nanoindenter!




Figure 2: Berkovich Tip Indentation*

Figure 3: Spherical Indentation Tip**

Figure 2 shows the residual cavity from a Berkovich indentation, and Figure 3
shows a spherical, also sometimes referred to as conical, tip. The dotted line

represents the area where the tip is assumed spherical. These are two common



tip geometries. For reasons explained below, we have chosen to focus on
spherical nanoindentation. In short, the technique has several advantages over
sharp tip geometries, including the ability to characterize the elastic-to-plastic

transition and parameters such as hardening rates.

For this work, we also utilize a Continuous Stiffness Measurement (CSM)
Attachment on the nanoindenter. As depicted in Figure 4, CSM applies a
superimposed oscillating load to the indenter tip, with force amplitudes that are
roughly an order of magnitude smaller than the nominal load.® This technique is
thus capable of accurately measuring the contact stiffness (otherwise the slope of
the load-displacement curve) at every load and eliminates the need to carry out
multiple loading-unloading measurements, as described in the Field and Swain
method,”® to calculate the variations in hardness and moduli values with load

and displacement into the surface.



Load, P

Displacement, h

Figure 4: CSM Oscillations*®

Figure 5 shows a representative schematic of the measurement actually taken in
the MTS system used for this work. The details are proprietary, but the literature
for the device states that “amplitude, ratio, and phase shift” are used to

continuously determine the stiffness.
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1.2 Previous Work on KNE Solids With Spherical Nanoindentation

A volume of previous work was done by primarily by Ph.D Candidate Anand
Murugaiah, also from our research group, culminating in his 2004 thesis.!! This
work utilized nanoindentation and other techniques to characterize what have
since become known as Kinking Nonlinear Elastic (KNE) Solids. These are
defined as “solids with high c/a ratios (though that ratio is not a strictly
necessary condition) that do not twin”!!, and have some remarkable properties;
namely the ability to absorb and release energy with “incipient kink bands”,
yielding hysteresis loops in load-displacement curves obtained by
nanoindentation. These also necessarily appear in stress-strain curves created
from those load-displacement curves. Not having a CSM attachment to use in his
work, Murugaiah relied on a variation of published methods to perform the
conversion to stress-strain curves which did not use the CSM.”'"'7 The key
difference between this method and that presented below, is that a relationship
for contact area, based on load and displacement, not including stiffness, is used,
rather than a contact radius, which does include the stiffness value. The

relationships are:!!

(Rt is the indenter radius, and he the elastic displacement into the surface.)
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The results, including those for nanoindentation, are reasonable and sound, and
allowed great insight into the mechanical behavior of KNE solids and their

deformation modes.

1.3 Spherical Indentation Model*
The model described here is essential to our work, and is partially based upon

previous developments of others in the field, especially Herbert et al.!®

2a he/2

— = tot

Figure 6: Spherical Indentation Model Schematic!

As described in Section 1.1, the primary data channels output by nanoindenters
are load on the sample (P) and the vertical displacement of the tip. Typically, the

displacement is given with reference to the surface of the sample as the zero
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datum plane, with depth into the surface given as positive. This value, hereafter
just “displacement”, we term h:.. See Figure 6 above for a schematic of the
dimensional terms used. In addition to those basic channels, nanoindenters
equipped with CSM, either as part of the main unit or as an attachment provide
the harmonic contact stiffness, S, for the entirety of the test. These three data
channels, combined with important static parameters, combine to form the

theory on which our method is based.

Most analytical theory related to spherical nanoindentation is based on the Hertz
equation in the elastic region. This theory, developed as early as 1881, is
amazingly becoming more and more relevant, rather than the opposite, as

technology enables us to make greater use of it. It is given below, as Eq. 1.18151

P =%Eeff Rtl/2h63/2 (1)

where R: is the radius of the indenter, he is the elastic distance into the surface

(Figure 6) and Eet is the system composite modulus given by:

= @

In Eq. 2, E; and v, respectively, refer to the modulus and Poisson’s ratio of the

diamond indenter (typically 1140 GPa and 0.07). E and v are the terms for the
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sample. Note that for soft materials, i.e. most metals, the correction makes little
difference, but nonetheless must be accounted for.

The next relationship, proven by Sneddon? for a rigid spherical indenter, shows
that the elastic displacements of a plane surface above and below the contact

circle are equal, and given by,
h,=h == ©)

where g is the contact radius during indentation (Figure 6). That is, when the
indentation is only in the elastic regime, the entire indentation depth is elastic,

and determined by the term on the right. Combining Egs. 1 and 3 yields,

P 4 a
@l 3 [E] 1 @
t

Though not obvious, this is where stress and strain enter. The left hand side of
this equation represents the Meyer hardness, also known as the indentation
stress or mean contact pressure.’® The expression in parentheses on the right-
hand side represents the indentation strain.’> For the remainder of this thesis,
these will be referred to as indentation stress and indentation strain, respectively.

Note these are not the same as the stresses and strains measured in uniaxial

1 In Chapter 3, Eert in Eq. 4 is renamed E* to avoid confusion of this modulus with that shown in
Eq. 14.
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compression tests, nor even the same as those for other nanoindenter tip

geometries.?!

Thus far, we have only presented two well understood and accepted
relationships, and combined them to form a lesser known one. Our innovation
comes however, in the determination of the contact radius a. To do so, we need
only the data channels of P, S, and h.. We show in the following subsections how

this is done first in the elastic regime, and then in the elasto-plastic regime.

1.3.1 Elastic Regime:

The most typical plot for nanoindentation is that of load (P) versus displacement
(h). Both the Oliver & Pharr?? and Field & Swain® methods use the slopes of the
initial portions of the unloading curves dP/dh, (loading is more complex), to

calculate he. Differentiating Eq. 1 with respect to h yields:

3_;:_: = 2Eeff F‘)tllzhel/2 (5)

When this result is substituted back into Eq. 1, the result is:

p=2Th, ©
3 dh

And therefore,
y _3pdh )
2 dP
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Since dP/dh is nothing but the stiffness, Ss, of the system comprised of the
specimen and the load frame, we can substitute Ss for the reciprocal of dh/dP in

Eq. 7. We thus have:
hy=—— (8)

where the stiffness of the material itself can be calculated from (similar to the

modulus in Eq. 2)

s ©)

where Ss is the stiffness of the system, reported by the CSM, and St is the load-
frame stiffness given by the instrument manufacturer. In our case this was 5.5
MN/m. We obtained this value from the manufacturer of the instrument, but

calibration procedures are available to determine it experimentally.?!

Eq. 8 gives he in terms of P and S, and with that knowledge, we calculate 2 from

Eq. 3, so a is now known in terms of P and S.

1.3.2  Elasto-Plastic Regime
Again taking our lead from Oliver & Pharr??> and Field & Swain® we define the
“contact depth”, h., as the distance from the circle of contact to the maximum

penetration depth (Figure 6) as follows:
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h,=h ——= (10)

Combining Egs. 8 and 10 yields:

h, =h, 25 (11)

For reasons discussed in Section 3, we originally modified this equation to read:
hC:ht—%%+5 (12)

where § is an adjustable parameters of the order of a few nm needed to obtain
the correct elastic moduli. The origin, or need for 6 was not clear at that time.! We
have since discovered that 6 arose from using an incorrect zero point, motivating
us to develop the method to find the correct zero point described in Section 3.

Once hcis known, a can be calculated as follows:

a=42Rh —h? ~,2Rh, (13)

Note that the right-hand expression is only valid if he << a, and the indenter tip is
perfectly spherical. In the purely elastic regime, hc = h/2 = he/2 and Eqgs. 3 and 13
become identical. Also note that for the most part in the plastic regime, ht >> he/2

and thus he= he (Eq. 10).
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We also know that for an isotropic elastic solid indented with a spherical

indenter,?

S

a=——o
2E

(14)

To date the most commonly used method for measuring nanoindentation
hardness values is the Oliver and Pharr method, in which hc is calculated from
Eq. 11, and the contact area, A, is determined from a calibrated area function of
the form:?

A(h,) =C,hZ +C.h, +C,hY?+ C,hY* + C,hYe + ... (15)

In our method, we calculate a from Eq. 13 for the entirety of the curve, essentially
extending the well-understood elastic region into the elasto-plastic region by the
relationships shown above. We then judge the results by two criteria: First, the
initial portion of the indentation stress-strain curves should be linear, with the
higher of two slopes: either the slope obtained from Eq. 14, or the one measured
by the standard method, viz. a Berkovich indenter and the Oliver and Pharr
method. Second, the stress level at higher strains should be comparable to the
stress measured on the same material using a Vickers microhardness indenter,
within a reasonable margin. As previously mentioned, some conversion must be
made between the various hardness measurement methods and tip geometries,

but, being of similar principle, should be reasonably similar.
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1.4 Experimental Details!

The nanoindenter (XP System, MTS, Oak Ridge, TN) used in this work was
equipped with a CSM attachment. All tests were carried out with a load rate over
load factor of 0.1 and an allowable drift rate of between 0.05 and 0.1 nm/s. The
harmonic displacement for the CSM was 2 nm, with a frequency of 45 Hz. The
tests were carried out to various loads for different materials depending on their
hardness. Once the surface is detected, the indenter is loaded at a constant value
of (dP/dt)/P = 0.1 (the loading rate divided by the load), which logarithmically
scales the data density so that it is more or less even across the entire loading
regime. Constant (dP/dt)/P tests also have the advantage of producing a constant
indentation strain rate, (dh/dt)/h, provided the hardness is not a function of the

depth.'?

Two diamond spherical tips - with radii of 13.5 um and 1 um - were used. As
noted above we used a number of materials: fused silica (GM Associates Inc.,
Oakland, CA); sapphire single crystal (C-orientation) (Kyocera Industrial
Ceramics, Vancouver, WA); C-orientation ZnO single crystal (Wafer World, Inc.,
West Palm Beach, FL) and several metals. The first is Al (Puratronic 99.999%,
Alfa Aesar, MA). The remainder are iron samples as follows (subscript indicating

the sample, though all are iron) Irona (99.99 % Alfa Aesar, MA), Irons (99.65%,
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SurePure Chemetals, Florham Park, NJ, annealed at 1450°C for 8 hours, average
grain size of 1.7 millimeter), and Ironc (99.65%, SurePure Chemetals, Florham
Park, NJ, annealed at 1450°C for 12 hours, average grain size of 300 um, though
some grains were up to several mm in size) Irons and Ironc were from the same
raw stock, but were annealed separately, and Ironc was machined as a
compression sample (13mm diameter x 38mm long, parallel flats 3 — 5 mm wide
machined along axial direction), while Irons had dimensions 13mm diameter x

5mm long).!

In all cases, the Vickers microhardness values of the same surfaces used for the
nanoindentations were measured using a microhardness indenter (M-400
Hardness Tester, LECO Corp., St. Joseph, MI), with loads ranging from a 2 to 10
N. We also used the Oliver and Pharr?> method and a Berkovich indenter tip to
measure the hardness, Hs:, and moduli, Es:, of all samples. As noted above, the

latter will henceforth be referred to as the standard method.!

To compare the indentation stress-strain curves with those measured in uniaxial
compression, and later, to study the effect of compression on nanoindentation
results, the Irona cylinder (9.7mm diameter x 35mm long) and Ironc cylinder

(13mm diameter x 38mm long, parallel flats 3 — 5 mm wide machined along axial
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direction) were loaded at a nominal stress rate of approximately 13.5 MPa/s. The

strain was measured using an extensometer attached to the sample.
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CHAPTER 2. STRESS-STRAIN CURVES
FROM SPHERICAL NANOINDENTATION

Please Note: The content of this section has been adapted from a paper for which
Alex Moseson was a co-author.!

2.1 Background On Obtaining Stress-Strain Curves From Spherical

Indentation

The key advantage of instrumented indentation, or more commonly,
“nanoindentation”, is its ability to characterize the mechanical properties of bulk
samples, single grains, and thick films with high accuracy. Primarily, Berkovich
(Figure 2), or similar indenters such as “cube corner” have been successfully
used over the past two decades primarily to determine moduli and hardness
values for a variety of materials.? Berkovich indenters are sharp however,
causing plastic deformation almost instantly, so data in the elastic-to-plastic
transition is lost.!> Our answer to this dilemma is the use of a spherical tip, and
the appropriate theory to accompany it. As described above, this involves
knowledge of the load and displacement from the nominal loading, as well as

stiffness from continuous stiffness measurement (CSM).

Attempts have been made for quite some time to convert load/displacement
curves to indentation stress/strain curves.!> Spherical indenters are sometimes

used for the conversion, but these techniques are not widely used. 7418242 Even
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the apparently superior method by Field and Swain®!°, published about ten years
ago, has not been widely used, even by Swain himself, with some
exceptions.!#182428 Instead, in some recent publications,*2¢?® Swain presents plots
of hardness vs. indentation penetration, but none as indentation stress/strain
curves. Another promising method was published by Herbert et al'$, yet this as
well has fallen out of interest, for reasons which are unclear. In short, though
some have attempted to use spherical nanoindenters to convert load-
displacement to stress-strain, and the apparent ease with which this could be

done, there has been little effort to systematically study and refine the process.

