
JACOBI LOAD FLOW ACCELERATOR USING FPGA'

J. Foertsch, J. Johnson, P. Nagvajara
Drexel University
Philadelphia, PA

Abstract - Full-AC load flow is a crucial task in power
system analysis. Solving full-AC load flow utilizes iterative
numerical methods such as Jacobi, Gauss-Seidel or New-
ton-Raphson. Newton-Raphson is currently the preferred
solver used in industrial applications such as Power World
and PSS/E due to it faster convergence than either Jacobi
or Gauss-Seidel. In this paper, we reexamine the Jacobi
method for use in a fully pipelined hardware implementa-
tion using a Field Programmable Gate Array (FPGA) as
an alternative to Newton-Raphson. Using benchmark data
from representative power systems, we compare the op-
eration counts of Newton-Raphson software to the pro-
posed Jacobi FPGA hardware. Our studies show that
Jacobi method implemented in an FPGA for a sufficiently
large power system has the potential to be a state of the art
full-AC load flow engine.

Keywords: FPGA, Gauss-Seidel, iterative solver,
Jacobi, loadflow, Newton-Raphson

I INTRODUCTION
Load flow calculations are the basis from which most

power system analysis stems. The results of a load flow
calculation are used to estimate the operation of a power
system under a set of known conditions. Obviously
systems are not static and any one of the many input
conditions can change. The ability to quickly perform
the load flow calculation allows engineers to be more
confident in the safety, reliability, and economic opera-
tion of their system in the event of scheduled or un-
scheduled equipment outages.

Current technology does not adequately allow for
real-time or dynamic analysis of these systems. The
complexity and pure number of calculations for a given
problem can take on the order of hours to complete.
Much research has been done in this area to speed up
calculations [1]. These studies can be summarized into
three general approaches: reducing calculation by im-
proving the algorithms; improving software efficiency
by means of highly optimized libraries of routines
and/or a cluster of machines running the software pro-
gram concurrently; and adding parallelism in the calcu-
lation by means of custom hardware assistance. Each
approach has built upon the previous research: the
hardware approach leveraged the concurrent software
research and the software approaches leveraged the
algorithmic research.

In this paper we take the latest approach - custom
hardware - and evaluate its affectivity in the light of the
older, previously dismissed algorithms. In particular, we
propose a deeply pipelined custom hardware to imple-

ment the Jacobi iterative load flow solver. This method
is compared against the state-of-the-art software and
hardware solutions.

2 BACKGROUND
The purpose of a load flow computation is to deter-

mine numerically all the voltage magnitudes and phase
angles at load buses, voltage phase angle and reactive
power at generator buses, and real and reactive power at
the slack bus of a power system transmission network.

Popular methods used when performing full-AC load
flow (or power flow) are Jacobi, Gauss-Seidel and
Newton-Raphson [2]. Each one has its own set of bene-
fits and drawbacks. The Jacobi and Gauss-Seidel meth-
ods are the easiest to understand because they use the
known quantities of the power system. This makes for
simple implementation, but the process takes signifi-
cantly more iterations to converge to a solution. Jacobi
takes more iterations than Gauss-Seidel. Its updates to
the solution are applied each iteration rather than within
the same iteration. The Newton-Raphson method is
much more complex than either the Jacobi or Gauss-
Seidel methods. The total number of calculations per
iteration is increased. However, it takes less iteration to
converge. Newton-Raphson method has a quadratic rate
of convergence; Jacobi and Gauss-Seidel have a linear
rate of convergence.

2.1 Gauss-Seidel andJacobi Methods
Gauss-Seidel and Jacobi methods are very similar.

They take the same input data, and produce the same
outputs. The main difference is how newly calculated
voltage data is handled in subsequent calculations. . The
Jacobi method gets a solution vector for a constant set
of inputs. Gauss-Seidel does not require a constant set
of inputs; it uses the most readily available value. Load
flow solution via Gauss-Seidel method involves iterat-
ing (1) and using (2):

1 0s k<i NZ]

Yii k=1 k=;+l
where:

S i= Pi+ jQ "2
until the maximum absolute change in each element of
the resultant voltage vector, V, between iterations is less
than 10-4 per unit. Where Y is the bus admittance matrix
(Y-bus); P is a vector of real power injections; and Q is

l The United States Department of Energy (DOE) Grant No CH 1171 supported the research reported in this paper.

