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Statistics and Uncertainty 
 

Patrick L. Gurian 
Drexel University 

pgurian@drexel.edu 
 
Goal 
This chapter provides a review of concepts from probability and statistics that are useful for risk 
assessment. It begins with a review of probability density distribution functions, then covers how 
these functions are used as models for variability and uncertainty in risk assessment, describes 
how these functions are fit to it particular cases by estimating parameters, and describes one 
method, bootstrapping, for quantifying uncertainty in these parameter estimates. 
 
Probability 
A probability density distribution function (PDF) describes the probability that some randomly 
varying quantity, such as the amount of water consumed by an individual, the carcinogenic 
potency of a chemical toxin, or the concentration of a pollutant in the air, will lie in a particular 
interval. The PDF is defined as the function that when integrated between limits A and B. gives 
the probability that the random variable x will fall between those limits A and B. Thus 
 
Prob[A<x<B] = A∫B f(x) dx 
 
where f(x) denotes the PDF. 
 
In typical risk assessments a fairly limited number of functional forms of f(x) are used. For 
example, the normal distribution is a PDF with the following functional form: 
 
f(x) = 1/{σ(2π)1/2} exp{(x-µ)2/2σ2} 
 
where µ and sigma in this equation are parameters, or constants that can be tuned to fit particular 
applications. For a normal distribution the parameter µ corresponds to the mean and the 
parameter σ to the standard deviation. By choosing different values of these parameters, the same 
functional form (normal distribution) can be used to describe many different random variables 
which have different means and different standard deviations. Figure 1 shows the probability 
density distribution for a standard normal distribution, which is the normal distribution with 
mean of 0 and standard deviation of 1. A common notation is to use ~ to denote “is distributed 
as” and then write an abbreviation for the class of distribution with information on the 
parameters of the distribution in parentheses. For example, if Z is a random variable that follows 
a standard normal distribution, this can be written as: 
 
Z ~ N (0, 1) 
 
where N is a standard abbreviation for a normal distribution and by convention the first number 
in parentheses is the mean, and the second is the variance (standard deviation squared). 
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Figure 1. The probability density distribution function for a standard normal variable. 
 
It is often useful to evaluate the probability that a random variable is less than a particular value. 
For example one might be interested in the probability that a particular risk is below a given 
regulatory benchmark. This is called a cumulative distribution function (CDF) and is found by 
integrating the PDF from negative infinity to the particular value, X: 
 
F(X) = Prob[x<X] = -∞∫X f(x) dx 
 
where F(X)  denotes the CDF. CDF values are probabilities and range from 0 to 1. They are 
often multiplied by 100 to give percentiles, the percentage change that a random variable is 
below a specified value. Figure 2 shows the CDF of a standard normal distribution. 
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Figure 2. The cumulative distribution function for a standard normal distribution. 
 
Evaluating the CDF of a normal distribution require numerical integration. To avoid having to 
carry out this integration for each of the infinite number of normal distributions, one makes use 
of the fact that the following transformation will convert any normally distributed random 
variable, denoted by x, to a standard normal variable, denoted by Z: 
 
Z=(x - μ)/σ 
 
Note that this transformation does not change the order of different values of x. Thus the highest 
value of x will correspond to the highest value of Z, the median value of x will correspond to the 
median value of Z, the 10th percentile value of x will correspond to the 10th percentile of Z, etc. 
Thus if one knows the CDF for a standard normal distribution, one can transform X to the 
corresponding value of Z, evaluate the standard normal CDF at Z and this equals the CDF value 
of X. To facilitate this approach, CDF values for a standard normal distribution are widely 
available in standard reference tables. The transformation described above can then be applied to 
determine the CDF for any of the infinite number of normal distributions. 
 
Example. Finding the CDF of a normal distribution 
Suppose annual repair costs for a particular car follow a normal distribution with a mean of 300 
and standard deviation of 100: 
 
Annual repairs ~ N (300, 1002) 
 



and we wish to find the probability that repairs will exceed $450 in a given year. The first step is 
to find the Z value corresponding to the value of $450: 
 
Z = (X-µ)/σ 
 
Z = (450-300)/100 = 1.5 
 
The next step is to find the CDF value of Z in a standard table found in nearly every introductory 
statistics textbook: 
 
F(Z) = F(1.5) = 0.933 
 
Note, however, that the CDF is the probability of a random variable being less than a given 
value. To find the probability of repair being less than $450, we make use of the fact that the 
probability of an event and its complement (defined as the event not happening) add to one. Thus 
 