In the remainder of this chapter, we present the results of applying the method
described in Section 1.3 to a wide variety of materials. In all cases, we compared
the results to the moduli reported in the literature and those measured using the
Oliver and Pharr®? method and a Berkovich indenter. The hardness values
obtained here were, in turn, compared to the results obtained using Vickers and
Berkovich indenters. The results show that our method is quite powerful and

versatile.!
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2.2 Results And Discussion

2.2.1 Stiffness vs. Contact Radii

Figure 7a shows the S vs. a plot for various materials tested. Using Eq. 14, we can
easily correlate these clean and reproducible slopes to the effective modulus, Ee:.
Figure 7b shows the correlation between moduli determined by Berkovich and

spherical indenters, and the excellent agreement between the two.
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The Young’s moduli for spherical indentation were calculated from Egs. 2 and

14, after minor adjustments in § (in Eq. 12, our original zero point determination

method). These are listed in column 4 of Table 1 as Esp, along with the literature

data, E in column 3 and the values determined using Berkovich indentation in

column 5. For all cases, Esp < E. Some difference between methods is to be

expected, and that they are consistent at least in direction is encouraging. Also,

with the exception of Fea, Esp < Esr.

Table 1: Mechanical Values From Literature And Our Work!
Summary of Poisson’s ratios, v, and Young’s moduli, E, or 1/s33 taken from the literature, the
moduli values measured in this work using the spherical indenters, ESp, a Berkovich indenter,
EBr, and the hardness values using the latter, HBr. Also listed in last column are the Vickers
microhardness values measured herein using a load of 10 N.

Material o E or 1/ss3 Esp (Figure 7) Es: He: Vickers p-
(GPa) (GPa) (GPa) (GPa) Hard. (GPa)
Silica 13.5 5041
sl 0.18 72 71.7+0.7 9.3+0.2 5.6+0.60
SiO2
59+2
1 um
Al
0.3 70 58+4 60+4 0.48+0.02 0.29+0.02
13.5 um
Fea 210
135 um 0.3 203 16349 155+1 1.2+0.1 1.3+0.1
C-Znil13.5 13024
H 0.2 1/s33 =149 135+3 4.8+0.2 3.3+0.1
C-ZnO
131+4
1 um
Ci‘ﬁf3 0.2 1/ss9= 458 394+4 412+8 25+1 22.5¢

a) This work. B) Value depends on load; lower loads yield higher values.

C) According to manufacturer
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2.2.2 Moduli Corrections

For this work, we set the adjustable parameter 6 in Eq. 12 so that the elastic portion

of the stress-strain curve goes through the origin. Secondarily, we attempted to make the

slope of the elastic portion of the stress-strain curve match the greater of Eg, or Es, for
each sample. In Section 3, we outline an accurate and robust zero point
determination method, used to supersede the need for 6 in Equation 12. By way of

example though, Figure 7 is included here to demonstrate how the previous method was

employed.
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Figure 8: Aluminum - Stress vs. Strain, Before And After Original §-Correction
Indentation stress/strain curves in pure Al in various locations, a) as-received data. Inset shows a
typical load/depth-of-penetration curve, b) same as a, but after 5 correction (see text) and
mechanical shifting of curves. Inset shows the results before mechanical shifting. The numbers
listed in the inset represent the values of 5 needed to obtain the correct modulus. Note shifting
the curve also rotates the initial nonsensical points counterclockwise and aligns them with the
other results. Dashed horizontal lines represent the Vickers microhardness values measured on
the same Al sample.
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In the remainder of this chapter, we treat each material separately, starting with

the most popular standard material, fused silica.

2.2.3 TFused Silica

Figure 9a shows typical load-displacement curves for the 1 um and 13.5 um
indenters on fused silica. Figure 9b shows the indentation stress-strain curves for
5 different locations, for both the 1 um and 13.5 um indenters. Least squares
regression of the linear portions in Figure 7a and Figure 9b, yields slopes that
correspond to an Esp 59+2 GPa (Table 1), rather than the expected Es: of 72 GPa.
Note though, that in Figure 9b, the 1 um and 13.5 um data sets agree very well,
especially after the distinct change in slope of the lines. This is significant,
because it contradicts the indentation size effect observed elsewhere in the
literature and observed below for ZnO. This distinct change (at about 6.5 +1 GPa
in this case), we deem the yield point, as a working understanding of the term.
Note its correspondence to the Vickers microhardness, curiously in the same
range. We do not believe the origin of the “microyielding” to correspond to the
activation of a slip system, but rather it is most probably due to densification

under the indenter tip, or other phenomena.
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Please note that our method is valid for the 1 um indenter tip only up to ht
depths of the order of = 300 nm, and for the 13.5 um indenter up to = 4500 nm.
Beyond those points, the tip can no longer be considered spherical. Recall that
the tip as constructed is not actually a sphere, but rather a rounded cone with a
tip that behaves as a sphere. It is for this reason that there are no results beyond a

strain of 0.7 in Figure 9b.
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Fused Silica
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Figure 9: Fused Silica - Stress vs. Strain, Before And After Original §-Correction
Indentation results for fused silica, a) load/depth-of-penetration results for the 1 um and 13.5um
indenters used, b) corresponding stress-strain curves after 5 —correction. In this figure we
eliminated the data points to the left of the blue dashed line, which represents the elastic response
of the solid. The agreement between the two sets of results in excellent. Dashed horizontal lines
represent the Vickers microhardness values measured on the same silica.
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224 ZnO

For indentation on ZnO C-planes, we observe large pop-ins on the load-
displacement curves that occur between 80 mN and 120 mN (Figure 10a). The
stress-strain plots (Figure 10b) give a clearer understanding of what is
happening, wherein the material appears elastic up to 6.5+1 GPa, and then
abruptly falls to about 3 GPa, and slowly rising with what appears to be strain

hardening.

Recent work by Basu and Barsoum? explored ZnO further, with nanoindentation
and microscopy, in both the C-plane and A-plane orientations. The phenomena
is well explained by the concept of incipient kink bands, as ZnO is now
understood to be a KNE, like that reported on by Murugaiah (See section 1.2).
Though this is beyond the scope of this thesis, suffice it to say that the results are

indeed valid observations of real physical phenomena.

Kucheyev et al.?® report a value of 111+5 GPa for the modulus of ZnO, while
ours, calculated from Figure 7a, is 130+4 GPa. Kucheyev et al used a 4.2 pum
radius indenter and the Field & Swain method. This provides good corroboration

for our work.
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Figure 10: ZnO - Load vs. Displacement And Stress vs. Strain
Indentation results for single crystal ZnO C-planes, a) load/depth-of penetration results 13.5um
indenter, Note large pop-ins around 100 mN. b) corresponding stress-strain curves after 3
-correction and mechanical shifting. Here again data points to the left of the blue dashed
line were removed. Dashed horizontal lines represent the Vickers microhardness values
measured on the same ZnO C-planes.
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2.2.5 Sapphire

The shape of the stress-strain curves for sapphire look like that of ZnO i.e. linear
elastic behavior to a maximum, then a sudden drop and continued linear growth
with a lower slope. Here, the material appears elastic up to a stress of 45+4 GPa,
until at a load of = 15 mN, a “pop-in” occurs. at which point it drops to about 28
GPa, and then increases steadily. Typical load-displacement curves obtained
when the C-planes of sapphire are loaded with the 1 pum indenter are
characterized by a “pop-in’ event at a load of = 15 mN. Again, recent work by
Basu, Barsoum, et. al have identified sapphire as a KNE, and successtully
explained its behavior with that model. 3 In short, the “pop-in” is based on the

activation of dislocation slip systems.
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Figure 11: Sapphire — Stress vs. Strain
Indentation stress-strain curves after & -correction and mechanical shifting for single crystal
sapphire C-planes loaded with a 1pm radius spherical indenter. Note large pop-ins in the 40-50
GPa range. Dashed horizontal lines represent the Vickers microhardness values reported by the
manufacturer for the same surface.

2.2.6 Irona

The hardness value shown in Figure 12 (1.1+0.1 GPa) is reasonably close to that
found by Vickers microhardness (1.3+0.1 GPa). The nanoindentation data,
though scattered, is clustered well, and likely represents indentation on grains of
different orientations, though on this un-annealed sample, the indentation
almost assuredly impacted several grains at once. We also compared the results

with a uniaxial compression test, by scaling the stress and strain values for that
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test by 3 and 10, respectively. Note that this was merely done for the sake of
illustration, but interestingly, for some other samples where work hardening was
prevalent, the hardening rates were comparable, which was not intentionally
sought. While the scaling of the uniaxial compression data may seem arbitrary,
we already have the well-understood relationships of Meyer hardness (the

hardness shown on our nanoindentation curves), and the bulk yield stress. In

general,

% ~ 30,
where oy is the yield point.!® Similarly, !

% ~ 5¢

Here we used 10 instead of 5 in order to make the data fit.

More recent work, on Irons and Ironc is described in Chapters 3 and 4. The

results to date remain perplexing, but progress is certainly being made.
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Indentation stress-strain curves for Fea loaded with a 13.5 um radius spherical indenter, with
mechanical shifting and § —correction. Also plotted are bulk compression results (open squares)

on the same Fe after multiplying the stress by 3 and the strain by 10. The agreement between the

two sets of results is excellent. Dashed horizontal lines represent the Vickers microhardness

values measured herein on the same sample.
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227 Aluminum

The aluminum data was presented in Figure 8, above. After using our original §
correction, the Al results appeared clean, with a clear modulus, yield point and
Meyer’s hardness. The latter was very close to the Vickers hardness measured.
We were originally concerned about the magnitude of 0 for this sample, being up
to 25 nm, where others were limited to less than 3 nm, but as explained in

Chapter 3, this is no longer a concern.

Though our results on Al agree internally, there is some discrepancy between
our work and that of others. Our hardness values are roughly 1/3 of the values
reported by Field and Swain® for pure Al. One possible source of this difference
is that but Field and Swain used their original method, without CSM. Also, the
indentation stress-strain curves obtained by Herbert et al.® from spherical nano-
indentation experiments on 6066-T1 Al - essentially using the same technique
described here — had a decidedly different shape. The hardness values did not
asymptote or reach a steady state, but continually increased with strain. Two
possible sources for this discrepancy are that Herbert et al. used an Al-alloy
rather than pure Al and/or the fact that they used much larger spherical

indenters.
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2.3 Summary And Conclusions: Stress-Strain

As demonstrated in this chapter, our method is a relatively simple way to
convert indentation load-penetration results into the much more informative and
useful indentation stress-strain curves. The usefulness of the method lies of
course in that phrase “much more informative”, which we believe to be true
already, but with further refinement (including that described in Chapters 2 and
3), we expect it to become even more so. To its credit, the method is versatile and
applicable to materials at least from soft polycrystalline metals such as Al to hard
and stiff sapphire. The main caveats were i) the adjustable parameter & (though
methods such as that proposed by Oliver and Pharr use many such parameters
to fit data, to a much greater extent) and, ii) phenomena which we observed, and
were not certain were real physics and not artifacts of the method. The former
has been solved for the most part, as described in Chapter 3, though the method
used for this work is not terribly different in the value eventually chosen. The
latter concern seems to be ebbing away as we research the observations further,
offering insight into KNE solids, and having found further external

corroboration.

In this chapter we have combined CSM measurements, Hertzian theory, and the

Oliver & Pharr and Herbert et. al methods to convert spherical nanoindentation



38

load/displacement curves to indentation stress/strain curves. Corroboration is
offered by Vickers microhardness measurements on the same solids (in our
understanding, never done before), Berkovich nanoindentation, and values from
the literature. Still however, the key advantage of using spherical indenters is the
elastic-to-plastic transition and the associated yield point, which we are actively
researching to better understand. We will continue studying this and other
phenomena to better understand not only the method, but the materials which

we are studying.
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CHAPTER 3. EFFECTIVE ZERO POINT DETERMINATION

Please Note: The content of this section has been adapted from a paper for which
Alex Moseson, the author of this thesis, was the primary author. 2
3.1 Background On The Zero Point Dilemma
Instrumented indentation is a valuable method for characterizing the mechanical
behavior of materials, especially that of single crystals and thin films.
Instrumented indentation was born in the mid-1980’s, and pioneered by Doerner,
Newey, Loubet, Oliver, and others.® Their experimental setup controlled the
load or displacement of a tip of known geometry as it indents into a material.
During the indentation, they continuously measured the load and displacement
into the surface. This was deemed “instrumented” indentation, with obvious
differences between it and its predecessor indentation hardness testing, wherein
only the residual indent was analyzed for its size. Though the concept is simple,
the successful application of the technique is challenging. This is due both to the
models used to interpret the data, and the hardware used to obtain it. Advances
in complementary empirical and analytical paths continue to help with the
former. For example, Finite Element Analysis is today used to simulate
nanoindentation, allowing development of theory in an environment without the
complications of the real world.?> Despite this, Hertzian theory, published as
early as 1881, remains the model most often used as a basis for spherical

nanoindentation. Advances in hardware are also being made, as computers,
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control systems, and the such advance.® Oliver & Pharr, Field & Swain, and
others built upon Hertzian theory and have made significant progress in
developing the technique, but recognize the significant hurdles yet to
overcome.”®? One such obstacle is the accurate and reliable determination of the
zero point, where the indenter tip makes first contact with the sample surface.?**
38 At this point, both the applied indentation load, P, and the total displacement,
hy, or indentation depth, should be zero, though the sample stiffness, S, may
appear positive. Figure 13 shows the conundrum, wherein a P vs. ht curve has no
clear zero point. The correct 9, by our method, is indicated as a vertical dashed

line.
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Figure 13: Silica - Load Vs. Displacement Before Correction
P vs. h; at region near the supposed S = 200 N/m zero point used by manufacturer to define the zero point.
Dashed line denotes location of the true effective zero point.