0-7803-9255-8/05/$20.00 2005 IEEE

448

a vector of reactive power injections. An injection is the
difference between generation and demand. All ele-
ments of the V vector and the Y matrix are complex
quantities. For generator busses, the voltage magnitude
is already known. Reactive power is first estimated for
the Gauss-Seidel iteration by (3).

t)V1NZ
Q v Z (Vikv Ak) (3)

k=1

Reactive power becomes an output of the calculation
when the voltage magnitudes and angles converge to a
solution.

Load flow solution via the Jacobi method simplifies
equation (1) by combining the two summations into a
single summation from 1 to the number of non-zeros
(NZ) omitting the ith entry. In other words, a snapshot of
the input voltage vector is used in all N-i calculations
until a completely new voltage vector is determined.

2.2 Newton-Raphson Method
Load flow solution via Newton-Raphson method in-

volves iterating (4) until f(x) = 0 is satisfied.

-J *AX = f(X) (4)
The Jacobian, J, of the power system, is a matrix of
partial derivatives of the real and imaginary power
equations with respect to voltage magnitude and phase
angle. This matrix is sparse in a similar fashion as the
Y-bus matrix. Delta x is a vector of the change in the
voltage magnitude and phase angle for the iteration in
progress. And f(x) is a vector representing the real and
imaginary power mismatch.

Newton-Raphson is the most widely used load-flow
calculation engine due to its algorithmic advantages
over Gauss-Seidel and Jacobi.

2.3 FPGA Technology
Field programmable gate arrays are reusable logic

devices. Arrays of logical blocks containing logic gates,
combined with dedicated functional and memory
blocks, and interconnection wires form the underlying
flexible fabric for FPGA integrated circuits. Software
codes, typically written in a hardware description lan-
guage (HDL) such as VHDL or Verilog, are synthesized
and mapped to these devices allowing a designer to
specify the functionality of the FPGA.

In 2002, FPGA device density was in the thousands
of logic gates with operational clock rates in the tens of
Megahertz. Today, device densities are in the millions
of logic gates with synthesized logic capable of running
at rates up to and exceeding 500 MHz (see
www.xilinx.com). Beyond increases in logic density,
the addition of high performance embedded arithmetic
units, large amounts of embedded memory, high speed
embedded processor cores, and high speed I/O has al-
lowed FPGA integrated circuits to grow beyond just
simple prototyping devices. FPGA architectures have
evolved to the point where high performance floating-
point computation is now feasible; and with additional

hardware devoted to floating point computation, logic
designs targeting to an FPGA can outperform high-end
personal computers [3].

3 BENCHMARK SYSTEMS
A particular phenomenon that makes the full-AC

load flow problem even more interesting is the sparse
nature of the network interconnect matrix. This matrix,
called the bus admittance matrix or Y-bus, defines the
interconnection of all the generation and loads at spe-
cific points in a power system. This matrix is extremely
sparse since entries are only significant (non-zero) if a
branch between two buses exists. In our benchmark
systems provided by PSS/E and PJM Interconnection
shown in Table I, a typical bus contains only four
branches; a typical power system can easily contain a
matrix of tens of thousands of buses. Thus making the
number of non-zero entries in the Y-bus matrix of a
large system (>1000 buses) less than 1%.

System Max Min Avg Total
118 Bus 13 2 4 490
300Bus 13 2 3 1,118
1648 Bus 24 2 4 6,680
17917 Bus 16 2 4 32,211

Table I: Y-bus Elements per Row

Highly optimized dense linear algebra packages,
such as Binary Linear Algebra Subroutines (BLAS),
struggle with the sparse nature of the load flow compu-
tation. Some software packages implemented on clus-
ters of workstations has been designed attempt to take
advantage of the sparse nature of this problem with
some degree of success. These computing engines are
usually based on general-purpose microprocessors, such
as the Intel Pentium or Motorola PowerPC with sup-
porting floating-point units and hierarchies of cache
memory. When performing sparse matrix operations,
these systems fail to fully utilize available floating-point
resources resulting in processor stalls. Software com-
pilers often fail to optimally order arithmetic operations.

The thee most popular software approaches to load
flow are summarized in Table II. It can be seen that
although the Jacobi and Gauss-Seidel methods have the
same number of floating-point operations per iterate, the
Jacobi method has more iterations to acheive a solution.
It can also be seen that the number of operations for the
Newton-Raphson per iteration is greater than both
Gauss-Seidel and Jacobi, but has significantly less
iterations and fewer total operations to converge.