Prob [repair<450] = prob[Z<1.5] = 1- prob[Z>1.5] = 1 - 0.933 
 
Prob [repair >450] = 0.067 
 
Parameter Estimates 
In the example above the probability distribution was specified. The mean and standard deviation 
of the repair costs were assumed to be known perfectly. It is common not to know the parameters 
of a distribution but instead have a data and wish to “tune” the parameters of a PDF to fit the 
particular data. This process of fitting parameter values to match observations is referred to as 
parameter estimation. One natural approach might be to observe repair costs for a number of cars 
and calculate the arithmetic mean and standard deviation of these costs. Then set the mean of the 
model distribution equal to the observed mean and the standard deviation equal to the observed 
standard deviation. This is an example of a technique known formally as the method of 
moments. While the approach is straightforward in this case, it is difficult to generalize to more 
complicated statistical models, such as the dose-response models used in risk assessment. The 
emphasis here will instead by on maximum likelihood estimation, because this method is very 
generally applicable. 
 
Maximum likelihood estimation begins with the question “how likely is the data we observed?” 
For a single observation, x, by definition this is f(x). Typically data are multiple independent 
observations. The likelihood of those observations occurring together is then the product of the 
likelihoods of the individual observations: 
 
L=f(x1) f(x2) f(x3)…f(xN) 
 
where the subscripts indicate the individual observations, N is the number of observations, and L 
is referred to as the likelihood function. For example, if a baseball team is observed to win one 
game and lose the next two then: 
 
L = Prob[win] prob[loss] prob[loss] 



If we write the probability of winning as p, then this can be written: 
 
L = p(1-p)2 
 
since winning and losing are compliments. Suppose one person posits that the team has a long-
run frequency of winning of p=0.5. In this case the likelihood of the observed data is: 
 
L = (0.5) 0.52 = 0.125 
 
If a second person states that the value is only p=0.3, which value do we prefer? One way to 
assess this is to examine the probability of getting the results we actually observed under these 
two alternative views of p. If p=0.3 then the likelihood of the sequence of wins and losses that 
was observed is: 
 
L = 0.3 (0.72) = 0.147 
 
The probability of the outcome that actually occurred is higher given the second person’s 
estimate of p than given the first person’s estimate of p. Based on this we generally prefer the 
second person’s estimate of p, as it is more consistent with the observed data. The next step is to 
ask if there is another estimate of p which gives an even higher likelihood of observing the data. 
Ultimately one seeks the value of p which maximizes the probability of observing the data. 
Calculus provides a method for doing this. One first differentiates the likelihood function, L, 
with respect to the parameter, p: 
 
L = p(1-p)2 
 
dL/dp = (1-p)2 - 2p(1-p) 
 
To find a critical point one sets dL/dp=0 
 
0 = (1-p)2 - 2p(1-p) 
 
Now factor out (1-p) 
 
0 = 1-p -2p 
 
Rearrange to: 
 
3p=1 
 
And solve for p: 
 
p=1/3 
 
Thus p=1/3, the observed proportion of wins, is the maximum likelihood estimate of p. (To 
verify that this is a maximum one can note that the second derivative is negative for this value of 



p.) In this case it was possible to find the maximum value of L analytically. In many cases with 
more complicated likelihood functions, it is not possible to find L analytically. In these cases 
numerical search algorithms are used to identify a maximum.  
 
For very large data sets, one can imagine that the joint probability of all the observations will be 
quite low (i.e., L is a product of many numbers each of which is ≤1 since all probabilities are 
≤1). It is often easier for these numerical search algorithms to work with the log of the 
likelihood, rather than the likelihood: 
 
Ln L=ln π f(xi| θ)  
 
where θ indicates the parameters associated with a particular f(x) and indicates a product. The 
log of a product can be expressed as the sum of the logs: 
 
Ln L=Σ ln f(xi| θ)  
 
and it is this form that is customarily used in numerical optimization routines. 
 
Variability and Uncertainty  
Variability refers to differences in outcomes obtained from a process. Uncertainty is lack of 
knowledge. Probability theory was originally developed to describe variability in the outcomes 
of repeated events, that is, the long-run frequency of different events. Those who desire to 
restrict the use of probably to describing objectively measurable variability are referred to as 
frequentists. Others who view probability more broadly as the subjective assessment of the 
likelihood of an event are termed subjectivists. This subjectivist viewpoint allows probability 
distributions to be used to describe not only variability but also uncertainty. Uncertainty can 
result from variability. For example, I may not know the outcome of a coin flip because if varies 
between heads and tails. However, uncertainty can result from many other sources, such as lack 
of understanding of the fundamental process at work. The subjectivist view of probability allows 
for the use of probability to describe one’s belief as to the value of a quantity that has not yet 
been observed (i.e., for which there is no frequency information). For example, one might use 
probability to describe factors such as the sensitivity of the earth’s climate system to a doubling 
of pre-industrial CO2, even though this is not strictly speaking a randomly varying quantity. 
There is one value which is unknown to us.  
 