To date, methods of various sophistication have been proposed to qualitatively
or quantitatively determine the zero point.*- For example, one is to simply plot
P versus ht and choose a point where P first exceeds a certain threshold, while
another uses a video camera.®**® For instruments with continuous stiffness
measurement (CSM) capabilities, Oliver & Pharr?! suggest using the point at
which S reaches a local minimum, before increasing steadily. Alternatively, they

suggest using abrupt changes in CSM harmonic displacement or phase angle if
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they are clearer, but all three options require some subjectivity, however small.
They claim the method has an accuracy of 2 nm, but we have found that it
identifies the zero point too early, sometimes by as much as 14 nm. This may
seem insignificant, but as we show below, the difference can be quite important.
Chudoba, Ullner and their colleagues suggest using regression on the P vs. ht
plots.®404 The former advocates an iterative numerical method to fit the data to a
variation of the Hertzian model, replacing the conventional parameters of tip
radius and effective modulus with an optimized proportionality constant and
forcing the data to go through zero.*# The latter advocates optimizing the terms

of a second order polynomial to fit the data.*

Finally, a variation on the Oliver & Pharr method is to locate the zero point
where S first meets or exceeds 200 N/m. This is based on an assumption that
while the tip is hanging free, other factors such as vibration produce values
below 200 N/m, and that this small value first appears when the tip makes
contact with the surface. This method indeed works in some cases but in the
authors’ experience, it can falsely locate the surface up to hundreds of
nanometers away from the actual zero point. In our deductive data analysis, we
found that this is most likely the method employed by the MTS instrument we

used, and all § values (see below) in this chapter are given with respect to the
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original zero assumed by the instrument. In summary, and while some of these
methods may be somewhat successful, they are limited in that both load and
displacement values are noisy at low loads and are greatly impacted by the zero

point.

Originally, Eq. 11 included a small correction, § that helped insure that the early
regions of the stress-strain curves behaved in a linear elastic fashion. The origin,
or need for,  was not clear at that time.! We have since discovered that d arose
from using an incorrect zero point, leading to the method described herein. We
thus present a robust, simple, accurate, and objective method for reliably
determining the effective zero point for instrumented spherical indentation
equipped with the CSM option. In essence, our method shifts the P and h:t
columns of a given data set in such a way as to insure that the S versus the
contact radius, a, curves are straight lines that go through the origin. The power
of the technique lies in the fact that, if needed, the results can be linearly back-
extrapolated from a region where the signal-to-noise level is high, viz. at shallow
depths, back through the origin thus circumventing the myriad problem
encountered at low loads.? In that sense our zero point is an “effective” zero
point, i.e. the zero point one would have obtained had the surface been

atomically flat and perfectly normal to the loading direction. This effective zero
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point, may, or may not, correspond to the very first point of contact between the

indenter and the surface.

3.2 Effective Zero Point Determination Methodology

To create the S. vs. a plots, the former is known from the CSM, and we use Egs.
11 and 13 to find a. Note that Eq. 14 is not used to find a. According to Eq. 14
though, for a properly zeroed sample, a plot of S vs. a should be a straight line,
that goes through the origin, with a slope of 2Ee. The essence of our method lies
in finding the datum point which if the effective zero point would make the S vs
a curve go through the origin as predicated by Eq. 14. For the remainder of this
chapter, the modulus in Eq. 4 has been renamed to E* to differentiate it from the
Eeif in Eq. 14. E* relates to the slope of the elastic portion of the stress-strain curve,
and would equal Eer as found from the slope of the S-a curve (Eq. 14) if and only
if all assumptions made? in its derivation (i.e. atomically flat surface, surface
perpendicular to tip, isotropic material, perfect sphere, etc.) are valid. Again, in

our method, Egs. 11 and 13 are used to find 4, not Eq. 14.

The key value we solve for is 0, the difference in ht between the correct effective
zero point, Xz, and the first point Xo where S > 200 N/m - viz. the one given by

the instrument. (Note that Xo is defined as such here for convenience, as our
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instrument was programmed to choose the zero point based on S > 200 N/m; this
may vary by instrument. The é value itself is not so important as identifying the
correct effective zero point.) To start, we choose points Xj near (viz. £ 10 nm)
where P definitely becomes positive. To find the correct effective zero point we
simply shift the P and h: columns by subtracting (even if the values are negative)
Pj and hyj respectively, from the entire column. Data points with negative values
of ht are discarded and S vs a is plotted. The shift that results in a S vs. a line that

best goes through the origin is the sought after effective zero point.

Linear regression is used to quantitatively determine the degree to which each S
vs. a curve is linear and goes through the origin (i.e. a straight line forced through
the origin). Note that none of the data sets interact. We used two criteria for
quantifying the curve fits, though one would suffice. The first is the standard
error, defined as the average vertical difference between each datum point and
the best-fit line forced through the origin. The second is the well-known
correlation coefficient, R?, again, with respect to the same best-fit line forced
through the origin. The value of §j that minimizes the error or maximizes R? is the
correct 8. As shown below, the result is an objective, quantitative determination
of the zero point. The method and various applications thereof are patent

pending, with the provisional patent 60/953,361 attached as Appendix 1. A
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detailed example of the procedure is given in Appendix 2. Note that for the tests
in this chapter, the maximum load was 690 mN for fused silica, and 50 mN for

irons and sapphire.

3.3 Results

3.3.1 Silica

Figure 14 shows results for fused silica with the 13.5 um indenter. This is the
same data as shown in Figure 13. Note its location in contradistinction to the
more intuitive point where P begins increasing, around a d of 10 nm. Figure 1la
shows S vs. a plotted for three 0’s, over a span of 10 nm. Inset 2 shows the entire
data set, wherein it is apparent that after ~ 2500 nm, the value of d is no longer of
consequence. The inset of Figure 14b plots the linear regression R-values and the
above-defined standard error from the data forced through zero, at various d’s. In
this case, d: is clearly = 47.2 nm. Figure 14b shows a plot of indentation stress vs.

strain, as defined by Eq. 4.
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Fused silica, 13.5 pm indenter. a) S vs. a for various §’s, for region near the origin. Linear regression
shown. Inset: Full data set. b) Indentation stress vs. strain curves; center curve has the correct . Solid line
is linear regression of the center curve, dashed line is the expected slope as calculated from 4E"/3x. Inset
plots error and R? vs. .



48

3.3.2 Irons, Sapphire, And The “Spike”
Figure 15 and Figure 16 show similar results for iron and sapphire, respectively.

Here again the instrument value for the zero point is slightly off.
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Figure 15: Irons — Zero Point Results
Irong, 13.5 pm indenter. a) S vs. a for various &’s, for region near the origin. Linear regression shown.
Inset: Raw P vs. h at region near the supposed S =200 N/m zero point. Dashed line denotes true location
of the effective zero point as determined herein. b) Indentation stress vs. strain curves; center curve has the
correct 8. Solid line is linear regression of the center curve; dashed line is the expected slope as calculated
from 4E"/3x. Inset: Error and R? vs. 8.
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Figure 16: Sapphire — Zero Point Results
Sapphire, 1 um indenter. a) S vs. a for various 0’s, for region near the origin. Linear regression
shown. Inset: Raw load vs. displacement at region near the supposed S =200 N/m zero point.
Dashed line denotes true location of the effective zero point as determined herein. b) Indentation
stress vs. strain curves; center curve has the correct d. Solid line is linear regression for first
loading region of the center curve, dashed line is the expected slope as calculated from 4E'/3t.
Inset plots error and R? vs. d.
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Note the early spike in the results that appears in Figure 14b, Figure 15b, and
Figure 16b, especially at strains less than 0.01. This spike - to our knowledge not
previously highlighted or understood - arises primarily because at low hs, the
stress is quite sensitive to the values of P, through a2. Its effect on the early region
of the stress-strain curve is best seen in Figure 17, which is a re-plot of the center

curve of Figure 15, Fes where  =7.5.

6000 R R
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: —o—(No Shift)
4000
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- —o—(P_-0.02)
2000 |

0 0.01 0.02 0.03
Indentation Strain

Figure 17: Effect of P on Stress-Strain
Effect of changing the values of the P data column on the stress-strain curves for Fe, =7.5 nm.
Filled circles uses as received data, Po; filled squares, Po — P(d =7.5); Open circles, value for filled
squares + 0.02 mN; filled triangles, value for filled squares - 0.02 mN.
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If the as-received P = 0.04 mN, is used, the spike is huge (solid circles). When P is
zeroed according to Pz (the P for the chosen 0), the curve is well behaved and the
spike disappears (solid squares). Surprisingly, adding just 0.02 mN, results in a
huge spike (open circles); subtracting 0.02 mN results in negative stresses (solid
triangles). This result was unanticipated; 0.02 mN is only 0.08% of the maximum
load for this test, and 0.003% of the full scale of the hardware. For this reason,
discarding the first few early outliers (i.e. the “spike” at strain < 0.1) in the stress-
strain plots is permissible and since the stress-strain curves merge at strains >
0.15 would have no effect on the final results or conclusions. Herein they were
left intact for the purpose of discussion, and the complete data sets were used in
our calculations. Note, that removing these points would not affect the
determination of O, nor any of the S vs. a curves presented here. Removing the
early points also greatly mitigates the effects of complex surface phenomena,3
further bolstering the robustness of our method. These comments
notwithstanding, gratifyingly, when the correct zero point was chosen the spike
all but disappears, indirectly confirming the correctness of our approach. Given

the sensitivity of the curves to P, this result is quite remarkable.
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3.3.3 Slope Comparison

When Eet, viz. slopes of the S vs. a curves divided by 2, for all three samples, are
plotted as a function of o (Figure 18) it is clear that Eei is a function &. This is an
important result because the choice of the wrong zero-point can lead to an
incorrect determination of Eetr. For example, for both Fe and sapphire, an error of
only = 2 nm in the choice of the effective zero point results in an error of 4% or

more in Ee.
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Figure 18: Eeff vs. &

Dependence of Eeit on 0 for all three solids tested. Dashed lines are the linear regression for each
data set. The change in 0 is given with reference to the correct effective zero point for each
sample, respectively (i.e. for the correct delta, Ad = 0). Arrows indicate corresponding y-axis for
data.
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3.3.4 Comparison With Other Methods
It is instructive to compare the results of our method with those from the
methods described above. Consider the methods as follows:

1. The “simple” S=200 method most likely used by MTS (current
comparison)

2. The Oliver & Pharr S=200 method (preceding a steady increase in S)*

3. Camera method (only claims accuracy of ~5 micron) (Lim / Richter
methods)*4

4. Chudoba optimized regression on P vs. ht3?40
5. Ullner optimized regression on P vs. ht*
6. P exceeding a certain threshold

This chapter is already written with delta in reference to Method 1, with zero
identified as that given by the MTS instrument, likely to be the first instance
during loading of S > 200 n/m. We have since compared our method to Method 2,
that of Oliver & Pharr. It is similar to Method 1, but has a key difference greatly
increasing its accuracy. They also suggest using phase angle or harmonic
displacement instead of S, depending on which appears to be the most clear, but
we have limited our comparison to S, their preferred method. We found that
Method 2 identified the zero point lower than that which our method does, by
up to 14 nm. Please note that Method 2 is somewhat subjective, but we made
every effort to faithfully implement it according to their 2004 review paper.?

Figure 19 and Figure 20 below show examples of the difference found, and its
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impact on the results. Note that the sample compared is the same fused silica

from above. (Figure 14)
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Figure 19: Our Method vs. Oliver & Pharr - Fused Silica, S vs. a
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Figure 20: Our Method vs. Oliver & Pharr - Fused Silica, Stress vs. Strain

Comparison with Method 3 would require a significant investment in hardware,
and the supposed accuracy is only 5000 nm, three orders of magnitude greater
than our method, and Method 2, thus we have chosen not to pursue that method

further.