This simple analysis compares floating-point
operations between the methods. Assuming that the data
access rate of the sparse matrixes used in each
calculation will roughly be the same between the
methods, it shows that a sequential implementation (in
software) of the Newton-Raphson method will
significantly out perform the others. This is due to
Newton-Raphson having a quadratic rate of

449

convergence compared to a linear rate for both the
Gauss-Seidel and Jacobi methods.

Jacobi Method
Bus Ops/Iteration l
118 9,404
300 17,674
1648 106,452
7917 515,531
Gauss-Seidel Method
118 9,404
300 17,674
1648 106,452
7917 515,531
Newton-Raphson Method
118 5,366
300 40,621
1648 625,564
7917 4,062,382

Iterations
717
2207
2031
2183

477
2130
1683
1845

Total Ops
6,742,668
39,006,518
216,204,012
1,125,404,173

4,485,708
37,645,620
179,158,716
951,154,695

4 21,464
4 162,485
5 3,127,818
6 24,374,294

Table II: Floating-Point Operations by Method

Analyzing each of the methods, it is perceptible that
the Jacobi method has the most available parallelism.
From a high level it can be seen that each voltage calcu-
lation is independent; multiple rows can be calculated
concurrently. Neither Gauss-Seidel nor Newton-
Raphson has this property. Within each voltage calcula-
tion, some of the intermediate calculations are also
independent and can be computed in parallel. Gauss-
Seidel has the same capability, but Newton-Raphson
does not. Also, many of the operations containing com-
plex numbers in each of the simple operations can be
done with a high degree of parallelism. Gauss-Seidel
could also benefit from this. Newton-Raphson does not
operate directly on complex numbers.

With all this available parallelism, a deeply pipelined
hardware design is attainable. This design and projected
performance will be discussed in the following sections.

4 HARDWARE ARCHITECTURE
The proposed hardware design uses all facets of a

high-end FPGA like the Altera Stratix (see
www.altera.com): embedded dual-port memories, nu-
merous densely packed logic elements, high-speed
extemal memory interfaces, and input/output pins.
These building blocks are efficiently used to create the
overall pipeline design. Within the pipeline, multiple
floating-point cores, written in VHDL, are instantiated
and chained together. These cores combined with con-
trol logic, input/output, and memory interfaces make up
the complete design. The intent of the design is to be
simple, portable, and relatively scalable.

Since the operations per iteration are identical, the
FPGA hardware design can implement either the Jacobi

or Gauss-Seidel methods. The only difference between
the two is the scheduling at the head of the pipeline.
The Gauss-Seidel method may more than likely stall the
pipeline since the voltage to be calculated usually needs
a result of a voltage currently inside the pipeline. The
Jacobi method has little likelihood of stalling the pipe-
line. It can even be piped over adjacent iterations if the
values at each end of the voltage vector do not depend-
ent on each other. The number of dependencies is pro-
portional to the length of the pipeline. For large sys-
tems, it can be easily shown that no stalls would occur.

4.1 Floating-Point Hardware
In order to perform any of these methods in an

FPGA, efficient floating-point hardware is required.
The ideal design would employ a random access latency
of one cycle. Unfortunately this is not a feasible re-
quirement. It is possible to synthesize such a device, but
the resulting clock speed would be prohibitive. To ac-
count for this deficiency, pipelining is employed. Float-
ing-point units with relatively deep pipelines but high
throughput suffice. Our design utilizes three fully pipe-
lined floating-point cores: multiplication, addi-
tion/subtraction, and division. The number of pipeline
stages differs between the computational cores as seen
in Table III. In the final implementation they will all run
at the slowest synthesized frequency. If the final synthe-
sis frequency fails to meet our expectations, more stages
to the pipeline will be added to improve the overall
throughput. This lengthening of the pipeline will de-
grade performance, but only by a handful of cycles that
are insignificant to the overall computation.

Core Pipeline Stages
Multiplier 5
Addition/Subtraction 4
Division 13

Table III: Synthesis Results on Altera Stratix

4.2 FPGA Pipeline Overview
The proposed FPGA calculation pipeline is designed

to accommodate either the Jacobi or Gauss-Seidel full-
AC load flow methods. In either case a string of multi-
plication, addition, subtraction, and division floating-
point cores are strategically wired together to form the
pipe. The strategy is derived from the work presented in
[4],[5]. Each voltage element of the solution vector is
calculated independently in row order. All calculations
proceed through the pipe unadulterated

From benchmark systems provided by PSS/E and
PJM, we found that the average number of elements in
the Y-bus matrix tended to be between 3 and 4
regardless of the size of the system. By taking the sizes
of the systems into account, one can easily see that an
overwhelming majority of the buses in the network

450

connect to less than 4 neighbors. The number of float-
ing-point cores in the pipeline was chosen to best facili-
tate these findings.