In many cases both variability and uncertainty are present. For example, a particular drinking 
water may be contaminated with Cryptosporidium oocysts. The amount of oocysts in different 
water samples will vary. If the oocysts move randomly in the water, that is they move 
independently, neither clustering together nor dispersion from each other, then the probability 
that x oocysts will be found in a given water sample can be described by a Poisson distribution: 
 
Prob [x oocysts] = λx exp(-λ)/x! 
 
where λ is a parameter. One property of this distribution is that the mean is equal to λ. One can 
think of λ as the long-run mean, that is, the mean if an infinite number of samples from the same 
Poisson distribution are averaged. Because a finite sample is not guaranteed to be perfectly 



representative of the population from which it is drawn, even after observing the mean (median, 
variance, etc.) of a sample, there is still uncertainty as to the population mean (median, variance, 
etc.). It is uncertainty due to this sampling variability which is quantified through statistical 
methods. 
 
It is common to first assess an appropriate functional form for f(x) and then, given the chosen 
form of f(x), assess the uncertainty in the parameters of f(x). In the classical statistical 
framework, these parameters are fixed values. Based on a sample, estimates are obtained for 
these parameters. However, given sampling variability, these parameter estimates have 
variability in them. This variability can be assessed and the standard deviation of the estimate of 
the parameter quantified. This standard deviation of a parameter estimate is termed a standard 
error. Thus uncertainty in model parameters (due to sampling variability and only sampling 
variability) is captured by these standard errors. In the Bayesian framework, model parameters 
are treated as themselves being random variables. In this framework, the λ value for a Poisson 
process would follow a probability distribution with a mean (reflecting the central tendency of λ) 
and a variance (reflecting uncertainty as to the true value of λ). In the classical framework, it is 
not quite correct to describe the parameters of models as following uncertainty distributions. 
Instead the standard errors are used to include or exclude different possible values of the model 
parameters with various levels of confidence. It is not clear that any harm is done in simply 
treating model parameters as random variables with means equal to their estimates and standard 
deviations equal to their standard errors. This view essentially adopts the Bayesian framework 
even for models estimated in a classical framework. It is often a convenient approach to adopt in 
risk assessments where probability is used quite generally to describe a wide variety of 
uncertainties. 
 
Bootstrapping 
As described above, sampling variability leads to uncertainty in parameter estimates. In some 
cases an analytical formula is available to estimate the standard error of a parameter. For 
complicated model forms, such formulae may not be available. Bootstrapping is a generally 
applicable method to assess the uncertainty in parameter estimates due to sampling variability. 
The concept underlying bootstrapping is to treat the sample obtained as the PDF of the model. 
Each point has probability 1/N where N is the number of observations in the sample. This 
assumption allows us to create alternative samples from the data. One randomly draws N 
observations from the observed dataset to create an alternate data set. These observations are 
drawn with replacement, meaning that if a particular observation is not eliminated from 
subsequent draws after it is sampled. It is this that allows for each alternative dataset to be 
slightly different from the original dataset, since some observations will appear multiple times in 
the alternative dataset and some will not be sampled at all. 
 
The next step is to estimate the desired parameter (or summary statistic, such as mean, variance, 
90th percentile, etc.) for each of the alternative datasets. Each combination of generating an 
alternative dataset and estimating the quantity of interest is termed an iteration of the bootstrap 
procedure. The values for each dataset are then considered discrete samples from the probability 
distribution of the parameter. Means, variances, and percentiles for the parameter estimate can be 
found from this discrete sample. Thus the standard error of the parameter estimate can be 
estimated as the standard deviation of the different parameter estimates obtained from each 



iteration. This is essentially a Monte Carlo approach to assessing parameter uncertainty and, as 
with all Monte Carlo analyses, the number of iterations conducted should be quite large, 
preferably as large as 10,000 (Morgan and Henrion 1990, Burmaster and Anderson 1994). A 
smaller number of iterations may be acceptable if convergence of estimates can be observed. In 
this case one would track the estimate of interest across different iterations. Values will fluctuate 
greatly at first as the estimate is based on a small number of iterations, but these fluctuations will 
decrease as a larger sample size is obtained. Convergence is achieved when the estimate no 
longer shows fluctuations large enough to be of concern to the analysis. 
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