Methods 4 and 5 require the use of complex regression procedures, requiring

numerical optimization and associated custom computer programs. The specific
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details of the method, which would enable us to do a comparison, are either
absent or exceedingly difficult, and may require custom computer programs to
be procured or written to perform the analysis. In short, we believe the
comparison to be valuable, but beyond the scope of this Rapid Communication.
We would also like to see a future, more detailed paper which addresses this

comparison, be it by ourselves or others.

Method 6 is already well understood to be a poor indicator of the zero point, and
thus of little interest. Furthermore, as Oliver & Pharr explain in their 2004 review
paper, the transition at the surface is gradual and not distinct; so the method is
inherently subjective, and thus not comparable to the methods being discussed

here.

3.4 Discussion

According to Eq. 4, the slope of the indentation stress vs. strain curve should
equal 4E*/37t. The inclined dashed lines shown in Figure 14b, Figure 15b and
Figure 16b represent the 4E*/3m line; the solid inclined lines, on the other hand,
represent the least squares fit of the data points shown in the linear regime
forced through zero. The following comments are salient: i) In the case of silica

and sapphire, E* = Eett . This is especially true considering that Eq. 6 was derived
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assuming a perfect sphere indenting a perfectly perpendicular, atomically
smooth, elastically isotropic surface. The latter is probably only true here for
fused silica. The agreement would have also been more obvious had we chosen
to plot the results for larger increments of § as done in Figure 16b. The
correlation is also excellent for ZnO,"* Al', GaN* and more recently, LiNbOs.* ii)
For Fe the dashed line is approximately 3 times steeper than the solid line, i.e E" =
3 Eett. As previously discussed,! this difference is not an error in our method, but
rather a true physical phenomena - most probably related to the elastic
anisotropy of Fe - consistent with previous results and deserving of future
research. iii) In principle, the linearity of the stress-strain curves, and the need
that they pass through the origin, can also be used to find the actual location of

the effective zero point instead of, or in addition to, the method outlined herein.

The results above demonstrate the method on three different materials, including
metal and ceramic, and with two spherical indenter sizes. The importance and
sensitivity of correctly identifying the effective zero point is highlighted in the
stress vs. strain curves. For example, in Figure 15b, a difference of only 2 nm
results in large variations in the indentation stress/strain curves, which

previously were left unexplained.



59

The effective zero point resolution for our setup is estimated to be = 2 nm, but
this could vary depending on hardware and loading schemes. We hope that this
work will inspire further research to make instrumented indentation an ever
more valuable characterization tool. We suggest, for future investigation, the
expansion of this method to other tip geometries, phenomena such as that seen

for Fe, full comparison with other methods, and applications of the method.

3.5 Potential Applications

3.5.1 Increase Accuracy Of Current Methods

First and foremost, as demonstrated above, the use of our Zero Point
Determination method increases the accuracy of all spherical instrumented
indentation techniques. Raw data and the subsequent calculations which use it,

can be extremely sensitive to zero point.

3.5.2  Sample Tilt Determination, Possibly With Correction

As a specific example of a method which could have its accuracy enhanced,
sample tilt is yet another confounding issue for nanoindentation. All models
assume an atomically flat surface perpendicular to the indenter tip, so any tilt,

even less than one degree, can noticeably impact the results.3? Sample tilt across a
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reasonably sized sample appears as an elevation difference on the order of
microns, so accuracy to 2 nm would not be necessary, but if software and
hardware are developed to sense, and perhaps correct, sample tilt, increasing the

accuracy of that process would be welcome.

3.5.3  Surface Topography With Spherical Nanoindentation

Oliver and Pharr describe a method by which they used a nanoindenter with a
Berkovich tip to map the topography of a deep Berkovich indentation.?! They
essentially scanned the surface and used a “quantitative imaging system”
(apparently proprietary or not of great interest for the paper in which they use it)
to create a 3D image of the deep indent. The method appears similar to that of
atomic force microscopy, (AFM) wherein a tip is scanned across the surface of
the sample, and the x, y, and z coordinates logged and compiled. For such
experiments, the resolution and accuracy of the scan depend extraordinarily on
the location of the surface (zero point). Thus, our method might be used in
conjunction with an imaging algorithm to obtain not only accurate

topographical, but mechanical data as well.
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3.6 Critical Analysis Of Method
It may appear that there is a critical flaw in our logic, which if true would
certainly be a serious problem. The criticism, excerpted here from a reviewer

decision letter, is:

“The most critical flaw and inconsistency is in what follows: Both of Eq. (6) and Eq. (1)
(this is the key expression in the authors’ technique proposed for adjusting the zero-point
contact) S = 2 Ef a are easily as well as straightforward derived from the original
Hertzian elastic equation of Pah® 2. This means that Eq. (1) and Eq. (6) are definitely
equivalent, meaning that the results for any elastic materials with any surface conditions

(roughness, friction, etc.) via Eq. (1) must coincide with those obtained from Eq. (6)...”

This objection would be true if and only if we had calculated S from a. In our work
- and it is here that our major contribution comes in — S is completely
independent of all the equations shown; it is a raw data channel which comes
from the CSM attachment on the instrument. And while we use S to calculate a,
we - and this is very important — also only use constants and the totally

independent variables of hrand P. The full equation used to calculate a is:
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i3

What we then do is plot a - which is calculated from the Eq. shown above - and
the totally independently measured S, and we show that they indeed result in a
straight line as expected. There is absolutely no apriori reason that the moduli in
Egs. 1 and 6 be the same. In most cases they are."®# In the case of iron, they are
not. As we note in this thesis, this is not a defect in our method, but rather a true
physical phenomenon most probably related to the elastic anisotropy of Fe. The
results on Fe actually help to prove our point. Had we used a circular argument
then per force the two slopes would have been identical. The fact that in most
cases the moduli are almost identical (see sapphire, silica, and the references
noted above) confirms the validity of our approach; the fact that in some cases

they are not the same — when we use the identical algorithm for data analysis — is

the proverbial exception that proves the rule and certainly rules out that we used

a circular argument.

We understand of the difference between the two slopes to be a result of
deviations from the assumptions made by Hertz and others in developing the

model, as well as a very acceptable level of experimental uncertainty. The many
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samples for which the slopes agree reasonably well are indirect evidence of the

validity of the Hertz model, despite its assumptions.

3.7 Summary And Conclusions: Effective Zero Point

We are confident that our method allows the indentation zero point to be objectively and
accurately determined, by using data that is not sensitive to the zero point to correct
something that is. The zero point resolution for our setup is estimated to be ~ 2 nm but
this could vary depending on hardware and loading schemes. We hope that this work will
inspire further research to make instrumented indentation an ever more valuable
characterization tool. We suggest, for future investigation, the expansion of this method
to other tip geometries (such as Berkovich), phenomena such as that seen for Fe, full

comparison with other methods, and applications of the method.
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CHAPTER 4. SPHERICAL NANOINDENTATION TO CHARACTERIZE
INDIVIDUAL GRAINS

Most recently, I conducted experiments on annealed samples with large grains,
to explore the characterization of the individual grains of polycrystalline
samples. Please note that this work is still in progress, and has offered results
which are both tantalizing and befuddling. Once the research is completed to a

satisfactory understanding of our observations, we intend to publish the work.

4.1 Three Different Grains on Irons

First, consider Irons, which is pure iron which has been annealed at 1450°C for 8
hours. The average grain size, at least in the region tested, is 1.7mm. Figure 16
shows a map of the locations of nanoindents made (numbers), as well as the
Vickers indents (appearing as dark squares). Note that the outer perimeter of the
Vickers indents were used to mark the grain boundary, and not for gathering
data. The surface was highly polished, with guidance from Struers’ E-Metalog
recommendations. Grain boundaries were made visible by lightly etching the
sample with a common etchant, 10% Nital (10% Nitric Acid, 90% Methanol). The

red lines indicate the grain boundaries, for clarity.
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Figure 21: Micrograph of Irons Sample
Numbers correspond to approximate nanoindentation locations. The indents are too small to see
at this magnification. Dark squares are Vickers indents,
most used only to mark the grain boundary. The red line outlines the grains.
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Note that locations 9 through 12 were intentionally placed on the grain
boundary, to investigate the effects of indenting on a boundary. Locations 13
through 16 are on a single grain located some distance away from the grain
pictured in the micrograph, and that grain cannot be readily identified. Figure 22
through Figure 24 show the load-displacement, S-a, and stress-strain curves,
respectively. The stress-strain curve was produced by the method described in

Chapters 1 and 3.
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Figure 22: Annealed Irons Map, Load vs. Displacement
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Figure 24: Annealed Irons Map, Indentation Stress vs. Indentation Strain

The three data sets (one from each of the three grains), cluster well for load-
displacement, yet are superimposed for the S-a curve. This indicates that the
grains are indeed distinct, but have the same elastic modulus. Even more
fantastic is the clustering of data in the stress-strain curve, Figure 24. The moduli
appear to be essentially the same, but each grain has a different yield point. The

best explanation for this is that the grains have different orientations, and as was
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demonstrated for ZnO%» and sapphire®, this exposes different slip systems, each
requiring different stresses to yield. The fact that the grains differ with such
magnitude and distinction is remarkable and indirectly confirms our
methodology in converting nanoindentation load-displacement to stress-strain
curves. Note the clusters for locations 1 though 4, 5 through 8, and 13 through 16.
Also, as expected the data for locations 9 through 12, located on or very close to a
grain boundary, does not exhibit the same clustering. The dashed lines in the
figure indicate the Vickers hardness for the three grains, though the location for
tests 13 — 16 is a best guess. The magnitude of the Vickers microhardness is lower
than the Meyers hardness for locations 1-4 and 5-8 by arguably exactly the same
amount. That is, if one were to shift those two Vickers lines up by approximately
150 MPa, both would coincide perfectly with the Meyers hardness. The key here
is not the absolute value, which we can expect to differ by some amount because
the two methods differ, but the fact that the two grains differ in yield point by
the same amount as they do for Vickers. Needless to say, this is gratifying, and
deserving of further investigation. One such research path would be conducting
Orientation Imaging Microscopy (OIM) to determine the orientations of the
grains, first to determine if they are different, and second to see if the associated
expected Critical Resolved Shear Stress (CRSS) corresponds to the yield points

observed.
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4.2 The Effect Of Compression on Ironc

Here we come to the confusing potion of our latest research. For Ironc, we
prepared a compression sample with nominal dimensions 13mm diameter x 38
mm long. We then machined flat parallel surfaces along the entire length of the
sample, each 3mm wide. This sample was annealed for 12 h at 1450°C (not 8 h as
with Irons, since growing the grains is more difficult for this larger sample.) I
then machined one of the flat surfaces to expand its width to 5.5mm, ensuring
that we would have enough surface area to conduct testing, and to further
ensure that the surface was parallel to the other flat. I polished the larger flat
surface for nanoindentation, with nearly the same procedure as that used for
Irons, except that the sample had to be held by hand instead of mounted to the

polisher. I followed this with the identical etching procedure as for Irons.

Following this preparation, I performed the following steps on the sample, in the
order indicated, on the same three large grains: i) Vickers Microhardness ii)
Nanoindentation iii) uniaxial compression to 6.3% strain (obviously for the entire
sample) iv) Nanoindentation and v) Vickers microhardness. We expected to see
an increase in both the Vickers and Meyers hardness values. The results show
evidence of the sensitivity of the method to many, many factors which in other

characterization techniques might be overlooked. Figure 25 through Figure 27
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show the results of nanoindentation for the same sample, before and after
compression. The legend notes “tape” or “wax” for each location. This indicates
the layer used to adhere the custom built sample holder (top to bottom: sample,
wax, steel mounting cylinder, wax, Bakelite mounting cylinder, wax, glass slide,

wax, glass slide) to the sample stage. (The sample would not fit in the regular

sample holder.)
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Figure 25: Compression Sample Results, Load vs. Displacement
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Figure 27: Compression Sample Results, Indentation Stress vs. Strain
The above results show that apparently, the sample becomes less hard upon
compression. This is certainly counterintuitive. It is comforting however that the
modulus remained more or less constant, though this was not the case for the
other two locations tested (not shown here). When the sample holder was
adhered to the sample carrier with wax instead of the much more compressible
tape though, the results change dramatically. This is an example of just one of the
many factors affecting the sensitive results. As another standard of measure to

investigate the results, I performed Vickers indentation after compression (Table
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2) and also re-measured the Vickers indents which had been created before

compression (Table 3).