Fine-grained parallelism can also be exploited since
all the operands in this calculation are complex num-
bers; the real and imaginary portions of the calculation
can be computed independently. This is a substantial
computation time saver; essentially the number of soft-
ware operations is halved.

The entire pipeline is pre-configured with known
power system data. The bus admittance matrix, real
power for all buses, and reactive power for load buses
are known prior to the calculation. This presents a limi-
tation for infinitely large systems, but the on-board
memory of a high-end FPGA is adequately large
enough to handle systems on the neighborhood of
100,000 buses.

Implementation of this design is targeted for an add-
in PCI-X card to a personal computer or workstation.
The FPGA devices are laid out in a ring topology with
respect to each other and in a star topology with respect
to the host computer. The host connects to each FPGA
with a 64-bit, 125 MHz interface. Each FPGA is con-
nected to its neighbor with a 128-bit unidirectional data
bus that operates at speed of the worst-case synthesis
frequency.

This design is broken into five main parts: the pipe
management unit, Q-estimator/inner product unit, S/V
unit, Y-bus scaling unit, and the back-end processor. A
block diagram of the implementation is shown in Fig-
ure 1.

P,Q
for each row

Pipe VrVi, Q-Estimator/ EstX,
Mangement rowbuse, Inner Product Vr,Vi SNV Unit

Unit row Index, ,ni Vr,Vi fIUnit row length row index

Vr,Vi
Back End Vr,Vi, Y-bus Scaling
Processor -SUMSQ Unit

Ydiag
for each row

Fig. 1: Hardware Block Diagram

The first part is the head of the pipe management unit
is implemented in software. It is assumed that the clock
rate of the PC is significantly higher than the FPGA
hardware allowing it to adequately keep the FPGA busy
with useful work. Data is sent to the FPGA hardware
pipeline through Direct Memory Access (DMA). The
head FPGA in the pipe has a queue of data structures
ready to be processed.

This management unit is designed to know what cal-
culations are currently in the pipeline. If the Gauss-
Seidel method -is being used, the pipe management unit
stalls the pipeline when a needed result is currently

being calculated in the pipe. This means a data depend-
ency between two (or more) calculations occurred. In
the Jacobi method, there are no data dependencies by
the nature of the algorithm. In this case the pipe is not
stalled.

Fig. 1, 2, and 3 pictorially depict the pipeline imple-
mented in the FPGA hardware. The circles represent
elementary floating-point units: multiplication (x), addi-
tion or Subtraction (+), and division (I). Circles on the
same horizontal compute concurrently. The arrows
indicate the data flow through the pipeline. Resultant
data from Fig. 1 is passed to Fig. 2; results from there
are passed to Fig. 3.

The second part of the overall pipeline and the first
part of the FPGA pipeline is the Q-estimator and/or
inner product unit. This portion of the pipeline is shown
in Fig. 1. Queued data (Y-bus line impedance values G
and B, corresponding voltages V, row index, bus type
indication, and packet size) is read by the hardware
when marked ready by the host. For generator bus
types, the reactive power injection is unknown and must
be estimated. This calculation is very similar to the
inner product required by all bus types. The inner prod-
uct is calculated in parallel to the Q estimation. The
estimated Q and the inner product values are passed
down the pipeline to the S/V unit (fig. 2). For load
buses, Q is already known; the inner product still needs
to be calculated. The downstream S/V unit ignores the
superfluously calculated Q value in this case. In addi-
tion to the calculated values, the row index, the complex
voltage previously calculated for this row, and bus type
indicator is also passed down the pipe.

4
Q(i)

Fig. 2: Q Estimation I Inner Product Unit

The S/V unit performs the complex division of the
real and reactive power injections by the previously
calculated complex voltage for this indexed element.
This portion of the pipeline is shown in Fig. 2. The real
power for this calculation is pre-configured and resident

451

in the FPGA at this stage. It is keyed by the passed row
index. After the division completes, the passed in inner
product complex value is subtracted from the result.
The resulting complex number along with the row index
is passed to the Y-bus scaling unit to complete the proc-
ess.