Table 2: Comparison of Ironc Vickers Hardness Values, Before And After Compression

T (Post
S (Pre-Compression) Compression)
Vickers Vickers Change In
Grain (MPa) St.Dev (MPa) St.Dev || Vickers
1 1141.4 55.4 1294.9 1.9 13.4%
2 989.8 20.0 1091.6 9.3 10.3%
3 1220.7 47.3 1343.9 33.0 10.1%

Table 3: Comparison of Ironc Vickers Indents, Before And After compression

Pre-Compresion | Post-Compression Change In...
D1 D2 D1 D2
Grain | Average | Avg. Avg Avg D1 D2 AvgD
1| 111.8 114.1 91.8 103.1 -17.9% | -9.6% | -13.7%
2| 118.6 123.9 75.7 81.9 -36.1% | -33.9% | -35.0%
3| 1089 109.5 101.2 108.5 -71% | -09% | -4.0%

Table 2 shows that for all three grains, the Vickers hardness increased by about
10% after compression. We should thus expect to see the Meyers hardness
increase after compression by the same 10%, which we do not. As strain is

nothing but the change in sample length divided by the original length (at least
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for the engineering strain), I thought it valuable to compare the sizes of the
original Vickers indents before and after compression. Dimension D1 was
aligned with the axis of the cylinder, and we see that indeed, these decrease
substantially for all grains, and decrease more so than D2, which is
perpendicular to the axis. The magnitudes vary between grains though, and have
no apparent correlation to the change in Vickers hardness, which are more or less

equal.

After much deliberation, we have identified the following as possible sources of
error. First, the figures above demonstrate that using tape anywhere in the
sample mounting column, albeit over 50 mm away from the indentation surface,
has some effect on the results. Second, the sample surface may not have been as
nearly perpendicular to the indenter tip after compression as before. As all of the
theory assumes a flat, perpendicular surface, this aberration would alter the
results. Even a fraction of a degree can have significant effects.®> Our loss of
perpendicularity occurred for two reasons: i) Because of the necessary lack of
shear stress on the surface of the sample, where the indentations were
performed, the polished flat “crinkled” along what appear to be the grain
boundaries, creating a surface which is no longer uniformly flat. The phenomena

can perhaps best be described as the effect seen when compressing a stiff piece of
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common aluminum foil. Even after re-polishing, some effects remained. ii) the
sample buckled slightly under compression, before the test was terminated to
prevent further buckling. This contributed to the loss of perpendicularity.
Furthermore, grain 3 was located at a portion of the sample where the buckling
caused additional compression, and “ripples” in the grain easily visible under
the microscope. For this reason, we will not be considering the results of grain 3
any further. The third area of concern is that of surface roughness, which would
alter results for obvious reasons. Fourth, Oliver & Pharr note “near-surface
forces” such as water meniscus formation, and other effects such as thermal and
physical vibration as contributing to uncertainty, especially at extremely shallow
depths. Fifth, the sample holder designed for the nanoindentation of this
experiment included a piece of double-stick tape, albeit several centimeters away
from the sample, which could compress under the load of the indenter. Though
the compression would be seemingly insignificant at normal scales, that
significance could be magnified enough to interfere with the results, at the
nanoscale. Lastly, the surface polishing is in question, because the sample was

held by hand rather than mounted properly in a sample holder.

The sheer volume of possible problems described above point towards a new

experimental design, mitigating or eliminating as many of those unknowns as
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reasonably possible. This is likely to be our next course, possibly in collaboration

with others doing similar work at Drexel University.

4.3 Summary of Work on Irons and Ironc

In summary, the preliminary results on Irons are very interesting, point towards
the success of our method and the tests on that sample, and could offer solid
proof of something rarely shown before, if ever. The work on Ironc is interesting,

but will require a new design of experiment to carry out the work properly.

CHAPTER 5. SUMMARY AND CONCLUSIONS
51 Summary And Conclusions
In this thesis, I have provided valuable insights into spherical nanoindentation,

through original research by myself and my colleagues.

First, we demonstrated the validity of a method to accurately transform
indentation load-displacement plots to stress-strain plots. Stress-strain plots,
having information throughout the regions of elasticity, transition, and plasticity,
are quite valuable, and are a major improvement over the load-displacement
plots from which they are derived. We validated our method on a wide variety

of materials, and confirmed results with literature, Berkovich indentation, and
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Vickers indentation. Note that included in those samples were ceramics, and our
work is thus one of the earliest times in history where meaningful stress-strain
curves were produced for ceramic materials. (In traditional tests, the brittle
sample fractures suddenly and before much data can be gathered.) We also
performed the work with two indenter sizes, and saw excellent agreement

between the results. Later work on ZnO and LiNbOs3, using the technique, offered

insight into the behavior of KNE solids and further evidence of the technique’s validity.
In short, we are able to reliably convert spherical indentation load-displacement curves to
stress-strain curves for a variety of materials and tip sizes, offering insights into
mechanical behavior never observed as such before. One question originally left
unanswered though, was that of a & correction factor, which brings us to the next

discovery reported in this thesis.

Second, I described and showed evidence for a robust, quantitative method to
determine the effective zero point, a problem which has plagued the field since
its inception. The method is simple, based on well-accepted theory, and even in
comparison to our closest competitor (Oliver & Pharr), offers a critical increase in
accuracy. The sensitivity of nanoindentation data to the zero point is astounding,
and our ability to operate despite that is perhaps even more so. Again, we
demonstrated the method on a variety of materials and indenter sizes. Even

under intense scrutiny, the method holds firm. As it explains so much which was
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not previously understood, and removes a major barrier to research, this

advancement could enable great progress in the field,

Third, I showed our most recent results on iron. The work on irons offers a
tantalizing glimpse of the results which may be possible, thanks to the
techniques described earlier. Validation and extension of the results, showing
clear differentiation between the mechanical properties of individual grains,
would be truly remarkable. The work on ironc was a valuable exercise in
experimental design. It forced our research group to carefully consider all of the
factors which affect the results, and how to mitigate or isolate them. Further

work on compression samples will hopefully yield powerful results as well.

In summary, we have demonstrated a reliable method to convert spherical
nanoindentation load-displacement curves to stress-strain curves, a robust and
quantitative method to determine the effective zero point, and remarkable results
on individual grains. We are privileged to have contributed to the field, and as

described below, will endeavor to continue doing so.
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5.2 Future Work

The following is recommended future work, to continue that described thus far.

Our research group, including the author of this thesis, intends to continue the

work, but we would also encourage any others who might be interested in

pursuing them to do so.

L.

ii.

1ii.

iv.

Vi.

Extend the stress-strain and effective zero point methods to other sizes of

spherical tip

Extend the stress-strain and effective zero point methods to other tip

geometries, including and especially Berkovich

Gain a better understanding of the yield point, including the correlation

between it and the Vickers (or other) hardness

Quantitatively compare our effective zero point determination method

with competing methods

Test our methods on thin and/or thick films

Investigate the effect of sample tilt on our methods



Vii.

Viil.

ix.
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Continue work on large distinct grains to search for differences in
mechanical behavior. This would include performing OIM on the Irons
sample, and extending the experimental design used for that material to

others.

Investigate the effect of compression on nanoindentation results,

especially modulus and hardness.

Investigate the effect of surface roughness, preparation procedures

(including polishing), and other near-surface effects on our methods

Collaborate with the research group of Dr. Surya Kalidindi (Drexel
University, Philadelphia, PA), which has expertise in simulation and
microstructure, and is currently working to answer similar questions as

those raised here.
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A NOVEL METHOD FOR ZERO POINT DETECTION

BACKGROUND OF THE INVENTION

1. Statement of Government Interest

This invention was reduced to practice with Government support under Grant No.
DAADI19-03-1-0213 awarded by Army Research Office; the Government is therefore

entitled to certain rights to this invention.

2. Field of the Invention

The present invention relates to a method for objectively and accurately determining
the zero point of a nano-indented material. The novel method of the present application may
be particularly useful in enhancing the accuracy of nano-indentation analysis, providing a
better understanding of contact mechanics, and positioning a nanoindenter relative to a
surface of an object. Additionally, the method may be used to analyze the surface topography

and mechanical characteristics of a material.

3. Description of the Related Technology

Instrumented indentation is a valuable and effective method for characterizing the
mechanical behavior of materials, especially that of single crystals and thin films.
Scientists, such as Hertz, Oliver, Pharr, Field and Swain, have developed a variety of
techniques for instrumented indentation but recognize that there are significant hurdles
that have yet to be overcome.'™ One such obstacle is the accurate and reliable
determination of the zero point, the location where the indenter tip makes first contact
with the surface of a solid.>” At this point, although the sample stiffness may appear
positive, both the applied indentation load, P, and the total displacement or indentation
depth, 4,,, are zero.

To date, methods of various sophistication have been proposed to qualitatively or
quantitatively determine the location of the zero point.'>!” One conventional method
involves plotting the applied indentation load P versus the indentation depth 4,; the zero
point is identified as the point where P first exceeds a selected threshold value. Another

known method uses a video camera positioned perpendicular to the indentation axis to



10

15

20

25

30

DREX-1087USP U.S. Provisional Patent Application
91

visually determine when the tip of a sensor has contacted the surface of a material, by
analyzing the absence of light passing through a non-existent gap between the tip and
surface. This method, however, has limited accuracy of approximately 5 pm
(microns).'*!® According to Oliver and Pharr,’ it is also possible to determine the location
of the zero point using an instrument capable of continuous stiffness measurement; the
zero point is the point at which the stiffness, S, first exceeds 200 N/m. This method
operates on the assumption that while the tip is hanging free, other factors such as
vibration produce stiffness values below 200 N/m and that the small value of 200 N/m
first appears when the tip makes contact with the surface. Although the method of Oliver
and Pharr can be used to determine the zero point in certain instances, for various reasons
it is prone to erroneous identification of the location of interest up to about 450 nm away
from the actual zero point. In yet another method, Chudoba, Ullner and their colleagues
suggest using regression analysis on a graph of P versus 4,.'%!"!"” The method of Chudoba
involves using an iterative numerical function to fit the data of P versus 4, to a variation
of the Hertzian model, replacing the conventional parameters of tip geometry, in the case
of a spherical shaped tip, the radius, and effective modulus with an optimized
proportionality constant, forcing the data to go through an origin of the graph.!! Ullner’s
method uses a similar technique for analyzing the data of P versus 4, but further suggests
optimizing to a second order polynomial.'” These methods are limited in that both load
and displacement values are greatly impacted by the zero point, especially at very
shallow depths. Although these methods may produce some successful results, because
both P and #,, are significantly affected by the zero point, they do not provide an
objective determination of the zero point. Furthermore, especially at very shallow depths,
other factors such as vibration and thermal drift can impact the determination of the zero
point, and, in many cases, separating these factors using these conventional methods may
not be possible.

Current methods for identifying the zero point of a nano-indented material are
typically subjective, inaccurate and/or susceptible to factors that impact and interfere with
the accuracy of the determination of the zero point. A method capable of objectively,
robustly and accurately determining the location of the zero point has, to date, remained

elusive. Therefore, there exists a need to develop a method that would enable an accurate
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and objective means for reliably and reproducibly determining from an existing data set

the zero point for a material.

SUMMARY OF THE INVENTION

The present invention is directed to a method for objectively and accurately
determining the zero point of a nano-indented material. The method comprises the steps
of: obtaining continuous stiffness measurement oscillation data for a nano-indented
material; plotting a stiffness of the material as a function of a contact parameter of the
material for at least one identified data point; and applying a linear regression analysis to
determine the degree to which the data point approximates a line that passes through the

origin.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1(a) is a graph of stiffness .S versus contact parameter a for various ¢
values for a fused silica sample. Inset 1 is a graph of applied load P versus indentation
depth /4, at a region near the point where S= 200 N/m. Inset 2 is a graph of S versus a for
the full data set.

Figure 1(b) is a graph of indentation stress versus indentation strain for various ¢
values for the fused silica sample. The solid line is linear regression for a first loading
region of the center curve; the dashed line is the expected slope as calculated from
4F.4/3m. The inset is a graph of the linear regression R-values and the standard error of
the S versus a lines of Figure 1(a) forced through the origin of the graph, at various 0.

Figure 2(a) is a graph of indentation stress versus indentation strain for various &
values for an annealed iron sample. The inset is a graph of applied load P versus
indentation depth 4, at a region near the point where S= 200 N/m.

Figure 2(b) is a graph of indentation stress versus indentation strain for various ¢
values for the annealed iron sample. The solid line is linear regression for first loading
region of the center curve, the dashed line is the expected slope as calculated from
4F.¢/3w. The inset is a graph of the linear regression R-values and the standard error of
the S versus a lines of Figure 2(a) forced through the origin of the graph, at various J.

Figure 3(a) is a graph of indentation stress versus indentation strain for various &
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values for a sapphire sample. The inset is a graph of applied load P versus indentation
depth /%, at a region near the point where S= 200 N/m.

Figure 3(b) is a graph of indentation stress versus indentation strain for various ¢
values for the sapphire sample. The solid line is linear regression for first loading region
of the center curve, the dashed line is the expected slope as calculated from 4£.4/3m. The
iset is a graph of the linear regression R-values and the standard error of the S versus «
lines of Figure 3(a) forced through the origin of the graph, at various J.

Figure 4 is a graph of the slope of S versus a, such as those curves shown in
figures 1(a), 2(a), and 3(b), versus o for samples of fused silica, iron and sapphire. The

arrows indicate the proper corresponding y-axis for each data set.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is directed to a novel method for determining the zero point
of a nano-indented material, i.e. the point of first contact between an indenter tip and the
surface of a material. According to the present invention, it is possible to determine the
location of the zero point of any material, including solid materials such as metals or
ceramics and semi-solid materials, using a simple and objective procedure that produces
accurate results, which can be reproduced using a sensor capable of continuous stiffness
measurement (CSM).

The method of the present invention utilizes a sensor that is equipped with a
means for continuous stiffness measurement. Preferably, the sensor is a nanoindenter or
an instrumented indenter with a CSM option, attachment or capability. The sensor
comprises a tip, which can have any geometrical shape, a means for controlling and/or
determining the displacement of the tip relative to any chosen datum and a means for
controlling and/or measuring the force applied by the tip onto a solid or semi-solid
material.

The sensor may be used for a variety of applications, including but not limited to
producing load-displacement curves, marking samples for further inspection, calculating
values from the data obtained and mapping data to indentation stress-strain curves.'**?
In the present invention, the sensor may be used to produce indentation stress-strain

curves from load displacement curves by detecting CSM oscillations. CSM is a technique
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which applies an oscillating force superimposed on the indenting motion of a sensor tip,
with both load and displacement on scales considerably smaller than the primary
indentation. Resolution of the sensor and the sensitivity of the method of the present
invention which uses said sensor, are dependant upon many instrument factors including
but not limited to vibration, thermal drift, testing factors such as loading rate and
characteristics of the material being tested such as surface roughness. In a preferred
embodiment, the sensor has a displacement resolution of about 1 nm or less and a force
resolution of about 0.5 millinewtons (mN).

The method of the present invention generally comprises the steps of using a
sensor to detect a load and displacement for the primary indentation and for oscillations
from continuous stiffness measurements which are superimposed on the primary
indentation; systematically shifting the data, creating a data set for each shift; plotting a
graph of a stiffness of said material versus a contact parameter of the material for each
data point in the data sets; using at least one linear regression means to determine the
degree to which each data set approximates a straight lines that passes through the origin
of the graph; and selecting a zero point from said data sets. Optionally, the last step may
be carried out based on a data shift for which the linear regression most closely
approximates a line that passes through the origin of said graph.

Using the data collected by the sensor, the method of the present invention
involves generating a graph of material stiffness S as a function of a contact parameter a
to determine the zero point of a nanoindented material. The graph of S as a function of a
should produce a line that passes through the origin of the graph with a slope of twice the
effective modulus for a properly zeroed sample. The graph of S versus a will be linear
and pass through the origin of the graph, if and only if, the correct zero point is chosen.
Even small errors regarding the location of the zero point will yield significant S versus a
errors for small displacements.

The method of the present invention determines the location of the datum point at
which first contact is made, &, which is the difference in 4, between the true zero point X,
and the first point X,. To find &, points X; are chosen near the measured zero point, where
the load becomes positive. Preferably, points X, are within about + 100 nm of the zero

point, more preferably within about + 50 nm of the zero point, and most preferably within
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about + 10 nm of the zero point in order to reduce the number of calculations necessary
to determine the true zero point. Each of these points are treated as if they were X;. At X,
both P and 4, should be zero; to fulfill this requirement, J; must be defined by the value of
h:; and P; and h,; must be subtracted from all data points. Since S is actually measured
from the CSM oscillations, and thus not affected by the zero point, its value remains
unchanged for each point. Points with negative 4, are then discarded. The result is several
data sets, each assuming that X, with its corresponding Jj, is X;, the zero point. A graph
of S as a function of a is then plotted for these data sets, and linear regression is used to
quantitatively determine the degree to which each set approximates a straight line forced
through the origin, which is the ideal form. The slope of these lines is not forced, nor do
any of the data sets interact. At least one measure may be used to analyze and quantify
the curve fit. In a preferred embodiment, the fit of the curve is analyzed by determining
the standard error, which is defined as the average vertical difference between each data
point and the line of best fit, which for the purpose of determining the zero point is the
line which passes through the origin of the graph of S versus a, and by determining

correlation coefficient, R. The value of & that minimizes the error or maximizes R is

assumed to be J.

According to this method, the zero point may be determined within a resolution of
about 2 nm or less and more preferably within a resolution of about 1 nm or less. This is
however, dependant upon the resolution of the instrument, as previously indicated. There
is no theoretical limit to the resolution of this invention. Errors in determining the zero
point of even a few nm can drastically alter further calculations and other uses of the
data, such as producing stress-strain curves and S vs. a curves.

Using a similar method by mapping a graph of indentation stress as a function of
indentation strain, identifying a set of relevant 6 points, fitting a curve of indentation
stress versus indentation strain for each J point so that the curve is forced through the
origin of the graph, and determining the accuracy of the fit, it is possible to determine the
zero point. The linearity of the stress-strain curves, and the requirement that they pass
through the origin of the graph of S as a function of a, can also be used to find the actual

location of the zero point instead of, or in addition to, the method outlined herein.
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The method of the present invention is unique in that it is a simple, objective,
robust, accurate and reproducible method for determining the zero point of a nano-
indented material from an existing data set using CSM. In contrast to the prior art, the
method of the present invention is advantageous because it relies on actual stiffness
measurements collected from the CSM data, which is not inherently sensitive to the zero
point or significantly sensitive to vibrations or drift. Therefore, excipient factors that can
skew zero point determination do not substantially interfere with the CSM data.
Essentially, the method of the present invention uses non zero point sensitive CSM data
to correct something without significant interference from other factors. .

The method of the present invention may be used to enhance the accuracy and
execution of a variety of applications. Currently nearly all indentation models
erroneously assume that the indentation is perfectly perpendicular to a flat surface of the
solid. The orientation of an indentation relative to a surface of a solid, however, is
dependent upon the angle of the solid surface. Therefore, an assumption that the
indentation is perpendicular to the sample surface generally results in some degree of
inaccuracy regarding the location of the zero point. Using our zero point and the absolute
displacement of the indenter tip, we can, by using a minimum of three points, determine
the pitch and roll (x and y angle) of a solid. This information may be used to
correspondingly position the sample stage via some mechanical, hydraulic or other
physical means, so that the solid is perpendicularly oriented with respect to the indenter
tip.

Additionally, the present method may also be used with a nanoindenter as well as
a surface profilometer, similar to Atomic Force Microscopy (AFM). The surface of the
solid may be scanned with the nanoindenter and indented at multiple points along the
surface of the solid. This application would enable one to obtain information regarding
surface topography and mechanical properties of the solids.

The method of the present application may also be applicable for enhancing the
accuracy of nanoindentation analysis and providing a better understanding of contact

mechanics.
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EXAMPLES

Example 1

A graph of S as a function of @ may be used to determine the zero point of the
nano-indented material using a sensor having a spherical shaped indenter tip. The
following equations, which pertain to a spherical shaped indenter tip and are based upon
the Hertzian model, disclose a means for calculating contact parameter a. Modified
equations that represent other tip geometries are not enumerated but would be obvious to
one of ordinary skill in the art.

The stress-strain curve for a nanoindented isotropic elastic material may be
calculated from the contact parameter a, the stiffness of the isotropic elastic material S

and the composite modulus £ of Equation 1,

S
a= (Equation 1)
2Eeﬁ‘
where S is defined by Equation 2.
i1 1 (Equation 2)
s §* S, '

S* 1s the stiffness value of the system, reported by the CSM, and Sy is the load-frame
stiffness, given by the instrument manufacturer. The composite modulus, E.z, is defined
by Equation 3,

1 1-0* 1-0" :
= + Equation 3
z Z Il (Eq )

eff
where £’ and v, respectively, refer to the Young’s modulus and Poisson’s ratio of an
indenter, preferably a diamond indenter; £ and v are Young’s modulus and Poisson’s
ratio of the nano-indented isotropic elastic material. According to Oliver and Pharr’ and

Field and Swain', the contact parameter @ may also be determined by Equation 4,

a=-/2Rh, — hc2 (Equation 4)

where R is the indenter parameter and the contact depth, 4., is the distance from the circle

of contact (i.e. the highest point on the tip where the sample actually touches the surface
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of the tip) to the maximum penetration depth (i.e. at the apex of the tip) is given by
Equation 5,''®
3P .
h,=h —=— Equation 5
e (Eq )

where P is the indentation load applied to the solid and 4, is the depth of the indentation
in the surface of the solid, measured between an assumed datum parallel to the sample

surface and the apex of the indenter tip. Finally, the indentation stress and strain, as

defined by Equation 6, is derived from the Hertz equation'~*"** and the work of
Sneddon®
P 4 a
~ =" F |=Z Equation 6
m® 3m 7 (Rj (Eq )

The left side of Equation 6 is defined as the indentation stress, mean contact hardness or
Meyer hardness.'*** The expression in parenthesis is the indentation strain. '

From these equations, a graph of S versus a may be used to determine the zero
point of the nanoindented material. S may be obtained from the CSM data collected by

the sensor, and Equations 4 and 5 may be used to calculate contact parameter a.

Example 2
The method of the present invention was found to be effective for determining the

zero point of fused silica, sapphire single crystals and polycrystalline iron using indenters
of various sizes having a resolution of 1 nm.

A Nano-indenter XP system (MTS, Oak Ridge, TN) with a CSM attachment was
used to perform the method of the present invention. The nano-indenter sensor comprises
a diamond spherical tip. In this experiment, two tips, with radii of 13.5 um and 1 um,
were used. The Young’s modulus and Poisson’s ratio of the diamond indenters were 1140
GPa and 0.07, respectively.

The three sample materials that were in the experiment include: fused silica (GM
Associates Inc., Oakland, CA); C-orientation sapphire single crystal (Kyocera Industrial
Ceramics, Vancouver, WA); and iron (99.65%, SurePure Chemetals, Florham Park, NJ).
The Vickers microhardness value was measured on the same surface used for the

nanoindentation with an M-400 Hardness Tester, (LECO Corp., St. Joseph, MI).
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All the tests were carried out with a load rate over load factor of (dP/df)/P = 0.1
and an allowable drift rate of 0.05 nm/s. The load frame stiffness, Sy was provided by the
manufacturer, and has a value of ~5.5 MN/m. Maximum load was 690 mN for the fused
silica sample and 50 mN for the iron and sapphire samples. The harmonic displacement
for the CSM was 2 nm with a frequency of 45 Hz.

Figure 1(a) shows an analysis of S versus a using the method of the present
invention for three datum points J, over a span of 10 nm, for a fused silica sample using a
13.5 pm indenter. Linear regression of the three datum points d is represented by dashed
lines. Figure 1(a) shows that datum point 6=47.2 nm has a fitted line that passes through
the origin of the graph and is therefore the true zero point for the fused silica sample.
Inset 2 of Figure 1(a) shows the entire data set, wherein it is apparent that after = 2500
nm, the value of ¢ is no longer of consequence.

Figure 1(b) shows a graph of indentation stress versus strain, as defined by
Equation 6, of the fused silica sample, where the center curve is the true zero point and
the solid line represents the linear regression for a first loading region of the center curve.
The early data spike is reduced in both magnitude and prevalence as J increases because:
1) some of the data points occur in the air before the indenter reaches the zero point,
identified by having a negative 4, after the ¢ correction, and are thus discarded and 2) the
magnitude of @, and thus that of the indentation stress, becomes more accurate as o
approaches the zero point. The dashed line represents the expected slope, calculated from
4F /37, and the Inset of Figure 1(b) is a graph of the linear regression R-values and the
standard error of the data that is forced through the origin of the graph, at various
values.

As shown by Inset 1 of Figure 1(a), the conventional method of graphing P versus
h; at a region near the point where S= 200 N/m, which according to the prior art
supposedly corresponds to the zero point, does not clearly indicate the zero point, which
is represented by the dashed line. Notably, the datum point d= 47.2 nm is counterintuitive
when compared to Inset 1 of Figure 1(a), which suggests that P begins to increase around
a o of 10 nm.

Figures 2 and 3 similarly show a zero point analysis for samples of iron and

sapphire. Figure 2(a) is a graph of S versus a using the method of the present invention
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for three datum points J, over a span of 10 nm, for a sample of iron sample using a 13.5
pm indenter. The zero point occurs at 6=7.5 nm, which is also represented by the dashed
line in the Inset of Figure 2(a). Figure 2(b) shows a graph of indentation stress versus
strain for various datum points J of the iron sample, where the center curve is the true
zero point. The solid line represents a linear regression for first loading region of the
center curve, and the dashed line is the expected slope as calculated from 4E.s/37. The
Vickers hardness value, shown by the dashed horizontal line in Figure 2(b), is within a
reasonable range of the value expected from our stress versus strain curve, where the
curve becomes horizontal. The Inset of Figure 2(b) shows a graph of the linear regression
R-values and the standard error from the data forced through zero, at various .