P(i) Q(i) -Vr(i) Vj(i)- Vj(i)- Vr(i)-

VrQ) ' p Q(i)

-R() /+X(i) / +

R X

Fig. 3: S/V Unit

The Y-bus scaling unit keys up the pre-configured
diagonal entries of the Y-bus using the row index upon
reception of the result from the S/V unit. This portion of
the pipeline is shown in Fig. 3. The required complex
division is performed. The final result is queued to
memory along with the original row index and the sum-
of-squares of the result. This queue entry is marked
ready for the host computer to retrieve and process. The
sum-of-squares is included to help the host maintain the
voltage magnitude requirement of generator buses. This
value is not recorded for load buses.

G(i)- B(i)- -G(i) B(i)- G(i)- iB(i)-
X X R

Vr* Vj*

X) u~~X)

SUMSQ

Fig. 4: Y-bus Scaling Unit

The final stage of the calculation is the back-end
processor. This process is handled through software. If
the Gauss-Seidel method is being performed, the pipe-
line is likely stalled. The head of the pipe management
unit waits for the back-end processor to complete before
issuing the next row to the pipeline. If the Jacobi
method is being performed, the back-end processor
executes after the pipe management unit completes. The
back-end processor is responsible for maintaining volt-
age magnitudes for generator bus types and checking
the results for convergence.

4.3 Newton-Raphson Hardware
Johnson and Vachranukunkiet have proposed an

FPGA LU solver for use in the Newton-Raphson
method [6]. They claim a speedup of greater than 2x
with one update unit and upwards of 1Ox with only four
update units with a synthesized FPGA clock of 200
MHz. This speedup applies to the LU factorizations
necessary to solve one iterate of Newton-Raphson,
which they note takes 85% of the complete iterate.
Their proposed design utilizes fewer FPGA resources
then the proposed Gauss-Jacobi pipeline, but assumes a
much greater synthesized FPGA clock rate for perform-
ance.

5 PERFORMANCE
Performance of the Jacobi pipeline can be estimated

by adding up all the latencies for each of the floating-
point units. This assumes that the pipe can be kept full
at all times. This is not always possible. Additional
cycles are added to the pipe length to account for
bubbles introduced at the head of the pipe due to the
PCI bus interface being slower than the pipeline, in the
Q-estimation/inner product unit when the density of the
row being calculated is greater than four elements, and
any data dependencies between rows. The first two
cycle adders are apparent in both the Jacobi and Gauss-
Seidel pipelines. The third is only evident in the Gauss-
Seidel pipeline. Table IV compares the cycle counts for
the Jacobi and Gauss-Seidel Methods. Data in the
'First' column indicates the first iteration. This includes
the initial pipe latency. Data in the 'Others' column
indicates the bubbles incurred each subsequent iteration.
The total cycles are the first iteration cycles plus the
number of iterations minus one times the remaining
iterations.

Jacobi
Iteration Cycles

Bus First
118 890
300 1945
1648 11223
7917 55649
Gauss-Seidel
118 890
300 1945
1648 11223
7917 55649

Others
567
1250
7828
39707

890
1945
11223
55649

Total
717
2207
2031
2183

477
2130
1683
1845

Total
Cycles
406,862
2,759,445
15,902,063
86,696,323

424,530
4,142,850
18,888,309
102,672,405

Table IV: Estimated HW Pipeline Cycle Counts

Combining the total operations to perform the Jacobi
method with the total number of cycles to do the same
calculation results an operations per second measure.
This measure is detailed in Table V. The Jacobi FPGA
hardware runs at an average of 1.4 Giga-Operations per

452

second over our benchmark systems when synthesized
to 125 MHz.

Total Total Mega-
Bus Cycles Ops Ops/sec
118 406,862 4,485,708 1378.14
300 2,759,445 37,645,620 1705.31
1648 15,902,063 179,158,716 1408.30
7917 86,696,323 951,154,695 1371.39
Table V: Jacobi HW Performance * 125MHz

As can be seen in Table IV, the Jacobi method
outperforms the Gauss-Seidel method even though the
the same hardware is deployed and Gauss-Seidel
method has fewer iterates. This is due to keeping the
hardware pipeline as full as possible. Some
improvements to these numbers can be attained by re-
ordering the rows of the calculation possibly at the
expense of additional iterations.

These results were calculated using a single Jacobi
pipeline. By the nature of the Jacobi method, multiple
pipelines may be used concurrently on different
equations in the problem. As noted earlier, there is no
dependence between the equations when using the
Jacobi method. Performance could be boosted by a
factor of how many pipelines are running concurrently.