Similarly, Figure 3(a) shows a graph of S versus a using the method of the present
invention for three datum points J, over a span of 10 nm, for a sample of iron sample
using a 1 pm indenter. The zero point occurs at =40.4 nm, which is also represented by
the dashed line in the Inset of Figure 3(a). In Figure 3(b), the center curve of the stress
versus strain graph represents the true zero point. The solid line represents a linear
regression for first loading region of the center curve, and the dashed line is the expected
slope as calculated from 4E.g/37. The Inset of Figure 3(b) shows a graph of the linear
regression R-values and the standard error from the data forced through zero, at various .
The importance and sensitivity of correctly identifying the zero point is highlighted in the
stress versus strain curves. For example, in Figure 3(b), a difference of only
approximately 2 to 3 nm results in significant variations in the indentation stress/strain
curves, which previously were left unexplained.

Figure 4 is a graph of the slopes of the S versus a curves i.e. £y for all three
samples as a function of 0. The true zero point of each material is circled and the dashed
lines represent the linear regression for each data set. Because it is evident that E g is
functionally related to J, this suggests that an incorrect determination of the zero-point
can produce an incorrect determination of the effective moduli. For example, for both
iron and sapphire, an error of only = 2 nm in the choice of the zero point resultsina=7
% error in S, and consequently, E.

According to Equation 6, the slope of the indentation stress versus strain should

equal 4£,4/37. The inclined dashed lines shown in Figs. 1(b), 2(b) and 3(b) represent the

11
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4E,;/37 line; the solid inclined lines, on the other hand, represents the least squares fit of
the data points shown in the linear regime and forced through zero. The closer the
correspondence between the inclined dashed lines and the solid inclined lines, the greater
the accuracy the of the zero point determination

For silica and sapphire, there is a substantial correlation between the dashed lines
and the solid lines, supporting the accuracy of the zero point determination for these
materials. This is especially true considering that Equation 6 was derived assuming a
perfect sphere indenting a perfectly perpendicular, atomically smooth, elastically
1sotropic surface. The latter is probably only true here for fused silica. The
correspondence would have been greater were the results for larger increments of § also
graphed, as done in Figure 2(b). These factors have also been found to be highly
correlated for ZnO,lg’lg Allg, GaN?® and more recently, LiNbO;.**

Notably, the dashed line for iron is approximately 3 times steeper than its solid
line. It has been determined that this difference is not a result of an error in the method of
the present application, but rather reflects a physical phenomena most probably related to
the elastic anisotropy of iron, which is consistent with previous results.'®

The present invention may also be implemented in the form of a computer
program or by a computer programmed to carry out all or portions of the method of the

present invention.

12

101




10

15

20

25

30

DREX-1087USP U.S. Provisional Patent Application

102

References

The References cited herein are listed below and the disclosures of the listed

references are hereby incorporated by reference in their entirety:

1.

J. S. Field and M. V. Swain: Determining The Mechanical-Properties Of Small
Volumes Of Material From Submicrometer Spherical Indentations. Journal Of
Materials Research 10, 101-112 (1995).

J. S. Field and M. V. Swain: The Indentation Characterisation Of The Mechanical
Properties Of Various Carbon Materials: Glassy Carbon, Coke And Pyrolytic
Graphite. Carbon 34, 1357 (1996).

W. C. Oliver and G. M. Pharr: Measurement of hardness and elastic modulus by
instrumented indentation: Advances in understanding and refinements to
methodology. Journal of Materials Research 19, 3-20 (2004).

J. L. Bucaille, E. Felder, and G. Hochstetter: Identification of the viscoplastic
behavior of a polycarbonate based on experiments and numerical modeling of the
nano-indentation test. Journal of Materials Science 37 (2002).

P. Grau, G. Berg, W. Fraenzel, and H. Meinhard: Recording hardness testing
problems of measurement at small indentation depths PHYS STATUS SOLIDI A
146, 537-548 (1994).

N. Huber and E. Tyulyukovskiy: A new loading history for identification of
viscoplastic properties by spherical indentation. Journal of Materials Research 19,
101-113 (2004).

Z. Li, K. Herrmann, and F. Pohlenz: A comparative approach for calibration of
the depth measuring system-in a nanoindentation instrument. Measurement 39,
547-552 (2006).

B. Rother, A. Steiner, D. A. Dietrich, H. A. Jehn, J. Haupt, and W. Gissler:
Depth-sensing indentation measurements with Vickers and Berkovich indenters.
Journal of Materials Research 13 (1998).

E. Tyulyukovskiy and N. Huber: Neural networks for tip correction of spherical
indentation curves from bulk metals and thin metal films. Journal of the

Mechanics and Physics of Solids 55, 391-418 (2007).

13



10

15

20

25

DREX-1087USP U.S. Provisional Patent Application

10.

11.

12.

13.

14.

15.

16.

17.

18.

103
T. Chudoba, M. Griepentrog, A. Diick, D. Schneider, and F. Richter: Young’s

modulus measurements on ultra-thin coatings. Journal of Materials Research 19,
301-314 (2004).

T. Chudoba, N. Schwarzer, and F. Richter: Determination of elastic properties of
thin films by indentation measurements with a spherical indenter. Surface and
Coatings Technology 127, 9-17 (2000).

A. C. Fischer-Cripps: Critical reVieW of analysis and interpretation of
nanoindentation test data. Surface and Coatings Technology 200, 4153-4165
(2006).

Y.-H. Liang, Y. Arai, K. Ozasa, M. Ohashi, and E. Tsuchida: Simultaneous
measurement of nanoprobe indentation force and photoluminescence of
InGaAs/GaAs quantum dots and its simulation. Physica E: Low-dimensional
Systems and Nanostructures 36, 1-11 (2007).

Y. Y. Lim and M. Munawar Chaudhri: Indentation of elastic solids with a rigid
Vickers pyramidal indenter. Mechanics of Materials 38, 1213-1228 (2006).

V. Linss, N. Schwarzer, T. Chudoba, M. Karniychuk, and F. Richter: Mechanical
properties of a graded B-C-N sputtered coating with varying Young's modulus:
deposition, theoretical modelling and nanoindentation. Surface and Coatings
Technology 195, 287-297 (2005).

F. Richter, M. Herrmann, F. Molnar, T. Chudoba, N. Schwarzer, M. Keunecke, K.
Bewilogua, X. W. Zhang, H. G. Boyen, and P. Ziemann: Substrate influence in
Young's modulus determination of thin films by indentation methods: Cubic
boron nitride as an example. Surface and Coatings Technology 201, 3577-3587
(2006).

C. Ullner: Requirement of a robust method for the precise determination of the
contact point in the depth sensing hardness test. Measurement 27, 43-51 (2000).
S. Basu, A. Moseson, and M. W, Barsoum: On the determination of spherical
nanoindentation stress-strain curves. Journal of Materials Research 21, 2628-2637

(2006).

14



10

15

20

25

DREX-1087USP U.S. Provisional Patent Application

19.

20.

21.

22.

23.

24.

104

S. Basu and M. W. Barsoum: Deformation Micromechanisms of ZnO Single
Crystals as Determined From Spherical Nanoindentation Stress-Strain Curves. J.
Mater. Res. Accepted for publication (2007).

S. Basu, M. W. Barsoum, A. D. Williams, and T. D. Moustakas: Spherical
nanoindentation and deformation mechanisms in free-standing GaN films. J. App.
Phys. In Print (2007).

J. S. Field and M. V. Swain: A Simple Predictive Model For Spherical
Indentation. Journal Of Materials Research 8, 297-306 (1993).

D. Tabor. Hardness of Metals ( Clarendon, Oxford, U.K., 1951),

. N. Sneddon: The relaxation between load and penetration in the axisymmetric
boussinesq problem for a punch of arbitrary profile. Int. J. Engineering Science,
3,47 (1965).

S. Basu, A. Zhou, and M. W. Barsoum: Micromechanics of Deformation Under a
Spherical Indenter and Indirect Observation of Reversible Dislocation Motion in a
LiNbO3 Single Crystal. Physics Review Letters Submitted For Publication
(2007).

15




10

15

20

25

DREX-1087USP U.S. Provisional Patent Application
105

CLAIMS
1. A method for determining the zero point of a nano-indented material comprising the

steps of:

a) obtaining continuous stiffness measurement oscillation data for a nano-indented
material;

b) selecting at least one data point;

c¢) plotting a stiffness of said material as a function of a contact parameter of said
material for said data point to form a plot; '

d) applying a linear regression analysis to plot to determine the degree to which
said data point approximates a line that passes through an origin of said plot; and

e) selecting a zero point from said data point, for which said linear regression most

closely approximates a line that passes through the origin of said plot.

2. The method of claim 1, wherein said method may be used to determine the zero point
of a material selected from the group consisting of: a solid material and a semi-solid

material.

3. The method of claim 1, wherein step e further comprises the step of analyzing a fit of

said linear regression.

4. The method of claim 3, wherein said step of analyzing a fit employs a measure

selected from a standard error, a correlation coefficient and a combination thereof.

5. The method of claim 4, wherein the selected zero point is a data point that minimizes

the standard error and/or maximizes said correlation coefficient.

6. The method of claim 1, wherein said selected zero point is accurate within a resolution

of about 2 nm or less.

7. The method of claim 1, wherein said selected zero point is accurate within a resolution

of about 1 nm or less.
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8. The method of claim 1, further comprising the step of using said zero point to position

said material relative to a nano-indenter.

9. A method for determining the zero point of a nano-indented material comprising the
steps of:

a. obtaining continuous stiffness measurement oscillation data for a
nanoindented material;

b. selecting at least one data point;

c. plotting a first graph of a stiffness of said material as a function of a
contact parameter of said material for said data point;

d. plotting a second graph of indentation stress of said material as a function
of indentation strain of said material;

e. applying a linear regression analysis to said first and second graphs to
determine the degree to which said data point approximates a line that
passes through an origin of said first and second graphs; and

f. selecting a zero point from said data point, for which said linear regression
most closely approximates a line that passes through the origin of said first

and second graphs.

10. The method of claim 9, wherein step (e) further comprises the step of analyzing a fit

of said linear regression.

11. The method of claim 10, wherein the step of analyzing a fit of said linear regression
uses a measure selected from a standard error, a correlation coefficient and a combination

thereof.

12. The method of claim 11, wherein the selected zero point is a data point that

minimizes a standard error, maximizes said correlation coefficient or both.
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13. The method of claim 9, wherein said selected zero point is accurate within a

resolution of about 2 nm or less.

14. The method of claim 9, wherein said selected zero point is accurate within a

resolution of about 1 nm or less.

15. A method for determining the zero point of a nano-indented material comprising

the steps of:

a. obtaining continuous stiffness measurement oscillation data for a nano-indented
material;

b. selecting at least one data point;

c. plotting a first graph of indentation stress of said material as a function of
indentation strain of said material;

d. applying a linear regression analysis to said graph to determine the degree to
which said data point approximates a line that passes through an origin of said graph; and

e. selecting a zero point from said data point, for which said linear regression

most closely approximates a line that passes through the origin of said graph.

16. The method of claim 15, wherein step (e) further comprises the step of analyzing a fit

of said linear regression.

17. The method of claim 16, wherein said step of analyzing a fit employs a measure

selected from a standard error, a correlation coefficient and a combination thereof.

18. The method of claim 17, wherein the selected zero point is a data point that

minimizes a standard error, maximizes said correlation coefficient or both.

19. The method of claim 15, wherein said selected zero point is accurate within a

resolution of about 2 nm or less.
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20. The method of claim 15, wherein said selected zero point is accurate within a

resolution of about 1 nm or less.
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ABSTRACT OF THE DISCLOSURE
The present invention relates to a method for the simple, objective and accurate
determination the zero point of a material, the point of first contact between an indenter
tip and the surface of a material. The zero point is determined by using a sensor having a
tip and capable of continuous stiffness measurement. By applying a data shift, which
insures that the stiffness versus contact parameter curve is linear and goes through the
origin of the graph, it is possible to determine the zero point based on combined data

from indentation and from superimposed continuous stiffness measurement oscillations.
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APPENDIX 2: Detailed Example Of Zero Point Determination Method

This detailed example shows the steps required to implement the effective zero
point determination method on Irons, for the data which appears in Figure 15.

Step 1: Export Raw Data From Instrument File

In our case, the raw data was recorded and analyzed with MTS TestWorks
software, version 4.X. It has the feature to export data to Microsoft Excel
spreadsheet, which we utilized. We made sure to select the option wherein all
data is exported, not just that after the supposed zero point. The raw data for
each test location is formatted as below, with rows of ellipses added for this
example, to denote a break in the data shown. The “our variable” row has also
been added, to aid the reader.

Table 4: Detailed Example - Raw Data

Time Harmonic
Displacement | Load On On Contact
Segment Into Surface | Sample | Sample | Stiffness | Hardness | Modulus
[Units] nm mN S N/m GPa GPa
[Our Variable] h, P S
Load Segment Type -1973.29 -0.02 -212 -225.26 | 1.8E+308 0
-1969.64 | -0.02014 -211.8 | -246.735 | 1.8E+308 0
-1967.02 | -0.02018 -211.6 -250.99 | 1.8E+308 0
-1966 -0.0201 -211.4 -245.4 | 1.8E+308 0
-1.98364 | -0.00032 -0.6 | -106.044 | 1.8E+308 0
-2.11187 | -0.00016 -0.4 | -27.3263 | 1.8E+308 0
-0.71953 -0.0001 -0.2 | 58.78342 | 1.8E+308 0
[Xo] 0 0 0| 140.5432 | 1.8E+308 0
0.273374 | 0.000141 0.2 | 214.2866 | 1.8E+308 | 1.2E-158
0.751746 | 0.000259 0.4 | 295.5066 -0.0071 0
1.2351 | 0.000382 0.6 | 412.7958 | -0.00545 0
7.448581 | 0.037264 14.4 | 32785.48 | 0.665147 | 120.5121
7.461452 | 0.038363 14.6 | 34521.27 | 0.671084 | 126.2353
7.489434 | 0.039619 14.8 | 37166.23 | 0.667033 | 134.2449
[X, later X;] 7.517422 | 0.040796 15 | 39448.63 0.66586 | 141.1131
7.657895 | 0.042043 15.2 | 41880.97 0.6257 | 143.3232
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Time | Harmonic
Displacement | Load On On Contact
Segment Into Surface | Sample | Sample | Stiffness | Hardness | Modulus
7.783184 | 0.043291 15.4 | 42486.57 | 0.606638 | 140.7833
7.752723 | 0.044473 15.6 | 43293.42 | 0.635162 | 145.391
675.3556 | 49.58791 82 | 1225656 | 1.317608 | 183.1825
680.244 | 50.01821 82.08 | 1226328 | 1.318819 | 182.4708
Hold Segment Type 682.5907 | 50.23539 82.12 | 1227530 | 1.319635 | 182.2829

The “segment” column includes markers denoting the type of segment which the
machine is using. The only two important ones for this work are “Load Segment
Type” (begin loading) and “Hold Segment Type” (Hold at the top of the load,
even if the time for holding is zero seconds.) Markings in brackets are mine. The
other columns are self-explanatory, but the last two (hardness and modulus) are
additional CSM data channels, not used in this work. Because they are not used
in this method, the Time, Hardness, and Modulus columns are not show in later
data tables.

Step 2: Find Point Where P Definitely Increases

Our method involves testing and comparing a number of cases. In order to
reduce the quantity of those cases, we look for the point on a plot of the P vs. ht
data to determine where P definitely begins to increase steadily. Such a plot is
shown below, in our case within the TestWorks software.



119

=30 =20 -0 1] 10 20 30 40

Displacement Into Surface (nm)

Figure 28: P vs. h: for raw data

This case is relatively straightforward — the zero point is most likely somewhere
in the range 0 nm < ht < 10 nm. Sometimes this can be deceiving though, as was
the case for Silica (Figure 14), where the effective zero point was actually ~ 20 nm
away from where P began to increase steadily. This is a demonstration of the fact
that choosing a certain range to investigate first is merely a way to reduce the
number of cases investigated, and the time and effort involved. The result is by
no means subjective though, as we would get the same result by investigating
0 nm < ht <10 nm as we would for -1000 nm < h: < 1000 nm. A smaller range is
chosen merely for practical purposes. The range can, and often must, be
modified, as described in steps 3 and 4 below.

NOTE: Many of the steps below are repeated in a looping structure. A summary
of the steps and how they fit into the looping structure is provided at the end of
this appendix.
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Step 3: Choose a Zero Point, Subtract htj and P;

We nw choose a zero point Xj to evaluate as if it were the correct zero point X-.
For this example, let us choose the point where ht is 7.517.... We then capture the
hij and Pj at that point, so in this case hyj = 7.517422 nm and Pj = 0.040796 mN.
We subtract these values (even if they are negative), from the entire h: and P
columns, forcing our Xj point to have zero for both ht and P. The data after this
shift is shown in Table 5: Detailed Example - Data After Xj Shift.

Table 5: Detailed Example - Data After Xj Shift

Harmonic
Displacement | Load On | Contact
Segment Into Surface | Sample | Stiffness
[Units] nm mN N/m
[Our Variable] h, P S
Load Segment Type -1980.81 | -0.06079 -225.26

-1977.15 | -0.06094 | -246.735
-1974.53 | -0.06098 -250.99
-1973.52 -0.0609 -245.4

-9.50106 | -0.04112 | -106.044
-9.62929 | -0.04095 | -27.3263
-8.23695 -0.0409 | 58.78342
[Xo] -7.51742 -0.0408 | 140.5432
-7.24405 | -0.04066 | 214.2866
-6.76568 | -0.04054 | 295.5066
-6.28232 | -0.04041 | 412.7958

-0.06884 | -0.00353 | 32785.48
-0.05597 | -0.00243 | 34521.27
-0.02799 | -0.00118 | 37166.23
[X, later X,] 0 0 | 39448.63
0.140474 | 0.001247 | 41880.97
0.265762 | 0.002495 | 42486.57
0.235302 | 0.003676 | 43293.42

667.8382 | 49.54711 | 1225656
672.7265 | 49.97742 | 1226328
Hold Segment Type 675.0733 | 50.19459 1227530
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Note that the Stiffness, S, remains unchanged. For example, at Xj S remains
39448.63 N/m before and after correction.

Step 4: Delete Negative Rows And Calculate Values

We see from Table 5 that there are a number of rows for which ht is less than
zero. These are of no interest, being that the tip was not on the surface wherever
ht < 0. We thus delete all rows for which that is the case.

Next, we now calculate the values h. a, indentation stress, and indentation

strain, for each remaining row of data. These are calculated according to Egs. 11,
13, 4, and 4, respectively. There are constants needed for the calculations, most
importantly being the tip radius, which in our case is 13500 nm. The data now

appears as follows:

Table 6: Detailed Example - Data With Calculations

Displace Harmonic | Contact | Contact | Indentation | Indentation
ment Into | Load On Contact Depth Radius Stress Strain
Segment | Surface Sample | Stiffness
[Units] nm mN N/m nm nm MPa Unitless
[Our he a o £
Variable] h; P S
[X;, later
X4 0 0| 39448.63 0.00 0.00 0.00
0.140474 | 0.001247 | 41880.97 0.12 56.48 124.41 0.00
0.265762 | 0.002495 | 42486.57 0.22 77.37 132.65 0.01
0.235302 | 0.003676 | 43293.42 0.17 68.07 252.56 0.01
667.8382 | 49.54711 1225656 | 637.52 4099.58 938.40 0.30
672.7265 | 49.97742 1226328 | 642.16 4114.12 939.87 0.30
Hold
Segment
Type 675.0733 | 50.19459 1227530 | 644.41 4121.13 940.75 0.31

Step 5: Plot S vs. a And Perform Linear Regression

With the data prepared, we now plot S vs. a. Then we use a least-squares linear
regression to determine how well the data fits a straight line forced through the

origin. Such a plot is shown below, as well as the results of the regression.
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Figure 29: Detailed Example - S vs. a
The dashed line is the linear regression.
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Table 7: Detailed Example - Regression Results - One Case

Standard
Delta Eett R2 Error
751742 | 150 0.998031 0.72791
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Step 6: Repeat Steps 3, 4, and 5 for Each X;

Repeat Steps 3, 4, and 5 for each Xj, for the range chosen in Step 2. A certain step
between chosen points should be employed. (i.e. every 0.5 nm or every 2 nm) to
aid in finding the correct d. For this step, we sorted the data for the loading portion
of the curve only , ascending in ht. Then we chose starting and ending limits for
O, and a step size. Our method allowed us to gain meaningful differentiation
between cases down to a step size of 0.5 nm, below which the data usually did
not have enough density. The actual points were chosen as the first point which
meets or exceeds the d sought. For example, if we sought 7.5, the first point to
satisfy that in this case was 7.51742.

Step 7: Compare S vs. a curves

Now with a range of Xj data sets to consider, we compare the results for their S
vs. a curves. This is best done looking at tabular results, but plots can be an aid to
the eye, and can be an opportunity to catch any abnormalities. Figure 30 shows a
composite S vs. a plot for a number of 0, zoomed in to the early region, where
differences are most apparent. The inset shows the full range of the plot, where it
can be seen that after some point (in this case a ~ 1500 nm) the difference in d on
longer plays a large role. Table 8 shows the regression results in tabular format,
and Figure 31 presents them graphically. Every other case is shown, though we
investigated in steps of 0.5 nm.



410 T

124

] )
r—®—o0 T
s [—l—os8 ]
3510 B 20 .
I —@—26 ]
310° F—e—u5 ]
. —@—>55 ]
2510° | : .
= B ]
Z 210° N ]
[7,} C T ]
1510° [ .
110° | z ol ﬁf’ 17
u - ]
410 : 4 :
510" / ]
o= ]
0 2500 5000
0 ||||||||||||||||a|(m;n)|||||_
0 500 1000 1500
a (nm)
Figure 30: Detailed Example - Composite S vs. a
Table 8: Detailed Example - Composite Regression Results
Delta Actual Standard
Sought Delta Eert R? F Value Error
0 0.00000 | 144 0.98357 | 88114.18 0.96743
0.5 0.75175 | 144 0.98601 | 28904.77 1.69830
1.5 1.99447 | 146 0.98973 | 38927.57 1.47628
2.5 2.59167 | 146 0.99138 | 46014.45 1.36346
3.5 3.59099 | 147 0.99378 | 62283.59 1.17972
45 4.60726 | 148 0.99573 | 88876.49 0.99388
5.5 5.50213 | 149 0.99694 | 120108.57 0.85939
6.5 6.51564 | 150 0.99776 | 157377.34 0.75475
7.5 7.51742 | 150 0.99803 | 170801.42 0.72791
8.5 8.55621 | 151 0.99778 | 146297.51 0.79005
9.5 9.62434 | 152 0.99749 | 122430.72 0.86710
10.5 10.52690 | 152 0.99687 | 94969.82 0.98770
11.5 11.56399 | 153 0.99572 | 66795.71 1.18159
12.5 12.94086 | 153 0.99478 | 51420.07 1.35199
13.5 13.63216 | 154 0.99460 | 48027.64 1.40140
14.5 14.75381 | 154 0.99336 | 37824.55 1.58360
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Figure 31: Detailed Example - Regression Results Comparison

We choose as the winner the d which has the highest R? value. The S vs. a plot
should thus appear linear and go through the origin. Our winner in this case is
clearly 6 =7.5 (most easily identified in the table), the first Xj we chose.

Step 8: Change d Range And Step Size As Necessary

Note that in the result of Step 7, we found a ® which was clearly the best, and
proof that on either side of that o, the fit was worse. If this is not the case, repeat
Step 6 with a new range and/or step size. Using a larger step size, i.e. 2 nm, may
be helpful to start identifying the point, but the smallest step size which yields
meaningful differentiation should always be used for the final decision. For
example, my P vs. ht plot might have a broad range where X. could be, say 20 to
80 nm. I would recommend first using a step size of 5nm, so that the number of
cases is between 10 and 20. Then one could use 2 nm or 1 nm, and finally 0.5 nm.
The driving force for the range would be that at each of these step sizes, the
correct delta found should be near the middle of the range. If not, adjust
accordingly.
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Step 9: Verify Results

As with any numerical method, it is essential to check the results for validity. In
our case, this means checking the plots of Load vs. Displacement, S vs. a, and
Stress vs. Strain for any gross abnormalities. As Figure 15 shows, the results are
indeed reasonable for this sample and location.

Summary Of Steps, Including Looping Structure

Below is a summary of the steps, in a format which highlights their structure.

1 — Export Raw Data

A 4

2 — Identify Range

A 4

3 — Choose X;, Shift H;and P

A

A 4

6 - v
For Each 4 — Delete Negative Rows And Calculate Values 8 -
X Until Best
\ Identified

5—Plot S vs. a, Do Linear Regression

Y
7 — Compare S vs. a Curves

A 4
9 — Verify Results
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A Note On Automation

This procedure, being entirely objective and numerical, and also being repetitive,
lends itself well to programmed automation. For this work, I wrote custom code
in Visual Basic For Applications (VBA) within Microsoft Excel to carry out Steps
3 through 7, and then adjusted parameters manually for Step 8. This allowed me
to turn a ~ 20 minute process into a 1 minute process. It was a process repeated
scores of times so the effort to program was well invested. This process could
conceivably be automated, in whole or in part, in any appropriate software or
programming language, including Microsoft Excel, Matlab, Java, C++, etc. It
could even be integrated into the software of an instrument, allowing it to much
more accurately determine the effective zero point. Recall however, that the
method is patent pending, so appropriate steps would have to be taken to license
it.