5.1 Projected Performance vs. Newton-Raphson
As shown in the previous section, the FPGA

implementation of the Jacobi method outperforms a
similar FPGA implementation of the Gauss-Seidel
method. In this section, we will use our findings to
predict what an implementatin of Newton-Raphson
would have to perform to meet the performance of our
proposed Jacobi FPGA pipeline.

Newton-Raphson algorithm is regarded as the
industry standard for load flow calculations. It is much
more complicated to program than Gauss-Jacobi with
having to solve the real and reactive power mismatch
equations and the creating the Jacobian on every iterate.
Newton-Raphon has many more computations for each
row of the Y-bus, but the number of iterations to
compute a solution is significantly less than Gauss-
Jacobi.

As it can be seen previously in in Table II, the total
number of floating-point operations for Newton-
Raphson is fewer than Gauss-Jacobi for all bus sizes,
but the ratio of operations between the two methods
reduces as the problem size increases. This means that
Newton-Raphson has to work harder for larger systems
to obtain the same throughput as Gauss-Jacobi. Table
VI shows the ratios of operations for our benchmark
systems as well as the necessary effort of Newton-
Raphson to calculate the same load-flow problem as the
125 MHz Gauss-Jacobi FPGA pipeline.

Jacobi:NR Equivalent Mega-
Bus Operations Operations/Sec

Ratio
118 208.99
300 231.69
1648 57.28
7917 39.02

Table VI: Comparing Jacobi
Raphson Operations

6.59
7.36
24.59
35.14
and Newton-

The Newton-Raphson method significantly
outperforms the Jacobi FPGA pipeline for the smaller
systems; the larger systems are more interesting. By
extrapolating the results shown to even larger systems,
an estimate of nearly 100 MOps/sec would be needed to
compute a system of 10,000 busses.

To adequately compare this FPGA engine to
software implementations, the speed of the CPU
executing the software is important. Popular personal
computers at the time of this writing are capable of
running at intemal CPU speeds nearing 4 GHz. They
are also armed with multiple layers of memory caching
and practical on-chip floating-point units. Johnson and
Vachranukunkiet stated that machines of this caliber
can only realistically support approximately 1%
sustained floating-point performance. On a 4 GHz
machine that would equate to 40 MFLOPS.

Comparisans of FPGA hardware methods need to be
performed when prototypes become available. These
comparisons will entail performance, but also resources
used, synthesized clock speed, and scalability.

6 CONCLUSION
The Jacobi method was once discounted as a viable

algorithm in large scale load flow computations due to
its slow rate of convergence. Software research and the
creation of the Gauss-Seidel and Newton-Raphson
methods have almost made the Jacobi method extinct.
Our preliminary results show that the Jacobi method for
large scale load flow should be further investigated
when applied to FPGA technology. The simple
algorithm translates well to a deeply pipelined hardware
architecture. It is the power of the pipeline and available
parallelism that allow the FPGA hardware to have
performance to potentially outpace the Newton-
Raphson implementations.

REFERENCES

[1] Feng Tu and A. J. Flueck, A message-passing dis-
tributed-memory parallel power flow algorithm,
Power Engineering Society Winter Meeting, 2002.
IEEE, Volume 1 (2002), pp 211 - 216

[2] A. R. Bergen, V. Vittal, Power Systems Analysis,
2nd Edition, Prentice Hall, 2000, pp. 323 - 367

[3] Keith Underwood, FPGAs vs. CPUs: Trends in peak
floating point performance, ACM/SIGDA Twelfth
ACM Intemational Symposium on Field-

453

Programmable Gate Arrays, (Monterrey, CA),
February 2004

[4] Ling Zhuo, Gerlad R. Morris, and Viktor K.
Prasanna, Designing Scalable FPGA-Based Reduc-
tion Circuits Using Pipelined Floating-Point Cores,
Reconfigurable Architecture Workshop (RAW),
joint with IPDPS, April 2005

[5] Ling Zhuo and Viktor K. Prasanna, Sparse Matrix-
Vector Multiplication on FPGAs, Thirteenth ACM
International Symposium on Field-Programmable
Gate Arrays, February 2005

[6] J. Johnson, P. Vachranukunkiet, S. Tiwari, P. Nag-
vajara, C. Nwampka, Performance Analysis of Load
Flow Computation using FPGA, to be published at
Power Systems Computation Conference, 2005

454

